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Preface

In many applications nowadays, information systems are becoming increasingly
complex, open, and dynamic. They involve massive amounts of data, generally
issued from different sources. Moreover, information is often inconsistent, incom-
plete, heterogeneous, and pervaded with uncertainty. The annual International
Conference on Scalable Uncertainty Management (SUM) has grown out of this
wide-ranging interest in the management of uncertainty and inconsistency in
databases, the Web, the Semantic Web, and artificial intelligence. The SUM
conference series aims at bringing together researchers from these areas by high-
lighting new methods and technologies devoted to the problems raised by the
need for a meaningful and computationally tractable management of uncertainty
when huge amounts of data have to be processed. The First International Confer-
ence on Scalable Uncertainty Management (SUM 2007) was held in Washington
DC, USA, in October 2007. Since then, the SUM conferences have taken place
successively in Naples (Italy) in 2008, again in Washington DC (USA) in 2009,
and in Toulouse (France) in 2010.

This volume contains the papers presented at the 5th International Confer-
ence on Scalable Uncertainty Management (SUM 2011) which was held in Day-
ton, Ohio (USA), during October 10–12, 2011. In this edition, 58 papers were
submitted, of which 6 papers were withdrawn by their authors (only one during
the reviewing process). Among the 52 remaining papers, 32 papers were accepted
as regular papers, and 3 papers as short papers. Each paper was reviewed by at
least three Program Committee members.

In addition, the conference greatly benefited from invited lectures by two
world-leading researchers in artificial intelligence and the Semantic Web: Joseph
Y. Halpern (on “Causality, Responsibility, and Blame: A Structural-Model
Approach”) and Umberto Straccia (on “Fuzzy Logic, Annotation Domains and
Semantic Web Languages”).

This conference revisited the idea, introduced at SUM 2010, of having discus-
sants. Each discussant is in charge of a subset of accepted papers focusing on the
same topic, and is asked to prepare a short survey on this topic for introducing
the discussions. This volume contains six discussant contributions which provide
an overview of a selection of topics where the research on the management of
uncertainty is specially active.

We wish to thank all the authors of submitted papers, the invited speakers,
the discussants, and all the conference participants for fruitful discussions. We
would like to thank all the members of the Program Committee, as well as the
additional reviewers, who devoted time for the reviewing process.



VI Preface

We would like to extend a very special thanks to the General Chair Thomas
Sudkamp, from Wright State University, for his excellent local organization which
made the conference a success.

Lastly, thanks are also due to the creators and maintainers of the conference
management system EasyChair (http://www.easychair.org).

July 2011 Salem Benferhat
John Grant
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Dynamics of Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
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Causality, Responsibility, and Blame:

A Structural-Model Approach

Joseph Y. Halpern

Computer Science Department
Cornell University

Ithaca, NY 14853, USA
halpern@cs.cornell.edu

This talk will provide an overview of work that I have done with Hana Chockler
and Judea Pearl [1,4,5] on defining notions such as causality, explanation, respon-
sibility, and blame. I first review the Halpern-Pearl definition of causality—what
it means that A is a cause of B—and show how it handles well some standard
problems of causality. This definition is based on what are called structural equa-
tions, which are ways of describing the effects of interventions. The definition
(like most in the literature) views causality as an all-or-nothing concept. Either
A is a cause of B or it is not. I show how the account can be extended to take
into account the degree of responsibility of A for B. For example, if someone
wins an election 11–0, each person is less responsible for his victory than if he
had won 6–5. Finally, I discuss more recent work [2,3] on combining a theory of
normality (or defaults) with the structural equations. A slightly revised defini-
tion of causality that uses normality deals well with problems that have been
pointed out in the original Halpern-Pearl definition, and helps explain different
intuitions that people have regarding causality.

References

1. Chockler, H., Halpern, J.Y.: Responsibility and blame: A structural-model ap-
proach. Journal of A.I. Research 20, 93–115 (2004)

2. Halpern, J.Y.: Defaults and normality in causal structures. In: Principles of
Knowledge Representation and Reasoning: Proc. Eleventh International Conference
(KR 2008), pp. 198–208 (2008)

3. Halpern, J.Y., Hitchcock, C.: Graded causation and defaults (2011) (unpublished
manuscript)

4. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach.
Part I: Causes. British Journal for Philosophy of Science 56(4), 843–887 (2005)

5. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach.
Part II: Explanations. British Journal for Philosophy of Science 56(4), 889–911
(2005)
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Fuzzy Logic, Annotation Domains and Semantic

Web Languages

Umberto Straccia

ISTI - CNR, Pisa, Italy
straccia@isti.cnr.it

http://www.umberto-straccia.name

Abstract. This talk presents a detailed, self-contained and comprehen-
sive account of the state of the art in representing and reasoning with
fuzzy knowledge in Semantic Web Languages such a RDF/RDFS, OWL
2 and RIF and discuss some implementation related issues. We further
show to which extend we may generalise them to so-called annotation
domains, that cover also e.g. temporal, provenance and trust extensions.

Keywords: Fuzzy Logic, Semantic Web Languages, RDFS, OWL, RIF.

1 Introduction

Managing uncertainty and fuzzyness is starting to play an important role in
Semantic Web research, and has been recognised by a large number of research
efforts in this direction (see, e.g., [68] for a concise overview).

We recall that there has been a long-lasting misunderstanding in the literature
of artificial intelligence and uncertainty modelling, regarding the role of proba-
bility/possibility theory and vague/fuzzy theory. A clarifying paper is [28]. We
recall here the salient concepts for the inexpert reader. Under uncertainty theory
fall all those approaches in which statements rather than being either true or
false, are true or false to some probability or possibility (for example, “it will rain
tomorrow”). That is, a statement is true or false in any world/interpretation, but
we are “uncertain” about which world to consider as the right one, and thus we
speak about e.g. a probability distribution or a possibility distribution over the
worlds. For example, we cannot exactly establish whether it will rain tomorrow
or not, due to our incomplete knowledge about our world, but we can estimate
to which degree this is probable, possible, and necessary. On the other hand,
under fuzzy theory fall all those approaches in which statements (for example,
“the tomato is ripe”) are true to some degree, which is taken from a truth space
(usually [0, 1]). That is, an interpretation maps a statement to a truth degree,
since we are unable to establish whether a statement is entirely true or false due
to the involvement of vague concepts, such as “ripe”, which do not have an pre-
cise definition (we cannot always say whether a tomato is ripe or not). Note that
all fuzzy statements are truth-functional, that is, the degree of truth of every
statement can be calculated from the degrees of truth of its constituents, while
uncertain statements cannot always be a function of the uncertainties of their

S. Benferhat and J. Grant (Eds.): SUM 2011, LNAI 6929, pp. 2–21, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.umberto-straccia.name


Fuzzy Logic and Semantic Web Languages 3

constituents [27]. More concretely, in probability theory, only negation is truth-
functional, while in possibility theory, only disjunction (resp. conjunction) is
truth-functional in possibilities (resp. necessities) of events. Furthermore, math-
ematical fuzzy logics are based on truly many-valued logical operators, while
uncertainty logics are defined on top of standard binary logical operators.

We present here some salient aspects in representing and reasoning with fuzzy
knowledge in Semantic Web Languages (SWLs) such as triple languages RDF &
RDFS [19] (see, e.g. [69,70]), conceptual languages or frame-based languages of
the OWL 2 family [50] (see, e.g. [45,58,62]) and rule languages, such as RIF [53]
(see, e.g. [65,66,68]).

In the following, we overview briefly SWLs and relate them to their logical
counterpart. Then, we briefly sketch the basic notions of Mathematical Fuzzy
Logic, which we require in the subsequent sections in which we illustrate the
fuzzy variants of SWLs.

2 Semantic Web Languages: Overview

The Semantic Web is a ‘web of data’ whose goal is to enable machines to un-
derstand the semantics, or meaning, of information on the World Wide Web.
In rough terms, it should extend the network of hyperlinked human-readable
web pages by inserting machine-readable metadata1 about pages and how they
are related to each other, enabling automated agents to access the Web more
intelligently and perform tasks on behalf of users.

Semantic Web Languages (SWL) are the languages used to provide a formal
description of concepts, terms, and relationships within a given knowledge do-
main to be used to write the metadata. There are essentially three family of
languages: namely, triple languages RDF & RDFS [19] (Resource Description
Framework), conceptual languages of the OWL 2 family (Ontology Web Lan-
guage) [50] and rule languages of the RIF family (Rule Interchange Format) [53].
While their syntactic specification is based on XML [74], their semantics is based
on logical formalisms, which will be the focus here (see Fig. 1): briefly,

– RDFS is a logic having intensional semantics and the logical counterpart is
ρdf [47];

– OWL 2 is a family of languages that relate to Description Logics (DLs) [6];
– RIF relates to the Logic Programming (LP) paradigm [43];
– both OWL 2 and RIF have an extensional semantics.

RDF & RDFS. The basic ingredients of RDF are triples of the form (s, p, o),
such as (umberto, likes, tomato), stating that subject s has property p with value
o. In RDF Schema (RDFS), which is an extension of RDF, additionally some
special keywords may be used as properties to further improve the expressivity
of the language. For instance we may also express that the class of ’tomatoes are
a subclass of the class of vegetables’, (tomato, sc, vegetables), while Zurich is an
instance of the class of cities, (zurich, type, city).
1 Obtained manually, semi-automatically, or automatically.
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Fig. 1. Semantic Web Languages from a Logical Perspective

Form a computational point of view, one computes the so-called closure (de-
noted cl(K)) of a set of triples K. That is, one infers all possible triples using
inference rules [46,47,52], such as

(A, sc, B), (X, type, A)

(X, type, B)

“if A subclass of B and X instance of A then infer that X is instance of B”,

and then store all inferred triples into a relational database to be used then for
querying. We recall also that there also several ways to store the closure cl(K)
in a database (see [1,37]). Essentially, either we may store all the triples in table
with three columns subject, predicate, object, or we use a table for each predicate,
where each table has two columns subject, object. The latter approach seems to
be better for query answering purposes. Note that making all implicit knowledge
explicit is viable due to the low complexity of the closure computation, which is
O(|K|2) in the worst case.

OWL Family. The Web Ontologoy Language OWL [49] and its successor OWL
2 [23,50] are “object oriented” languages for defining and instantiating Web
ontologies. Ontology (see, e.g. [31]) is a term borrowed from philosophy that
refers to the science of describing the kinds of entities in the world and how they
are related. An OWL ontology may include descriptions of classes, properties
and their instances, such as

class Person partial Human

restriction (hasName someValuesFrom String)

restriction (hasBirthPlace someValuesFrom Geoplace)
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“The class Person is a subclass of class Human and has two attributes: hasName
having a string as value, and hasBirthPlace whose value is an instance of the
class Geoplace”.

Given such an ontology, the OWL formal semantics specifies how to derive its
logical consequences. For example, if an individual Peter is an instance of the
class Student, and Student is a subclass of Person, then one can derive that Peter
is also an instance of Person in a similar way as it happens for RDFS. However,
OWL is much more expressive than RDFS, as the decision problems for OWL
are in higher complexity classes [51] than for RDFS. In Fig. 2 we report the
various OWL languages, their computational complexity and as subscript the
DL their relate to [6,26].

Fig. 2. OWL family and complexity

OWL 2 [23,50] is an update of OWL 1 adding several new features, includ-
ing an increased expressive power. OWL 2 also defines several OWL 2 profiles,
i.e. OWL 2 language subsets that may better meet certain computational com-
plexity requirements or may be easier to implement. The choice of which profile
to use in practice will depend on the structure of the ontologies and the reason-
ing tasks at hand. The OWL 2 profiles are:

OWL 2 EL is particularly useful in applications employing ontologies that con-
tain very large numbers of properties and/or classes (basic reasoning prob-
lems can be performed in time that is polynomial with respect to the size
of the ontology [5]). The EL acronym reflects the profile’s basis in the EL
family of description logics [5].

OWL 2 QL is aimed at applications that use very large volumes of instance
data, and where query answering is the most important reasoning task. In
OWL 2 QL, conjunctive query answering can be implemented using con-
ventional relational database systems. Using a suitable reasoning technique,
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sound and complete conjunctive query answering can be performed in
LOGSPACE with respect to the size of the data (assertions) [4,21]. The
QL acronym reflects the fact that query answering in this profile can be im-
plemented by rewriting queries into a standard relational Query Language
such as SQL [72].

OWL 2 RL is aimed at applications that require scalable reasoning without
sacrificing too much expressive power. OWL 2 RL reasoning systems can
be implemented using rule-based reasoning engines as a mapping to Logic
Programming [43], specifically Datalog [72], exists. The RL acronym reflects
the fact that reasoning in this profile can be implemented using a standard
rule language [30]. The computational complexity is the same as for Data-
log [25] (polynomial in the size of the data, EXPTIME w.r.t. the size of the
knowledge base).

RIF Family. The Rule Interchange Format (RIF) aims at becoming a standard
for exchanging rules, such as

Forall ?Buyer ?Item ?Seller
buy(?Buyer ?Item ?Seller) :- sell(?Seller ?Item ?Buyer)

“Someone buys an item from a seller if the seller sells that item to the buyer”

among rule systems, in particular among Web rule engines. RIF is in fact a
family of languages, called dialects, among which the most significant are:

RIF-BLD The Basic Logic Dialect is the main logic-based dialect. Technically,
this dialect corresponds to Horn logic with various syntactic and seman-
tic extensions. The main syntactic extensions include the frame syntax and
predicates with named arguments. The main semantic extensions include
datatypes and externally defined predicates.

RIF-PRD The Production Rule Dialect aims at capturing the main aspects
of various production rule systems. Production rules, as they are currently
practiced in main-stream systems like Jess2 or JRules3, are defined using
ad hoc computational mechanisms, which are not based on a logic. For this
reason, RIF-PRD is not part of the suite of logical RIF dialects and stands
apart from them. However, significant effort has been extended to ensure as
much sharing with the other dialects as possible. This sharing was the main
reason for the development of the RIF Core dialect;

RIF-Core The Core Dialect is a subset of both RIF-BLD and RIF-PRD,
thus enabling limited rule exchange between logic rule dialects and pro-
duction rules. RIF-Core corresponds to Horn logic without function symbols
(i.e., Datalog) with a number of extensions to support features such as ob-
jects and frames as in F-logic [38].

RIF-FLD The Framework for Logic Dialects is not a dialect in its own right, but
rather a general logical extensibility framework. It was introduced in order to

2 http://www.jessrules.com/
3 http://www.ilog.com/products/jrules/

http://www.jessrules.com/
http://www.ilog.com/products/jrules/
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drastically lower the amount of effort needed to define and verify new logic
dialects that extend the capabilities of RIF-BLD.

3 Mathematical Fuzzy Logic Basics

Given that SWLs are grounded on Mathematical Logic, it is quite natural to
look at Mathematical Fuzzy Logic [36] to get inspiration for a fuzzy logic exten-
sions of SWLs. So, we recap here briefly that in Mathematical Fuzzy Logic, the
convention prescribing that a statement is either true or false is changed and is
a matter of degree measured on an ordered scale that is no longer {0, 1}, but
[0, 1]. This degree is called degree of truth (or score) of the logical statement
φ in the interpretation I. In this section, fuzzy statements have the form φ : r,
where r∈ [0, 1] (see, e.g. [35,36]) and φ is a statement, which encode that the
degree of truth of φ is greater or equal r. A fuzzy interpretation I maps each
basic statement pi into [0, 1] and is then extended inductively to all statements:

I(φ ∧ ψ) = I(φ) ⊗ I(ψ) , I(φ ∨ ψ) = I(φ) ⊕ I(ψ)
I(φ → ψ) = I(φ) ⇒ I(ψ) , I(¬φ) = 	I(φ)
I(∃x.φ(x)) = sup

a∈ΔI
I(φ(a)) , I(∀x.φ(x)) = inf

a∈ΔI
I(φ(a)) ,

where ΔI is the domain of I, and ⊗, ⊕, ⇒, and 	 are so-called t-norms, t-
conorms, implication functions, and negation functions, respectively,which extend
the Boolean conjunction, disjunction, implication, and negation, respectively, to
the fuzzy case [40]. Usually, the implication function⇒ is defined as r-implication,
that is, a ⇒ b = sup {c | a⊗c ≤ b}. The notions of satisfiability and logical conse-
quence are defined in the standard way. A fuzzy interpretation I satisfies a fuzzy
statement φ : r or I is a model of φ : r, denoted I |=φ : r iff I(φ) ≥ r.

One usually distinguishes three different logics, namely �Lukasiewicz, Gödel,
and Product logics [36], whose combination functions are reported in Table 1.
Zadeh logic, namely a ⊗ b = min(a, b), a ⊕ b = max(a, b), 	 a = 1 − a and
a ⇒ b = max(1−a, b), is entailed by �Lukasiewicz logic, as min(a, b) = a⊗(a ⇒ b)
and max(a, b) = 1−min(1−a, 1−b). Table 2 and 3 report axioms these functions
have to satisfy. Table 4 recalls some salient properties of the various fuzzy
logics. Worth noting is that a fuzzy logic satisfying all the listed properties has

Table 1. Combination functions of various fuzzy logics

�Lukasiewicz logic Gödel logic Product logic

a⊗ b max(a + b− 1, 0) min(a, b) a · b
a⊕ b min(a + b, 1) max(a, b) a + b− a · b
a⇒ b min(1− a + b, 1)

{
1 if a ≤ b

b otherwise
min(1, b/a)

� a 1− a

{
1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise



8 U. Straccia

Table 2. Properties for t-norms and s-norms

Axiom Name T-norm S-norm

Tautology / Contradiction a⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b⊗ a a⊕ b = b⊕ a
Associativity (a⊗ b)⊗ c = a⊗ (b⊗ c) (a⊕ b)⊕ c = a⊕ (b⊕ c)
Monotonicity if b ≤ c, then a⊗ b ≤ a⊗ c if b ≤ c, then a⊕ b ≤ a⊕ c

Table 3. Properties for implication and negation functions

Axiom Name Implication Function Negation Function

Tautology / Contradiction 0⇒ b = 1, a⇒ 1 = 1, 1⇒ 0 = 0 � 0 = 1, � 1 = 0
Antitonicity if a ≤ b, then a⇒ c ≥ b⇒ c if a ≤ b, then � a ≥ � b
Monotonicity if b ≤ c, then a⇒ b ≤ a⇒ c

necessarily to collapse to the Boolean, two-valued, case. As a note, [29] claimed
that fuzzy logic collapses to boolean logic, but didn’t recognise that to prove it,
all the properties of Table 4 have been used. Additionally, we have the following
inferences: let a ≥ n and a ⇒ b ≥ m. Then, under Kleene-Dienes implication,
we infer that “if n > 1 −m then b ≥ m”. More importantly, to what concerns
our paper, is that under an r-implication relative to a t-norm ⊗, we have that

from a ≥ n and a⇒ b ≥ m, we infer b ≥ n⊗m . (1)

To see this, as a ≥ n and a ⇒ b = sup {c | a ⊗ c ≤ b} = c̄ ≥ m it follows that
b ≥ a⊗ c̄ ≥ n⊗m. In a similar way, under an r-implication relative to a t-norm
⊗, we have that

from a⇒ b ≥ n and b⇒ c ≥ m, we infer that a⇒ c ≥ n⊗m . (2)

We say φ : n is a tight logical consequence of a set of fuzzy statements K iff n
is the infimum of I(φ) subject to all models I of K. Notice that the latter is

Table 4. Some additional properties of combination functions of various fuzzy logics

Property �Lukasiewicz Logic Gödel Logic Product Logic Zadeh Logic

x⊗�x = 0 + + + −
x⊕�x = 1 + − − −
x⊗ x = x − + − +
x⊕ x = x − + − +
��x = x + − − +

x⇒ y = � x⊕ y + − − +
� (x⇒ y) = x⊗� y + − − +
� (x⊗ y) = � x⊕� y + + + +
� (x⊕ y) = � x⊗� y + + + +
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equivalent to n = sup {r | K |= φ : r}. n is called the best entailment degree of φ
w.r.t. K (denoted bed(K, φ)), i.e.

bed(K, φ) = sup {r | K |= φ : r} .

On the other hand, the best satisfiability degree of φ w.r.t. K (denoted bsd(K, φ))
is

bsd(K, φ) = sup
I
{I(φ) | I |= K} .

We refer the reader to [34,35,36] for reasoning algorithms for fuzzy propositional
and First-Order Logics. For illustrative purpose, we recap here a simple method
to determine bed(K, φ) and bsd(K, φ) via Mixed Integer Linear Programming
(MILP) for the case of propositional �Lukasiewicz logic. To this end, it can be
shown that

bed(K, φ) = min x. such that K ∪ {¬φ : 1− x} satisfiable

bsd(K, φ) = max x. such that K ∪ {φ : x} satisfiable .

Now, for a formula φ consider a variable xφ (with intended meaning: the degree of
truth of φ is greater or equal to xφ). Now we apply the following transformation
σ that generates a set of MILP in-equations:

bed(K, φ) = min x. such that x ∈ [0, 1], x¬φ ≥ 1− x, σ(¬φ),
for all φ′ ≥ n ∈ K, xφ′ ≥ n, σ(φ′),

σ(φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xp ∈ [0, 1] if φ = p

xφ = 1− xφ′ , xφ ∈ [0, 1] if φ = ¬φ′

xφ1 ⊗ xφ2 ≥ xφ,
σ(φ1), σ(φ2), xφ ∈ [0, 1]

if φ = φ1 ∧ φ2

xφ1 ⊕ xφ2 ≥ xφ if φ = φ1 ∨ φ2

σ(¬φ1 ∨ φ2) if φ = φ1 ⇒ φ2 .

In the definition above, z ≤ x1 ⊕ x2 and z ≤ x1 ⊗ x2, with 0 ≤ xi, z ≤ 1, can be
encoded as the sets of constraints:

z ≤ x1 ⊕ x2 �→ {z ≤ x1 + x2},
z ≤ x1 ⊗ x2 �→ {y ≤ 1− z, x1 + x2 − 1 ≥ z − y, y ∈ {0, 1}} .

As the set of constraints is linearly bounded by K and as MILP satisfiability
is NP-complete, we get the well-known result that determining the best entail-
ment/satisfiability degree is NP-complete for propositional �Lukasiewicz logic.

We conclude with the notion of fuzzy set [76]. A fuzzy set R over a countable
crisp set X is a function R : X → [0, 1]. The degree of subsumption between two
fuzzy sets A and B, denoted A � B, is defined as infx∈X A(x) ⇒ B(x), where
⇒ is an implication function. Note that if A(x) ≤ B(x), for all x∈ [0, 1], then
A � B evaluates to 1. Of course, A � B may evaluate to a value v ∈ (0, 1) as well.
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(a) (b) (c) (d) (e)

Fig. 3. (a) Trapezoidal function trz (a, b, c, d), (b) triangular function tri(a, b, c), (c) left
shoulder function ls(a, b), (d) right shoulder function rs(a, b) and (e) linear modifier
lm(a, b)

A (binary) fuzzy relation R over two countable crisp sets X and Y is a function
R : X × Y → [0, 1]. The inverse of R is the function R−1 : Y ×X → [0, 1] with
membership function R−1(y, x) = R(x, y), for every x ∈ X and y ∈ Y . The
composition of two fuzzy relations R1 : X × Y → [0, 1] and R2 : Y × Z → [0, 1]
is defined as (R1 ◦R2)(x, z) = supy∈Y R1(x, y)⊗R2(y, z). A fuzzy relation R is
transitive iff R(x, z)� (R ◦R)(x, z).

Eventually, the trapezoidal (Fig. 3 (a)), the triangular (Fig. 3 (b)), the L-
function (left-shoulder function, Fig. 3 (c)), and the R-function (right-shoulder
function, Fig. 3 (d)) are frequently used to specify membership degrees. For
instance, the left-shoulder function is defined as

ls(x; a, b) =

⎧⎪⎨⎪⎩
1 if x ≤ a

0 if x ≥ b

(b − x)/(b− a) if x ∈ [a, b]
(3)

4 Fuzzy Logic and Semantic Web Languages

We have seen in the previous section how to “fuzzyfy” a classical language such
as propositional logic and FOL, namely fuzzy staements are of the form φ : n,
where φ is a statement and n ∈ [0, 1].

The natural extension to SWLs consists then in replacing φ with appropriate
expressions belonging to the logical counterparts of SWLs, namely ρdf, DLs and
LPs, as we will illustrate next.

4.1 Fuzzy RDFS

In Fuzzy RDFS (see [69] and references therein), triples are annotated with a
degree of truth in [0, 1]. For instance, “Rome is a big city to degree 0.8” can
be represented with (Rome, type, BigCity) : 0.8. More formally, fuzzy triples are
expressions of the form τ : n, where τ is a RDFS triple (the truth value n may
be omitted and, in that case, the value n = 1 is assumed).

The interesting point is that from a computational point of view the inference
rules parallel those for “crisp” RDFS: indeed, the rules are of the form

τ1 : n1, . . . , τk : nk, {τ1, . . . , τk} �RDFS τ

τ :
⊗

i ni
(4)
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Essentially, this rule says that if a classical RDFS triple τ can be inferred
by applying a classical RDFS inference rule to triples τ1, . . . , τk (denoted
{τ1, . . . , τk} �RDFS τ), then the truth degree of τ will be

⊗
i ni.

As a consequence, the rule system is quite easy to implement for current
inference systems. Specifically, as for the crisp case, one may compute the closure
cl(K) of a set of fuzzy triples K, store them in a relational database and thereafter
query the database.

Concerning the query language, SPARQL [55] is the current standard, but a
new version (SPARQL 1.1 ) is close to be finalised [56]. From a logical point of
view, a SPARQL query may be seen as a Conjunctive Query (CQ), or an union
of them, a well-known notion in database theory [2]. Specifically, an RDF query
is of the rule-like form

q(x) ← ∃y.ϕ(x, y) , (5)

where q(x) is the head and ∃y.ϕ(x, y) is the body of the query, which is a con-
junction (we use the symbol “,′′ to denote conjunction in the rule body) of triples
τi (1 ≤ i ≤ n). x is a vector of variables occurring in the body, called the dis-
tinguished variables, y are so-called non-distinguished variables and are distinct
from the variables in x, each variable occurring in τi is either a distinguished or
a non-distinguished variable. If clear from the context, the existential quantifi-
cation ∃y may be omitted. In a query, built-in triples of the form (s, p, o) are
allowed, where p is a built-in predicate taken from a reserved vocabulary and
having a fixed interpretation. Built-in predicates are generalised to any n-ary
predicate p. For convenience, “functional predicates”4 are written as assignments
of the form x :=f(z) and it is assumed that the function f(z) is safe (also non
functional built-in predicate p(z) should be safe as well). A query example is:

q(x, y)← (y, created, x), (y, type, Italian), (x, exhibitedAt, Uffizi) (6)

having intended meaning to retrieve all the artefacts x created by Italian artists
y, being exhibited at Uffizi Gallery.

Roughly, the answer set of a query q w.r.t. a set of tuples K (denoted
ans(K, q)) is the set of tuples t such that there exists t′ such that the instan-
tiation ϕ(t, t′) of the query body is true in the closure of K, i.e., all triples in
ϕ(t, t′) are in cl(K).

Once we switch to the fuzzy setting, queries are similar as for the crisp case,
except that fuzzy triples are used in the query body in place of crisp triples. A
special attention is required to the fact that now all answers are graded and,
thus, an order is induced on the answer set. Specifically, a fuzzy query is of the
form

q(x) : s ← ∃y.τ1 : s1, . . . , τn : sn, s :=f(s, x, y) , (7)

where now additionally si is the score of triple τi and the final score s of triple
x is computed according to a user function f applied to variables occurring in
the query body. For instance, the query

q(x) : s← (x, type, SportsCar) : s1, (x, hasPrice, y), s = s1 · cheap(y) (8)

4 A predicate p(x, y) is functional if for any t there is unique t′ for which p(t, t′) is
true.
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where e.g. cheap(y) = ls(20000, 30000)(y), has intended meaning to retrieve all
cheap sports car. Then, any answer is scored according to the product of being
cheap and a sports car.

It is not difficult to see that indeed fuzzy CQs can easily be mapped into SQL
as well. For further details see [69].

Annotation Domains and RDFS. We have seen that fuzzy RDFS extends
triples with an annotation n ∈ [0, 1]. Interestingly, we may further generalise
fuzzy RDFS, by allowing a triple being annotated with a value λ taken from a so-
called annotation domain [3,20,48,70]5, which allow to deal with several domains
(such as, fuzzy, temporal, provenace) and their combination, in a uniform way.
Formally, let us consider a non-empty set L. Elements in L are our annotation
values. For example, in a fuzzy setting, L = [0, 1], while in a typical temporal
setting, L may be time points or time intervals. In the annotation framework, an
interpretation will map statements to elements of the annotation domain. Now,
an annotation domain for RDFS is an idempotent, commutative semi-ring

D = 〈L,⊕,⊗,⊥,�〉 ,

where ⊕ is �-annihilating [20]. That is, for λ, λi ∈ L

1. ⊕ is idempotent, commutative, associative;
2. ⊗ is commutative and associative;
3. ⊥⊕ λ = λ, �⊗ λ = λ, ⊥ ⊗ λ = ⊥, and �⊕ λ = �;
4. ⊗ is distributive over ⊕, i.e.λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3);

It is well-known that there is a natural partial order on any idempotent semi-
ring: an annotation domain D = 〈L,⊕,⊗,⊥,�〉 induces a partial order � over
L defined as:

λ1 � λ2 if and only if λ1 ⊕ λ2 = λ2 .

The order � is used to express redundant/entailed/subsumed information. For
instance, for temporal intervals, an annotated triple (s, p, o) : [2000, 2006] en-
tails (s, p, o) : [2003, 2004], as [2003, 2004] ⊆ [2000, 2006] (here, ⊆ plays the role
of �).

Remark 1. ⊕ is used to combine information about the same statement. For
instance, in temporal logic, from τ : [2000, 2006] and τ : [2003, 2008], we infer
τ : [2000, 2008], as [2000, 2008] = [2000, 2006] ∪ [2003, 2008]; here, ∪ plays the
role of ⊕. In the fuzzy context, from τ : 0.7 and τ : 0.6, we infer τ : 0.7, as 0.7 =
max(0.7, 0.6) (here, max plays the role of ⊕).

Remark 2. ⊗ is used to model the “conjunction” of information. In fact, a ⊗
is a generalisation of boolean conjunction to the many-valued case. In fact, ⊗
satisfies also that

5 The readers familiar with the annotated logic programming framework [39], will
notice the similarity of the approaches.
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1. ⊗ is bounded: i.e.λ1 ⊗ λ2 � λ1.
2. ⊗ is �-monotone, i.e. for λ1 � λ2, λ⊗ λ1 � λ⊗ λ2

For instance, on interval-valued temporal logic, from (a, sc, b) : [2000, 2006] and
(b, sc, c) : [2003, 2008], we will infer (a, sc, c) : [2003, 2006], as [2003, 2006] =
[2000, 2006] ∩ [2003, 2008]; here, ∩ plays the role of ⊗.6 In the fuzzy context,
one may chose any t-norm [36,40], e.g.product, and, thus, from (a, sc, b) : 0.7 and
(b, sc, c) : 0.6, we will infer (a, sc, c) : 0.42, as 0.42 = 0.7 · 0.6) (here, · plays the
role of ⊗).

Remark 3. Observe that the distributivity condition is used to guarantee that
e.g. we obtain the same annotation λ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3) of the
triple (a, sc, c) that can be inferred from triples (a, sc, b) : λ1, (b, sc, c) : λ2 and
(b, sc, c) : λ3.

The use of annotation domains appears to be quite appealing as

1. it applies to several domains, such as the fuzzy domain, the temporal domain,
provenance, trust and any combination of them [3];

2. from an inference point of view, the rules are conceptually the same as for
the fuzzy case: indeed, just replace in Rule 4, the values ni with λi, i.e.

τ1 : λ1, . . . , τk : λk, {τ1, . . . , τk} �RDFS τ

τ :
⊗

i λi
(9)

3. annotated conjunctive queries are as fuzzy queries, except that now variables
s and si range over L in place of [0, 1];

4. a query answering procedure is similar as for the fuzzy case: compute the
closure, store it on a relation database and transform an annotated CQ into
a SQL query.

From a computational complexity point of view, it is the same as for crisp RDFS
plus the cost of ⊗, ⊕ and the scoring function f in the body of a query. A
prototype implementation is available from http://anql.deri.org/.

4.2 Fuzzy OWL

Description Logics. (DLs) [6] are the logical counterpart of the family of OWL
languages. So, to illustrate the basic concepts of fuzzy OWL, it suffices to show
the fuzzy DL case (see [45], for a survey). Briefly, one starts from a classical
DL, and attaches to the basic statements a degree n ∈ [0, 1], similarly as we
did for fuzzy RDFS. As a matter of example, consider the DL ALC (Attributive
Language with Complement), a major DL representative used to introduce new
extensions to DLs: the table below shows its syntax, semantics and provides
examples.

6 As we will see, ⊕ and ⊗ may be more involved.

http://anql.deri.org/
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Syntax Semantics Example

C,D → � | �(x)
⊥ | ⊥(x)
A | A(x) Human

C �D | C(x) ∧D(x) Human �Male
C �D | C(x) ∨D(x) Nice �Rich
¬C | ¬C(x) ¬Meat
∃R.C | ∃y.R(x, y) ∧ C(y) ∃has child.Blond
∀R.C ∀y.R(x, y)⇒ C(y) ∀has child.Human

C � D ∀x.C(x)⇒ D(x) Happy Father �Man � ∃has child.Female
a:C C(a) John:Happy Father

(a, b):R R(a, b) (John, Mary):Loves

The upper pane describes how concepts/classes can be formed, while the lower
pane shows the form of statements/formulae a knowledge base may be build
of. Statements of the form C � D, called, General Inclusion Axioms (GCIs),
dictated that the class C is a subclass of the class D, a:C dictates that individual
a is an instance of class C, while (a, b):R states that 〈a, b〉 is an instance of the
binary relation R. The definition A = C, is used in place of having both A � C
and C � A, stating that class A is defined to be equivalent to C.

Fuzzy DLs [58,64,45] are then obtained by interpreting the statements as
fuzzy FOL formulae and attaching a weight n to DL statements, yielding fuzzy
DL statements, such as

C � D : n , a:C : n and (a, b):R : n .

A notable difference to fuzzy RDFS is that one may use additionally some special
constructs to enhance the expressivity of fuzzy DLs [12,15,16,60], these include

– fuzzy modifiers applied to concepts, such as

NiceV eryExpensiveItem = Nice � very(ExpensiveItem)

defining the class of nice and very expensive items, where Nice and
ExpensiveItem are classes/concepts and very is a linear modifier, such as
ln(x, 0.7, 0.3);

– the possibility of defining fuzzy concrete concepts [60], i.e. concepts hav-
ing a specific fuzzy membership function, e.g., allowing a definition for
ExpensiveItem

ExpensiveItem = Item � ∃hasPrice.HighPrice

HighPrice = rs(100, 200)

– various forms of concept aggregations [15] using so-called Aggregation Op-
erators (AOs). These are mathematical functions that are used to combine
information [71]. The arithmetic mean, the weighted sum, the median and,
more generally Ordered Weighted Averaging (OWA) [75] are the most well-
known AOs. For instance,

Hotel � (0.3 · Cheap + 0.5 · CloseToV enue + 0.2 · Comfortable) � GoodHotel (10)
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may be used to define a sufficient condition for a good hotel as a weighted sum
of being cheap, close to the venue and comfortable (Cheap, CloseToV enue
and Comfortable are classes here).

From a decision procedure point of view, one may proceed similarly as for the
best entailment degree problem for fuzzy propositional logic. That is, the decision
procedure consists of a set of inference rules that generate a set of in-equations
(that depend on the t-norm and fuzzy concept constructors) that have to be
solved by an operational research solver (see, e.g. [14,60]). An informal rule
example is as follows:

“If individual a is instance of the class intersection C1 � C2 to degree greater
or equal to xa:C1 � C2

7, then a is instance of Ci (i = 1, 2) to degree greater
or equal to xa:Ci

, where additionally the following in-equation holds:

xa:C1 � C2
≤ xa:C1

⊗ xa:C2
.”

Note that for Zadeh Logic and �Lukasiewicz Logic a MILP solver is enough to
determine whether the set of in-equations has a solution or not.

However, recently there have been some unexpected surprises [7,8,9,22]. [9]
shows that ALC with GCIs (i) does not have the finite model property under
�Lukasiewicz Logic or Product Logic, contrary to the classical case; (ii) illustrates
that some algorithms are neither complete not correct; and (iii) shows some
interesting conditions under which decidability is still guaranteed. [7,8] show
that knowledge base satisfiability is an undecidable problem for Product Logic.
The same holds for �Lukasiewicz Logic as well [22]. In case the truth-space is
finite and defined a priori, decidability is guaranteed (see, e.g. [13,11,59]).

Some fuzzy DLs solvers are: fuzzyDL [12], Fire [57], GURDL [32], De-
Lorean [10], GERDS [33], and YADLR [41]. There is also a proposal to use
OWL 2 itself to represent fuzzy ontologies [16]. More precisely, [16] identifies the
syntactic differences that a fuzzy ontology language has to cope with, and shows
how to encode them using OWL 2 annotation properties. The use of annotation
properties makes possible (i) to use current OWL 2 editors for fuzzy ontology
representation, (ii) that OWL 2 reasoners discard the fuzzy part of a fuzzy on-
tology, producing almost the same results as if it would not exist; and (ii) an
implementation is provided as a Protégé plug-in.

Eventually, as for RDFS, the notion of conjunctive query straightforwardly
extends to DLs and to fuzzy DLs as well: in the classical DL case, a query is of
the form (compare to Eq. (5))

q(x)← ∃y.ϕ(x, y) , (11)

where now ϕ(x, y) is a conjunction of unary and binary predicates. For instance,
the DL analogue of the RDFS query (6) is

q(x, y)← Created(y, x), Italian(y), ExhibitedAt(x, uffizi) . (12)

7 As for the fuzzy propositional case, for a fuzzy DL formula φ we consider a variable
xφ with intended meaning: the degree of truth of φ is greater or equal to xφ.
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Similarly, a fuzzy DL query is of the form (compare to Eq. (7))

q(x) : s← ∃y.A1 : s1, . . . , An : sn, s :=f(s, x, y) , (13)

where now Ai is either an unary or binary predicate. For instance, the fuzzy DL
analogue of the RDFS query (8) is

q(x) : s← SportsCar(x) : s1, HasPrice(x, y), s :=s1 · cheap(y) . (14)

Annotation Domains and OWL. The generalisation of fuzzy OWL to the
case in which an annotation n ∈ [0, 1] is replaced with an annotation value λ
taken from an annotation domain proceeds as for RDFS, except that now the
annotation domain has the form of a complete lattice [63].

From a computational complexity point of view, similar results hold as for
the [0, 1] case [17,18,63]. While [63] provides a decidability result in case the
lattice is finite, [17] further improves the decidability result by characterising
the computational complexity of KB satisfiability problem for ALC with GCIs
over finite lattices being EXPTIME-complete, as for the crisp variant, while [18]
shows that the KB satisfiability problem for ALC with GCIs over non finite
lattices is undecidable.

4.3 Fuzzy RIF

The foundation of the core part of RIF is Datalog [72], i.e. a Logic Programming
Language (LP) [43]. In LP, the management of imperfect information has at-
tracted the attention of many researchers and numerous frameworks have been
proposed. Addressing all of them is almost impossible, due to both the large num-
ber of works published in this field (early works date back to early 80-ties [54])
and the different approaches proposed.

Basically [43], a Datalog program P is made out by a set of rules and a set
of facts. Facts are ground atoms of the form P (c). On the other hand rules are
similar as conjunctive DL queries and are of the form

A(x)← ∃y.ϕ(x, y) ,

where now ϕ(x, y) is a conjunction of n-ary predicates. In Datalog it is further
assumed that no fact predicate may occur in a rule head (facts are the so-called
extensional database, while rules are the intentional database). A query is a
rule and the answer set of a query q w.r.t. a set K of facts and rules (denoted
ans(K, q)) is the set of tuples t such that there exists t′ such that the instantiation
ϕ(t, t′) of the query body is true in minimal model of K, which is guaranteed to
exists.

As pointed out, there are several proposals for fuzzy Datalog (see [68] for an
extensive list). However, a sufficiently general form is obtained in case facts are
graded with n ∈ [0, 1], i.e. facts are of the form P (c) : n and rules generalise
fuzzy DL queries (compare to Eq. (13)): i.e., a fuzzy rule is of the form

A(x) : s← ∃y.A1 : s1, . . . , An : sn, s :=f(s, x, y) , (15)
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where now Ai is an n-ary predicate. For instance, the fuzzy GCI in Eq. (10), can
be expressed easily as the fuzzy rule

GoodHotel(x) : s ← Hotel(x), Cheap(x) : s1, CloseToV enue(x) : s2,

Comfortable(x) : s3, s := 0.3 · s1 + 0.5 · s2 + 0.2 · s3 (16)

A fuzzy query is a fuzzy rule and, informally, the fuzzy answer set is the ordered
set of weighted tuples 〈t, s〉 such that all the fuzzy atoms in the rule body are
true in the minimal model and s is the result of the scoring function f applied to
its arguments. The existence of a minimal is guaranteed if the scoring functions
in the query and in the rule bodies are monotone [68].

We conclude by saying that most works deal with logic programs without
negation and some may provide some technique to answer queries in a top-down
manner, as e.g. [24,39,42,73,61]. Deciding whether a wighted tuple 〈t, s〉 is the
answer set is undecidable in general, though is decidable if the truth space is
finite and fixed a priory, as then the minimal model is finite.

Another rising problem is the problem to compute the top-k ranked answers
to a query, without computing the score of all answers. This allows to answer
queries such as“find the top-k closest hotels to the conference location”. Solutions
to this problem can be found in [44,66,67].

Annotation Domains and RIF. The generalisation of fuzzy RIF to the case
in which an annotation n ∈ [0, 1] is replaced with an annotation value λ taken
from an annotation domain is straightforward and proceeds as for RDFS. From
a computational complexity point of view, similarly to the fuzzy case, deciding
whether a wighted tuple 〈t, λ〉 is the answer set is undecidable in general, though
is decidable if the annotation domain is finite.

5 Conclusions

We have provided a “crash course” through the realm of Semantic Web Lan-
guages, their fuzzy variants and their generalisation to annotation domains, by
illustrating the basics of these languages, some issues, and related them to the
logical formalisms on which they are based.
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10. Bobillo, F., Delgado, M., Gómez-Romero, J.: Delorean: A reasoner for fuzzy OWL
1.1. In: Proceedings of the 4th International Workshop on Uncertainty Reason-
ing for the Semantic Web (URSW 2008), CEUR Workshop Proceedings, vol. 423
(October 2008)
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36. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

37. Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: A rule system for querying
persistent rdfs data. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath,
T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC
2009. LNCS, vol. 5554, pp. 857–862. Springer, Heidelberg (2009)

38. Kifer, M., Lausen, G., Wu, J.: Logical foundations of Object-Oriented and frame-
based languages. Journal of the ACM 42(4), 741–843 (1995)

39. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming
and its applications. Journal of Logic Programming 12, 335–367 (1992)

40. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic - Studia
Logica Library. Kluwer Academic Publishers, Dordrecht (2000)

http://dl.kr.org


20 U. Straccia

41. Konstantopoulos, S., Apostolikas, G.: Fuzzy-dl reasoning over unknown fuzzy de-
grees. In: Proceedings of the 2007 OTM Confederated International Conference on
On the Move to Meaningful Internet Systems, OTM 2007, vol. Part II, pp. 1312–
1318. Springer, Heidelberg (2007)

42. Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with
uncertainty. IEEE Transactions on Knowledge and Data Engineering 13(4), 554–
570 (2001)

43. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987)
44. Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under

vagueness for the semantic web. In: Prade, H., Subrahmanian, V.S. (eds.) SUM
2007. LNCS (LNAI), vol. 4772, pp. 16–30. Springer, Heidelberg (2007)

45. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. Journal of Web Semantics 6, 291–308 (2008)

46. Marin, D.: A formalization of rdf. Technical Report TR/DCC-2006-8, Deptartment
of Computer Science, Universidad de Chile (2004),
http://www.dcc.uchile.cl/cgutierr/ftp/draltan.pdf
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Abstract. In recent years Logic programming based languages and features–
such as rules and non-monotonic constructs–have become important in various
knowledge representation paradigms. While the early logic programming lan-
guages, such as Horn logic programs and Prolog did not focus on expressing and
reasoning with uncertainty, in recent years logic programming languages have
been developed that can express both logical and quantitative uncertainty. In this
paper we give an overview of such languages and the kind of uncertainty they can
express and reason with. Among those, we slightly elaborate on the language P-
log that not only accommodates probabilistic reasoning, but also respects causal-
ity and distinguishes observational and action updates.

1 Introduction

Uncertainty is commonly defined in dictionaries [1] as the state or condition of be-
ing uncertain. The adjective, uncertain, whose origin goes back to the 14th century,
is ascribed the meanings, “not accurately known”, “not sure” and “not precisely deter-
mined”. These meanings indirectly refer to a reasoner who does not accurately know, or
is not sure, or cannot determine something precisely. In the recent literature uncertainty
is classified in various ways. In one taxonomy [38], it is classified to finer notions such
as subjective uncertainty, objective uncertainty, epistemic uncertainty, and ontological
uncertainty. In another taxonomy, uncertainty is classified based on the approach used
to measure it. For example, probabilistic uncertainty, is measured using probabilities,
and in that case, various possible worlds have probabilities associated with them.

Although the initial logic programming formulations did not focus on uncertainty,
the current logic programming languages accommodate various kinds of uncertainty.
In this overview paper we briefly discuss some of the kinds of uncertainty that can be
expressed using the logic programming languages and their implications.

The early logic programming formulations are the language Prolog and Horn logic
programs [13,23]. A Horn logic program, also referred to as a definite program is a col-
lection of rules of the form: a0 ← a1, . . . , an. with n ≥ 0 and where a0, . . . , an

are atoms in the sense of first order logic. The semantics of such programs can be
defined using the notion of a least model or through the least fixpoint of a meaning
accumulating operator [13,23].

For example, the least model of the program:

a ← b, c.
d← e.
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b ← .
c ← .

is {b, c, a} and based on the semantics defined using the least model one can conclude
that the program entails b, c, a,¬d and ¬e. The entailment of ¬d and ¬e is based on the
closed world assumption [34] associated with the semantics of a Horn logic program.
Thus there is no uncertainty associated with Horn logic programs.

Although Prolog grew out of Horn logic programs, and did not really aim to accom-
modate uncertainty, some Prolog programs can go into infinite loops with respect to
certain queries and one may associate a kind of “uncertainty” value to that. Following
are some examples of such programs.

P1: a ← a.
b ← .

P2: a ← not a, c.
b ← .

P3: a ← not b.
b ← not a.
p ← a.
p ← b.

With respect to the Prolog programs P1 and P2 a Prolog query asking about a may take
the interpreter to an infinite loop, and with respect to the program P3 a Prolog query
asking about a, a Prolog query asking about b and a Prolog query asking about p could
each take the interpreter to an infinite loop.

In the early days of logic programming, such programs were considered “bad” and
writing such programs was “bad programming.” However, down the road, there was a
movement to develop logic programming languages with clean declarative semantics,
and Prolog with its non-declarative constructs was thought more as a programming lan-
guage with some logical features and was not considered a declarative logic program-
ming language. With the changed focus on clean declarative semantics, P1, P2 and P3

were no longer bad programs and attempts were made to develop declarative semantics
that could graciously characterize these programs as well as other syntactically correct
programs. This resulted in several competing semantics and on some programs the dif-
ferent semantics would give different meanings. For example, for the program P3, the
stable model semantics [16] would have two different stable models {a, p} and {b, p}
while the well-founded semantics [39] will assign the value unknown to a, b and p.

The important point to note is that unlike Horn logic programs, both stable model
semantics and well-founded semantics allow characterization of some form of “uncer-
tainty”. With respect to P3 the stable model semantics effectively encodes two possible
worlds, one where a and p are true (and b is false) and another where b and p are true
(and a is false). On the other hand the well-founded semantics does not delve into pos-
sible worlds; it just pronounces a, b and p to be unknown.

On a somewhat parallel track Minker and his co-authors [24] promoted the use of
disjunctions in the head of logic programming rules, thus allowing explicit expression
of uncertainty. An example of such a program is as follows.
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P4: a or b ← .
p ← a.
p ← b.

The program P4 was characterized using its minimal models and had two minimal
models {a, p} and {b, p}. As in the case of stable models one could consider these
two minimal models as two possible worlds. In both cases one can add probabilistic
uncertainty by assigning probabilities to the possible models.

In the rest of the paper we give a brief overview of various logic programming lan-
guages that can express uncertainty and reason with it. We divide our overview to two
parts; one where we focus on logical uncertainty without getting into numbers and an-
other where we delve into numbers. After that we conclude and mention some future
directions.

2 Logical Uncertainty in Logic Programming

Logical uncertainty can be expressed in logic programming in various ways. In the
previous section we mentioned how uncertainty can be expressed using the stable model
semantics as well as using disjunctions in the head of programs. We now give the formal
definition of stable models for programs that may have disjunctions in the head of rules.
A logic program is then a collection of rules of the form:

a0 or . . . or ak ← ak+1, . . . , am, not am+1, . . . , not an.

with k ≥ 0, m ≥ k, n ≥ m, and where a0, . . . , an are atoms in the sense of first order
logic. The semantics of such programs is defined in terms of stable models. Given such
a program P , and a set of atoms S, the Gelfond-Lifschitz transformation of P with re-
spect to S gives us a program PS which does not have any not in it. This transformation
is obtained in two steps as follows:

(i) All rules in P which contains not p in its body for some p in S are removed.
(ii) For each of the remaining rules the not q in the bodies of the rules are removed.

A stable model of the program P is defined as any set of atoms S such that S is a
minimal model of the program PS. An atom a is said to be true with respect to a stable
model S if a ∈ S and a negative literal ¬a is said to be true with respect to a stable
model S if a �∈ S. The following examples illustrates the above definition. Consider the
program

P5: a ← not b.
b ← not a.
p or q ← a.
p ← b.

This program has three stable models {a, p}, {a, q} and {b, p}. This is evident from

noting that P
{a,p}
5 is the program:

a ← .
p or q ← a.
p ← b.

and {a, p} is a minimal model of P
{a,p}
5 . Similarly, it can be shown that {a, q} and

{b, p} are also stable models of P5.
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As we mentioned earlier, the logical uncertainty expressible using logic programs is
due to both the disjunctions in the head as well as due to the possibility that even pro-
grams without disjunctions may have multiple stable models. However, in the absence
of function symbols, there is a difference between the expressiveness of logic programs
that allow disjunction in their head and the ones that do not. Without disjunctions the
logic programs capture the class coNP, while with disjunctions they capture the class
Π2P [8].

In the absence of disjunctions, rules of the kind

P6: a ← not n_a.
n_a ← not a.

allow the enumeration of the various possibilities and rules of the form

P7: p ← not p, q.

allow elimination of stable models where certain conditions (such as q) may be true. The
elimination rules can be further simplified by allowing rules with empty head. In that
case the above rule can be simply written as: P8: ← q. When rules with empty
heads, such as in P8, are allowed, one can replace the constructs in P6 by exclusive
disjunctions [20] of the form: P9: a⊕ n_a ← . to do the enumeration, and can
achieve the expressiveness to capture the class coNP with such exclusive disjunctions,
rules with empty heads as in P8 and stratified negation. The paper [20] advocates this
approach with the argument that many find the use of unrestricted negation to be unin-
tuitive and complex. On the other hand use of negation is crucial in many knowledge
representation tasks and while using them having not to worry whether the negation
used is stratified or not makes the task simpler for humans.

2.1 Answer Sets and Use of Classical Negation

Allowing classical negation in logic programs gives rise to a different kind of uncer-
tainty. For example the program

P10: a ← b.
¬b ← .

has a unique answer set {¬b} and with respect to that answer set the truth value of a
is unknown. We now give the formal definition of answer sets for programs that allows
classical negation. A logic program is then a collection of rules of the form:

l0 or . . . or lk ← lk+1, . . . , lm, not lm+1, . . . , not ln.

with k ≥ 0, m ≥ k, n ≥ m, and where l0, . . . , ln are literals in the sense of first order
logic. The semantics of such programs is defined in terms of answer sets [17]. Given
such a program P , an answer set of the program P is defined as a consistent set of
literals S such that S satisfies all rules in PS and no proper subset of S satisfies all
rules of PS, where PS is as defined earlier. A literal l is defined to be true with respect
to an answer set S if l ∈ S. With the use of classical negation one need not invent new
atoms for the enumeration, as was done in P6, and simply write:

P11: a ← not ¬a.
¬a ← not a.
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Moreover, since answer sets are required to be consistent, one need not write explicit
rules of the kind: ← a,¬a. which were sometimes explicitly needed to be written
when not using classical negation.

2.2 Other Logic Programming Languages and Systems for Expressing Logical
Uncertainty

Other logic programming languages that can express logical uncertainty include abduc-
tive logic programs [21] and various recent logic programming languages. Currently
there are various logic programming systems that one can be use to express logical un-
certainty. The most widely used are Smodels [29], DLV [11] and the Potassco suite [15].

3 Multi-valued and Quantitative Uncertainty in Logic
Programming

Beyond logical uncertainty that we discussed in the previous section where one could
reason about truth, falsity and lack of knowledge using logic programming, one can
classify uncertainty in logic programming in several dimensions.

– The truth values may have an associated degree of truth and falsity or we may have
multi-valued truth values.

– The degree of truth or the values (in the multi-valued case) could be discrete or
continuous.

– They can be associated with the whole rule or with each atom (or literal) in the rule.
– The formalism follows or does not follow axioms of probability.
– The formalism is motivated by concerns to learn rules and programs.

Examples of logic programming with more than three discrete truth values include use
of bi-lattice in logic programming in [14], use of annotated logics in [6] and various
fuzzy logic programming languages.

Among the various quantitative logic programming languages the recollection [37]
considers Shapiro’s quantitative logic programming [36] as the first “serious” paper on
the topic. Shapiro assigned a mapping to each rule; the mapping being from numbers in
(0,1] associated with each of the atoms in the body of the rule to a number in (0,1] to be
associated with the atom in the head of the rule. He gave a model-theoretic semantics
and developed a meta-interpreter. A few years later van Emden [12] considered the
special case where numbers were only associated with a rule and gave a fixpoint and a
sound and conditionally-complete proof theory.

A large body of work on quantitative logic programming has been done by Subrah-
manian with his students and colleagues. His earliest work used the truth values [0,1]
∪ {∗}, where ∗ denoted inconsistency and as per the recollection [37] it was “the first
work that explicitly allowed a form of negation to appear in the head.” This was fol-
lowed by his work on paraconsistent logic programming [6] where truth values could
be from any lattice. He and his colleagues further generalized paraconsistency to gener-
alized annotations and generalized annotated programs where complex terms could be
used as annotations.
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3.1 Logic Programming with Probabilities

The quantitative logic programming languages mentioned earlier, even when having
numbers, did not treat them as probabilities. In this section we discuss various logic
programming languages that accommodate probabilities1.

Probabilistic Logic Programming

The first probabilistic logic programming language was proposed by Ng and Subrah-
manian [27]. Rules in this language were of the form:

a0 : [α0, β0]← a1 : [α1, β1], . . . , an : [αn, βn].

with n ≥ 0 and where a0, . . . , an are atoms in the sense of first-order logic, and
[αi, βi] ⊆ [0, 1]. Intuitively, the meaning of the above rule is that if the probability
of aj being true is in the interval [αj , βj ], for 1 ≤ j ≤ n, then the probability of a0

being true is in the interval [α0, β0]. Ng and Subrahmanian gave a model theoretic and
a fixpoint characterization of such programs and also gave a sound and complete query
answering method. The semantics made the “ignorance” assumption that nothing was
known about any dependencies between the events denoted by the atoms. Recently a
revised semantics for this language has been given in [9].

Ng and Subrahmanian later extend the language to allow ai’s to be conjunction and
disjunction of atoms and the ais in the body were allowed to have not preceding them.
In presence of not the semantics was given in a manner similar to the definition of
stable models.

Dekhtyar and Subrahmanian [10] further generalized this line of work to allow ex-
plicit specification of the assumptions regarding dependencies between the events de-
noted by the atoms that appear in a disjunction or conjunction. Such assumptions are re-
ferred to as probabilistic strategies and examples of probabilistic strategies include: (i)
independence, (ii) ignorance, (iii) mutual exclusion and (iv) implication. While some of
the probabilistic logic programming languages assume one of these strategies and hard-
code the semantics based on that, the hybrid probabilistic programs of [10] allowed one
to mention the probabilistic strategies used in each conjunction or disjunction. For ex-
ample, ∧ind and ∨ind would denote the conjunction and disjunction associated with the
“independence” assumption and would have the property that Prob(e1 ∧ind . . . ∧ind

en) = Prob(e1) × . . . × Prob(en). Following are examples, from [10], of rules of
hybrid probabilistic programs:

price_drop(C) : [.4, .9]← (ceo_sells_stock(C) ∨igd ceo_retires(C)) : [.6, 1].
price_drop(C) : [.5, 1]← (strike(C) ∨ind accident(C)) : [.3, 1].

The intuitive meaning of the first rule is that if the probability of the CEO of a company
selling his/her stock or retiring is greater than 0.6 then the probability of the price drop-
ping is between 0.4 and 0.9, and it is assumed that the relationship between the CEO
retiring and selling stock is not known. The intuitive meaning of the second rule is that

1 Some of these were discussed in our earlier paper [4], but the focus there was comparison with
P-log.
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if the probability of a strike happening or an accident happening –which are consid-
ered to be independent–is greater than 0.3 then the probability of the price dropping is
greater than 0.5.

Lukaciewicz [25] proposed the alternative of using conditional probabilities in prob-
abilistic logic programs. In his framework clauses were of the form: (H | B)[α1, β1]

where H and B are conjunctive formulas and 0 ≤ α1 ≤ β1 ≤ 1, and a probabilistic
logic program consisted of several such clauses. The intuitive meaning of the above
clause is that the conditional probability of H given B is between α1 and β1. Given a
program consisting of a set of such clauses the semantics is defined based on models
where each model is a probability distribution that satisfies each of the clauses in the
program.

Bayesian Logic Programming

Bayesian logic programs [22] are motivated by Bayes nets and build up on an earlier
formalism of probabilistic knowledge bases [28] and add some first-order syntactic fea-
tures to Bayes nets so as to make them relational. A Bayesian logic program has two
parts, a logical part that looks like a logic program and a set of conditional probability
tables. A rule or a clause of a Bayseian logic program is of the form: H |A1, . . . , An

where H, A1, . . . , An are atoms which can take a value from a given domain associ-
ated with the atom. An example of such a clause is:

highest_degree(X) | instructorr(X).

Its corresponding domain could be, for example, Dinstructor = {yes, no}, and
Dhighest_degree = {phd, masters, bachelors}. Each such clause has an associated
conditional probability table (CPT). For example, the above clause may have the fol-
lowing table:

instructor(X) highest_degree(X) highest_degree(X) highest_degree(X)
phd masters bachelors

yes 0.7 0.25 0.05
no 0.05 0.3 0.65

Acyclic Bayesian logic programs are characterized by considering their grounded ver-
sions. If the ground version has multiple rules with the same ground atom in the head
then combination rules are specified to combine these rules to a single rule with a single
associated conditional probability table.

Stochastic Logic Programs

Stochastic logic programs [26] are motivated from the perspective of machine learning
and are generalization of stochastic grammars. Consider developing a grammar for a
natural language such that the grammar is not too specific and yet is able to address am-
biguity. This is common as we all know grammar rules which work in most cases but
not necessarily in all cases and yet with our experience we are able to use those rules.
In statistical parsing one uses a stochastic grammar where production rules have associ-
ated weight parameters that contribute to a probability distribution. Using those weight
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parameters one can define a probability function Prob(w|s, p), where s is a sentence, w
is a parse and p is the weight parameter associated with the production rules of the gram-
mar. Given a grammar and its associated p, a new sentence s′ is parsed to w′ such that
Prob(w′|s′, p) is the maximum among all possible parses of s′. The weight parameter p
is learned from a given training set of example sentences and their parses. In the learn-
ing process, given examples of sets of sentences and parses {(s1, w1), . . . , (sn, wn)}
one has to come up with the p that maximizes the probability that the si’s in the training
set are parsed to the wi’s.

Motivated by stochastic grammars and with the goal to allow inductive logic pro-
grams to have associated probability distributions, [26] generalized stochastic gram-
mars to stochastic logic programs. In stochastic logic programs [26] a number in [0,1],
referred to as a “probability label,” is associated with each rule of a Horn logic pro-
gram with the added conditions that the rules be range restricted and for each predicate
symbol q, the probability labels for all clauses with q in the head sum to 1. Thus, a
Stochastic logic program [26] P is a collection of clauses of the form

p : a0 ← a1, . . . , an.

where p (referred to as the the probability label) belongs to [0, 1], and a0, a1, . . . an

are atoms. The probability of an atom g with respect to a stochastic logic program P is
obtained by summing the probability of the various SLD-refutation of← g with respect
to P , where the probability of a refutation is computed by multiplying the probability
of various choices; and doing appropriate normalization. For example, if the first atom
of a subgoal ← g′ unifies with the head of the stochastic clause p1 : C1, also with
the head of the stochastic clause p2 : C2 and so on up to the head of the stochastic
clause pm : Cm, and the stochastic clause pi : Ci is chosen for the refutation, then
the probability of this choice is pi

p1+···+pm
.

Modularizing Probability and Logic Aspects: Independent Choice Logic

Earlier in Section 2 we discussed how one can express logical uncertainty using logic
programming. One way to reason with probabilities in logic programming is to assign
probabilities to the “possible worlds” defined by the approaches in Section 2. Such an
approach is taken by Poole’s Independent Choice Logic of [31,32], a refinement of his
earlier work on probabilistic Horn abduction [33].

There are three components of an Independent Choice Logic of interest here: a choice
space C, a rule baseF and a probability distribution on C such that ΣX∈CProb(X) = 1.
A Choice space C is a set of sets of ground atoms such that if X1 ∈ C, X2 ∈ C and
X1 �= X2 then X1 ∩ X2 = ∅. An element of C is referred to as an “alternative” and
an element of an “alternative” is referred to as an “atomic choice”. A rule base F is
a logic program such that no atomic choice unifies with the head of any of its rule
and it has a unique stable model. The unique stable model condition can be enforced by
restrictions such as requiring the program to be an acyclic program without disjunctions.
C and F together define the set of possible worlds and the probability distribution on
C can then be used to assign probabilities to the possible worlds. These probabilities
can then be used in the standard way to define probabilities of formulas and conditional
probabilities.
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Logic Programs with Distribution Semantics: PRISM

The formalism of Sato [35], which he refers to as PRISM as a short form for “PRogram-
ming In Statistical Modeling”, is very similar to Independent Choice Logic. A PRISM
formalism has a possibly infinite collection of ground atoms, F , the set ΩF of all in-
terpretations of F , and a completely additive probability measure PF which quantifies
the likelihood of the interpretations. PF is defined on some fixed σ algebra of subsets
of ΩF .

In Sato’s framework interpretations of F can be used in conjunction with a Horn
logic program R, which contains no rules whose heads unify with atoms from F . Sato’s
logic program is a triple, Π = 〈F, PF , R〉. The semantics of Π is given by a collection
ΩΠ of possible worlds and the probability measure PΠ . A set M of ground atoms in the
language of Π belongs to ΩΠ iff M is a minimal Herbrand model of a logic program
IF ∪ R for some interpretation IF of F . The completely additive probability measure
of PΠ is defined as an extension of PF .

The emphasis of the original work by Sato and other PRISM related research is on the
use of the formalism for design and investigation of efficient algorithms for statistical
learning. The goal is to use the pair DB = 〈F, R〉 together with observations of atoms
from the language of DB to learn a suitable probability measure PF .

Logic Programming with Annotated Disjunctions

In the LPAD formalism of Vennekens et al. [40] rules have choices in their head with
associate probabilities. Thus an LPAD program consists of rules of the form:

(h1 : α1) ∨ . . . ∨ (hn : αn)← b1, . . . , bm

where hi’s are atoms, bis are atoms or atoms preceded by not, and αi ∈ [0, 1], such that∑n
i=1 αi = 1. An LPAD rule instance is of the form: hi ← b1, . . . , bm.
The associated probability of the above rule instance is then said to be αi. An in-

stance of an LPAD program P is a logic program P ′ obtained as follows: for each rule
in P exactly one of its instance is included in P ′, and nothing else is in P ′. The as-
sociated probability of an instance P ′, denoted by π(P ′), of an LPAD program is the
product of the associated probability of each of its rules.

An LPAD program is said to be sound if each of its instance has a 2-valued well-
founded model. Given an LPAD program P , and a collection of atoms I , the probability
assigned to I by P is given as follows:

πP (I) =
∑

P ′ is an instance of P and I is the well-founded model of P ′

π(P ′)

The probability of a formula φ assigned by an LPAD program P is then defined as:

πP (φ) =
∑

φ is satisfied by I

πP (I)
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4 Logic Programming with Probabilities, Causality and
Generalized Updates: P-log

An important design aspect of developing knowledge representation languages and rep-
resenting knowledge in them is to adequately address how knowledge is going to be
updated. If this is not thought through in the design and representation phase then updat-
ing a knowledge base may require major surgery. For this reason updating a knowledge
base in propositional logic or first-order logic is hard. This is also one of the motiva-
tions behind the development of non-monotonic logics which have constructs that allow
elaboration tolerance.

The probabilistic logic programming language P-log was developed with updates
and elaboration tolerance in mind. In particular, it allows one to easily change the do-
main of the event variables. In most languages the possible values of a random variable
get restricted with new observations. P-log with its probabilistic non-monotonicity al-
lows the other way round too. Another important aspect of updating in P-log is that it
differentiates between updating due to new observations and updating due to actions;
this is especially important when expressing causal knowledge.

Elaborating on the later point, an important aspect of probabilistic uncertainty that is
often glossed over is the proper representation of joint probability distributions. Since
the random variables in a joint probability distribution are often not independent of each
other, and since representing the joint probability distribution explicitly is exponential
in the number of variables, techniques such as Bayseian networks are used. However, as
pointed out by Pearl [30], such representations are not amenable to distinguish between
observing the value of a variable and execution of actions that change the value of the
variable. As a result prior to Pearl (and even now) most probability formalisms are not
able to express action queries such as the probability that X has value a given that Y ’s
value is made to be b. Note that this is different from the query about the probability
that X has value a given that Y ’s value is observed to be b. To be able to address this
accurately a causal model of probability is needed. P-log takes that view and is able to
express both the above kind of queries and distinguishes between them.

With the above motivations we give a brief presentation on P-log2 starting with its
syntax and semantics and following up with several illustrative examples.

A P-log program consists of a declaration of the domain, a logic program without
disjunctions, a set of random selection rules, a set of probability atoms, and a collection
of observations and action atoms.

The declaration of the domain consists of sort declarations of the form
c = {x1, . . . , xn}. or consists of a logic program T with a unique answer set A. In
the latter case x ∈ c iff c(x) ∈ A. The domain and range of attributes3 are given by
statements of the form: a : c1 × · · · × cn → c0.

2 Our presentation is partly based on our earlier paper [4].
3 Attributes are relational variables. In probabilistic representations, a variable such as Color can

take the value from {red, green, blue, . . . }. Now if we want talks about colors of cars, then
color is a function from a set of cars to {red, green, blue, . . . }. In that case we call “color” an
attribute.
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A random selection rule is of the form

[ r ] random(a(t) : {X : p(X)})← B. (1)

where r is a term used to name the rule and B is a collection of extended literals of the
form l or not l, where l is a literal. Statement (1) says that if B holds, the value of a(t)
is selected at random from the set {X : p(X)} ∩ range(a) by experiment r, unless this
value is fixed by a deliberate action.

A probability atom is of the form: prr(a(t) = y |c B) = v. where v ∈ [0, 1],
B is a collections of extended literals, pr is a special symbol, r is the name of a random
selection rule for a(t), and prr(a(t) = y |c B) = v says that if the value of a(t) is
fixed by experiment r, and B holds, then the probability that r causes a(t) = y is v.
(Note that here we use ‘cause’ in the sense that B is an immediate or proximate cause
of a(t) = y, as opposed to an indirect cause.)

Observations and action atoms are of the form: obs(l). do(a(t) = y)).
where l is a literal. Observations are used to record the outcomes of random events,

i.e., random attributes, and attributes dependent on them.
We now illustrate the above syntax using an example from [4] about certain dices

being rolled. In that example, there are two dices owned by Mike and John respectively.
The domain declarations are given as follows:

dice = {d1, d2}.
score = {1, 2, 3, 4, 5, 6}.
person = {mike, john}.
roll : dice → score.
owner : dice→ person.
even : dice→ Boolean.

The logic programming part includes the following:

owner(d1) = mike.
owner(d2) = john.
even(D)← roll(D) = Y, Y mod 2 = 0.
¬even(D) ← not even(D).

The fact that values of attribute roll : dice → score are random is expressed by the
statement

[ r(D) ] random(roll(D))

The dice domain may include probability atoms that convey that the die owned by John
is fair, while the die owned by Mike is biased to roll 6 at a probability of .25.

Let us refer to the P-log program consisting of the above parts as T1.

pr(roll(D) = Y |c owner(D) = john) = 1/6.
pr(roll(D) = 6 |c owner(D) = mike) = 1/4.
pr(roll(D) = Y |c Y �= 6, owner(D) = mike) = 3/20.

In this domain the observation {obs(roll(d1) = 4)} records the outcome of rolling
dice d1. On the other hand the statement {do(roll(d1) = 4)} indicates that d1 was
simply put on the table in the described position. One can have observations such as
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obs(even(d1)) which means that it was observed that the dice d1 had an even value.
Here, even though even(d1) is not a random attribute, it is dependent on the random
attribute roll(d1).

The semantics of a P-log program is given in two steps. First the various parts of
a P-log specification is translated to logic programs and then the answer sets of the
translated program is computed and are treated as possible worlds and probabilities are
computed for them. The translation of a P-log specification Π to a logic program τ(Π)
is as follows:

1. Translating the declarations: For every sort declaration c = {x1, . . . , xn} of Π ,
τ(Π) contains c(x1), . . . , c(xn). For all sorts that are defined using a logic program
T in Π , τ(Π) contains T .

2. Translating the Logic programming part:

(a) For each rule r in the logic programming part of Π , τ(Π) contains the rule
obtained by replacing each occurrence of an atom a(t) = y in r by a(t, y).

(b) For each attribute term a(t), τ(Π) contains the rule:

¬a(t, Y1)← a(t, Y2), Y1 �= Y2. (2)

which guarantees that in each answer set a(t) has at most one value.
3. Translating the random selections:

(a) For an attribute a, we have the rule: intervene(a(t)) ← do(a(t, Y )). where,
intuitively, intervene(a(t)) means that the value of a(t) is fixed by a deliberate
action. Semantically, a(t) will not be considered random in possible worlds
which satisfy intervene(a(t)).

(b) Each random selection rule of the form

[ r ] random(a(t) : {Z : p(Z)})← B.

with range(a) = {y1, . . . , yk} is translated to the following rule:

a(t, y1) or . . . or a(t, yk)← B, not intervene(a(t)) (3)

If the dynamic range of a in the selection rule is not equal to its static range,
i.e. expression {Z : p(Z)} is not omitted, then we also add the rule

← a(t, y), not p(y), B, not intervene(a(t)). (4)

Rule (3) selects the value of a(t) from its range while rule (4) ensures that the
selected value satisfies p.

4. τ(Π) contains actions and observations of Π .
5. For each Σ-literal l, τ(Π) contains the rule:← obs(l), not l.
6. For each atom a(t) = y, τ(Π) contains the rule: a(t, y)← do(a(t, y)).

The last but one rule guarantees that no possible world of the program fails to
satisfy observation l. The last rule makes sure the atoms that are made true by the
action are indeed true.
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The answer sets of the above translation are considered the possible worlds of the
original P-log program. To illustrate how the above translation works, τ(T1) of T1 will
consist of the following:

dice(d1). dice(d2). score(1). score(2).
score(3). score(4). score(5). score(6).
person(mike). person(john).
owner(d1, mike). owner(d2, john).
even(D)← roll(D, Y ), Y mod 2 = 0.
¬even(D) ← not even(D).
¬roll(D, Y1) ← roll(D, Y2), Y1 �= Y2.
¬owner(D, P1)← owner(D, P2), P1 �= P2.
¬even(D, B1)← even(D, B2), B1 �= B2.
intervene(roll(D)) ← do(roll(D, Y )).
roll(D, 1) or . . . or roll(D, 6)← B, not intervene(roll(D)).
← obs(roll(D, Y )), not roll(D, Y ).
← obs(¬roll(D, Y )), not ¬roll(D, Y ).
roll(D, Y )) ← do(roll(D, Y )).

The variables D, P , B’s, and Y ’s range over dice, person, boolean, and score respec-
tively.

Before we explain how the probabilities are assigned to the possible worlds, we men-
tion a few conditions that the P-log programs are required to satisfy. They are:

(i) There can not be two random selection rules about the same attribute whose bodies
are simultaneously satisfied by a possible world.

(ii) There can not be two probability atoms about the same attribute whose conditions
can be simultaneously satisfied by a possible world.

(iii) A random selection rule can not conflict with a probability atom in such a way
that probabilities are assigned outside the range given in the random selection rule.

The probabilities corresponding to each of the possible worlds are now computed in the
following way:

(a) Computing an initial probability assignment P for each atom in a possible world:
For a possible world W if the P-log program contains prr(a(t) = y |c B) = v
where r is the generating rule of a(t) = y, W satsifies B, and W does not contain
intervene(a(t)), then P (W, a(t) = y) = v.

(b) For any a(t), the probability assignments obtained in step (a) are summed up
and for the other possible values of a(t) the remaining probability (i.e., 1 - the sum) is
uniformly divided.

(c) The unnormalized probability, μ̂T (W ), of a possible world W induced by a given
P-log program T is μ̂T (W ) =

∏
a(t,y)∈ W P (W, a(t) = y) where the product is taken

over atoms for which P (W, a(t) = y) is defined. The above measure is then normalized
to μT (W ) so that the sum of it for all possible worlds W is 1.

Using the above measure, the probability of a formula F with respect to a program T
is defined as ProbT (F ) = ΣW |=F μT (W ).
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We now show how P-log can be used to express updates not expressible in other prob-
abilistic logic programming languages. Lets continue with the dice rolling example. Sup-
pose we have a domain where the dices are normally rigged to roll 1 but once in a while
there may be an abnormal dice that rolls randomly. This can be expressed in P-log by:

roll(D) = 1 ← not abnormal(D)
random(roll(D)) ← abnormal(D)

Updating such a P-log program with obs(abnormal(d1)) will expand the value that
roll(d1) can take.

Now let us consider an example that illustrates the difference between observational
updates and action updates. Lets augment the dice domain with a new attribute fire_works
which becomes true when dice d1 rolls to 6. This can be expressed by the rule:

fire_works ← roll(d1) = 6.

Now suppose we observe fire works. This observation can be added to the P-log pro-
gram as obs(fire_works), and when this observation is added to the P-log program it
will eliminate the earlier possible worlds where fire_works was not true and as a re-
sult the probability that dice d1 was rolled 6 will increase to 1. Now supposed instead of
observing the fire works someone goes and starts the fire work. In that case the update
to the P-log program would be do(fire_works = true). This addition will only add
fire_works to all the previous possible worlds and as a result the probability that dice
d1 was rolled 6 will remain unchanged.

As suggested by the above examples, updating a P-log program basically involves
adding to it. Formally, the paper [4] defines a notion of coherence of P-log programs
and uses it to define updating a P-log program T by U as addition of U to T with the
requirement that T∪U be coherent. The paper also shows that the traditional conditional
probability Prob(A|B) defined as Prob(A∧B)

Prob(B) is equal to the ProbT∪obs(B)(A) where
obs(B) = {obs(l) : l ∈ B}.

Since the original work on P-log [3,4] which we covered in this section there have
been several new results. This includes work on using P-log to model causality and
counterfactual reasoning [5], implementation of P-log [19], an extension of P-log that
allows infinite domains [18] and modular programming in P-log [7].

5 Conclusion and Future Directions

In this paper we have given a personal overview of representing and reasoning about
uncertainty in logic programming. We started with a review of representing logical un-
certainty in logic programming and then discussed some of the multi-valued and quan-
titative logic programming languages. We briefly discussed some of the probabilistic
logic programming languages. Finally we discussed logic programming languages that
have distinct logical and probabilistic components and concluded with the language of
P-log that has distinct logical and probabilistic components, that allows a rich variety of
updates and makes a distinction between observational updates and action updates. Our
overview borrowed many examples, definitions and explanations from the book [2] and
the articles [37] and [3,4]. We refer the reader to those articles and the original papers
for additional details.
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Although a lot has been done, there still is a big gap between knowledge representa-
tion (KR) languages that are used by humans to encode knowledge, KR languages that
are learned and KR languages used in translating natural language to a formal language.
We hope these gaps will be narrowed in the future, and to that end we need to develop
ways to learn theories in the various logic programming languages that can express and
reason with uncertainty. For example, it remains a challenge to explore how techniques
from learning Bayes nets and statistical relational learning can be adapted to learn P-
log theories. P-log also needs more efficient interpreters and additional refinements in
terms of explicitly expressing probabilistic strategies.
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Abstract. Historically, it has been claimed that one inference algorithm
or technique, say A, is better than another, say B, based on the running
times on a test set of Bayesian networks. Recent studies have instead fo-
cusing on identifying situations where A is better than B, and vice versa.
We review two cases where competing inference algorithms (techniques)
have been successfully applied together in unison to exploit the best of
both worlds. Next, we look at recent advances in identifying structure
and semantics. Finally, we present possible directions of future work in
exploiting structure and semantics for faster probabilistic inference.

1 Introduction

Bayesian networks [20] are an established framework for uncertainty manage-
ment in artificial intelligence. A Bayesian network consists of a directed acyclic
graph and a corresponding set of conditional probability tables. The probabilistic
conditional independencies [23] encoded in the directed acyclic graph indicate
that the product of the conditional probability tables is a joint probability dis-
tribution. Approaches to exact inference in Bayesian networks, the complexity
of which has been shown by Cooper [8] to be NP-hard, can be broadly classi-
fied into two categories. One approach performs inference directly in a Bayesian
network [1]. Two common algorithms are variable elimination (VE) [25] and
arc-reversal (AR) [19,21]. A second approach to Bayesian network inference is
join tree propagation [4], which systematically builds and passes messages in a
join tree constructed from the Bayesian network and then computes posterior
probabilities for each variable. Zhang’s [24] experimental results indicate that
VE is more efficient than the classical join tree methods when updating twenty
or less non-evidence variables, given a set of twenty or fewer evidence variables.
Madsen and Jensen [15] suggested a join tree algorithm, called Lazy propaga-
tion (LP), and empirically demonstrated a significant improvement in efficiency
over previous join tree methods. More recently, Madsen [16,17] examined hybrid
approaches to Bayesian network inference. Inference is still conducted in a join
tree, but direct methods are utilized for message construction. Of the three hy-
brid approaches tested, LP with AR (LPAR) tended to be no worse than the
other two approaches and was sometimes faster. All of the above studies, how-
ever, exclusively applied the same inference algorithm on a test set of Bayesian
networks.

S. Benferhat and J. Grant (Eds.): SUM 2011, LNAI 6929, pp. 38–51, 2011.
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In order to determine when one inference algorithm is better than another,
one needs to be able to characterize the semantics of the probability informa-
tion on hand [6,7]. In [7], we gave the first join tree approach that labels the
probability information passed between nodes in terms of conditional probabil-
ity tables rather than potentials [9,12]. This information allowed us [3] to use
AR to determine the messages to be propagated during inference in a join tree,
but to call VE to build them. Thus, [3] was the first paper to use one inference
algorithm to identify messages and another to build messages. Madsen [18] took
the next step by using AR to build messages and using VE to compute posterior
probabilities. We extended [18] by selectively choosing VE or AR to build mes-
sages [2]. Similarly, four cost measures s1, s2, s3, s4 were recently studied in [18]
for sorting the operations in LPAR. It was suggested in [18] to use s1 with LPAR,
since there is an effectiveness ranking, say s1, s2, s3, s4, when applied in isolation.
In [5], we also suggested to use s1 with LPAR, but to use s2 to break s1 ties,
s3 to break s2 ties, and s4 to break s3 ties. The important point is that the
above works [2,3,5,18] attempt to choose “when” to apply a particular inference
method rather than simply choosing “which” algorithm should be considered
the best overall.

This paper is organized as follows. Section 2 contains background knowledge.
In Section 3, we show the benefits of applying multiple algorithms in probabilistic
inference. Recent advances in identifying semantics during probabilistic inference
are discussed in Section 4. The conclusion and future work are presented in
Section 5.

2 Background Knowledge

We review Bayesian networks and common approaches to probabilistic inference.

2.1 Bayesian Networks

The following draws from [22]. Let U = {v1, v2, . . . , vn} denote a finite set of
discrete random variables. Each variable vi is associated with a finite domain,
denoted dom(vi), representing the values vi can take on. For a subset X ⊆ U ,
we write dom(X) for the Cartesian product of the domains of the individual
variables in X . Each element x ∈ dom(X) is called a configuration of X. A
potential [10] on dom(X) is a function ψ on dom(X) such that ψ(x) ≥ 0, for each
configuration x ∈ dom(X), and at least one ψ(x) is positive. For brevity, we refer
to a potential as a probability distribution on X rather than dom(X), and we call
X , not dom(X), its domain. A joint probability distribution on U , denoted p(U),
is a potential on U that sums to one. Given X ⊂ U , a conditional probability table
for a variable v �∈ X is a distribution, denoted p(v|X), satisfying the following
condition:

∑
c ∈ dom(v) p( v = c | X = x ) = 1.0, for each configuration x ∈

dom(X).
A Bayesian network [20] on U is a pair (D, C). D is a directed acyclic graph

on U . C is a set of conditional probability tables defined as: for each variable
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Fig. 1. The directed acyclic graph of the ESBN

Table 1. Conditional probability tables for the ESBN in Figure 1

c p(c) c d p(d|c) d i g p(g|d, i)

0 0.20 0 0 0.40 0 0 0 0.90
1 0 0.70 0 1 0 0.20

i p(i) 1 0 0 0.50

0 0.75 g l p(l|g) 1 1 0 0.40

0 0 0.30
g j h p(h|g, j) 1 0 0.60 s l j p(j|s, l)
0 0 0 0.25 0 0 0 0.10
0 1 0 0.65 i s p(s|i) 0 1 0 0.60

1 0 0 0.50 0 0 0.40 1 0 0 0.45
1 1 0 0.85 1 0 0.80 1 1 0 0.50

vi ∈ D, there is a conditional probability table for vi given its parents Pi in
D. Based on the probabilistic conditional independencies [23] encoded in D, the
product of the conditional probability tables in C is a joint distribution p(U).

For example, the directed acyclic graph in Figure 1 is called the extended
student Bayesian network (ESBN) [13]. We give conditional probability tables
in Table 1, where only binary variables are used in examples, and probabilities
not shown can be obtained by definition. By the above,

p(U) = p(c) · p(d|c) · p(i) · p(g|d, i) · · · p(h|g, j). (1)

We will use the terms Bayesian network and directed acyclic graph interchange-
ably if no confusion arises. A topological ordering [13] is an ordering ≺ of the
variables in a Bayesian network B so that for every arc (vi, vj) in B, vi precedes
vj in ≺. For example, c ≺ d ≺ i ≺ g ≺ s ≺ l ≺ j ≺ h is a topological ordering
of the directed acyclic graph in Figure 1, but d ≺ c ≺ i ≺ g ≺ h ≺ l ≺ j ≺ s
is not.
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2.2 Variable Elimination

In inference, p(X |E = e) is the most common query type, which are useful for
many reasoning patterns, including explanation, prediction, inter-causal reason-
ing, and many more [13].

Here, X and E are disjoint subsets of U , and E is observed taking value e. We
describe a basic algorithm for computing p(X |E = e), called variable elimina-
tion (VE), first put forth by [25]. Inference involves the elimination of variables.
Algorithm 1, called sum-out (SO), eliminates a single variable v from a set Φ
of potentials, and returns the resulting set of potentials. The algorithm collect-
relevant simply returns those potentials in Φ involving variable v.

Algorithm 1. SO(v,Φ)
Ψ = collect-relevant(v,Φ)
ψ = the product of all potentials in Ψ
τ =

∑
v ψ

return (Φ− Ψ) ∪ {τ}

SO uses Lemma 1, which means that potentials not involving the variable being
eliminated can be ignored.

Lemma 1. [22] If ψ1 is a potential on W and ψ2 is a potential on Z, then
the marginalization of ψ1 · ψ2 onto W is the same as ψ1 multiplied with the
marginalization of ψ2 onto W ∩ Z, where W, Z ⊆ U .

The evidence potential for E = e, denoted 1(E = e), assigns probability 1 to the
single value e of E and probability 0 to all other values of E. Hence, for a variable
v observed taking value λ and v ∈ {vi}∪P (vi), the product p(vi|P (vi)) ·1(v = λ)
keeps only those configurations agreeing with v = λ.

Algorithm 2, taken from [13], computes p(X |E = e) from a discrete Bayesian
network B. VE calls SO to eliminate variables one by one. More specifically, in
Algorithm 2, Φ is the set C of conditional probability tables for B, X is a list
of query variables, E is a list of observed variables, e is the corresponding list of
observed values, and σ is an elimination ordering for variables U −XE, where
XE denotes X ∪ E.

Algorithm 2. VE(Φ, X , E, e, σ)
Multiply evidence potentials with appropriate conditional probability tables
While σ is not empty

Remove the first variable v from σ
Φ = sum-out(v, Φ)

p(X, E = e) = the product of all potentials ψ ∈ Φ
return p(X, E = e)/

∑
X p(X, E = e)

As in [13], suppose the observed evidence for the ESBN is i = 1 and h = 0 and
the query is p(j|h = 0, i = 1). The weighted-min-fill algorithm [13] can yield
σ = c, d, l, s, g. VE first incorporates the evidence:
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ψ(i = 1) = p(i) · 1(i = 1),
ψ(d, g, i = 1) = p(g|d, i) · 1(i = 1),

ψ(i = 1, s) = p(s|i) · 1(i = 1),
ψ(g, h = 0, j) = p(h|g, j) · 1(h = 0).

To eliminate c, the SO algorithm computes

ψ(d) =
∑

c

p(c) · p(d|c).

SO computes the following to eliminate d

ψ(g, i = 1) =
∑

d

ψ(d) · ψ(d, g, i = 1).

To eliminate l,

ψ(g, j, s) =
∑

l

p(l|g) · p(j|l, s).

SO computes the following when eliminating s,

ψ(g, i = 1, j) =
∑

s

ψ(i = 1, s) · ψ(g, j, s).

For g, SO can compute:∑
g

ψ(g, i = 1, j) · ψ(g, i = 1) · ψ(g, h = 0, j)

=
∑

g

ψ(g, i = 1, j) · ψ(g, h = 0, i = 1, j)

= ψ(h = 0, i = 1, j).

Next, VE multiplies all remaining potentials as

p(h = 0, i = 1, j) = ψ(i = 1) · ψ(h = 0, i = 1, j).

Finally, VE answers the query by

p(j|h = 0, i = 1) =
p(h = 0, i = 1, j)∑
j p(h = 0, i = 1, j)

.

2.3 Arc Reversal

Arc reversal (AR) [19,21] eliminates a variable vi by reversing the arcs (vi, vj)
for each child vj of vi, where j = 1, 2, . . . , k. With respect to multiplication,
addition, and division, AR reverses one arc (vi, vj) as a three-step process:

p(vi, vj |PiPj) = p(vi|Pi) · p(vj |Pj), (2)
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p(vj |PiPj) =
∑
vi

p(vi, vj |PiPj), (3)

p(vi|PiPjvj) =
p(vi, vj |PiPj)
p(vj |PiPj)

. (4)

Suppose the variable vi to be removed has k children. The distributions defined
in (2) - (4) are built for the first k − 1 children. For the last child vk, however,
only the distributions in (2) - (3) are built. When considering vk, there is no
need to build the final distribution for vi in (4), since vi will be removed as a
barren variable. Therefore, AR removes a variable vi with k children by building
3k − 1 distributions. However, AR only outputs the k distributions built in (3).

For example, consider eliminating variable a in Fig. 2 (i). There are two arcs
(a, c) and (a, d) to be reversed. Suppose arc (a, d) is reversed first:

p(a, d|b) = p(a) · p(d|a, b),

p(d|b) =
∑

a

p(a, d|b),

p(a|b, d) =
p(a, d|b)
p(d|b) .

The resulting directed acyclic graph is shown in Fig. 2 (ii). The reversal of the
other arc (a, c) gives Fig. 2 (iii) by computing:

p(a, c|b, d) = p(a|b, d) · p(c|a),

p(c|b, d) =
∑

a

p(a, c|b, d).

a

c

b

d
(i)

a b b

c cd d
(ii) (iii)

Fig. 2. Eliminating a in (i) by reversing arc (a, d) (ii) followed by arc (a, c) (iii)

2.4 Join Tree Propagation

Shafer [22] emphasizes that join tree propagation is central to the theory and prac-
tice of probabilistic expert systems. A join tree [20,22] is a tree with sets of vari-
ables as nodes, with the property that any variable in two nodes is also in any node
on the path between the two. The separator S between any two neighbour nodes
Ni and Nj is S = Ni ∩Nj . The task of transforming a directed acyclic graph into
a join tree has been extensively studied in probabilistic reasoning literature.
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LP [15] maintains structure in the form of a multiplicative factorization of
potentials at each join tree node and each join tree separator, as illustrated in
Figure 3. Maintaining a decomposition of potentials offers LP the opportunity
to exploit barren variables and independencies induced by evidence. Doing so
improves the efficiency of join tree propagation remarkably as the experimental
results in [15] clearly emphasize. We refer the reader to [4] for a recent study on
probabilistic inference using join tree propagation.

l m n q r 

k m n q 

k m o q 

i l n q r 

g i j l 

e l m 

p ( j = 0 | i ) , 
p ( l | i ,   j = 0 ) 

p ( j = 0 ) , 
p ( l | j = 0 ) , 
p ( r | j = 0 , l , n , q ) 

d k o q 

p ( m | l ) 

p ( j = 0 | i ) 

{ p ( e ) ,   p ( m | e , l ) } 

{ p ( n | k , m ) } 

{ p ( r | i , l , n , q ) } 

h i j { p ( j | h , i ) } 

3 1   n o d e s 

f i a b c f 
p ( i ) p ( f ) 

{ p ( i | f ) } { p ( a ) ,   p ( b ) ,   p ( c ) , 
    p ( f | a , b , c ) } 

{ p ( l | g , i , j ) } 

p ( j = 0 ) , 
p ( m | j = 0 ) 

g s t 

h x y { p ( x ) ,   p ( y ) ,   p ( h | x , y ) } 

{ p ( s ) ,   p ( t ) ,   p ( g | s , t ) } 

p ( g ) 

p ( h ) 

{ p ( k ) ,   p ( o | k , m ) } { p ( d ) ,   p ( q | d , k , o ) } 

Fig. 3. A join tree partially depicted. Nodes include {a, b, c, f} and {e, l, m}. Node
{e, l, m} was assigned two conditional probability tables {p(e), p(m|e, l)} from the
Bayesian network. Some edges have been directed to illustrate the direction of propaga-
tion. Node {i, l, n, q, r} will pass three messages {p(j = 0), p(l|j = 0), p(r|j = 0, l, n, q)}
to its neighbour {l, m, n, q, r}.

3 “When” versus “Which”

Our purpose here is to report on two studies [2,5] that have shown faster inference
by exploiting structure and semantics.

3.1 Using Multiple Algorithms for Message Construction

We first review [2], which selectively applies AR or VE to build messages in join
tree propagation, compared with LPAR, which exclusively applies AR to build
messages.
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Table 2. Description of four benchmark Bayesian networks and constructed join trees

Bayesian # # evidence # CPT # Join tree # Join tree
network variables variables rows nodes messages

Alarm (BN0) 100 26 974 68 798
Water (BN28) 24 8 18029184 12 27

ISCAS 85 (BN43) 880 10 5096 326 1742
CPCS (BN78) 54 10 1658 30 193

The evaluation in [2] was carried out on four benchmark Bayesian networks
taken from the 2006 UAI probabilistic inference competition. The elimination
ordering is determined using the min-fill criteria [13], while the ordering of the
children of the variable being eliminated when using AR is determined by a fixed
topological ordering of the variables in the Bayesian network. Table 2 describes
the Bayesian network name and number from the 2006 UAI competition, the
number of variables in each Bayesian network, the number of evidence variables
in each Bayesian network, the number of rows in the conditional probability
tables of the Bayesian network, the number of nodes in each join tree, and the
number of messages passed in the join tree when no evidence is involved.

The experiments not involving evidence were conducted as follows. Load the
Bayesian network ignoring the given evidence variables and build a join tree. The
inward and outward phases of join tree propagation are performed to compute
a factorization of p(N) for every join tree node N . For experiments involving
collected evidence, the evidence E = e is stated in description of the Bayesian
network and was determined by the competition organizers. In this case, the
directed acyclic graph of the Bayesian network is pruned based on the given
evidence. Next, a join tree is constructed from the pruned directed acyclic graph.
Finally, inward and outward phases of join tree propagation are performed to
compute a factorization of p(N − E, E = e) for every join tree node N .

Table 3 reports on Bayesian inference not involving evidence processing. Run-
ning times for LPAR and for DataBayes are listed in milliseconds and are the av-
erage of three runs. The last column shows the speed-up percentage of DataBayes
over LPAR. The average percentage gain is 46%.

Next, we measure the runtime of inference involving evidence. Table 2 indi-
cates the number of evidence variables as specified in the 2006 UAI probabilistic

Table 3. The performance of LPAR and DataBayes not involving evidence processing
in four benchmark Bayesian networks

Bayesian LPAR LPAR DataBayes DataBayes Net Net Net
network inward outward inward outward inward outward total

Alarm 1866 24602 1696 19610 9% 20% 20%
Water 355 1653 15 111 96% 93% 94%

ISCAS 85 5845 24420 5380 13212 8% 46% 39%
CPCS 1129 1976 1039 1133 8% 43% 30%
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Table 4. The performance of LPAR and DataBayes involving evidence processing in
four benchmark Bayesian networks

Bayesian LPAR LPAR DataBayes DataBayes Net Net Net
network inward outward inward outward inward outward total

Alarm 2387 12694 1310 9392 45% 26% 29%
Water 2131 7857 1766 2598 17% 67% 56%

ISCAS 85 3700 13494 3419 13103 8% 3% 4%
CPCS 1372 3034 1213 1918 12% 37% 29%

inference competition. The times reported in Table 4 are given in milliseconds
and are the average of three runs. Note that, once again, DataBayes is always
faster than LPAR. The average percentage gain is 30%.

The results in Tables 3 and 4 empirically demonstrate that by selectively
applying VE and AR for message construction, join tree propagation can be
performed faster.

3.2 Using Multiple Heuristics for Determining AR Orderings

Madsen [18] has demonstrated that the order in which arcs are reversed in LPAR
can affect the amount of computation needed. Experimental results suggest that
cpt-weight (cptw), denoted s1, is the best of four measures s1, s2, s3, s4 [18]. When
using cost measure s1 to reverse arcs in LPAR, [18] will reverse the first arc tied
for the lowest score in the event of a tie. Instead, we suggest breaking ties with
other cost measures s2, s3, s4.

Recall the elimination of variable a in Figure 4, where a, b, d are binary and c’s
domain has four values. Here the s1 scores of arcs (a, c) and (a, d) corresponding
to the children c and d of a are the same. Since s1(a, c) is equal to s1(a, d), s1

does not distinguish between arcs (a, c) and (a, d). Instead of randomly reversing
an arc, say (a, d), we can let the other heuristics s2, s3, s4 decide. In this case,
s3 suggests to reverse (a, c) and then (a, d), as depicted in Figure 4.

The experiments in [5] use the LPAR method in [18], namely, AR is applied to
build all messages and VE is applied to compute posterior marginals. Here, we

a

c

b

d
(i)

a b b

c cd d
(ii) (iii)

Fig. 4. Eliminating a in (i) by reversing arc (a, c) (ii) followed by arc (a, d) (iii)
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Table 5. Description of test Bayesian networks and corresponding join tree nodes N

Bayesian network |U | |N | max |dom(N )| total size

Barley 48 36 7,257,600 17,140,796
KK 50 38 5,806,080 14,011,466
ship-ship 50 35 4,032,000 24,258,572
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Fig. 5. Time savings of breaking ties by reversing the best and worst arcs as determined
by the next cost measure on Barley
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by the next cost measure on KK

only review results on three real-world networks, called Barley [14], KK [14]1,
and ship-ship [11], which are described in Table 5. For each size of evidence
set, ten sets of evidence are generated, with the same evidence used in different
runs. To reflect the potential time savings of breaking ties, the best and worst

1 KK is a preliminary version of Barley.
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Fig. 7. Time savings of breaking ties by reversing the best and worst arcs as determined
by the next cost measure on ship-ship

arcs are reversed based on the next cost measure. Figs. 5 - 7 show running times
in seconds on our three Bayesian networks.

The results in Figs. 5 - 7 empirically demonstrate that probabilistic inference
can be performed faster by applying multiple heuristics.

4 Knowing “When:” Semantics of Intermediate Factors

In [7], we gave a method for deciding semantics in join tree propagation. We
have more recently shown in [6] how to determine semantics of the intermediate
factors constructed during probabilistic inference.

Let ψ(·) be any potential constructed by VE on a Bayesian network B. If the
semantics of B ensure the ψ(·) = p(·), then ψ(·) is denoted as p(·); otherwise, it
is denoted as φ(·). Thereby, the semantics of every potential ψ constructed by
VE can be denoted with a p−label or a φ−label.

Recall evidence i = 1 and h = 0 in the Bayesian network in Figure 1, which
Koller and Friedman [13] call non-trivial. In Section 2.2, all intermediate distri-
butions were denoted as potentials in the computation of p(j | i = 1, h = 0).
However, even with evidence, structure and semantics can still be identified.

Example 1. Computing p(j | i = 1, h = 0) in the Bayesian network of Figure 1
involves, in part,∑

c,d,g,s,l

p(c) · p(d|c) · p(i) · p(s|i) · p(g|d, i) · p(l|g)

·p(j|l, s) · p(h|g, j) · 1(i = 1) · 1(h = 0).

Eliminating variables c and d requires∑
d

p(g|d, i) · 1(i = 1) ·
∑

c

p(c) · p(d|c) (5)
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=
∑

d

p(g|d, i = 1) ·
∑

c

p(c, d) (6)

=
∑

d

p(g|d, i = 1) · p(d) (7)

=
∑

d

p(d, g|i = 1)

= p(g|i = 1).

Variable g can be eliminated as:∑
g

p(g|i = 1) · p(l|g) · p(h|g, j) · 1(h = 0)

∑
g

p(g|i = 1) · p(l|g) · p(h = 0|g, j)

=
∑

g

p(g, l|i = 1) · p(h = 0|g, j) (8)

=
∑

g

φ(g, l, h = 0|i = 1, j) (9)

= φ(l, h = 0|i = 1, j). (10)

The remainder of the example is omitted.

In contrast to Section 2.2, Example 1 shows that all intermediate distributions
have structure and semantics, regardless of: the involvement of evidence po-
tentials (5); the side or sides of the bar on which evidence appears (8), (9);
marginalization operations (6); and p-labels (7) or φ-labels (10).

5 Conclusion and Future Work

Rather than exclusively applying what is considered to be the “best” inference
algorithm or technique, we have reviewed two cases where competing methods
were successfully applied together. The rationale is to take full advantage of what
each technique has to offer. However, in order to know “when” to apply each
method, the importance of recognizing and exploiting structure and semantics
in probabilistic inference is underscored.

We have reviewed current work on identifying the semantics of intermediate
factors in discrete Bayesian network inference [6]. One direction of future work
in probabilistic inference is to exploit semantics of intermediate factors for pro-
cessing subsequent queries in VE. That is, some calculations performed when
answering a given query in VE may be reused when processing a subsequent
query.

Our work on semantics in [7] allowed us to suggest the idea of prioritized
messages. Current join tree algorithms treat all propagated messages as being
of equal importance. On the contrary, it is often the case in real-world Bayesian
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networks that only some of the messages propagated from one join tree node to
another are relevant to subsequent message construction at the receiving node. In
Figure 3, for building messages p(j = 0) and p(m|j = 0) from node {l, m, n, q, r},
messages p(j = 0) and p(l|j = 0) from {i, l, n, q, r} are respectively relevant,
whereas the message p(r|j = 0, l, n, q) is irrelevant in both cases. In [4], we
proposed the first join tree propagation algorithm that identifies and constructs
the relevant messages first. In other words, join tree propagation is conducted
at a “message-to-message” level rather than a “node-to-node” level.

Lastly, while [5] focuses on finding better child orderings in AR, it does not
address the problem of finding good elimination orderings for AR. That is, the
elimination orderings used in [5] for AR are determined by a standard method
for determining elimination orderings for VE.
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Probabilistic Logic Networks in a Nutshell

Matthew Iklé

Adams State College, Alamosa CO

Abstract. We begin with a brief overview of Probabilistic Logic Net-
works, distinguish PLN from other approaches to reasoning under uncer-
tainty, and describe some of the main conceptual foundations and goals
of PLN. We summarize how knowledge is represented within PLN and
describe the four basic truth-value types. We describe a few basic first-
order inference rules and formulas, outline PLN’s approach to handling
higher-order inference via reduction to first-order rules, and follow this
by a brief summary of PLN’s handling of quantifiers.

Since PLN was and continues to be developed as one of several major
components of a broader and more general artificial intelligence project,
we next describe the OpenCog project and PLN’s roles within the project.

Keywords: probabilistic logic, probabilistic networks, artificial general
intelligence, PLN, OpenCog.

1 Introduction: What is PLN?

First introduced as a probabilistic reasoning system within the Webmind Arti-
ficial Intelligence project by Ben Goertzel and the late Jeff Pressing, the Proba-
bilistic Logic Networks (PLN) system has evolved and grown considerably. PLN
now serves as the probabilistic reasoning system within the open source OpenCog
AI engine[7], which has replaced Webmind. The primary focus of PLN is to serve
as a systematic, comprehensive, and pragmatic system to manage uncertainty:
to handle and reason about imprecise, uncertain, incomplete, and inconsistent
data, and reasoning involving uncertain conclusions.

Perhaps one of PLN’s most striking characteristics is its dual nature. Designed
as part of a broader artificial intelligence system, PLN is very practical, encom-
passing heuristic approaches as necessary. At the same time, considerable effort
has been made to ground as much of PLN as possible upon solid theoretical and
mathematical foundations. A result of this duality is the following list of desired
characteristics:

– PLN should enable uncertainty-savvy versions of all known varieties of logical
reasoning: including, for instance, higher-order reasoning involving quanti-
fiers, higher-order functions, and so forth;

– PLN should reduce to crisp ‘theorem prover” style behavior in the limiting
case where uncertainty tends to zero;

– PLN should encompass inductive and abductive as well as deductive reason-
ing;

S. Benferhat and J. Grant (Eds.): SUM 2011, LNAI 6929, pp. 52–60, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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– PLN should agree with probability theory in those reasoning case where
probability in its current state of development provides solutions within rea-
sonable calculational effort based on assumptions that are plausible in the
context of real-world embodied software systems;

– PLN should gracefully incorporate heuristics not explicitly based on proba-
bility theory, in cases where probability theory, at its current state of devel-
opment, does not provide adequate pragmatic solutions;

– PLN should provide “scalable” reasoning, in the sense of being able to carry
out inferences involving at least billions of premises and carry out more
intensive and accurate reasoning when the number of premises is fewer;

– PLN should easily accept input from, and send input to, natural language
processing software systems.

2 Relationship of PLN to Other Uncertain Inference
Engines

It is clear that uncertain inference is hardly a new idea. What is new within
PLN is its focus on bridging the theoretical and practical, and how it incorpo-
rates and integrates ideas from a variety of sources. PLN borrows heavily upon
other approaches to uncertain inference and in many ways represents an amal-
gam of a large number of these ideas, including such standard approaches as
Bayesian probability theory, and fuzzy logic, as well as from more unusual ideas
including Pei Wang’s Non-Axiomatic Reasoning System (NARS)[12], algorith-
mic information theory, and Walley’s theory of imprecise probabilities[11]. One
of the key differences between PLN and other approaches to probabilistic logic
lies in PLN’s foundation upon “term logic.” As we shall see later, this founda-
tional choice allows one to reduce PLN’s higher-order inference rules to more
basic first-order rules.

Overall, PLN owes the most to Pei Wang’s NARS system and Walley’s theory
of imprecise probabilities. Pei Wang pioneered the use of uncertain term logic in
his NARS system, and in large measure provided the motivation for the devel-
opment of PLN. Indeed PLN began as part of a collaboration with Wang as an
attempt to create a probabilistic analogue to NARS, though there remain many
conceptual and mathematical differences between the two, and PLN has long
ago diverged from these roots.

Peter Walley’s theory of imprecise probabilities provided motivation for the
development of our “indefinite probabilities” approach. Essentially a hybridiza-
tion of Walley’s imprecise probabilities with Bayesian credible intervals, “in-
definite probabilities” provide a general and mathematically sound method for
calculating the “weight-of-evidence” underlying the conclusions of uncertain in-
ferences. Moreover, both Walley’s imprecise beta-binomial model and standard
Bayesian inference can be mathematically viewed as limiting cases of the indef-
inite probability model.

Of the wide array of uncertain inference methods, Bayes’ nets represent per-
haps the most similar approach to PLN, although the graph structures them-
selves are quite dissimilar. While both methods succeed at embodying probability
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theory in a set of date structures and algorithms, PLN was designed with differ-
ent purposes in mind. As a pragmatic approach with an eye towards interaction
with an integrative artificial intelligence system, PLN was designed to interface
with other cognitive processes and with other kinds of inference, including in-
tensional inference, fuzzy inference, and higher-order inference using quantifiers,
variables, and combinators.

While PLN utilizes fuzzy set membership as the semantics for Member rela-
tionship truth-values, it maintains a clear distinction between uncertainty and
partial membership. For many of the purposes commonly associated with fuzzy
membership, PLN uses intensional probabilities, giving the advantage of keeping
more things within a probabilistic framework.

3 Knowledge Representation within PLN

Declarative knowledge representation within PLN is handled by a weighted la-
beled hypergraph called the Atomspace, which consists of multiple types of nodes
and links, generally weighted with probabilistic truth values and attention val-
ues PLN is divided into first-order and higher-order sub-theories (FOPLN and
HOPLN). These terms are used in a nonstandard way drawn from NARS. We
develop FOPLN first, and then derive HOPLN therefrom. FOPLN is a term
logic, involving terms and relationships (links) between terms. It is an uncertain
logic, in the sense that both terms and relationships are associated with truth
value objects, which may come in multiple varieties ranging from single num-
bers to complex structures like indefinite probabilities[3]. Terms may be either
elementary observations, or abstract tokens drawn from a token-set T.

3.1 Core FOPLN Relationships

“Core FOPLN” involves relationships drawn from the set: negation; Inheritance
and probabilistic conjunction and disjunction; Member and fuzzy conjunction
and disjunction. Elementary observations can have only Member links, while to-
ken terms can have any kinds of links. PLN makes clear distinctions, via link type
semantics, between probabilistic relationships and fuzzy set relationships. Mem-
ber semantics are usually fuzzy relationships (though they can also be crisp),
whereas Inheritance relationships are probabilistic, and there are rules governing
the interoperation of the two types.

3.2 Auxiliary FOPLN Relationships

Beyond the core FOPLN relationships, FOPLN involves additional relationship
types of two varieties. There are simple ones like Similarity, defined by

Similarity A B

We say a relationship R is simple if the truth value of R A B can be calculated
in terms of the truth values of core FOPLN relationships between A and B.
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There are also complex ones like IntensionalInheritance, which measures the
extensional inheritance between the set of properties or patterns associated with
one term and the corresponding set associated with another.

3.3 PLN Truth Values

Truth-values come in four basic types. In order of increasingly information about
the full probability distribution they are

– strength truth-values, which consist of single numbers; e.g., < s > or < .8 >.
Usually strength values denote probabilities but this is not always the case.

– SimpleTruthValues, consisting of pairs of numbers. These pairs come in two
forms: < s, w >, where s is a strength and w is a “weight of evidence” and
< s, N >, where N is a “count.” “Weight of evidence is a qualitative measure
of belief, while “count is a quantitative measure of accumulated evidence.

– IndefiniteTruthValues, which quantify truth-values in terms of an interval
[L, U ], a credibility level b, and an integer k (called the lookahead). Indefi-
niteTruthValues quantify the idea that after k more observations there is a
probability b that the conclusion of the inference will appear to lie in [L, U ].
See [3] for more details.

– DistributionalTruthValues, which are discretized approximations to entire
probability distributions.

This gradation of truth-value types serves several purposes. Strength and Simple
truth values can be used when speed is of the essence or when one simply has little
information. When accuracy is most important and when we have additional
information concerning an Atom’s full probability distribution, then Indefinite
and Distributional truth values may be more pertinent.

3.4 PLN Rules and Formulas

A distinction is made in PLN between rules and formulas. PLN logical inferences
take the form of “syllogistic rules,” which give patterns for combining statements
with matching terms. Examples of PLN rules include, but are not limited to, are

– the deduction ((A → B) ∧ (B → C) ⇒ (A→ C)),
– induction ((A → B) ∧ (A→ C) ⇒ (B → C)),
– abduction ((A → C) ∧ (B → C) ⇒ (A→ C)),
– inversion rules ((A → B)⇒ (B → A)).

Related to each rule is a formula which calculates the truth value resulting
from application of the rule. As an example, suppose sA, sB, sC , sAB, and sBC

represent the truth values for the terms A, B, C, as well the truth values of the
relationships A → B and B → C, respectively. Then, under suitable conditions
imposed upon these input truth values, the formula for the deduction rule is
given by:

sAC = sABsBC +
(1− sAB) (sC − sBsBC)

1− sB
,
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where sAC represents the truth value of the relationship A → C. This formula
is directly derived from probability theory given the assumption that A → B
and B → C are independent. Using a combination of probability theory and
heuristics, PLN also effectively handles cases in which independence is not a
valid assumption.

4 Higher-Order PLN

Higher-order PLN (HOPLN) is defined as the subset of PLN that applies to
predicates (considered as functions mapping arguments into truth values). It
includes mechanisms for dealing with variable-bearing expressions and higher-
order functions.

A predicate, in PLN, is a special kind of term that embodies a function mapping
terms or relationships into truth-values. HOPLN contains several relationships
that act upon predicates including Evaluation, Implication, and several types of
quantifiers. The relationships can involve constant terms, variables, or a mixture.

PLN supports a variety of quantifiers, including traditional crisp and fuzzy
quantifiers, plus the AverageQuantifier defined so that the truth value of

AverageQuantifier X F (X)

is a weighted average of F (X) over all relevant inputs X [3]. AverageQuantifier
is used implicitly in PLN to handle logical relationships between predicates, so
that e.g. the conclusion of the above deduction is implicitly interpreted as

AverageQuantifier X
Implication

Evaluation is Fluffy X
Evaluation is cat X

4.1 Reducing HOPLN to FOPLN

In [3] it is shown that in principle, over any finite observation set, HOPLN
reduces to FOPLN. The key ideas of this reduction are the elimination of vari-
ables via use of higher-order functions, and the use of the set-theoretic definition
of function embodied in the SatisfyingSet operator to map function-argument
relationships into set-member relationships.

As an example, consider the Implication link. In HOPLN, where X is a variable

Implication
R1 A X
R2 B X

may be reduced to

Inheritance
SatisfyingSet(R1 A X)
SatisfyingSet(R2 B X)
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where e.g. SatisfyingSet(R1 A X) is the fuzzy set of all X satisfying the rela-
tionship R1(A, X).

5 PLN and AI

While PLN serves as a standalone system, recall that PLN grew out of a desire
to build an uncertain reasoning module for use within a more general artificial
intelligence framework. In order to completely understand many of the open
research problems within PLN, it helps to understand the roles PLN plays within
this larger context. To address this issue, we examine PLN from two additional
viewpoints. First as PLN relates to intelligent agents, and then we will provide
an overview of how PLN fits into the larger OpenCog framework.

5.1 SRAM

Here we very briefly review a simple formal model of intelligent agents called
SRAM, for Simple Realistic Agent Model.

Following a theoretical framework developed by Legg and Hutter[8], we con-
sider a class of active agents which observe and explore their environment and
also take actions in it, which may affect the environment. The agent sends in-
formation to the environment and the environment sends signals to the agent.
Agents can also experience rewards.

To this framework, we add a set M of memory actions which allow agents to
maintain memories (of finite size), and at each time step to carry out internal
actions on their memories as well as external actions in the environment. We
also introduce the notions of goals and consider the environment as sending goal-
symbols to the agent along with regular observation-symbols. In this extended
framework, an interaction sequence looks like

m1a1o1g1r1m2a2o2g2r2...

where the mi’s represent memory actions, the ai’s represent external actions, the
oi’s represent observations, the gi’s represent agent goals, and the ri’s represent
rewards. It is assumed that the reward ri provided to an agent at time i is
determined by the goal function gi. If w is introduced as a single symbol to
denote the combination of a memory action and an external action, and y is
introduced as a single symbol to denote the combination of an observation, a
goal and a reward, we can simplify this interaction sequence as

w1y1w2y2...

Each goal function maps each finite interaction sequence Ig,s,t = wys:t with gs

corresponding to g, into a value rg(Ig,s,t) ∈ [0, 1] indicating the value or “raw
reward” of achieving the goal during that interaction sequence. The total reward
rt obtained by the agent is the sum of the raw rewards obtained at time t from
all goals whose symbols occur in the agent’s history before t.
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The agent is represented as a function π which takes the current history as
input, and produces an action as output. Agents need not be deterministic, an
agent may for instance induce a probability distribution over the space of possible
actions, conditioned on the current history. In this case we may characterize the
agent by a probability distribution π(wt|wy<t). Similarly, the environment may
be characterized by a probability distribution μ(yk|wy<k). Taken together, the
distributions π and μ define a probability measure over the space of interaction
sequences.

Following Legg and Hutter, we will consider the class of environments that
are reward-summable, meaning that the total amount of reward they return to
any agent is bounded by 1. We will also use the term “context” to denote the
combination of an environment, a goal function and a reward function. If the
agent is acting in environment μ, and is provided with gt = g for the time-interval
T = t ∈ {t1, ..., t2}, then the expected goal-achievement of the agent during the
interval is

V π
μ,g,T ≡

t2∑
t1

ri

where E is the space of computable, reward-summable environments.
Next, we introduce a second-order probability distribution ν, which is a prob-

ability distribution over the space of environments μ. The distribution ν assigns
each environment a probability.

What is key in the above formalism is that this second-order probability dis-
tribution ties in nicely with the indefinite probabilities framework and allows us
to ground a form of possible worlds semantics within experiential semantics. An
agent, experiencing a single stream of perceptions, may use this to construct an
ensemble of “simulated” possible worlds, which may then be used in various sorts
of inferences using a commonplace idea in the field of statistics: subsampling,”
a form of “bootstrapping.”

This notion ties in closely with SRAM, which considers a probability distribu-
tion over a space of environments which are themselves probability distributions.
What a real agent has is actually a single series of remembered observations. But
it can induce a hopeful approximation of this distribution over environments by
subsampling its memory and asking: what would it imply about the world if the
items in this subsample were the only things I’d seen?

5.2 PLN’s Relationship to OpenCog

Now we briefly describe the OCP (OCP) AGI architecture, implemented within
the open-source OpenCog AI framework. OCP combines multiple AI paradigms
such as uncertain logic, computational linguistics, evolutionary program learn-
ing and connectionist attention allocation in a unified architecture. Cognitive
processes embodying these different paradigms interoperate together on a com-
mon neural-symbolic knowledge store called the Atomspace. The interaction of
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these processes is designed to encourage the self-organizing emergence of high-
level network structures in the Atomspace, including superposed hierarchical
and heterarchical knowledge networks, and a self-model network enabling meta-
knowledge and meta-learning.

The high-level architecture of OCP involves the use of multiple cognitive pro-
cesses associated with multiple types of memory to enable an intelligent agent
to execute the procedures that it believes have the best probability of work-
ing toward its goals in its current context. OCP handles low-level perception
and action via an extension called OpenCogBot, which integrates a hierarchical
temporal memory system, DeSTIN [1].

OCP’s memory types are the declarative, procedural, sensory, and episodic
memory types that are widely discussed in cognitive neuroscience [10], plus at-
tentional memory for allocating system resources generically, and intentional
memory for allocating system resources in a goal-directed way. Table 1 overviews
these memory types, giving key references and indicating the corresponding cog-
nitive processes, and also indicating which of the generic patternist cognitive
dynamics each cognitive process corresponds to (pattern creation, association,
etc.).

Table 1. Memory Types and Cognitive Processes in OpenCog Prime. The third column
indicates the general cognitive function that each specific cognitive process carries out,
according to the patternist theory of cognition.

Memory
Type

Specific Cognitive Processes
General Cognitive

Functions

Declarative
Probabilistic Logic Networks (PLN) [3];

concept blending [2]
pattern creation

Procedural
MOSES (a novel probabilistic

evolutionary program learning algorithm)
[9]

pattern creation

Episodic internal simulation engine [4]
association, pattern

creation

Attentional Economic Attention Networks (ECAN) [6]
attention allocation,,
association, credit

assignment

Intentional
probabilistic goal hierarchy refined by

PLN and ECAN, structured according to
Psi

credit assignment, pattern
creation

Sensory Supplied by DeSTIN integration
association, attention

allocation, pattern creation,
credit assignment

6 Conclusion and Future Research Directions

The OpenCog software (with PLN as it core reasoning system) has been used
for commercial applications in the area of natural language processing and
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data mining [5]. A collaboration between Novamente LLC and The Electric
Sheep Company demonstrated an OpenCog-controlled virtual dog in a virtual
world, that can learn new tricks via imitative and reinforcement learning[4]
(see http://novamente.net/example for some videos of these virtual dogs in
action).

More recently, a new project based at Hong Kong Polytechnic University
called M-Lab will explore the creation of generally intelligent humanoid game
characters, powered by OpenCog and M-Labs Lucid game engine, with the capa-
bility for simple English conversation and realistic human-like emotional dynam-
ics. Once again, as part of this effort, PLN will play a pivotal role, supplying the
core planning and inference mechanisms. As these projects proceed, it is clear
that new challenges will arise and that PLN will encounter challenges and require
alterations and additions. As a standalone system, many challenging problems
still remain, most notably forward and backward chaining inference control.
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Abstract. The dynamics of beliefs is one of the major components of any au-
tonomous system, that should be able to incorporate new pieces of information.
In this paper we give a quick overview of the main operators for belief change,
in particular revision, update, and merging, when the beliefs are represented in
propositional logic. And we discuss some works on belief change in more ex-
pressive frameworks.

1 Introduction

Every autonomous agent has to use a belief base to model the state of the world. This
information is precious since beliefs can be costly to obtain and since they are neces-
sary to carry on reasoning tasks or to take the appropriate decisions. So a first class
requirement in order to design intelligent autonomous agents is to try to provide her the
means to obtain, and to maintain the most faithful belief base. In particular an agent has
to be able to incorporate new pieces of information, and to correct the incorrect beliefs
when she detected them. So this dynamics of beliefs is one of the major components of
any autonomous agent.

The aim of this paper is to recall the definition of the main belief change operators
and the links between them. We focus on the classical case, where the beliefs of the
agents are represented using propositional logic, before discussing some extensions in
other representational frameworks.

This is a very quick presentation of belief change theory. For a complete introduc-
tion the reader should refer to the seminal books on belief revision [35,36,41,64], or
the recent special issue of Journal of Philosophical Logic on the 25 Years of AGM
Theory [34].

2 Preliminaries

We consider a propositional language L defined from a finite set of propositional vari-
ables P and the standard connectives.

An interpretation ω is a total function from P to {0, 1}. The set of all interpretations
is denoted by W . An interpretation ω is a model of a formula ϕ ∈ L if and only if it
makes it true in the usual truth functional way. mod(ϕ) denotes the set of models of the
formula ϕ, i.e., mod(ϕ) = {ω ∈ W | ω |= ϕ}. When M is a set of models we denote
by ϕM a formula such that mod(ϕM ) = M .
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A belief base K is a finite set of propositional formulae. In order to simplify the
notations we identify the base K with the formula ϕ which is the conjunction of the
formulae of K1.

3 Revision

Belief revision aims at changing the status of some beliefs in the base that are contra-
dicted by a more reliable piece of information. Several principles are governing this
revision operation:

– First is the primacy of update principle: the new piece of information has to be
accepted in the belief base after the revision. This is due to the hypothesis that the
new piece of information is more reliable than the current beliefs of the agent2.

– Second is the principle of coherence: the new belief base after the revision should
be a consistent belief base. Asking the beliefs of the agent to be consistent is a
natural requirement if one wants the agent to conduct reasoning tasks from her
belief base.

– Third is the principle of minimal change: the new belief base after the revision
should be as close as possible from the current belief base of the agent. This impor-
tant principle aims at ensuring that no unnecessary information (noise) is added to
the beliefs of the agent during the revision process, and that no unnecessary infor-
mation is lost during the process: information/beliefs are usually costly to obtain,
we do not want to throw them away without any serious reason.

Alchourrón, Gärdenfors and Makinson [2] proposed some postulates in order to for-
malize these principles for belief revision.

Definition 1 ([48]). Let ϕ and μ be two formulas denoting respectively the belief base
of the agent, and a new piece of information. Then ϕ ◦ μ is a formula representing the
new belief base of the agent. An operator ◦ is an AGM belief revision operator if it
satisfies the following properties:

(R1) ϕ ◦ μ � μ
(R2) If ϕ ∧ μ is consistent then ϕ ◦ μ ≡ ϕ ∧ μ
(R3) If μ is consistent then ϕ ◦ μ is consistent
(R4) If ϕ1 ≡ ϕ2 and μ1 ≡ μ2 then ϕ1 ◦ μ1 ≡ ϕ2 ◦ μ2

(R5) (ϕ ◦ μ) ∧ φ � ϕ ◦ (μ ∧ φ)
(R6) If (ϕ ◦ μ) ∧ φ is consistent t then ϕ ◦ (μ ∧ φ) � (ϕ ◦ μ) ∧ φ

When one works with a finite propositional language the above postulates, proposed by
Katsuno and Mendelzon, are equivalent to AGM ones [2,35].

(R1) states that the new piece of information must be believed after the revision. (R2)
says that when there is no conflict between the new piece of information and the current

1 Some approaches are sensitive to syntactical representation. In that case it is important to
distinguish between K and the conjunction of its formulae (see e.g. [52]).

2 If this is not the case one should use a non-prioritized revision operator [42] or a merging
operator (see Section 5).
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beliefs of the agent, the revision is just the conjunction. (R3) says that revision always
lead to a consistent belief base, unless the new piece of information is not consistent.
(R4) is an irrelevance of syntax condition, it states that logically equivalent bases must
lead to the same result. (R5) and (R6) give conditions on the revision by a conjunction.

Alchourrón, Gärdenfors and Makinson also defined contraction operators, that aim
to remove some piece of information from the beliefs of the agent. These contraction
operators are closely related to revision operators, since each contraction operator can
be used to define a revision operator, through the Levy identity and conversely each re-
vision operator can be used to define a contraction operator through the Harper identity
[2,35]. So one can study indifferently revision or contraction operators. So we focus on
revision here.

Several representation theorems, that give constructive ways to define AGM revi-
sion/contraction operators, have been proposed, such as partial meet contraction/revision
[2], epistemic entrenchments [37,35], safe contraction [1], etc. In [48], Katsuno and
Mendelzon give a representation theorem, showing that each revision operator corre-
sponds to a faithful assignment, that associates to each base a plausibility preorder on
interpretations (this idea can be traced back to Grove systems of spheres [40]).

Definition 2. A faithful assignment is a function mapping each base ϕ to a pre-order
≤ϕ over interpretations such that:

1. If ω |= ϕ and ω′ |= ϕ, then ω  ϕ ω′

2. If ω |= ϕ and ω′ �|= ϕ, then ω <ϕ ω′

3. If ϕ ≡ ϕ′, then ≤ϕ=≤ϕ′

Theorem 1 ([48]). An operator ◦ is an AGM revision operator (ie. it satisfies (R1)-
(R6)) if and only if there exists a faithful assignment that maps each base ϕ to a total
pre-order≤ϕ such that mod(ϕ ◦ μ) = min(mod(μ),≤ϕ).

One of the main problems of this characterization of belief revision is that it does not
constrain the operators enough for ensuring a good behavior when we do iteratively
several revisions. So one needs to add more postulates and to represent the beliefs of
the agent with a more complex structure than a simple belief base. In [26] Darwiche
and Pearl proposed a convincing extension of AGM revision. This proposal have been
improved by an additional condition in [17,45]. And [55,51] define improvement oper-
ators that are a generalization of iterated revision operators.

4 Update

Whereas belief revision should be used to improve the beliefs of the agent by incor-
porating more reliable pieces of evidence, belief update operators aim at maintaining
the belief base of the agent up-to-date, by allowing to modify the base according to a
reported change in the world. This distinction between revision and update was made
clear in [47,49], where Katsuno and Mendelzon proposed postulates for belief update.

Definition 3 ([47,49]). An operator ! is a (partial) update operator if it satisfies the
properties (U1)-(U8). It is a total update operator if it satisfies the properties (U1)-
(U5), (U8), (U9).
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(U1) ϕ ! μ � μ
(U2) If ϕ � μ, then ϕ ! μ ≡ ϕ
(U3) If ϕ � ⊥ and μ � ⊥ then ϕ ! μ � ⊥
(U4) If ϕ1 ≡ ϕ2 and μ1 ≡ μ2 then ϕ1 ! μ1 ≡ ϕ2 ! μ2

(U5) (ϕ ! μ) ∧ φ � ϕ ! (μ ∧ φ)
(U6) If ϕ ! μ1 � μ2 and ϕ ! μ2 � μ1, then ϕ ! μ1 ≡ ϕ ! μ2

(U7) If ϕ is a complete formula, then (ϕ ! μ1) ∧ (ϕ ! μ2) � ϕ ! (μ1 ∨ μ2)
(U8) (ϕ1 ∨ ϕ2) ! μ ≡ (ϕ1 ! μ) ∨ (ϕ2 ! μ)
(U9) If ϕ is a complete formula and (ϕ ! μ) ∧ φ � ⊥, then ϕ ! (μ ∧ φ) � (ϕ ! μ) ∧ φ

Most of these postulates are close to the ones of revision. The main differences lie
in postulate (U2) that is much weaker than (R2): conversely to revision, even if the
new piece of information is consistent with the belief base, the result is generally not
simply the conjunction. This illustrates the fact that revision can be seen as a selection
process of the most plausible worlds of the current beliefs with respect to the new piece
information, whereas update is a transition process: each world of the current beliefs
have to be translated to the closest world allowed by the new piece of information. This
world-by-world treatment is expressed by postulate (U8).

As for revision, there is a representation theorem in terms of faithful assignment.

Definition 4. A faithful assignment is a function mapping each interpretation ω to a
pre-order≤ω over interpretations such that if ω �= ω′, then ω <ω ω′.

One can easily check that this faithful assignment on interpretations is just a special
case of the faithful assignment on bases defined in the previous section on the complete
base corresponding to the interpretation.

Katsuno and Mendelzon give two representation theorems for update operators. The
first representation theorem, that is the most commonly used, corresponds to partial pre-
orders. This use of partial pre-order is one of the differences between belief revision and
belief update (note nonetheless that postulates for belief revision can also be adapted to
modelize assignements giving partial pre-orders [9]).

Theorem 2 ([47,49]). An update operator ! satisfies (U1)-(U8) if and only if there
exists a faithful assignment that maps each interpretation ω to a partial pre-order ≤ω

such that mod(ϕ ! μ) =
⋃

ω|=ϕ min(mod(μ),≤ω).

But there is also a second theorem corresponding to total pre-orders.

Theorem 3 ([47,49]). An update operator ! satisfies (U1)-(U5), (U8) and (U9) if and
only if there exists a faithful assignment that maps each interpretation ω to a total pre-
order ≤ω such that mod(ϕ ! μ) =

⋃
ω|=ϕ min(mod(μ),≤ω).

This characterization of update is quite convincing, but some criticisms can be made
that suggest that more elaborate update operators can be studied [43].

5 Merging

Merging operators [4,5,62,58,56] should be used when one wants to combine several
belief bases, or wants to take into account several pieces of information of same relia-
bility.
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We first need to define a profile of bases, that will represent the set of bases/infor-
mation one wants to combine:

A profile Ψ is a non-empty multi-set (bag) of bases Ψ = {ϕ1, . . . , ϕn} (hence differ-
ent agents are allowed to exhibit identical bases), and represents a group of n agents. We
denote by

∧
Ψ the conjunction of bases of Ψ = {ϕ1, . . . , ϕn}, i.e.,

∧
Ψ = ϕ1∧. . .∧ϕn.

A profile Ψ is said to be consistent if and only if
∧

Ψ is consistent. The multi-set union
is denoted by ".

Belief merging operators aim at aggregating several bases into a single one. The
most basic case is when all the bases have the same strength/importance (see [28] for
a discussion on prioritized merging). Often the aggregation has to obey a set of rules,
that can be a translation of physical laws or of some knowledge about the result, that
form the integrity constraints for the merging. Let us see the postulates for Integrity
Constraints merging operators:

Definition 5 ([53]). Let Ψ be a profile and μ be a formula encoding integrity
constraints. Then #μ(Ψ) represents the merging of the profile Ψ under the integrity
constraints μ. An operator # is an IC merging operator if it satisfies the following
properties:

(IC0) #μ(Ψ) � μ
(IC1) If μ is consistent, then#μ(Ψ) is consistent
(IC2) If

∧
Ψ is consistent with μ, then#μ(Ψ) ≡

∧
Ψ ∧ μ

(IC3) If Ψ1 ≡ Ψ2 and μ1 ≡ μ2, then#μ1(Ψ1) ≡ #μ2(Ψ2)
(IC4) If ϕ1 � μ and ϕ2 � μ, then #μ({ϕ1, ϕ2}) ∧ ϕ1 is consistent if and only if

#μ({ϕ1, ϕ2}) ∧ ϕ2 is consistent
(IC5) #μ(Ψ1) ∧#μ(Ψ2) � #μ(Ψ1 " Ψ2)
(IC6) If#μ(Ψ1) ∧#μ(Ψ2) is consistent, then#μ(Ψ1 " Ψ2) � #μ(Ψ1) ∧#μ(Ψ2)
(IC7) #μ1(Ψ) ∧ μ2 � #μ1∧μ2(Ψ)
(IC8) If#μ1(Ψ) ∧ μ2 is consistent, then#μ1∧μ2(Ψ) � #μ1(Ψ)

These postulates are quite close to the ones of revision. The ones that specifically talk
about aggregation are (IC4), (IC5) and (IC6). (IC4) is a fairness postulate, that expresses
the fact that all the bases have the same importance/weight, so when merging two such
bases one can not give more importance to one of them. (IC5) and (IC6) talk about the
result of the merging when we join two groups. (IC5) states that all that is common in
the merging of the two groups must be selected if we join the two groups. And (IC6)
strengthen this condition by asking that the merging obtained when we join the two
groups have to be exactly what is commonly chosen by the two groups. These two
postulates correspond to well known Pareto conditions (see conditions 5 and 6 of the
syncretic assignment).

There is also a representation theorem for merging operators in terms of pre-orders
on interpretations [53].

Definition 6. A syncretic assignment is a function mapping each profile Ψ to a total
pre-order≤Ψ over interpretations such that:

1. If ω |= Ψ and ω′ |= Ψ , then ω  Ψ ω′

2. If ω |= Ψ and ω′ �|= Ψ , then ω <Ψ ω′
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3. If Ψ1 ≡ Ψ2, then ≤Ψ1=≤Ψ2

4. ∀ω |= ϕ ∃ω′ |= ϕ′ ω′ ≤{ϕ}	{ϕ}′ ω
5. If ω ≤Ψ1 ω′ and ω ≤Ψ2 ω′, then ω ≤Ψ1	Ψ2 ω′
6. If ω <Ψ1 ω′ and ω ≤Ψ2 ω′, then ω <Ψ1	Ψ2 ω′

Theorem 4 ([53]). An operator# is an IC merging operator if and only if there exists
a syncretic assignment that maps each profile Ψ to a total pre-order ≤Ψ such that

mod(#μ(Ψ)) = min(mod(μ),≤Ψ )

6 On the Links between Revision, Update and Merging

6.1 Revision vs Update

Intuitively revision operators bring a minimal change to the base by selecting the most
plausible models among the models of the new information. Whereas update operators
bring a minimal change to each possible world (model) of the base in order to take into
account the change described by the new infomation whatever the possible world. So,
if we look closely to the representation theorems (theorems 1, 2 and 3), we easily find
the following result:

Theorem 5. If ◦ is a revision operator (i.e. it satisfies (R1)-(R6)), then the operator !
defined by ϕ ! μ =

∨
ω|=ϕ ϕ{ω} ◦ μ is an update operator that satisfies (U1)-(U9).

So this proposition states that update can be viewed as a kind of pointwise revision.

6.2 Revision vs Merging

Intuitively revision operators select in a formula (the new evidence) the closest infor-
mation to a ground information (the old base). And, identically, IC merging operators
select in a formula (the integrity constraints) the closest information to a ground infor-
mation (a profile of bases). So following this idea it is easy to make a correspondence
between IC merging operators and belief revision operators:

Theorem 6 ([53]). If # is an IC merging operator (it satisfies (IC0-IC8)), then the
operator ◦, defined as ϕ ◦ μ = #μ(ϕ), is an AGM revision operator (it satisfies (R1-
R6)).

See [53] for more links between belief revision and merging.

7 Other Belief Change Operators

7.1 Confluence Operators

As explained in the previous section, there are close connections between revision,
update and merging. Update can be considered as a pointwise revision, and merging as
a generalization of revision. So, as illustrated in Figure 1, one can define confluence
operators [54] that can be considered as a pointwise merging, and as a generalization of
update.

Let us first define p-consistency for profiles:
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UpdateRevision

Merging Confluence

Fig. 1. Revision - Update - Merging - Confluence

Definition 7. A profile Ψ = {ϕ1, . . . , ϕn} is p-consistent if all its bases are consistent,
i.e ∀ϕi ∈ Ψ , ϕi is consistent.

Note that p-consistency is much weaker than consistency, the former just asks that all
the bases of the profile are consistent, while the later asks that the conjunction of all the
bases is consistent.

Definition 8. An operator � is a confluence operator if it satisfies the following prop-
erties:

(UC0) �μ(Ψ) � μ
(UC1) If μ is consistent and Ψ is p-consistent, then �μ(Ψ) is consistent
(UC2) If Ψ is complete, Ψ is consistent and

∧
Ψ � μ, then �μ(Ψ) ≡

∧
Ψ

(UC3) If Ψ1 ≡ Ψ2 and μ1 ≡ μ2, then �μ1(Ψ1) ≡ �μ2(Ψ2)
(UC4) If ϕ1 and ϕ2 are complete formulae and ϕ1 � μ, ϕ2 � μ,

then �μ({ϕ1, ϕ2}) ∧ ϕ1 is consistent if and only �μ({ϕ1, ϕ2}) ∧ ϕ2 is consistent
(UC5) �μ(Ψ1) ∧�μ(Ψ2) � �μ(Ψ1 " Ψ2)
(UC6) If Ψ1 and Ψ2 are complete profiles and �μ(Ψ1) ∧�μ(Ψ2) is consistent,

then �μ(Ψ1 " Ψ2) � �μ(Ψ1) ∧�μ(Ψ2)
(UC7) �μ1(Ψ) ∧ μ2 � �μ1∧μ2(Ψ)
(UC8) If Ψ is a complete profile and if �μ1(Ψ) ∧ μ2 is consistent,

then �μ1∧μ2(Ψ) � �μ1(Ψ) ∧ μ2

(UC9) �μ(Ψ " {ϕ ∨ ϕ′}) ≡ �μ(Ψ " {ϕ}) ∨�μ(Ψ " {ϕ′})
See [54] for a representation theorem in terms of assignment for confluence operators.
We just give the two results that show how confluence relates with respect to merging
and update [54]:

Theorem 7. If � is a confluence operator (i.e. it satisfies (UC0-UC9)), then the oper-
ator !, defined as ϕ ! μ = �μ(ϕ), is a total update operator (i.e. it satisfies (U1-U9)).

For relating confluence and merging, we need to use the notion of state:

Definition 9. A multi-set of interpretations will be called a state. We use the letter e,
possibly with subscripts, for denoting states. If Ψ = {ϕ1, . . . , ϕn} is a profile and
e = {ω1, . . . , ωn} is a state such that ∀i ωi |= ϕi, we say that e is a state of the profile
Ψ , or that the state e models the profile Ψ , that will be denoted by e |= Ψ .

If e = {ω1, . . . , ωn} is a state, we define the profile Ψe by putting Ψe = {ϕ{ω1}, . . . ,
ϕ{ωn}}.
Theorem 8. If # is an IC merging operator (i.e. it satisfies (IC0-IC8)) then the oper-
ator � defined by �μ(Ψ) =

∨
e|=Ψ #μ(Ψe) is a confluence operator (i.e. it satisfies

(UC0-UC9)).
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7.2 Extrapolation and Approaches Based on Sequences of Observations

In [31,32] Dupin and Lang defined extrapolation operators. The idea is, from a sequence
of observations at different time points, to try to find the scenarios that best explain the
sequence. The principle of minimal change is translated in an inertial assumption, that
states that the value of a propositional variable does not change if no change occur.
We do not have direct information about the changes, but the observations at different
time points inform us on such changes. So, very roughly, these operators can be seen
as looking for the most plausible histories compatible with a sequence of observations
and minimal change assumptions.

There are others works that deal with sequences of observations such as [57,44] for
instance. An interesting operator was proposed by Booth and Nitka [20]. It can be seen
as a third-party counterpart of extrapolation. The idea is that an observer observe a
sequence of inputs that receives a given agent and a sequence of corresponding outputs
(parts of the belief of the agent at that time point). Then the problem is to try to identify
the initial beliefs of the agent and her beliefs during the sequence.

7.3 Belief Negotiation

In [16] Booth proposes to aggregate the beliefs of different agents by using a iterative
selection-weakening process. The idea is, until the conjunction of the bases is consis-
tent, to select some bases that have to weaken their beliefs. Like belief merging, these
belief negotiation operators allow to obtain a consistent belief base from a set of jointly
inconsistent bases. But the aim is quite different. In belief merging the aim is to extract
as much information as possible from the set of bases, whereas in belief negotiation the
aim is to find a potential consensual issue in a (abstract) negotiation process. Several
works have tried to use tools from belief change theory in order to modelize abstract
negotiation processes [14,15,16,68,59,50,38]. We think that there is still a lot to do in
this direction. In particular there is no representation theorem for abstract negotiation.

7.4 Prioritized Merging Operators

In [28] Delgrande, Dubois and Lang propose an interesting discussion on prioritized
merging operators. The idea is to merge a set of weighted formulae. The weights are
used to stratify the formulae (a formula with a greater weight is more important, even
if they are a large number of formula with smaller weights that contradict it).

Delgrande, Dubois and Lang motivate the generality of their approach by showing
that classical merging operators (on unweighted formulae) and iterated belief revision
operators (à la Darwiche and Pearl [26]) can be considered as two extreme cases of this
weighted merging framework.

The main argument is that if one makes the hypothesis that the new pieces of infor-
mation that come successively in an iterated revision process are about a static world
(the usual hypothesis), then there is no reason to give the preference to the last ones.
If these information have different reliability, then this can be represented explicitly
with the weights of the formulae, in order to take this difference of reliability in the
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iterated “revision” process if they do not come in the order corresponding to their rela-
tive reliability. And the correct way to do that is to make a prioritized merging.

This discussion is interesting since in several papers on iterated revisions, it seems
that the authors do not make any distinction between the hypothesis to have more and
more recent pieces of information, and the hypothesis to have more and more reliable
pieces of information.

The framework of Delgrande, Dubois and Lang identifies the epistemic states as
the sequences of formulae that the agent receives. They show that the postulates for
iterated belief revision can be obtain as special case of their postulates for weighted
merging, and that they can also lead to some postulates of IC merging. This work is
interesting since it opens a way for logical characterization of prioritized merging. It
could be interesting to try to find a representation theorem in this case, and to look at
the generalization of IC merging operators in this prioritized merging framework.

8 Belief Change in Other Representational Frameworks

8.1 Dynamics of Horn Bases

Recently some works have focus on the contraction of Horn bases [27,18,19,29]. This
is an interesting case since Horn bases are used for instance for deductive databases and
logic programming. Usually works on belief change suppose that the logic is at least
as strong as classical propositional logic. But these works on Horn bases show that
restrictions of propositional logic exhibit some interesting characteristics. In particular
constructions that lead to equivalent classes of operators in the classical case, give rise
to different ones for the Horn case.

8.2 Merging of First Order Bases

Lang and Bloch propose to define model-based merging operators using the maximum
as aggregation function (#d,max) by using dilation3 process [12]. One can note that
in the original Dalal paper [25], he defines his revision operator with such a dilation
function rather than with a distance.

Gorogiannis and Hunter [39] extend this approach in order to define others model-
based merging operators using dilations. So, in addition to #d,max, they define #d,Σ ,
#d,GMAX and#d,GMIN operators.

The interest of this definition of these operators is that it can be easily extended to
first order logic. The usual definition of model-based merging operators is based on
the computation of distances between interpretations. So when using logics where the
number of interpretations is infinite, this approach is not the more appropriate. The
interest of defining these operators with dilations is that they can also be used in this
case. This only needs to use the good dilation function. See [39] for a discussion and
some examples of dilation functions in the first order logic case.

3 Roughly speaking dilation allows to reach the points/worlds in the neighborhood of a
point/world. See [12] to see how to define this formally.
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8.3 Merging of Qualitative Constraint Networks

Condotta, Kaci, Marquis and Schwind studied the merging of qualitative constraint
networks [22,21]. These methods can be useful for merging constraint networks that
represent spatial regions, for instance for Geographical Information Systems it can be
necessary to merge spatial databases that come from different sources.

Conflicts that arise in this framework are more subtle that the binary ones in the
propositional framework. In this case conflicts can be more or less important. For in-
stance, if we use the Allen algebra, that allows to represent spatial information on seg-
ments on a line, namely relations as A BEFORE B, A AFTER4. B, A MEET B among
others. A conflict between sentences A BEFORE B and A MEET B seems much less
important than the one between A BEFORE B and A AFTER B.

This “intensity” that we feel between conflicts allows to define more various merging
policies than in the propositional framework.

One can also look at [61,23] to see two examples of merging of spatial regions using
logical representations.

8.4 Dynamics of Argumentation Frameworks

There are a lot of works on argumentation as a way to reason about contradictory pieces
of information. The basic idea is to use a set of arguments and an attack relation between
relations. This is the starting point of Dung abstract argumentation framework [30]. In
[24] the problem of merging of argumentation frameworks, where the arguments are
distributed among several agents, have been studied. This requires to define a new rep-
resentation frameworks for argumentation: Partial Argumentation Frameworks, where
there are three possible relations between two arguments A and B. Either the agent be-
lieves that A attacks B, or he believes that A does not attacks B, or he does not know if
A attacks B or not. This last case is necessary to represent the fact that an agent ignores
a given argument.

The problem of revision of argumentation systems as been addressed also in several
works, such as [33,63,13] for instance.

We think that for both argumentation revision and merging a lot of work is still
necessary in order to reach convincing models.

9 Conclusion

We proposed a quick tour of the theory of belief change in classical propositional logic.
The core of this theory is quite established now, with a set of important belief change
operators that are logically characterized. Still, a lot of developments are possible, for
improving existing operators or for defining new classes of change operators.

Another possible way of development is to study the use of these belief change op-
erators in other frameworks than classical logic. As illustrated by the works on horn
clauses or on constraint networks, there are some subtleties that appear when one wants
to work in these different frameworks.

4 i.e. B BEFORE A
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We focused on purely qualitative approaches here, but there are also a lot of works
on belief change (revision, update, merging, etc.) on quantitative frameworks. There are
for instance a lot of works on ordinal conditional function [66,67,60], or on change of
possibilistic logic bases [6,7,46,8].

Merging is also at work on numerical datas, see for instance [65,3,10] for some ex-
amples of numerical data fusion. See [11] for an interesting global overview on (logical
and numerical) merging.
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Abstract. Several issues arise when we consider building classifiers in
general, and fuzzy classifiers in particular. These issues include but are
not limited to attribute/feature selection, adoption of a specific ap-
proach/algorithm, evaluate the classifier performance, etc. We consider
the opportunities that such classifiers have to offer and contrast them
with the challenges they pose.

Keywords: classifiers, fuzzy sets, attribute selection, error models.

1 Introduction

In our daily life we classify: people (as friends, strangers, acquaintance), foods,
books, music pieces, images, cities, etc. according to whether we like, dislike,
or make no impression, etc. In the process of becoming social beings, we de-
velop our own personal ’classifiers’ which take into account our own background
and preferences and, of course, the characteristics of the objects of our atten-
tion. Classification, and related to it, clustering, have emerged as cornerstones
of computer based information processing, regardless of the application domain.
Both may be used in image processing [1], in image understanding to extract
higher level objects in the image (e.g. differentiate tumors from healthy tissue
in medical images, or water from land regions in aerial images), in text process-
ing to gather together documents similar along a certain dimension (e.g. topic);
in cyber-security [2]; in medical diagnosis, or in fault detection, classification
plays a crucial role and, in general, in fraud detection (e.g. credit card trans-
actions) classification serves to distinguish among millions of valid transactions
from those, relatively rare, fraudulent ones [3].

Traditional approaches to classification use statistical tools. In fact, since 1984
the Journal of Classification is dedicated to publish work in the area of statistics
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based classification research [4]. With the advent of computer based approaches,
machine learning, and data mining, new classification tools have been developed,
including new statistical approaches [5].

An alternative, complementary, and often generalizing, approach to classifica-
tion (and its unsupervised relative clustering) is provided by fuzzy set theory [6].
Since 1965 when he first presented it, Zadeh’s concept of fuzzy set, at first glance
a modest extension of the classical notion of set, continues have a huge impact
on intelligent data analysis. This concept is strongly related to classification, as
it introduces the notion of membership function and thus membership degree of
a value to a set, or of a data point to a class. The concept of fuzzy set arose from
Zadeh’s work in systems theory and found an elegant statement in his Principle
of Incompatibility [7].

From this point on this paper is organized as follows. In Section 2 we briefly
consider the general issues to be considered when building a classifier. In Sec-
tion 3 we consider these issues in connection with the fuzzy classifiers and discuss
the challenges and opportunities that the adoption of fuzzy sets and fuzzy rea-
soning entail. We close with a short conclusion section. Since this is a position
paper, whose aim is to trigger discussions on the topic of fuzzy classifiers, our
presentation is quite general on purpose.

2 Issues to Address When Constructing a Classifier

It is useful to state the classification problem as follows. Let D = {x|x =
(x1, . . . , xn)} ∈ $n be a data set, and L = {1, . . . , m} a set of labels. To con-
struct a classifier is to obtain a rule (a mapping) f : $n → L, which assigns
to each data point x ∈ D a label l ∈ L. A special case, referred to as a 2-class
classifier, is when the number of labels is m = 2. We base our discussion on
the 2-class classifier. Often the general, m-class classifier, is obtained from the
simpler case. Deriving the rule f is known as the training of the classifier, and
that is done based on a training set T ⊂ D × L. That is, a training tuple is of
the form (x, l). Several choices must be made at this point.

2.1 Selection of the Decision Rule (Class Boundary)

If the training set is viewed as a subset of a high dimensional space (≤ n)
the decision rule can be viewed as a surface that divides the training set into
two subsets each of which corresponding to one class. The usual approach is to
parametrize f and to select its parameters by minimizing the overall misclas-
sification errors. If the training data happens to be linearly separable, f is a
linear surface. In the case when this is not the case, linear separability can be
obtained by using a kernel to achieve implicit mapping into a higher dimensional
space where data are linearly separable [8]. Alternatively, neural network based
approaches are used to derive the non-linear separating surface. Once trained, a
classifier is evaluated on the test data set. In all but the most simple cases when
classes are well separated to begin with, errors of classification of the training
data are tolerated in order to improve correct classification of test data.
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A different view of the decision rule is as a score obtained via a Bayesian
argument. Based on the training set the following probabilities are evaluated:
probability of the data point x given class C, and probability of the class C,
P (x|C), P (C). Then, for a test data point x0 one computes the posterior prob-
ability, P (C|x0) using Bayes Theorem. Note that x and x0 refer here a single
attribute (dimension) of the data point x and x0 respectively.

2.2 Attribute Selection

An important issue concerns the selection of the ’best’ attributes. The notion of
’best’ very much depends on how the classifier is evaluated. For example, if the
classifier evaluation measures the classification error, then the best attributes are
those that yield smallest classification error. Another issue to consider here is
that of dimensionality: for higher dimensions more data is needed to fill the input
space. Often the nature of the problem is that such data is either unavailable or
costly to obtain. This leads one to consider attribute selection as an instance of
dimensionality reduction.

2.3 Aggregation across Several Attributes

Especially for the Bayes classifiers the issue of aggregating the classification re-
sults across various attributes is very important. Although, in theory, the prob-
abilities needed can be defined on the space of the input attributes, in practice,
this requires a very large amount of data, and it is often impossible to carry
out. Thus the aggregation remains the preferred solutions for those implement-
ing Bayes classifiers. The Naive Bayes rule simply calculates the posterior class
probability by multiplying the those determined along each attribute. In effect
this rule assumes independence of attributes. Even when this independence is
not actually in the data, it is claimed that the Naive Bayes classifier yields good
classification results [9]. There are many issues to consider with respect to the
Bayesian classifiers, including boosting of small probabilities which, by multipli-
cation, lower the overall Bayes score, and learning from imbalanced data sets, in
which the class of interest is very small (has very few elements) compared to the
other class. Bayes classifiers can be modified to use a measure of cost or penalty
of misclassification so as to penalize differently errors of classification.

2.4 Evaluation of Classifiers

The intuitive approach to evaluate a classifier is based on accuracy, the rate
of correct classification. However, in many instances accuracy is not necessarily
the best way to evaluate a classifier. For example, in an imbalanced data set
where 5% of the data belong to one class, while the remaining 95% belong to
another class, a 95% accuracy can be obtained without any training at all, just by
classifying all data points in the larger class. Other devices, such as the confusion
matrix have been introduced to evaluate a classifier with respect to its precision,
recall, or an aggregate meassure, Fα where α quantifies their importance.
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3 Fuzzy Classifiers

The use of fuzzy sets in machine learning (classification and clustering), and
data mining accounts for a very large body of published research [10]-[14]. Fuzzy
techniques are combined with neural networks [16], decision trees probabilistic
and statistical approaches, and evolutionary approaches to name just a few. For
fuzzy classifiers we seek to obtain a mapping from the attribute space to a set
of labels. However, the labels stand for fuzzy sets rather than classical (crisp)
sets, the attribute values may also be in fuzzy subsets of the input space, and
therefore the decision score, reflects the degree to which a data point belongs to
a class. A non-fuzzy decision is usually made based on some rule applied to the
decision score (usually the class with highest membership degree is selected as
the crisp output of classification).

3.1 Opportunities and Challenges for Fuzzy Classifiers

Taking into consideration the wealth of results obtained integrating fuzzy tech-
niques with existing classifier algorithms we can see that the use of fuzzy sets opens
new opportunities for deriving classifiers. Yet, at the same time, it can be argued
that these same opportunities pose challenges as well. For example, it can be ar-
gued that since the ultimate result is crisp, not fuzzy, and the classifier evaluation
is then based on this decision, there is in fact, no need for fuzzy classifiers at all
[17]. Here we maintain that this need not be the case, and that instead, we must
develop tools specific for the evaluation of fuzzy classifiers. The challenge is to
address these tools in a rigorous manner which can be inspected and analyzed.

Deriving the Fuzzy Sets Used in a Fuzzy Classifier. One way to define
these fuzzy sets used by a fuzzy classifier is through an initialization-plus-tuning
approach, whereby the fuzzy sets in questions are adjusted during the process of
training the classifier. The membership functions are selected so as to make the
tuning process quite easy. This approach is appealing from an intuitive point of
view, and has the advantage that the resulting fuzzy set can be easily expressed
by a linguistic label. However, not all classification problems deal with classes
whose intuitive meaning is grasped from the beginning. In such cases the fuzzy
sets can be obtained directly from the data, either by a clustering procedure
[18], or using the mass assignment theory, [13], [14], [19], an approach especially
useful for training a classifier from imbalanced data.

Attribute Selection. Often attribute selection for fuzzy classifiers is done
in the same way as for traditional classifiers. We find a notable exception in
[18] in which a regularity criterion is used in conjunction with a fuzzy model
to select the best attributes. However, the criterion does not ensure an overall
best subset of attributes, as it stops at a local minimum of the prediction error.
Fuzzy techniques offer us the opportunity to obtain a fuzzy set of attributes where
the membership degree of an attribute reflects meaningfully its importance to
classification. The challenge is to derive a formal (as opposed to some ad-hoc
weighting of attributes) technique for obtaining such a set.
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Aggregation of Classification Results across Attributes. It is perhaps in
this respect that fuzzy techniques can bring the most to the problem of classifi-
cation. The aggregation problem consists on evaluating the classification results
obtained across various attributes. In the case of fuzzy classifiers, these results
are membership degrees. Unlike the (classical) logic case, where we have only
two types of aggregation (conjunction and disjunction), or probabilistic (Bayes)
case, where we have only one aggregation (multiplication), many aggregation
functions have been defined in the context of fuzzy sets [20]. These functions are
often parametrized and therefore subject to training themselves. In addition,
fuzzy quantifiers, such as most, a few, many can be used to aggregate the results
of single attribute classification. Finally, the (fuzzy) result of classification can be
qualified by a (fuzzy) probability. All of these contribute to a richer expression
of the classification results.

Once the mechanisms for fuzzy classifiers as described above are set in place,
we have the opportunity to further analyze the results in addition to produc-
ing a crisp classification. For example, a fuzzy classifier supports the notion of
graduality and ranking (a data point belongs more to a class than to another,
or given two data points, say x1 and x2, we can decide which one belongs more
to a class C). This analysis is the natural result of using fuzzy techniques, and
unlike nonfuzzy cases, it need not be specifically trained for. That is, we do not
need to train for ranking in order to obtain it.

3.2 Error Models for Fuzzy Classifiers

The final opportunity and challenge for fuzzy classifiers discussed here is that
of new error models. The notions of precision and recall, and the associate Fα

measure can be, in theory, easily generalized using fuzzy sets (using Zadeh’s
extension principle) providing us with tools to further distinguish between classes
and classifier results. However, the challenge here is to develop an approach which
is at the same time technically correct and computationally efficient.

4 Conclusions

We provided here a brief discussion of fuzzy classifiers, the opportunities and
challenges that they open for researchers in machine learning. With each oppor-
tunity there comes a challenge and the other way around. A final challenge would
be to develop a theory for fuzzy classifiers which, in a any particular approach
would be a true generalization of a corresponding nonfuzzy classifier. Perhaps a
fuzzy classifier could be a fuzzy set whose level sets relate to crisp classifiers in a
manner analogous to the relation between fuzzy and crisp sets as stated in [21].
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Abstract. The area of argumentation in Artificial Intelligence has been
steadily growing for the last three decades. Many subareas have been
delineated within it as the research expanded, giving birth to a field that
is exciting, fruitful and rewarding. The challenges are many, and they are
met with methods and techniques that have enriched the field of Knowl-
edge Representation and Reasoning. In this paper, a short structured
overview of research in the area of Argumentation Systems will be pro-
vided in order to lay a foundation for further discussion. This overview
will also bring about a personal perspective of the future directions of
research and development of the area.

1 Introduction and General Intuitions

Arguing is our natural way of finding a secure footing for our beliefs; it is how
we rationally handle conflicting information in order to establish these beliefs.
The activity we humans call arguing, and the very nature of an argument, have
been the subject of intense inquiry in Philosophy since ancient times (see for
instance [15,24]); furthermore, Logic was born from the effort to clarify the pre-
sentation and exchange of arguments. More recently in the field of Artificial
Intelligence, as the crucible where many disciplines contribute, research on ar-
gumentation has expanded and given birth to a field that is exciting, fruitful,
and rewarding. The sheer size of the literature precludes a full exploration of the
topic, making it clearly out of the scope of any single paper; therefore, we will
limit our intent to provide a concise foundation for further discussion, giving a
short structured panorama of the research in the area of Argumentation Systems
from a computational point of view.

We will set the stage by giving a brief description of the main intuitions
that are involved in argumentation. The argumentation process reflects a form
of reasoning where the conclusion and the way to arrive at it are doubted and
effectively challenged, i.e., argumentation is reasoning in a context of disagree-
ment where an audience decides the outcome. This process could be carried out
in the privacy of our own minds, as when we try to decide what to believe using
our repository of beliefs, or it could be a group activity in which we exchange
arguments with other participants sharing the group’s repository of beliefs. Con-
sequently, in the first case the process will be regarded as monological, or internal,
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and in the second case it will be deemed as dialogical, or multi-party. In the first
case only one participant is involved, and in the latter at least two agents par-
ticipate; this distinction is important to understand how the activity progresses.
We will start with dialogical argumentation, presenting the general ideas that
will be simplified for the monological case.

The dialogical process involves two participants, and begins with the assertion
of a statement by one of them that from now on will be referred to as the
proponent ; this initial statement is usually called the claim or thesis. The other
participant, or opponent, can accept the claim, ending the process, or could
challenge the proponent’s claim requesting support for it. The support takes
the form of an argument, that intuitively is a coherent set of statements leading
from a set of premises, or evidence, to the conclusion, or claim. The connection
between the evidence and the claim is established by some form of reasoning;
more precisely, an argument is a set of statements in which a claim is made, and
support is offered for it in an attempt to influence an audience in a context of
disagreement. In this case, the disagreement is apparent in the challenge issued
by the opponent.

At this point, the opponent can accept the argument or it can decide the
argument offered in support of the claim is not effective. Several possibilities for
the opponent can arise in this situation: a new argument against the claim can
be put forward, the reasoning involved in connecting the evidence and the claim
can be challenged with an argument, or part of the evidence can be challenged,
becoming new claims subject to the same scrutiny. The first two cases lead to
the introduction of an argument from the opponent; these arguments are called
counter-arguments because of their role as arguments that work against other
arguments. Clearly, this denomination is dependent on the role played and is not
inherent to the structure of the argument itself; an argument can be a supporting
argument in one case and a counter-argument in a different situation.

The arguing continues with the proponent considering the counter-argument
presented. Now, the counter-argument is itself an argument, and therefore can
be subject to the same challenges as the original argument. The proponent takes
the role of the opponent with respect to the counter-argument, considering the
possibility of accepting it or issuing its own challenge. The arguments coming
from the proponent are arguments aiming to promote the issue and are men-
tioned as pro arguments, while the arguments produced by the opponent suggest
points against it and are referred to as con arguments.

From the succinct informal description above we see that in the process of ar-
guing we seek arguments supporting the point of conflict and arguments that try
to undermine that support. After finding the pro and con arguments related to
the issue, comparison becomes necessary in order to answer the question: which
is better? The decision might depend on who is considering the arguments and
counter-arguments; this introduces another element in the process: the audience.
For instance, in a simplified view of a trial by jury, the initial claim is the “pre-
sumption of innocence”; this presumption is counter-argued by the accusatory
part by setting up a case where the accused is shown to be guilty, i.e., not
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innocent. The evidence is discussed before trial, and sometimes is introduced
during the process. The defendant takes the role of challenging the arguments of
the prosecutor. In this scenario, the audience that has the power of deciding is
the jury with the help of the judge; they will evaluate the merit of the arguments
presented.

Turning to the conceptually simpler case of monological argumentation, in
which the process is internal to the reasoner, all the roles must be played by
the same agent. The source of evidence is its internal belief base, from which all
the arguments must be built. In considering the issue, arguments and counter-
arguments are introduced and pondered by the agent, who also acts as the
deciding audience; i.e., the agent itself introduces and defends the initial thesis,
plays the role of opponent, and it is also the arbiter. In this description, it is
apparent that the argumentation process has an important role in establishing
the beliefs that can be obtained from a repository that could support logically
contradictory conclusions.

The task of defining an argumentation system involves several levels [20].
Given a repository of beliefs, or belief base, it can be assumed that some kind of
formal language was used to represent the beliefs. Then, the initial level is con-
cerned with the language in which information can be expressed, and with the
rules available for the construction of arguments in this language. The next level
defines what arguments are, i.e., how pieces of information can be combined to
provide support for a claim. The inference mechanism associated with the belief
base will provide the reasoning that will link the claim and the premises. The fol-
lowing three levels will address the problem of how arguments interact, defining:
(a) when arguments are in conflict, (b) how conflicting arguments can be com-
pared, and (c) which arguments survive the competition between all conflicting
arguments. Two extra levels are of interest: the procedural level and the strat-
egy level. In the former, the way in which an actual dispute can be conducted
is regulated, i.e., how parties can introduce or challenge new information and
state new arguments; here the speech acts that are allowed and the discourse
rules governing them are defined. In the latter, rational ways of conducting a
dispute within the procedural bounds of the previous layer are provided.

The rest of this work is organized as follows: next we will present Abstract
Argumentation Frameworks ; then we will introduce a few examples of systems
in which the arguments are constructed from a belief base; after that we will
refer to the research challenges facing by researchers; subsequently we will finish
with a description of the research context.

2 Abstract Argumentation Frameworks

In a seminal work published in 1995, Phan Minh Dung introduced an abstract
theory for argumentation where the central notion is the acceptability of ar-
guments [13]. The main abstraction comes into play disregarding the internal
structure of the arguments involved, i.e., arguments are considered to be atomic
in nature. In that way, the elements of the theory are reduced to a set of argu-
ments and the consideration of an attack relation defined over that set; a theory
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thus defined can be visualized as a directed graph where the nodes represent the
arguments and the arcs represent an attack from the node (argument) where the
arc starts towards the node (argument) where the arc finishes.

Since arguments are involved in an attack relation, in the general case where
the attack relation is not empty, not all of them can be thought of as accept-
able. It is particularly interesting to decide the status of every argument in the
framework; the status of an argument is commonly referred to as its justification
status [2]. Intuitively, an argument is regarded as justified if its situation is such
that it is able to survive the attacks of which it is the target of, and as not
justified (or rejected) otherwise. Given an initial set of arguments and an attack
relation defined over it, there are several ways to describe properties that a sub-
set of the set of all arguments must satisfy to be accepted or justified together;
these are known as extension-based semantics or argumentation semantics. We
will introduce the appropriate definitions below.

An abstract argumentation framework consists of a set of arguments AR and
a binary relation attacks defined over the arguments in that set. The notation
(A, B) ∈ attacks (or, equivalently, AattacksB) means that there is an attack
of A on B. The relation Dung called attack in his original paper corresponds to
what currently is known as defeat. The notion of defeat involves an attack of an
argument A on an argument B and establishing the preference of A over B, i.e.,
defeat is attack plus preference. In Dung’s formalism every attack is successful.
Formally,

Definition 1. [13] An argumentation framework is a pair AF =〈AR, attacks〉
where AR is a set of arguments, and attacks is a binary relation on AR, i.e.,
attacks ⊆ AR×AR.

Example 1. Let AF =〈AR, attacks〉 be an abstract argumentation framework as
depicted in Figure 2, where the set of arguments is AR = {A, B, C, D, E, F, G, H}
and attacks = {(B, A), (C, B), (D, A), (E, D), (G, H), (H, G)}.

A B 

F 

E 

D 
G 

C 

H 

Fig. 1. An abstract AF graph

An argumentation semantics is the formal
definition of the argument evaluation process
leading to decide which arguments are able
to survive the attacks defined in the frame-
work. These “survivors” will be considered
as being able to support their conclusions.
Research efforts have produced two different
ways of carrying out the evaluation, namely
extension-based [2] and labeling-based argu-
mentation semantics [16]. The first one pro-
vides a declarative definition, while the sec-
ond one is procedural in nature. An extension
is a subset of arguments contained in the framework, and the extension-based
approach specifies how to obtain the subsets that form the set of extensions.
Every extension contains a set of arguments that together can be acceptable in
the context of the attack relation. The labeling-based approach provides a way of
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assigning a label to each argument in the framework, choosing that label from an
appropriate set, such as {in, out, undecided}. The assignment of labels yields a
set of labelings that correspond to the extensions found through the declarative
method. For an intuitive and didactic introduction to argumentation semantics,
see [9].

Dung [13] introduces several argumentation semantics that provide a way of
evaluating the status of the arguments in the framework by constructing exten-
sions, e.g., complete, grounded, stable, and preferred semantics. Other seman-
tics have been proposed after the initial definition, e.g., stage, semi-stable, ideal,
CF2, and prudent semantics.

A set of accepted arguments is characterized in [13] using the concept of
acceptability, which is a central notion in argumentation, formalized by Dung in
the following definition.

Definition 2. [13] Let AF =〈AR, attacks〉 be an argumentation framework; an
argument A ∈ AR is acceptable with respect to a set of arguments S if and only
if every argument B attacking A is attacked by an argument in S.

If an argument A is acceptable with respect to a set of arguments S then it is
also said that S defends A. Also, the attackers of the attackers of A are called
defenders of A. We will use these terms throughout this paper. Acceptability
is the main property of Dung’s semantic notions, which are summarized in the
following definition.

Definition 3. Let AF =〈AR, attacks〉 be an argumentation framework; a set of
arguments S ⊆ AR is said to be

- conflict-free if there are no arguments A, B ∈ S such that A attacks B.
- admissible if it is conflict-free and defends all its elements.
- a preferred extension if S is a maximal (for set inclusion) admissible set.
- a complete extension if S is admissible and it includes every acceptable ar-

gument w.r.t. S.
- a grounded extension if and only if it is the least (for set inclusion) complete

extension.
- a stable extension if S is conflict-free and it attacks each argument not be-

longing to S.

The following example illustrates the concepts introduced above. In the argumen-
tation framework depicted in Figure 2, we have: {B, D, H, F} is a conflict free set
of arguments, {A, C, E} is an admissible set of arguments, {A, C, E, F, G} is a
preferred extension. It is also a complete extension, {A, C, E, F} is the grounded
extension,and {A, C, E, F, G} and {A, C, E, F, H} are stable extensions.

The grounded extension is also the least fixpoint of a simple monotonic char-
acteristic function:

FAF (S) = {A : A is acceptable with respect to S}.
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In [13], results stating conditions of existence and equivalence between these
extensions are also introduced. These include that since the empty set is al-
ways admissible, there is always one admissible set. Also, that there is always a
preferred extension, and that extension is complete. Stable extensions are also
preferred. Although it could be empty, the grounded extension is the intersection
of all complete extensions. The empty set is not a stable extension, but there
are frameworks without stable extensions. When the attack relation presents no
cycles, then there is a single extension that is a stable, preferred, complete, and
grounded extension.

Several additions to the original definition of abstract frameworks have being
presented: Value-base argument systems[3], Argument frameworks with constra-
ints[11], Bipolar argument frameworks[1], Argument frameworks with priori-
ties[17], among many others.

We will now turn to presenting frameworks where the construction of the
arguments matters.

3 Arguments with Structure

In an abstract framework, arguments are considered to be atomic entities, i.e.,
the inner details of their construction plays no role in the formalism. In this
section we will be exploring the particular issue of how an argument is built.
The possibilities are many, and we will restrict ourselves to a few different sys-
tems where the structure of the argument plays an important role in defining
the attack relation, a notion that will be extended with the possibility of being
unsuccessful. The comparison criterion is another interesting element to be de-
fined. Given an attack, it will be successful only when the argument that attacks
is at least as good as the argument that receives that attack; here the comparison
criterion will decide the matter. Below we will develop the systems in a succinct
manner given the space restriction.

3.1 Logical Argumentation

In this section we will give a brief description of the system developed by P.
Besnard and A. Hunter, and introduced in [6]; further details can be found
in [7,8].1 This system is based on classical logic, and the details regarding each
argument are taken into account. In our introduction we mentioned the three
parts that are involved in an argument: the claim, evidence (premises, reasons,
support)2, and the reasoning that connects the evidence with the claim. The
claim and the premises are expressed as formulæ in the language of classical
logic, and the reasoning or inference method will be limited to deductive inference
making the arguments deductive arguments. Therefore, the claim is a deductively
valid classical consequence of the evidence.
1 Some of the examples in this section were taken from a Tutorial on Argumentation

Systems given by Anthony Hunter in KR’08 in Sydney, Australia.
2 We will use evidence, premise, reason, and support interchangeably.
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In what follows, the existence of a finite set of formulæ Δ is assumed; it is
also assumed that every subset of Δ is given an enumeration 〈α1; . . . ; αn〉 of its
elements, called its canonical enumeration. This enumeration is just a convenient
way to indicate the order in which the formulæ in any subset of Δ are assumed
to be conjoined to make a formula logically equivalent to that subset. This
order has no other meaning, and in particular it does not represent the relative
importance of the formulæ in Δ; note that any total order imposed on Δ will
satisfy this requirement. The set Δ is regarded as a large information base from
which arguments for and against the possible claims are built. No assumption
is made about the content of Δ, which can be arbitrarily complex, and possibly
inconsistent. In this framework, an argument will be a pair 〈Φ, α〉, where Φ is
a minimal consistent set of formulæ from which the second element is derived,
i.e., (1) Φ � α, (2) Φ � ⊥, and (3) Φ is a minimal subset of Δ satisfying 1.

For instance, from Δ = {α, α → β, γ,¬γ,¬γ → ¬β}, the following are some
of the arguments that can be constructed: 〈{α, α→ β}, β〉, 〈{α,¬γ}, α ∧ ¬γ〉,
and 〈{¬γ,¬γ → ¬β, α → β},¬α〉.

Arguments are not necessarily independent, and it is possible that some en-
compass others (possibly up to some form of equivalence).

Definition 4. 〈Φ, α〉 is more conservative than 〈Ψ, β〉 iff Φ ⊆ Ψ and β � α.

For instance, 〈{α}, β → α〉 is more conservative than 〈{α,¬α ∨ ¬β},¬β〉.
The notion of counter-argumentation is introduced through the logical incon-

sistency of two arguments. Two kinds of counter-argument can be distinguished:
rebutting and undercutting counter-arguments [18]. A rebuttal for 〈Φ, α〉 is an
argument 〈Ψ, β〉 where β � ¬α, i.e., their claims are mutually inconsistent. An
undercut for 〈Φ, α〉 is an argument 〈Ψ,¬(φ1, . . . , φn)〉, where (φ1, . . . , φn) ⊆ Φ,
i.e., the claim of the counterargument is inconsistent with the support of the
attacked argument.

If Δ = {α, α → β, γ, γ → ¬α}, the following arguments and counter-
arguments can be constructed: 〈{α}, α〉 rebuts 〈{γ, γ → ¬α},¬α〉, the argument
〈{γ, γ → ¬α},¬α〉 undercuts 〈{α, α→ β}, β〉, and 〈{γ, γ → ¬α},¬(α ∧ (α→ β))〉
is a more conservative undercut.

As arguments can be ordered from less conservative to more conservative,
there is the notion of maximally conservative undercuts for an argument (those
that are representative of all undercuts for that argument). A maximally con-
servative undercut for 〈Ψ, β〉 is an undercut 〈Φ, α〉 for 〈Ψ, β〉 such that for all
undercuts 〈Φ′, α′〉 of 〈Ψ, β〉, if Φ ⊆ Φ′ and α � α′ then Φ′ ⊆ Φ and α′ � α. Conse-
quently, it can be shown that if 〈Ψ,¬(α1 ∧ . . . ∧ αn)〉 is a maximally conservative
undercut for 〈Φ, β)〉, then Φ = {α1, . . . , αn}.

A maximally conservative undercut 〈Ψ,¬(α1 ∧ . . . ∧ αn)〉 is a canonical un-
dercut for 〈Φ, α〉 iff α1 ∧ . . . ∧ αn is the normal form of Φ. For instance, the
argument 〈{¬α ∨ ¬β},¬(α ∧ β)〉 is a canonical undercut for 〈{α, β}, α ∧ β〉.

It can be shown that given two canonical undercuts for the same argument,
none is more conservative than the other. Any two canonical undercuts for the
same argument have distinct supports, whereas they do have the same consequent.
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For each rebuttal of an argument, there is a canonical undercut of the argument
that is more conservative than the rebuttal.

Definition 5. An argument tree for α is a tree where the nodes are arguments
such that:

1. The root is an argument for α.
2. For no node 〈Φ, α〉 with ancestor nodes 〈Φ1, α1〉, . . . , 〈Φn, αn〉 is Φ a subset

of Φ1 ∪ . . . ∪ Φn.
3. Children nodes of a node N are canonical undercuts for N that obey 2.

A complete argument tree is an argument tree where children nodes of a node
N consist of all canonical undercuts for N that obey item 2 above.

There are various ways we can judge individual trees to ascertain whether the
root argument is warranted. A common definition (e.g., [14]) is recursive defeat,
which coincides with Dung’s definitions for extensions. The marking procedure
is the following, where U means undefeated and D means defeated:

1. For any leaf node Ai, mark(Ai) =U.
2. For any non-leaf node Ai, mark(Ai) = D iff there is a child Ai, s.t. mark(Aj) = U.
3. For any non-leaf node Ai, mark(Ai) = U iff for all children Aj , mark(Aj) = D.
4. The root argument Ar is warranted iff mark(Ar) = U.

,   ,  
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 ,  (   ) ,  

U 

D 

U U 

UD 

Fig. 2. An Example of a marked Argument Tree

4 Defeasible Logic Programming (DeLP)

Defeasible Logic Programming (DeLP) combines results of Logic Programming
and Defeasible Argumentation; the system is fully implemented and available
online. A brief explanation is included below (see [14] for full details). It has
the declarative capability of representing weak information in the form of de-
feasible rules, and a defeasible argumentation inference mechanism for war-
ranting the entailed conclusions. A DeLP-program P is a set of facts, strict
rules, and defeasible rules defined as follows. Facts are ground literals repre-
senting atomic information or the negation of atomic information using strong
negation “¬” (e.g., chicken(little) or ¬scared(little)). Strict Rules represent
non-defeasible information and are denoted L0← L1, . . . , Ln, where L0 is a
ground literal and {Li}i>0 is a set of ground literals (e.g., bird← chicken) or
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¬innocent← guilty). Defeasible Rules represent tentative information and are
denoted L0 –≺ L1, . . . , Ln, where L0 is a ground literal and {Li}i>0 is a set of
ground literals (e.g., ¬flies –≺ chicken or flies –≺ chicken, scared).

When required, P is denoted (Π, Δ), distinguishing the subset Π of facts and
strict rules, and the subset Δ of defeasible rules. Strong negation is allowed in
the head of rules, and hence may be used to represent contradictory knowledge.
From a program (Π, Δ), contradictory literals could be derived; nevertheless,
the set Π (which is used to represent non-defeasible information) must possess
certain internal coherence. Therefore, no pair of contradictory literals can be
derived from Π .

A defeasible rule represents tentative information that may be used if nothing
could be posed against it. Observe that strict and defeasible rules are ground;
however, schematic rules with variables are used (schematic variables start with
an uppercase letter). Consider a DeLP-program (Π, Δ) where:

Π = {bird(X)← chicken(X), chicken(little), chicken(tina), bird(rob), scared(tina)}
Δ = {flies(X) –≺ bird(X), flies(X) –≺ chicken(X), scared(X),

¬flies(X) –≺ chicken(X)}
This program has three defeasible rules representing tentative information about
the flying ability of birds in general, and about regular chickens and scared ones.
It also has a strict rule expressing that every chicken is a bird, and three facts:
tina and little are chickens, rob is a bird, and tina is scared.

Derivation follows the same mechanism of Logic Programming, not distin-
guishing between strict and defeasible rules. From a program it is possible to
defeasibly derive contradictory literals; e.g., from (Π, Δ) of the program above,
it is possible to derive flies(tina) and ¬flies(tina). For the treatment of con-
tradictory knowledge, DeLP incorporates a defeasible argumentation formalism.
This formalism allows the identification of the pieces of knowledge that are in
conflict, and through a dialectical process decides which information prevails as
warranted. This dialectical process (see below) involves the construction and
evaluation of arguments that either support or interfere with the query under
analysis, building a dialectical tree.

Following [26], an argument for a literal L, is a (possibly empty) non-contra-
dictory set of ground defeasible rules A ⊆ Δ that, together with the set Π ,
provide a minimal defeasible proof for L, i.e., (1) L is defeasible derived from
Π ∪ A, (2) Π ∪ A in not contradictory, and (3) A is a minimal subset of Δ
satisfying 1, denoted 〈A, L〉. The arguments:

〈A1, f lies(t)〉 = 〈{flies(t) –≺ bird(t)}, f lies(t)〉,
〈A2,¬flies(t)〉 = 〈{¬flies(t) –≺ chicken(t)},¬flies(t)〉, and
〈A3, f lies(t)〉 = 〈{flies(t) –≺ chicken(t), scared(t)}, f lies(t)〉

are three arguments built from the program introduced, using t for tina.
In DeLP, a literal L is warranted if there exists a non-defeated argument

A supporting L. To establish if 〈A, L〉 is a non-defeated argument, defeaters
for 〈A, L〉 are considered, i.e., counter-arguments that by some criterion are
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preferred to 〈A, L〉. It is important to note that in DeLP the argument com-
parison criterion is modular, and thus the most appropriate criterion for the
domain that is being represented can be selected; generalized specificity [27] is
the default criterion.

A defeater D for an argument A can be proper (D is preferred to A) or
blocking (unrelated or of the same strength). Since defeaters are arguments,
there may exist defeaters for them, and defeaters for these defeaters, and so on.
Thus, a sequence of arguments called an argumentation line is constructed, where
each argument defeats its predecessor. To avoid undesirable sequences, that may
represent circular or fallacious argumentation lines, in DeLP an argumentation
line is acceptable if it satisfies certain constraints (see [14]).

The argument 〈A2,¬flies(t)〉 properly defeats 〈A1, f lies(t)〉, 〈A3, f lies(t)〉
is a blocking defeater of 〈A2,¬flies(t)〉, and [〈A1, f lies(t)〉, 〈A2,¬flies(t)〉,
〈A3, f lies(t)〉] is an acceptable argumentation line.

Clearly, there can be more than one defeater for a particular argument A.
Therefore, many acceptable argumentation lines could arise from A, leading to
a tree structure. We will not introduce the technical definition of dialectical
tree in this paper; see [14] for the details. The tree is built from the set of all
argumentation lines rooted in the initial argument. In a dialectical tree, every
node (except the root) represents a defeater of its parent, and leaves correspond
to non-defeated arguments. Each path from the root to a leaf corresponds to a
different acceptable argumentation line. A dialectical tree provides a structure for
considering all the possible acceptable argumentation lines that can be generated
for deciding whether an argument is defeated. We call this tree dialectical because
it represents an exhaustive dialectical analysis for the argument in its root.

U D U

UD D D D

U UD DU U

U
U U U U

U

Fig. 3. Two marked dialectical
trees

Given a literal h and an argument 〈A, h〉 to
decide whether a literal h is warranted, ev-
ery node in the dialectical tree T (〈A, h〉) is
recursively marked as “D” (defeated) or “U”
(undefeated), obtaining a marked dialectical
tree T ∗(〈A, h〉) as follows:

1. All leaves in T ∗(〈A, h〉) are marked as
“U”s, and

2. Let 〈B, q〉 be an inner node of T ∗(〈A, h〉).
Then 〈B, q〉 will be marked as “U” iff ev-
ery child of 〈B, q〉 is marked as “D”. The
node 〈B, q〉 will be marked as “D” iff it has at least a child marked as “U”.

Given an argument 〈A, h〉 obtained from P , if the root of T ∗(〈A, h〉) is marked
as “U”, then we will say that T ∗(〈A, h〉) warrants h and that h is warranted
from P . Marked dialectical trees are depicted in Figure 3, where the triangles
represent the arguments and the edges denote the defeat relation. At the right
of each node, the associated mark (“U” or “D”) is shown. Given a query L, three
answers are possible: yes, when there is at least one warranted argument A for
L); no, when there is at least one warranted argument A for ¬L; undecided,
when neither of the previous cases hold.
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4.1 Other Approaches

The EU-funded ASPIC project3 has developed industrial-strength Java compo-
nents that implement an argumentation system [19] available under an open-
source license. These components provide a platform to construct software sys-
tems that make use of argumentation as a service to other components.

ArguGRID is another EU-funded program4, where argumentation technology
is used to support rational decision making. In it, a model for building Grid-based
applications through the use of multi-agent technologies and argumentation logic
to support the formation of dynamic virtual organizations has been developed.
Argumentation supports the composition of services for the creation, manage-
ment, and dynamic evolution of societies of agents. An interesting advantage of
the approach is how the interactions between service providers and service con-
sumers is facilitated in a service-oriented environment. The CaSAPI system5,
a part of the ArguGRID effort, is a hybrid argumentation system combining
abstract and assumption-based argumentation.

Assumption-Based Argumentation (ABA) is a computational framework con-
ceived to encompass existing approaches to default reasoning in the early 90s.
ABA combines Dung’s preferred extension semantics for logic programming in
argumentation-theoretic terms, and abstract argumentation. Because ABA is
an instance of abstract argumentation, all semantic notions for determining the
“acceptability” of arguments also apply to arguments in ABA. Moreover, ABA
is a general-purpose argumentation framework that can be instantiated to sup-
port various applications and specialized frameworks, including: most default
reasoning frameworks and problems in legal reasoning, game-theory, practical
reasoning, and decision-theory. However, ABA builds actual arguments as de-
ductions supported by assumptions by using inference rules in an underlying
logic.

The above systems are examples of technological innovation put to the test
of building real world applications; space constraints have prevented us from
giving a more extensive review of them. The reader is invited to visit the web
pages mentioned in the footnotes. The next two sections will attempt to describe
the spectrum of challenges and the different avenues of publication used by the
community.

5 Research Challenges

In this section we will give consideration to the research challenges that the
argumentation community faces.

In a recently held Perspectives Workshop on the Theory and Practice of Ar-
gumentation Systems in the Schloss Dagstuhl, several areas where singled out
as important and promising in the final report. This work was published as

3 http://www.argumentation.org/
4 http://www.argugrid.eu/
5 http://www.doc.ic.ac.uk/~ft/CaSAPI/

http://www.argumentation.org/
http://www.argugrid.eu/
http://www.doc.ic.ac.uk/~ft/CaSAPI/
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Research Challenges for Argumentation [12]; the reader is encouraged to consider
that work in order to expand the brief summary included below.

The discussions during the meeting were organized in four areas: Argumenta-
tion and the Semantic Web, Argumentation and Decision Support in Application
Areas, Argumentation and Multi-Agent Systems, and Argumentation and Social
Networks. This arrangement allowed the participants to have separate discus-
sions in a more direct manner; the conclusions of each group were presented and
discussed during plenary sessions. In the compact report offered below, only the
more important themes will be touched to give an overview of the ideas that
were discussed.

An initial remark is pertinent before analyzing each of these four topics. It is
important to mention that the argumentation community agrees that research
on the general infrastructure for argumentation is required. The research lines
dealing with argument construction, argument evaluation, argument visualiza-
tion, dialogue and protocol managers, and argument presentation and extraction
tools, need to be expanded in search of more robust results.

In Argumentation and the Semantic Web, three particularly interesting topics
were mentioned: Content Integration, Information Acquisition, and Interactive
Question Answering. The issues appearing in Content Integration point to the
problem of ontology interoperability and the problem of obtaining inferred in-
formation from a multitude of sources, where inconsistency and incompleteness
could be present. For Information Acquisition, the capabilities of argumenta-
tion driven dialogues in a multi-agent environment can power the systems that
could help in building ontologies. Interactive Question Answering could be im-
proved by the use of argumentation-based dialogue to support user interaction,
providing human-like explanations for the users.

For Argumentation and Decision Support in Application Areas, it is valuable to
remark that reasoning using argumentation is particularly helpful for the purpose
of decision making. As it was described in the previous sections, in argumentation
systems the process of reaching a conclusion goes through the consideration of
all the reasons for and against that conclusion. This deliberation allows to clearly
exhibit the reasons why a decision is made, making the outcome acceptable for
a community of agents. In a multi-agent context, virtual agents can explain
and justify their decisions to a human, or help humans to reach a decision.
Some research lines to pursue include the exploration of how classical decision
theory can be extended with the addition of argumentation, how to connect
argumentation systems with large data repositories, and how argumentation
systems could help in the training of decision makers.

The area of Argumentation and Multi-Agent Systems is one of the more
promising, showing a number of possible lines of research where argumenta-
tion can make a difference; this is reflected in the number of publications and
research meetings dedicated to that purpose (see Section 6). An interesting prob-
lem to solve, related to the previous topic, is the design of an agent architecture
where the deliberative component will be argumentative; implementing such an
architecture effectively is another interesting challenge. On the system side of
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a multi-agent system, it is important to advance in the design of a system ar-
chitecture to aid in the communication, collaboration, and coalition formation.
Enabling in software agents the capability of communicating with humans in
human-like ways is another goal; although work has been done on this subject,
it is necessary to further develop tools able to seamlessly integrate human and
artificial cognitive elements.

The Argumentation and Social Networks area presents many opportunities
to introduce argumentation. As we have commented in other parts of this pa-
per, argumentation-based reasoning follows the human form of obtaining conse-
quences. By providing argumentation support to structure the exchange of infor-
mation among humans, virtual social networks will make this interaction more
effective. Among the several scenarios that can be mentioned, the sociopolitical
debate provides an excellent ground to try new argument-based technologies to
structure discourse, as well as both existing and elaborated information.

Clearly, the list could be extended in many ways. Argumentation mirrors our
internal reasoning and our external cognitive social behavior. That is the power
hidden in the use of the methods and techniques of argumentation: their inner
workings are natural to us.

6 Research Context

The work related to Argumentation in Artificial Intelligence has continuously
expanded at an increasing rate in the last three decades, producing technical
results widely reported in the literature. The top conferences in Artificial Intel-
ligence (IJCAI, AAAI, ECAI, etc.) have sessions fully dedicated to Argumen-
tation. Leading scientific journals have published special issues, e.g., Springer’s
Journal of Autonomous Agents and Multiagent Systems (JAAMAS) 2005 [21];
Elsevier’s Artificial Intelligence Journal (AIJ) 2007 [4]; IEEE Intelligent Sys-
tems 2007 [22]; Wiley’s International Journal of Intelligent Systems 2007 [25].
Argument and Computation is a journal that started to be published in 2010,
aiming at promoting the interaction and cross-fertilization between the fields of
argumentation theory and artificial intelligence. Its main focus lies in the re-
search being produced in the fields of artificial intelligence, multi-agent systems,
computer science, logic, philosophy, argumentation theory, psychology, cognitive
science, game theory, and economics.

A new biannual international conference on Computational Models of Ar-
gument began in 2006,6 and a series of well-attended workshops, (e.g., Argu-
ment, Dialogue and Decision as a special session of the Non-Monotonic Rea-
soning Workshop (NMR) since 2002; Argumentation in Multi-Agent Systems
(Arg-MAS) held annually with AAMAS since 2004; Computational Models of
Natural Argument (CMNA) held with IJCAI and ECAI since 2001; and the re-
cently started International Workshop on the Theory and Applications of Formal
Argumentation (TAFA) with IJCAI-2011.

6 See http://www.comma-conf.org

http://www.comma-conf.org
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The existing literature is wide and deep, and to get a gist of the foundations
of the area there are a number of possibilities to consider. Two valuable sur-
veys [10,20], although dated, still contain introductory material and a review of
the field at the time of their publication, descriptions of the research field, and a
wealth of references. A more recent source can be found in [5] where the authors’
presentation of the special issue of the Artificial Intelligence Journal on Argu-
mentation [4] goes over a wide range of approaches and issues seeking to put
them in the context of the historical foundations of argumentation in Artificial
Intelligence. They also discuss ideas and themes that have emerged in recent
years leading to a significant broadening of the areas in which argumentation
based methods are used. Another important characteristic of this paper is its
reference section, which contains nearly two hundred valuable items.

Even more recently, two books have been published with the intention of
responding to a growing need for in-depth, foundational presentation of the
fast-expanding area of Argumentation in Artificial Intelligence. The first one,
The Elements of Argumentation by P. Besnard and A. Hunter was published
in 2008 [7]; it presents the background elements and the necessary techniques
for formalizing argumentation in artificial intelligence, covering the emerging
formalizations of practical argumentation. The book begins by discussing the
nature of argumentation, continues introducing abstract argumentation, logical
argumentation, practical argumentation, the comparison of arguments, taking
account of the audience, presenting algorithms for argumentation, comparing
related approaches and ends with the authors’ perspective on the future of the
field. The second one, Argumentation in Artificial Intelligence by I. Rahwan
and G. R. Simari was published in 2009 [23]. The book is an edited collection of
chapters written by leading researchers of the field. It begins with an Introduction
to Argumentation Theory and contains twenty three chapters that have been
organized into four parts: Abstract Argument Systems, Arguments with Structure,
Argumentation in Multi-Agent Systems, and Applications.
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Abstract. In a previous work we defined a recursive warrant semantics for De-
feasible Logic Programming extended with levels of possibilistic uncertainty for
defeasible rules. The resulting argumentation framework, called RP-DeLP, is
based on a general notion of collective (non-binary) conflict among arguments
allowing to ensure direct and indirect consistency properties with respect to the
strict knowledge. An output of an RP-DeLP program is a pair of sets of war-
ranted and blocked conclusions (literals), all of them recursively based on war-
ranted conclusions but, while warranted conclusions do not generate any conflict,
blocked conclusions do. An RP-DeLP program may have multiple outputs in
case of circular definitions of conflicts among arguments. In this paper we tackle
the problem of which output one should consider for an RP-DeLP program with
multiple outputs. To this end we define the maximal ideal output of an RP-DeLP
program as the set of conclusions which are ultimately warranted and we present
an algorithm for computing them in polynomial space and with an upper bound
on complexity equal to P NP .

Keywords: defeasible argumentation, recursive warrant semantics, maximal
ideal output.

1 Introduction and Motivation

Argumentation frameworks [6,15], can be used as a vehicle for facilitating rationally
justifiable decision making when handling incomplete and potentially inconsistent in-
formation.

Possibilistic Defeasible Logic Programming (P-DeLP) [1] is a rule-based argumenta-
tion framework, extension of (DeLP) [12], where defeasible rules are attached to levels
of strength, formalized as degrees of possibilistic necessity. P-DeLP inherits from DeLP
the use of dialectical trees as underlying structures for characterizing the semantics for
warranted conclusions.

In [1] a new recursive semantics for P-DeLP has been proposed based on a general
notion of collective (non-binary) conflict among arguments. In this framework, called
Recursive P-DeLP (RP-DeLP for short), an output (extension) of a program is a pair of
sets of warranted and blocked conclusions, where arguments for warranted and blocked
conclusions are recursively based on warranted conclusions but, while warranted con-
clusions do not generate any conflict with the set of already warranted conclusions and
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the strict part of program, blocked conclusions do.1 Conclusions that are neither war-
ranted nor blocked correspond to rejected conclusions. The warrant recursive semantics
of RP-DeLP ensures the three rationality postulates defined by Caminada and Amgoud
in [4] without extending the representation of strict rules with transposed rules.

In [14], Pollock proposed a recursive semantics for defeasible argumentation with-
out considering levels of defeasibility, where recursive definitions of defeat between
arguments are characterized by means of inference-graphs, representing support and
(binary) defeat relations between the conclusions of arguments. In RP-DeLP, a pro-
gram may have multiple outputs (extensions) due to some circular definitions of war-
ranty among arguments that emerge in case of circular definitions of conflicts among
arguments. In [1] it was shown that, similar to [14], the latter can be checked by means
of warrant dependency graphs for a set of arguments. Intuitively, the warrant depen-
dency graph for a set of arguments represents conflict and support relationships among
the arguments. In [2] we designed an algorithm which implements a level-wise proce-
dure computing warranted and blocked conclusions until a cycle is found or the unique
output is obtained.

In this paper we are interested in the problem of deciding the set of conclusions that
can be ultimately warranted in RP-DeLP programs with multiple outputs. The usual
skeptical approach would be to adopt the intersection of all possible outputs. However,
in addition to the computational limitation, as stated in [14], adopting the intersection
of all outputs may lead to an inconsistent output (in the sense of violating the base of
the underlying recursive warrant semantics) in case some particular recursive situation
among literals of a program occurs. Intuitively, for a conclusion, to be in the intersec-
tion does not guarantee the existence of an argument for it that is recursively based on
ultimately warranted conclusions.

For instance, consider the following situation involving three conclusions P , Q, and
T , where P can be warranted whenever Q is blocked, and vice-versa. Moreover, sup-
pose that T can be warranted when either P or Q are warranted. Then, according to the
warrant recursive semantics, we would get two different outputs: one where P and T
are warranted and Q is blocked, and the other one where Q and T are warranted and P
is blocked. Then, adopting the intersection of both outputs we would get that T would
be ultimately warranted, however T should be in fact rejected since neither P nor Q are
ultimately warranted conclusions.

According to this example, one could take then as the set of ultimately warranted
conclusions of RP-DeLP programs those conclusions in the intersection of all outputs
which are recursively based on ultimately warranted conclusions. However, as in RP-
DeLP there are levels of defeasibility, this approach could lead to an incomplete solution
since we are interested in determining the biggest set of ultimately warranted conclu-
sions with maximum strength.

For instance consider the above example extended with two defeasibility levels as
follows. Suppose that P can be warranted with strength α whenever Q is blocked, and

1 The idea of defining a warrant semantics on the basis of conflicting sets of arguments was
proposed in [16] The difference with the collective conflict among arguments in RP-DeLP is
that in [16] the conflict is not relative to a set of already warranted conclusions and the strict
part of the knowledge base (information we take for granted they hold true).
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vice-versa. Moreover, suppose that T can be warranted with strength α whenever P is
warranted at least with strength α and that T can be warranted with strength β, with
β < α, independently of the status of conclusions P and Q. Then, again we get two
different outputs: one output warrants conclusions P and T with strength α and blocks
conclusion Q, and the other one warrants conclusions Q and T with strengths α and
β, respectively, and blocks P . Now, adopting conclusions of the intersection which
are recursively based on ultimately warranted conclusions, we get that conclusion T is
finally rejected, since conclusion T is warranted with a different argument and strength
in each output. However, as we are interested in determining the biggest set of warranted
conclusions with maximum strength, it seems quite reasonable to reject T at level α but
to warrant it at level β.

Therefore, the set of ultimately warranted conclusions we are interested in for RP-
DeLP programs has to be characterized by means of a recursive level-wise definition
considering at each level the maximum set of conclusions based on warranted infor-
mation and not involved in neither a conflict nor a circular definition of warranty. In
fact, in a different context, this idea corresponds to the maximal ideal extension defined
by Dung, Mancarella and Toni [9,10] as an alternative skeptical basis for defining col-
lections of justified arguments in the abstract argumentation frameworks promoted by
Dung [8] and Bondarenko et al. [3].

After this introduction, the rest of the paper is structured as follows. In Section 2
we recall basic definitions from RP-DeLP and then in Section 3 we characterize the
maximal ideal output as the set of conclusions which are ultimately warranted for RP-
DeLP programs. In Section 4 we present an algorithm for computing the maximal ideal
output in polynomial space and with an upper bound on complexity equal to PNP ,
and in Section 5 we present SAT encodings for the two main queries performed in the
algorithm. We end up with some concluding remarks.

2 Preliminaries on RP-DeLP

The language of RP-DeLP, denoted LR, is inherited from the language of logic pro-
gramming, including the notions of atom, literal, rule and fact. Formulas are built over
a finite set of propositional variables p, q, ... which is extended with a new (negated)
atom “∼p” for each original atom p. Atoms of the form p or ∼p will be referred as
literals, and if P is a literal, we will use ∼P to denote ∼p if P is an atom p, and
will denote p if P is a negated atom ∼p. Formulas of LR consist of rules of the
form Q ← P1 ∧ . . . ∧ Pk , where Q, P1, . . . , Pk are literals. A fact will be a rule
with no premises. We will also use the name clause to denote a rule or a fact. The
RP-DeLP framework is based on the propositional logic (LR,�R) where the inference
operator �R is defined by instances of the modus ponens rule of the form: {Q ←
P1 ∧ . . . ∧ Pk , P1, . . . , Pk} �R Q. A set of clauses Γ will be deemed as contradictory,
denoted Γ �R ⊥, if , for some atom q, Γ �R q and Γ �R ∼q.

An RP-DeLP program P is a tuple P = (Π, Δ,�) over the logic (LR,�R), where
Π, Δ ⊆ LR, and Π ��R ⊥. Π is a finite set of clauses representing strict knowledge
(information we take for granted they hold true), Δ is another finite set of clauses repre-
senting the defeasible knowledge (formulas for which we have reasons to believe they
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are true). Finally, � is a total pre-order on Π ∪ Δ representing levels of defeasibility:
ϕ ≺ ψ means that ϕ is more defeasible than ψ. Actually, since formulas in Π are not
defeasible, � is such that all formulas in Π are at the top of the ordering. For the sake
of a simpler notation we will often refer in the paper to numerical levels for defeasible
clauses and arguments rather than to the pre-ordering�, so we will assume a mapping
N : Π ∪Δ→ [0, 1] such that N(ϕ) = 1 for all ϕ ∈ Π and N(ϕ) < N(ψ) iff ϕ ≺ ψ. 2

The notion of argument is the usual one. Given an RP-DeLP programP , an argument
for a literal (conclusion) Q ofLR is a pairA = 〈A, Q〉, with A ⊆ Δ such that Π∪A ��R

⊥, and A is minimal (w.r.t. set inclusion) such that Π ∪A �R Q. If A = ∅, then we will
call A a s-argument (s for strict), otherwise it will be a d-argument (d for defeasible).
We define the strength of an argument 〈A, Q〉, written s(〈A, Q〉), as follows:

s(〈A, Q〉) = 1 if A = ∅, and s(〈A, Q〉) = min{N(ψ) | ψ ∈ A}, otherwise.

The notion of subargument is referred to d-arguments and expresses an incremental
proof relationship between arguments which is defined as follows. Let 〈B, Q〉 and
〈A, P 〉 be two d-arguments such that the minimal sets (w.r.t. set inclusion) ΠQ ⊆ Π
and ΠP ⊆ Π such that ΠQ ∪B �R Q and ΠP ∪A �R P verify that ΠQ ⊆ ΠP . Then,
〈B, Q〉 is a subargument of 〈A, P 〉, written 〈B, Q〉 � 〈A, P 〉, when either B ⊂ A
(strict inclusion for defeasible knowledge), or B = A and ΠQ ⊂ ΠA (strict inclusion
for strict knowledge). A literal Q of LR is called justifiable conclusion w.r.t. P if there
exists an argument for Q, i.e. there exists A ⊆ Δ such that 〈A, Q〉 is an argument.

The following notions of acceptable argument, of collective conflict and of warrant
dependency graph play a key role to formalize the recursive warrant semantics. If we
think of W of a consistent set of already warranted conclusions, an acceptable argument
captures the idea of an argument which is based on subarguments already warranted.

Let P = (Π, Δ,�) be an RP-DeLP program and let W be a set of justifiable con-
clusions which is consistent w.r.t. Π , i.e. Π ∪W ��R ⊥. A d-argument 〈A, Q〉 is an
acceptable argument for Q w.r.t. W iff the two following conditions hold:

1. If 〈B, P 〉 is a subargument of 〈A, Q〉, then P ∈W .
2. Π ∪W ∪ {Q} ��R ⊥.

The usual notion of attack or defeat relation in an argumentation system is binary. How-
ever, in some cases, the conflict relation among arguments is hardly representable as a
binary relation when we compare them with the strict part of an RP-DeLP program.
Next we formalize the notion of collective conflict among acceptable arguments.

Let A1 = 〈A1, Q1〉, . . . ,Ak = 〈Ak, Qk〉 be acceptable arguments w.r.t. W . We
say that the set of arguments {A1, . . . ,Ak} generates a conflict w.r.t. W iff the two
following conditions hold:

(i) The set of argument conclusions {Q1, . . . , Qk} is contradictory w.r.t. Π ∪W , i.e.
Π ∪W ∪ {Q1, . . . , Qk} �R ⊥.

(ii) The set of argument conclusions {Q1, . . . , Qk} is minimal w.r.t. set inclusion sat-
isfying (i), i.e. if S ⊂ {Q1, . . . , Qk}, then Π ∪W ∪ S ��R ⊥.

2 Actually, a same pre-order � can be represented by many mappings, but we can take any of
them to since only the relative ordering is what actually matters.
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The warrant dependency graph for a set of arguments represents conflict and support
dependencies among them, and will be used later. Let A1 = 〈A1, Q1〉, . . . ,Ak =
〈Ak, Qk〉 be acceptable arguments w.r.t. W and let B1 = 〈B1, P1〉, . . . ,Bn = 〈Bn, Pn〉
be arguments such that Pj �∈ {Q1, . . . , Qk} and there exists an argument S ∈
{A1, . . . ,Ak} with S � Bj , for all j ∈ {1, . . . , n}. The warrant dependency graph
(V, E) for {A1, . . . ,Ak} and {B1, . . . ,Bn} w.r.t. W is defined as follows:

1. For every literal L ∈ {Q1, . . . , Qk} ∪ {P1, . . . , Pn}, the set of vertices V includes
one vertex vL.

2. For every pair of literals (L1, L2) ∈ {P1, . . . , Pn}×{Q1, . . . , Qk} such that L1 =
∼L2, the set of directed edges E includes one edge (vL1 , vL2).

3. For every pair of literals (L1, L2) ∈ {Q1, . . . , Qk} × {P1, . . . , Pn} such that the
argument of L1 is a subargument of the argument of L2, the set of directed edges
E includes one edge (vL1 , vL2).

4. For every strict rule R ← R1 ∧ . . . ∧ Rp ∈ Π such that ∼R, R1, . . . , Rp ∈
W ∪ {Q1, . . . , Qk} ∪ {P1, . . . , Pn}, the set of directed edges E includes one edge
(vL1 , vL2) for every pair of literals (L1, L2) ∈ {P1, . . . , Pn} × {Q1, . . . , Qk}
such that the argument of L2 is not a subargument of the argument of L1, L1 ∈
{∼R, R1, . . . , Rp} and, either L2 ∈ {R1, . . . , Rp} or, L2 is a subargument of the
argument of L3, for some L3 ∈ {P1, . . . , Pn} such that L3 ∈ {R1, . . . , Rp}.

5. Elements of V and E are only obtained by applying the above construction rules.

3 Maximal Ideal Output of an RP-DeLP Program

The maximal ideal output of an RP-DeLP programP = (Π, Δ,�) is a pair (Warr, Block)
of warranted and blocked conclusions, respectively, with a maximum strength level such
that the arguments of all of them are recursively based on warranted conclusions but,
while warranted conclusions do not generate any conflict with the set of already war-
ranted conclusions and any circular definition of warranty, blocked conclusions do.

Since defeasible arguments in an RP-DeLP program may have different levels of
strength, the definition of (Warr, Block) is done level-wise, starting from the highest
level and iteratively going down from one level to next level below. If 1 > α1 >
. . . > αp > 0 are the strengths of d-arguments that can be built within P , we de-
fine Warr = s-Warr ∪ d-Warr with d-Warr = {d-Warr(α1), . . . , d-Warr(αp)} and
Block = {Block(α1), . . . , Block(αp)}, where s-Warr is the set of the warranted con-
clusions derivable from the strict knowledge Π and d-Warr(αi) and Block(αi) are
respectively the sets of the warranted and blocked conclusions with strength αi. In
the following, we write d-Warr(> αi) to denote ∪β>αid-Warr(β), d-Warr(≥ αi) to
denote ∪β≥αid-Warr(β) and analogously for Block(> αi) and Block(≥ αi), taking
d-Warr(> α1) = ∅ and Block(> α1) = ∅.

Before we formalize the maximal ideal warrant recursive semantics for an RP-DeLP
program we need to define the following notions of valid and almost valid arguments
with respect to a pair (Warr, Block) of warranted and blocked conclusions. A valid
argument captures the idea of a non-rejected argument (i.e. a warranted or blocked
argument, but not rejected) while an almost valid argument captures the idea of an
argument whose rejection is conditional to the warranty of some valid argument.
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A d-argument 〈A, Q〉 of strength α is called valid (or not rejected) w.r.t. a pair
(Warr, Block) of warranted and blocked conclusions if it satisfies the three following
conditions:3

(V1) Any subargument 〈B, P 〉 � 〈A, Q〉 of strength α is such that P ∈ d-Warr(α).
(V2) 〈A, Q〉 is acceptable w.r.t. d-Warr(> α) ∪ {P | 〈B, P 〉 � 〈A, Q〉 and

s(〈B, P 〉) = α}.
(V3) Q �∈ d-Warr(> α) ∪ Block(> α), and ∼Q �∈ Block(> α).

The intuition underlying this definition is as follows. A d-argument 〈A, Q〉 of strength
α is considered valid whenever the conclusions of all its subarguments are warranted,
the argument is acceptable w.r.t. d-Warr(> α) and the conclusions of its subarguments,
and there does not exist a valid argument neither for Q nor for ∼Q of strength greater
than α.

Let A be a set of valid arguments w.r.t. (Warr, Block) of strength α. A d-argument
〈B, P 〉 of strength α is called almost valid w.r.t. A and (Warr, Block) if it satisfies the
following six conditions:

(AV1) There does not exist an argument for P of strength α that is valid w.r.t.
(Warr, Block).

(AV2) Any subargument 〈C, R〉 � 〈B, P 〉 of strength β > α is such that R ∈
d-Warr(β).

(AV3) Π ∪ d-Warr(> α) ∪ {R | 〈C, R〉 � 〈B, P 〉 and s(〈C, R〉) = α} ∪ {P} ��R ⊥.
(AV4) P �∈ d-Warr(> α) ∪ Block(> α), and ∼P �∈ Block(> α).
(AV5) For every subargument 〈C, R〉 � 〈B, P 〉 of strength α such that R �∈ Warr(α),

it holds that either 〈C, R〉 ∈ A, or R,∼R �∈ Block(≥ α).
(AV6) There exists at least an argument A ∈ A such that A � 〈B, P 〉.

An almost valid argument captures the idea of an argument based on valid arguments
of A and which status is valid (not rejected) whenever these arguments are warranted,
and rejected, otherwise.

Definition 1. The maximal ideal output of an RP-DeLP program P = (Π, Δ,�) is
a pair (Warr, Block), such that d-Warr and Block are required to satisfy the following
recursive constraint: for every valid d-argument 〈A, Q〉 of strength α it holds that:

– Q ∈ Block(α) whenever one of the two following conditions holds:
(B1) There exists a set G of valid arguments of strength α with 〈A, Q〉 �∈ G such that

the two following conditions hold:
(G1) 〈A, Q〉 �� C, for all C ∈ G, and
(G2) G ∪ {〈A, Q〉} generates a conflict w.r.t. d-Warr(> α) ∪ {P | there exists

〈B, P 〉 � C for some C ∈ G ∪ {〈A, Q〉}}.
(B2) There exists a set A of valid arguments of strength α with 〈A, Q〉 ∈ A such

that the three following conditions hold:
(A1) 〈A, Q〉 �� C, for all C ∈ A.

3 Notice that if 〈A,Q〉 is an acceptable argument w.r.t. d-Warr(> α), then 〈A, Q〉 is valid
whenever condition (V3) holds.
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(A2) There exists a set B of almost valid arguments w.r.t. A of strength α such
that there is a cycle in the warrant dependency graph for A and B, and
any argument C ∈ A is such that the conclusion of C is either a vertex of
the cycle or C does not satisfy condition (B1).

(A3) For some vertex v ∈ V of the cycle either v is the vertex of conclusion Q
or v is the vertex of some other conclusion in A and there exists a path
from v to the the vertex of conclusion Q.

– Otherwise, Q ∈ d-Warr(α).

The intuition underlying the maximal ideal output definition is as follows. The conclu-
sion of every valid or not rejected d-argument 〈A, Q〉 of strength α is either warranted
or blocked. Then, it is eventually blocked if either (B1) it is involved in some conflict
w.r.t. d-Warr(> α) and a set G of valid arguments of strength α whose supports do not
depend on 〈A, Q〉 (conditions (G1) and (G2)), or (B2) the warranty of 〈A, Q〉 depends
on some circular definition of conflict between arguments; otherwise, it is warranted.

Conditions (A1)-(A3) check whether the warranty of 〈A, Q〉 depends on some cir-
cular definition of conflict between a set A of valid arguments of strength α whose
supports do not depend on 〈A, Q〉 and a set B of almost valid arguments whose sup-
ports depend on some argument in A. In fact, the idea here is that if the warranty of
〈A, Q〉 depends on some circular definition of conflict between the arguments ofA and
B, one could consider two different extensions (status) for conclusion Q: one with Q
warranted and another one with Q blocked. Therefore, conclusion Q is blocked for the
maximal ideal output. In general, the arguments of A and B involved in a cycle are
respectively blocked and rejected for the maximal ideal output.

The following example shows a circular definition of conflict among arguments in-
volving strict knowledge. Consider the RP-DeLP program P = (Π, Δ,�) with

Π = {y,∼y ← p ∧ r,∼y ← q ∧ s},
Δ = {p, q, t, r ← q, s ← p, t← p, t← q} and

two defeasibility levels for Δ as follows: {t} ≺ {p, q, r ← q, s ← p, t ← p, t ← q}.
Assume α1 is the level of {p, q, r ← q, s ← p, t ← p, t ← q} and α2 is the level of
{t}, with 1 > α1 > α2 > 0. Obviously, s-Warr = {y} and, at level α1, arguments
A1 = 〈{p}, p〉 and A2 = 〈{q}, q〉 are valid, and thus, conclusions p and q may be
warranted or blocked but not rejected. Moreover, arguments B1 = 〈{q, r ← q}, r〉,
B2 = 〈{p, s ← p}, s〉, B3 = 〈{q, t ← q}, t〉 and B4 = 〈{p, t ← p}, t〉 are almost
valid w.r.t.A1 andA2. Figure 1 shows the warrant dependency graph for {A1,A2} and
{B1,B2,B3,B4}. Conflict and support dependencies among arguments are represented
as dashed and solid arrows, respectively. The cycle of the graph expresses that (1) the
warranty of p depends on a (possible) conflict with r; (2) the support of r depends on
q (i.e., r is valid whenever q is warranted); (3) the warranty of q depends on a (pos-
sible) conflict with s; and (4) the support of s depends on p (i.e., s is valid whenever
p is warranted). Then, conclusions p and q are blocked, and conclusions r and s are
rejected. Remark that conclusion t is also rejected at level α1 since (5) the support of
B3 depends on p, (6) the support ofB4 depends on q, and p and q are blocked. Therefore,
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Fig. 1. Warrant dependency graph for P

d-Warr(α1) = ∅ and Block(α1) = {p, q}. Finally, at level α2, 〈{t}, t〉 is the unique
valid argument and therefore conclusion t is warranted. Hence, d-Warr(α2) = {t} and
Block(α2) = ∅.

Next propositions4 state that the maximal ideal output of an RP-DeLP program is
unique and satisfies the indirect consistency and closure properties defined by Cami-
nada and Amgoud[4] with respect to the strict knowledge. Moreover, it could be proved
that the maximal ideal output of an RP-DeLP program contains all conclusions in the in-
tersection of all outputs whose arguments are recursively based on ultimately warranted
conclusions.

Proposition 1 (Unicity of the maximal ideal output). Let P = (Π, Δ,�) be an RP-
DeLP program. The pair (Warr, Block) of warranted and blocked conclusions that sat-
isfies the maximal ideal output characterization for P is unique.

Proposition 2 (Indirect consistency and closure). Let P = (Π, Δ,�) be an RP-
DeLP program with defeasibility levels 1 > α1 > . . . > αp > 0 and let (Warr, Block)
be the maximal ideal output for P . Then,

(i) Π ∪Warr ��R ⊥, and
(ii) if Π ∪ d-Warr(≥ αi) �R Q and Π ∪ d-Warr(> αi) ��R Q, then either Q ∈

d-Warr(αi), or Q ∈ Block(> αi), or ∼Q ∈ Block(> αi).

Notice that for the particular case of considering just one defeasibility level for Δ, the
closure property reads as follows : if Π ∪Warr �R Q, then Q ∈ Warr.

4 On the Computation of the Maximal Ideal Output

From a computational point of view, the maximal ideal output of an RP-DeLP program
can be computed by means of a level-wise procedure, starting from the highest level and
iteratively going down from one level to next level below. Then, at every level it is nec-
essary to determine the status (warranted or blocked) of each valid argument. Next we
design an algorithm which implements this level-wise procedure computing warranted
and blocked conclusions by checking the existence of conflicts between arguments and
cycles at some warrant dependency graph. In the following we use the notation W (1)
for s-Warr, W (α) and W (≥ α) for d-Warr(α) and d-Warr(≥ α), respectively, and
B(α) and B(≥ α) for Block(α) and Block(≥ α), respectively.

4 Proofs can be found in a forthcoming extended version of this paper.
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Algorithm Computing warranted conclusions

Input P = (Π,Δ,�): An RP-DeLP program
Output (W,B): maximal ideal output for P

W (1) := {Q | Π �R Q}
B := ∅
α := maximum_level(Δ)
while (α > 0) do

level_computing(α, W , B)
α := next_level(Δ)

end while

The algorithm Computing warranted conclusions first computes the set of
warranted conclusions W (1) form the set of strict clauses Π . Then, for each defeasi-
bility level 1 > α > 0, the procedure level_computing determines all warranted
and blocked conclusions with strength α. Remark that for every level α, the procedure
level_computing receives W (> α) and B(> α) as input and produces W (≥ α)
and B(≥ α) as output.

Procedure level_computing (in α; in_out W , B)
VA : = {〈A, Q〉 with strength α | 〈A, Q〉 is valid w.r.t. W and B}
while (VA �= ∅)

while (∃〈A,Q〉 ∈ VA |
¬ conflict(α, 〈A, Q〉, VA, W , not_dependent(α, 〈A,Q〉, VA, W , B))
and ¬ cycle(α, 〈A, Q〉, VA, W , almost_valid(α, VA, W , B)) do

W (α) := W (α) ∪ {Q}
VA := VA\{〈A, Q〉} ∪ {〈C, P 〉 with strength α |

〈C, P 〉 is valid w.r.t. W and B}
end while
I := {〈A, Q〉 ∈ VA | conflict(α, 〈A,Q〉, VA, W , ∅)

or cycle(α, 〈A, Q〉, VA, W , almost_valid(α, VA, W , B)) }
B(α) := B(α) ∪ {Q | 〈A,Q〉 ∈ I}
VA := VA\I

end while

For every level α the procedurelevel_computing first computes the set VA of valid
arguments5 w.r.t. W (> α) and B(> α). Then, the set VA of valid arguments is dynam-
ically updated depending on new warranted and blocked conclusions with strength α.
The procedure level_computing finishes when the status for every valid argument
is computed. The status of a valid argument is computed by means of the four following
auxiliary functions.

Function almost_valid(in α, VA, W , B) return AV: set of arguments
AV := {〈C, P 〉 with strength α | 〈C, P 〉 satisfies conditions (AV1)-(AV6) w.r.t. VA}
return(AV)

Function not_dependent(in α, 〈A, Q〉, VA, W , B) return ND: set of arguments
AV := almost_valid(α, VA, W , B)
ND := {〈C, P 〉 ∈ AV | 〈A, Q〉 �� 〈C, P 〉}
return(ND)

5 Notice that an argument 〈A, Q〉 with strength α is valid w.r.t. W (> α) and B(> α) if 〈A,Q〉
is acceptable w.r.t. W (> α) and satisfies condition (V3).
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Function conflict(in α, 〈A, Q〉, VA, W , ND) : return Boolean
return (∃ S ⊆ VA\{〈A, Q〉}∪ND such that Π∪W (≥ α)∪{P | 〈B, P 〉 ∈ S} ��R ⊥

and Π ∪W (≥ α) ∪ {P | 〈B, P 〉 ∈ S} ∪ {Q} �R ⊥)
Function cycle(in α, 〈A,Q〉, VA, W , AV) : return Boolean

return (there is a cycle in the warrant dependency graph for VA and AV and the vertex
of 〈A, Q〉 is a vertex of the cycle or there exists a path from a vertex in VA of
the cycle to the the vertex of 〈A,Q〉)

The function conflict checks (possible) conflicts among the argument 〈A, Q〉 and
the set VA of valid arguments extended with the set ND of arguments. The set ND of ar-
guments takes two different values: the empty set and the set of almost valid arguments
whose supports depend on some argument in VA\{〈A, Q〉}. The empty set value is used
to detect conflicts between the argument 〈A, Q〉 and the arguments in VA, and thus, ev-
ery valid argument involved in a conflict is blocked. On the other hand, the value set of
almost valid arguments which do not depend on argument 〈A, Q〉 is used to detect pos-
sible conflicts between the argument 〈A, Q〉 and the arguments in VA∪ND, and thus, ev-
ery valid argument involved in a possible conflict remains as valid. In fact, the function
almost_valid computes the set of almost valid arguments that satisfy conditions
(AV1)-(AV6) w.r.t. the current set of valid arguments. The function not_dependent
considers almost valid arguments w.r.t. the current set of valid arguments which do not
depend on 〈A, Q〉. Finally, the function cycle checks the existence of a cycle in the
warrant dependency graph for the current set of valid arguments and its set of almost
valid arguments, and verifies whether the vertex of argument 〈A, Q〉 is in the cycle or
there exists a path from a vertex of the cycle to it.

One of the main advantages of the maximal ideal warrant recursive semantics for RP-
DeLP is from the implementation point of view. Warrant semantics based on dialectical
trees, like DeLP [5,7], might consider an exponential number of arguments with respect
to the number of rules of a given program. The previous algorithm can be implemented
to work in polynomial space6, with a complexity upper bound equal to PNP . This can
be achieved because it is not actually necessary to find all the valid arguments for a
given literal Q, but only one witnessing a valid argument for Q is enough. Analogously,
function not_dependent can be implemented to generate at most one almost valid
argument, not dependent on 〈A, Q〉, for a given literal. The only function that in the
worst case can need an exponential number of arguments is cycle, but it can be shown
that whenever cycle returns true for 〈A, Q〉, then a conflict will be detected with the
almost valid arguments not dependent on 〈A, Q〉, so warranted literals can be detected
without function cycle. Also, blocked literals detected by function cycle can also
be detected by checking the stability of the set of valid arguments after two consecutive
iterations, so it is not necessary to explicitly compute dependency graphs. Next, observe
that the following queries can be implemented with NP algorithms:

1. Whether a literal P is a conclusion of some argument returned by
not_dependent(α, 〈A, Q〉, VA, W , B). To check the existence of an almost
valid argument 〈C, P 〉 not dependent on 〈A, Q〉, we can non-deterministically guess
a subset of rules, and check in polynomial time whether they actually generate the
desired argument for P , as all the conditions for an almost valid argument can be

6 Details can be found in a forthcoming extended version of this paper.
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checked in polynomial time and also the condition of not being dependent on the
literal Q.

2. Whether the function conflict(in α, 〈A, Q〉, VA, W , ND) returns true. To check
the existence of a conflict, we can non-deterministically guess a subset of literals S
from {P | 〈B, P 〉 ∈ VA \ {〈A, Q〉} ∪ ND} and check in polynomial time whether
i) Π ∪W (≥ α) ∪ S �� ⊥ and ii) Π ∪W (≥ α) ∪ S ∪ {Q} � ⊥.

Then, as the maximum number of times that these queries need to be executed before
the set of conclusions associated with VA becomes stable is polynomial in the size of
the input program, the PNP upper bound follows.

5 SAT Encodings for Finding Warranted Literals

The previous algorithm to find warranted literals needs to compute two main queries
during its execution: i) whether an argument 〈C, P 〉 with strength α is almost valid
(computed in function almost_valid) and ii) whether there is a conflict for a valid
argument 〈A, Q〉. Remember that the explicit computation of cycles in warrant depen-
dency graphs can be avoided. We present here SAT encodings for resolving both queries
with a SAT solver. In a forthcoming extended version of this paper7, we show empir-
ical results obtained with an implementation of our algorithm that uses these SAT en-
codings. The results show that, at least on randomly generated instances, the practical
complexity is strongly dependent on the size of the strict part of the program, as for the
same number of variables RP-DeLP programs with different size for their strict part can
range from trivially solvable to exceptionally hard.

5.1 Looking for Almost Valid Arguments

The idea for encoding the problem of searching almost valid arguments is based on
the same idea behind successful SAT encodings for solving STRIPS planning prob-
lems [13]. In a STRIPS planning problem, given an initial state, described with a set of
predicates, the goal is to decide whether a desired goal state can be achieved by means
of the application of a suitable sequence of actions. Each action has a set preconditions,
when they hold true the action can be executed and as a result certain facts become
true and some others become false (its effects). Hence executing an action changes the
current state, and the application of a sequence of actions creates a sequence of states.
The planning problem is to find a sequence of actions such that, when executed, the
obtained final state satisfies the goal state.

In our case, the search for an almost valid argument 〈C, P 〉 can be seen as the search
for a plan for producing P , taking as the initial set of facts some subset of a set of
literals in which we already trust. We call such initial set the base set of literals8, and
we say that they are true at the first step of the argument. Given the set of possible rules
for almost valid arguments with the current strength α and a given state9, if we execute

7 In preparation.
8 For an almost valid argument, the base set can contain only warranted and valid literals.
9 These are rules R satisfying: i) either N(R) > α and Body(R)\W (> α) �= ∅, or N(R) = α;

ii) Body(R) ∩B(≥ α) = ∅; and iii) Head(R),∼Head(R) �∈W (≥ α) ∪B(≥ α).
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all the rules that have their precondition satisfied we obtain a new state, that contains all
the previous literals plus the possible new ones obtained. This process can be repeated
iteratively, obtaining a sequence of states S = {S0, S1, . . . , St} and a sequence of sets
of executed rules R = {R0, R1, . . . , Rt−1}, until we reach a final state St in which
the execution of any possible rule does not increase the set of literals already in St. If
starting from an initial set S0 that contains all the current valid and warranted literals
the final state St contains P , that means that an almost valid argument for P could be
obtained from theses sequences, if we could find selected subsets such that their literals
and rules satisfy the conditions for an almost valid argument for P . Observe that in
this forward reasoning process some of the conditions for almost valid arguments have
already been satisfied, but the existence of an argument that satisfies the consistency
conditions is not secured with that process.

So, we consider encoding as a SAT instance the search for an almost valid argu-
ment 〈C, P 〉 from the sequences S and R defined above. That is, a SAT instance
with variables to represent all the possible literals we can select from each set Si:
{vi

L | L ∈ Si, 0 ≤ i ≤ t}, plus variables to represent all the possible rules R we
can select from each set Ri: {vi

R | R ∈ Ri, 0 ≤ i < t}. In order to check that the va-
riables set to true represent a well formed argument that is almost valid, we add clauses
for ensuring that:

1. If variable vi
L is true, then either vi−1

L is true or one of the variables vi−1
R , with

Head(R) = L, is true.
2. If a variable vi

R is true, then for all the literals L in its body vi
L must be true.

3. If variable vi
L is true, then vi+1

L is also true.
4. The variable vt

P must be true.
5. No two contradictory variables vt

L and vt
∼L can be both true.

In addition, in order to satisfy the consistency of the literals of the argument with respect
to the closure of the strict knowledge Π , we create also an additional set of variables
VΠ and set of clauses RΠ . The set of variables VΠ contains a variable vΠ

L for each
literal that appears in the logical closure of the set St ∪ W with respect to the strict
rules.

Then, we add the following clauses to check the consistency with Π :

1. If a literal is selected for the argument (vt
L set to true) then vΠ

L must also be true.
2. For any L ∈W , vΠ

L must be true.
3. For any rule R ∈ Π that was executed when computing the logical closure, if for

all the literals L in its body vΠ
L is true, then vΠ

Head(R) must be true.

4. No two contradictory variables vΠ
L and vΠ

∼L can be both true.

5.2 Looking for Collective Conflicts

We reduce the query computed by function conflict, to a query where we consider
finding the set of conflict literals that are the conclusions of the corresponding conflict
set of arguments. Basically, for finding this conflict set of literals S for a valid argument
〈A, Q〉 from the base set of literals considered in function conflict, i.e. the set G =
{P | 〈B, P 〉 ∈ VA\{〈A, Q〉}∪ND}, we have to find two arguments 〈A1, L〉 , 〈A2,∼L〉
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using only rules from Π , literals W ∪{Q} and a subset S from G, but such that when Q
is not used, no conflict (generation of L and∼L for any L with strict rules) is produced
with such set S. So, this can be seen as a simple extension of the previous query, where
now we have to look for two arguments, instead of only one, although both arguments
must be for two contradictory literals. That is, the SAT formula contains variables for
encoding arguments that use as base literals W ∪ G ∪ {Q} and rules from Π (with
the same scheme of the previous SAT encoding for almost valid arguments), with an
additional set of conflict variables to encode the set of possible conflicts that can be,
potentially, generated from W ∪ G ∪ {Q} using rules from Π , in order to be able to
force the existence of at least one conflict. There is also an additional set of variables
and clauses for encoding the subproblem of checking that S, when Q is not used, does
not generate any conflict.

So, the SAT formula contains two different parts. A first part is devoted to checking
that the selected set of literals S plus {Q} is a conflict set (i.e. if Π ∪W (≥ α) ∪ S ∪
{Q} �R ⊥). This set of variables and clauses is similar to the previous one for finding
almost valid arguments, but in this case for finding two arguments starting from a subset
of W ∪G and forcing the inclusion of {Q}. That is, the clauses of this first part are:

1. A clause that states that the literal Q must be true at the first step.
2. A clause that states that at least one conflict variable cL must be true.
3. For every conflict variable cL, a clause that states that if cL is true then literals L

and ∼L must be true at the final step of the argument.
4. The rest of clauses are the same ones described in the first part of the previous

encoding, except the clauses of the item 5 that are not included, but now considering
as possible literals and rules at every step the ones computed from the base set
W ∪G ∪ {Q} and using only strict rules.

The process for computing the possible literals and rules that can be potentially applied
in every step of the argument is the same forward reasoning process presented for the
previous encoding. This same process is used for discovering the set of conflict variables
cL that need to be considered, because we can potentially force the conflict cL if at the
end of this process both L and ∼L appear as reachable literals.

A second part is devoted to checking that the selected set S, without using Q, does
not cause any conflict with the strict rules. This is a set of variables and clauses that
ensures that the selected set of literals (minus Q) at the first step of the argument en-
coded in the first part of the formula, when we consider the closure with respect to the
strict clauses, does not generate a conflict. So this second part of the formula contains a
variable for any literal that appears in the logical closure of G ∪W with respect to the
strict rules. Actually, this second part of the formula is analogous to the second part of
the formula for the previous encoding.

6 Conclusions and Future Work

In this paper we have tackled the problem of deciding which set of ultimately war-
ranted conclusions should be considered for RP-DeLP programs with multiple outputs
according to a recursive warrant semantics. A natural solution to this problem could
be to adopt the intersection of all possible outputs, however, as it has been shown, this
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can lead to an inconsistent output when some recursive situation occurs between the
arguments of a program. So we have defined the maximal ideal output for RP-DeLP
programs as the set of ultimately warranted conclusions characterized by means of a
recursive level-wise definition considering at each defeasibility level the maximum set
of conclusions based on warranted information and not involved in neither a conflict nor
a circular definition of warranty. We have also designed and implemented an algorithm
with an upper bound on complexity equal to PNP for computing the warranty status of
arguments according to the new maximal ideal recursive semantics.
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Abstract. This paper studies how to encode the problem of computing
the extensions of an argumentation framework (under a given semantics)
as a constraint satisfaction problem (CSP). Such encoding is of great
importance since it makes it possible to use the very efficient solvers
(developed by the CSP community) for computing the extensions. We
focus on three families of frameworks: Dung’s abstract framework, its
constrained version and preference-based argumentation frameworks.
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1 Introduction

Argumentation is a reasoning model based on the construction and evaluation
of interacting arguments. An argument is a reason for believing in a statement,
doing an action, pursuing a goal, etc.

Argumentation theory is gaining an increasing interest in Artificial Intelli-
gence, namely for reasoning about defeasible/uncertain information, making de-
cisions under uncertainty, learning concepts, and modeling agents’ interactions
(see [1]).

The most abstract argumentation framework has been proposed in the seminal
paper [15] by Dung. It consists of a set of arguments, a binary relation repre-
senting attacks among arguments, and semantics for evaluating the arguments.
A semantics describes when a set of arguments, called extension, is acceptable
without bothering on how to compute that set. This framework has been ex-
tended in different ways in the literature. In [2,3], arguments are assumed to not
have the same strength while in [9] an additional constraint on arguments may
be available. In both works, Dung’s semantics are used to evaluate arguments,
thus to compute the extensions.

In [9,12,13,17], different decision problems related to the implementation of
those semantics have been identified and the computational complexity of each
problem studied. The results are a bit disappointing since they show that the
most important decision problems (like for instance testing whether a frame-
work has a stable set of arguments) are costly. Some algorithms that compute
extensions under some semantics have been developed, for instance in [8,11,18].
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However, the efficiency of those algorithms was not proved. They are neither
tested on benchmarks nor compared to other algorithms developed for the same
purpose.

Besides, there is a huge literature on Constraints Satisfaction Problems (CSP)
since many real-world problems can be described as CSPs. A CSP consists of a set
of variables, a (generally finite) domain for each variable and a set of constraints.
Each constraint is defined over a subset of variables and limits the combination of
values that the variables in this subset can take. The goal is to find an assignment
to the variables which satisfies all the constraints. In some problems, the goal
is to find all such assignments. Solving a constraint satisfaction problem on a
finite domain is an NP-complete problem in general. In order to be solved in a
reasonable time, different solvers have been developed. They use a form of search
based on variants of backtracking, constraint propagation and local search [19].

Our aim is to be able to use those powerful solvers for computing the exten-
sions of an argumentation framework. For that purpose, we study in this paper
how to encode an argumentation framework as a CSP. We particularly focus
on three families of frameworks: Dung’s framework, constrained argumentation
framework and preference-based argumentation framework (where arguments
may have different strengths). For each family, we propose different CSPs which
compute the extensions of the framework under different acceptability seman-
tics. In each CSP, arguments play the role of variables and the attacks represent
mainly the constraints.

This paper is organized as follows: Section 2 recalls the basic concepts of a
CSP. Section 3 recalls Dung’s argumentation framework and shows how it is
encoded as a CSP. Section 4 recalls the constrained version of Dung’s frame-
work and presents its encoding as a CSP. Section 5 presents preference-based
argumentation frameworks as well as their encoding as CSPs. In Section 6, we
compare our approach to existing works on the topic. The last section is devoted
to concluding remarks and perspectives. Due to space limitation, the proofs are
not included in the paper.

2 Constraint Satisfaction Problems (CSPs)

Formally speaking, a constraint satisfaction problem (or CSP) is defined by a
set of variables, x1, . . . , xn, and a set of constraints c1, . . . , cm. Each variable xi

takes its values from a finite domain Di, and each constraint ci involves some
subset of the variables and specifies the allowable combinations of values for that
subset.

Definition 1 (CSP). A CSP instance is a triple (X ,D, C) where:

– X = {x1, . . . , xn} is a set of variables,
– D = {D1, . . . ,Dn} is a set of finite domains for the variables, and
– C = {c1, . . . , cm} is a set of constraints.
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Each constraint ci is a pair (hi, Hi) where

– hi = (xi1, . . . , xik) is a k-tuple of variables
– Hi is a k-ary relation over D, i.e. Hi is a subset of all possible variable

values representing the allowed combinations of simultaneous values for the
variables in hi.

A state of the problem is defined by an assignment of values to some or all of
the variables.

Definition 2 (Assignment). An assignment v for a CSP instance (X ,D, C) is
a mapping that assigns to every variable xi ∈ X an element v(xi) ∈ Di. An as-
signment v satisfies a constraint ((xi1, . . . , xik), Hi) ∈ C iff (v(xi1), . . . , v(xik)) ∈
Hi.

Finally, a solution of a CSP is defined as follows:

Definition 3 (Solution). A solution of a CSP instance (X ,D, C) is an assign-
ment v that satisfies all the constraints in C and in which all the variables of X
are assigned a value. We write (v(x1), . . . , v(xn)) to denote the solution.

3 Abstract Frameworks

This section recalls Dung’s argumentation framework and presents the different
corresponding CSPs which return its extensions under various semantics.

3.1 Dung’s Framework

In [15], Dung has developed the most abstract argumentation framework in the
literature. It consists of a set of arguments and an attack relation between them.

Definition 4 (Argumentation framework). An argumentation framework
(AF) is a pair F = (A,R) where A is a set of arguments and R is an attack
relation (R ⊆ A×A). The notations aRb or (a, b) ∈ R mean that the argument
a attacks the argument b.

Different acceptability semantics for evaluating arguments have been proposed in
the same paper [15]. Each semantics amounts to define sets of acceptable argu-
ments, called extensions. Before recalling those semantics, let us first introduce
the two basic properties underlying them, namely conflict-freeness and defence.

Definition 5 (Conflict-free, Defence). Let F = (A,R) be an AF and B ⊆
A.

– B is conflict-free iff � a, b ∈ B s.t. aRb.
– B defends an argument a iff for all b ∈ A s.t. bRa, there exists c ∈ B s.t.

cRb.
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The following definition recalls the acceptability semantics proposed in [15].

Definition 6 (Acceptability semantics). Let F = (A,R) be an AF and B
⊆ A.

– B is an admissible set iff it is conflict-free and defends its elements.
– B is a preferred extension iff it is a maximal (for set ⊆) admissible set.
– B is a stable extension iff it is a preferred extension that attacks any argu-

ment in A \ B.
– B is a complete extension iff it is conflict-free and it contains all the argu-

ments it defends.
– B is a grounded extension iff it is a minimal (for set ⊆) complete extension.

Example 1. Let us consider the framework F1 = (A1,R1) where A1 = {a, b, c, d}
and R1 = {(a, b), (b, c), (c, d), (d, a)}. F1 has two preferred and stable extensions:
B1 = {a, c} and B2 = {b, d} while its grounded extension is the empty set.

3.2 Computing Dung’s Semantics by CSPs

In this section, we propose four mappings of Dung’s argumentation framework
into CSP instances. The idea is: starting from an argumentation framework, we
define a CSP instance whose solutions are the extensions of the framework under
a given acceptability semantics. In the four instances, arguments play the role of
variables that is, a variable is associated to each argument. Each variable may
take two values 0 or 1 meaning that the corresponding argument is rejected or
accepted. Thus, the domains of the variables are all binary. Things are different
with the constraints. We show that according to the semantics that is studied,
the definition of a constraint changes.

Let us start with a CSP instance that computes the conflict-free sets of ar-
guments. In this case, each attack (a, b) ∈ R gives birth to a constraint which
says that the two variables a and b cannot take value 1 at the same time. This
means that the two corresponding arguments cannot belong to the same set. This
constraint has the following form: ((a, b), ((0, 0), (0, 1), (1, 0))). Note that this is
equivalent to the cases where the propositional formula a ⇒ ¬b is true (i.e. gets
value 1). For simplicity reasons, throughout the paper we will use propositional
formulas for encoding constraints. Solving a CSP amounts thus to finding the
models of the set of constraints.

Definition 7 (Free CSP). Let F = (A,R) be an argumentation framework. A
free CSP associated with F is a tuple (X ,D, C) where X = A, for each ai ∈ X ,
Di = {0, 1} and C = {a ⇒ ¬b | (b, a) ∈ R}.

It can be checked that |C| = |R|. The following result shows that the solutions
of this CSP are the conflict-free sets of arguments of the corresponding AF.

Theorem 1. Let (X ,D, C) be the CSP instance associated with the AF F =
(A,R). The tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set {xj , . . . , xk}
s.t. v(xi) = 1 is conflict-free (with i = j . . . , k).
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Let us consider the argumentation framework F1 defined in Example 1.

Example 1 (Cont): The CSP corresponding to F1 is (X ,D, C) s.t. X =
{a, b, c, d}, D = {{0, 1}, {0, 1}, {0, 1}, {0, 1}}, C = {a ⇒ ¬d, b ⇒ ¬a, c ⇒ ¬b,
d⇒ ¬c}. This CSP has the following solutions: (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 0) and (0, 1, 0, 1). Thus, the sets {}, {a}, {b}, {c},
{d}, {a, c} and {b, d} are conflict-free.

Let us now study the case of stable semantics. Stable extensions are computed
by a CSP which considers that an argument and its attackers cannot have the
same value.

Definition 8 (Stable CSP). Let F = (A,R) be an argumentation framework.
A stable CSP associated with F is a tuple (X ,D, C) where X = A, ∀ai ∈ X ,
Di = {0, 1} and C = {a ⇔

∧
b:(b,a)∈R

¬b | a ∈ A}.

It is worth mentioning that the previous definition is inspired from [10].

Theorem 2. Let (X ,D, C) be a stable CSP associated with F = (A,R). The
tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set {xj , . . . , xk} s.t.
v(xi) = 1 is a stable extension of F .

Let us illustrate this result on the following example.

Example 1 (Cont): The stable CSP corresponding to F1 is (X ,D, C) s.t.
X = {a, b, c, d}, D = {{0, 1}, {0, 1}, {0, 1}, {0, 1}}, and C = {a ⇔ ¬d, b ⇔ ¬a,
c ⇔ ¬b, d ⇔ ¬c}. This CSP has two solutions: (1, 0, 1, 0) and (0, 1, 0, 1). The
sets {a, c} and {b, d} are the two stable extensions of F1.

The two previous CSPs are simple since attacks are directly transformed into
constraints. The notion of defence is not needed in both cases. However, things
are not so obvious with admissible semantics. The following definition shows
that a CSP which computes the admissible sets of an AF should consider both
the attacks and the defence in its constraints.

Definition 9 (Admissible CSP). Let F = (A,R) be an argumentation frame-
work. An admissible CSP associated with F is a tuple (X ,D, C) where X = A, for
each ai ∈ X , Di = {0, 1} and C = {(a⇒

∧
b:(b,a)∈R

¬b)∧(a ⇒
∧

b:(b,a)∈R
(

∨
c:(c,b)∈R

c)) |

a ∈ A}.

The following result shows that the solutions of an admissible CSP provide the
admissible extensions of the corresponding argumentation framework.

Theorem 3. Let (X ,D, C) be an admissible CSP associated with an AF F .
(v(x1), . . . , v(xn)) is a solution of the CSP iff the set {xj , . . . , xk} s.t. v(xi) = 1
is an admissible set of F .
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Let us illustrate the notion of admissible CSP with a simple example.

Example 2. Let us consider the framework F2 = (A2,R2) where A2 = {a, b, c, d}
andR2 = {(c, b), (d, b), (b, a)}. The admissible CSP associated with F2 is (X ,D, C)
where: X = A2, D = {{0, 1}, {0, 1}, {0, 1}, {0, 1}} and C = {d ⇒ �, c ⇒ �,
b ⇒ ¬c∧¬d, a ⇒ ¬b, a ⇒ c∨d}. This CSP has the following solutions: (0, 0, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 1) (1, 0, 1, 0), (1, 0, 0, 1), (1, 0, 1, 1). These solutions
return the admissible sets of F2, that is: {}, {c}, {d}, {c, d}, {a, c}, {a, d} and
{a, c, d}.

As preferred extensions are maximal (for set inclusion) admissible sets, then they
are computed by an admissible CSP.

Theorem 4. Let (X ,D, C) be an admissible CSP associated with an AF F . Each
maximal (for set inclusion) set {xj , . . . , xk}, s.t. v(xi) = 1 and (v(x1), . . . , v(xn))
is a solution of the CSP, is a preferred extension of F .

Let us come back to Example 2.

Example 2 (Cont): It is clear that the last solution (1, 0, 1, 1) is the one which
returns the only preferred extension of F2, i.e. {a, c, d}.

Complete extensions are also computed by a CSP which takes into account the
notion of defence in the constraints.

Definition 10 (Complete CSP). Let F = (A,R) be an argumentation frame-
work. A complete CSP associated with F is a tuple (X ,D, C) where X = A, for
each ai ∈ X , Di = {0, 1} and C = {(a⇒

∧
b:(b,a)∈R

¬b)∧(a ⇔
∧

b:(b,a)∈R
(

∨
c:(c,b)∈R

c)) |

a ∈ A}.

Note that there is a slight difference between the constraints of an admissible
CSP and those of a complete CSP. Since a complete extension should contain
all the arguments it defends, then an argument and all its defenders should be
in the same set. However, the only requirement on an admissible set is that it
defends its arguments. This is encoded by a simple logical implication.

Theorem 5. Let (X ,D, C) be a complete CSP associated with an AF F . The
tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set {xj, . . . , xk}, s.t.
v(xi) = 1 is a complete extension of F .

Example 2 (Cont): The complete CSP associated with F2 is (X ,D, C) where:
X = A2,D = {{0, 1}, {0, 1}, {0, 1}, {0, 1}} and C = {d⇒ �, c ⇒ �, b ⇒ ¬c∧¬d,
a ⇒ ¬b, a ⇔ c∨d}. This CSP has one solution which is (1, 0, 1, 1). Thus, F2 has
the set {a, c, d} as its unique complete extension.
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Since grounded extension is a minimal (for set inclusion) complete extension,
then it is computed by a complete CSP as follows.

Theorem 6. Let (X ,D, C) be a complete CSP associated with an AF F . The
grounded extension of F is the minimal (for set inclusion) set {xj , . . . , xk} s.t.
v(xi) = 1 and (v(x1), . . . , v(xn)) is a solution of the CSP.

Example 2 (Cont): The grounded extension of F2 is {a, c, d} which is returned
by the unique solution of the complete CSP corresponding to F2.

4 Constrained Frameworks

This section recalls the constrained version of Dung’s argumentation framework
and proposes its mappings to CSPs.

4.1 Basic Definitions

The basic argumentation framework of Dung has been extended in [9] by adding
a constraint on arguments. This constraint should be satisfied by Dung’s exten-
sions (under a given semantics). For instance, in Example 1, one may imagine
a constraint which requires that the two arguments a and c belong to the same
extension. Note that this constraint is satisfied by B1 but not by B2. Thus, B1

would be the only extension of the framework.
The constraint is a formula of a propositional language LA whose alphabet is

exactly the set A of arguments. Thus, each argument in A is a literal of LA. LA
contains all the formulas that can be built using the usual logical operators (∧,
∨, ⇒, ¬, ⇔) and the constant symbols (� and ⊥).

Definition 11 (Constraint, Completion). Let A be a set of arguments and
LA its corresponding propositional language.

– C is a constraint on A iff C is a formula of LA.
– The completion of a set B ⊆ A is B̂ = {a | a ∈ B} ∪ {¬a | a ∈ A \ B}.
– A set B ⊆ A satisfies C iff B̂ is a model of C (B̂ |= C ).

The completion of a set B of arguments is a set in which each argument of A
appears either as a positive literal if the argument belongs to B or as a negative
one otherwise. Thus, |B̂| = |A|.

A constrained argumentation framework (CAF) is defined as follows:

Definition 12 (CAF). A constrained argumentation framework (CAF) is a
triple F = (A,R, C ) where A is a set of arguments, R ⊆ A × A is an attack
relation and C is a constraint on the set A.

Dung’s semantics are extended to the case of CAFs. The idea is to compute
Dung’s extensions (under a given semantics), and to keep among those extensions
only the ones that satisfy the constraint C .
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Definition 13 (C-admissible set). Let F = (A,R, C ) be a CAF and B ⊆ A.
The set B is C -admissible in F iff:

1. B is admissible,
2. B satisfies the constraint C .

In [15], it has been shown that the empty set is always admissible. However, it
is not always C -admissible since the set ∅̂ does not always imply C .

Definition 14 (C-preferred, C-stable extension). Let F = (A,R, C ) be a
CAF and B ⊆ A.

– B is a C -preferred extension of F iff B is maximal for set-inclusion among
the C -admissible sets.

– B is a C -stable extension of F iff B is a C -preferred extension that attacks
all arguments in A\B.

The following result summarizes the links between the extensions of a CAF
F = (A,R, C ) and those of its basic version F ′ = (A,R).

Theorem 7. [9] Let F = (A,R, C ) be a CAF and F ′ = (A,R) be its basic
version.

– For each C -preferred extension B of F , there exists a preferred extension B′

of F ′ s.t. B ⊆ B′.
– Every C -stable extension of F is a stable extension of F ′. The converse does

not hold.

It is worth noticing that when the constraint of a CAF is a tautology, then
the extensions of this CAF coincide with those of its basic version (i.e. the
argumentation framework without the constraint).

Let us illustrate this notion of CAFs through a simple example.

Example 1 (Cont): Assume an extended version of the argumentation frame-
work F1 where we would like to accept the two arguments a and c. This is
encoded by a constraint C : a ∧ c. It can be checked that the CAF (A1,R1, C )
has one C -stable extension which is B1 = {a, c}. Note that B2 = {b, d} is a stable
extension of F1 but not a C -stable extension of its constrained version.

4.2 Mappings into CSPs

Let F = (A,R, C ) be a given CAF. In order to compute its C -extensions under
different semantics, we follow the same line of research as in the previous section.
The only difference is that in addition to the constraints defined in Section 3.2,
there is an additional constraint which is C .

Let us start with C -stable extensions. They are computed by the stable CSP
given in Def. 8 augmented by the constraint C in its set C.
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Definition 15 (C -stable CSP). Let F = (A,R, C ) be a constrained argumen-
tation framework. A C−stable CSP associated with F is a tuple (X ,D, C) where
X = A, for each ai ∈ X , Di = {0, 1} and C = {C } ∪ {a⇔

∧
b:(b,a)∈R

¬b | a ∈ A}.

Note that the constraints in C are all propositional formulas built over a language
LA whose alphabet is the set A of arguments. We show next that the solutions
of a C -stable CSP return all the C -stable extensions of the corresponding CAF.

Theorem 8. Let (X ,D, C) be a C -stable CSP associated with a CAF F =
(A,R, C ). The tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set
{xj , . . . , xk} such that v(xi) = 1 is a C -stable extension of F .

Example 1 (Cont): The C -stable CSP associated with the CAF extending F1

with the constraint C : a∧ c is (X ,D, C) s.t. X = {a, b, c, d}, D = {{0, 1}, {0, 1},
{0, 1}, {0, 1}}, and C = {a∧ c, a⇔ ¬d, b⇔ ¬a, c ⇔ ¬b, d ⇔ ¬c}. This CSP has
one solution which is (1, 0, 1, 0). It returns the C -stable extension {a, c} of the
CAF.

A CSP which computes the C -admissible sets of a CAF is grounded on the
admissible CSP introduced in Definition 9.

Definition 16 (C -admissible CSP). Let F = (A,R, C ) be a constrained
argumentation framework. A C -admissible CSP associated with F is a tuple
(X ,D, C) where X = A, for each ai ∈ X , Di = {0, 1} and C = {C } ∪ {(a ⇒∧
b:(b,a)∈R

¬b) ∧ (a ⇒
∧

b:(b,a)∈R
(

∨
c:(c,b)∈R

c)) | a ∈ A}.

We show that the solutions of this CSP are C -admissible extensions of the cor-
responding CAF.

Theorem 9. Let (X ,D, C) be a C -admissible CSP associated with a CAF F =
(A,R, C ). The tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set
{xj , . . . , xk} s.t. v(xi) = 1 is a C -admissible set of the CAF F .

C -preferred extensions are maximal (for set inclusion) admissible sets, then the
following result follows from the previous one.

Theorem 10. Let (X ,D, C) be a C -admissible CSP associated with a CAF F =
(A,R, C ). Each maximal (for set inclusion) set {xj , . . . , xk}, s.t. v(xi) = 1 and
(v(x1), . . . , v(xn)) is a solution of the CSP, is a C -preferred extension of F .

5 Preference-Based Frameworks

Is is well acknowledged in argumentation literature that arguments may not
have the same strength. For instance, arguments built from certain information
are stronger than arguments built from uncertain information. Consequently, in
[2] Dung’s framework has been extended in such a way to take into account the
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strengths of arguments when evaluating them. The idea is to consider in addition
to the attack relation, another binary relation ' which represents preferences
between arguments. This relation can be instantiated in different ways. Writing
a ' b means that a is at least as good as b. Let ( be the strict relation associated
with '. It is defined as follows: a ( b iff a ' b and not b ' a. In Dung’s
framework, an attack always succeeds (if the attacked argument is not defended).
In preference-based frameworks, an attack may fail if the attacked argument is
stronger than its attacker.

Definition 17 (PAF). A preference-based argumentation framework (PAF) is
a tuple F = (A,R,') where A is a set of arguments, R ⊆ A ×A is an attack
relation and ' is (partial or total) preorder on A (' ⊆ A×A).
The extensions of F (under any semantics) are those of the AF (A, Def) where
(a, b) ∈ Def iff (a, b) ∈ R and not(b ( a).

Let us now show how to compute the extensions of a PAF with a CSP. The
following CSP computes the conflict-free sets of arguments in a PAF.

Definition 18. Let F = (A,R,') be a PAF. A CSP associated with F is a
tuple (X ,D, C) where X = A, for each ai ∈ X , Di = {0, 1} and C = {a ⇒
¬b s.t. (a, b) ∈ R and not(b ( a)}.

Theorem 11. Let (X ,D, C) be a CSP instance associated with a PAF F =
(A,R,'). The tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set{xj , . . . ,
xk} s.t. v(xi) = 1 is conflict-free in PAF F .

Stable extensions of a PAF are computed by a slightly modified version of stable
CSP.

Definition 19 (Pref-stable CSP). Let F = (A,R,') be a PAF. A pref stable
CSP associated with F is a tuple (X ,D, C) where X = A, for each ai ∈ X ,
Di = {0, 1} and C = {a ⇔

∧
b:(b,a)∈R and not(ab)

¬b | a ∈ A}.

Theorem 12. Let (X ,D, C) be a pref stable CSP associated with a PAF F =
(A,R,'). The tuple (v(x1), . . . , v(xn)) is a solution of this CSP iff the set
{xj , . . . , xk} s.t. v(xi) = 1 is a stable extension of F .

Example 1 (Cont): Assume a PAF with A1 as its set of arguments, R1

its attack relation and that b ( a and d ( c. Its corresponding pref stable
CSP is (X ,D, C) s.t. X = {a, b, c, d}, D = {{0, 1}, {0, 1}, {0, 1}, {0, 1}}, and
C = {a ⇔ ¬d, b ⇔ �, c ⇔ ¬b, d ⇔ �}. This CSP has one solution: (0, 1, 0, 1).
Thus, the set {b, d} is the unique stable extensions of this PAF.

A CSP which computes the admissible sets of a PAF is an extended version of
admissible CSP.
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Definition 20 (Pref-admissible CSP). Let F = (A,R,') be a PAF. A
pref-admissible CSP associated with F is a tuple (X ,D, C) where X = A, for
each ai ∈ X , Di = {0, 1} and C = {(a ⇒

∧
b:(b,a)∈R and not(ab)

¬b) ∧ (a ⇒∧
b:(b,a)∈R and not(ab)

(
∨

c:(c,b)∈R and not(bc)

c)) | a ∈ A}.

We show that the solutions of this CSP are admissible extensions of the corre-
sponding PAF.

Theorem 13. Let (X ,D, C) be a pref-admissible CSP associated with a PAF F .
The tuple (v(x1), . . . , v(xn)) is a solution of this CSP iff the set {xj, . . . , xk} s.t.
v(xi) = 1 is an admissible set of F .

As preferred extensions are maximal (for set inclusion) admissible sets, then the
following result follows from the previous one.

Theorem 14. Let (X ,D, C) be a pref-admissible CSP associated with a PAF F .
Each maximal (for set inclusion) set {xj , . . . , xk}, s.t. v(xi) = 1 and (v(x1), . . . ,
v(xn)) is a solution of the CSP, is a preferred extension of F .

Complete extensions are computed by a revised version of complete CSP.

Definition 21 (Pref-complete CSP). Let F = (A,R,') be a PAF. A pref-
complete CSP associated with F is a tuple (X ,D, C) where X = A, for each
ai ∈ X , Di = {0, 1} and C = {(a ⇒

∧
b:(b,a)∈R and not(ab)

¬b)

∧(a ⇔
∧

b:(b,a)∈R and not(ab)

(
∨

c:(c,b)∈R and not(bc)

c)) | a ∈ A}.

Theorem 15. Let (X ,D, C) be a pref-complete CSP associated with a PAF F .
The tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set {xj , . . . , xk}, s.t.
v(xi) = 1 is a complete extension of F .

The grounded extension of a PAF is computed by the pref-complete CSP as
follows.

Theorem 16. Let (X ,D, C) be a pref-complete CSP associated with a PAF F .
The grounded extension of F is the minimal (for set inclusion) set {xj, . . . , xk}
s.t. v(xi) = 1 and (v(x1), . . . , v(xn)) is a solution of the CSP.

6 Related Work

There are very few attempts in the literature for modeling argumentation frame-
works as a CSP. To the best of our knowledge, the only works on the topic are
[4,5].

In [5], the authors have studied the problem of encoding weighted argumen-
tation frameworks by semirings. In a weighted framework, attacks do not nec-
essarily have the same weights. Thus, a weight (i.e. a value between 0 and 1) is
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associated with each attack between two arguments. When all the attacks have
weight 1, the corresponding framework collapses with Dung’s abstract framework
recalled in Section 3.

In [5], it has been shown how to compute stable and complete extensions by
semirings. In our paper, we have proposed an alternative approach for computing
those semantics and other semantics (like preferred and grounded semantics).
The approach is simpler and more natural. While in [5], the authors have used
soft CSP, in our paper we have used simple CSP. Moreover, we have studied
more semantics and two extended versions of Dung’s framework: the constrained
version proposed in [9] and the preferred version proposed in [2].

The works presented in [4,9] are closer to our. In these papers, the authors
have encoded Dung’s framework as a satisfiability problem (SAT). In [7], it
has been shown that SAT is a particular case of CSPs and a mapping from
SAT to CSP has been given. In our paper, we took advantage of that mapping
and we presented different CSPs which encode Dung’s semantics not only for
Dung’s framework, but also for constrained frameworks and preference-based
frameworks.

In [18] an implementation of Dung’s semantics using answer set programming
(ASP) has been provided. Thus, it is complementary to our work. Moreover, the
ASP literature has shown that there are links between ASP and CSP.

7 Conclusion

In this paper, we have expressed the problem of computing the extensions of
an argumentation framework under a given semantics as a CSP. We have in-
vestigated three types of frameworks: Dung’s argumentation framework [15],
its constrained version proposed in [9], and its extension with preferences [2].
For each of these frameworks, we have proposed different CSPs which compute
their extensions under various semantics, namely admissible, preferred, stable,
complete and grounded.

Such mappings are of great importance since they allow the use of the efficient
solvers that have been developed by CSP community. Thus, the efficiency of our
different CSPs depend on that of the solver that is chosen to solve them. Note
also that the CSP version of Dung’s argumentation framework is as simple as
this latter since a CSP can be represented as a graph.

It is worth mentioning that in the particular case of grounded semantics, there
is an additional test of minimality that is required after computing the solutions
of the corresponding CSP. This increases thus the complexity of computing the
grounded extension of an argumentation framework. Consequently, this partic-
ular extension should be computed using existing algorithms in argumentation
literature [1] and not by a CSP.

There are a number of ways to extend this work. One future direction con-
sists of proposing the CSPs that return other semantics like semi-stable [6] and
ideal [14]. Another idea consists of encoding weighted argumentation frame-
works [16] as CSPs. In a weighted framework, attacks may not have the same
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importance. Such framework can be encoded by valued CSP in which constraints
are associated with weights.
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Abstract. Equivalence between two argumentation systems means mainly that
the two systems return the same outputs. It can be used for different purposes,
namely in order to show whether two systems that are built over the same knowl-
edge base but with distinct attack relations return the same outputs, and more
importantly to check whether an infinite system can be reduced into a finite one.

Recently, the equivalence between abstract argumentation systems was inves-
tigated. Two categories of equivalence criteria were particularly proposed. The
first category compares directly the outputs of the two systems (e.g. their exten-
sions) while the second compares the outputs of their extended versions (i.e. the
systems augmented by the same set of arguments). It was shown that only identi-
cal systems are equivalent w.r.t. those criteria.

In this paper, we study when two logic-based argumentation systems are equiv-
alent. We refine existing criteria by considering the internal structure of argu-
ments and propose new ones. Then, we identify cases where two systems are
equivalent. In particular, we show that under some reasonable conditions on the
logic underlying an argumentation system, the latter has an equivalent finite sub-
system. This subsystem constitutes a threshold under which arguments of the
system have not yet attained their final status and consequently adding a new
argument may result in status change. From that threshold, the statuses of all
arguments become stable.

1 Introduction

One of the most abstract argumentation systems was proposed by Dung [6]. It consists
of a set of arguments and a binary relation representing conflicts among arguments.
Those conflicts are then solved using a semantics which amounts to define acceptable
sets of arguments, called extensions. From the extensions, a status is assigned to each
argument. An argument is skeptically accepted if it appears in each extension, it is
credulously accepted if it belongs to at least one extension, and finally it is rejected if it
is not in any extension.

Several works were done on this system. Some of them extended it with new features
like preferences between arguments (e.g. [2,4]) or weights on attacks (e.g. [7]), others
defined new semantics that solve some problems encountered with Dung’s ones (e.g.
[3,5]) and another category of works instantiated the system for application purposes.
More recently, the question of equivalence between two abstract argumentation systems
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was tackled by Oikarinen and Woltran [9]. To the best of our knowledge this is the only
work on this issue. The authors proposed two kinds of equivalence: basic equivalence
and strong equivalence. According to basic equivalence, two systems are equivalent if
they have the same extensions (resp. the same sets of skeptically/credulously accepted
arguments). However, these criteria were not studied by Oikarinen and Woltran. In-
stead, they concentrated on strong equivalence. Two systems are strongly equivalent if
they have the same extensions (resp. the same sets of skeptically/credulously accepted
arguments) even after extending both systems by any set of arguments. The authors
investigated under which conditions two systems are strongly equivalent. They have
shown that when there are no self-attacking arguments, which is the case in most ar-
gumentation systems, and particularly in most logic-based argumentation systems as
shown by Amgoud and Besnard [1], then two systems are strongly equivalent if and
only if they coincide, i.e. they are the same. This makes the notion of strong equiva-
lence a nice theoretical property, but without any practical applications.

In this paper, we study when two logic-based argumentation systems are equiva-
lent. We refine existing criteria by considering the internal structure of arguments and
propose new ones. We identify interesting cases where two systems are equivalent. In
particular, we show that under some reasonable conditions on the logic underlying an
argumentation system, the latter has an equivalent finite subsystem, which constitutes a
threshold under which arguments of the system have not yet attained their final status
and consequently any new argument may result in status change. From that threshold,
the statuses of all arguments become stable.

The paper is structured as follows: in Section 2, we recall the logic-based argumenta-
tion systems we are interested in. In Section 3, we propose three equivalence criteria that
refine the basic ones and study when two systems are equivalent w.r.t. each criterion.
In Section 4, we refine the three criteria of strong equivalence and give the conditions
under which they hold. Section 5 studies when the status of an argument may change
when a new argument is received or removed from a system. The last section is devoted
to some concluding remarks and perspectives. All the proofs are put in an appendix.

2 Logic-Based Argumentation Systems

This section describes the logical instantiations of Dung’s argumentation system we are
interested in. They are built around any monotonic logic whose consequence operator
satisfies the five postulates proposed by Tarski [10]. Indeed, according to those postu-
lates, a monotonic logic is a pair (L, CN) whereL is any set of well-formed formulae and
CN is a consequence operator, i.e. a function from 2L to 2L that satisfies the following
five postulates:

– X ⊆ CN(X) (Expansion)
– CN(CN(X)) = CN(X) (Idempotence)
– CN(X) =

⋃
Y ⊆f X CN(Y )1 (Finiteness)

– CN({x}) = L for some x ∈ L (Absurdity)
– CN(∅) �= L (Coherence)

1 The notation Y ⊆f X means that Y is a finite subset of X.
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Intuitively, CN(X) returns the set of formulae that are logical consequences of X ac-
cording to the logic at hand. Almost all well-known logics (classical logic, intuitionistic
logic, modal logics, . . .) are special cases of Tarski’s notion of monotonic logic. In such
a logic, a set X of formulae is consistent iff its set of consequences is not the set L.
For two formulae x, y ∈ L, we say that x and y are equivalent, denoted by x ≡ y, iff
CN({x}) = CN({y}). Arguments are built from a knowledge base Σ which is a finite
subset of L.

Definition 1 (Argument). Let (L, CN) be a Tarskian logic and Σ ⊆ L. An argument
built from Σ is a pair (X, x) s.t.

– X ⊆ Σ,
– X is consistent,
– x ∈ CN(X),
– �X ′ ⊂ X s.t. x ∈ CN(X ′).

X is the support of the argument and x its conclusion.

Notations: For an argument a = (X, x), Conc(a) = x and Supp(a) = X . For a
set S ⊆ L, Arg(S) = {a | a is an argument (in the sense of Definition 1) and
Supp(a) ⊆ S}. The set of all arguments that can be built from the language L will
be denoted by Arg(L). For any E ⊆ Arg(L), Base(E) =

⋃
a∈E Supp(a).

The previous definition specified what we accept as an argument. An attack relation
R is defined on a given set A of arguments, i.e. R ⊆ A × A. The writing aRb or
(a, b) ∈ R means that argument a attacks argument b. A study on how to choose an
appropriate attack relation was recently carried out by Amgoud and Besnard [1]. Some
basic properties of an attack relation were also discussed by Gorogiannis and Hunter
[8]. Examples of such properties are recalled below.

C1 ∀a, b, c ∈ A, if Conc(a) ≡ Conc(b) then aRc iff bRc
C2 ∀a, b, c ∈ A, if Supp(a) = Supp(b) then cRa iff cRb

The first property says that two arguments having equivalent conclusions attack exactly
the same arguments. The second property says that arguments having the same supports
are attacked by the same arguments. In this paper, we study attack relations verifying
these two properties. That is, from now on, we suppose that an attack relation verifies
C1 and C2.

An argumentation system is defined as follows.

Definition 2 (Argumentation system). An argumentation system (AS) built from a
knowledge base Σ is a pair F = (A,R) where A ⊆ Arg(Σ) and R ⊆ A × A is
an attack relation which verifies C1 and C2.

In the rest of the paper, we do not implicitly suppose that two arbitrary AS are built from
the same knowledge base. We also assume that arguments are evaluated using stable
semantics. Note that this is not a substantial limitation since the main purpose of this
paper is to explore equivalence and strong equivalence in logic-based argumentation
and not to study the subtleties of different semantics. For all the main results of this
paper, similar ones can be proved for all well-known semantics.
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Definition 3 (Stable semantics). Let F = (A,R) be an AS and E ⊆ A.

– E is conflict-free iff �a, b ∈ E s.t. aRb.
– E is a stable extension iff E is conflict-free and attacks any argument in A \ E .

Let Ext(F) denote the set of all the stable extensions of F .

A status is assigned to each argument as follows.

Definition 4 (Status of arguments). Let F = (A,R) be an AS and a ∈ A.

– a is skeptically accepted iff Ext(F) �= ∅ and ∀E ∈ Ext(F), a ∈ E
– a is credulously accepted iff ∃ E ∈ Ext(F) s.t. a ∈ E
– a is rejected iff �E ∈ Ext(F) s.t. a ∈ E

Note that there are three possible statuses of an argument. An argument is either 1)
skeptically and credulously accepted, or 2) only credulously accepted, or 3) rejected.
Let Status(a,F) be a function which returns the status of an argument a in an AS F .
We assume that this function returns three different values corresponding to the three
possible situations.

Property 1. Let F = (A,R) be an argumentation system and a, a′ ∈ A. If Supp(a) =
Supp(a′), then Status(a,F) = Status(a′,F).

In addition to extensions and the status of arguments, other outputs are returned by an
AS. These are summarized in the next definition.

Definition 5 (Outputs of an AS). Let F = (A,R) be an AS built over a knowledge
base Σ.

– Sc(F) = {a ∈ A | a is skeptically accepted }
– Cr(F) = {a ∈ A | a is credulously accepted }
– Outputsc(F) = {Conc(a) | a is skeptically accepted}
– Outputcr(F) = {Conc(a) | a is credulously accepted}
– Bases(F) = {Base(E) | E ∈ Ext(F)}

3 Basic Equivalence of Argumentation Systems

Three criteria for the notion of basic equivalence were proposed [9]. They compare the
outputs of systems as follows. Let F = (A,R) and F ′ = (A′,R′) be two argumenta-
tion systems. The following three criteria are used:

– Ext(F) = Ext(F ′)
– Sc(F) = Sc(F ′)
– Cr(F) = Cr(F ′)

While these criteria are meaningful, they are too rigid. Let us consider two argumen-
tation systems grounded on propositional logic. Assume that the first system has one
stable extension which is {({x}, x)} while the second system has {({x}, x∧ x)} as its
unique stable extension. According to the three previous criteria, the two systems are
not equivalent. In what follows, we refine the three criteria by taking into account the
internal structure of arguments via a notion of equivalent arguments.
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Definition 6 (Equivalent arguments). For two arguments a, a′ ∈ Arg(L), a is equiv-
alent to a′, denoted by a ≈ a′, iff Supp(a) = Supp(a′) and Conc(a) ≡ Conc(a′).

Note that this relation of equivalence was also used by Gorogiannis and Hunter [8].
The following property shows that equivalent arguments w.r.t. relation ≈ behave in

the same way w.r.t. attacks.

Property 2. Let F = (A,R) be an argumentation system. For all a, a′, b, b′ ∈ A, if
a ≈ a′ and b ≈ b′, then aRb iff a′Rb′.

Note that relation≈ is an equivalence relation (i.e. reflexive, symmetric and transitive).
The equivalence between two arguments is extended to equivalence between sets of
arguments as follows.

Definition 7 (Equivalent sets of arguments). Let E , E ′ ⊆ Arg(L). E is equivalent to
E ′, denoted by E ∼ E ′, iff ∀a ∈ E , ∃a′ ∈ E ′ s.t. a ≈ a′ and ∀a′ ∈ E ′, ∃a ∈ E s.t. a ≈ a′.

We can now define a flexible notion of equivalence between argumentation systems.

Definition 8 (Equivalence between two AS). Let F = (A,R) and F ′ = (A′,R′) be
two argumentation systems grounded on the same logic (L, CN). The two systems F and
F ′ are EQi-equivalent iff criterion EQi below holds:

EQ1 ∃f : Ext(F)→ Ext(F ′) s.t. f is a bijection and ∀E ∈ Ext(F), E ∼ f(E)
EQ2 Sc(F) ∼ Sc(F ′)
EQ3 Cr(F) ∼ Cr(F ′)

For two equivalent argumentation systems F and F ′, we will write F ≡EQX F ′, with
X ∈ {1, 2, 3}.

It is easy to show that each criterion EQi refines one criterion among those proposed
by Oikarinen and Woltran.

Property 3. Let F and F ′ be two argumentation systems grounded on the same logic
(L, CN).

– If Ext(F) = Ext(F ′), then F ≡EQ1 F ′.
– If Sc(F) = Sc(F ′), then F ≡EQ2 F ′.
– If Cr(F) = Cr(F ′), then F ≡EQ3 F ′.

Note that the converses are not always true. We show also that when two systems are
equivalent w.r.t. EQ1, then they are also equivalent w.r.t. EQ2 and EQ3. This means that
criterion EQ1 is more general than the others.

Theorem 1. LetF andF be two argumentation systems. IfF ≡EQ1 F ′, thenF ≡EQ2

F ′ and F ≡EQ3 F ′.

It can also be checked that equivalent arguments from equivalent systems have the same
status.

Theorem 2. LetF = (A,R),F ′ = (A′,R′) be two argumentation systems. IfF ≡EQ1

F ′, then for alla ∈ Aand for alla′ ∈ A′, ifa ≈ a′ thenStatus(a,F)=Status(a′,F ′).
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In order to show that outputs of equivalent systems are equivalent as well, we need the
following notion.

Definition 9 (Equivalent sets of formulae). Let X, Y ⊆ L. We say that X and Y are
equivalent, denoted by X ∼= Y , iff ∀x ∈ X , ∃y ∈ Y s.t. x ≡ y and ∀y ∈ Y, ∃x ∈ X s.t.
x ≡ y.

For example, in case of the propositional logic, this allows to say that the two sets
{x,¬¬y} and {x, y} are equivalent. Note that if X ∼= Y , then CN(X) = CN(Y ).
However, the converse is not true. For instance, CN({x ∧ y}) = CN({x, y}) while
{x ∧ y} �∼= {x, y}. One may ask why not to use the equality of CN(X) and CN(Y )
in order to say that X and Y are equivalent? The answer is given by the following ex-
ample of two AS whose credulous conclusions are respectively {x,¬x} and {y,¬y}. It
is clear that CN({x,¬x}) = CN({y,¬y}) while the two sets are different.

The next result shows that if two argumentation systems are equivalent w.r.t. EQ1,
then their sets of skeptical (credulous) conclusions are equivalent, and the bases of their
extensions coincide (i.e. are the same).

Theorem 3. Let F = (A,R) and F ′ = (A′,R′) be two AS. If F ≡EQ1 F ′, then:

– Outputsc(F) ∼= Outputsc(F ′)
– Outputcr(F) ∼= Outputcr(F ′)
– Bases(F) = Bases(F ′)

Since equivalent systems preserve all their important outputs, then we can exchange
a given system with an equivalent one. In what follows, we show how we can take
advantage of this notion of equivalence in order to reduce the number of arguments in
an AS. The idea is to take exactly one argument from each equivalence class of A/ ≈.
A resulting system is called core. Let X be a given set and ∼ an equivalence relation
on it. For all x ∈ X , we write [x] = {x′ ∈ X | x′ ∼ x} and X/ ∼ = {[x] | x ∈ X}.
Definition 10 (Core). Let F = (A,R) be an argumentation system. An argumentation
system F ′ = (A′,R′) is a core of F iff:

– A′ ⊆ A
– ∀C ∈ A/ ≈, |C ∩A′| = 1
– R′ = R|A′ , where R|A′ = {(a, b) | (a, b) ∈ R and a, b ∈ A′}, i.e. the restriction

ofR on A′.

The fact that at least one representative of each equivalence class is included in a core
allows us to show that any core of an AS is equivalent with the latter.

Theorem 4. If F ′ is a core of an argumentation system F , then F ≡EQ1 F ′.

We now provide a condition which guarantees that any core of any argumentation sys-
tem built from a finite knowledge base is finite. This is the case for logics in which
any consistent finite set of formulae has finitely many logically non-equivalent conse-
quences. To formalize this, we use the following notation for a set of logical conse-
quences made from consistent subsets of a given set: For any X ⊆ L, Cncs(X) =
{x ∈ L | ∃Y ⊆ X s.t. CN(Y ) �= L and x ∈ CN(Y )}. We show that if Cncs(Σ) has a
finite number of equivalence classes, then any core of F is finite (i.e. with a finite set of
arguments).
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Theorem 5. Let F = (A,R) be an argumentation system built from a finite knowledge
base Σ. If Cncs(Σ)/ ≡ is finite, then any core of F is finite.

This result is of great importance since it shows that instead of working with an infinite
argumentation system which is costly, one can focus only on its core which is finite. Re-
call that generally, logic-based argumentation systems are infinite. This is for instance
the case of systems that are grounded on propositional logic.

4 Strong Equivalence of Argumentation Systems

In this section, we study strong equivalence between logic-based argumentation sys-
tems. As mentioned before, two argumentation systems are strongly equivalent iff after
adding the same set of arguments to both systems, the new systems are equivalent w.r.t.
any of the basic criteria given in Definition 8.

Recall that Arg(L) is the set of all arguments that can be built from a logical language
(L, CN). Let R(L) be an attack relation on the set Arg(L), i.e. R(L) ⊆ Arg(L) ×
Arg(L). As in the first part of the paper, we assume that R(L) verifies properties C1
and C2.

Let F = (A,R) be an argumentation system whereA ⊆ Arg(L) andR = R(L)|A.
AugmentingF by an arbitrary setB of arguments (B ⊆ Arg(L)) results in a new system
denoted by F ⊕ B, where F ⊕ B = (Ab,Rb) with Ab = A ∪ B andRb = R(L)|Ab

.

Definition 11 (Strong equivalence between two AS). Let F = (A,R) and F ′ =
(A′,R′) be two argumentation systems built using the same logic (L, CN). The two
systems F and F ′ are EQi-strongly equivalent iff criterion EQiS below holds:

EQ1S ∀B ⊆ Arg(L), F ⊕ B ≡EQ1 F ′ ⊕ B
EQ2S ∀B ⊆ Arg(L), F ⊕ B ≡EQ2 F ′ ⊕ B
EQ3S ∀B ⊆ Arg(L), F ⊕ B ≡EQ3 F ′ ⊕ B.

In the remainder of the paper, we will use the terms ‘strongly equivalent w.r.t. EQi’ and
‘equivalent w.r.t. EQiS’ to denote the same thing (where i ∈ {1, 2, 3}).

Property 4. If two argumentation systems are strongly equivalent w.r.t. EQ1S (resp.
EQ2S, EQ3S), then they are equivalent w.r.t. EQ1 (resp. EQ2, EQ3).

The following property establishes the links between the three criteria of strong equiv-
alence.

Property 5. Let F and F ′ be two argumentation systems. If F ≡EQ1S F ′, then
F ≡EQ2S F ′ and F ≡EQ3S F ′.

We have already pointed out that in logic-based argumentation, there are no
self-attacking arguments [1]. Formally, �a ∈ Arg(L) such that (a, a) ∈ R(L). Fur-
thermore, it was proved that if there are no self-attacking arguments, then any two
argumentation systems are strongly equivalent (w.r.t. any of the three criteria used by
Oikarinen and Woltran) if and only if they coincide [9]. In what follows, we show that
if the structure of arguments is taken into account and if criteria are relaxed as we
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proposed in Definition 11, then there are cases where different systems are strongly
equivalent. More precisely, we show that if F = (A,R) and F ′ = (A′,R′) where R
andR′ are restrictions ofR(L) onA and A′, and if A ∼ A′ then F ≡EQ1S F ′.

Theorem 6. Let F = (A,R) and F ′ = (A′,R′) be two argumentation systems. If
A ∼ A′ then F ≡EQ1S F ′.

From the previous theorem, we conclude that if the sets of arguments of two systems
are equivalent w.r.t. ∼, then they are also strongly equivalent w.r.t. EQ2 and EQ3.

Corollary 1. Let F = (A,R) and F ′ = (A′,R′) be two argumentation systems. If
A ∼ A′ then F ≡EQ2S F ′ and F ≡EQ3S F ′.

As in the basic case, strong equivalence can be used in order to reduce the computational
cost of an argumentation system by removing unnecessary arguments. We provide a
condition under which a given argumentation system has a finite strongly equivalent
system.

Theorem 7. Let F = (A,R) be an argumentation system built over a knowledge base
Σ. If Cncs(Σ)/ ≡ is finite, then there exists an argumentation system F ′ = (A′,R′)
such that F ≡EQ1S F ′ and A′ is finite.

The following corollary follows directly.

Corollary 2. Let F = (A,R) be an argumentation system built over a knowledge base
Σ. If Cncs(Σ)/ ≡ is finite, then there exists an argumentation system F ′ = (A′,R′)
s.t. F ≡EQ2S F ′ and F ≡EQ3S F ′ andA′ is finite.

This result is of great importance. It shows that our criteria are useful since on the one
hand, there are situations when different systems are equivalent, and on the other hand,
our criteria allow to reduce an infinite system to a finite one.

5 Dynamics of Argument Status

Let us now show when the previous results may be used when studying dynamics of
argumentation systems. The problem we are interested in is defined as follows: Given
an argumentation system F = (A,R) whereA ⊆ Arg(L) andR = R(L)|A, when the
status of any argument a ∈ A may evolve if a new argument e ∈ Arg(L) is received
or if an argument e ∈ A is removed. When F is extended by e, the resulting system
is denoted by F ⊕ {e}. When an argument e is removed from F , the new system is
denoted by F 	 {e} = (A′,R′) is defined as A′ = A \ {e} andR′ = R(L)|A′ .

5.1 Extending an AS by New Argument(s)

Let F = (A,R) be an argumentation system and Base(A) = Σ. By definition of F ,
the set A is a subset of Arg(Σ) (the set of all arguments that may be built from Σ). Let
Fc = (Arg(Σ),R(L)|Arg(Σ) denote the complete version of F . We also say that F is
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incomplete iff A ⊂ Arg(Σ). Note that, generally for reasoning over a knowledge base,
a complete system is considered. However, in dialogues the exchanged arguments do
not necessarily constitute a complete system. To say it differently, it may be the case
that other arguments may be built using the exchanged information (the formulas of the
supports of exchanged arguments).

In what follows, we show that the statuses of arguments in an incomplete system are
floating in case that system does not contain a core of the complete system. However, as
soon as an incomplete system is a core or contains a core of the complete system, then
the status of each argument becomes fixed and will never change when a new argument
from Arg(Σ) is received.

Theorem 8. Let F = (A,R) and Fc = (Arg(Base(A)), R(L)|Arg(Base(A))) be two
argumentation systems. If there exists a core (A′,R′) of Fc s.t. A′ ⊆ A, then ∀e ∈
Arg(Base(A)) the following hold:

– F ≡EQ1 F ⊕ {e}
– ∀a ∈ A, Status(a,F) = Status(a,F ⊕ {e})
– Status(e,F⊕{e}) = Status(a,F), where a ∈ A is any argument s.t. Supp(a) =
Supp(e).

We now show that when a system does not contain a core of the system built over its
base, new arguments may change the status of the existing ones.

Example 1. Let (L, CN) be propositional logic and let us consider the attack relation
defined as follows: ∀a, b ∈ Arg(L), aRb iff ∃h ∈ Supp(b) s.t. Conc(a) ≡ ¬h. Let
F = (A,R) withA = {a1, a2} s.t. a1 = ({x, x → y}, y) and a2 = ({¬x},¬x). It can
be checked that a2Ra1. Thus, a2 is skeptically accepted while a1 is rejected. Note that
Base(A) = {x,¬x, x → y}, thus e = ({x}, x) ∈ Arg(Base(A)). In the new system
F ⊕ {e}, the two arguments both change their statuses.

The previous example illustrates a situation where an argumentation system does not
contain a core of the system constructed from its base. This means that not all crucial
arguments are considered in F ; thus, it is not surprising that it is possible to revise
arguments’ statuses.

5.2 Removing Argument(s) from an AS

We have already seen that extracting a core of an argumentation system is a compact
way to represent the original system. In that process, redundant arguments are deleted
from the original system. In this subsection, we show under which conditions deleting
argument(s) does not influence the status of other arguments.

As one may expect, if an argument e is deleted from an argumentation system F =
(A,R) and if the resulting system F 	 {e} is a core or contains a core of the complete
version of F , then all arguments in A keep their original status.

Theorem 9. Let F = (A,R) be an argumentation system, Fc = (Arg(Base(A)),
R(L)|Arg(Base(A))) its complete version. Let e ∈ A. If F 	 {e} contains a core of
Fc, then the following hold:
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– F ≡EQ1 F 	 {e}
– ∀a ∈ A \ {e}, Status(a,F) = Status(a,F 	 {e}).

It can be shown that Theorem 8 (resp. Theorem 9) is true even if a (finite or infinite) set
of arguments is added (resp. deleted) to F . In order to simplify the presentation, only
results when one argument is added (deleted) were presented. The general result (when
an arbitrary set of arguments is added/removed) is proved in Lemma 2 in the Appendix.

6 Conclusion

In this paper, we studied the problem of equivalence and strong equivalence between
logic-based argumentation systems. While there are no works on equivalence in argu-
mentation, previous works on strong equivalence are disappointing, since according to
the proposed criteria [9] no different systems may be equivalent, the only exception
being a case when systems contain self-attacking arguments, which is never a case in
logical based argumentation [1]. Thus, this notion has no practical application since two
different systems are never strongly equivalent.

In this paper, we have refined existing criteria and defined new ones by taking into
account the structure of arguments. Since almost all applications of Dung’s abstract ar-
gumentation system are obtained by constructing arguments from a given knowledge
base, using a given logic, we studied the most general case in logic-based argumenta-
tion: we conducted our study for any logic which satisfies five basic properties proposed
by Tarski [10]. We proposed flexible equivalence criteria and we showed when two sys-
tems are equivalent and strongly equivalent w.r.t. those criteria. The results show that
for almost all well-known logics, even for an infinite argumentation system, it can be
possible to find a finite system which is strongly equivalent to it.
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Appendix

Proof. of Property 1. Let F = (A,R) be an AS and a, a′ ∈ A such that Supp(a) =
Supp(a′). We prove that for every stable extension E , we have a ∈ E iff a′ ∈ E . Let
us assume that a ∈ E and a′ /∈ E . Since E is a stable extension, then ∃b ∈ E s.t. bRa′.
Since R satisfies property C2, then bRa which contradicts the fact that E is a stable
extension. The case a /∈ E and a′ ∈ E is symmetric. This means that each extension
of F either contains both a and a′ or does not contain any of those two arguments.
Consequently, the statuses of those arguments must coincide.

Proof. of Property 2. Let F = (A,R) be an AS and a, a′, b, b′ ∈ A such that a ≈ a′

and b ≈ b′. Assume that aRb. Since Supp(b) = Supp(b′) then from C2, it follows
that aRb′. From C1 and the fact that Conc(a) ≡ Conc(a′), we get a′Rb′. To show that
a′Rb′ implies aRb is similar.

Proof. of Theorem 1. LetF = (A,R),F ′ = (A′,R′) be two AS such thatF ≡EQ1 F ′.

– Let us prove that Sc(F) ∼ Sc(F ′). If Ext(F) = ∅, then from F ≡EQ1 F ′,
Ext(F ′) = ∅. In this case, Sc(F) ∼ Sc(F ′) holds trivially, since Sc(F) =
Sc(F ′) = ∅. Assume now that Ext(F) �= ∅.
Let Sc(F) = ∅. We will prove that Sc(F ′) = ∅. Suppose the contrary and let a′ ∈
Sc(F ′). Let E ′ ∈ Ext(F ′). Argument a′ is skeptically accepted, thus a′ ∈ E ′. Let
f be a bijection from F ≡EQ1 F ′, and let us denote E = f−1(E ′). From F ≡EQ1

F ′, we obtain E ∈ Ext(F). Furthermore, E ∼ E ′, and, consequently, ∃a ∈ E s.t.
a ≈ a′. Theorem 2 implies that a is skeptically accepted in F , contradiction.
Let Sc(F) �= ∅ and let a ∈ Sc(F). Since F ≡EQ1 F ′, and a is in at least one
extension, then ∃a′ ∈ A′ s.t. a′ ≈ a. From F ≡EQ1 F ′ and from Theorem 2, a′ is
skeptically accepted in F ′. Thus ∀a ∈ Sc(F), ∃a′ ∈ Sc(F ′) s.t. a′ ≈ a. To prove
that ∀a′ ∈ Sc(F ′), ∃a ∈ Sc(F) s.t. a ≈ a′ is similar.

– We can easily see that Ext(F) = ∅ iff Ext(F ′) = ∅ and that Ext(F) = {∅}
iff Ext(F ′) = {∅}. Let a ∈ Cr(F). We prove that ∃a′ ∈ Cr(F ′) s.t. a ≈ a′.
Since a ∈ Cr(F) then ∃E ∈ Ext(F) s.t. a ∈ E . Let f be a bijection between
from F ≡EQ1 F ′ and let E ′ = f(E). From F ≡EQ1 F ′, we obtain that E ∼ E ′,
thus ∃a′ ∈ E ′ s.t. a ≈ a′. This means that ∀x ∈ Cr(F), ∃x′ ∈ Cr(F ′) such that
x ≈ x′. To prove that ∀a′ ∈ Cr(F ′), ∃a ∈ Cr(F) such that a ≈ a′ is similar. Thus,
Cr(F) ∼ Cr(F ′).

Proof. of Theorem 2. If F has no extensions, then all arguments in F and F ′ are re-
jected. Thus, in the rest of the proof, we study the case when Ext(F) �= ∅. We will prove
that for any extension E of F , a ∈ E iff a′ ∈ f(E), where f : Ext(F) → Ext(F ′) is
a bijection s.t. ∀E ∈ Ext(F), E ∼ f(E). Let E ∈ Ext(F), let a ∈ E and let a′ ∈ A′
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with a ≈ a′. Let E ′ = f(E); we will prove that a′ ∈ E ′. From F ≡EQ1 F ′, one obtains
∃a′′ ∈ E ′ s.t. a ≈ a′′. (Note that we do not know whether a′ = a′′ or not.) We will prove
that {a′} ∪ E ′ is conflict-free. Let us suppose the contrary. This means that ∃x ∈ E ′ s.t.
xR′a′ or a′R′x. From (xR′a′∨a′R′a′), we have (xR′a′′∨a′′R′x), which contradicts
the fact that E ′ is a stable extension. We conclude that {a′} ∪ E ′ is conflict-free. Since
E ′ is a stable extension, it attacks any argument y /∈ E ′. Since E ′ does not attack a′,
then a′ ∈ E ′.

This means that we showed that for any E ∈ Ext(F), if a ∈ E then a′ ∈ f(E). Let
a /∈ E and let us prove that a′ /∈ f(E). Suppose the contrary, i.e. suppose that a′ ∈ f(E).
Since we made exactly the same hypothesis on F and F ′, by using the same reasoning
as in the first part of the proof, we can prove that a ∈ E , contradiction. This means
that a′ /∈ f(E). So, we proved that for any extension E ∈ Ext(F), we have a ∈ E iff
a′ ∈ f(E).

If a is skeptically accepted, then for any E ∈ Ext(F), a ∈ E . Let E ′ ∈ Ext(F ′).
Then, from F ≡EQ1 F ′, there exists E ∈ Ext(F) s.t. E ′ = f(E). Since a ∈ E , then
a′ ∈ E ′. If a is not skeptically accepted, then ∃E ∈ Ext(F) s.t. a /∈ E . It is clear that
E ′ = f(E) is an extension of F ′ and that a′ /∈ E ′. Thus, in this case a′ is not skeptically
accepted in F ′.

Let a be credulously accepted in F and let E ∈ Ext(F) be an extension s.t. a ∈ E .
Then, a′ ∈ f(E), thus a′ is credulously accepted in F ′. It is easy to see that the case
when a is not credulously accepted in F and a′ is credulously accepted in F ′ is not
possible.

If a is rejected in F , then a is not credulously accepted, thus a′ is not credulously
accepted which means that it is rejected.

Proof. of Theorem 3. Let F ≡EQ1 F ′. From Theorem 1, we obtain F ≡EQ2 F ′ and
F ≡EQ3 F ′. It is easy to see that this implies Outputsc(F) ∼= Outputsc(F ′) and
Outputcr(F) ∼= Outputcr(F ′). Considering the third part of the theorem, let f be a
bijection from F ≡ F ′, let E ∈ Ext(F) and E ′ = f(E). One can easily check that
Base(E) = Base(E ′). This means that ∀E ∈ Ext(F), ∃E ′ ∈ Ext(F ′) s.t. Base(E) =
Base(E ′). To see that ∀E ′ ∈ Ext(F ′), ∃E ∈ Ext(F) s.t. Base(E) = Base(E ′) is
similar. Consequently, Bases(F) = Bases(F ′).

Lemma 1. Let R(L) ⊆ Arg(L) × Arg(L) be an attack relation on the set of all
arguments built from L. Let F = (A,R) and F ′ = (A′,R′) be two AS such that
A,A′ ⊆ Arg(L) andR = R(L)|A, R′ = R(L)|A′ . If A ∼ A′, then F ≡EQ1 F ′.

Proof. Let us first suppose that Ext(F) �= ∅ and let us define the function f ′ : 2A →
2A

′
as follows: f ′(B) = {a′ ∈ A′ | ∃a ∈ B s.t. a′ ≈ a}.

Let f be the restriction of f ′ to Ext(F). We will prove that the image of this function
is Ext(F ′) and that f is a bijection between Ext(F) and Ext(F ′) which verifies EQ1.

– First, we will prove that for any E ∈ Ext(F), f(E) ∈ Ext(F ′). Let E ∈ Ext(F)
and let E ′ = f(E). We will prove that E ′ is conflict-free. Let a′, b′ ∈ E ′. There
must exist a, b ∈ E s.t. a ≈ a′ and b ≈ b′. Since E is an extension, ¬(aRb) and
¬(bRa). By applying Property 2 on (Arg(L),R(L)), we have that ¬(a′R′b′) and
¬(b′R′a′). Let x′ ∈ A′ \E ′. Then ∃x ∈ A s.t. x ≈ x′. Note also that it must be that
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x /∈ E . Since E ∈ Ext(F), then ∃y ∈ E s.t. yRx. Note that ∃y′ ∈ E ′ s.t. y′ ≈ y.
From Property 2, y′R′x′.

– We have shown that the image of f is the set Ext(F ′). We will now prove that
f : Ext(F) → Ext(F ′) is injective. Let E1, E2 ∈ Ext(F) with E1 �= E2 and
E ′ = f(E1) = f(E2). We will show that if E1 ∼ E2 then E1 = E2. Without loss
of generality, let ∃x ∈ E1 \ E2. Then, from E1 ∼ E2, ∃x′ ∈ E2, s.t. x′ ≈ x. Then,
since x ∈ E1 and x /∈ E2, from the proof of Property 1 we obtain that x′ ∈ E1 and
x′ /∈ E2. Contradiction with x′ ∈ E2. This means that ¬(E1 ∼ E2). Without loss
of generality, ∃a1 ∈ E1 \ E2 s.t. �a2 ∈ E2 s.t. a1 ≈ a2. Let a′ ∈ A′ s.t. a′ ≈ a1.
Recall that E ′ = f(E2). Thus, ∃a2 ∈ E2 s.t. a2 ≈ a′. Contradiction.

– We show that f : Ext(F) → Ext(F ′) is surjective. Let E ′ ∈ Ext(F ′), and let us
show that ∃E ∈ Ext(F) s.t. E ′ = f(E). Let E = {a ∈ A | ∃a′ ∈ E ′ s.t. a ≈ a′}.
From Property 2 we see that E is conflict-free. For any b ∈ A \ E , ∃b′ ∈ A′ \ E ′
s.t. b ≈ b′. Since E ′ ∈ Ext(F ′), then ∃a′ ∈ E ′ s.t. a′R′b′. Now, ∃a ∈ E s.t. a ≈ a′;
from Property 2, aRb. Thus, E is a stable extension in F .

– We will now show that f : Ext(F) → Ext(F ′) verifies the condition of EQ1.
Let E ∈ Ext(F) and E ′ = f(E). Let a ∈ E . Then, ∃a′ ∈ A′ s.t. a′ ≈ a. From
the definition of f , it must be that a′ ∈ E ′. Similarly, if a′ ∈ E ′, then must be an
argument a ∈ A s.t. a ≈ a′, and again from the definition of the function f , we
conclude that a ∈ E .

From all above, we conclude that F ≡EQ1 F ′. Let us take a look at the case when
Ext(F) = ∅. We will show that Ext(F ′) = ∅. Suppose not and let E ′ ∈ Ext(F ′). Let
us define E = {a ∈ A | ∃a′ ∈ E ′ s.t. a ≈ a′}. From Property 2, E must be conflict-free.
The same property shows that for any b ∈ A \ E , ∃a ∈ E s.t. aRb. Thus, E is a stable
extension in F . Contradiction with the hypothesis that Ext(F) = ∅.

Proof. of Theorem 4. The result is obtained by applying Lemma 1 on F and F ′.

Proof. of Theorem 5. Let F ′ = (A′,R′) be a core of F and let us prove thatF ′ is finite.
Since Σ is finite, then {Supp(a) | a ∈ A′}must be finite. If for all H ∈ {Supp(a) | a ∈
A′}, the set {a ∈ A′ | Supp(a) = H}, is finite, then the set A′ is clearly finite. Else,
there exists H0 ∈ {Supp(a) | a ∈ A′}, s.t. the set AH0 = {a ∈ A′ | Supp(a) = H0} is
infinite. By the definition ofA′, one obtains that ∀a, b ∈ AH0 , Conc(a) �≡ Conc(b). It is
clear that ∀a ∈ AH0 , Conc(a) ∈ Cncs(Σ). This implies that there are infinitely many
different formulae having logically non-equivalent conclusions in Cncs(Σ), formally,
set Cncs(Σ)/ ≡ is infinite, contradiction.

Proof. of Theorem 6. Let B ⊆ Arg(L). Since A ∼ A′ then clearly A ∪ B ∼ A′ ∪ B.
From Lemma 1, we obtain that F ⊕ B ≡EQ1 F ′ ⊕ B. Thus, F ≡EQ1S F ′.

Proof. of Theorem 7. Let A′ ⊆ A be a set defined as follows: ∀a ∈ A ∃!a′ ∈ A′ s.t.
a′ ≈ a. It is clear that F ′ = (A′,R′ = R|A′) is a core of F . Since A ∼ A′, then from
Theorem 6, F ≡EQ1S F ′. From Theorem 5, F ′ is finite.

Lemma 2. LetF = (A,R) be an AS built from Σ which contains a core of G = (Ag =
Arg(Σ),Rg = R(L)|Ag ) and let E ⊆ Arg(Σ). Then:
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– F ≡EQ1 F ⊕ E
– ∀a ∈ A, Status(a,F) = Status(a,F ⊕ E)
– ∀e ∈ E \A, Status(e,F ⊕E) = Status(a,F), where a ∈ A is any argument s.t.
Supp(a) = Supp(e).

Proof. Let F ′ = F ⊕ E with F ′ = (A′,R′) and let H = (Ah,Rh) be a core of G s.t.
Ah ⊆ A. We will first show thatH is a core of both F and F ′. Let us first show thatH
is a core of F . We will show that all conditions of Definition 10 are verified.

– From what we supposed, we have that Ah ⊆ A.
– We will show that ∀a ∈ A ∃!a′ ∈ Ah s.t. a′ ≈ a. Let a ∈ A. Since a ∈ Ag and H

is a core of G, then ∃!a′ ∈ Ah s.t. a′ ≈ a.
– Since R = R(L)|A and Rh = R(L)|Ah

then from Ah ⊆ A we obtain that
Rh = R|Ah

.

Thus,H is a core of F . Let us now show thatH is also a core of F ′:

– Since Ah ⊆ A and A ⊆ A′ then Ah ⊆ A′.
– Let a ∈ A′. Since a ∈ Ag andH is a core of system G, then ∃!a′ ∈ Ah s.t. a′ ≈ a.
– Since R′ = R(L)|A′ , Rh = R(L)|Ah

and Ah ⊆ A′, then we obtain that Rh =
R′|Ah

.

We have shown that H is a core of F and of F ′. From Theorem 4, F ≡EQ1 H and
F ′ ≡EQ1 H. Since ≡ is an equivalence relation, then F ≡EQ1 F ′. Let a ∈ A. From
Theorem 2, Status(a,F) = Status(a,F ′).

Let e ∈ A′ \ A and let a ∈ A be an argument such that Supp(a) = Supp(e). From
Property 1, we obtain Status(e,F ′) = Status(a,F ′). Since we have just seen that
Status(a,F ′) = Status(a,F), then Status(e,F ′) = Status(a,F).

Proof. of Theorem 8. This result is a consequence of Lemma 2.

Proof. of Theorem 9. This result is a consequence of Lemma 2.
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Abstract. Different abstract argumentation frameworks have been used
for various applications within multi-agents systems. Among them, bipo-
lar frameworks make use of both attack and support relations between
arguments. However, there is no single interpretation of the support, and
the handling of bipolarity cannot avoid a deeper analysis of the notion of
support. In this paper we consider three recent proposals for specializing
the support relation in abstract argumentation : the deductive support,
the necessary support and the evidential support. These proposals have
been developed independently within different frameworks. We restate
these proposals in a common setting, which enables us to undertake a
comparative study of the modellings obtained for the three variants of the
support. We highlight relationships and differences between these vari-
ants, namely a kind of duality between the deductive and the necessary
interpretations of the support.

1 Introduction

Formal model of argumentation have recently received considerable interest
across different AI communities, like defeasible reasoning and multi-agent sys-
tems. Typical applications such as for instance negotiation and practical rea-
soning represent pieces of knowledge and opinions as arguments and reach some
conclusion or decision on the basis of interacting arguments.

Abstract argumentation frameworks model arguments as atomic entities, ig-
noring their internal structure and focusing on the interactions between argu-
ments, or sets of arguments. Several semantics can be defined that formalize
different intuitions about which arguments to accept from a given framework.

The first abstract framework introduced by [5] limits the interactions to con-
flicts between arguments which the so-called attack binary relation. Several spe-
cialized or extended versions of Dung’s framework have been proposed, namely
the bipolar framework [3] which is capable of modelling a kind of positive inter-
action expressed by a support relation. Positive interaction between arguments
has been first introduced by [6,10]. In [3], the support relation is left general
so that the bipolar framework keeps a high level of abstraction. The associated
semantics are based on the combination of the attack relation with the support
relation which results in new complex attack relations. However, introducing
the notion of support between arguments within abstract frameworks has been
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a controversial issue and some counterintuitive results have been obtained, show-
ing that the combination of both interactions cannot avoid a deeper analysis of
the notion of support.

Moreover, there is no single interpretation of the support. Indeed, recently,
a number of researchers proposed specialized variants of the support relation.
Each specialization can be associated with an appropriate modelling using an
appropriate complex attack. However, these proposals have been developed quite
independently, based on different intuitions and with different formalizations. In
this paper we do not want to discuss all the criticisms which have been advanced,
but our purpose is to show that bipolar abstract frameworks provide a convenient
way to model and discuss various kinds of support. In particular, we address a
comparative study of these proposals, in a common setting.

Section 2 presents a brief review of the classical and bipolar abstract argu-
mentation frameworks. In Section 3 we discuss three specializations of the notion
of support and propose an appropriate modelling for each of them in the bipolar
framework. In Section 4 we conclude and give some perspectives for future work.

2 Background on Abstract Argumentation Frameworks

2.1 Dung Argumentation Framework

Dung’s seminal abstract framework consists of a set of arguments and one type
of interaction between them, namely attack. What really means is the way ar-
guments are in conflict.

Definition 1 (Dung AF). A Dung’s argumentation framework (AF, for short)
is a pair 〈A,R〉 where A is a finite and non-empty set of arguments and R is a
binary relation over A (a subset of A×A), called the attack relation.

An argumentation framework can be represented by a directed graph, called the
interaction graph, in which the nodes represent arguments and the edges are
defined by the attack relation: ∀a, b ∈ A, aRb is represented by a �→ b.

Definition 2 (Admissibility in AF). Given 〈A,R〉 and S ⊆ A,

S is conflict-free iff there are no arguments a, b ∈ S, such that aRb.
a ∈ A is acceptable with respect to S iff ∀b ∈ A such that bRa, ∃c ∈ S such
that cRb.
S is admissible iff S is conflict-free and each argument in S is acceptable
with respect to S.

Standard semantics introduced by Dung (preferred, stable, grounded) enable to
characterize admissible sets of arguments that satisfy some form of optimality.

Definition 3 (Extensions). Given 〈A,R〉 and S ⊆ A,

S is a preferred extension of 〈A,R〉 iff it is a maximal (with respect to ⊆)
admissible set.
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S is a stable extension of 〈A,R〉 iff it is conflict-free and for each a �∈ S,
there is b ∈ S such that bRa.
S is the grounded extension of 〈A,R〉 iff it is the least (with respect to
⊆) admissible set X such that each argument acceptable with respect to X
belongs to X.

Example 1. Let AF be defined by A = {a, b, c, d, e} and Ratt = {(a, b), (b, a),
(b, c), (c, d), (d, e), (e, c)} and represented by the following graph. There are
two preferred extensions ({a} and {b, d}), one stable extension ({b, d}) and the
grounded extension is the empty set.

a b c d

e

/ /

//

/

/

2.2 Bipolar Argumentation Framework

The abstract bipolar argumentation framework [3] [4] extends Dung’s framework
in order to take into account both negative interactions expressed by the attack
relation and positive interactions expressed by a support relation.

Definition 4 (BAF). A bipolar argumentation framework (BAF, for short) is
a tuple 〈A,Ratt,Rsup〉 where A is a finite and non-empty set of arguments, Ratt

(resp. Rsup) is a binary relation over A called the attack relation (resp. the
support relation).

A BAF can still be represented by a directed graph Gb called the bipolar interac-
tion graph, with two kinds of edges. Let ai and aj ∈ A, aiRattaj (resp. aiRsupaj)
means that ai attacks aj (resp. ai supports aj) and it is represented by a �→ b
(resp. by a → b).

Example 2. For instance, in the following graph representing a BAF, there is
a support from g to d and an attack from b to a

a b c d g

e f

/ /

/

New kinds of attack emerge from the interaction between the direct attacks and
the supports.

For instance, the supported attack and the secondary attack have been intro-
duced in [4] (and previously in [3] with a different terminology).
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Definition 5 ([4] Complex attacks in BAF)

There is a supported attack from a to b iff there is a sequence a1R1 . . .Rn−1an,
n ≥ 3, with a1 = a, an = b, ∀i = 1 . . . n− 2, Ri = Rsup and Rn−1 = Ratt.
There is a secondary attack from a to b iff there is a sequence a1R1 . . .Rn−1an,
n ≥ 3, with a1 = a, an = b, R1 = Ratt and ∀i = 2 . . . n− 1, Ri = Rsup.

Note that the above definitions combine a direct attack with a sequence of direct
supports, that is a direct or indirect support. In the following, a supports b means
that there is a sequence of direct supports from a to b.

Example 2 (cont’d) In this example, there is a supported attack from g (or
d) to b and a secondary attack from f to a.

From these complex attacks, new notions of conflict-freeness can be obtained.
Moreover, the notion of coherence of a set of arguments can be still enforced
with the notion of safety [3].

Definition 6 ([3] Safety in BAF). Given S ⊆ A, S is safe iff there are no
arguments a, b ∈ S, and c ∈ A such that

b supports c or c ∈ S and
there is a supported attack or a direct attack from a to c.

Admissibility in a bipolar argumentation framework can be defined as in Dung’s
framework by combining acceptability and conflict-freeness. Different definitions
can be proposed depending on the notion of attack (direct, supported, secondary,
...) and on the notion of coherence which are used.

3 Modelling Various Kinds of Support

3.1 A Need for Specialization of Support

Handling support and attack at an abstract level has the advantage to keep
genericity. An abstract bipolar framework is useful as an analytic tool for study-
ing different notions of complex attacks, complex conflicts, and new semantics
taking into account both kinds of interactions between arguments. However,
the drawback is the lack of guidelines for choosing the appropriate definitions
and semantics depending on the application. For instance, in Dung’s framework,
whatever the semantics, the acceptance of an argument which is not attacked
is guaranteed. Is it always desirable in a bipolar framework? Two related ques-
tions are: Can arguments stand in an extension without being supported? Can
arguments be used as attackers without being supported? It may depend on the
interpretation of the support, as shown below.

In the following, we discuss three specialized variants of the support relation,
which have been proposed recently: the deductive support, the evidential support
and the necessary support. Let us first briefly give the underlying intuition, then
some illustrative examples.
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Deductive support [1] is intended to capture the following intuition: If aRsupb
then the acceptance of a implies the acceptance of b, and as a consequence the
non-acceptance of b implies the non-acceptance of a.

Evidential support [8,9] enables to distinguish between prima-facie and stan-
dard arguments. Prima-facie arguments do not require any support from other
arguments to stand, while standard arguments must be supported by at least
one prima-facie argument.

Necessary support [7], is intended to capture the following intuition: If aRsupb
then the acceptance of a is necessary to get the acceptance of b, or equivalently
the acceptance of b implies the acceptance of a.

The following example shows that different interpretations of the support can
be given, and that, according to the considered interpretation, some complex
attacks need to be considered, while others are counterintuitive.

Example 3. This example has been inspired from [7] (and also from a variant
in [1]). Let us consider the following knowledge: Obtaining a Bachelor’s degree
with honors (BH) supports obtaining a scholarship (S) and suppose that having
at least one bad mark (BM) does not allow to obtain the honors (even if the
average of marks normally allows it). One possible interpretation of the support
is: obtaining a bachelor’s degree is necessary for obtaining a scholarship. So, if
we don’t have a BH then we are sure that we don’t have S.

Now let us suppose that obtaining S may be also fulfilled if the student justi-
fies modest incomes (MI). A more appropriate interpretation of the support is a
deductive one. In that case, a secondary attack from BM to S would be counter-
intuitive. Moreover, it is known that making a blank copy (BC) supports having
a very bad mark. With a deductive interpretation of that support, it makes sense
to add a supported attack from BC to BH. Finally, we add the knowledge: hav-
ing a very good mark for each test of the examination (V G) supports obtaining
a Bachelor’s degree with honors.

The whole example can be formalized in a BAF represented by the following
graph:

BC BM BH S

V G MI

/

Example 4. (Example justifying a secondary attack) Let us consider the fol-
lowing dialogue between three agents:

Agent 1: The room is dark, so I will light up the lamp.
Agent 2: But the electric meter does not work.
Agent 1: Are you sure?
Agent 3: The electrician has detected a failure (F)

This dialogue shows interactions between the positions RD (the room is dark),
LL (the lamp will light up), EW (the electric meter works), and F (there is
a failure in the electric meter). These interactions can be formalized in a BAF
represented by the following graph:
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RD LL EW F/ /

The intuitive interpretation of the support is a necessary one since the lamp
cannot light up when the electric meter does not work. In that case, it makes
sense to add a secondary attack from F to LL .

Example 5. (Example for an evidential support) Let us consider the BAF rep-
resented by the graph:

a b

c d

/

Assume first that the only prima-facie argument is c. So, d may stand, but neither
a nor b is grounded in prima-facie arguments. As a consequence, the attack on
d cannot be taken into account. So, c and d will be accepted. Assume now that
the prima-facie arguments are a and c. So, b and d may stand and the attack
on d must be considered. In that case the accepted arguments are a, b and c. In
order to reinstate d, an attack could be added either from c to b either from c
to a. Indeed, an attack from c to a invalidates the attack on d by rendering b
unsupported. Finally, assume that the prima-facie arguments are a, b and c. The
attack from b to d holds without the support by a. So an attack from c to a does
not enable to reinstate d. There must be an attack from c to b.

3.2 A Framework for a Comparative Study of Various Supports

We propose to restate various notions of support in the BAF framework. We
will show that each specialized variant of the support can be associated with
appropriate complex attacks. Then, we will be able to highlight links between
these various notions of support.

Deductive and necessary supports. We first discuss the deductive and nec-
essary support, and prove that these two specializations of the support are indeed
dual. As a consequence, these two kinds of support can be handled simultane-
ously in a bipolar framework. Moreover, defining admissibility in a bipolar frame-
work with deductive and necessary support can be done exactly as in Dung’s AF,
as follows: For each specialized support, the combination of the direct attacks
and the supports results in the addition of appropriate complex attacks. Then
Definition 2 can be applied, where R represents a direct or a complex attack.
So, once the complex attacks have been added, we recover a classical Dung AF.

As explained above, a deductive support is intended to enforce the following
constraint: If aRsupb then the acceptance of a implies the acceptance of b, and as
a consequence the non-acceptance of b implies the non-acceptance of a. Suppose
now that cRattb. The acceptance of c implies the non-acceptance of b and so
the non-acceptance of a. This strong constraint can be taken into account by
introducing a new attack, called mediated attack.
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Definition 7 ([1] Mediated attack). There is a mediated attack from a to b
iff there is a sequence a1Rsup . . .Rsupan−1, and anRattan−1, n ≥ 3, with a1 = b,
an = a.

Example 3 (cont’d) . From V GRsupBH and BMRattBH, the mediated attack
BMRattV G will be added.

Moreover, the deductive interpretation of the support justifies the introduc-
tion of supported attacks (cf Definition 5). If aRsupb and bRattc, the accep-
tance of a implies the acceptance of b and the acceptance of b implies the non-
acceptance of c. So, the acceptance of a implies the non-acceptance of c.

In the following, deductive support will be called d-support.

Definition 8 (Modelling deductive support). The combination of the di-
rect attacks and the d-supports results in the addition of supported attacks and
mediated attacks.

Example 3 (cont’d) . The following complex attacks are added: a supported
attack from from BC to BH and a mediated attack from BM to V G. Then
supports can be ignored, and we obtain the following AF:

BC BM BH S

V G MI

/

/

/

This AF has one preferred (and also stable and grounded) extension {BC, BM ,
S, MI}.

As explained above, modelling deductive support in a BAF can be done in
considering the associated Dung AF consisting of the same arguments and of the
relation built from the direct attacks, the supported attacks and the mediated
attacks. Note that the notion of conflict-free in this new AF exactly corresponds
to the notion of safety (issued from [3] and recalled in Definition 6) which has
been proposed in a BAF for enforcing the notion of coherence.

Necessary support corresponds to the following interpretation: If aRsupb then
the acceptance of a is necessary to get the acceptance of b, or equivalently the
acceptance of b implies the acceptance of a. Suppose now that cRatta. The
acceptance of c implies the non-acceptance of a and so the non-acceptance of b.
This constraint can be taken into account by introducing a new attack, called
extended attack in [7]. Indeed, it is exactly the secondary attack presented above
[4]. Moreover, another kind of complex attack can be justified: If aRsupb and
aRattc, the acceptance of b implies the acceptance of a and the acceptance of
a implies the non-acceptance of c. So, the acceptance of b implies the non-
acceptance of c. This constraint relating b and c should be enforced by adding
a new complex attack from b to c. However, this complex attack has not been
considered in [7]. In the following, necessary support will be called n-support.
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Deductive support and necessary support have been introduced indepen-
dently. However, they correspond to dual interpretations of the support in the
following sense: a n-supports b is equivalent to b d-supports a. Besides, it is easy
to see that the constructions of mediated attack and secondary attack are dual
in the following sense: the mediated attacks obtained by combining the attack
relation Ratt and the support relation Rsup are exactly the secondary attacks
obtained by combining the attack relation Ratt and the support relation which
is the inverse relation of Rsup. Moreover, the complex attacks which are missing
in [7] as evoked previously can be recovered by considering the supported attacks
built from Ratt and the inverse of Rsup.

Consequently, the modelling by the addition of appropriate complex attacks
satisfies this duality.

Definition 9 (Modelling necessary support). The combination of the direct
attacks and the n-supports can be handled by turning the n-supports into the dual
d-supports and then adding the supported attacks and mediated attacks.

Example 6. We complete Ex 5 by adding an attack from c to a:

a b

c d

//

Assume that the support relation has been given a necessary interpretation. That
is a is necessary for b and c is necessary for d. It is equivalent to consider that
there is a deductive support from b to a and also from d to c. Then, we add a
supported attack from d to a and a mediated attack from c to b. The resulting
AF is represented by:

a b

c d

/

/

//

It follows that {c, d} is the only preferred (and also stable and grounded) exten-
sion.

Evidential support. Evidential support [8,9] is intended to capture the notion
of support by evidence: an argument cannot be accepted unless it is supported
by evidence. Evidence is represented by a special argument, and the arguments
which are directly supported by this special argument are called prima-facie
arguments. Arguments can be accepted only if they are supported (directly or
indirectly) by prima-facie arguments. Besides, only supported arguments can be
used to attack other arguments.

In Oren’s evidential argument framework, attacks and supports may be carried
out by a set of arguments (and not only by a single argument). However, for the
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purpose of comparing different specializations of the notion of support, we will
restrict the presentation of evidential support to the case where attacks and
supports are carried out by single arguments. All the definitions that we give in
the following are inspired by those given in [8,9].

Given a BAF 〈A,Ratt,Rsup〉, we distinguish a subset Ae ⊆ A of arguments
which do not require any support to stand. These arguments will be called self-
supported and correspond to the prima-facie arguments. We recall that in a
BAF, a supports b means that there is a sequence of direct supports from a to b.

So, evidential support (or e-support for short) can be defined as a particular
case of this notion of (direct or indirect) support.

Definition 10 (e-support)

a is e-supported iff either a ∈ Ae or there exists b such that b is e-supported
and bRsupa.
a is e-supported by S (or S e-supports a) iff either a ∈ Ae or there is an
elementary sequence b1Rsup . . .RsupbnRsupa such that {b1 . . . bn} ⊆ S and
b1 ∈ Ae.
S is self-supporting iff S e-supports each of its elements.

Example 6 (cont’d) . Assume that Ae = {a, c}. Then b is e-supported by {a},
d is e-supported by {c}. The set {c, d} is self-supporting.

The combination of the direct attacks and the evidential support results in re-
strictions on the notion of attack and also on the notion of acceptability. The
first idea is that only e-supported arguments may be used to make a direct attack
on other arguments. This is formalized by the notion of e-supported attack.

Definition 11 (e-supported attack). S carries out an e-supported attack on
a iff there exists b ∈ S such that bRatta and b is e-supported by S.

The second idea concerns reinstatement: If a is attacked by b, which is e-
supported, a can be reinstated either by a direct attack on b or by an attack on
c such that without c, b would be no longer supported. In order to enforce this
idea, minimal (for set-inclusion) e-supported attacks have to be considered. It is
easy to prove that:

Proposition 1. X is a minimal e-supported attack on a iff X is the set of
arguments appearing in a minimal length elementary sequence b1Rsup . . .Rsupbn

such that b1 ∈ Ae and bnRatta.

Note that a minimal e-supported attack corresponds to a particular case of a
supported attack as defined in Definition 5. In the case when b1Rsup . . .Rsupbn

with b1 ∈ Ae and bnRatta, each bi carries out a supported attack on a.
Now, following Oren’s evidential argument framework, we propose a new def-

inition for acceptability. There are two conditions on S, for a being acceptable
wrt S. The first one is classical and concerns defence or reinstatement: S must
invalidate each minimal e-supported attack on a (either by attacking the attacker
of a or by rendering this attacker unsupported). The second condition requires
that S e-supports a.
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Definition 12 (e-acceptability). a is e-acceptable wrt S iff

For each minimal e-supported attack X on a, there exists b ∈ S and x ∈ X
such that bRattx and
a is e-supported by S.

Definition 13 (e-admissibility). S is e-admissible iff

Each element of S is e-acceptable wrt S and
there are no arguments a, b ∈ S, such that aRattb.

Example 6 (cont’d) . Assume that Ae = {a, c}. There is only one minimal
e-supported attack on d: {a, b}. As cRatta and d is e-supported by {c}, we have
that d is e-acceptable wrt {c}. Then, {c, d} is e-admissible. Note that there is
no e-supported attack on b. However, b does not belong to any e-admissible set,
because no e-admissible set e-supports b. Assume now that Ae = {a, b, c}. {b}
is the only minimal e-supported attack on d. As no argument attacks b, no e-
admissible set contains d. The only e-admissible set is {c, b}.
The above example enables us to highlight the relationship between the notion of
evidential support and the notion of necessary support. It seems that evidential
support can be viewed as a kind of weak necessary support, in the following sense:
Assume that b is supported by a and c; with the necessary support interpretation,
the acceptance of b implies the acceptance of a and the acceptance of c; with
the evidential interpretation, the acceptance of b implies the acceptance of a
or the acceptance of c, if b is not self-supported and, if b is self-supported, the
acceptance of b implies no constraint on a and c.

The above comment suggests to consider the particular case when each argu-
ment is self-supported, that is Ae = A. In that case, X is a minimal e-supported
attack on a iff X is reduced to one argument which directly attacks a. So, classi-
cal acceptability is recovered: a is e-acceptable wrt S iff a is acceptable wrt S in
Dung’s sense. And as each argument is self-supported, we also recover classical
admissibility. That is to say that the support relation is ignored.

Another interesting case occurs when self-supported arguments are exactly
those which do not have any support, that is Ae = {a ∈ A / there does not exist
b such that bRsupa}. However, even in that particular case, evidential support
cannot be modelled with necessary support, as shown by the following example.

Example 7. We complete Ex 6 by adding an argument e and a support from e
to b:

a b e

c d

//

Assume that Ae = {a, c, e} (this is represented by a double box around the ele-
ments of Ae). The only ⊆-maximal e-admissible set is {c, e, b}. Indeed, d is not
e-acceptable wrt {c} since {e, b} is a minimal e-supported attack on d and neither
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b nor e is attacked. Now, if we handle the same graph with necessary supports,
we first take the inverse of Rsup and then add supported and mediated attacks.
This results in adding an attack from d to a and an attack from c to b:

a b e

c d

// / /

Taking into account these new attacks, the set is {c, b, e} is no longer admissible
(there is a conflict between c and b) and {c, d} becomes admissible.

The above example shows that the notion of evidential support cannot be
reduced to strict necessary support (nor to deductive support). So, it is not
possible to handle together in the same bipolar framework evidential support
and necessary / deductive support.

4 Conclusions and Future Works

In this paper, we have considered three recent proposals for specializing the sup-
port relation in abstract argumentation : the deductive support, the necessary
support and the evidential support. These proposals have been developed inde-
pendently within different frameworks and with appropriate modellings, based
on different intuitions.

We have restated these proposals in a common setting, the bipolar argumen-
tation framework. Basically, the idea is to keep the original arguments, to add
complex attacks defined by the combination of the original attack and the sup-
port, and to modify the classical notions of acceptability. We have proposed a
comparative study of the modellings obtained for the considered variants of the
support, which has enabled us to highlight relationships and differences between
these variants. Namely, we have shown a kind of duality between the deductive
and the necessary interpretations of support, which results in a duality in the
modelling by complex attacks. In contrast, the evidential interpretation is quite
different and cannot be captured with deductive or necessary supports.

This work is a first step towards a better understanding of the notion of
support in argumentation.

For future works, we first intend to go deeply into the comparative study,
by exploiting another interesting idea : a bipolar framework can be turned into
a meta-argumentation framework, which instantiates Dung’s framework with
meta-arguments. This meta-argumentation framework enables to reuse Dung’s
principles and properties. Meta-arguments may represent groups of arguments,
or may just be auxiliary arguments representing pairs of interacting arguments.
So, the set of arguments and the interactions are completely different from the
original ones. Some promising work has been done by [9] which proposes a
mapping from the evidential argumentation framework to meta-argumentation
framework. This mapping is based on the use of maximal self-supporting paths
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and preserves semantics. We plan to follow that research direction for other
variants of the support.

Another interesting topic for further research is to restate the study of the
support in the more general setting of Abstract Dialectical Frameworks (ADF
for short) [2]. Such frameworks also enable to express acceptance conditions over
interacting nodes of a graph. These conditions are much more flexible than the
conditions described for deductive, necessary or evidential support. For instance,
if c depends on a and b, the following constraint can be taken into account: The
acceptance of b and the non-acceptance of a imply the acceptance of c. However,
the status of a node in the graph only depends on the status of its parents in the
graph. So, the strict deductive interpretation of the support dependency cannot
be taken into account. For instance,if x d-supports s and yRatts, no condition
in ADF will ensure that x and y cannot be accepted together, since x has no
parent.
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Handling Enthymemes in Time-Limited Persuasion
Dialogs�

Florence Dupin de Saint-Cyr

IRIT, Toulouse, France

Abstract. This paper is a first attempt to define a framework to handle
enthymeme in a time-limited persuasion dialog. The notion of incomplete argu-
ment is explicited and a protocol is proposed to regulate the utterances of a per-
suasion dialog with respect to the three criteria of consistency, non-redundancy
and listening. This protocol allows the use of enthymemes concerning the sup-
port or conclusion of the argument, enables the agent to retract or re-specify an
argument. The system is illustrated on a small example and some of its properties
are outlined.

1 Introduction

Many persuasion debates have marked human history: Herodotus debate on the three
government types, Valiadolid debate, the Bohr-Einstein debate about quantum mechan-
ics, presidential TV debates... The “winner” is often considered as very clever and
skilled. Indeed oratory featured in the original Olympics and there exist teaching lessons
for being a good orator (e.g. [19]). A good orator is someone who is able to make his
point of view adopted by the public whatever the truth is and whatever his adversary
may say. This skillness and cleverness is a big challenge for human being in everyday
life as well as in History since debates are both very common and very influential. This
is why it is important that artificial intelligence focuses on this field of research. This
implies to develop at least two features: representing and handling persuasion dialogs,
designing good artificial orators (able to find strategies to win a debate).

The first feature has already been widely developed in the literature (see e.g.
[3,5,8,10,11,17]) but as far as we know the dialog persuasion systems that have been
developed either do not define what is an argument or always assume that an argument
is a “perfect” minimal proof of a formula. Our purpose is to develop a system in which
it is possible to express an argument, called “approximate argument” by [13], that takes
into account implicit information. Indeed, it is generally admitted that an argument is
composed of two parts: a support and a claim, such that the support is a logical mini-
mal proof of the claim, this kind of argument is called “logical argument” by [13]. In
everyday life, there is nearly no “logical argument”, since it is not useful and maybe tir-
ing to completely justify a given claim, we often give an argument without mentioning
implicit common knowledge. Otherwise argumentation would be very long to express
and boring to listen (and could be recursively infinite when each part of the support
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of a claim should in turn be completely explained). Shortly speaking a logical argu-
ment is not into line with Gricean maxims. Approximate arguments, called enthymeme
by Aristotle, is a syllogism keeping at least one of the premises or conclusion unsaid.
Enthymemes have already been studied in the literature [25,23,7,14], but no formal
persuasion dialog system able to handle enthymeme has yet been defined.

Handling enthymeme in persuasion dialog has two advantages: first it allows to deal
with more concrete cases where agents want to shorten their arguments, second it may
involve strategic matter, namely droping a premise may remove a possible attack or
may enable to cheat by pretending that implicit knowledge can help to prove a claim
while it is not the case... The problem of implicit knowledge was one of the motivation
for non-monotonic reasoning which aims at reasonning despite a lack of information.
In enthymeme handling, this is not the only aim, it may also be interesting to focus on
what is missing. The following example is given by Schopenhauer [19] to exemplify the
“extension stratagem” which is the first among the 38 stratagems he designed for taking
victory in a dispute (without worrying about the objective truth). Here, the argument of
Schopenhauer’s opponent is an enthymeme.

Example 1 ([19]). “I asserted that the English were supreme in drama. My opponent
attempted to give an instance to the contrary, and replied that it was a well-known fact
that in music, and consequently in opera, they could do nothing at all. I repelled the
attack by reminding him that music was not included in dramatic art, which covered
tragedy and comedy alone. This he knew very well. What he had done was to try to
generalize my proposition, so that it would apply to all theatrical representations, and,
consequently, to opera and then to music, in order to make certain of defeating me.”

In the following, we first reintroduce enthymemes in a logical framework, then we
present the utterances that can be done in a persuasion dialog with enthymemes. For
instance we propose a new speech act, Complete, that allows to precise an already ex-
pressed approximate argument. We then develop the protocol that governs a persuasion
dialog allowing enthymemes (first defined in [9]). While in concrete dialogs it is often
the case that people do not listen to each other or are inconsistent, here the protocol
enforces consistency, non redundancy and listening. A novelty of our proposal is the
representation of time-limited persuasion dialogs in which each speaker is given a fixed
speech-time, this ensures that every dialog has an end and enforces agents to take time
into account when uttering their arguments. Although the example we provide is very
short and simple, its size allows us to use it along the paper even if it does not show all
the strategical aspects of enthymemes (left for further research).

2 Arguments and Enthymemes

We consider a logical language L , where Greek letters (e.g. ϕ, ψ) denote formulas, �
the logical inference,⊥ the contradiction. Let us recall the definition of [13]:

Definition 1 (logical and approximate arguments [6,13])

A logical argument is a pair 〈S, ϕ〉 such that:

⎧⎪⎪⎨⎪⎪⎩
(1) S ⊆ L , ϕ ∈ L
(2) S � ⊥,
(3) S � ϕ,
(4) �S′ ⊂ S s.t. S′ � ϕ
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An approximate argument is a pair 〈S, ϕ〉 where the support S ⊆ L is a set of propo-
sitional formulas, and the claim is ϕ ∈ L .
ArgΣ (resp. AArgΣ) denotes the set of logical (resp. approximate) arguments that can
be built from a set of formulas Σ, lower-case Latin letters (e.g. a, b) denote arguments.

Notation: if A is a set of arguments, the set of formulas pertaining to the supports and
claims of these arguments is denoted by form(A), form(A) =

⋃
〈S,ϕ〉∈A S ∪ {ϕ}.

In other words, an approximate argument is simply a pair (support,claim) and when the
support is a minimal proof of the claim this argument is called a logical argument. Note
that an approximate argument does not need to have a consistent support S and it is not
required that its conclusion ϕ is a logical consequence of S. In order to be able to deal
with arguments that have incomplete support or incompletely developed conclusion
we first define an incomplete argument and then extend the enthymeme formalization
proposed in [7].

Definition 2 (incomplete argument). An incomplete argument is a pair 〈S, ϕ〉 where
S ⊆ L and ϕ ∈ L (i.e., 〈S, ϕ〉 is an approximate argument) such that:{

(1) S � ϕ
(2) ∃ψ ∈ L s.t. 〈S ∪ {ψ}, ϕ〉 is a logical argument

IArgΣ denotes the set of incomplete arguments that can be built on a set of formulas Σ.

In this definition, the first condition expresses the fact that the argument is strictly in-
complete, i.e., the support is not sufficient to infer the conclusion. The second one im-
poses that it is possible to complete it in order to obtain a logical argument. Logical or
incomplete arguments are particular distinct cases of approximate arguments:

Proposition 1. IArgΣ ∩ ArgΣ = ∅ and IArgΣ ∪ ArgΣ ⊆ AArgΣ .

Note that the support of an incomplete argument should be consistent or else adding
any formula to it would still give an inconsistent support (hence violate condition (2)
for logical arguments). Moreover S should be consistent with ϕ, more formally:

Remark 1. If 〈S, ϕ〉 is an incomplete argument then S � ⊥ and S � ¬ϕ.

This remark shows that this notion is a slight variation of Hunter’s concept of precur-
sor, which he defines as an approximate argument 〈S, ϕ〉 such that S � ϕ and S � ¬ϕ.
Hence an “incomplete argument” is a “precursor” but the converse is false. The small
difference lays in the fact that a completed precursor may not be minimal, for instance
〈{a, b, a ∧ b}, c〉 is a “precursor” and not an “incomplete argument” since any comple-
tion would have a non minimal support (i.e., in Definition 1, (4) will not hold).

Example 1 (continued): The argument proposed by Schopenhauer’s opponent is an
incomplete argument. Indeed, “in music (m), and consequently in opera (o), English
are not supreme (¬s)” maybe transcribed into the following approximate argument:
a1 = 〈{m → ¬s}, o → ¬s〉. And by adding the formula o → m to its support we
obtain the following logical argument: b1 = 〈{m → ¬s, o → m}, o→ ¬s〉.



152 F. Dupin de Saint-Cyr

Definition 3 (enthymeme). Let a = 〈S, ϕ〉 and a′ = 〈S′, ϕ′〉 being approximate argu-

ments, 〈S′, ϕ′〉 completes 〈S, ϕ〉 iff1
{

(1) S ⊂ S′ and ϕ = ϕ′ or
(2) S ⊆ S′ and {ϕ′} ∪ S′ � ϕ and ϕ �= ϕ′

a is an enthymeme for a′ iff a′ is a logical argument and a′ completes a.

In other words, there are two ways to “complete” an argument: either by adding premises,
then the support should be strictly included in the completed support or by specifying
the conclusion, then it should be inferred by the union of the completed conclusion
and support but should differ from the previous conclusion. Our definition extends the
definition of [7] in the sense that it allows to cover arguments whose conclusion is an
implicit claim requiring implicit support (the following example would not be consid-
ered as an enthymeme by [7]).

Example 1 (continued): We may build an infinity of logical arguments decoding an
incomplete argument. For instance, a1 is an enthymeme for the logical argument b1 but
also for the logical argument: γ1 = 〈{m → ¬s, o→ m, o, o → d},¬(d→ s)〉.

Note that completion does not necessary give a logical argument since the initial ap-
proximate argument may have an inconsistent or redundant support, or the completion
may be too weak for being a logical proof of the claim. Moreover, even logical argu-
ments may be completed, since the completion may concern the conclusion.

Remark 2. When a is an enthymeme for b, it is not necessarily the case that b ∈ IArg.

The following function gives the set of logical arguments that can be built from a knowl-
edge base Σ and that are enthymemes for a given argument.

Definition 4 (Decode). Let Σ ⊆ L and 〈S, ϕ〉 ∈ AArg, DecodeΣ(〈S, ϕ〉) = {〈S′, ϕ′〉 ∈
Arg such that S′\S ⊆ Σ, ϕ′ ∈ Σ and 〈S, ϕ〉 is an enthymeme for 〈S′, ϕ′〉}.

In the previous example, it holds that b1, γ1 ∈ DecodeL (a1). It is easy to see that
incomplete arguments are particular enthymemes for logical arguments that have the
same conclusion (ϕ = ϕ′). In other words,

Proposition 2. If 〈S, ϕ〉 is an incomplete argument then DecodeL (〈S, ϕ〉) �= ∅.

Proof. If a = 〈S, ϕ〉 is an incomplete argument then there exists ψ ∈ L such that
〈S ∪ {ψ}, ϕ〉 is a logical argument. Besides ψ �∈ S since S � ϕ while S ∪ {ψ} � ϕ,
hence S ⊂ S ∪ {ψ}, in other words, there exists a′ ∈ Arg s.t. a′ completes a.

3 A Protocol for Persuasion Dialogs

In persuasion dialogs [12,24], two or more participants are arguing about a claim, and
each party is trying to persuade the other participants to adopt its point of view (i.e. to
agree with the “right” claim). The set of symbols representing agents is denoted AG
but in the following we are going to focus on a dialog between only two agents (named

1 “iff” stands for “if and only if”, ⊂ denotes strict set-inclusion.
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1 and 2, this assumption is convenient but a generalization for more agents can easily
be done).The current agent will often be called x in that case the other agent will be
denoted by x. A communicative act, called move, is defined below:

Definition 5 (Moves). A move is a triplet (sender, act, content), where sender ∈
AG, act ∈ {Accept, Agree, Argue, Assert, Challenge, Close, Dismantle, Quiz,
Quizlink, Complete, Retract} and (content = ∅ or content ∈ L or content ∈
AArg or content ∈ AArg× AArg).
For a given move, the functions Sender, Act and Content are returning respectively,
the first, second and third element of the triplet. When there is no ambiguity about the
sender, the move is denoted by (act content).

A move m is well-formed if (Act(m) Content(m)) matches a utterance given in
Table 1. Let M be the set of all well-formed moves.

We consider a set of eleven speech acts that are described in Table 1 with their three
associated effects (locutionary, illocutionary and perlucotionary [4]). Namely, the six
usual speech acts used in persuasion dialog are augmented with Quiz and Agree pro-
posed by [7] enabling to handle incomplete arguments, to which we add Quizlink en-
abling to ask for a completion concerning the conclusion of an argument, Complete
allowing to precise an argument and Dismantle for retracting an argument. Although
some speech acts are “assertive” (according to Searle [20]) namely Assert and Argue,
we claim that they are “commissives” in the sense that they commit the utterer to both
be able to explain them when challenged and avoid to contradict them. Moreover the

Table 1. Speech acts for enthymeme persuasion dialogs

Utterance Meaning Speaker’s intention Effects on the audience
Accept ϕ acceptance of ϕ to announce that he accepts ϕ the speaker is associated with ϕ

Agree
〈S, ϕ〉

acceptance of 〈S, ϕ〉 to announce that he accepts
〈S, ϕ〉 as an enthymeme

the speaker is associated with formulas of
S ∪ {ϕ} and knows a logical argument
that decodes 〈S, ϕ〉

Argue
〈S, ϕ〉

providing a set of formu-
las S which may support
ϕ if completed

to prove that ϕ is justified the speaker is associated with formulas of
S ∪ {ϕ} and knows a logical argument
that decodes 〈S, ϕ〉

Assert ϕ statement of assertion ϕ to make the hearers believe ϕ the speaker is associated with ϕ

Challenge
ϕ

seeking for arguments
supporting ϕ

to obtain arguments for ϕ the receiver must justify ϕ

Close closing the dialog to announce that he has noth-
ing to add

the speaker can no longer participate to
the dialog.

Complete
(a, b)

providing a new argument
b completing a previous
one a

to explicit an incomplete argu-
ment

the speaker is associated with the support
and claim of b and knows a logical argu-
ment that decodes b

Dismantle
〈S, ϕ〉

withdrawal of argument
〈S, ϕ〉

to renounce to the fact that S
is a proof of ϕ

the speaker is no more associated with
〈S, ϕ〉

Quiz
〈S, ϕ〉

seeking for a completion
of argument 〈S, ϕ〉

to obtain a more detailed argu-
ment for ϕ

the receiver must complete 〈S, ϕ〉

Quizlink
〈S, ϕ〉

seeking for a link between
〈S, ϕ〉 and the dialog

to obtain a completion in
which the implicit conclusion
is disclosed

the receiver must complete at least the
conclusion of 〈S, ϕ〉

Retract ϕ withdrawal of assertion ϕ to restore consistency or to re-
nounce to prove ϕ

the speaker is no more associated with ϕ
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“directive” speech acts such as Challenge or Quiz induce commitments for the hearer
to answer to these questions. While Close is clearly a “declarative” speech act, it is less
obvious for Retract, Dismantle, Accept and Agree since they not only are “declara-
tive” but also “assertive” (because the accepted or agreed formulas are known as if the
utterer had asserted them, the retracted formulas or dismantled arguments correspond
to assertion of the form “I assert neither ϕ nor ¬ϕ” “I assert neither that S is a valid
proof for ϕ nor that it is not”) and “commissives”(since they are assertive).

These commitments are stored in a base called “commitment store” (first introduced
by [12] in the dialog game DC). The protocol is a boolean function that uses it in order
to check if a move is acceptable at a given stage of the dialog as follows:

Definition 6 (Persuasion dialog). Let p ∈ N ∪ {∞}, let (F, A) be a common knowl-
edge base s.t. F ⊆ L and A ⊆ AArg and F ∪ form(A) is consistent.

A sequence (mn)n∈�1,p� is a persuasion dialog of length p based on (F, A) iff⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Act(m1) = Assert and ∀n ∈ �1, p�, mn is a well formed move
and there is a sequence (CSn)n∈�1,p+1� such that:∀n ∈ �1, p + 1�, CSn is a tuple
(F1, A1, R1, F

◦, A◦, F2, A2, R2) ∈ 2L × 2AArgL × 2M × 2L × 2AArgL × 2L

×2AArgL × 2M called commitment store at stage n satisfying:
-Starting condition: CS1 = (∅, ∅, ∅, F, A, ∅, ∅, ∅)
-Current conditions: ∀n ∈ �1, p− 1�, let x = Sender(mn),

Close /∈ Rx and precond(mn) is true in CSn and
CSn+1 = (F ′

1, A
′
1, R

′
1, F

◦′, A◦′, F ′
2, A

′
2, R

′
2) defined by effect(mn, CSn)

-Ending conditions: let x = Sender(mp),
precond(mp) is true in CSp and Act(mp) = Close and Close ∈ Rx

where precond and effect are given in Table 2 2.

The commitment store used in this definition is made of three knowledge bases:

- a base containing common knowledge divided into two parts: the common formulas,
denoted by F ◦, and the common arguments, denoted by A◦,
- and the two commitment stores of each agents, each one divided into three parts3:
• the first two parts contain the assertive commitments of agent x separated into a set
Fx of propositional formulas, and a set Ax of approximate arguments
• the third one contains the commitments towards the other agent, i.e., the requests to
which x should answer, denoted by Rx.

In this definition, the “starting condition” is simply an initialisation of the commitment
store. The “current conditions” require that, in order to make a move, the sender should
not have already closed his participation to the dialog, and ensure that every move is
done under the adequate preconditions, each move has an effect on the commitment
store (preconditions and effects are described in Table 2). Note that the deterministic
definition of the effects of the moves induces that the sequence of commitment store
stages associated to a persuasion dialog is unique. The “ending conditions” ensure that
the last move of the dialog is a Close move and that the other agent has already closed

2 For shortness, in the “effect” column, the sets that remain unchanged are not mentioned, and
Kx denotes the set of formulas Fx ∪ form(Ax) ∪ F ◦ ∪ form(A◦).

3 The distinction between internal and external commitment is inspired from [1].
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Table 2. Effects and conditions of a move from x towards x

m precond(m)3 effect(m, (Fx, Ax, Rx, F ◦, A◦, Fx, Ax, Rx))

Accept ϕ ϕ ∈ Fx and {ϕ} ∪Kx consistent

R′
x = Rx\{(Acceptϕ)}, F ◦′ = F ◦ ∪ {ϕ}

F ′
x = Fx\{ϕ}

R′
x = Rx\

{
(Challengeϕ), (Quiz 〈S, ϕ〉)
(Quizlink 〈S, ϕ〉) S ⊆ L

}

Agree 〈S, ϕ〉 〈S, ϕ〉 ∈ Ax and
S ∪ {ϕ} ∪Kx consistent

R′
x = Rx\{(Agree 〈S, ϕ〉)}, F ◦′ = F ◦ ∪ {ϕ} ∪ S,

A◦′ = A◦ ∪ {〈S, ϕ〉}, A′
x = Ax\{〈S, ϕ〉}

R′
x=Rx\{(Challengeϕ), (Quiz 〈S, ϕ〉), (Quizlink 〈S, ϕ〉)}

Argue 〈S, ϕ〉 〈S, ϕ〉 /∈ A◦ ∪Ax ∪Ax and
S ∪ {ϕ} ∪Kx consistent

A′
x = Ax ∪ {〈S, ϕ〉}, R′

x = Rx ∪ {(Agree 〈S, ϕ〉)}

Assert ϕ ϕ /∈ Kx ∪ Fx and
{ϕ} ∪Kx consistent

F ′
x = Fx ∪ {ϕ},

R′
x = Rx ∪ {(Acceptϕ)}

Challenge ϕ
ϕ ∈ Fx and(Challengeϕ) /∈ Rx and
�〈S, ϕ〉 ∈ Ax ∪Ax ∪A◦ R′

x = Rx ∪ {(Challengeϕ)}
Close Rx = ∅ R′

x = {Close}
Complete
(a = 〈S, ϕ〉,
b = 〈S′, ϕ′〉)

a ∈ Ax and (b completes a) and
b /∈ A◦ ∪Ax ∪Ax and
S′ ∪ {ϕ′} ∪Kx consistent

A′
x = Ax\{a} ∪ {b}

R′
x = Rx \{ (Agree a)} ∪ {(Agree b)}

R′
x= Rx\{(Quiz a), (Quizlink a)}

∪{(Quizlink b), if (Quizlink a) ∈ Rx and ϕ = ϕ′}

Dismantle a a ∈ Ax

A′
x = Ax\{a}

R′
x = Rx\{ (Quiz a), (Quizlink a)},

R′
x = Rx\{(Agree a)}

Quiz a
a ∈ Ax and (Quiz a) /∈ Rx and
DecodeKx(a) = ∅

R′
x = Rx ∪ {(Quiz a)}

Quizlink a

a∈Ax and (Quizlink a) /∈Rx and
�〈S′, ϕ′〉∈DecodeKx(a) s.t.{ {ϕ′,¬ϕ′}∩(Fx∪form(Ax)) �= ∅

or ϕ′ ∈ Fx ∪ form(Ax)

R′
x = Rx ∪ {(Quizlink a)}

Retract ϕ

ϕ ∈ Fx

3with Kx = Fx ∪ form(Ax) ∪ F◦ ∪
form(A◦)

F ′
x = Fx\{ϕ}

A′
x = Ax\{〈S, ψ〉 |S ⊆ L , (ϕ ∈ S or ψ = ϕ)},

R′
x = Rx\

⎧⎨
⎩
(Challengeϕ),
(Quiz 〈S, ψ〉)
(Quizlink 〈S, ψ〉)

S ⊆ L ,
ϕ ∈ S or ψ = ϕ

⎫⎬
⎭

R′
x = Rx\

{
(Acceptϕ),
(Agree 〈S, ψ〉)

S ⊆ L ,
ϕ ∈ S or ψ = ϕ

}

his participation to the dialog. If these “ending conditions” are not possible then the
dialog has no end. This may seem not realistic, but it is often the case that the physical
end of a debate is not really a true ending of the subject since the participants may still
not be convinced by the arguments of their adversary, and the dialog will continue at
another occasion. Let us describe more precisely how each move is taken into account
according to Table 2:

An agent x may “accept” a formula ϕ (respectively “agree” about an argument
〈S, ϕ〉) only if this formula (resp. argument) has been uttered by the other agent x
and is consistent with both the common knowledge and all the formulas that x has al-
ready uttered. After the Accept move the formula becomes common knowledge and is
no more considered as x own utterance. Similarly, an Agree move introduces the for-
mulas used in the argument as well as the argument itself into the common knowledge
and the argument is removed from x own arguments. When these moves are uttered the
commitments of the speaker to accept (or agree) this formula (or argument) are fulfilled
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hence removed from the commitment store, moreover the requests he may have made
about this formula (or argument) are nomore committing his adversary.

The protocol is designed for obtaining “rational” dialogs, in terms of non redun-
dancy, self consistency and listening. Hence, in order to Assert a formula (or Argue
an argument) this formula (argument) should not have already been asserted and should
be consistent with common knowledge and with what the utterer has already said. Each
Assert or Argue move commits the receiver to accept or agree with it or to make the
sender retract or dismantle it. This commitment is dropped when the move is retracted
(or dismantled or completed) by his utterer or accepted (or agreed) by the receiver.

The Challenge is authorized only if the formula has been uttered by the other agent
(and if it is not common knowledge) but not already been proved nor challenged. After
this move the other agent is committed to give an argument for the challenged formula
or to “retract” it, this is translated by adding (Challenge ϕ) to his requests commitment
store. This request will be removed when an argument whose claim is ϕ will be agreed
or if the formula ϕ is directly accepted.

A Close move requires that all the commitments of the agent are fulfilled. After this
move the agent is not allowed to speak anymore: for this purpose an artificial commit-
ment Close is added to his request commitment store, and, as described in the “current
condition”, no move can be done by agent x if Close is present in Rx.

“Completing” an argument a = 〈S, ϕ〉 by b = 〈S′, ϕ′〉 should be done by giving a
more precise argument b than a (uttered by the current speaker, but not yet agreed by
the hearer) i.e., a logical or incomplete argument that completes it. The new argument
b should be consistent and not already present. After the utterance, b replaces a in the
set of uttered arguments, some commitments of the utterer may nomore be appropriate:
namely, Quiz a , Quizlink a. But a request commitment maybe inherited, namely if
there was a request Quizlink a and ϕ = ϕ′, then it becomes Quizlink b.

Dismantle (or Retract) allows to remove an argument (respectively a formula) from
the utterances of agent x. The commitments concerning this argument or formula are
also removed from the request commitment stores of the sender and the receiver.

A move (Quiz 〈S, ϕ〉) can be done by an agent x only if there is no logical argument
completing 〈S, ϕ〉 that can be built from the common knowledge and the formulas al-
ready asserted by x (this set is called Kx for short). A (Quizlink a) move requires that
there is no obvious link between a and something said by x (positively or negatively)
neither with a previous assertion of x.

Example 1 (continued): Let us consider the following persuasion sub-dialog:

D =

⎛⎜⎜⎝
(Shopenhauer, Assert, d→ s ),
(Adversary, Argue, 〈{m → ¬s}, o→ ¬s〉 ),
(Shopenhauer, Argue, 〈{d↔ t ∨ s}, m→ ¬d〉 ),
(Adversary, Agree, 〈{d↔ t ∨ s}, m→ ¬d〉 )

⎞⎟⎟⎠
Suppose that common knowledge is: F ◦ = {o→ m, o} meaning that “opera is music”
and that “opera exists”. Table 3 describes the commitment stores of each participant,
with a1, a2 denoting respectively 〈{m→ ¬s}, o→ ¬s〉 and 〈{d↔ t ∨ s}, m→ ¬d〉.

After these moves the dialog is not finished since two requests are not yet answered.
Schopenhauer has two options either (1) he agrees with his adversary’s argument a1

(since it is consistent with common knowledge) then he would have no more
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commitments and his adversary will be obliged either to accept the first claim or to
provide another argument against it, or (2) he may ask his adversary to precise the link
that argument a1 has with the formulas already asserted. In that case the adversary
would not be able to Complete his argument since the logical argument that completes
a1 and that has a link with the subject is γ1 (〈{m→ ¬s, o → m, o, o→ d},¬(d → s)〉)
whose support is now inconsistent with the common knowledge (see Table 3).

Table 3. Commitments stores of Schopenhauer and his Adversary

After the third move
Schopenhauer Common knowledge Adversary

Formulas Arguments Requests Formulas (F ◦) Arguments (A◦) Formulas Arguments Requests
d → s a2 (Agree a1) o → m a1 (Accept d → s)

o (Agree a2)
After the fourth move

d → s (Agree a1) o → m a2 a1 (Accept d → s)
o

d ↔ t ∨ s
m → ¬d

If the move (Shopenhauer,Quizlink, a1) is done
Then the move (Adversary,Dismantle, a1) should be done, leading to:

d → s o → m a2 (Accept d → s)
o

d ↔ t ∨ s
m → ¬d

If the Adversary has no other argument linked with the subject, then he is forced to do
the move (Adversary, Accept, d → s) in order to be authorized to close the dialog:

o → m a2

o
d ↔ t ∨ s
m → ¬d
d → s

Schopenhauer Common knowledge Adversary

Proposition 3. Two Close moves belonging to a persuasion dialog have distinct senders.

Proof. Due to the definition of the precondition of Close, in order to be able to do it
there should not remain any commitment unfulfilled, however a Close move commits
the sender by adding Close to its requirement commitment store Rx.

Remark 3. Even if a persuasion dialog has a finite length p, it may be the case that, in
CSp+1, neither Content(m1) ∈ F ◦ nor ¬Content(m1) ∈ F ◦

Proof. Consider the dialog ((1, Assert, ϕ), (1, Retract, ϕ)).

Definition 7 (Output). Let D be a persuasion dialog of length p, with (CSn)n∈�1,p+1�

its sequence of commitment stages, the output of the dialog, Output(D), is:
– Undecided if p = ∞

– otherwise

⎧⎨⎩
Public agreement that ϕ holds, if in CSp+1 it holds that ϕ ∈ F ◦

Public agreement that ¬ϕ holds, if in CSp+1 it holds that ¬ϕ ∈ F ◦

No public agreement on ϕ otherwise
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4 A Protocol for Time-Limited Persuasion Dialogs

Since a persuasion dialog may be infinite, we introduce particular persuasion dialogs
where the speaking time is restricted, indeed it is often the case that the speakers of
a public debate have to keep strictly to a given speaking time. This notion requires to
define first the duration associated to a move.

Definition 8 (Move duration). We assume a function size : L → N� that associates
an integer to each formula (e.g., the size of a binary encoding of this formula).
The duration d(m) of a move m is equal to:

d(m) =

⎧⎪⎪⎨⎪⎪⎩
1 + size(ϕ) if m = (Assert ϕ)
1 +

∑
ψ∈S size(ψ) + size(ϕ) if m = (Argue 〈S, ϕ〉)

1 +
∑

ψ∈S′ size(ψ) + size(ϕ′) if m = (Complete (〈S, ϕ〉, 〈S′ϕ′〉))
1 if Act(m) /∈ {Assert, Argue, Complete},

There is a link between taking duration into account and allowing enthymemes, since
the usual reason to use an enthymeme is for sake of shortness (even if sometimes it is
more a strategical choice). In the above definition, the duration of every move is one
except for Assert, Argue and Complete moves where it is strictly greater than 1. This
may seem artificial but it is based on the fact that those three moves are introducing new
formulas (hence requiring time to express them) while other moves refer to already ex-
pressed formulas (hence could be shortly expressed by using only a reference). Now, we
introduce the time-limited persuasion dialog which is a variant of a persuasion dialog:

Definition 9 (Time-limited persuasion dialog). Let p ∈ N ∪ {∞} and T ∈ N, let
(F, A) ∈ 2L ×2AArg be a common knowledge base such that F ∪form(A) is consistent.

A sequence of moves (mn)n∈�1,p�, is a T -limited persuasion dialog of length p based
on (F, A) iff:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Act(m1) = Assert and ∀n ∈ �1, p�, mn is a well formed move and there is a
sequence (CSn)n∈�1,p+1� where ∀n ∈ �1, p + 1�, CSn is a tuple (F1, A1, R1,
dur1, F

◦, A◦, F2, A2, R2, dur2) called commitment store at stage n with dur1,
dur2 ∈ N representing the agents remaining speaking time and F ◦, F1, F2 ⊆ L ,
A◦, A1, A2 ⊆ AArgL , R1, R2 ⊆ M , satisfying:
-Starting condition: CS1 = (∅, ∅, ∅, T, F, A, ∅, ∅, ∅, T )
-Current conditions: ∀n ∈ �1, p− 1�, let x = Sender(mn),

Close /∈ Rx and precond(mn) is true in CSn and durx ≥ d(mn) and
CSn+1 = (F ′

1, A
′
1, R

′
1, dur′1, F

◦′, A◦′, F ′
2, A

′
2, R

′
2, dur′2)

defined by effect(mn, CSn) with dur′x = durx − d(mn), dur′x = durx

-Ending conditions: let x = Sender(mp),
Close /∈ Rx and precond(mp) is true in CSp and Act(mp) = Close

and durx ≥ d(mp) and

{
- either Act(mp) = Close and Close ∈ Rx

- or durx − d(mp) = 0 and durx = 0
where precond and effect are given in Table 2.

The last condition expresses the termination condition for the dialog: the dialog may
finish either because the two agents agree to close it or because they have no more
speaking time.
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Proposition 4. A T -limited persuasion dialog of length p is such that:

∀x ∈ AG, ∀k ∈ �1, p� durx(k) ≥ 0

∀x ∈ AG,
∑

{m∈D|Sender(m)=x}
d(m) ≤ T

Proposition 5. A T -limited persuasion dialog is finite.

This last property is important since by allowing enthymemes and requests about them,
it is possible that a dialog may never end. Indeed an argument may be “Quizlinked”
eternally (when there is no common knowledge) since explaining a concrete fact could
require to go back to reasons involving the Big-Bang theory.

Definition 10 (Output of a time limited persuasion dialog). Let D be a T -limited
persuasion dialog of length p, with (CSn)n∈�1,p+1� its associated sequence of commit-
ment stages, the output of the dialog, denoted by Output(D), is:
−Public agreement that ϕ holds, if, in CSp+1, ϕ ∈ F ◦

−Public agreement that ¬ϕ holds, if, in CSp+1,¬ϕ ∈ F ◦

−No public agreement on ϕ, else

The following proposition shows that when a dialog is closed by the two participants
then they have fulfilled all their commitments (hence their commitment store contains
only the Close commitment).

Proposition 6. If Close appears twice in a time-limited persuasion dialog such that
(CSn)n∈�1,p+1� is its associated sequence of commitment stages then in CSp+1 it holds
that Rx = Rx = {Close} and Fx = Fx = ∅ and Ax = Ax = ∅.

Proof. Due to Proposition 3, the two Close moves have been done by two distinct
agents. Moreover, in order to do a Close move the commitments toward the other agent
should be empty, i.e, Rx = Rx = ∅. Furthermore, if all their commitments are fulfilled
then they either have agreed or accepted all adversary’s arguments or he has retracted
them.

Proposition 7. If D is a time-limited persuasion dialog of length p and (CSn)n∈�1,p+1�

its associated sequence of commitment stages, then ∀n ∈ �1, p + 1�, ∀x ∈ AG,

– Fx ∪ form(Ax) ∪ F ◦ ∪ form(A◦) consistent and
– Fx ∩ F ◦ = ∅ and
– Ax ∩A◦ = ∅

Corollary 1. If D is a time-limited persuasion dialog of length p and (CSn)n∈�1,p+1�

is its associated sequence of commitment stages, then,

if Output(D) = ϕ then

{
ϕ ∪ Fx ∪ Fx ∪ F ◦ is consistent and
�〈S, ψ〉 ∈ A1 ∪A2 ∪A◦ s.t. ψ � ¬ϕ

The following propositon shows that common knowledge may only increase with the
persuasion dialog.

Proposition 8. If D is a time-limited persuasion dialog of length p based on a common
knowledge base (F, A), and if (CSn)n∈�1,p+1� is its associated sequence of commit-
ment stages, then ∀n ∈ �1, p + 1�, in CSn, it holds that F ⊆ F ◦ and A ⊆ A◦
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5 Concluding Remarks

This work is a preliminary study on handling enthymemes in persuasion dialogs. The
ambition was to deal with incomplete information both in the premises and in the claim
of an argument. The latter is more difficult to handle and has required to introduce a
new speech act Quizlink allowing to ask for an insight about what is hiding behind the
claim. In some cases, one may not disagree with an argument that is not related with the
subject but when he understands the underlying implication he wants to reject it. This is
why it is necessary to allow the agent to “dismantle” an argument even if this argument
is not attacked.

In this work we only represent what is publicly uttered, since we consider that we do
not have access to the agent’s mind. This way to apprehend the public statements is also
done for instance by [10], where a public utterance is called “grounded”. Their proposal
is a framework to represent and reason about the public knowledge during a persuasion
dialog, their approach allows to deal with inconsistent assertions (which is not allowed
in our framework) like in Walton & Krabbe’s system PPD0. This feature seems more
realistic since it is up to the other agent to detect and denounce inconsistency by asking
to its adversary to “resolve” it. Dealing with possible inconsistent assertions is a chal-
lenge for further developments of our approach, however we could argue that a well
designed protocol should enforce that what is public is consistent (in order to obtain a
debate of hight quality that is civilised and respectful of the audience). Note that [10]
do not deal with “dark side commitments” [24] (implicit assertions that are difficult to
concede explicitely in front of a public) since they do not want to take into account the
agent’s mind but rather focus on what is observable and objective. In our approach a
“dark side commitment” can be encountered when decoding an enthymeme, it may be
the necessary piece to add in order to obtain a logical argument and may be revealed by
means of a Quizlink or a Quiz move.

Our definition of incomplete argument maybe compared to the notion of “partial ar-
gument” given in [22], which is a set of default rules, and conclusion such that there
exists a minimal set of strict rules and facts coming from a given knowledge base that al-
lows to defeasibly derive the conclusion. Beyond the fact that we do not consider default
reasoning, our incomplete argument, and particularly the ones that are enthymemes are
not lacking information because it is not available as in the work of [22] but rather be-
cause the lacking information is considered as obvious or worthwile to conceal. The
use of enthymemes is not necessarily a proof of weakness but rather “a highly adap-
tative argumentation strategy, given the need of everyday reasoners to optimize their
cognitive resources” as it is claimed in [15,16]. The computation of the completion of
enthymeme, namely how to define our function Decode, is out of the scope of the pa-
per but as already been studied by several authors (see e.g. [23,14] in which several
examples are analysed in order to understand how implicit premises can be discovered,
and which provides a set of argumentation schemes that can be used as a guide for
finding them). Moreover, it seems important to take into account that in enthymemes,
the link between the premises and the claim is not necessarily classical logic inference,
this is why [14] proposes to view it as a presumptive type of argumentation scheme.
The notion of non-classical inference is also suggested by [18] that defines an argu-
ment as a pair where the premises provide backing for the claim but do not necessarily
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infere it. Indeed in this work, the argument is composed by a set of litterals (for the
premises) and a literal (for the claim), with the only constraint that no premise is equal
to the claim or its negation. This work is related to our own on another aspect since
the argument is evaluated with respect to a knowledge base called “evidence”, this base
plays a similar role than our “common knowledge base” and represents the context in
which arguments are to take into account. The coherence and redundancy notions of an
argument with respect to the “evidence” are also introduced, this slightly differs from
our approach in which the protocol ensures “self-coherence” of an agent (hence it im-
plies both the common knowledge and the agent utterances), non-redundancy (based on
common knowledge but also on agents utterances) and listening (this last is not related
to [18] since they do not deal with dialog systems). In [18] the use of evidence it not
done in order to complete arguments as we do with the common knowledge but to de-
cide about their status. Besides a very appealing aspect of this approach is that evidence
may evolve hence may imply changes in the arguments status while in our proposal,
common knowledge may only increase consistently. Again the non-monotonic aspect
seems to be interesting to consider in future studies.

During dialogs, the public utterances are stored and may evolve when arguments are
retracted or replaced. Since enthymemes are possible and based on implicit information
that is often common knowledge, we use a common knowledge base that is public. An
advantage of our proposal is that at the end of the dialog all agreed assertions are kept
in this common knowledge base that can hence only increase during the dialog, and that
can be used for future dialogs.

A very appealing development of this framework concerns the strategical part, we
plan to translate our protocol rules into the Game player project language GDL2 [21],
indeed in GDL2 it is possible to handle games with imperfect information. With this
translation, strategies coming from game theory and strategies dedicated to dialog games
(e.g. [2]) coud be compared. Moreover, the move duration would have to be taken into
account for the strategical aspect.

Acknowledgments. The author thanks Pierre Bisquert for the useful reference to
Schopenhauer. Some words of thanks also go to the reviewers for valuable suggestions
of improvements and very appropriate bibliographic references.
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Abstract. In this paper, we introduce argumentation frameworks with necessi-
ties (AFNs), an extension of Dung’s argumentation frameworks (AFs) taking into
account a necessity relation as a kind of support relation between arguments (an
argument is necessary for another). We redefine the acceptability semantics for
these extended frameworks and we show how the necessity relation allows a di-
rect and easy correspondence between a fragment of logic programs (LPs) and
AFNs. We introduce then a further generalization of AFNs that extends the ne-
cessity relation to deal with sets of arguments. We give a natural adaptation of the
acceptability semantics to this new context and show that the generalized frame-
works allow to encode arbitrary logic programs.

Keywords: abstract argumentation, necessity relation, acceptability semantics,
bipolarity, logic programming.

1 Motivation

Abstract argumentation frameworks (AFs) initiated by P.M.Dung [10] have recently
received considerable interest. An AF consists simply of a set of abstract objects, the
arguments, and a binary attack relation. Despite their simplicity, AFs provide a powerful
tool to capture various non-monotonic reasoning approaches. Many extensions have
been proposed to initial AFs in order to enrich them by further features. Since arguing
often involves the exchange of arguments for or against a given position, one of the
relevant features in argumentation is that of support on which we focus in this paper.

Roughly speaking, we can distinguish two approaches in treating the idea of sup-
port in abstract argumentation. In the first approach support is taken in the sense of
logical inference. For example [1] considers the issue of building an AF from a logical
knowledge base. Following [2], the used arguments are constructed from the knowl-
edge base as couples of the form (support, conclusion) where support is a minimal
set of formulas that infers the conclusion. Here, the support is an internal mechanism
to the argument itself. Another work proposes constrained argumentation frameworks
[9] that add to AFs propositional constraints manipulating arguments as propositional
atoms. The support as a logical inference operates here at a logical level which is com-
plementary to the abstract argumentative level. The second approach, into which our
work fits, consists in adding to AFs an explicit support relation between arguments. A
well known work in this direction are the bipolar argumentation frameworks (BAFs) [7]
[8]. Its main drawback lies in that supported and indirect attacks proposed in this model
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may lead to counter-intuitive results if the support relation has a precise meaning like
that of necessity. For example, consider this dialogue :

Agent A: I will light up this room; Agent B: It is not true, the lamp will not light up;
Agent A: I will open the switch; Agent B: But the meter will not work;
Agent A: Really ?; Agent B: Yes, the electrician has detected a failure in the meter.

Let us consider the following arguments: The room will be dark (RD); The lamp will
light up (LL); the switch will be open (SO); the meter works (MW ); there is a fail-
ure in the meter (F ). In the resulting BAF we have the relations : F attacks MW ,
LL attacks RD, MW Supports LL and SO Supports LL. According to [7] the
unique stable extension is E = {F, SO}, i.e., there is a failure in the meter and the
switch is open. We naturally expect that the extension contains also RD (the room will
stay dark) but this is not the case because of the supported attack of RD by SO. How-
ever, this attack is explained only by the fact that SO supports LL which attacks RD,
but, since LL /∈ E, there is no reason to consider as successful the attack of RD by SO.
This problem persists with all kinds of extensions presented in [7] but it can be fixed by
remarking that the support relation used in the example is a necessity. The reader can
easily check that the only stable extension obtained by applying the approach described
in this paper is {F, SO, RD} which corresponds to our expectations.

Subsequent works that are interested in the notion of support include the evidence-
based argumentation approach [18] and more recently the work in [3] about deductive
and defeasible supports as well as the abstract dialectical frameworks [6].

The support relation may have different meanings that may require completely dif-
ferent treatments. Our concern here is not to provide an exhaustive enumeration of these
possible meanings. Instead we will focus on two of them that are very intuitive : the ne-
cessity and the sufficiency relations. In AFs, “a attacks b” is interpreted by : “if a is
accepted then b is not accepted”. Similarly, we will interpret “a is necessary for b” ex-
actly as “b is sufficient for a” by : “if b is accepted then a is accepted”. Thus, without
loss of generality we can focus on only one of these two relations. We chose necessity
because of its adequacy for LPs (see sections 4. and 5.). The motivation of this work is
to propose new direct and very simple methods to link argumentation frameworks and
LPs. This kind of cheap translations is very beneficial : among other thinks, it allows to
reuse in one formalism the methods and algorithms developed in the other formalism
and also to take benefit of the important developments in LPs domain to implement
efficiently the new AFs. To do so, we propose in this paper an extension of Dung’s AFs
with the necessity relation and we consider the following points : (1) we highlight the
kind of interactions that result between necessities and attacks; (2) in light of these in-
teractions, we consider the acceptability semantics in the new context. Since necessities
are considered at the same level of attacks, instead of proposing new alternatives, we in-
tegrate the necessity relation in redefining the main existing semantics. This integration
is not performed without additional problems for which we provide suitable solutions;
(3) we consider then the issue of relating argumentation systems with LPs. This issue
initiated in [10] continues to be an interesting research topic (see for example [11] [16]
[20]). In our context, we show that adding the necessity relation not only doesn’t alter
the existing connection between AFs and LPs but also simplifies it.
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First, we recall some basics about answer set programming and Dung’s abstract AFs.
Then, we introduce the AFNs, we generalize their acceptability semantics and we show
how to represent them as classical AFs. After that, we discuss the correspondence be-
tween AFNs and a fragment of LPs. Then, we introduce a further extension of AFNs
that generalizes the necessity relation to sets of arguments. After the adaptation of the
key notions and acceptability semantics to this new context, we show how this general-
ized AFNs cope properly with arbitrary logic programs. Finally, a last section includes
a discussion of related works as well as some perspectives of future work.

2 Preliminaries

2.1 Answer Sets and ι−Answer Sets for LPs

A normal LP is a finite set of rules of the form :

a0 ← a1, ..., am, not am+1, ..., not an (1)

where 0 ≤ m ≤ n and ai (0 ≤ i ≤ n) are atoms. For a rule r of the form (1) we
define : head(r) = a0, body+(r) = {a1, ..., am} and body−(r) = {am+1, ..., an}. The
previous definition is generalized to any LP Π as follows : head(Π) = {head(r)|r ∈
Π}, body+(Π) =

⋃
r∈Π body+(r) and body−(Π) =

⋃
r∈Π body−(r). A LP Π is

basic if body−(Π) = ∅. A set of atoms X is closed under a basic LP Π if, for any
r ∈ Π , head(r) ∈ X whenever body+(r) ⊆ X . Cn(Π) denotes the smallest set of
atoms closed under Π . The reduct of a program Π relative to a set of atoms X is the
basic program ΠX given by : ΠX = {head(r)← body+(r)|r ∈ Π, body−(r) ∩X =
∅}. A set X of atoms is an answer set of Π iff X = Cn(ΠX) [13]. The generating
rules and the applicable rules of Π relative to X are given respectively by : GΠ(X) =
{r ∈ Π |body+(r) ⊆ X, body−(r) ∩ X = ∅} and ApΠ(X) = {r ∈ Π |body+(r) ⊆
X, body−(r) ∩X = ∅, head(r) ∈ X}.

It is easy to see that we always have: ApΠ(X) ⊆ GΠ(X). ι-Answer sets [12] are
proposed as the counterpart of Lukaszewicz justified extensions [14] in the domain of
default logics [19] to overcome the problem of non-modularity in the construction of
an answer set which needs to inspect all the rules at once. Its advantage is that, unlike
answer sets, it is possible to incrementally construct a ι-answer set or to locally validate
a (partial) construction of it (for more details, see [14], [12]).

Let Cn+(Π) = Cn(Π∅).A set X of atoms is a ι-answer set of Π if X = Cn+(Π ′)
for some ⊆-maximal Π ′ ⊆ Π satisfying the following two conditions:

(C1) : body+(Π ′) ⊆ Cn+(Π ′), (C2) : body−(Π ′) ∩ Cn+(Π ′) = ∅.
For a LP Π and a set of atoms X , we have these results : (1) Incremental construction:
if X verifies X = Cn+(Ap(X)) then there is a ι-answer set X ′ such that X ⊆ X ′;
(2) Existence: for every LP Π , there is at least one ι-answer set. This property does not
hold in general for answer sets; (3) Answer sets are ι-answer sets: if X is an answer set
of Π then X is a ι-answer set of Π , but not vice versa. Moreover, if X is a ι-answer set
of Π then X is an answer set of Π iff ApΠ(X) = GΠ(X)1.

1 In the rest of the paper we assume that any LP Π we use, verifies the property : body+(Π) ⊆
head(Π). In fact, any rule r such that body+(r) �∈ head(Π) is never applied and it is easy to
show that by removing it from Π , we do not alter neither its ι-answer sets nor its answer sets.
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2.2 Dung’s Argumentation Frameworks

Dung’s AFs [10] are defined by a pair F = 〈A, R〉 where A is a set of arguments and R
is a binary attack relation over A. A set S ⊆ A attacks an argument b iff there is a ∈ S
such that a R b. S is conflict-free iff there is no a, b ∈ S such that a R b. The⊆-maximal
conflict-free subsets of A are called naive extensions [4] and represent a first manner to
construct sets of acceptable arguments. Many other acceptability semantics have been
proposed in [10]. Among them, we will focus in this paper on the following semantics
widely used in practice : (1) S is an admissible set iff S is conflict-free and ∀a ∈ A\S,
if a R b for some b ∈ S then S R a; (2) a preferred extension is a⊆-maximal admissible
set; (3) S is a stable extension iff S is conflict-free and ∀a ∈ A\S, S R a.

Dung proposed in [10] methods to translate any AF into a LP and vice versa. If
the passage from an AF to a LP is very simple, the passage in the opposite side is less
direct and requires the computation of a number of arguments which may be, in general,
exponential relative to the number of atoms in the program 2.

3 Bipolar AFs with Necessities

Let us first give some basic definitions. We start by the formal definition of an AFN
which adds to the classical Dung’s AF a new (positive) relation between arguments

Definition 1. An AFN is defined by 〈A, R, N〉 where A is a set of arguments, R ⊆
A × A (resp. N ⊆ A × A) is a binary attack (resp. necessity) relation over A: for
a, b ∈ A, a R b (resp. a N b) means that a attacks (resp. is necessary for) b.

New attacks and necessities are deduced from the direct ones. On the one hand, the
transitive closure of the necessity relation is interpreted as a necessity (if a is necessary
for b and b is necessary for c then a is necessary for c). On the other hand, new attacks
emerge in two cases : if a attacks c and c is necessary for b then a attacks b, and
if c attacks b and c is necessary for a then a attacks b (accepting a means that c is
also accepted which excludes b). Comparing with [7], the first case corresponds to the
indirect attack but the second case does not correspond to the supported attack.

Definition 2. Let Δ = 〈A, R, N〉 be an AFN. There is an extended necessity from a to
b (a N+ b) iff there is a sequence: a1 N ... N an (n ≥ 2) where a1 = a, an = b. There
is an extended attack of b by a (a R+ b) iff either we have : a R b or there is c ∈ A such
that a R c N+ b or c R b and c N+ a.

Clearly a classical AF is a particular case of AFN where N = ∅. When N �= ∅, a main
requirement in defining acceptability is to avoid cycles of necessities that reflect a kind
of deadlock which can be seen as a form of the fallacy “begging the question”.

2 From a given LP Π , the method in [10] constructs all the arguments of the form
({¬b1, · · · ¬bm}, k) where K = {¬b1, · · · ¬bm} is a set of negative literals and k is an atom
which is a defeasible consequence of {¬b1, · · · ¬bm}, i.e., there is a sequence (e0, · · · en)
with en = k and for each ei either ei ← is a rule of Π or ei is the head of a rule
ei ← a1, · · · at, not at+1, · · ·not at+r of Π such that a1, · · · , at belong to the preceding
members of the sequence and ¬at+1, · · · ,¬at+r boelong to K. K is called the support of k.
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Definition 3. Let Δ = 〈A, R, N〉 be an AFN and a ∈ A. a is necessity-cycle free (N-
Cycle-Free) iff it is not the case that a N+ a or that b N+ a and b N+ b. A set S ⊆ A
is N-Cycle-Free iff all their elements are N-Cycle-Free.

Now, we are ready to introduce the key notions of coherent and strongly coherent sets.
The latter will generalize the notion of conflict-freeness in original Dung’s AFs.

Definition 4. Let Δ = 〈A, R, N〉 be an AFN and S ⊆ A. S is said to be coherent iff
S is N-Cycle-Free and closed under N−1 (if a ∈ S then b ∈ S for each b N a). S is
strongly coherent iff it is coherent and conflict-free w.r.t R.

The coherence of a set S excludes the risk of having a necessity-cycle S and ensures that
S provides to each of its arguments all its necessary arguments. Notice that in Dung’s
AFs (N = ∅), the strong coherence is reduced to classical conflict-freeness.

3.1 Adaptation of Acceptability Semantics to AFNs

The acceptability semantics for AFNs follow roughly the same principles of that for
AFs and uses the notion of strong coherence instead of conflict-freeness. The naive and
stable extension are defined as follows :

Definition 5. Let Δ = 〈A, R, N〉 be an AFN and S ⊆ A. (1) S is a naive extension of
Δ iff S is a ⊆-maximal strongly coherent subset of A; (2) S is a stable extension of Δ
iff S is a strongly coherent subset of A such that for each a ∈ A \ S either S R a or
b N a for some b ∈ A \ S.

Proposition 1 characterizes the arguments inside and outside a stable extension.

Proposition 1. Let Δ = 〈A, R, N〉 be an AFN and S ⊆ A. S is a stable extension of
Δ iff : (1) S is N-Cycle-Free and (2) (a ∈ S) iff (∀b ∈ A, if b R a then b /∈ S and if
b N a then b ∈ S).

The (⇒) part of condition (2) means that if an argument a is in S, then each argument
that attacks it is outside S and each argument which is necessary for it is inside S. The
(⇐) part states that if an argument a is not in S, then either it is attacked by S or there
is an argument outside S which is necessary for a. The relationship between naive and
stable extensions is given by the following proposition.

Proposition 2. Each stable extension is a naive extension but not vice versa.
Let us now turn to the definition of admissible sets and preferred semantics for AFNs
by using the notions of coherence and strong coherence.

Definition 6. Let Δ = 〈A, R, N〉 be an AFN and S ⊆ A. S is an admissible set of Δ
iff S is strongly coherent and if b R S then for each coherent subset S′ ⊆ A \ S such
that b ∈ S′ we have S R S′. A preferred extension is a ⊆-maximal admissible set.
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Definition 6 may be seen as an extension of Dung’s definition of admissibility in AFs
where conflict-freeness is replaced by strong coherence and self-defense concerns ex-
tended attacks (and not only the direct ones) and is required only against arguments that
are N-Cycle-Free. This is the claim of the following proposition 3.

Proposition 3. Let Δ = 〈A, R, N〉 be an AFN and S ⊆ A. S is an admissible set
of Δ iff S is coherent and for each b ∈ A \ S, if b is N-Cycle-Free and b R S then,
S R+ b.

It is worth noticing that stable and preferred semantics for AFNs preserve the properties
of stable and preferred extensions for Dung’s AFs. This is the case for the existence of
preferred extensions and the fact that stable extensions are also preferred.

Proposition 4. Let Δ = 〈A, R, N〉 be an AFN. We have : (1) there is always at least
one preferred extension for Δ; (2) each stable extension of Δ is a preferred extension
of Δ, but not vice versa.

Example 1. Figures 1-(1) and 1-(2) depict two examples of AFNs where continuous
edges represent attacks and dashed edges represent necessities. The system of figure
1-(1) has three naive extensions, {r2}, {r1, r3} and {r4, r5}. Two of them are stable
extensions, {r2} and {r4, r5}. Let us check for instance that S = {r4, r5} is a stable
extension. Only r4 has attackers (r1 and r2) that are outside S and only r5 has a nec-
essary argument (r4) which is inside S. Moreover, each argument outside S is either
attacked by S (the case of r1, r2 and r3) or has a necessary argument outside S (the
case of r1). The admissible sets of this system are {r2} and {r4, r5} that are also the
preferred and the stable extensions. Let us check for example that {r2} is admissible
but {r1, r3} is not. r2 is attacked by r5 and all coherent sets containing r5 must contain
r4 which is attacked by r2. For {r1, r3} we have : r3 is attacked by r2 but {r2} which
is a coherent set containing r2 is not attacked by {r1, r3}.

Fig. 1. Examples of two AFNs and two AFs

The system depicted in figure 1-(2) has eight naive extensions and only one of them
is stable : {r1, r3, r6}. It has two preferred extensions : {r1, r3, r6} and {r1, r4}.

It is easy to check that for N = ∅, naive, stable and preferred extensions of the AFN
Δ = 〈A, R, ∅〉 coincide with the corresponding extensions of the AF F = 〈A, R〉.
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3.2 AFN as a Classical AF

We have seen above that an AF can be considered as an AFN whose necessity relation
is empty. In this section we consider the opposite question and show how to represent
any AFN by an AF having at most the same number of arguments. The idea is to keep
only arguments that are N-Cycle-Free and use the extended attacks as attack relation.

Definition 7. Let Δ = 〈A, R, N〉 be an AFN. Δ can be represented by an AF FΔ =
〈AΔ, RΔ〉 such that : AΔ = {a ∈ A| a is N-Cycle-Free} and for each x, y ∈ AΔ,
x RΔ y iff x R+ y (RΔ is the restriction of R+ on AΔ).

It turns out that strong coherence in the AFN is stronger than conflict-freeness in the
corresponding AF. However naive, stable and preferred extensions are all preserved.

Proposition 5. Let Δ be an AFN, FΔ its corresponding AF and S ⊆ A. We have : (1)
if S is strongly coherent in Δ then S is conflict-free in FΔ; (2) S is a naive (resp. stable,
preferred) extension in Δ iff S is a naive (resp. stable, preferred) extension in FΔ.

Example 1 (cont.). Let Δ1 and Δ2 be the AFNs depicted in figures 1-(1) and 1-(2)
respectively. The corresponding AFs FΔ1 and FΔ2 are represented in figures 1-(1’) and
1-(2’). {r2}, {r1, r3}, {r4, r5} are the naive extensions and {r4, r5}, {r2} are the stable
and the preferred extensions of both Δ1 and FΔ1 . Similarly, we can check that and Δ2

and FΔ1 share the same naive, stable and preferred extensions.

4 AFN and Logic Programs

The aim of this section is to take advantage of the necessity relation to propose a new
method to represent a LP as an AFN. The key idea of this method is to consider a
rule itself as an argument. The advantage of this method is to provide an immediate
translation where the number of resulting arguments is no more exponential w.r.t the
number of atoms but equals the number of rules in the program. However, following
this method, AFNs captures only a fragment of LPs. The fragment considered here is
denoted Frag and it contains LPs where each atom is given by only one rule of the LP.
Formally, a LP Π is in Frag iff ∀r1, r2 ∈ Π , if r1 �= r2 then head(r1) �= head(r2).

Let Π be a LP of Frag containing n rules, Π = {r1, ..., rn}. The corresponding
AFN is ΔΠ = 〈Π, RΠ , NΠ〉 such that : its arguments are the rules of Π , ∀r1, r2 ∈
Π, r1 RΠ r2 iff head(r1) ∈ body−(r2) and ∀r1, r2 ∈ Π, r1 NΠ r2 iff head(r1) ∈
body+(r2). Then, there is a correspondence between ι-answer sets (resp. answer sets)
of a LP of Frag and naive (resp. stable) extensions in the corresponding AFN.

Proposition 6. Let Π be a LP of Frag and ΔΠ = 〈Π, RΠ , NΠ〉 be the corresponding
AFN. A set X is a ι-answer set (resp. answer set) of Π , with Π ′ as the corresponding
maximal subset of Π iff Π ′ is a naive (resp. stable) extension of ΔΠ .
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Example 2. Consider the program Π1 :
r1 : a ← c, not e
r2 : b ← not e
r3 : c ← not d, not b
r4 : d ← not a, not b
r5 : e ← d

The ι-answer sets of Π are {d, e}, {b} and {a, c}. For {d, e}, the corresponding maxi-
mal subset of Π1 is Π ′

1 = {r4, r5}. Since body+(Π ′
1) = {d} ⊆ {d, e} and body−(Π ′

1)∩
Cn+(Π ′

1) = {a, b} ∩ {d, e} = ∅, conditions (C1) and (C2) hold for Π ′
1 and we

can check that Π ′
1 is maximal. Moreover, GΠ1({d, e}) = ApΠ1({d, e}) = {r4, r5},

so {d, e} is also an answer set. Similarly we can check that {b} is a ι-answer set
and an answer set and that {a, c} is a ι-answer set but not an answer set because
GΠ1({a, c}) �= ApΠ1({a, c}). The AFN ΔΠ1 = 〈Π1, RΠ1 , NΠ1〉 corresponding to
Π1 is that depicted in figure 1-(1). The three ι-answer sets of Π1, {d, e}, {b} and {a, c}
have, respectively, {r4, r5}, {r2} and {r1, r3} as maximal subset Π ′

1 of Π1. These
sets are exactly the naive extensions of ΔΠ1 . Among them only {r4, r5} and {r2} are
stable extensions of ΔΠ1 and they correspond to the two answer sets of Π1, {d, e}
and {b}.

Remark 1. Conversely, any AFN Δ = 〈A, R, N〉 can be translated into a LP ΠΔ of the
fragment Frag. Each r ∈ A gives rise to an atom hr and a rule r with head(r) = hr,
body+(r) = {hs | s N r}, body−(r) = {hs | s R r}. To prove that this translation,
preserves the mapping between naive (resp. stable) extensions of Δ and ι-answer (resp.
answer) sets of ΠΔ, just remark that translating ΠΔ by using the method described in
this section, gives exactly Δ. The wished results follow then from propositions 6.

5 Generalized Argumentation Frameworks with Necessities

Now, we extend the AFNs so that the necessity relation expresses the fact that a given
argument requires at least one element among a set of arguments. The resulting frame-
works are called : the Generalized Argumentation Frameworks with Necessities
(GAFN).

Definition 8. A GAFN is defined by Δ = 〈A, R, DN〉 where A is a set of arguments,
R is a binary attack relation over A and DN ⊆ ((2A \ ∅) × A) is a necessity relation.
E DN b means that b requires at least one of the arguments of E.

We adapt slightly the graphical representation to the case of sets of arguments (see
figure 2). Closedness under DN−1 is adapted to the case of GAFNs as follows :

Definition 9. A set S ⊆ A is said to be closed under DN−1 iff for each a ∈ S and
E ⊆ A such that E DN a, we have E ∩ S �= ∅.
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Fig. 2. Adapted representation of the necessity relation for the case of : {a1, a2}DN b

Definition 10 adapts the notion of N-Cycle-Freeness to the case of GAFNs. The notions
of coherence and strong coherence are given in definition 11.

Definition 10. Let Δ = 〈A, R, DN〉 be a GAFN, S ⊆ A and a ∈ S. a is N-Cycle-Free
in S iff for each E ⊆ A s.t. E DN a, either E ∩ S = ∅, or ∃b ∈ E ∩ S such that b is
N-Cycle-Free in S. S is N-Cycle-Free iff each a ∈ S is N-Cycle-Free in S.

Definition 11. Let Δ = 〈A, R, DN〉 be a GAFN and S ⊆ A. S is coherent iff S
is N-Cycle-Free and closed under N−1. S is strongly coherent iff S is coherent and
conflict-free w.r.t R.

Now, we can generalize the acceptability semantics in a very similar way as above :

Definition 12. Let Δ = 〈A, R, DN〉 be a GAFN and S ⊆ A. (1) S is a naive exten-
sion of Δ iff S is a⊆-maximal strongly coherent set; (2) S is a stable extension of Δ iff
S is a strongly coherent set and for each a ∈ A \ S either S R a or ∃E ⊆ A such that
E DN a and E ∩ S = ∅; (3) S is an admissible set of Δ iff S is strongly coherent and
if b R S then for each coherent subset S′ ⊆ A \S such that b ∈ S′ we have S R S′; (4)
S is a preferred extension of Δ iff a ⊆-maximal admissible set of Δ.

The main results about acceptability semantics discussed above, remain true in the con-
text of GAFNs. These results are summarized in the following proposition :

Proposition 7. Let Δ = 〈A, R, DN〉 be a GAFN and S ⊆ A. We have : (1) S is a
stable extension of Δ iff : (a) S is N-Cycle-Free and (b) (a ∈ S) iff (∀b ∈ A, if b R a
then b /∈ S and ∀E ⊆ A, if E DN a then E ∩ S �= ∅); (2) each stable extension of Δ
is a naive extension of Δ but not vice versa; (3) there is at least one preferred extension
of Δ; (4) each stable extension of Δ is a preferred extension of Δ but not vice versa.

It is not difficult to check that AFNs are a particular case of GAFNs where the sets of
necessary arguments are reduced to single arguments.

Example 3. Consider the GAFNs represented in figure 3.

Fig. 3. Two examples of GAFNs
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The system of figure 3-(1) is a GAFN because of the relation {r3, r4}DN r1. X1 =
{r1, r4} is closed under DN−1 since the only set necessary for r4 (resp. r1) is {r1}
(resp. {r3, r4}) and r1 ∈ X1 (resp. r4 ∈ X1) but X1 is not N-Cycle-Free because
neither r1 nor r4 is N-Cycle-Free in X1. X2 = {r1, r3} is N-Cycle-Free but not closed
under DN−1 : we have {r6} DN r3 but {r6} ∩X2 = ∅. Finally, X3 = {r1, r3, r6} is
both N-Cycle-Free and closed under DN−1. It is then coherent. The GAFN of figure
3-(1) has two stable extensions : S1 = {r1, r3, r4, r6} and S2 = {r2, r5}. In fact, r6 is
N-Cycle-Free (there is no necessary argument for r6 in S1) which makes r3 N-Cycle-
Free, which makes r1 N-Cycle-Free and eventually this makes r4 also N-Cycle-Free.
S1 is then N-Cycle-Free. All the attackers of S1 are outside S1 and for each a ∈ S1 and
each set E DN a, we have E ∩ S �= ∅. On the other hand, r2 and r5 are both attacked
by S1. By the same reasoning, we can easily check that S2 is a stable extension too.
Notice that r3 is not accepted because : {r6}DN r3 and {r6} ∩ S2 = ∅. We can verify
that the preferred extensions of this GAFN coincide with its stable extensions.

The GAFN of figure 3-(2) has no stable extension. Indeed, it is easy to see that the
only strongly coherent subsets here are {r1}, {r3} and ∅. None of them is stable and
only ∅ is admissible and represent the only preferred extension. Let us take for instance
{r1}. It is attacked by r3 and r4 but {r1, r2, r4} is a coherent set containing r4 and not
attacked by {r1}. {r1} is then not admissible and thus neither preferred nor stable.

Now, let us show how GAFNs allow to encode in a simple way any LP. Let Π be an
arbitrary LP containing n rules, Π = {r1, ..., rn}. The AFN that corresponds to Π is
ΔΠ = 〈Π, RΠ , DNΠ〉 such that : its arguments are the rules of Π , its attack relation
RΠ is defined by : ∀r1, r2 ∈ Π, r1 RΠ r2 iff head(r1) ∈ body−(r2) and its necessity
relation DNΠ is defined as follows : let E be a set of rules sharing the same head that
we denote by head(E) and r be a rule of Π . We let E DNΠ r iff head(E) ∈ body+(r).
Then, we have a one to one correspondence between ι-answer sets (resp. answer sets)
of Π and naive (resp. stable) extensions of ΔΠ .

Proposition 8. Let Π be an arbitrary LP and ΔΠ = 〈Π, RΠ , DNΠ〉 be the corre-
sponding GAFN. A set X is a ι-answer set (resp. answer set) of Π , with Π ′ as the
corresponding maximal subset of Π iff Π ′ is naive (resp. stable) extension of ΔΠ .

Example 4. Consider the following programs Π2 and Π3 :
(Π2) r1 : a ← c, not b (Π3) r1 : p ← not q

r2 : b ← d, not a r2 : p ← q
r3 : c ← e r3 : q ← not p
r4 : c ← a, not d r4 : q ← p
r5 : d ← not c
r6 : e ← not d

The GAFN ΔΠ2 = 〈AΠ2 , RΠ2 , DNΠ2〉 is represented in figure 3-(1) and the GAFN
ΔΠ3 = 〈AΠ3 , RΠ3 , DNΠ3〉 in figure 3-(2). The program Π2 has two ι-answer sets
: X1 = {a, c, e} and X2 = {b, d} that are also its answer sets. Their corresponding
maximal subsets are S1 = {r1, r3, r4, r6} and S2 = {r2, r5} respectively, that have
been shown in example 3 to be the stable extensions of ΔΠ2 . Moreover, as all ι-answer
sets of Π2 are also answer sets, no subset S ⊆ AΠ2 other than S1 and S2 is a maximal
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strongly coherent subset. The program Π3 has no ι-answer set and so no answer set too.
Indeed, there is no subset Π ′

4 of Π3 that verifies conditions (C1) and (C2).3.

Remark 2. It is the head of a rule which determines whether it attacks and/or is nec-
essary for other rules. Hence, for a set E of rules sharing the same head, if a rule of E
attacks a rule r then all the rules of E must attack r, and if E′ ⊆ E is necessary for a
rule r, then the whole E is necessary for r. Thus, to use a direct method as in Remark
1 to translate a GAFN Δ = 〈A, R, DN〉 into a LP ΠΔ, the following conditions must
hold : (1) if E1 DN r1, E2 DN r2 and E1 �= E2 then E1 ∩E2 = ∅; (2) if E DN r for
some r ∈ A and r′ R s for some r′ ∈ E and s ∈ A then r′′ R s for all r′′ ∈ E.

Let Δ = 〈A, R, DN〉 be a GAFN satisfying the previous conditions, let E1, ..., Ek

be all the subsets of A such that Ei DN r for some r ∈ A and let P = {rk+1, ..., rn}
be the (possibly) other arguments of A that are not involved in any Ei. We associate to
each Ei an atom hi (1 ≤ i ≤ k) and to each rj (if any) of P an atom hj (k+1 ≤ j ≤ n).
Then, each argument r ∈ A gives rise to a rule r in ΠΔ such that : head(r) = hi (1 ≤
i ≤ k) if r ∈ Ei for some Ei and head(r) = hj (k+1 ≤ j ≤ n) if r = rj for some rj ∈
P ; body+(r) = {hm | Em DN r} and body−(r) = {hm | s R r and (s ∈ Em or s =
rm ∈ P )}. To show that this translation, preserves a one to one correspondence between
naive (resp. stable) extensions of Δ and the ι-answer sets (resp. answer sets) of ΠΔ, it
suffices to show that translating ΠΔ by using the method described in this section, gives
exactly Δ. The wished results follow then from proposition 8.

6 Discussion and Related Work

In this paper we introduced argumentation frameworks with necessities that generalize
Dung’s AFs with a new support relation having the meaning of necessity. We redefined
acceptability semantics including naive, stable, admissible and preferred extensions and
showed that the main properties of these semantics are kept in this new context. We also
proposed a new method that takes advantage of the necessity relation to relate a frag-
ment of logic programs with AFNs in a very simple way. Then we further generalized
the previous framework to let necessity relation deal with sets of arguments and rede-
fined the acceptability semantics within this generalized frameworks that allow to cope
with arbitrary logic programs in the same simple way as with AFNs.

We have already discussed in section 1. the main drawback of the approach of BAFs
presened in [7] [8]. For more technical differences, we can state that [7] considers only
acyclic systems while our work handles the general case where both cycles of necessi-
ties and of attacks are allowed. Moreover, out work generalizes the support relation to
deal with sets of arguments and relates both AFNs and GAFNs to LPs.

The work presented in [3] started from a criticism of BAFs on two points, namely,
the loss of admissibility in the sense of Dung of the extension obtained from the meta-
model using coalitions [8], and the handling of attacks in the context of support rela-
tions. The proposed approach develops the so-called deductive support and introduces

3 Although we have ApΠ3({p, q}) = GΠ3({p, q}) = {r2, r4}, {p, q} is not a ι-answer set be-
cause for the corresponding Π ′

4 = {r2, r4} the condition (C1) does not hold : body+(Π ′
4) =

{p, q} �⊆ Cn+(Π ′
4) = ∅. Consequently, {p, q} is not an answer set either. This is explained

by the fact that in ΔΠ3 , {r2, r4} is not strongly coherent because it is not N-Cycle-Free.
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mediated attacks instead of indirect attacks. The authors show that the admissibility of
extensions is then restored. It turns out that the deductive support is nothing but the
sufficiency relation. As discussed in section 1, this relation corresponds merely to the
inverse of the necessity relation. Thus, by inversing the direction of deductive support
in [3] (which gives necessity relations), the mediated attack and the supported attacks
correspond respectively to the first and the second cases of our extended attacks (see
definition 2). However, instead of imposing the use of only one type of support relation,
our approach can start from a system where the two types are freely expressed and then
reduce in a preliminary stage all the relations to one type. Notice that all the results
of our paper hold for a sufficiency relation (a deductive support) by simply replacing
the necessity relation N by a deductive relation, say D, and using closedness under D
instead of closedness under N−1. The subsequent development in [3] is different from
ours: while they define a meta-argumentation model to handle supports and introduce
defeasible supports, in our work we generalize our frameworks to represent arguments
supported by sets of arguments, we redefine Dung’s acceptability semantics in the re-
sulting frameworks and we show how these frameworks capture arbitrary LPs.

A recent work developed in [6] proposes abstract dialectical frameworks (ADF),
a powerful generalization of Dung’s AFs that formalizes the idea of proof standards,
widely studied in legal reasoning domain. This idea is captured in ADFs by linking
each argument to a set of arguments (its parents) and introducing the notion of accep-
tance conditions that determine whether an argument is accepted or not according to
the acceptance status of its parents. The main results of the paper concerns however a
sub-class of ADFs called bipolar ADFs (BADFs), where the relation between an argu-
ment and a parent plays always one role : either an attack or a support. It is not difficult
to see that our AFNs are a kind of BAFs in the sense of [6]. GAFNs does not fit directly
into ADFs since an argument in a GAFN may have as a parent a set of arguments (the
set of parents is a set of sets) while a parent in an ADF is a single argument. But by
adding further arguments one can translate a GAFN into a BADF. A main difference
between our work and [6] lies on the method used to generalize stable and admissible
semantics. [6] adapts techniques from logic programming, namely Gelfond/Lifschitz
reduct, to avoid necessity cycles. In our work, thanks to the notions of coherence and
strong coherence used instead of conflict-freeness, we keep our definitions similar to
that in Dung’s original AFs. Another point is that in the method we use to encode a
LP as a BAFN, each rule is represented by an argument which gives an homogeneous
view of the meaning of an argument. In [6], a similar homogenous representation using
atoms as arguments is proposed but as pointed out in the paper, it leads in general to an
ADF which may not be bipolar. To obtain a BADF, one must introduce new arguments
designating rules. The resulting representation is then heterogeneous in the sense that
arguments may refer to rules or to atoms. Finally, the opposite question, i.e., the rep-
resentation of ADFs as LPs is not explicitly considered in [6], but our work, gives the
constraints that a GAFN must satisfy to ensure its direct encoding as a LP.

Another approach that shares some features with ours is the evidence based argu-
mentation [18]. This approach considers that only arguments that have some eviden-
tial support can attack other arguments. The evidential support comes either directly
from the environment to some particular arguments or from a chain of supports that
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originates in such particular arguments. A very similar idea is present in our work. In-
deed, to ensure admissibility of a set, we must guarantee just the response to attacks
coming from arguments that are N-Cycle-Free, i.e., those that have no need for a sup-
port or that are ultimately supported by arguments that have no need for a support.
An interesting perspective is to see how to use our model in the context of evidential
reasoning.

Notice that AFNs cannot be reduced to constrained AFs [9] where a N b is replaced
by the implication b ⇒ a. An extension of a contrained AF is an extension of the
corresponding AF that verifies the given constraints and this is not true for AFNs. For
example, the AFN 〈A = {a, b, c}, R = {a, b}, N = {b, c}〉 has one stable extension :
{a}, but the constrained framework 〈A, R, C = c⇒ b〉 has no stable extension (the
only stable extension of 〈A, R〉 is {a, c} which does not verify the constraint C).

Many recent works was interested in handling preferences among arguments in AFs
(see for example [5] for a brief synthesis). The main challenge in these works is to
deal with the possible conflict between preferences and attacks. We want to study the
impact of adding preferences to (G)AFNs and to exploit the obtained results in the
context of LPs with preferences about its rules and/or atoms. Another perspective is
to elaborate adapted forms of dialectical proof procedures and labelling algorithms (see
[15]) for (G)AFNs. The link with LPs allows then to use these new algorithms in various
applications. For example, a dialectical proof procedure may be more suitable than
existing ASP solvers if we want to formulate targeted queries to a knowledge base
represented by a LP (for such an application, see for example [17] which proposes a
non-monotonic reasoning to detect causes of accidents from their textual descriptions).
Finally, we plan also to extend our framework to cope with disjunctive LPs.
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Abstract. Argumentation in AI provides an inconsistency-tolerant for-
malism capable of establishing those pieces of knowledge that can be
warranted despite having information in contradiction. Computation of
warrant tends to be expensive; in order to alleviate this issue, we pro-
pose a heuristics-based pruning technique over dialectical trees. Empiri-
cal testing shows that in most cases our approach answers queries much
faster than the usual techniques, which prune with no guide.

1 Introduction and Motivation

The theory on computational argumentation is usually focused on bringing new
theoretical elements to augment the expressive capability of the formalism. Other
extensions are also devoted to handle different aspects of the argumentation pro-
cess, from its dynamics [15] to its capability to represent dialogues, negotiations,
and other features [4]. Complementarily, some approaches study the suitability
of argumentation within different application contexts, such as Multi-Agent Sys-
tems and the Semantic Web. However, many complications lying on the practi-
cal side of argumentation have not been completely addressed. Implementations
have not yet achieved maturity; the few systems available are still at an experi-
mental stage and have never been tested against large amounts of data. This is
understandable for a rather young discipline like argumentation in AI.

Nonetheless, as the theoretical foundations become stronger, the community
is starting to pay attention to the computational tractability of argumenta-
tion [2,6]. In this article, we take on this concern and put our focus on the
computation of warrant through dialectical trees, i.e., focusing on a single ar-
gument at a time. When this is performed in massive argumentation [14], two
difficulties can be envisioned: either dialectical trees are small and too many,
or they are few but large. In this paper we address the latter issue, attempting
to build smaller trees via a pruning technique. Thus, a smaller amount of argu-
ments would be required to determine the status of the root argument. In order
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to confirm this improvement, experimental tests were performed over large ar-
gumentation frameworks, randomly generated, containing up to 500 arguments.

In this article we apply the pruning technique over a variation of the original
framework for argumentation that considers a universal set of arguments along
with a subset of currently active ones. However, the interest on such a pruning
technique is not constrained to this framework only. For instance, think of a rule-
based argumentation formalism. Provided that there are no functional letters, we
could build the universal set of arguments as a subset of the (finite) Herbrand
Base. Then, as the state of the world changes, facts would be asserted and
retracted accordingly, therefore activating and deactivating arguments. Here we
will show how to compute a heuristics from the universal set of arguments in
order for it to be useful at any given state of the world. We contend that many
implementations for argument frameworks would benefit from these results.

The approach used for pruning will be based on the abstract notion of argu-
ment strength, which indicates the likelihood of an argument to be ultimately
defeated. We propose a concrete formula showing the desired behaviour. Argu-
ments’ strength is used as a heuristic value to sort the attackers of an inner node
during the construction of dialectical trees. We will show that pruning opportu-
nities are likely to appear, and entire subtrees can be omitted without affecting
the calculation of the root’s warrant. We introduce a strategy to build these di-
alectical bonsai1, based on our proposal of argument strength. Empirical testing
has shown that strength calculation allows for virtually instantaneous response
to queries. Strength calculation also allows for storing arguments and attacks,
which is a clear advantage. This analysis shows that strength calculation does
not undermine the gain obtained by bonsai, in terms of time. Although the goal
of this paper is mainly practical, in this first approach we study the suitability
of the approach applied over a particular flavour of Dung’s framework [10].

2 Theoretical Basis

Nowadays, Dung’s abstract argumentation framework has become the standard
to analyse and apply new ideas to any argumentation-based setting. In this
article, we will use a slightly different version of the classic framework that al-
lows for the representation of both active and inactive arguments. This dynamic
abstract argumentation framework (DAF) is a simpler version than the one pre-
sented in [15], getting rid of all the representational intricacies that are not
relevant for this line of research. This version of the DAF consists of a universal
set of arguments holding every conceivable argument along with a subset of it
containing only the active ones. These active arguments represent the current
state of the world and are the only ones that can be used by the argumenta-
tion machinery to make inferences and calculate warrant. Therefore, at a given
moment, those arguments from the universal set that are not active represent
reasons that, though valid, cannot be taken into consideration due to the current
1 The pruning technique attempts to keep trees small while retaining the properties

of the entire tree, like a bonsai.
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context. At some point, active arguments could become inactive, thus no longer
used for inference, or vice versa. As in [10], we have a set containing attacks
between pairs of arguments.

Definition 1 (Dynamic Argumentation Framework). A dynamic argu-
mentation framework, or DAF, is a triple (U, ↪→)[A], where U is the universal
set of arguments, ↪→ ⊆ U×U is the attack relation between arguments, and A ⊆ U
is the subset of active arguments.

The DAF yields a graph of arguments connected by the attack relation. An
“active subgraph” could be considered, containing only active arguments. In ar-
gumentation, the challenge consists in finding out which active arguments prevail
after all things considered, i.e., those arguments that are warranted. To this end,
the notion of argumentation semantics has been extensively studied [3]. In this
article, warrant of arguments will be determined on top of the dialectical tree for
each one of them, assuming a particular marking criterion (see Assumption 1.)

A dialectical tree is conformed by a set of argumentation lines; each of which
is a non-empty sequence λ of arguments from a DAF, where each argument in λ
attacks its predecessor in the line. An argumentation line should be non-circular
(an argument should not occur twice in the same argumentation line) in order
to avoid infinite lines, and it also should be exhaustive (no more arguments can
be added to it.)

Definition 2 (Argumentation Line). Given a DAF τ = (U, ↪→)[A], and
B1, . . . , Bn ∈ U, an argumentation line λ in τ is a (non-empty) finite se-
quence of arguments [B1, . . . , Bn] such that, ∀Bi, Bj with i �= j and 1 < i, j ≤ n,
Bi↪→Bi−1, Bi �= Bj and �C ∈ U such that C↪→Bn. The set of all argumentation
lines in τ is noted as Linesτ .

The first argument in an argumentation line is called the root whereas the last
one is the leaf of λ. Arguments in these lines are classified according to their role
wrt. the root argument: a pro argument (respectively, con) in an argumentation
line is placed at an odd (respectively, even) position.

Note that the definition for an argumentation line takes into account every
argument in the universal set. A restricted version of argumentation line could
be considered, setting its domain within the set of active arguments. This variant
is called active argumentation line. Since regular argumentation lines as defined
above include both active and inactive arguments, we will refer to them as po-
tential argumentation lines, to emphasise their meaning.

As said before, the warrant status of an argument will be determined by
analysing the dialectical tree rooted in it. A dialectical tree rooted in an argument
A will be built from a set of argumentation lines rooted in A.

Definition 3 (Dialectical Tree). Given a DAF τ = (U, ↪→)[A] and an argu-
ment A ∈ U, the dialectical tree T (A) rooted in A from τ is built from a set
X ⊆ Linesτ of lines rooted in A, such that an argument C in T (A) is:
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– a node iff C ∈ λ ∈ X
– a child of a node B in T (A) in λ iff λ = [. . . , B, C, . . . ], λ ∈ X.
– a leaf of T (A) in λ iff C is a leaf in λ ∈ X.

The set of all dialectical trees in τ is noted as Treesτ .

Dialectical trees are built from argumentation lines and can be classified in a
similar way. Therefore, potential dialectical trees are built from potential argu-
mentation lines: those containing arguments from the universal set. Similarly,
active dialectical trees are built from active argumentation lines, which include
only active arguments.

The computation of warrant through dialectical trees usually relies on a mark-
ing criterion that could be defined according to any conceivable policy; its main
objective is to assign a status to each argument in the dialectical tree. The
status of the root argument would tell whether it is warranted. An abstract
specification for a sensible marking criterion was given in [16]. Here we present
a particular version of the marking function that assigns either “D” (defeated)
or “U” (undefeated) to each argument.

Definition 4 (Marking Function). Given a DAF τ , a marking function
over arguments in τ is any function m : U× Linesτ × Treesτ → {D,U}.

Since the same argument can appear in different lines of the same tree, the mark-
ing function needs to address it through line and tree, e.g., an argument could
be marked as D in some lines and U in others. Although Definition 4 indicates
that m is defined for the whole cartesian product of acceptable lines, trees and
arguments in a DAF, an implementation would probably define the function
only for arguments within a given acceptable line within a given acceptable tree.
There is a case in which an argument B can be associated to several lines, inter-
changeably: when the path from the root to B coincides in these lines. We will
not address this issue with any particular convention, since it will not be prob-
lematic: the mark of B in all these lines will be just the same (see Example 1).
In this article we assume the marking criterion given in DeLP [11].

Assumption 1. An argument is marked as D iff it has an attacker marked as
U. Otherwise it is marked as U.

Example 1. Consider the dialectical tree T (A) below, depicted along with its
two argumentation lines λ1 and λ2. White (black) triangles are used to denote
arguments marked as undefeated (defeated).

T (A)

A�

B�

C�
��

D�
���

E�

λ1

A�

B�

C�

λ2

A�

B�

D�

E�
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Leaves are undefeated and B is defeated due to C being undefeated. Also note
that A and B belong to both lines, thus receiving the same mark.

The construction of dialectical bonsai depends on the capability of dialectical
trees to be pruned. Given a tree T , a bonsai of T will be a pruned version of it
such that the marking applied to the bonsai retains, at least, the same marking
for the root than the one in T . That is, during the construction of dialectical
trees, it should be possible to determine when the construction procedure has
collected enough information to compute the same mark for the root as the
one in the non-pruned tree. A simple example is a scenario in which there is an
undefeated attacker for the root; when such an argument is found, the dialectical
analysis should be stopped and the root marked as defeated. To simplify things,
we will assume the and-or pruning technique explained in [9], which we call
1U pruning (formally introduced in Definition 7): whenever an attacker for an
inner argument A is found as undefeated, A can be directly marked as defeated
and the rest of the attackers for A can be ignored.

Although this technique is not too restrictive and could even be used often,
finding all the opportunities for pruning (thus obtaining the smallest possible
trees) requires just plain luck, since undefeated attackers must be found first
(see Example 2), and undefeatedness is not predictable –indeed, its discovery is
the reason to build dialectical trees.

Example 2. Consider the dialectical tree T (A) depicted below, and three possible
prunings: P i

τ (A), 1 ≤ i ≤ 3. White (respectively, black) triangles are used to
denote arguments marked as undefeated (respectively, defeated). Depending on
the order in which attackers for A are selected, different prunings come up.

T (A)

A�

�B

���
�C �D

���

�E �F

P1
τ (A)

A�

�B

���
�C ��

���

�E

P2
τ (A)

A�
�� ��� �C ��

���

P3
τ (A)

A�

�B

���
�C �D

			

�E �F

– P1
τ (A) : C is selected after B but before D, so D is cut off;

– P2
τ (A) : C is selected first, both B and D are cut off;

– P3
τ (A) : C is selected last, no pruning occurs.

Note that pruning argument C would lead to a faulty pruning, marking the root
as undefeated. Such a pruning would not qualify as a bonsai.

Generally in the literature, when using a pruning technique while building
trees the expansion of attackers (i.e., children) follows no criterion, and this
happens both in theoretical approaches as well as in implementations. The former
usually present a set of arguments to choose from, whereas the latter are often
rule-based, and rules are placed rather arbitrarily, and looked up in a top-to-
bottom fashion. To sum up, when building dialectical trees there is no available
information to know beforehand how to augment the possibilities of pruning.
An external mechanism should provide such knowledge. Next we introduce the
concept of argument strength.
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3 An Approach to Argument Strength

Our approach to the notion of argument strength is similar to that in [12,5], and
it is based on the following statement: “an argument is as strong as weak are its
attackers”. In this way, the number of attackers is not the only parameter that
affects an argument’s strength. This is particularly interesting, since a strategy
would be flawed if based solely on that number. For instance, given a pro ar-
gument K within any dialectical tree, a subtree rooted in K packed with pro
arguments should give K a high strength value. The strength of an argument
in a tree should somehow codify how likely is this argument to be ultimately
un/defeated. An argument with great strength could even be considered as a
leaf, which would improve pruning at the risk of losing soundness. Strength val-
ues will be used by a heuristic method to prune the tree, as will be explained
later. The idea behind this strength measure is to codify the likeliness of an
argument to be ultimately defeated.

Next we propose a formula to calculate strength [5] for an argument A that
works over the potential tree rooted in A. In order to get A’s strength, the
method relies on the strength of A’s immediate attackers, which in turn rely on
the strength of their own immediate attackers, and so on, thus leading to the
consideration of the entire tree. The definition of a set of rationality postulates
modelling the intuitions given above is underway but, however, out of the scope
of this article. Similarly, other formulas showing the desired behaviour could be
proposed.

Definition 5 (Argument Strength). The strength of an argument B in a
line λ in a potential tree T (B) is calculated as:

μ(B, λi, T (B)) =
1

1 +
∑

i(μ(Ci, λi, T (B)))
,

where Ci is a child of B in a line λi within T (B).

Again, as arguments might appear in different lines of the same tree, they have to
be individualised through these three parameters. The strength of an argument
A in the context of a DAF τ is calculated as μ(A, ·, T (A)), and the shortcut is
μ(A). Note that the proposed formula captures the intuition that an argument’s
strength has an inverse correlation with the strength of its attackers.

Each argument’s strength is calculated by building the potential dialectical
tree rooted in it. Although each non-root argument in this potential tree has
an associated strength, this measure is local. That is, this is not the actual
strength value they would have in the potential tree rooted in them, but just
a partial measure towards the calculation of the root’s strength. Moreover, an
argument appearing twice in a tree would probably have two different local
strength measures. Nonetheless, the strength value associated to an argument
will be its actual strength value.



A Heuristics-Based Pruning Technique for Argumentation Trees 183

Example 3. Suppose a DAF ({A, B, C, D}, {(B, A), (C, A), (A, C), (D, C)})[{A, B,
C, D}]. The potential trees for T (A) and T (C) are shown below. In the for-
mer tree, arguments B and D receive no attacks, thus μ(B, λ1, T (A)) = 1 =
μ(D, λ2, T (A)). Argument C is attacked just by D, then μ(C, λ2, T (A)) = 1/(1+
1) = 0.5. Finally, A is attacked by B and C, which sum 1.5, and therefore
μ(A) = 1/(1 + 1.5) = 0.4. The rest of the strength values are local. The actual
strength of C is μ(C) = 1/(1 + 1.5) = 0.4, since in its potential tree T (C) has D
as undefeated attacker with μ(D, λ1, T (C)) = 1 and A as defeated attacker with
μ(A, λ2, T (C)) = 1/(1 + 1) = 0.5. Note that the local strength value 0.5 for C
in the potential tree for A differs from C’s actual strength value 0.4, computed
from its potential tree.
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4 Building Dialectical Bonsai

In this article, we will use strength values to devise a heuristics-based method
to construct dialectical bonsai. Remember that the strength of an argument is
computed on top of the potential dialectical tree associated to it. Therefore,
these values will be an indication of how likely to be defeated an argument is,
but given a specific scenario the real strength of an argument (corresponding to
the active tree rooted in it) could greatly differ from the one calculated from the
potential tree. That is, if strength values were to be kept up to date, they should
be recalculated every time the situation changes, which is rather undesirable. In
this article we propose a more pragmatic approach, in which each strength value
is computed just once from the corresponding potential dialectical tree. Thus,
when faced to particular situations, strength values end up being approximated;
however they are still useful as a heuristics, as demonstrated by experimental
testing.

Example 4. Consider Example 3, where μ(A) = 0.4, μ(B) = μ(D) = 1, μ(C) =
0.4. Let us assume a world in which A and D are inactive. In this case, C has
no defeaters, but its strength value is still 0.4, as it would have been calculated
beforehand, from its potential tree.

From precalculated strength values we seek to build smaller trees via pruning.
Next, we formalise the generalised notion of pruning, according to the intuitions
previously presented.

Definition 6 (Pruning). Let T (A) be a dialectical tree in the context of a DAF
τ = (U, ↪→)[A], St ⊆ U, the set of arguments in T (A), and Et ⊆ ↪→, the set of
edges in T (A). A pruning P(A) for T (A) is a tree rooted in A with a set of
arguments Sp ⊆ St and a set of edges Ep ⊆ Et. An active pruning is a pruning
for an active dialectical tree.
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The above definition gives a general notion of what we consider as a pruning.
However, not every pruning of a tree qualifies as a dialectical bonsai. As stated
before, the requirement for a pruning to be a bonsai is to yield the same infor-
mation than the complete tree about the warrant status of the root argument.
Next, we introduce the particular kind of pruning used in this paper, and then
we formally define the concept of dialectical bonsai. The reader should know
that this is not a new concept, but used in existing argumentation systems, such
as DeLP [11].

Definition 7 (1U Pruning). Given a DAF τ and a pruning P(A) for a di-
alectical tree T (A), let B be an inner node in P(A) with a set of attackers Γ in
T (A) such that the subset of attackers in P(A) is Γ ′ ⊆ Γ . The pruning P(A) is
a 1U pruning for T (A) iff ∃Bi ∈ Γ, m(Bi, λi,P(A)) = U implies that there is
exactly one argument Bk ∈ Γ ′, m(Bk, λk,P(A)) = U.

In words, a 1U pruning is a pruning P(A) such that for any set of attackers
with at least one attacker marked as U in the original tree T (A), the subset of
attackers that stays in P(A) has exactly one undefeated attacker. The definition
does not specify how to treat a set Γ with all defeated arguments. Note that
any subset would work, even the empty set. However, an implementation would
most likely check all the defeaters to find out that they are defeated.

Definition 8 (Dialectical Bonsai). Let T (A) be an active dialectical tree in
the context of a DAF τ , a dialectical bonsai B(A) for T (A) is a pruning of
T (A) with a set of arguments Sb verifying:

m(Bi, λk, T (A)) = m(Bi, λi,B(A)), for every Bi ∈ Sb,

where paths from A to Bi in B(A) and T (A) are equal.

Proposition 1. A 1U pruning for an active dialectical tree T is a dialectical
bonsai for T .

Proof. Let P(A) be a 1U pruning of a dialectical tree T (A). Since for any set
of attackers for a given argument B in the original tree T (A) with at least one
undefeated attacker, exactly one of these remains in the 1U pruning P(A) by
Definition 7, then B is defeated both in T (A) and P(A). On the other hand,
for any set of attackers for B where no argument is undefeated, any subset of
attackers (even the empty set) would yield B as undefeated.

By definition, a dialectical bonsai is not an arbitrary pruning of its associated
(active) dialectical tree, but one that shares the mark of every argument; in
particular, the mark of the root. A more relaxed version of this definition could
require sharing only the mark of the root argument. However, for a first approach
it is simpler not to allow obscurity over the marking of the rest of the arguments,
since it would add unnecessary complexity. The most important property di-
alectical bonsai should satisfy is to warrant exactly the same arguments than
non-pruned trees do.
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Lemma 1 (Soundness & Completeness). Given a dialectical bonsai B(A) of
a dialectical tree T (A), A is warranted from T (A) iff A is warranted from B(A).

Proof. Trivial, from Definition 8, the marking of the root nodes in B(A) equals
the marking of the root in T (A).

A different version of the definition for a dialectical bonsai might imply a much
more complicated procedure to determine the status of the root argument. How-
ever, it would be desirable for any alternative definition to not interfere with the
satisfaction of the meta-properties of soundness and completeness.

Fast-Prune Bonsai

When a dialectical tree is built, the order in which children (i.e., attackers)
are generated is relevant, as it could lead to very different results if a pruning
technique like 1U were applied (as shown in Example 2). In our approach, each
argument has an associated strength value, therefore once all the children of
a given inner node were gathered, they are sorted from the strongest to the
weakest. In this way, we always seek for the strongest attackers first in order
to find an undefeated argument as fast as possible, to then be able to cut the
remaining siblings off. This strategy is called fast prune.

Definition 9 (Fast-Prune Bonsai). Given a DAF τ and a dialectical bonsai
B(A) for an active dialectical tree T (A), let B be an inner node in B(A) with a
set of attackers Γ in T (A) such that the subset of attackers in B(A) is Γ ′ ⊆ Γ .
Given the argument strength function μ(·), B(A) is a fast-prune bonsai iff
∃Bk ∈ Γ ′, m(Bk, λk,B(A)) = U implies both:

1. ∀Bj �=k ∈ Γ ′, μ(Bk) ≤ μ(Bj), m(Bj , λj ,B(A)) = D
2. ∀Bx ∈ Γ \ Γ ′, μ(Bx) ≤ μ(Bk).

Another way of reading this definition is to think that the strongest attackers
Bj for B have to be considered within B(A), until an undefeated attacker is
found; then, those attackers Bx that were left out of the bonsai are weaker than
(or as strong as) the attackers for B in B(A).As in Definition 7, Γ ′ containing
all defeated arguments receives no special treatment, since any subset would
preserve the marking for B. Procedurally, however, the algorithm would have to
check all the arguments, from the strongest to the weakest, to finally find out
that none of them is undefeated. Hence, in practice, when all arguments in Γ
are defeated, it holds that Γ ′ = Γ . Another variant would be to stop checking
arguments statuses whenever a certain strength threshold is met, e.g., not to
check arguments with a strength value below 0.2. In that case, we would have
that Γ ⊂ Γ and could prune even further, at the risk of losing soundness.

Proposition 2. A fast-prune bonsai for a dialectical tree T is a 1U pruning for T .

Proof. A fast-prune bonsai requires, for any set of attackers with at least one
undefeated argument: (1) to have only one undefeated argument Bk (2) for Bk

to be weaker than the remaining (defeated) arguments. Condition 1 is equivalent
to the requirement for a 1U pruning.



186 N.D. Rotstein et al.

Example 5. Consider the potential tree for A depicted below, in (a). Assuming
that D and H are not active right now, we have the active tree shown in (b).
Applying fast prune over this active tree (which keeps the strength values from
the potential) we have that the strongest attacker of A is C. This argument has
two children, where G is the strongest one. Then, we consider G, whose only
attacker is J, therefore G ends up defeated and its siblings should be evaluated.
Again, F is defeated by leaf I, and C has no more attackers, thus it ends up
undefeated. This means that C’s siblings can be pruned off, yielding the bonsai
in (c). Note that every node in the bonsai preserves its marking; in particular
the root.
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Example 6. Consider the potential tree depicted below, in (a). Assuming a world
in which C3 and C4 are inactive, we have the active tree in (b), where A is now
defeated. The strongest attackers for A are B1 and B3. Due to lexicographic order,
B1 is expanded, whose one attacker C1 is undefeated, hence B1 is defeated. Then,
we seek for the second stronger attacker for A, which is B3, and it is a leaf, i.e., it
is undefeated. Therefore, B2 is cut off and the root is marked as defeated. The
resulting bonsai is depicted in (c). Note that the bonsai could get even smaller
if it were composed just by A and B3.
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5 Empirical Results

In this section, the performance of the fast-prune bonsai (FP) is measured from a
simulation. The analysis involves comparing the FP bonsai against a blind-prune
bonsai (BP), i.e., a pruning technique imitating the behaviour of a typical dialec-
tical tree construction procedure, using no guide, like DeLP. The comparison
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between the two bonsai will help us analyse the improvement achieved by FP
bonsai. The simulation consists of the following steps:

1. Generation of a random DAF with U arguments: by creating a graph of U
nodes and over U edges;

2. Strength computation: performed following the formula in Definition 5 using
dynamic programming techniques by reutilising subtrees, which implies big
time savings. Strength computation allows for storing trees (i.e., arguments
and attacks), as a precompilation [8]. Since generally in a real-world scenario
the construction of arguments takes time, we simulated this by introducing
a very small time penalty of 0.001 seconds each time an argument is built;

3. Loop 500 times:
(a) Deactivation of arguments: a certain percentage of randomly chosen ar-

guments is deactivated.
(b) Selection of a query: a random active argument is selected to act as a

query.
(c) Computation of warrant:

– Fast-prune bonsai: an algorithm following Definition 9 computes war-
rant by using precompiled arguments and attacks; as for strength
calculation, the time penalty per argument is introduced.

– Blind-prune bonsai: an algorithm following the usual procedure in
Definition 7 computes warrant by building arguments and attacks
on-the-fly, which includes the time penalty.

Hence, each simulation generates a DAF, deactivates some arguments, and per-
forms 500 queries. Since results are DAF-dependent, this simulation was ran
1000 times and the deactivation ratio was set to 10%. The results for different
DAF sizes can be seen in Table 1, where “U” indicates the size (i.e., number of
arguments) of the DAF, “str(t)” the average amount of time taken to compute
strength values, “FP(t)” (resp., “BP(t)”) the average amount of seconds taken
to compute the 500 queries using fast-prune (resp., blind-prune) bonsai, “B/F”
indicates the online speedup obtained considering queries only (without time
needed for offline strength computation), “str(#)” (resp., “BP(#)”) reflects the
average amount of arguments generated to compute strength (resp., BP bonsai.)

Table 1. Results

U str(t) FP(t) BP(t) B/F str(#) BP(#)

200 0.86 0.029 2.02 70 807 1822
300 1.41 0.031 2.06 66 1329 1852
500 2.35 0.039 2.08 53 2219 1861

A question that might arise after this description is why tolerating a time
penalty while building the BP bonsai if the argument base can be precompiled.
The answer to this is split in two: (1) we are trying to simulate the usual proce-
dure to compute warrant (such as the one used in DeLP) which does not perform
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any precompilation; (2) precompilation of arguments and attacks involves com-
puting potential trees and from there computation of strength would involve a
very small overhead: traversing the tree from the leaves to the root. The original
question however remains: how does FP perform against BP when both work
over precompiled argument bases? The answer can be found in Table 2. Here,
we consider the time taken to precompile knowledge (“c(t)”), which is equiva-
lent to compute strength. Speedup (“Bc/Fc”) now considers the total time to
answer queries plus precompilation time. Note that time to compute BP bonsai
(“BP(t)”) has no penalty, thus modifying the per-query speedup (“B/F”).

Table 2. Precompiled argument base

U c(t) FP(t) BP(t) Bc/Fc

200 0.008 0.029 0.076 2.27
300 0.013 0.031 0.08 2.11
500 0.016 0.039 0.091 1.95

Regarding the amount of space needed to store potential trees, we only need
to store the potential graph, as each potential tree is the spanning of this graph
from a given argument. For instance, a DAF of 500 arguments and 500 attacks
with a maximum argument size of N kilobytes would require 500×N +500×M ,
where M is just a few bytes representing an attack: both arguments IDs plus
attack direction. For this problem size, considering arguments of a maximum
size of 5 kilobytes (which is approximately two pages of plain text), the amount
of storage necessary to keep the precompiled information would remain below 5
megabytes.

6 Discussion

We have presented an approach to accelerate the computation of dialectical trees
(and thus warrant) within a dynamic abstract argumentative setting. Such dy-
namic frameworks allow for the representation of active and inactive arguments,
being the former the only ones to be considered to compute warrant. This char-
acteristic leads to the consideration of potential dialectical trees (containing
every argument in the universal set), as well as active trees (containing only cur-
rently active arguments.) Therefore, every time the situation changes, warrants
would have to be recalculated. There is a high degree of uncertainty regarding
how the fluctuation of active arguments affects previously computed warrants.
Nonetheless, the information codified by potential trees can be successfully used
to speed up the construction of active trees. To this end, we calculate a measure
of strength for each argument using potential trees. This is an advantage, as
strengths are calculated just once, and not upon every change in the world, as it
would be done if strength were calculated over active trees. Strength computa-
tion, even when performed once, is indeed expensive. However, empirical testing
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has shown that the time taken to compute argument strength is amortised within
a reasonable time window.

The fast-prune heuristic technique is guided by argument strength and at-
tempts to maximise pruning by looking to find undefeated arguments as soon as
possible, which implies that their siblings can be cut off. Computing argument
strength allows us to store precompiled arguments and attacks, which would be
used later when answering queries. Hence, significant speedup (shown as “B/F”
in Table 1) is not only a result of traversing smaller trees, but also due to the
non-calculation of arguments and attacks. We have also compared the amount
of arguments created by both approaches. In the case of FP, arguments are
built at the stage of strength computation; as for BP, every query triggers the
construction of a tree and every argument in it. Table 1 shows both quantities
in columns “str(#)”and “BP(#)”, where the latter is the accumulated amount
after 500 queries. Finally, when considering precompiled arguments and attacks
for both approaches, speedup remains considerable, as illustrated by column
“Bc/Fc” in Table 2, where is shown that FP responds twice as fast than BP.

Experimental results show that each fast-prune bonsai is a significantly smaller
version of its associated non-pruned active tree, providing a meaningful speedup.
This is an asset in massive argumentation domains, like the WWW [14], where
repeatedly looking for counter-arguments is expensive. Another scenario where
our approach would perform well can be found in the context of multi-agent sys-
tems. An argumentation-based agent with goals expressed as a set of warranted
arguments [1] would be computing warrant several times per cycle. In such a
setting, precompiling and storing potential trees would yield a clear advantage:
a twice-as-fast response.

7 Related Work

In [13] the subject of efficient computation of dialectical trees was already ad-
dressed. However, the approach is mostly declarative and it does not include any
concrete techniques to perform the pruning, let alone empirical testing.

In [6] an approach for speeding up the construction of argumentation trees is
presented. The authors also use information from the argument knowledge base
beforehand, to speed up the argumentation process. This argument compilation
produces a hyper-graph of the inconsistent subsets, which, together with a spe-
cial algorithm, can be used for efficiently building argument trees, saving time
for conflict detection. In our work, we try to avoid the evaluation of attackers
whenever possible. Both approaches follow parallel paths and could be combined.

Potential trees storage to avoid their reconstruction was considered similarly
to [8]. The main drawback is the amount of storage space needed, keeping one
tagged potential tree per argument in the universal set.

In order to deal with the warrant recalculation, some work has been recently
done on dynamics in argumentation. In [7], the authors propose a series of prin-
ciples to determine under what conditions an extension does not change when
faced to a change in the framework. This study on the impact of change over
extensions is based on arguments graphs and complementary to ours.
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Abstract. In this paper, we focus on logical argumentation introduced
by Besnard and Hunter. First, we consider the so-called warranted in-
ference which is based on the dialectical principle that is widely used in
the literature of argumentatation. More precisely, we compare warranted
inference with respect to the most frequently used coherence based ap-
proaches from flat belief bases in terms of productivity. It turns out that
warranted inference is incomparable, w.r.t. productivity, with almost the
coherence based approaches considered in this paper. Also, although too
productive in some situations, warranted inference does not entail some
very desirable conclusions which correspond to those which can be en-
tailed from each consistent formula. Then, we introduce a new inference
relation where the key idea is that the support of a counter-argument
must not entail the conclusion of the objected argument which is quite
intuitive. We show then that this inference relation ensures the inference
of the previous desirable conclusions. Besides, we suggest to distinguish
two levels of attacks: strong attacks and weak attacks. We propose then
to weight our new inference relation based on the structure of the argu-
ment tree and also by taking into account the level strength of attacks.

1 Introduction

Argumentation is a key approach that can be used in several situations like con-
flicts handling [2], negotiation [3], decision making [15], etc. There are a number
of proposals for logic-based formalisations of argumentation. In this paper, we
focus on the argument trees based framework proposed by Besnard and Hunter
[8,5]. Especially, we consider the so-called warranted inference [6,8] which is
based on the dialectical principle that is widely adopted in the literature on
argumentatation. Warranted inference has been recently studied from a com-
plexity point of view in [14]. Also, it has been applied, for instance, in the case
of inconsistency management policies in relational databases [17]. However, to
the best of our knowledge, there is no study that compares warranted inference
with coherence based approaches unlike other logical argumentation frameworks
[1,9,5].
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In this paper, we compare warranted inference with respect to the most
frequently used coherence based approaches from flat belief bases in terms of
productivity. Surprisingly, this inference relation does not always entail very de-
sirable conclusions which are derived using a too cautious inference relation while
it is too productive in some situations. So, we introduce a new inference relation
that we call rational warranted inference where the key idea is that the support
of a counter-argument must not entail the conclusion of the objected argument
that is is quite natural. We show then that this inference relation garantees to
deduce the previous desirable conclusions. Besides, we suggest to distinguish two
levels of attacks: strong attacks and weak attacks. We propose then to weight
our new inference relation based on the structure of the argument tree and also
by taking into account the level strength of attacks. The rest of the paper is
structured as follows. First, we give a brief background on logical argumentation
and the most popular coherence based approaches from flat belief bases where
no preference relation is considered over beliefs. Then, we compare warranted
inference with these coherence based-approaches. After that, we introduce a new
class of counter-arguments, namely rational defeaters and rational undercuts and
we give a number of their properties. Based on them, we introduce the notion of
rational warranted inference and compare it with the other inference relations.
Finally, we present weighted form of R-warranted inference before concluding
the paper and giving some of our perspectives.

2 A Brief Background on Logical Argumentation

We consider a finite set of propositional variables denoted by lower case Roman
letters a, b, c, . . . . Formulae are denoted by lower case Greek letters α, β, γ, . . .
while finite sets of formulae are denoted by upper case Greek letters Φ, Ψ , Δ,
. . . The symbols � and ⊥ denote tautology and contradiction respectively. As
to the symbol |=, it denotes classical propositional inference.

In [5], Besnard and Hunter assume a belief base (a finite set of formulae) Σ
that they use throughout their definitions. Moreover, they suppose that every
subset of Σ is given an enumeration < φ1, . . . , φn > of its elements, which they
call its canonical enumeration. Please, note that this constraint is satisfied when
any arbitrary total ordering is imposed over Σ. Now, we are ready to recall what
is logical argumentation starting by the notion of an argument.

Definition 1. An argument is a pair < Φ, α > such that: Φ is a consistent
subset of Σ, Φ |= α and Φ is a minimal subset of Σ satisfying the previous
properties. < Φ, α > is said to be an argument for α where Φ is called the
support of the argument and α its consequent or its claim.

Some arguments encompass others. This is captured with the notion of more
conservative arguments.

Definition 2. An argument < Φ, α > is more conservative than an argu-
ment < Ψ, β > iff Φ ⊆ Ψ and β |= α.
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Example 1. < {a}, a ∨ b > is more conservative than < {a, a⇒ b}, b >.

Then, a more conservative argument can be seen as more general in the sense
that it is less demanding on the support and less specific with respect to the
claim. Now, let us consider counter-arguments which include defeaters, under-
cuts and rebuttals. Defeaters are arguments whose claim refutes the support of
another argument [19,21,22] while undercuts are arguments which directly op-
pose the support of others. As to rebuttals, they capture the most direct form of
a conflict between arguments which occurs when two arguments have opposite
consequences.

Definition 3. Let < Φ, α > be an argument.

– A defeater for < Φ, α > is an argument < Ψ, β > s.t. β |= ¬(φ1 ∧ . . . ∧ φn)
where {φ1, . . . , φn} ⊆ Φ.

– An undercut for < Φ, α > is an argument < Ψ,¬(φ1 ∧ . . . ∧ φn) > where
{φ1, . . . , φn} ⊆ Φ.

– An argument < Ψ, β > is a rebuttal for < Φ, α > iff β ≡ ¬α.

Example 2. Let Σ = {a, a → ¬b, c, c → ¬a,¬a → b} be a belief base. Let us
consider the argument < {a, a→ ¬b},¬b >. Then,

– The argument < {c, c→ ¬a},¬a > is an undercut .
– The argument < {c, c→ ¬a,¬a→ b}, b > is a rebuttal.

One can easily see that both undercuts and rebuttals are defeaters. Moreover,
an undercut for an argument need not be a rebuttal for that argument and vice
versa. Now, according to [5], we have the following properties:

Property 1. If < Ψ, β > is a defeater for < Φ, α > then there exists an undercut
for < Φ, α > which is more conservative than < Ψ, β >.

Property 2. If < Ψ, β > is a maximally conservative defeater of < Φ, α > then
< Ψ, β′ > is an undercut of < Φ, α > for some β′ which is logically equivalent
with β.

The two previous properties are of a special interest. In fact, they point to un-
dercuts of an arguments as candidates to be representative of all the defeaters
of that argument. In particular, maximally conservative undercuts are even bet-
ter candidates. An argument < Ψ, β > is a maximally conservative undercut
of < Φ, α > iff < Ψ, β > is an undercut of < Φ, α > such that there is no an
undercut for < Φ, α > which is strictly more conservative than < Ψ, β >. Note
that the claim of a maximally conservative undercut of an argument is nothing
than the negation of the full support of the considered argument.

Property 3. Let < Ψ,¬(φ1 ∧ . . . ∧ φn) > be an undercut for < Φ, α >. Then
< Ψ,¬(φ1 ∧ . . . ∧ φn) > is a maximally conservative undercut for < Φ, α > iff
Φ = {φ1, . . . , φn}.



194 S. Yahi

In order to avoid redundancy, the notion of canonical undercuts has been intro-
duced.

Definition 4. An argument < Ψ,¬(φ1 ∧ . . . ∧ φn) > is a canonical undercut
for < Φ, α > iff < φ1, . . . , φn > is the canonical enumeration of Φ.

Example 3. Let Σ = {b, c, a, c→ ¬a ∧ ¬b} be a belief base.
Let us suppose that the canonical enumeration of Σ is as follows: < c, a, c→

¬a ∧ ¬b, b > and let us consider the argument < {a, b}, a∧ b >.

– The argument < {c, c→ ¬a ∧ ¬b},¬a > is not a canonical undercut.
– The argument < {c, c→ ¬a ∧ ¬b},¬(b ∧ a) > is not a canonical undercut.
– The argument < {c, c→ ¬a ∧ ¬b},¬(a ∧ b) > is a canonical undercut.

The following property is of a relevant interest: It shows that the set of all the
canonical undercuts of an argument represent all the defeaters of that argument.

Property 4. If < Ψ, β > is a defeater for < Φ, α > then there exists a canonical
undercut for < Φ, α > which is more conservative than < Ψ, β >.

Based on the notion of canonical undercuts, an argument tree shows the various
ways an argument of interest can be objected, as well as how its defeaters can
themselves be objected, and so on.

Definition 5. An argument tree for α is a tree where the nodes are arguments
such that:

1. The root is an argument for α.
2. For no node < Ψ, β > with ancestor nodes < Ψ1, β1 >, . . ., < Ψn, βn >, Ψ is

a subset of Ψ1 ∪ . . . ∪ Ψn. This avoids circularity.
3. The children nodes of a node N consist of all its canonical undercuts which

verify (2).

Example 4. Let Σ = {a, a → b, c ∧ d, c → ¬a,¬d ∨ ¬a} be a belief base. Then,
the argument tree associated with the argument < {a, a → b}, b > is given by
figure 1.

< {a, a→ b}, b >

< {c ∧ d, c→ ¬a},¬(a ∧ (a→ b)) > < {c ∧ d,¬d ∨ ¬a},¬(a ∧ (a→ b)) >

< {a,¬d ∨ ¬a},¬(c ∧ d ∧ (c→ ¬a)) > < {a, c→ ¬a},¬(c ∧ d ∧ (¬d ∨ a)) >

Fig. 1. Argument tree
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In [6], the authors introduce the notion of judge function for determining
whether an argument tree is warranted.

Definition 6. An argument tree is said to be warranted iff the argument at
its root is marked as undefeated where each node is marked as undefeated iff all
its children are defeated. Otherwise, it is marked as defeated.

Note that this definition has been adopted from dialectical tree marking for
defeasible logic programming [12].

Example 5. The argument tree given by figure 1 is warranted.

3 A Refresher on Coherence-Based Approaches from
Flat Belief Bases

Coherence-based approaches [20] can be considered as a two step process consist-
ing first in generating some consistent subbases and then using classical inference
from some of them according to a given entailment principle [18]. The most fre-
quently used entailment principles are the universal (or skeptical) inference where
each consequent is a classical consequent of all the considered consistent sub-
bases, the existential (or credulous) inference where each consequent is a classical
consequent of at least one considered consistent subbase and the argumentative
inference where each conclusion is credulously inferred but its negation is not.
In the context of flat belief bases, the most popular sets of consistent subbases
are MaxCons(Σ) and CardCons(Σ) which correspond respectively to the set
of all the maximal (with respect to set inclusion) consistent subbases of Σ and
the set of all its maximal, with respect to set cardinality, consistent subbases.

We can also consider the set of all the consistent subbases of Σ. Note that
we discard the empty set (which is a consistent subbase) in the case where Σ
contains at least one consistent formula. Let Cons(Σ) denotes the previous set.

Based on Cons(Σ), MaxCons(Σ), CardCons(Σ) and the three previous en-
tailment principles, we obtain nine inference relations defined as follows.

Definition 7. – A formula ϕ is a Uni-Cons conclusion (resp. Uni-MaxCons,
Uni-Card) of Σ iff ∀B ∈ Cons(Σ) (resp. MaxCons(Σ), CardCons(Σ)),
B |= ϕ.

– A formula ϕ is an Exi-Cons conclusion (resp. Exi-MaxCons, Exi-Card)
of Σ iff ∃B ∈ Cons(Σ) (resp. MaxCons(Σ), CardCons(Σ)), B |= ϕ.

– A formula ϕ is an Arg-Cons conclusion (resp. Arg-MaxCons, Arg-
Card) of Σ iff ∃B ∈ Cons(Σ) (resp. MaxCons(Σ), CardCons(Σ)) , B |= ϕ
and �B′ ∈ Cons(Σ) (resp. MaxCons(Σ), CardCons(Σ)) such that B′ |=
¬φ.

These inference relations have been compared in terms of productivity in [10].
Roughly speaking, an inference relation I1 is said to be at least as productive
as I2 iff each conclusion of I2 is derived using I1. Equivalently, we can say that
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I2 is at least as cautious as I1. In this paper, we complete the study achieved in
[16] by the following results based essentially on the fact that logical inference
is monotonic.

Proposition 1. Exi-Cons inference is equivalent to Exi-MaxCons inference. In
addition, Arg-Cons inference and Arg-MaxCons inference are equivalent.

Combining the results of [16] and the previous proposition, we obtain figure 2
where an arrow I → J means that inference relation I is less productive (or
more cautious) than the inference relation J .

Uni-Cons

Uni-MaxCons

Arg-MaxConsArg-Cons ←→

Exi-Cons ←→ Exi-MaxCons

Uni-Car

Arg-Car

Exi-Car

Fig. 2. Productivity of coherence based approaches

Finally, let us mention that the so-called argumentative inference introduced
in [4] has been shown to be equivalent Arg-MaxCons inference in the same paper.

4 Warranted Inference Properties

In this section, we study some properties of warranted argument tree based
inference which we will simply call in the following warranted inference.

Definition 8. A formula ϕ is a warranted conclusion of a belief base Σ, de-
noted by Σ |=W ϕ, iff there exists a warranted argument tree for ϕ.

In particular, we compare it in terms of productivity with respect to the coherence-
based approaches that we have recalled in the previous section. Let CBA denotes
the set of all these inference relations.

First of all, we show that some desirable conclusions that correspond to those
entailed using Uni-Cons inference which is strictly less productive than all the
coherence-based approaches considered in this paper, are not warranted conclu-
sion.
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Proposition 2. Warranted inference is not at least as productive as Uni-Cons
inference.

This proposition is shown via the following example.

Example 6. Let Σ = {a ∧ b,¬a ∧ b} be a belief base. Clearly, the formula b
is a Uni-Cons conclusion of Σ. Indeed, Σ has only two non empty consistent
subbases namely {a ∧ b} and {¬a ∧ b} which both classically infer b. Now, let
us consider the arguments of b. We have two arguments: A1 :< {a ∧ b}, b > and
A2 :< {¬a ∧ b}, b >. Neither the argument tree of A1 nor the argument tree of
A2 are warranted. Thus, b is not a warranted conclusion.

Notice that from Proposition 2 and the fact that Uni-Cons inference is strictly
more cautious than all the other coherence based approaches considered in this
paper, we can directly derive that warranted inference is not at least as produc-
tive as any inference relation from CBA.

Surprisingly, warranted inference verifies the following property.

Proposition 3. Given a belief base, both a formula and its negation can be
entailed using warranted inference.

To check this proposition, it suffices to consider the following example.

Example 7. Let Σ = {a∧ b,¬a∧ c,¬b∧¬c} be a belief base. Let us consider the
argument tree given by figure 3.

< {a ∧ b}, a >

< {¬a ∧ c},¬(a ∧ b) > < {¬b ∧ ¬c},¬(a ∧ b) >

< {¬b ∧ ¬c},¬(¬a ∧ c) > < {¬a ∧ c},¬(¬b ∧ ¬c) >

Fig. 3. An argument Tree for a

This argument tree is warranted, so a is a warranted conclusion of Σ. Similarly,
the argument tree having < {¬a∧ c},¬a > as a root is warranted which implies
that ¬a is also a warranted conclusion of Σ.

Now, coherence-based approaches using universal or argumentative principles
clearly do not infer a conclusion and its negation unlike warranted inference.
Then, we obtain the following proposition.

Proposition 4. Each inference relation using universal or argumentative prin-
ciple from CBA is not more productive than warranted inference.

The same thing holds with Exi-Car inference.



198 S. Yahi

Proposition 5. Exi-Car inference is not more productive than warranted
inference.

Example 8. Let Σ = {a,¬a ∧ b,¬a ∧ c,¬a ∧ d,¬b ∧ ¬c ∧ ¬d}. CardCons(Σ) =
{{¬a ∧ b,¬a ∧ c,¬a ∧ d}}, so a is not an Exi-Card conclusion of Σ. However, a
is a warranted conclusion of Σ.

Besides, a formula ϕ is a warranted conclusion implies that there exists an ar-
gument < Φ, ϕ > for ϕ where Φ is a consistent subbase of Σ. Then, ϕ is an
Exi-Cons conclusion of Σ and also an Exi-MaxCons conclusion of Σ.

All the results presented in this section are summarized by Figure 4

Uni-Cons

Uni-Incl

Arg-InclArg-Cons ←→

Exi-Cons ←→ Exi-Incl

Uni-Car

Arg-Car

Exi-Car

Warranted

Fig. 4. Productivity results

So, to conclude this section, given a belief base where each consistent piece of
information (formula) infers a conclusion ϕ, warranted inference easily fails to
capture such a natural conclusion despite deriving a conclusion and its negation
in some situations. In the following, we will propose a new inference relation
which captures these desirable conclusions. For this aim, we first introduce a
new class of intuitive counter-argument and show some of them properties.

5 A New Class of Counter-Arguments

In this section, we introduce a new class of counter-arguments (defeaters and
undercuts) where the additional condition, which we find quite natural and in-
tuitive, tells that the support of a counter-argument must not entail the claim
of the argument it challenges. This notion is captured through what we roughly
call rational defeaters and rational undercuts.
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Definition 9. Let < Φ, α > be an argument.

– An R-defeater (R for Rational) for < Φ, α > is an argument < Ψ, β > s.t.
β |= ¬(φ1 ∧ . . . ∧ φn) where {φ1, . . . , φn} ⊆ Φ and Ψ �|= α.

– An R-undercut of an argument < Φ, α > is an argument < Ψ,¬(φ1 ∧ . . .∧
φn) > where {φ1, . . . , φn} ⊆ Φ and Ψ �|= α.

Notice that, by definition, the support of a rebuttal does not entail the claim of
the argument it objects (since it entails its negation). Thus, we do not need to
introduce a new class of R-rebuttals. In addition, the relations between defeaters,
undercuts and rebuttals are maintained with respect to R-defeaters, R-undercuts
and rebuttals. Now, let us consider the following property of R-defeaters which
is directly derived from their definition.

Proposition 6. If < Γ, δ > is an R-defeater for < Ψ, β > which is in turn an
R-defeater for < Φ, α > then Γ �|= ¬Φ.

This property is especially interesting in the sense that no argument can be,
at the same time, an R-defeater and a direct R-defender (R-defeater for an
R-defeater) for the same argument contrary to what happens with respect to
classical defeaters (but not with respect to classical undercuts) as mentioned in
[7]. Better yet, a subbase of a belief base can not be used as both the support
of a direct R-defender and the support of an R-defeater for a given argument
unlike what occurs in the case of classical defeaters and also classical undercuts.
Especially, a direct R-defender of an argument can not refute the conclusion of
the defended argument counter to classical defeaters and classical undercuts.

In addition, Property 1 and Property 2 can be extended to R-defeaters and
R-undercuts as shown by the following two propositions.

Proposition 7. If < Ψ, β > is an R-defeater for < Φ, α > then there exists an
R-undercut for < Φ, α > which is more conservative than < Ψ, β >.

In fact, by definition, < Ψ, β > is an R-defeater for < Φ, α > implies that
< Ψ, β > is a defeater for < Φ, α >. Thus, according to Property 1, there exists
an undercut < Γ, γ > for < Φ, α > which is more conservative than < Ψ, β >.
Since Ψ �|= α and Γ ⊆ Ψ , we deduce that Γ �|= α. So, < Γ, γ > is an R-undercut
for < Ψ, α >.

Proposition 8. If < Ψ, β > is a maximally conservative R-defeater of < Φ, α >
then < Ψ, β′ > is an R-undercut of < Φ, α > for some β′ which is logically
equivalent with β.

This proof can be easily adapted from the proof of Theorem 4.2 in [5].

Thus, following Proposition 7 and Proposition 8, the set of all the R-defeaters
of an argument can be represented by the set of all the R-undercuts of this
argument. This set can be refined again as we will see in the following using
maximally conservative R-undercuts.
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Proposition 9. Let < Ψ,¬(φ1∧. . .∧φn) > be an R-undercut for < Φ, α >. Then
< Ψ,¬(φ1 ∧ . . .∧φn) > is a maximally conservative R-undercut for < Φ, α > iff
Φ = {φ1, . . . , φn}.

The proofs of Theorem 5.2 and Theorem 5.4 in [5] can be easily adapted to prove
the previous proposition.

Definition 10. An argument < Ψ,¬(φ1 ∧ . . . ∧ φn) > is a canonical R-
undercut for < Φ, α > iff it is an R-undercut for < Φ, α > and < φ1, . . . , φn >
is the canonical enumeration of Φ.

Moreover, we can easily show the following proposition which is of a particular
attention in the sense that it tells us that the set of all canonical R-undercuts of
an argument represent all its R-defeaters.

Property 5. If < Ψ, β > is an R-defeater for < Φ, α > then there exists a
canonical R-undercut for < Φ, α > which is more conservative than < Ψ, β >.

Using the notion of canonical R-undercuts that we have presented, we propose
a new class of argument trees.

Definition 11. An R-argument tree for α is an argument tree for α where
the children of each node are its canonical R-undercuts.

6 Rational Warranted Inference Properties

In this section, we apply on rational warranted inference the study we achieved
on warranted inference. Notice that what we call rational warranted inference is
defined as follows.

Definition 12. A formula ϕ is an R-warranted conclusion of a belief base
Σ, denoted by Σ |=RW ϕ, iff there exists a warranted R-argument tree for the
formula ϕ.

Firstly, the good news is that the expected Uni-Cons conclusions are R-warranted
conclusions too.

Proposition 10. R-warranted inference is at least as productive as Uni-Cons
inference.

Indeed, a formula ϕ is a Uni-Cons conclusion of Σ means that ϕ is a logical
conclusion of each consistent formula in Σ. So, any formula of Σ can be the
support of an argument for ϕ. Moreover, such an argument does not admit any
R-defeater since any subset of Σ logically entails ϕ. Besides, unlike Uni-Cons
conclusions, there exist Uni-MaxCons conclusions which are not R-warranted
ones.

Proposition 11. R-warranted inference is not at least as productive as Uni-
MaxCons inference.
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The following example proves our proposition.

Example 9. Let Σ = {a∧b, a∧c,¬a∧b,¬a∧d}. Since, MaxCons(Σ) = {{a∧b, a∧
c}, {¬a∧ b,¬a∧d}}, the formula b is a Uni-MaxCons conclusion of Σ. However,
b admits only two arguments in Σ, namely < {a ∧ b}, b > and < {¬a ∧ b}, b >
whose the corresponding R-argument trees are as follows (where the symbol �
denotes the negation of the support of the objected argument).

1. < {a ∧ b}, b > ← < {¬a ∧ d}, � > ← < {a ∧ c}, � > ← < {¬a ∧ b}, � >
2. < {¬a ∧ b}, b > ← < {a ∧ c}, � > ← < {¬a ∧ b}, � > ← < {a ∧ b}, � >

None of these R-argument trees is warranted which implies that b is not an
R-warranted conclusion.

However, R-warranted inference still may infer a formula and its negation.

Proposition 12. Given a belief base, both a formula and its negation can be
entailed using R-warranted inference.

Example 10. Let Σ = {a ∧ b,¬b ∧ c,¬c ∧ d,¬d ∧ e,¬e ∧ ¬a} be a belief base
and let us consider the arguments < {a ∧ b}, a > and < {¬e ∧ ¬a},¬a >. One
can easily check that the corresponding R-argument trees are warranted which
means that both a and ¬a are R-warranted conclusions.

Notice that R-warranted inference applied on the belief base of example 7 does
not entail neither a nor ¬a. So, we can derive the following proposition.

Proposition 13. R-warranted inference and warranted inference are incompa-
rable in terms of productivity.

So, we can easily show that R-warranted inference checks the following properties
as we have done regarding to warranted inference.

Proposition 14. – R-Warranted inference is not at least as productive as any
inference relation from CBA/{Uni-Cons}.

– Each inference relation using universal or argumentative principle from CBA
is not more productive than R-warranted inference.

– Exi-Car inference is not more productive than R-warranted inference.
– R-warranted inference is strictly less productive than Exi-Cons inference and

Exi-MaxCons inference.

Now, we are ready to extend the taxonomy given by figure 2 by including war-
ranted and R-warranted inferences as shown by figure 5.

7 Weighted R-warranted Inference

As we have previously seen, R-warranted inference only tells us whether a con-
clusion is acceptable or not. However, we argue that is is important, in many
situations like decision making, negotiation, persuasion, etc, to know to what
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Uni-Cons

Uni-MaxCons

Arg-MaxConsArg-Cons ←→

Exi-Cons ←→ Exi-MaxCons

Uni-Car

Arg-Car

Exi-Car

R-warranted

Warranted

Fig. 5. Productivity results

extent a given conclusion is acceptable. That is why we propose to weight R-
warranted inference. One possible way to achieve such a purpose is to consider
the so-called categorisers proposed by Besnard and Hunter which are mappings
from argument trees to numbers [5]. The number given by a categoriser tries
to capture the strength of an argument based on its argument tree. The au-
thors propose a very intuitive categorizer, namely the h-categorizer such that
an argument tree of root R is affected a number h(R) defined recursively as

follows: h(A) =
1

1 +
∑n

i=1 h(Ai)
where Ai’s are the canonical undercuts of A

and h(Aj) = 1 for each leave node Aj . The intuition behind the h-categoriser is
that the more undercuts an argument has, the less its strength is and the more
undercuts there are to the undercuts of an argument, the more its strength is.

In this paper, we propose to extend the h-categoriser by taking into account
two levels of strength attacks. So, let us first introduce the motivation of these
two levels via the following example:

Example 11. Let Σ = {a ∧ c, a → b,¬a,¬c} be a belief base. Let us consider
the argument A1 :< {a ∧ c, a → b}, b >. This argument has two R-undercuts
A2 :< {¬a},¬(a ∧ c ∧ a→ b) > and A3 :< {¬c},¬(a ∧ c ∧ a→ b) >. Intuitively,
the attack of A2 is stronger than the attack of A3. In fact, the sub-formula c is
not indispensable to infer b using {a∧ c, a→ b}. In other words, we can forget c
from the support of the argument and still infering b. This is not the case with
respect to the sub-formula a which is vital to infer b.

Then, roughly speaking, we say that the attack of an (R-)undercut < Ψ, β >
for < Φ, α > is strong iff < Ψ, β > attacks a part from Φ which is vital to infer
α. Otherwise, we say that is a weak attack.

Now, supposing two numbers S and W such that 0 < W < S ≤ 1, we
extend the h-categorizer by h2-categorizer (2 for two levels) as follows: h2(A) =

1
1 +
∑n

i=1 C(Ai) ∗ h(Ai)
where Ai’s are the canonical (R)-undercuts of A and
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h2(Aj) = 1 for each leave node Aj . In addition, C(Ai) = S if the attack of Ai

against < Φ, α > is strong and C(Ai) = W otherwise.

8 Discussion and Perspectives

In this paper, we have compared the inference relation based on the so-called
warranted argument trees with respect to the most frequently used coherence
based approaches from flat belief bases in terms of cautiousness. It turned out
that this inference relation does not entail some very natural conclusions al-
though it is, in some situations, too permissive by infering both a formula and
its negation. Then, we have introduced a new inference relation that we have
called rational warranted inference and we have shown that it guarantees to en-
tail all conclusions which are classically derived from each consistent formula in
the belief base. In fact, the key idea is that an argument whose the support en-
tails the claim of another argument can not be its counter-argument with respect
to this conclusion which is quite intuitive for us.

In [13], Gorogiannis and Hunter propose a number of postulates to attack
relations in logical argumentation. Given five arguments A, B, A′, B′ and C,
these postulates are as follows:

– (D0) if A ≡ A′ and B ≡ B′ then A attacks B iff A′ attacks B′

– (D1) if A attacks B then Claim(A) is incoherent with Support(B)
– (D2) if A attacks B and Claim(C) ≡ Claim(A) then C attacks B
– (D3) if A attacks B and Support(B) = Support(C) then A attacks C
– (D4) if we consider only the arguments that can be generated from a belief

base and find that no two arguments attack each other, then the knowledge
base must be consistent.

Among these postulates, neither D2 nor D3 are satisfied. Indeed, in the case of
(D2), let A :< {a∧¬b},¬(a∧b) >, B :< {a∧b}, b > and C :< {¬a∧b},¬(a∧b) >.
According to our new attack relation, A attacks B. However, C does not attack
B which seems intuitive since B is an argument for b while C entails also b.
As to the postulate (D3), let A :< {¬a ∧ b},¬(a ∧ b) >, B :< {a ∧ b}, b > and
C :< {a∧b}, b >. Clearly, A attacks B w.r.t. our attack relation. Nevertheless, A
does not attack C which w.r.t. the same attack relation. Once again, this seems
natural for us since C is an argment for b and A entails b.

Now, this work calls for several perspectives. First of all, we are interested in
knowing how one can adapt rational warranted inference to prevent entailing a
conclusion and its negation. A possible way is to modify the R-argument tree
construction by imposing that each argument must be, in addition, coherent
with all the arguments it indirectly defends in the argument tree. Also, we plan
to extend logical argumentation to the case of pre-ordered belief bases. Another
perspective is to refine our two levels of attacks strength by adapting the notion
of “degree of undercut” [6] which is defined only with respect to the supports.
In addition, we plain to instantiate abstract argumentation [11] using the new
attack relation we have introduced in this paper.
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Abstract. In fault-tree analysis, probabilities of failure of components
are often assumed to be precise. However this assumption is seldom ver-
ified in practice. There is a large literature on the computation of the
probability of the top (dreadful) event of the fault-tree, based on the
representation of logical formulas in the form of binary decision dia-
grams (BDD). When probabilities of atomic propositions are ill-known
and modelled by intervals, BDD-based algorithms no longer apply to
the computation of the top probability interval. This paper investigates
this question for general Boolean expressions, and proposes an approach
based on interval methods, relying on the analysis of the structure of the
Boolean formula. The considered application deals with the fault-tree-
based analysis of the reliability of aircraft operations.

Keywords: Binary Decision Diagrams, interval analysis, fault-tree.

1 Introduction

In aviation business, maintenance costs play an important role because they
are comparable to the cost of the plane itself. Another important parameter is
reliability. A reliable aircraft will have less down-time for maintenance and this
can save a lot of money for a company. No company can afford neglecting the
reliability and safety of the aircraft, which necessitates a good risk management.
Airbus has started a project called @MOST to cater for above mentioned issues.
It is focused on the reduction of maintenance costs and hence improving the
quality of its products.

This paper deals the probability evaluation of fault-trees through Binary De-
cision Diagrams (BDDs). This is the most usual approach to risk management
in large-scale systems, for which operational software is available. At present,
dependability studies are carried out by means of fault-tree analysis from the
models of the system under study. This method requires that all probabilities
of elementary component failures or relevant states be known in order to com-
pute the probability of some dreadful events. But in real life scenarios, these

S. Benferhat and J. Grant (Eds.): SUM 2011, LNAI 6929, pp. 205–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



206 C. Jacob, D. Dubois, and J. Cardoso

probabilities are never known with infinite precision. Therefore in this paper we
investigate an approach to solve cases where such probabilities are imprecise.
More specifically, we are concerned with the more general problem of evaluating
the probability of a Boolean expression in terms of the probabilities of its literals,
imprecisely known via intervals.

2 Dependability Studies and Fault-Tree Analysis

One of the objectives of safety analysis is to evaluate the probabilities of dreadful
events. There are two ways to find the probability of an event: by an experimental
approach or by an analytical approach.

The experimental approach consists in approximating the probability by com-
puting a relative frequency from tests: if we realize N experiments (where N is
a very large number) in the same conditions, and we observe n times the event
e, the quotient n/N provides an approximation of the probability P(e). Indeed,
this probability can be defined by: P (e) = lim

N→+∞
n/N . In practice, it is very

difficult to observe events such as complex scenarios involving multiple, more
elementary, events several times.

The analytical approach can be used when the dreadful event is described as
a Boolean function F of atomic events. Such dreadful event probability is thus
computed from the knowledge of probabilities of atomic events, that are often
given by some experts. In a Boolean model of a system, a variable represents
the state of an elementary component, and formulas describe the failures of the
system as function of those variables. It is interesting to know the minimal sets
of failures of elementary components that imply a failure of the studied system,
in order to determine if this system is safe enough or not.

If only probability of these minimal sets are of interest, the corresponding
Boolean formulas are monotonic and only involve positive literals representing
the failures. However, in this paper we consider more general Boolean formu-
las where both positive and negative literals appear. In fact such kind of non-
monotonic formulas may actually appear in practical reliability analysis as shown
later.

2.1 The Probability of a Boolean Formula

In the following, we denote Boolean variables by Ai and literals by Li (Li = Ai

or its negation ¬Ai). There are two known methods to calculate the probability
of a Boolean formula, according to the way the formula is written.

Boolean Formula as a Sum of Minterms. A Boolean formula can be written
as a disjunction of minterms (maximal consistent conjunctions of literals). By
definition, minterms are mutually exclusive, so the probability of a dreadful event
is equivalent to:

P (F ) =
∑

π∈Minterms(F )

P (π) (1)
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Boolean methods of risk analysis often make the hypothesis that all atomic
events are stochastically independent. So, the previous equation becomes:

P (F ) =
∑

π∈Minterms(F )

∏
Li∈π

P (Li) (2)

But this method requires that all minterms of F be enumerated, which is very
costly in computation time. In practice, an approximation of this probability is
obtained by making some simplifications, namely:
− using the monotonic envelope of the formula instead of using the formula
itself.
− using minimal cut sets with high probabilities only.
− using the k first terms of the Sylvester-Poincaré development, also known as
inclusion-exclusion principle (letting each Xi stand for product of literals):

P (X1 ∨ ... ∨Xn) =
n∑

i=1

P (Xi)−
n−1∑
i=1

n∑
j=i+1

P (Xi ∧Xj)

+
n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

P (Xi ∧Xj ∧Xk)− ... + (−1)n+1P (X1 ∧ ... ∧Xn)

(3)

Shannon Decomposition of a Boolean Formula. Shannon decomposition
consists of building a tree whose leaves correspond to mutually disjoint conjunc-
tions of literals.

Definition 1. Let us consider a Boolean function F on a set of variables X ,
and A a variable in X . The Shannon decomposition of F related to A is obtained
by the following pattern:

F = (A ∧ FA=1) ∨ (¬A ∧ FA=0) (4)

FA=0 and FA=1 are mutually exclusive, so the probability of the formula F is:

P (F ) = (1− P (A)) · P (FA=0) + P (A) · P (FA=1) (5)

For a chosen ordering of variables of a set X , the recursive application of the
Shannon decomposition for each variable appearing in a function F built on X
gives a binary tree, called Shannon tree. Each internal node of this tree can be
read as an if-then-else (ite) operator : it contains a variable A and has two edges.
One edge points towards the node encoded by the positive cofactor FA=1 and
the other one towards the negative cofactor FA=0. The leaves of the tree are the
truth values 0 or 1 of the formula. The expression obtained by the product of
variables going down from the root to a leaf 1 is a minterm, and the sum of all
those products gives an expression of the Boolean function.
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Example 1. The Shannon tree for the formula F = A ∨ (S ∧ C) with order
A > S > C is represented on Fig. 1.a (the dotted lines represent the else edges).
Notice that by convention, edges in Shannon trees are not arrows, but these
graphs are directed and acyclic from the top to the bottom.

a) Shannon tree b) BDD

Fig. 1. Formula A ∨ (S ∧ C) with order A > S > C

But such a representation of the data is exponential in memory space; this
is the reason why Binary decision diagrams [3] are introduced: they reduce the
size of the tree by means of reduction rules.

Binary Decision Diagrams. A Binary Decision Diagram (BDD) is a repre-
sentation of a Boolean formula in the form of a directed acyclic graph whose
nodes are Boolean variables (see Fig. 1.b). A BDD has a root and two terminal
nodes, one labeled by 1 and the other by 0, representing the truth values of the
function. Each path from the root to terminal node 1 can be seen as a product
of literals, and the disjunction of all those conjunctions of literals gives a repre-
sentation of the function. For a given ranking of the variables, it is unique up
to an isomorphism. The size of the BDD is directly affected by the ranking of
variables, and some heuristics can be used to optimize its size.

A variable can be either present (in a positive or negative polarity) in a path,
or absent :

− a variable is present in a positive polarity in the corresponding product if the
path contains the then-edge of a node labeled by this variable;
− a variable is present in the negative polarity in the corresponding product if
the path contains the else-edge of a node labeled by this variable;
− a variable is absent if the path does not contain a node labeled by this variable.

Let P be the set of paths in the BDD that reach terminal leaf 1, and Ap the set
of literals contained in a path p of P. If a literal L is present positively (resp.
negatively L = ¬A) in the path p ∈P, we will write L ∈ A +

p (resp. L ∈ A −
p ).

According to those notations, the probability of the formula F described by a
BDD is given by the equation:

P (F ) =
∑
p∈P

⎡⎣ ∏
Li∈A +

p

P (Ai)
∏

Lj∈A −
p

(1− P (Aj))

⎤⎦ (6)
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Now assume probabilities are partially known. The most elementary approach
for dealing with imprecise BDDs is to apply interval analysis. It would enable
robust conclusions to be reached, even if precise values of the input probabilities
are not known, but their ranges are known.

3 Interval Arithmetic and Interval Analysis

Interval analysis is a method developed by mathematicians since the 1950s and
1960s [7] as an approach to computing bounds on rounding or measurement
errors in mathematical computation. It can also be used to represent some lack
of information. The main objective of interval analysis is to find the upper and
lower bounds, f and f , of a function f of n variables {x1, ..., xn}, knowing the
intervals containing the variables: x1 ∈ [x1, x1], ...,xn ∈ [xn, xn]. For a continuous
function f , with xi ∈ [xi, xi], the image of a set of intervals f([x1, x1], ..., [xn, xn])
is an interval.

The basic operations of interval arithmetic that are generally used for interval
analysis are, for two intervals [a, b] and [c, d] with a, b, c, d ∈ R and b ≥ a, d ≥ c:

Addition : [a, b] + [c, d] = [a + c, b + d] (7)

Subtraction : [a, b]− [c, d] = [a− d, b − c] (8)

Multiplication : [a, b] · [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] (9)

Division :
[a, b]
[c, d]

= [min(
a

c
,
a

d
,
b

c
,
b

d
), max(

a

c
,
a

d
,
b

c
,
b

d
)] (10)

The equation of multiplication can be simplified for the intervals included in the
positive reals: PositiveMultiplication : [a, b] · [c, d] = [ac, bd].

3.1 Naive Interval Computations and Logical Dependency

The major limitation in the application of naive computation using interval arith-
metics to more complex functions is the dependency problem. The dependency
problem comes from the repetition of the same variable in the expression of a
function. It causes some difficulties to compute the exact range of the function.
It must be pointed out that the dependency here is a functional dependency
notion, contrary to stochastic dependence assumed in section 2.1 and leading to
formula 2.

Let us take a simple example in order to illustrate the dependency problem:
we consider the function f(x) = x + (1 − x), with x ∈ [0, 1]. Applying addition
(7) and subtraction (8) rules of interval arithmetic gives that f(x) ∈ [0, 2], while
this function is always equals to 1. Some artificial uncertainty is created by
considering x and (1− x) as two different, functionally independent, variables.



210 C. Jacob, D. Dubois, and J. Cardoso

a) F = A⇔ B b) G = A ∨B

Fig. 2. BDD representation

Consider another example to illustrate the dependency problem on a BDD.
We consider the formula of the equivalence F = A⇔ B = (¬A ∨B)∧ (¬B ∨A)
whose BDD is represented by (A ∧B) ∨ (¬A ∧ ¬B) and pictured on Fig. 2.a.

The probability of F knowing that P (A) = a, P (B) = b applying eq. (3) is:

P (F ) = a · b + (1 − a)(1− b) (11)

The values of a and b are not known, the only information available is that
a ∈ [a, a] and b ∈ [b, b], with [a, a] and [b, b] included in [0, 1].

The goal is to compute the interval associated to P (F ) ∈ [P (F ), P (F )]. If we
directly apply the equation of addition (7) and multiplication (9) of two intervals
to the expression of P (F ), we obtain that:

[P (F ), P (F )] = [ab, ab]+(1−[a, a])(1−[b, b]) = [ab, ab]+[1−a, 1−a]·[1−b, 1−b])

[P (F ), P (F )] = [ab + (1− a)(1 − b), ab + (1 − a)(1− b)] (12)

This result is obviously wrong because we use two different values of the same
variable (a and a for a, b and b for b) when calculating P (F ) = ab+(1−a)(1−b)
as well P (F ) = ab + (1− a)(1 − b).

Finally, consider G = A ∨ B, with a = P (A) and b = P (B); its BDD repre-
sentation (Fig. 2.b) is GBDD = A ∨ (¬A ∧ B) with P (GBDD) = a + (1 − a)b,
while the Sylvester-Poincaré decomposition gives P (G) = a+ b− ab. Both P (G)
and P (GBDD) display a dependency problem because variable a appears twice
with different signs in these expressions (in P (G) it happens also with b).

3.2 Interval Analysis Applied to BDDs

One way to solve the logical dependency problem is to factorize f(x1, ..., xn) in
such a way that variables appear only once in the factorized equation and guess
the monotonicity of the resulting function. For the previous example P (G) can
be factorized as 1 − (1 − a)(1 − b) where both a and b appear only once. The
function is clearly increasing with a and b, hence P (G) ∈ [a + b− ab, a + b− ab],
substituting the same value in each place. Unfortunately, it is not always possible
to do so, like in the above example of the equivalence connective, hence we must
resort to some alternative ways, by analyzing the function.
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Configurations
Given n intervals [xi, xi], i = 1, . . . , n, a n-tuple of values z in the set X =
×i{xi, xi} is called a configuration [6], [5]. An extremal configuration zj , is ob-
tained by selecting one interval end for each component of the n-tuple: zj has
the form (xc1

1 , ..xcn
n ), cn ∈ {0, 1} with x0

i = xi and x1
i = xi. The set of extremal

configurations is denoted by H = ×i{xi, xi}, and | H |= 2n.
A locally monotonic function f [5] is such that the function, obtained by fix-

ing all variables xi but one, is monotonic with respect to the remaining variable
xj , j �= i. Extrema of such f are attained for extremal configurations. Then the
range f([x1, x1], ..., [xn, xn]) can be obtained by testing the 2n extremal con-
figurations. If the function is monotonically increasing (resp. decreasing) with
respect to xj , the lower bound of this range is attained for xj = xj (resp. xj = xj)
and the upper bound is attained for xj = xj (resp. xj = xj). The monotonicity
study of a function is thus instrumental for interval analysis.

The Probability of a Boolean Formula
As far as Boolean functions are concerned, some results can be useful to high-
light. The goal is to compute the smallest interval [P (F ), P (F )] for the probabil-
ity P (F ) of a formula, knowing the probability intervals of its variables. First of
all, if a variable A appears only once in a Boolean function F , the monotonicity
of P (F ) with respect to P (A) is known: it will increase if A appears positively,
and decrease if it appears negatively (¬A). More generally, if a variable A ap-
pears several times, but only as a positive (resp. negative) literal, then P (F )
is increasing (resp. decreasing) with respect to P (A). The dependency problem
present when both terms of the form 1− P (A) and P (A) appear in the expres-
sion of the function, which is an important issue for the application of interval
analysis to probabilistic BDDs.

Monotonicity of the Probability of a BDD Representation
One important thing to notice about the formula (6) of probability computation
from a BDD, is that it is a multilinear polynomial, hence it is locally monotonic.

Let us consider the Shannon decomposition of a formula F for a variable Ai,
i ∈ �1, ..., n�. Formula (5) with A = Ai can be written as: P (F ) = (1− P (Ai)) ·
P (FAi=0) + P (Ai) ·P (FAi=1), where P (Ai) appears twice. It can be written as:

P (F ) = P (FAi=0) + P (Ai) · [P (FAi=1)− P (FAi=0)] (13)

In order to study the local variations of the function P (F ) following P (Ai), we
fix all others Aj ,j ∈ �1, ..., n�, j �= i; the partial derivative of equation (13) with
respect to P (Ai) is:

∂P (F )
∂P (Ai)

= P (FAi=1)− P (FAi=0)

[P (FAi=1) − P (FAi=0)] is a function of some P (Aj), j �= i, so it does not de-
pend upon P (Ai), for any i ∈ �1, ..., n�. The monotonicity of function P (F ) with
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respect to P (Ai) depends on the sign of [P (FAi=1)−P (FAi=0)]; if constant, the
function is monotonic with respect to P (Ai). We can deduce that if P (Ai) ∈
[a, a], the tightest interval for P (F ) is:

– [P (FAi=0)+a·(P (FAi=1)−P (FAi=0)), P (FAi=0)+a·(P (FAi=1)−P (FAi=0))]
if P (FAi=1) ≥ P (FAi=0)

– [P (FAi=0)+a·(P (FAi=1)−P (FAi=0)), P (FAi=0)+a·(P (FAi=1)−P (FAi=0))]
if P (FAi=1) ≤ P (FAi=0)

Knowing the monotonicity of a function makes the determination of its range
straightforward. For some functions, the monotonicity can be more easily seen
in other formats than BDD. But finding the sign of P (FAi=1)−P (FAi=0) is not
so simple, as it depends on some other Aj . If we are able to find this sign for
each variable of the function, we can find its exact (tight) range right away.

Consider again the equivalence connective F = A ⇔ B of section 3.1, where
events A and B are associated with the following intervals, respectively [a, a] =
[0.3, 0.8] and [b, b] = [0.4, 0.6]. We know that the function is locally monotonic,
so the range of P (F ) in eq. (11) will be obtained at vertices of the domain of
the variables a and b. To find the exact bounds of P (F ), since a and b appear
both with positive and negative signs in eq. (11), we will have to explore the 22

configurations:

z1 = (a, b), Pz1(F ) = a · b + (1− a)(1− b) = 0.3 · 0.4 + 0.7 · 0.6 = 0.54
z2 = (a, b), Pz2(F ) = a · b + (1− a)(1− b) = 0.3 · 0.6 + 0.7 · 0.4 = 0.46
z3 = (a, b), Pz3(F ) = a · b + (1− a)(1− b) = 0.8 · 0.4 + 0.2 · 0.6 = 0.44
z4 = (a, b), Pz4(F ) = a · b + (1− a)(1− b) = 0.8 · 0.6 + 0.2 · 0.4 = 0.56

P (F ) = mini=1,...,4 Pzi(F ) = 0.44 and P (F ) = maxi=1,...,4 Pzi(F ) = 0.56.
The exact result is P (F ) ∈ [0.44, 0.56], while using expression (12), we find
[P (F ), P (F )] = [0.2, 0.9]. If we neglect dependencies, we introduce artificial un-
certainty in the result. The exact result is much tighter than the one based
on naive interval computation. This is why it is so important to find ways to
optimize the bounds of the uncertainty range in interval analysis.

We can apply full-fledged interval analysis to binary Boolean connectives and
compare the results with the ones obtained by applying naive interval computa-
tion (Table 1). For those tests, we took the same input probabilities as for the
example presented in section 3.1, Fig. 2.a: P (A) ∈ [0.3, 0.8], P (B) ∈ [0.4, 0.6].
It is obvious that the two results are the same only when each variable appears
once in the probability P (F ), e.g for F = A∧B, P (F ) = ab. For all other cases,
we get a tighter interval by testing all extreme bounds of the input intervals. The
more redundancy of variables there will be in a formula, the more naive interval
computation will give ineffective results, moreover irrelevant in some cases; e.g
F = A∨B or F = A⇒ B where we get intervals with values higher than 1. On
the contrary, the approach based on local monotony gives the exact range of the
Boolean function F .
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Table 1. Comparison between naive interval computation and full-fledged interval
analysis

Connective Formula Function Naive Exact

OR A ∨ B a + b− ab [0.22, 1.28] [0.58,0.92]

OR A ∨ (B ∧ ¬A) a + b(1− a) [0.38,1.22] [0.58,0.92]

OR A ∨ B 1− (1− a)(1− b) [0.58, 0.92] [0.58,0.92]

AND A ∧ B ab [0.12,0.48] [0.12,0.48]

IMPLIES ¬A ∨ (A ∧ B) 1− a + ab [0.32,1.18] [0.52,0.88]

EQUIVALENCE (A ∧ B) ∨ (¬A ∧ ¬B) ab + (1− a)(1− b) [0.2,0.9] [0.44,0.56]

ExOR (A ∧ ¬B) ∨ (¬A ∧B) a(1− b) + b(1− a) [0.2,0.9] [0.44,0.56]

3.3 Beyond Two Variables

However, the study of monotonicity can be also very complicated. For instance,
the function 2 out of 3 is given by the formula:

F = (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C)

The partial derivative with respect to a of the probability of this formula is :

∂

∂a
P (F ) = (1− b)(1− c)− b(1− c)− c(1− b) = 1− 2b− 2c + 3bc

Partial derivatives with respect to b and c are similar. It is more difficult to find
the sign of such a derivative, because we have a 2-place function that is not
monotonic and has a saddle point (see Fig. 3.a). On fig. 3.b we can see the level
cuts of the curve, ∂

∂aP (F ) = α.

Fig. 3. a) Partial derivative 1− 2b− 2c + 3bc b) Level cuts of 1− 2b− 2c + 3bc

The derivative is null for 1−2b−2c+3bc = 0⇔ b = 1−2c
1−3c , that is the equation

of an hyperbola. The positive region of ∂
∂aP (F ) is delimited by this hyperbola,

starting from the (0, 0, 1) point.
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The study of specific Boolean expressions like the 2 out of 3 can be used as
a heuristic for speeding up the computation of more complex formulas.

4 Algorithm for Interval Analysis Applied to BDDs

In this section, we will present an algorithm corresponding to the method of
imprecise probability computations for BDDs described in the section 3.2. This
algorithm is able to compute the exact bounds of the probability of a Boolean
function, given the interval ranges of its atomic probabilities.

The input of the algorithm is a Boolean function F where a probability inter-
val [v.lb, v.up] is associated to each variable v of F (the lower/upper bound of
its probability interval). The variable v of the BDD representation of F is char-
acterized by the following additional attributes: path.value (= 1 if the variable
appears as a positive literal in this path, = 0 otherwise) and type ∈ {0,1,2}. The
output is a text file with the probability interval of F , [PF .lb, PF .up].

The BDD is represented by a set Pa of paths with the following format:

< vpath1
1 : value, . . . , vpath1

n1 : value > · · · < vpathm
1 : value, . . . , vpathm

nm
: value > (14)

where m is the number of paths and ni, i = 1, . . . , m is the number of literals
(positive or negative) in a path i. For example, Pa = < A : 1 >< S : 0, C : 1 > for
the BDD represented in fig. 1.b.

The algorithm consists of three main steps: in the first step, an Aralia file
is parsed for the variables and Boolean formula F of the dreadful event, and a
corresponding BDD is generated. In the next step, the parsed variables are split
into three categories:

− Type 0: Variables that only appear negatively in the Boolean formula
− Type 1: Variables that only appear positively in the Boolean formula
− Type 2: Variables present in the Boolean formula along with their negation.

We need to find the configuration that determines the minima and maxima for
the probability of F. We know the exact corresponding bounds of the input prob-
abilities for the 2 first categories from section 3.2, so the optimal configuration
is known for these variables:

− if v.type = 0, v.ub is used for calculating PF .lb and v.lb is used for PF .ub,
− if v.type = 1, v.lb is used for calculating PF .lb and v.ub is used for PF .ub,
− if v.type = 2, PF .lb (as well as PF .ub) can be reached for v.lb or v.up, and all
possible extreme values for v must be explored. The total number of these tuples
of bounds (configurations) is 2k, where k is the number of variables classified as
Type 2; hence the problem is at most NP-hard.

The last step consists of BDD-based calculations. These calculations are car-
ried out by considering all m paths leading to leaf 1 from the top of the BDD.

Let zj = (vc1
1j , . . . , v

cn

nj), j ∈ 1, . . . , 2n, ci ∈ {0, 1} be a configuration (sec-
tion 3.2). For each configuration zj we calculate Pzj (F ) =P (F [vc1

1j , . . . , v
cn

nj ]).
The extremal values of P (F are obtained by exploring all extremal configura-
tions: P (F ) = mini=1,...,2n Pzi(F ) and P (F ) = maxi=1,...,2n Pzi(F ).
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The notation introduced in eq. (6) is extended to take the category of a
variable into account. Let Vl be the set of variables belonging to the path l; V2+

l

(resp. V2−
l ) the set of positive (resp. negative) literals of Type 2 in path l; V+

l

(resp. V−
l ) the set of variables of Type 1 (resp. Type 0) in path l.

Let us consider now a configuration (vc1
1 , . . . , vck

k ) for variables of Type 2, with
v.c = v.lb if vc = 0 and v.c = v.ub if vc = 1:

Cl(vc1
1 , . . . , vck

k ) =
∏

v∈V 2+
l

v.c ·
∏

v∈V 2−
l

(1− v.c).

We have then:
P (F ) =

∑
l=1,...,m

(
∏

v∈V+
l

v.lb ·
∏

v∈V−
l

(1− v.ub) · min
i=1,...,2k

Cl(vc1
1 , . . . , vck

k )) and

P (F ) =
∑

l=1,...,m

(
∏

v∈V+
l

v.ub ·
∏

v∈V−
l

(1− v.lb) · max
i=1,...,2k

Cl(vc1
1 , . . . , vck

k ))

that extends eq. (6) when the probability of the atomic events is given by an
interval.

An algorithm that performs the sorting of the variables and computes optimal
intervals has been encoded in C++ language, and based on BDD packages named
CUDD [10] and BuDDy [12]. BuDDy explores the order of variables in order to
optimize the size of the BDD.

5 Application to Fault-Tree Analysis

In Fault-Tree Analysis theory, modelling conventions are generally such that all
variables appear only positively in the Boolean formula of the top event: no
variable appears with a negation, so the probabilistic formula is monotonic and
increasing. But in practice, there are several cases where some variables can
appear negatively, and sometimes even both negatively and positively, so that
the top formula can be non-monotonic:

– Some negations are introduced due to compilation: this is clear in BDDs and
also in fault-trees obtained from so-called Mode Automata [8]. In this case,
the expression is still monotonic as long as the Boolean formula could also
be expressed without negative literals (e.g. the connective OR).

– State modeling: in some systems, it is necessary to use variables that model
some special states, or modes, which no longer represent a failure, and the
global formula may depend on such variables and their negation. It is not
necessary increasing with respect to these variables.

– Exclusive Failures: sometimes, failures cannot physically occur simultane-
ously, they are then represented by mutually exclusive events or failure
modes. Mutual exclusion implies non-monotonicity.

In practice, those kind of variables are very few compared to ”usual” failures;
hence, the algorithm will only have NP-hard complexity for them, and be linear
for all other variables.
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5.1 Case Study

The A320 electrical and hydraulic generation systems were used for the first
experiments in model-based safety analysis using the Altarica language [1] where
each node (represented by an icon in fig. 4) is a mode automaton [8]. The mode
automata are compiled into Boolean formulae using the algorithm presented in
[1] allowing for an automatic generation of fault trees from the Altarica model.
The Rudder Control System controls the rudder in order to rotate the aircraft
around the yaw axis. It is composed of:

– three primary calculators (P1, P2, P3), a secondary calculator (S1) and a
emergency autonomous equipment, constituted by a Back-up Control Mod-
ule (BCM) and 2 Back-up Power Supply (BPS B, BPS Y),

– three servo-commands: Green (G), Blue (B), Yellow (Y),
– two electric sources (Bus 2PP, Bus 4PP) and three hydraulic sources (Hyd

Green, Hyd Blue, Hyd Yellow).

The AltaRica model of the Rudder Control System [2] using the workshop Cécilia
OCAS from Dassault is presented in fig. 4.

Fig. 4. Rudder’s OCAS model

This model is used for safety analysis and it is has also been used as part of
the operational reliability analysis [11]. It is genuinely non-monotonic because
of the explicit use of states that do not refer to failures. The failures (elemen-
tary events) taken into account are: loss of a component (e.g. B.loss means loss
of the Y servo-command), a hidden failure and an active failure (that can occur in
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S1 and BCM). An excerpt from the detailed generated fault tree in the Aralia
format, for the loss of the first primary calculator P1 is given on Fig. 5. Sub-trees
are automatically generated and given names (DTN3578, etc.), one per line in
the figure.

P1.Status.hs := ((-B.loss & DTN3578) | (B.loss & DTN3617));

DTN3578 := ((-BCM.active failure & DTN3503) | (BCM.active failure & DTN3577));

DTN3503 := ((-BPS B.active failure & DTN3500) | (BPS B.active failure & DTN3502));

DTN3500 := ((-BPS Y.active failure & DTN3483) | (BPS Y.active failure & DTN3499));

DTN3483 := ((-Bus 2PP.loss & DTN3482) | (Bus 2PP.loss & DTN3480));

DTN3482 := ((-Hyd B.loss & DTN3478) | (Hyd B.loss & DTN3481));

DTN3478 := ((-Hyd Y.loss & DTN3475) | (Hyd Y.loss & DTN3477));

DTN3475 := (P1.loss & DTN3474);

DTN3474 := ((-P2.loss & -S1.active failure) | (P2.loss & DTN3473));

DTN3473 := ((-P3.loss & DTN3471) | (P3.loss & DTN3472));

Fig. 5. Excerpt from the fault tree of failure of P1: & is the conjunction, | the disjunc-
tion and − the negation

The probabilities of some variables are known: P(Hyd i.loss)= e−4, P(Bus iPP)=
e−3. But for some others, only an interval containing the probability values is
known: i.[lb,ub] =[0.15, 0.25], i ∈ {Y, B, G}, Pi[lb,ub]=[0, e−2], i = 1, . . . , 3,
S1.Active failure[lb,ub]=[0.1, 0.4] and BCM.Active failure[lb,up]= [0.15, 0.345].

Using the algorithm described in section 4 on the whole fault-tree (that is
non-monotonic) we for instance obtain the interval I1 = [0.01689, 0.01691] for
the event Loss of the Rudder represented by F, whereas a wider interval I2 =
[0.00972; 0.0269] is obtained when logical dependencies are not taken into account
(applying directly equations (7) and(9) as in equation 12, section 3.1). It can be
noticed that the interval I1 is much tighter than I2.

6 Conclusion

If naive computations using interval arithmetics are applied directly to the BDD-
based expression of the probability of Boolean formula, variables and their nega-
tion will often appear, and the resulting interval is too imprecise and sometime
totally useless. We presented in this paper an algorithm that allows to calculate
the exact range of the probability of any formula. We pointed out that there are
two cases when a variable and its negation appear in a Boolean expression: the
case when there exists an equivalent expression where each variable appear with
the same sign, and its probability is then monotonic in terms of the probability
of atomic events; the case where such an equivalent expression does not exist.
Then this probability will not be monotonic in terms of some variables, and the
interval computation has NP-hard theoretical complexity.

Even if in practical fault-trees the latter situation does not prevail, the po-
tentially exponential computation time can make it inapplicable to very big
systems, so some heuristics are under study in order to tackle this issue, for ex-
ample, methods to check monotonicity of the obtained numerical functions prior
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to running the interval calculation, or devising approximate calculation schemes
when probabilities of faults are very small.

In future works, our aim is to generalize the approach to fuzzy intervals, us-
ing α-cuts. Besides, we must exploit reliability laws with imprecise failure rates,
especially exponential laws, so as to generate imprecise probabilities of atomic
events. Later on, we can also extend this work by dropping the independence
assumption between elementary faults. One idea can be to use Frechet bounds
to compute a bracketing of the probability of a Boolean formula when no de-
pendence assumption can be made.
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Abstract. We introduce a propositional logic whose formulas are built
using the language of CTL∗, enriched by two types of probability oper-
ators: one speaking about probabilities on branches, and one speaking
about probabilities of sets of branches with the same initial state. An
infinitary axiomatization for the logic, which is shown to be sound and
strongly complete with respect to the corresponding class of models, is
proposed.

1 Introduction

Interest in temporal reasoning came from theoretical and practical points of view.
Logicians [5,6,30] investigated consequences of different assumptions about the
structure of time, while temporal formalisms can be used in computer science
to reason about properties of programs [11,29]. In both cases discrete linear and
branching time logics have been extensively studied. Linear temporal logics are
suitable for specification and verification of universal properties of all executions
of programs. On the other hand, the branching time approach is appropriate to
analyze nondeterministic computations described in the form of execution trees.
In the later framework a state (a node) may have many successors. Then, it is
natural to attach probabilities to the corresponding transitions and to analyze
the corresponding discrete time Markov chains as the underlying structures. All
this led to probabilistic branching temporal logic [2,3,17,18,21,35]. The men-
tioned papers mainly investigate semantical properties of the logics and do not
offer any axiomatic system. The only exception is [35], where the logic with a
very restricted language is presented. A more detailed overview on the topic
is presented in Section 5, when we will be able to precisely formulate relevant
notions and connections between them using the formalism from Section 2.

In this paper we consider a propositional discrete probabilistic branching tem-
poral logic (denoted pBTL). We use a logical language which allows us to for-
mulate statements that combine temporal and qualitative probabilistic features.
Thus, the statements as “in at least half of paths α holds in at least a third
of states” and “if α holds in the next moment, then the probability of α is
positive” are expressible in our logic. To the best of our knowledge, the former

S. Benferhat and J. Grant (Eds.): SUM 2011, LNAI 6929, pp. 219–232, 2011.
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sentence is not expressible in any of existing logics. The language for pBTL is
obtained by adding temporal operators© (“next”), A (universal path operator)
and U (“until”), as well as the two types of probability operators, P p

�r and P s
�r

(r ∈ Q ∩ [0, 1]), to the classical propositional language. The temporal operators
are well known from other formalizations of branching time logics, while the in-
tended meaning of P s

�rα (P p
�rα) is “the probability that α is true on a randomly

chosen branch is at least r” (“the probability that α holds on a particular branch
is at least r”). The superscript s in P s

�r (p in P p
�r) indicates that the probability

depends only on a time instant - state (on a chosen branch - path).
We present a class of suitable models for the pBTL-language and an infini-

tary axiomatization, for which we prove strong completeness theorem (“every
consistent set of formulas is satisfiable”, in contrast to weak completeness: “ev-
ery consistent formula is satisfiable”). Up to our knowledge it is the first such
result reported in literature. The corresponding proof uses ideas (the Henkin
construction) presented in [7,8,23,24,25,26,27,31].

The rest of the paper is organized as follows. In Section 2 we define syntax
and semantics for pBTL. Section 3 introduces an infinitary axiomatization for
the logic, which is proved to be strongly complete in Section 4. Comparison with
the related work is discussed in Section 5. Section 6 contains concluding remarks
and directions for further work.

2 Syntax and Semantics

Let P be at most countable set of propositional letters. The set of formulas For
of the logic pBTL is the smallest set which satisfies the following conditions:

– P ⊆ For,
– if α, β ∈ For, then α ∧ β,¬α ∈ For,
– if α, β ∈ For, then ©α, αUβ, Aα ∈ For,
– if α ∈ For and r ∈ Q ∩ [0, 1], then P p

�rα, P s
�rα ∈ For.

Intuitively, the operators mean:

– ©α: α holds in the next time instant on a particular branch,
– αUβ: α holds in every time instant (on a particular branch) until β becomes

true,
– Aα: α holds on every branch which passes through the current state,
– P p

�rα: the probability that α holds at a randomly chosen time instant on a
particular branch is at least r, and

– P s
�rα: the probability of branches (with a particular initial time instant) on

which α holds is at least r”.

A formula is a state formula if it is a boolean combination of propositional letters,
formulas of the form P s

�rα and formulas of the form Aα. We denote the set of
all state formulas by St. For n ∈ ω, we define ©n+1α as ©(©nα). If T is a set
of formulas, then ©T denotes {©α|α ∈ T }, and AT denotes {Aα|α ∈ T }. The
temporal operators F (sometime), G (always) and E (existential path quantifier)
are defined as follows:
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– Fα is �Uα,
– Gα is ¬F¬α,
– Eα is ¬A¬α.

Also, in order to simplify notation, we introduce the following convention:

– P p
<rα is ¬P p

�rα, P p
�rα is P p

�1−r¬α, P p
>rα is ¬P p

�rα and P p
=rα is P p

�rα∧P p
�rα,

– P s
<rα, P s

�rα, P s
>rα and P s

=rα are defined in a similar way.

An example of a formula is

EGα→ P s
� 1

2
P p

� 1
3
α,

which can be read as: “if there exists a path on which the formula α always holds,
then on at least a half of paths α holds in at least a third of time instants”.

Definition 1. A model M is any tuple 〈S, v, R, Σ, Probstate, P robpath〉 such
that:

– S is a non-empty set of states (time instants),
– v : S × P −→ {0, 1} assigns a truth labelling to every state.
– R is a binary relation on S, which is total (for every s ∈ S there is t ∈ S

such that sRt),
– Σ is a set of ω-sequences σ = s0, s1, s2,. . . of states from S, such that

siRsi+1, for all i ∈ ω. A path is an element of Σ. We assume that Σ is
suffix-closed, i.e., if σ = s0, s1, s2, . . . is a path and i ∈ ω, the sequence
si, si+1, si+2, . . . is also a path.

– Probstate associates to every s ∈ S, a probability space Probs = 〈Hs, μs〉
such that:

• Hs is an algebra of subsets of Σs = {σ ∈ Σ | σ0 = s}, i.e., it contains
Σs and it is closed under complements and finite union,
• μs : Hs −→ [0, 1] is a finitely additive probability measure, i.e.,

∗ μs(Hs) = 1, and
∗ μs(X ∪ Y ) = μs(X) + μs(Y ), whenever X and Y are disjoint.

– Probpath associates to every σ ∈ Σ, σ = s0, s1, . . . , si, si+1, si+2, . . ., a prob-
ability space Probσ = 〈Aσ, μσ〉 such that:

• Aσ is an algebra of subsets of Sσ = {π ∈ Σ | π = si, si+1, si+2, . . . , for i ∈
ω},
• μσ : Aσ −→ [0, 1] is a finitely additive probability measure.

Let σ = s0, s1, s2, . . . In the rest of the paper, we will use the following abbre-
viations:

– σ≥i is the path si, si+1, si+2, . . .
– σi is the state si.
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Definition 2. LetM = 〈S, v, R, Σ, Probstate, P robpath〉 be any model. The sat-
isfiability relation |= (we denote the fact that a formula α is satisfied at a path
σ in a model M by M, σ |= α) is defined recursively as follows:

– if p ∈ P, then M, σ |= p iff v(s0, p) = 1,
– M, σ |= ¬α iff M, σ �|= α,
– M, σ |= α ∧ β iff M, σ |= α and M, σ |= β,
– M, σ |=©α iff M, σ≥1 |= α,
– M, σ |= Aα iff for every path π, if σ0 = π0 then M, π |= α.
– M, σ |= αUβ iff there is some i ∈ ω such that M, σ≥i |= β and for each

j ∈ ω, if 0 ≤ j < i then M, σ≥j |= α,
– M, σ |= P s

�rα iff μσ0{π ∈ Σσ0 | M, π |= α} � r,
– M, σ |= P p

�rα iff μσ{π ∈ Sσ | M, π |= α} � r.

Note that the satisfiability of any state formula (for example P s
�rα) depends only

on the initial state of the path, while the other formulas are path-dependent.
IfM = 〈S, v, R, Σ, Probstate, P robpath〉 is a model and σ ∈ Σ, we will denote:

– [α]path
M,σ = {π ∈ Sσ | M, π |= α}, and

– [α]state
M,s = {π ∈ Σs | M, π |= α}.

The possible problems in Definition 2 are that for an α the sets [α]path
M,σ and

[α]state
M,s might not be in Aσ and in Hs, respectively. To overcome this, in the rest

of the paper we will consider only so-called measurable models.

Definition 3. A model M = 〈S, v, R, Σ, Probstate, P robpath〉 is measurable if
the following conditions are satisfied:

– [α]path
M,σ ∈ Aσ, for every α ∈ For,

– [α]state
M,s ∈ Hs, for every α ∈ For.

We will denote the probabilistic branching-time temporal logic characterized by
the class of all measurable models by pBTLMeas.

The expressionM, σ |= T denotes the fact that M, σ |= α, for every α ∈ T .
A formula α is satisfiable if there is a path σ in a modelM such thatM, σ |= α.
A formula is valid ifM, σ |= α for every model M and every path σ ofM. We
write T |= α (“α is a semantical consequence of T ”), if for every model M and
every σ in M, ifM, σ |= T , then M, σ |= α.

3 Axiomatization

Propositional axioms

A1. all the tautologies of the classical propositional logic
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Temporal axioms

A2. ©(α→ β)→ (©α→©β)
A3. ¬© α↔©¬α
A4. αUβ ↔ β ∨ (α ∧©(αUβ))
A5. p→ Ap, p ∈ P
A6. Ep→ p, p ∈ P
A7. Aα→ α
A8. A(α→ β)→ (Aα→ Aβ)
A9. Aα→ AAα
A10. Eα→ AEα

Probabilistic axioms (x ∈ {p, s})

A11. P x
≥0α

A12. P x
≤sα→ P x

<tα, t > s
A13. P x

<sα→ P x
≤sα

A14. (P x
≥sα ∧ P x

≥rβ ∧ P x
≥1(¬α ∨ ¬β))→ P x

≥min(1,s+r)(α ∨ β)
A15. (P x

≤sα ∧ P x
<rβ)→ P x

<s+r(α ∨ β), s + r ≤ 1

Axioms about probability and temporality

A16. Gα→ P p
≥1α

A17. Aα→ P s
≥1α

A18. P s
≥rα→ AP s

≥rα
A19. EP s

≥rα→ P s
≥rα

Inference rules

R1. from {α, α→ β} infer β
R2. from α infer ©α
R3. from α infer Aα
R4. from the set of premises

{γ → ¬((∧i
k=0 ©k α) ∧©i+1β) | i ∈ ω}

infer γ → ¬(αUβ)
R5. from the set of premises

{β →©mP x
≥r− 1

k
α | k ∈ ω, k ≥ 1

r
}

infer β →©mP x
≥rα (for any m ∈ ω and x ∈ {p, s})

Let us briefly discuss some of the above axioms and rules. By the axiom A1 and
the inference rule R1 (Modus ponens), pBTL extends the classical propositional
logic. The axioms A2–A4 are standard axioms of discrete linear-time temporal
logic, while the axioms A5–A10 concern the non-linear aspect of the temporal
logic [34]. Probabilistic axioms captures the basic properties of probability: non-
negativity and finite additivity. The last group of axioms concerns mixing of
probabilistic and temporal reasoning.
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The inference rules R2 and R3 are the variants of modal Necessitation. They can
be applied only to theorems. The rules R4 and R5 are infinitary inference rules.
The former one characterizes the until operator, while the later one intuitively
says that if the probability is arbitrarily close to r, then it is at least r.

We say that a formula α is deducible from a set T of formulas, and write
T � α, if there is an at most countable sequence of formulas α0, α1, . . . , α, such
that every αi is an axiom or a formula from T , or it is derived from the preceding
formulas by an inference rule (with the exception that R2 and R3 can be applied
to theorems only). That sequence is called the proof of α from T . The formula
α is a theorem, denoted by � α, if it is deducible from the empty set. A set T
of formulas is consistent if there is at least one formula which is not deducible
from T ; otherwise it is inconsistent. A consistent set T of sentences is said to be
maximally consistent if for every α ∈ For, either α ∈ T or ¬α ∈ T .

It is easy to prove soundness of the proposed axiomatic system (with respect
to the considered class of models), using a straightforward induction on the
length of the inference.

4 Completeness

In this section, some straightforward parts of the proof are omitted because of
limited space.

Theorem 1 (Deduction theorem). If T is a set of formulas, ϕ is a formula,
and T, ϕ � ψ, then T � ϕ→ ψ.

Proof. The proof is on the the transfinite induction on the length of the inference.
We will only consider the case when we apply the inference rule R4.

If T, ϕ � γ → ¬(αUβ) is obtained by the inference rule R4, then T, ϕ �
γ → ¬((∧i

k=0 ©k α) ∧ ©i+1β), for all i ∈ ω. By the induction hypothesis, we
have T � ϕ → (γ → ¬((∧i

k=0 ©k α) ∧ ©i+1β)) (for all i ∈ ω). From A1 we
obtain T � (ϕ ∧ γ) → (¬((∧i

k=0 ©k α) ∧©i+1β))), for all i ∈ ω. Applying the
inference rule R4 we conclude T � (ϕ∧γ)→ (¬(αUβ)). Finally, by A1 we obtain
T � ϕ→ (γ → ¬(αUβ)).

The cases when ψ is a theorem and when we apply Modus ponens are stan-
dard, while the cases when we apply the inference rules R2 and R3 are trivial,
since they can be applied to theorems only. In the case when we apply R5, the
proof is similar to the considered case (R4). ��

Lemma 1. Let α, β, γ be formulas.

1. the following inference rule is derivable: from the set of formulas

{γ →©iβ | i ∈ ω}
infer γ → Gβ,

2. if � α, then � Gα,
3. � G© α↔©Gα,
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4. � (©α→©β)→©(α→ β),
5. � ©(α ∧ β)↔ (©α ∧©β),
6. � ©(α ∨ β)↔ (©α ∨©β),
7. Gα � ©iα for every i ≥ 0,
8. if T � α, where T is a set of formulae, then ©T � ©α.
9. for j ≥ 0, ©jβ,©0α, . . . ,©j−1α � αUβ,

10. if T is a set of formulas and T � α, then AT � Aα.
11. � Gα↔ α ∧©Gα,
12. � G(α→ β)→ (Gα→ Gβ),
13. � G(α→©α)→ (α→ Gα),
14. � (G(α→ α1) ∧ (αUβ))→ (α1Uβ),
15. � (G(β → β1) ∧ (αUβ))→ (αUβ1),
16. � Fα↔ F¬¬α
17. � αUβ → Fβ.

Proof. (1) is an immediate consequence of R4, obtained by replacing α and β
with � and ¬β, respectively. (2) follows from (1) and R2.

For the proof of (3), (8) and (9) we refer the reader to [26], while the proof of
(10) can be found in [7].
(14) Note that by (9) we have:

– G(α→ α1) � ¬(α1Uβ)→ ¬((∧i−1
k=0 ©k α1) ∧©iβ), for every i ≥ 0

– G(α→ α1) � ¬(α1Uβ)→ ((∧i−1
k=0©k α1)→ ¬©i β), for every i ≥ 0

– G(α→ α1) � ¬(α1Uβ)→ ((∧i−1
k=0©k α)→ ¬©i β), for every i ≥ 0

– G(α→ α1) � ¬(α1Uβ)→ ¬((∧i−1
k=0 ©k α) ∧©iβ), for every i ≥ 0

– G(α→ α1) � ¬(α1Uβ)→ ¬((αUβ)), by R4

Thus, the statement holds. The statement (15) can be proved in a similar way,
while (16) follows from the definition of Fα = �Uα and the previous steps. (17)
follows directly from (14), taking α1 = �. The remaining statements are easy
consequences of the temporal part of the above axiomatization. �

Note that Lemma 1 states that some of the formulas and inference rules, pro-
posed as the part of some (weakly) complete axiomatic systems [4,32,34] for
temporal reasoning, hold in our logic. Thus, the temporal part of our axioma-
tization is sufficient to capture the semantical properties of the operators ©, A
and U .

Theorem 2. Every consistent set T of formulas can be extended to a maximal
consistent set T ∗.

Proof. Let us assume that For = {αi | i ∈ ω}. The maximally consistent set T ∗

is defined recursively, as follows:

1. T0 = T .
2. If αi is consistent with Ti, then Ti+1 = Ti ∪ {αi}.
3. If αi is not consistent with Ti, then:
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(a) Otherwise, if αi has the form γ → ¬(αUβ), then

Ti+1 = Ti ∪ {γ → ((∧n0
k=0©

k α) ∧©n0+1β)},

where n0 is a positive integer such that Ti+1 is consistent.
(b) Otherwise, if αi is of the form γ →©mP x

≥rβ, for x ∈ {p, s}, then

Ti+1 = Ti ∪ {γ → ¬©m P x
≥r− 1

n1
β}

where n1 is a positive integer such that Ti+1 is consistent.
(c) Otherwise, Ti+1 = Ti.

4. T ∗ =
⋃

n∈ω Tn.

Let us prove the existence of the number n0 in 3(a). If we suppose that γ →
((∧n

k=0 ©k α) ∧ ©n+1β) is not consistent with Ti, for every n ∈ ω, then, by
Theorem 1, Ti � ¬(γ → ((∧n

k=0 ©k α) ∧©n+1β)), for every n ∈ ω. By A1 we
obtain Ti � γ → ¬((∧n

k=0 ©k α) ∧ ©n+1β), for every n ∈ ω. By R4 we have
Ti � γ → ¬(αUβ), which contradicts the assumption. The proof of the existence
of the number n1 in 3(b) is similar.

It is easy to show that Ti is consistent for every i, and that for each α ∈ For,
either α ∈ T ∗ or ¬α ∈ T ∗.

Note that deductive closeness of T ∗ would imply its consistency: T ∗ � ⊥ would
imply ⊥ ∈ T ∗, thus there would exist i such that ⊥ ∈ Ti, which is impossible.
In order to prove that T ∗ is deductively closed, it is sufficient to prove that it
is closed under the inference rules, since all instances of axioms are obviously
in T ∗. We will only prove closeness under the inference rule R4, since the case
when we consider R5 is similar, while the other cases are trivial.

Suppose that γ → ¬(αUβ) �∈ T ∗, while γ → ¬((∧i
k=0 ©k α) ∧©i+1β) ∈ T ∗

for every i ∈ ω. By maximality of T ∗, ¬(γ → ¬(αUβ)) ∈ T ∗, or, equivalently,
γ ∧ (αUβ) ∈ T ∗. Consequently, γ ∈ T ∗ and αUβ ∈ T ∗, so there are m, n ∈ ω
such that γ ∈ Tm and αUβ ∈ Tn. If γ → ¬(αUβ) = αl, then, by the construction
of T ∗, there is n0 such that γ → ((∧n0

k=0©k α)∧©n0+1β) ∈ Tl. By Lemma 1(9),
Tl � αUβ. Consequently, Tmax{l,m,n}, which is in contradiction with consistency
of Tmax{l,m,n}. �

We define the equivalence relation ∼ on the set of maximally consistent sets of
formulas as follows:

T ∗
1 ∼ T ∗

2 iff T ∗
1 ∩ St = T ∗

2 ∩ St.

The equivalence class of T ∗ is [T ∗] = {T ∗
1 | T ∗

1 ∼ T ∗}.
A canonical model M∗ = 〈S, v, R, Σ, Probstate, P robpath〉 is defined in the

following way:

– S = {[T ∗] | T ∗ is maximally consistent set of formulas},
– v([T ∗], p) = 1 iff T ∗ � p, p ∈ P ,
– [T ∗

1 ]R[T ∗
2 ] if there exist T ∗

3 ∼ T ∗
1 , T ∗

4 ∼ T ∗
2 such that T ∗

4 = {α| © α ∈ T ∗
3 },
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– Σ is the set of paths [T ∗
0 ], [T ∗

1 ], [T ∗
2 ] ,. . . such that T ∗

i+1 = {α|©α ∈ T ∗
i }, for

all i ∈ ω. If the sequence {T ∗
i }i∈ω determines a path σ, we will write σ(i)

for T ∗
i ,

– Probpath is defined as follows: for every σ = [T ∗
0 ], [T ∗

1 ], [T ∗
2 ] ,. . . , Probσ =

〈Aσ, μσ〉 is a probability space such that:
• Aσ = {[α]σ | α ∈ For}, where [α]σ = {σ�i | T ∗

i � α, i ∈ ω},
• μσ([α]σ) = sup{r ∈ Q ∩ [0, 1] | T ∗

0 � P p
�rα},

– Probstate is defined as follows: for every σ = [T ∗
0 ], [T ∗

1 ], [T ∗
2 ] ,. . . , the prob-

ability space Probσ = 〈Aσ , μσ〉 is determined by the following conditions:
that:
• Hs = {[α]s | α ∈ For}, where [α]s = {π | π(0) ∼ T ∗

0 , π(0) � α},
• μs([α]s) = sup{r ∈ Q ∩ [0, 1] | T ∗

0 � P s
�rα}.

Theorem 3. M∗ is a pBTL-model.

Proof. Note that definitions of v and μs depend on the chosen element of equiv-
alence class. We will show that the definition ofM∗ is correct:

– v is well defined, since P ⊆ St, so T ∗
1 � p iff T ∗

2 � p, whenever T ∗
1 ∼ T ∗

2 ,
p ∈ P .

– The definition of R is correct. Namely, using Temporal axioms, one can
show that the properties of consistency and maximality transfer from T ∗ to
{α| © α ∈ T ∗}. Moreover, R is obviously a total relation.

– Aσ is an algebra of sets. It is easy to show that Sσ = [�]σ, [α]cσ = [¬α]σ and
[α]σ ∪ [β]σ = [α ∨ β]σ. Similarly, Hs is an algebra of sets.

– The function μs is well defined, since any formula of the form P s
�rα is a

state formula, so it belongs to a maximally consistent set T ∗
1 if and only if

it belongs to any other maximally consistent set T ∗
2 ∈ [T ∗

1 ]. Consequently,
sup{r ∈ Q ∩ [0, 1] | T ∗

1 � P s
�rα} = sup{r ∈ Q ∩ [0, 1] | T ∗

2 � P s
�rα}.

By the axiom A11, μs(α) � 0, for every α ∈ For. By R3, � A�, so, by A17,
T ∗ � P s

�1�, for every maximally consistent set T ∗. Since Hs = [�]s, we obtain
μs(Hs) = 1. Similarly, μσ(Aσ) = 1 (by Lemma 1(2) and A16).

For the proof of finite additivity of μs and μσ, we refer the reader to [26],
where a similar result is proved. �

Note that, since each [T ∗] may contain many maximally consistent sets, it is
possible that one state belongs to several paths.

Theorem 4 (Strong completeness theorem). Every consistent set of for-
mulas is satisfiable.

Proof. Let T be a consistent set of formulas, and let M∗ be the model con-
structed above. We will prove that for every α ∈ For, M∗, σ |= α iff α ∈ σ(0).

If α is a propositional letter, this is immediate consequence of the definition
of v. The proof in the cases when α is a negation or a conjunction is standard.
For the proof in the cases when α is of the form©β or βUγ, we refer the reader
to [26], where the similar proofs are presented.
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Let α = Aβ. IfM∗, σ �|= Aβ, then there exists π ∈ Σσ0 such thatM∗, π |= ¬β.
By the induction hypothesis we obtain ¬β ∈ π(0), so β �∈ π(0). By Axiom
A7, Aβ �∈ π(0). From π(0) ∼ σ(0) and Aβ ∈ St, we conclude Aβ /∈ σ(0).
For the other direction, suppose that M∗, σ |= Aβ. Then for all π ∈ Σσ0 ,
M∗, σ |= β. Consequently, by the induction hypothesis, for all π ∈ Σσ0 , β ∈ π(0).
If Aβ /∈ σ(0), using Temporal axioms one can show that there exists ρ ∈ Σσ0

such that β /∈ ρ(0), which contradicts the assumption.
Let α = P s

≥rβ (in the case when α = P p
≥rβ the proof is similar). Suppose that

M∗, σ |= P s
≥rβ. If sup{t ∈ Q∩[0, 1] | P s

≥tβ ∈ σ(0)} = r, then P s
≥rβ ∈ σ(0), by the

maximality of σ(0) and the rule R3. If sup{t ∈ Q∩[0, 1] | P s
≥tβ ∈ σ(0)} > r, then

there exists q ∈ Q∩ (r, sup{t ∈ Q∩ [0, 1] | P s
≥tβ ∈ σ(0)}] such that P s

≥qβ �∈ σ(0).
By deductively closeness of σ(0), P s

≥rβ ∈ σ(0). On the other hand, if P s
≥rβ ∈

σ(0), then μs({π | π(0) ∼ σ(0), π(0) � β}) = sup{t ∈ Q∩ [0, 1] | P s
≥tβ ∈ σ(0)} ≥

r. By the induction hypothesis, {π | π(0) ∼ σ(0), π(0) � β} = {π | π(0) ∼
σ(0), M∗, π |= β}, soM∗, σ |= P s

≥rβ.
Let T ∗ be a maximally consistent set such that T ⊆ T ∗. If σ = [T ∗], [{α|©α ∈

T ∗}], [{α| ©2 α ∈ T ∗}] . . . , then M∗, σ |= T . ��

Note that, by the proof of the previous theorem, [α]σ = {σ�i | T ∗
i � α, i ∈

ω} = {π ∈ Sσ | M∗, π |= α} = [α]path
M,σ. Similarly, [α]s = [α]state

M∗,σ, so M∗ is a
measurable model.

Corollary 1. If α is a formula and T is a set of formulas, then T |= α implies
T � α.

Proof. Let T |= α. Then T∪{¬α} is not satisfiable. By Theorem 4, T∪{¬α} � ⊥,
and, by Theorem 1, T � α.

5 Related Work

The branching-time logic PCTL for reasoning about time and probability is
described in [17]. The underlying temporal logic is Computational Tree Logic
CTL (Emerson, Clark, Sistla [10]). The statements of the form: ”after a request
for service there is at least a 98% probability that the service will be carried
out within 2 seconds” are expressible in the language of PCTL. Formulas are
interpreted over discrete time Markov chains and algorithms for checking satis-
fiability of formulas by a given Markov chain are described. No axiomatization
is presented. The logic follows the division of CTL into state formulas and path
formulas. The classical propositional language is enriched in the following way:

– αU≤tβ and αU≤tβ are path formulas, if α and β are state formulas, and
t ∈ ω ∪ {∞}. The intuitive meaning of αU≤tβ is similar to the meaning of
αUβ, with the exception that β has to become true within t time instances
(for t =∞, U≤t and U coincide). The relation of αU≤tβ to αUβ ≡ αUβ∨Gα
is analogous.
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– αU≤t
>rβ and αU≤t

>rβ are state formulas, if α and β are path formulas, and
t ∈ ω ∪ {∞}. The meaning of those formulas is given by the satisfiability
relation (formulation is adopted according to our terminology):
M, σ |= αU≤t

>rβ iff μσ0({π | σ0 = π0, M, π |= αU≤tβ}) > r,

The formulas of PCTL are expressible in our language. For example:

– αU≤nβ may be written as β ∨
∨n

i=1((∧
i−1
k=0 ©k α) ∧©iβ),

– αU≤n
>r β may be written as P s

>r(β ∨
∨n

i=1((∧
i−1
k=0©k α) ∧©iβ)).

On the other hand, our operator P p
�r is not expressible in PCTL. Also, boolean

combinations of state and path formulas are not PCTL-formulas.
A more expressive branching-time logic denoted PCTL∗ is described in [2].

The underlying temporal logic is CTL∗ with path quantifiers replaced by prob-
abilities (P=1, P>0). Thus, the propositional language is extended with:

– state formulas: P≥rα (α is a path formula),
– path formulas: ©α, αUβ (α and β are state formulas).

According to definition of satisfiability, their probability operator P�r corre-
sponds to our operator P s

�r, while our operator P p
�r is not expressible in PCTL∗.

Similarly as in PCTL, the conjunction of a state formula and a path formula is
not a formula. No axiomatization for PCTL∗ is given.

The paper [3] presents model-checking algorithms for extensions of PCTL and
PCTL∗ that involve non-determinism.

A probabilistic modal logic PPL is introduced in [35]. It allows applying
probabilities to sequences of formulas (giving so called path expressiveness). A
Gentzen-style axiom system is presented and proved to be sound and complete.
Probabilities are expressed using terms (similarly as in [12]). The language allows
linear combinations of terms of the form P (α1, . . . , αn) which means “the proba-
bility of the sequence of formulas.” Iteration of probabilities in a term is allowed.
The formula P (α1, . . . , αn) ≥ r is expressible in our logic as P s

�r(
∧n

i=1©iαi). On
the other hand, formulas of PPL can not express probability within a path (P p

�r).
Also, the temporal operators are not definable in PPL. Although our language
does not allow linear combinations of probabilities, combining the techniques
from [8,9,28], where arithmetical operations are built into the syntax of prob-
abilistic logic, with the ideas presented in this paper, would lead to a logic in
which formulas of PPL are expressible.

In [18] and [21] propositional logics that use the languages of CTL and CTL∗

are presented. The probabilities are not expressible in syntax, but the formu-
las are interpreted over Markov systems which can simulate the execution of
probabilistic programs.

The papers [15,19,22] introduce real-time interval logics that can be used in
design of an embedded real-time systems. The infinite intervals are considered
in [16].

The language of the logic presented in [13] is based on the propositional dy-
namic logic, and the main objects are programs. Probabilistic operators can
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be applied on a limited class of formulas, and the completeness problem is not
solved. A fragment of [13]) is considered in [20]. A dynamic generalization of the
logic of qualitative probabilities from [33] is presented in [14]. Completeness is
proved using an infinitary rule, similarly as in our approach.

6 Conclusion and Future Work

We have introduced the propositional probabilistic branching time logic pBTL
that enables us to formulate (and combine) both purely temporal statements
and the expressions such as: “in at least half of paths α holds in at least a
third of states”. The formulas are interpreted over models that involve a class
of probability measures assigned to states, and a class of probability measures
assigned to paths. We have proved that the infinitary axiomatic system for pBTL
is sound and strongly complete.

One of the main axiomatization issues for temporal logics with the operators
© and G, and for real valued probability logics is the non-compactness phenom-
ena. The set of formulas {P s

>0α}∪{P s
� 1

n

α | n ∈ ω} and {Gα}∪{©n¬α | n ∈ ω}
are finitely satisfiable but they are not satisfiable. It is well known that, in the
absence of compactness, any finitary axiomatization would be incomplete. Thus,
infinitary axiomatic systems are the only way to establish strong completeness.

The temporal fragment of pBTL uses the language of CTL∗. The restricted
class of models (without probabilities) corresponds to the class of models of so-
called ∀LT logic from [34] (compare Lemma 1 and the axiomatic system from
[34]). The paper [32] solved the problem of (weak) completeness of Full Compu-
tation Tree Logic (with the class of models satisfying the desirable properties FC
(Fusion closed) and LC (Limit closed)), extending the axiomatization of ∀LT .
Thus, the question of extending the temporal part of our axiomatization, with
the aim to obtain completeness of probabilistic Full Computation Tree Logic,
naturally arise.

Also, we believe that there are several other promising ways to extend the
results presented here, along the lines of our previous research:

– Combining the techniques from this paper and [7] may lead to the first-order
extension of pBTL. That logic would be not only of theoretical interest,
since the set of all valid formulas is not recursively enumerable [1], and no
complete finitary axiomatization is possible in that undecidable framework.
In this situation, a complete (even if infinitary) axiomatization would be of
great practical significance.

– A branching time logic in which linear combinations of probabilities are
expressible could be developed combining the ideas presented here with the
ideas from [8,9,28]. The formulas of the logic presented in [35] would be
expressible in the resulting language (see Section 5).

– It is well known that CTL and CTL∗ are decidable [11]. We expect that,
similarly as it is done in [26] for probabilistic linear time logic, it is possible
to adapt the corresponding procedures to prove decidability of the logic
presented here.
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Beograd 87(101), 85–96 (2010)

10. Emerson, E., Clarke, E.: Using branching time logic to synthesize synchronization
skeletons. Sci. Comput. Program. 2, 241–266 (1982)

11. Emerson, E.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, Volume B: Formal Models and Sematics, pp.
995–1072. North-Holland Pub. Co./MIT Press (1990)

12. Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities.
Information and Computation 87(1–2), 78–128 (1990)

13. Feldman, Y.: A decidable propositional dynamic logic with explicit probabilities.
Information and Control 63, 11–38 (1984)

14. Guelev, D.P.: A propositional dynamic logic with qualitative probabilities. Journal
of Philosophical Logic 28(6), 575–605 (1999)

15. Guelev, D.P.: Probabilistic neighbourhood logic. In: Joseph, M. (ed.) FTRTFT
2000. LNCS, vol. 1926, pp. 264–275. Springer, Heidelberg (2000)

16. Guelev, D.P.: Probabilistic Interval Temporal Logic and Duration Calculus with
Infinite Intervals: Complete Proof Systems. Logical Methods in Computer Sci-
ence 3(3), 1–43 (2007)

17. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspect of Computing 6(5), 512–535 (1994)
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Abstract. Being able to compactly represent large state spaces is cru-
cial in solving a vast majority of practical stochastic planning problems.
This requirement is even more stringent in the context of multi-agent
systems, in which the world to be modeled also includes the mental state
of other agents. This leads to a hierarchy of beliefs that results in a
continuous, unbounded set of possible interactive states, as in the case
of Interactive POMDPs. In this paper, we describe a novel representa-
tion for interactive belief hierarchies that combines first-order logic and
probability. The semantics of this new formalism is based on recursively
partitioning the belief space at each level of the hierarchy; in particular,
the partitions of the belief simplex at one level constitute the vertices of
the simplex at the next higher level. Since in general a set of probabilis-
tic statements only partially specifies a probability distribution over the
space of interest, we adopt the maximum entropy principle in order to
convert it to a full specification.

1 Introduction

One of the main problems to be faced in the field of stochastic planning is the
curse of dimensionality. Traditional methods based on the enumeration of the
state, action, and observation spaces have shown to be unpractical for all but the
simplest settings. Factorizing the description of the domain into “features”, like
in a Bayesian network, has been a prominent direction of research that has led to
outstanding results [3,19]. Yet, in many real-world problems this approach does
not suffice, because of the large number of such features. Hence the need to lift the
representation from the propositional level to a more abstract level, by exploiting
the synergy between first-order logic (FOL) and probability theory, allowing to
compactly summarize the regularities of the domain and the interactions between
objects. Several applications of this paradigm to MDPs can be found in literature
(e.g. [4,22,25]). On the other hand, only little work has surfaced that focuses on
lifted first-order inference for representing and solving POMDPs [23,26].

A compact representation of the domain is even more necessary in the context
of decision making in partially observable, multi-agent environments, in which
an agent needs to model the mental states (beliefs, preferences, and intentions)

S. Benferhat and J. Grant (Eds.): SUM 2011, LNAI 6929, pp. 233–246, 2011.
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(b) (c) (d)(a)

...

Fig. 1. Qualitative representation of the belief hierarchy. (a) Real state of the world
(objects and relations.) (b) Set of possible world states. (c) Agent i’s belief simplex over
partitions of world states. (d) Agent j’s belief simplex over partitions of i’s simplex.
Note that the partitions at one level are the vertices of the simplex at the next level;
this association is represented by matching colors (b-c) and patterns (c-d.)

of other agents, in addition to the physical world. In particular, we focus on the
Interactive POMDP (I-POMDP) framework [8], in which the agent maintains a
belief about the other agents’ types, intended as the set of private information
involved in their decision making. Each type includes the agent’s own belief ,
which is a probability distribution over the state of the world and, recursively,
other agents’ types. In this paper, we focus on the representation of such in-
teractive beliefs, limiting the discussion to a setting with two agents, i and j.
The generalization to scenarios with more than two agents is straightforward.
Because of the impossibility of representing infinitely nested beliefs in a finite
space, Gmytrasiewicz and Doshi [8] define finitely nested I-POMDPs as a spe-
cialization of the infinitely nested ones.

Let us denote as Δ(·) the regular simplex over the set given as argument. The
interactive state space at nesting level n for agent i, denoted ISi,n, is inductively
defined as:

ISi,0 = S
ISi,1 = S ×Δ(ISj,0)

...
ISi,n = S ×Δ(ISj,n−1)

(1)

One problem of I-POMDPs is that the set of possible beliefs of the other agent is
uncountable and unbounded as soon as nesting level 2 is reached [6]. This makes
it impossible to even represent interactive beliefs, in that they are not computable
functions. For this reason, being able to abstract over the regularities of the
interactive state space in order to provide a finite representation is of utmost
benefit.

In this paper, we describe for the first time a First-Order Probabilistic Lan-
guage to express interactive beliefs. The approach is conceived in the context of
I-POMDPs, but grows out to be a general representation of nested probability
distributions that can be applied in a variety of contexts in multi-agent systems.
The main idea is to recursively partition the belief space into regions, building
the belief simplex at the next level over the partitions of the belief simplex at
the lower level, as intuitively depicted in Fig. 1. In this way, we can provide a
compact, finite representation of interactive beliefs.
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A belief is represented as a set of (probabilistic) sentences, each associated
with a probability. These sentences are not required to be non-overlapping, in
that the agent should be free to express his belief about any arbitrary statement.
As a result of this augmented freedom, a belief base constitutes in general only
a set of constraints rather than a full specification of a probability distribution.
For this reason, we adopt the well-known maximum entropy principle in order
to provide a unique distribution associated with the belief base.

The paper is organized as follows. In Sect. 2 we provide a brief survey of
the existing related work. Section 3 presents our contribution, describing the
probabilistic-logical framework for interactive beliefs in a bottom-up fashion and
providing examples to clarify the concepts. Section 4 concludes the paper and
hints at directions for future research.

2 Related Work

The integration of first-order logic and probability theory has been an important
area of research since the mid and late 80’s. Nilsson [18] proposes a probabilistic
logic in which a probability value is attached to logic sentences, either proposi-
tional or first-order, belonging to a probabilistic knowledge base. He devises a
linear problem that, given any query sentence, computes its probability inter-
vals that are consistent with knowledge base. Some years later, Bacchus [2] and
Halpern [9] describe how first-order probabibilistic logic comes in two flavors: to
express probabilities on possible worlds, such as in the sentence “Tweety flies
with probability 0.9,” and to express statistical knowledge, as in “90% of birds
fly.” Subsequent work in probabilistic languages has mostly adopted the first
type of semantics. This early approaches provide theoretical basis for the field,
but lack practical inference algorithms.

The work on probabilistic logic has evolved in what has been recently named
Statistical Relational AI (Star AI), that includes a number of different ap-
proaches, of which we report a few examples. Koller and Pfeffer [15] define
Probabilistic Relational Models (PRMs), borrowing the semantics from rela-
tional databases. Like databases, PRMs model complex domains in terms of
entities and properties. Moreover, by incorporating a directed causal relations
like in Bayesian networks, PRMs allow to express uncertainty over the proper-
ties of entities and the relations among them (relational uncertainty.) Markov
Logic Networks [20] are collections of first-order logic formulae that are assigned
a weight. The atomic formulae appearing in such set constitute the vertices of a
Markov Network, whose edges correspond to the logical connectives. The weights
determine the potential function assigned to each groups of vertices that com-
pare in the same original formula. In [17] the authors introduce Bayesian Logic
(BLOG), a generalization of Bayesian network similar to RPMs that assume an
open universe, i.e. the number of objects is unknown and potentially infinite.
BLOG models are described by means of a generative semantics that allows
to deal with domains of unknown size. Another line of work studies proba-
bilistic logic programs [16] and relational probabilistic conditionals [14]. These
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approaches adopt the maximum entropy principle to provide semantics to prob-
abilistic knowledge bases.

The study interactive belief systems has been subject of substantial research in
the field of game theory and multi-agent systems in general, especially since the
introduction of games of incomplete information [12]. Several works [11] study
the use of modal logic and its derivations in order to describe players’ knowl-
edge about other players’ knowledge. Probabilistic extension to modal logic have
been proposed [7,10,24], and are based on commonly known prior probability dis-
tribution on possible worlds and accessibility relation. Aumann [1] describes an
approach that embeds knowledge and probabilistic beliefs in the context of inter-
active epistemology. The work on Interactive POMDPs [8,5] rejects the common
knowledge assumption and proposes a hierarchy of probabilistic beliefs that we
take as our starting point, as already described in the introductory section.

3 Probabilistic First-Order Logic to Represent Interactive
Beliefs

We begin this section by describing the logic setup. The semantics of first-
order logic used here assumes closed universe and unique names. Let Q =
{q1, q2, . . . , q|Q|} be a set of predicates, and let ρ : Q → N be a function
that associates each predicate to its arity. Given a domain (set of constants)
D = {d1, d2, . . . d|D|}, define the set of ground predicates G (the Herbrand base),
corresponding to each possible instantiation of predicates in the domain, i.e.
G = {q(d1, . . . , dρ(q)) : q ∈ Q, di ∈ D ∀i = 1, . . . , ρ(q)}. An interpretation of Q
in domain D is a function σ : G → {T, F} that assigns a truth value to every
ground predicate. The set of possible states of the world S corresponds to the
set of all possible interpretations.

Given a first-order logic sentence φ, we denote as S(φ) the subset of S for
which φ is true, i.e. the set of models of φ (under the usual definition of FOL
entailment.) Given a set of FOL sentences Φ, we denote as S(Φ) the collection
of sets of models of the formulae in Φ, i.e. S(Φ) = {S(φ) : φ ∈ Φ}.

3.1 Level 0 Beliefs

In this section, we describe how to represent 0-th level beliefs, i.e. the belief an
agent holds about the state of the world. The approach is similar to the one
described in [18], that we take as our starting point.

Definition 1 (Level-0 Belief Base). A Level-0 Belief Base (L0-BB) Bi,0 for
agent i is a set of pairs of the form 〈φk, αk〉, for k = 1, 2, . . . , m, where φk is a
sentence in first-order logic, and αk a real number between 0 and 1.

For each pair, αk intuitively represents i’s degree of belief about sentence φk.
In addition to simple pairs, we allow universally quantified expressions of the
type ∀x〈φ(x), α〉 to appear in the belief base, where x = 〈x1, . . . , xl〉 is a tuple
of logical variables that are free in FOL formula φ. Semantically, this expression
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is equivalent to the set of pairs resulting from the propositionalization of φ, that
is:

∀x 〈φ(x), α〉 ≡
{
〈Subst(x/d, φ), α〉 : d ∈ D|x|} , (2)

where Subst(x/d, φ)) represent the FOL sentence resulting from φ by substi-
tuting the tuple of logical variables x with domain elements d, adopting the
notation used in [21]. In the following, we will consider L0-BB’s in which all
universally quantified pairs have been proposizionalized.

Let ΦB = {φ1, φ2, . . . , φm} be the set of FOL sentences involved in the pairs
of a L0-BB Bi,0. As mentioned earlier, we do not require the elements of ΦB to
identify non-overlapping regions of S. Instead, we compute the partitions that
are induced by such regions, i.e. every possible overlap, and form a probability
distribution on such partitioning. We hence define the set of logical partitions as

ΨB =

{ ∧
φ∈ΦI

φ \
∨

φ∈IΦC
I

φ : ΦI ⊆ ΦB ∪ {�}
}

, (3)

where ΦC
I = (ΦB∪�)\ΦI . We denote as ΨB(φ) the set of partitions whose union

is φ:
ΨB(φ) = {ψ ∈ ΨB : S(ψ) ⊆ S(φ)} (4)

The concept of satisfiability of a belief base is formalized in the following defini-
tions.

Definition 2 (Satisfiability). Given a L0-BB Bi,0, a probability distribution
pi,0 over the set of logical partitions ΨB is said to satisfy Bi,0 if, for all φk ∈ ΦB,
it is true that ∑

ψ∈ΨB(φ)

pi(S(ψ)) = αk (5)

Definition 3 (Consistency). A L0-BB Bi,0 is said to be consistent (or satis-
fiable) if there exists a probability distribution pi,0 over ΨB that satisfies it.

In general, there exist multiple distributions pi,0 satisfying a L0-BB Bi,0.1 This is
due to the fact that a L0-BB constitutes in general only a partial specification of a
probability distribution over S, as noted by Nilsson [18]. There are different ways
to cope with this indeterminacy. A “skeptical” approach is to compute the upper
and lower bounds of the probability of each state, and consider such intervals. A
more “credulous” solution is to pick one probability distribution among the ones
that are consistent with the L0-BB. We follow the latter direction by choosing
the maximum entropy (max-ent) distribution [13].

Given a L0-BB Bi,0, the max-ent probability distribution pi,0 over ΨB that
satisfies Bi,0 is given by the solution to the following optimization problem:

max
pi,0

(
−
∑

ψ∈ΨB

pi,0(S(ψ)) log pi,0(S(ψ))
)

(6)

1 In fact, it can be shown that a L0-BB either has a unique model or admits an
uncountably infinite set of models.
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subject to ∑
ψ∈ΨB(φ) pi,0(S(ψ)) = αk ∀ φ ∈ ΦB∑

ψ∈ΨB pi,0(S(ψ)) = 1
pi,0(S(ψ)) ≥ 0 ∀ψ ∈ ΨB

(7)

Hence, a L0-BB Bi,0 represents the probability space (S(ΨB), 2S(ΨB), pi,0), were
pi,0 is the max-ent probability distribution just defined. Slightly abusing nota-
tion, we will sometimes write pi,0(ψ) rather than pi,0(S(ψ)) when this is not
source of ambiguity. We clarify the concepts presented in this section by intro-
ducing a simple running example.

Example (Grid world). In a world consisting of an n×n grid, an agent i wants
to tag a moving target j. The agent knows his own position, but is uncertain
about the target’s. The predicate jPos(x, y) indicates the target position, where
x and y are integers representing the coordinates of a location on the grid, i.e.
0 ≤ x, y < n. Obviously, the target occupies one and only one position in the
grid; this can be expressed by the following FOL sentence:

∃x, y
(
jPos(x, y) ∧ ¬∃w, z

(
jPos(x, y) ∧ jPos(w, z) ∧ (x �= y ∨ w �= z)

))
(8)

Instead of including this fact in the belief base, we assume the agent implicitly
knows it, as a limitation on possible worlds. We introduce the auxiliary deter-
ministic predicates geq(x, k) ≡ x ≥ k and leq(x, k) ≡ x ≤ k. Say the agent
is interested, in a particular moment in time, to the horizontal location of the
target in the grid with respect to the center, i.e. whether the target is in either
the left or right half of the map. A plausible L0-BB representing i’s belief is:

Bi,0 =
〈∃x, y(jPos(x, y) ∧ leq(x, !n/2")), 0.8〉
〈∃x, y(jPos(x, y) ∧ geq(x, !n/2")), 0.5〉 (9)

We denote the two FOL sentences in the L0-BB as φ0 and φ1, respectively. The
partitioning ΨB = {ψ0, ψ1, ψ2} induced on the state space is shown in Fig. 2-a.
In this case, there is only one probability distribution over ΨB that is consistent
with the belief base, namely pi,0 = (0.5, 0.3, 0.2).

3.2 Level 1 Beliefs

After having described how to represent the beliefs of agent i about the state
of the world using first-order logic and probability, we now introduce how to
specify agent i’s beliefs about agent j’s beliefs about S. In order to do so, agent
i needs a language that allows him to abstract over the space of agent j’s 0-th
level beliefs, in the same way first-order logic provides abstraction over the set
of states of the world in a L0-BB. We call this language Level-0 First-Order
Probabilistic Logic (L0 FOPL), in that it provides a way to describe j’s level 0
beliefs.
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Fig. 2. Example of nested First-Order Belief Base

Definition 4 (L0 FOPL). The language L j,0 of j’s level 0 probabilistic state-
ments is recursively defined as:

1. Pj(φ) � β is a formula, where φ is a formula in first-order logic, β ∈ [0, 1],
and �∈ {<,≤, =,≥, >};

2. If φj,0 is a formula, then ¬φj,0 is a formula;
3. If φj,0

1 and φj,0
2 are formulae, then φj,0

1 ∧ φj,0
2 , φj,0

1 ∨ φj,0
2 , φj,0

1 ⇒ φj,0
2 are

formulae;
4. If φj,0 is a formula, then ∃x(φj,0) and ∀x(φj,0) are formulae, where x is a

subset of the free logical variables of φj,0;
5. A sentence is a formula with no free variables.

Agent i assigns degrees of belief to some sentences of L j,0. This is represented
as a Level 1 Belief Base, defined in the following.

Definition 5 (Level 1 Belief Base). A Level 1 Belief Base (L1-BB) Bi,1 for
agent i is a collection of pairs 〈φj,0

k , αk〉, for k = 1, 2, . . . , m, where φj,0
k is a

sentence of L j,0 and αk ∈ [0, 1].

For the sake of presenting the semantics of a L1-BB, we will assume that the
quantified statements about j’s probabilities (of the type of rule 4 in Definition
4) are expanded into propositional form over the elements of the domain. The
basic idea behind the semantics of a L1-BB is that the partitions over the state
of the world correspond to the vertices of the simplex of j’s belief about the state
of the world. In turn, agent i maintains a distribution over the partitions of such
simplex. This mechanism in intuitively depicted in Fig. 3.

We now formalize this process. From the belief base, let us define the set Φj,0
B

of j’s level 0 probabilistic statements about which i holds a degree of belief in
Bi,0 (Fig 3-a). Formally, we have:

Φj,0
B = {φj,0 : 〈φj,0, α〉 ∈ Bi,1 for some α ∈ [0, 1]} (10)
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i

(a) (b) (c)

Fig. 3. Intuitive representation of the partition-based belief hierarchy and correspond-
ing notation. (a) States of the world. (b) Agent j’s 0-th level beliefs. (c) Agent i
maintains a distribution over Ψ j,0

B .

In turn, we also define the set of FOL sentences ΦB that appear in some of j’s
level-0 probabilistic statements. This will allow us to describe the space of j’s
0-th level beliefs that agent i considers (Fig 3(b)). Formally, we have:

ΦB = {φ : φ ◦ φj,0 for some φj,0 ∈ Φj,0
B } , (11)

where the circle symbol is read “occurs in” and is recursively defined as:

1. If φj,0 is of the form Pj(φ) � α, then φ ◦ φj,0;
2. If φ ◦ φj,0

u , then φ ◦ (¬φj,0
u );

3. If φ ◦ φj,0
u , then φ ◦ (φj,0

u ∧ φj,0
v ) and φ ◦ (φj,0

u ∨ φj,0
v ), for any φj,0

v .

We denote as ©(φj,0) the set of of φ ∈ ΦB such that φ ◦ φj,0. The set ΨB of
partitions of S induced by ΦB is defined as in (3), and the set ΨB(φ) as in (4).
Let us denote as Δ(ΨB) the regular simplex whose vertices are the elements of
ΨB. This simplex is the set of all possible probability distributions that j may
hold about the sentences in ΨB. The semantics of L j,0 is defined on such simplex,
as described in the following definition.

Definition 6 (L1-BB Probabilistic entailment). Given a L1-BB Bi,1, the
probabilistic entailment (|=) of a sentence φj,0 (such that ©(φj,0) ∈ ΦB) by a
point pj,0 ∈ ΔB(ΨB) is recursively defined as:

1. pj,0 |= (Pj(φ) � β) if and only if
∑

ψ∈ΨB(φ) pj,0(S(ψ)) � β;
2. pj,0 |= ¬φj,0 if and only if pj,0 /|= φj,0;
3. pj,0 |= (φj,0

u ∧ φj,0
v ) if and only if pj,0 |= φj,0

u and pj,0 |= φj,0
v ;

4. pj,0 |= (φj,0
u ∨ φj,0

v ) if and only if pj,0 |= (¬φj,0
u ∧ ¬φj,0

v );

If pj,0 |= φj,0, pj,0 is said to be a model of sentence φj,0. It is easy to see that the
models of a probabilistic sentence φj,0 are the points in the continuous region of
the simplex that is identified by φj,0. We refer to the set of models of a sentence
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φj,0 as [Δ(ΨB)](φj,0), to remark that it corresponds to a subset of the simplex
Δ(ΨB). To make the notation lighter, we will usually refer to the set of models
as ΔB(φj,0). We add the extra symbol �j,0 to the language L j,0 as a shorthand
for Pj(�) = 1. Clearly, ΔB(�j,0) = Δ(ΨB) (the whole simplex.)

Similarly to (3), we now define the logical probabilistic partitioning induced
by Φj,0

B as:

Ψ j,0
B =

{ ∧
φj,0∈Φj,0

I

φj,0 \
∨

φj,0∈Φj,0,C
I

φj,0 : Φj,0
I ⊆ (Φj,0

B ∪�j,0)

}
, (12)

where Φj,0,C
I = (Φj,0

B ∪ �j,0) \ Φj,0
I .

The sets ΔB(ψj,0) for ψj,0 ∈ Ψ j,0
B are non-overlapping regions that together

cover the simplex ΔB(ΨB) entirely, hence they form a partitioning of such space.
We denote as Ψ j,0

B (φj,0) the set of elements of Ψ j,0
B that correspond to subsets

of ΔB(φj,0), where φj,0 ∈ Φj,0
B . Formally,

Ψ j,0
B (φj,0) =

{
ψj,0 ∈ Bj,0 : ΔB(ψj,0) ⊆ ΔB(φj,0)

}
(13)

We now describe the max-ent distribution over the belief simplex induced by a
L1-BB. Note that we are defining a distribution over the set of j’s distribution
about the state of the world, which is a continuous space. Nevertheless, instead
of defining a probability directly over the simplex Δ(ΨB), we will use the space of
partitions of this simplex, namely ΔB(Ψ j,0

B ). This allows the agent to represent
his first level interactive belief as a discrete probability distribution, rather than
a continuous one. Formally, we define the probability space(

ΔB(Ψ j,0
B ), 2ΔB(Ψ j,0

B ), pi,1

)
, (14)

where pi,1 is the result of the following optimization problem:

max
(
−

∑
ψj,0∈Ψ j,0

B

pi,1(ΔB(ψj,0)) log pi,1(ΔB(ψj,0))
)

(15)

subject to: ∑
ψj,0∈Ψ j,0

B (φj,0
k ) pi,1(ΔB(ψj,0)) = αk ∀ φj,0

k ∈ Φj,0
B

pi,1(ΔB(ψj,0)) ≥ 0 ∀ ψj,0 ∈ Ψ j,0
B∑

ψj,0∈Ψ j,0
B

pi,1(ΔB(ψj,0)) = 1
(16)

As before, we will sometimes write pi,1(ψj,0) when this slight abuse of notation
does not generate ambiguities.

Example (Grid world, cont’d). In the grid world example introduced before,
suppose the moving target j is an agent on its own, maintaining a probability
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distribution over S and over i’s belief about S. We assume j knows that i is
concerned about his horizontal position w.r.t. the center. A possible L1-BB is:

Bj,1 =
〈Pi(φ0) ≥ 0.4, 0.4〉
〈Pi(φ1) > 0.5, 0.7〉 (17)

where φ0 and φ1 are the same as in (9). We identify the set

Φi,0
B = {Pi(φ0) ≥ 0.5, Pi(φ1) < 0.4} = {φi,0

0 , φi,0
1 } (18)

The probabilistic sentences φi,0
0 and φi,0

1 induce three partitions on i’s L0 belief
simplex, as shown in Fig. 2-b. Again, there is only one consistent probability
distribution over Φi,0

B , namely pj,1 = (0.3, 0.1, 0.6).

3.3 Level nnn Beliefs

In this section, we follow the same steps as for the L1-BB and generalize the
approach to any level of nesting. Intuitively, we need to represent agent i’s degree
of belief about agent j’s beliefs about i’s beliefs about. . . and so on, down to
level 0 beliefs about the state of the world. In order to do so, we build a logical-
probabilistic framework that allows the definition of a probability distribution
over the other agent’s (n−1)-th level beliefs in a recursive fashion. The result will
be that, by partitioning the belief simplices at each level of the hierarchy, we can
provide a finite representation of the interactive beliefs at any level of nesting.
The intuition behind this process is that the partitions of the belief simplex at
any level n−1 corresponds to the vertices of the simplex at level n. Since we need
to specify the beliefs over some simplex at level n− 1, we begin the description
by formally defining the language of Level n− 1 First-Order Probabilistic Logic
(L(n− 1) FOPL) for agent j.

Definition 7 (L(n − 1) FOPL). Given a set of predicate symbols Q and a
domain D, the language L j,n−1 of j’s level n − 1 probabilistic statements is
recursively defined as:

1. Pj(φi,n−2) � β is a formula, where φi,n−2 is a formula of language L i,n−2,
β ∈ [0, 1], and �∈ {<,≤, =,≥, >};

2. If φj,n−1 is a formula, then ¬φj,n−1 is a formula;
3. If φj,n−1

1 and φj,n−1
2 are formulae, then φj,n−1

1 ∧ φj,n−1
2 , φj,n−1

1 ∨ φj,n−1
2 ,

φj,n−1
1 ⇒ φj,n−1

2 are formulae;
4. If φj,n−1 is a formula, then ∃x(φj,n−1) and ∀x(φj,n−1) are formulae, where

x is a subset of the free logical variables of φj,n−1;
5. A sentence is a formula with no free variables.

For convenience, we use the symbol �j,n−1 as a shorthand for Pj(�i,n−2) = 1.
We represent i’s beliefs about some sentences of the language L j,n−1 as a Level
n Belief Base.
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Definition 8 (Level n Belief Base). A Level n Belief Base (Ln-BB) Bn
i for

agent i is a collection of pairs 〈φj,n−1
k , αk〉, for k = 1, 2, . . . , m, where φj,n−1 is

a sentence of L j,n−1 and αk ∈ [0, 1].

In order to be able to define the probabilistic semantics of a Ln-BB, we propo-
sitionalize each quantified probabilistic statement down the nesting hierarchy.

A Ln-BB represents agent i’s degree of belief about a number of probabilistic
statements regarding j’s beliefs. These are the level n−1 probabilistic statements
that appear in the tuples of the Ln-BB. Formally, we define the set of such
statements as:

Φj,n−1
B = {φj,n−1 : 〈φj,n−1, α〉 ∈ Bi,n for some α ∈ [0, 1]} (19)

Note that this is analogous to the set Φj,0
B defined in (10) for a L1-BB. As in the

previous subsection, we now need to provide a notion of probabilistic entailment
for the language L j,n−1. We consider the regular simplex whose vertices are i’s
(n−2)-th level probabilistic statements that appear in the belief base. Formally,
we define the set Φi,n−2

B of sentences of L i,n−2 that occur in some element of
Φj,n−1
B . Mathematically,

Φi,n−2
B = {φi,n−2 : φi,n−2 ◦ φj,n−1 for some φj,n−1} , (20)

where again we use the ◦ operator introduced in the previous section, generalized
to L j,n−1 (we omit the full definition for conciseness.) We now consider the set
of logical partitions induced by Φi,n−2

B :

Ψ i,n−2
B =

{ ∧
φi,n−2∈Φi,n−2

I

φi,n−2 \
∨

φi,n−2∈Φi,n−2,C
I

φi,n−2
h

: Φi,n−2
I ⊆ (Φi,n−2

B ∪�i,n−2)

}
, (21)

where Φi,n−2,C
I = (Φi,n−2

B ∪ �i,n−2) \ Φi,n−2
I .

The regular simplex that has the elements of Ψ i,n−2
B as vertices, denoted

Δ(Ψ i,n−2
B ), is the space of j’s n − 1 level probability distributions. Hence, it

represents the set over which the Ln-BB of agent i induces a max-ent distribu-
tion (remember that we are defining probability distributions over probability
distributions over. . . ) Instead of considering a distribution over this continuous
space, we consider a distribution over partitions of such space. To do so, we first
need the notion of probabilistic entailment for this case, that is a straightforward
generalization of the level 1 entailment defined in the previous section, and is
not reported here for brevity.

A distribution pj,n−1 that entails a sentence φj,n−1 is said to be a model of
φj,n−1. The set of models of φj,n−1 is denoted as [Δ(Ψ i,n−2

B )](φj,n−1), and is
usually abbreviated as ΔB(φj,n−1).



244 A. Panella and P. Gmytrasiewicz

Each element of Φj,n−1
B corresponds therefore to a region of the simplex

Δ(Ψ i,n−2
B ). In order to obtain the max-ent probability distribution encoded in

the Ln-BB we need to define the probability space given by the partitions in-
duced by the sentences φj,n−1 ∈ Φj,n−1

B . The set of logical partitions induced by
Φj,n−1
B is defined as in (21), by substituting (n− 2) with (n − 1), and i with j.

We do not report the complete definition for brevity.
As before, we also define the set of logical partitions Ψ j,n−1

B (φj,n−1) whose
union is the set ΔB(φj,n−1). At this point, we are ready to introduce the max-
ent probability distribution over j’s belief partitions given by the Ln-BB. To this
sake, we define the probability space(

ΔB(Ψ j,n−1
B ), 2ΔB(Ψ j,n−1

B ), pi,n

)
, (22)

where pi,n is the solution to the following optimization problem:

max
pi,n

(
−

∑
ψj,n−1∈Ψ j,n−1

B

pi,n(ψj,n−1) log pi,n(ψj,n−1)
)

(23)

subject to the constraints:∑
ψj,n−1∈

Ψ j,n−1
B (φj,n−1

k )

pi,n(ψj,n−1) = αk ∀ φj,n−1
k ∈ Φj,n−1

B

∑
ψj,n−1∈ΨB

pi,n(ψj,n−1) = 1

pi,n(ψj,n−1) ≥ 0 ∀ ψj,n−1 ∈ Ψ j,n−1
B

(24)

Above, we use the abbreviated notation pi,n(ψj,n−1) instead of pi,n(ΔB(ψj,n−1)).

Example (Grid world, cont’d). We borrow the structure of the grid world
example seen for the L1-BB. Assume now that agent i models the target j as a
rational agent, who is in turn maintaining a belief over i’s beliefs. The L2-BB
for agent i we consider is:

Bi,2 =
〈Pj(Pi(φ0) ≥ 0.4) < 0.4, 0.2〉
〈Pj(Pi(φ1) > 0.5) < 0.7, 0.6〉 (25)

We consider the set:

Φj,1
B = {Pj(φ

i,0
0 ) < 0.4, Pj(φ

i,0
1 ) < 0.7} = {φj,1

0 , φj,1
1 } , (26)

where φi,0
0 and φi,0

1 are defined in (18). This set induces four non-empty partitions
on j’s level 1 belief simplex, as shown in Fig. 2-c. We now compute the max-ent
distribution pi,2 over the four partitions:

max
pi,2

(
−

3∑
k=0

pi,2(ψ
j,1
k ) log pi,2(ψ

j,1
k )
)

, s.t. (27)
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⎡⎣0 0 1 1
1 0 0 1
1 1 1 1

⎤⎦
⎡⎢⎢⎣

pi,2(ψ
j,1
0 )

pi,2(ψ
j,1
1 )

pi,2(ψ
j,1
2 )

pi,2(ψ
j,1
3 )

⎤⎥⎥⎦ =

⎡⎣0.2
0.6
1

⎤⎦ (28)

The resulting probability distribution is: pi,2 = (0.48, 0.32, 0.08, 0.12).

4 Conclusion and Future Work

In this paper, we have contribute a novel theoretical framework to compactly
represent a hierarchy of interactive beliefs exploiting first-order logic and prob-
ability theory. The main idea is to partition the belief simplex at each level of
the hierarchy, and let the simplex at level n − 1 constitute the vertices of the
simplex at level n. We have shown that, by recursively partitioning the belief
simplices, the representation of the interactive space is finite, thus overcom-
ing the unboundedness of the space of distributions that is typical of standard,
enumeration-based representations.

There are several directions for future research. First, we will develop a fea-
sible implementation of our proposed theoretical system and will evaluate the
computational costs, both of exact and approximate inference techniques. In
particular, we intend to study the ties between our approach and existing first-
order probabilistic systems, such as Relational Probabilistic Models and Markov
Logic Networks, and possibly extend them towards the interactive beliefs seman-
tics presented in this paper.

Second, we want to embed this novel representation of interactive beliefs in
decision making algorithms. One possible application is to extend the work of
Sanner and Kersting [23] on First-Order POMDPs to interactive settings. In par-
ticular, we believe that our partition-based interactive belief system is suitable
to be embedded in decision making frameworks such as Interactive POMDPs.
In fact, the optimal value function for (I-)POMDPs divides the belief simplex
in partitions corresponding to the optimal policy for each such region. Hence,
we want to explore the use of interactive first-order belief bases to recursively
represent the relevant belief partitions of the other agents.
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Université Pierre et Marie Curie,
Laboratoire d’Informatique de Paris 6,

75252 Paris Cedex 05, France
firstname.lastname@lip6.fr

Abstract. In many domains where experts are the main source of knowl-
edge, e.g., in reliability and risk management, a framework well suited
for modeling, maintenance and exploitation of complex probabilistic sys-
tems is essential. In these domains, models usually define closed-world
systems and result from the aggregation of multiple patterns repeated
many times. Object Oriented-based Frameworks (OOF) such as Proba-
bilistic Relational Models thus offer an effective way to represent such
systems. OOFs define patterns as classes and substitute large Bayesian
networks (BN) by graphs of instances of these classes. In this framework,
Structured Inference avoids many computation redundancies by exploit-
ing class knowledge, hence reducing BN inference times by orders of
magnitude. However, to keep modeling and maintenance costs low, OOF
classes often encode only generic situations. More complex situations,
even those repeated many times, are only represented by combinations
of instances. In this paper, we propose to determine such combination
patterns and exploit them as classes to speed-up Structured Inference.
We prove that determining an optimal set of patterns is NP-hard. We
also provide an efficient algorithm to approximate this set and show nu-
merical experiments that highlight its practical efficiency.

1 Introduction

Bayesian networks (BN) [19] are a valued framework for reasoning under uncer-
tainty and their popularity stimulated the need for handling problems of ever
increasing size. However BNs turn out to be inadequate for large scale real-world
applications due to high design and maintenance costs [18,20]. Indeed, defining
a BN requires to specify explicitly probabilistic dependencies and conditional
probabilities over the whole set of its random variables. This may lead to un-
realistic modeling costs when dealing with complex systems. Furthermore, BN’s
design is static: any change in the topology of their graphical structure induces
significant update costs.

Solving these problems has been the main concern of several BN extensions
using the object-oriented paradigm [15,18]. Besides, first-order logic extensions
were proposed to offer more expressive power than the propositional framework
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offered by BNs [13,14]. Learning being a critical problem when exploiting BNs
over large knowledge bases, entity-relationship extensions were also proposed
for relational learning [8,10]. These extensions are all allegedly considered as
First-Order Probabilistic Models (FOPM) or as Knowledge Based Construction
Models.

During the last decade, the Probabilistic Graphical Model (PGM) community
has worked actively on FOPMs and object-oriented models have been somewhat
neglected: since the introduction of Object-Oriented Bayesian Networks [3,15],
the amount of contributions on object-oriented PGMs has actually been rela-
tively small [1,2,8]. However, in many industrial areas, efficient frameworks for
the construction of large-scale complex systems are strongly needed and, in do-
mains like risk management or monitoring of complex industrial processes, this
usually boils down to experts modeling large-scale BNs by aggregating hier-
archically small network fragments repeated many times. In addition, all the
relations between these fragments are usually fully specified, thus resulting in
modeling “closed worlds”. For these domains, object-oriented frameworks seem
more suitable than first-order logic extensions. In particular, the “closed world”
assumption strongly degrades the behavior of lifted inference in FOPM.

Object-oriented frameworks assume that many parts of a large BN are similar
and can thus be described as instances of a generic class defined only once. This
scheme induces low construction costs. In addition, maintenance costs are kept
as low as possible since a modification in a class definition updates many areas
of the BN at once. Furthermore, repetitions of structures in the BN (multiple
instances of the same class) can speed-up inference by performing computations
within classes, caching them and using the cache for all their instances. This pro-
cess allows algorithms like Structured Variable Elimination (SVE) to outperform
classical BN inference engines by orders of magnitude [21].

In this paper, we propose an enhancement of structured inference for Proba-
bilistic Relational Models [7,25]. In real world applications, instances are often
combined and form patterns repeated many times throughout the network. By
using a frequent subgraph pattern mining algorithm, it is possible to discover
such combinations and exploit them to speed-up structured inference. However,
mining optimally such patterns is time expensive. In this paper, we both pro-
vide a structured inference algorithm for PRMs exploiting patterns and a mining
heuristic fast enough for efficient inference.

The paper is organized as follows: Section 2 recalls the basics of object-oriented
frameworks using PRMs. Section 3 generalizes structured inference. Section 4
shows the complexity of mining patterns and provides an approximate algorithm
for such mining. Experiments reported in Section 5 show the practical efficiency
of our approach. Finally, concluding remarks are given in Section 6.

2 Description of PRMs

Using PRMs as an object-oriented framework can be surprising as they were
first proposed for relational learning [5]. However, it is important to remember
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X1 Y1

U1 V1

W1

U2 V2

W2

U3 V3

W3

Y2X2

(a) A Bayesian network. The gray areas
do not belong to the BN specification

E

X Y

F
ρ Y

U V

W

(b) Two connected classes E and
F

S

E e1, e2;
F f1, f2, f3;

f1.ρ = e1;
f2.ρ = e1;
f3.ρ = e2;

e1

f1 f2

e2

f3

(c) System declaration and relational
skeleton for the BN of Figure 1(a)

Fig. 1. Representation of a BN as a PRM: analysis of the BN reveals the use of two
recurrent patterns (a), which are confined in two classes (b). Hence, a system equivalent
to the BN may be built (c).

that PRMs are an extension of Object Oriented Bayesian Networks [21,25] and,
thus, they offer a sound object-oriented framework.

Due to a lack of space, we only present briefly and incompletely the PRM
framework [7,25]. Fig. 1.(a) shows a BN encoding relations between two dif-
ferent kinds of patterns (variables {Xi, Yi} and {Uj, Vj , Wj}). Variables whose
names begin with the same letter share identical conditional probability tables
(CPT). Object-oriented representations aim to abstract each pattern as a generic
entity (a class) that encapsulates all the relations between the variables of the
pattern. So, in Fig. 1.(b), class E encapsulates precisely variables Xi and Yi as
well as their probabilistic relations (arc (Xi, Yi)) and their CPTs. The pattern
of variables Uj , Vj , Wj cannot be directly encapsulated in a class since the CPTs
of variables Uj are conditional to some variables Yk (e.g., the CPT of U3 is
P (U3|Y2) according to Fig. 1.(a)). Hence classes must have a mechanism allow-
ing to reference variables outside themselves. In PRMs, this mechanism is called
a reference slot. A reference slot ρ of a class C is a local name for another class
D allowing C to access its variables. As shown in Fig. 1.(c), the original BN can
then be built up from the PRM: it is sufficient to create two instances, say e1

and e2, of class E as well as three instances f1, f2, f3 of F and connect them
using one edge per reference slot.
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Definition 1 (Class, Attribute, Reference slot). In order to define classes,
one needs the following cross-definitions:
• A class is a quadruple 〈A(C),R(C),G(C),P(C)〉 where:
• A(C) is a set of attributes. An attribute C.X ∈ A(C) is a random variable.

C is called the resident class of X.
• R(C) is a set of reference slots. C.ρ ∈ R(C) is a surrogate for another

class, say D, giving access to all its attributes and reference slots from within C.
Range(ρ) denotes class D. The set A(C) of all the attributes reachable by way
of reference slots or within C is called the closure of C.
• G(C) = (A(C), E) is a Directed Acyclic Graph (DAG) where E ⊆ A(C) ×

A(C) : only the attributes of C have parents in this DAG.
• P(C) = {P (X|ΠX) , X ∈ A(C)} is the set of CPTs of attributes X ∈ A(C)

conditionally to their parents in G(C).

Classes are not meant to be used as is, but through instances. For example, a
class may represent various failure odds of a cooling system in a nuclear power
plant and, when modeling a given power plant, such class is instantiated for each
occurrence of the cooling system in the whole plant.

Definition 2 (Instance, System). Let B be a BN,
• An instance c of a class C is a subset of the random variables of B whose

relations are described by C. c.X (resp. c.ρ) refers to the instantiation of C.X ∈
A(C) (resp. C.ρ ∈ R(C)) in c. By abuse of notation, we denote the sets of such
instantiations as A(c) and R(c) respectively.
• A system S is the representation of B in the PRM framework: it is a finite

set of instances such that ∀i ∈ S, ∀ρ ∈ R(i), ∃j ∈ S such that Range(i.ρ) = j
and such that there is a one-to-one mapping between random variables of B and
the set of all attributes declared in the instances of S.

The graph representing instances by nodes and connections between range and
resident instances by edges is called the relational skeleton of S.

Definition 2 enforces the “closed world” feature of systems, i.e., they are finite
sets of instances with all reference slots properly defined. As mentioned in the
introduction, this constraint is reasonable for complex systems of many domains.
For instance, to reason on industrial milk fermenters, pipe connections need to
be fully specified.

3 Structured Inference

Determining the probabilities of random variables given evidence is the most
common query performed in probabilistic graphical models. There exists a wide
range of inference algorithms to compute these distributions. They often rely
in some way to a Variable Elimination scheme [4,17]. The basic idea consists
of marginalizing out random variables one by one from the joint distribution
until there only remains the variables of interest. Dechter’s Variable Elimination
(VE) is representative of this class of algorithms. It first fills a pool of functions
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called potentials with the CPTs representing the decomposition of the joint dis-
tribution. Then, eliminating some variable Xj from the joint probability just
amounts to extract from the pool all the potentials involving Xj, multiply them
and sum-up the result over all the values of Xj , and insert back the resulting
potential into the pool. Conditional probabilities P (X|e) are computed similarly
by first adding to the pool some potentials representing the additional knowledge
brought by evidence e.

The above scheme is efficient and can be used in PRMs by applying it on
their grounded BN. However, by processing random variables separately, VE
is unable to exploit the structural repetitions in the graphical model to avoid
computation redundancies. The aim of Structured Inference is to fill this gap
[5,21] and Object-Oriented frameworks provide a simple and effective way to
achieve this goal. Indeed, consider an attribute A of a class C such that all of its
children also belong to C and let c1, . . . , ck be some instances of C in which no
attribute received any evidence. Then it is easy to see that eliminating attributes
A ∈ A(ci) in the grounded BN produces precisely the same computations for all
the instances ci, i = 1 . . . , k. In this case, eliminating attribute A within class
C, i.e., at class level, and updating accordingly all the relevant instances before
constructing the grounded BN avoids the redundancies involved by eliminating
A in each ci, i.e., at instance level. This process is called Structured Inference
and the gain brought by this approach usually reduces computation times by
orders of magnitude.

More Formally, an attribute A ∈ A(C) is called an inner or internal attribute if
all of its children also belong to A(C), otherwise A is called an outer attribute. In
addition, the attributes referenced in R(C) are called non-resident. For instance,
in Fig. 1.b, attributes X, U, V, W are internal, Y is an outer attribute of class
E and ρ.Y is a non-resident attribute of F . Class-level elimination corresponds
to the elimination of all the inner attributes (using any inference algorithm). As
such, it amounts to substitute the pool of potentials P(C) of class C defined over
all of its inner, outer and non-resident attributes by a new set of potentials P′(C)
defined only over the outer and non-resident attributes. The pool of potentials
corresponding to any instance c of C is thus substituted by P′(c) if no inner at-
tribute in c received any evidence, else it is kept to P(c)∪{potentials(evidence)}
(because evidence may induce different distributions from one instance to an-
other).

4 PRM’s Patterns Discovery

4.1 Problem and Complexity

Marginalizing-out internal nodes at class level is the key to Structured Inference
efficiency as it reduces significantly redundant computations. However, not all
redundancies can be identified by this scheme: let C,D be two classes and let
X ∈ A(C), Y ∈ A(D) be two attributes such that the only non-resident child
of C.X is D.Y . Then X cannot be eliminated at class level because it is not
internal. However, if we consider a “new” class F defined by compound (C,D),
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attribute F .X is no longer an outer attribute since Y ∈ A(F). Hence, pairs
of instances (c, d) of C and D that fit the definition of F can be considered as
instances ofF in which X is internal, thus eligible for class-level elimination. Note
however that not all pairs (c, d) are necessarily eligible: in Fig. 1, pairs (e1, f1) and
(e1, f2) cannot be both considered as instances of compound (E ,F) as e1 would
be counted twice in the grounded BN. Pair (e1, f3) is neither eligible because
there is no edge between e1 and f3 in the system. The key idea is that finding
effective compounds/instance-class reassignments should speed-up Structured
Inference since it increases the opportunities for class-level eliminations. It is
most convenient to search them in the following graph:

Definition 3 (Boundary graph). A boundary graph is an undirected graph
BBGG = (II, EE), where

– II is a set of vertices representing instances;
– EE ⊆ II × II is a set of edges such that ∃(c, d) ∈ EE iff

Lcd =
⋃

X∈A(c)

(Πc.X ∩A(d)) ∪
⋃

X∈A(d)

(Πd.X ∩A(c)) �= ∅.

Edge (c, d) is labeled by Lcd.

An edge (c, d) of the boundary graph and its label define precisely the attributes
that should be eliminated at class level if (c, d) was considered as an instance of
a compound. So two pairs of instances (c1, d1) and (c2, d2) of classes C and D
should not be considered as instances of the same compound if Lc1d1 �= Lc2d2 .
Fig. 2 illustrates two boundary graphs for which different compound classes will
be mined. In this case, we can see that Y is an outer attribute for compound
{c1, d1} while being an inner attribute for compound {c2, d2}. This suggests the
following definition:

Definition 4 (Dynamic class). Let BBGG be a boundary graph. A dynamic class
F̂ in BBGG is a pair (F ,B), where: F is a compound class; B ⊆ A(F) is the set
of all the outer attributes of F . Set B is called F̂’s boundary.

Hence, given a dynamic class F̂, all the nodes in A(F̂)\B are internal and can be
eliminated at class level whereas nodes in B are referenced by other instances and
can only be eliminated at instance level. So, to improve structured inference, we
shall search the boundary graph for frequent subgraphs, i.e., subgraphs repeated
many times, create their corresponding dynamic class, substitute each subgraph
by one instance of its dynamic class and, finally, apply an inference algorithm

d1 X

Y

c1 c3 X

Y

d3 c2 X, Y d2

Fig. 2. Different possible connections between instances, resulting in different labels
(square nodes). We can see that compound {c1, d1} is different from compound {c2, d2}.
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like SVE. However substitutions must be performed carefully: it may actually
happen that the occurrences of frequent subgraphs share some nodes. In this
case, only one of these occurrences can be substituted else some instances of the
“original” system would be counted several times (see (e1, f1) and (e1, f2) in
Fig. 1). Hence the following rule:

Rule 1. In the boundary graph, substituted subgraphs cannot share any node
(i.e. any instance of the original PRM).

Optimizing structured inference thus amounts to searching for the “best” set of
dynamic classes and subgraph substitutions satisfying Rule 1. Unfortunately, as
shown in the following proposition, this problem is NP-hard1:

Proposition 1. The following problem is NP-hard:
Instance: a PRM, a boundary graph, an integer K≥0.
Question: is there a set of dynamic classes and boundary subgraph substitu-
tions of these classes such that the number of operations (multiplications and
summations) performed by structured inference is smaller than K?

In a sense, this proposition is not very surprising since determining the minimal
number of operations in variable elimination algorithms such as SVE or VE is
equivalent to determining an optimal elimination sequence, which is known to be
NP-hard [22]. In addition, determining all the occurrences of a given subgraph in
a graph is NP-hard as well [6]. Finally, given a set of dynamic classes and their
subgraph occurrences in the boundary graph, determining which ones should be
substituted amounts to solve an Independent Set problem in which each vertex
represents a boundary subgraph and edges link vertices corresponding to over-
lapping boundary subgraphs. Again, this problem is NP-hard [6]. However, the
proof of Proposition 1 shows that finding the best dynamic classes/substitutions
remains NP-hard even in cases where inference in the grounded BN is polyno-
mial (singly-connected BNs). We shall however present in the next subsection
an efficient approximate algorithm for determining an effective set of dynamic
classes.

4.2 An Approximate Algorithm

The problem of finding frequent patterns in labeled graphs has received many
contributions in the literature, although the aim is somewhat different in that it
consists of finding subgraphs that appear in many graphs of a database of labeled
graphs [12,16,26]. However, the connection with our problem is sufficiently high
that techniques from this domain can be borrowed to solve our problem. In this
paper, we suggest to use a variant of gSpan [26].

The idea consists of creating a search tree T as follows: each node N(D̂) of
the tree represents a pair (D̂, O(D̂)) where D̂ is a dynamic class and O(D̂) is the
set of its instances in the boundary graph BBGG. In other words, O(D̂) is the set
of subgraphs of the BBGG that fit D̂. Tree T is initialized with all the dynamic
1 Proof can be found at http://agrum.lip6.fr/doku.php?id=sum2011
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classes corresponding to 1-edge subgraphs of BBGG. In T, nodes at level k + 1
are derived from those at level k by extending their associated subgraph in
BBGG with one of their adjacent node in BBGG. As a consequence, each node of T
represents a dynamic class whose boundary subgraph is connected and whose set
of instances is nonempty. The whole tree thus reveals precisely all the possible
substitutions that can be applied to the PRM. More precisely, V = ∪N(D̂)∈T

O(D̂)
represents the set of substitutions. There just remains to select among V the
“best” substitutions possible. To do so, we must enforce Rule 1. It is easily done
by observing that each node of BBGG can only belong to one dynamic class and,
more precisely, to one instance of this dynamic class. Hence, if we create a graph
G = (V, E) in which each node of V represents a given element of V, i.e., a
subgraph of BBGG, and each edge (v1, v2) ∈ E represents the fact v1 and v2 have a
nonempty intersection in BBGG, then any subset W ⊆ V such that no pair of nodes
of W are adjacent in G corresponds to a set of substitutions satisfying Rule 1. In
other words, there is a one-to-one mapping between the Independent Sets of G
and the sets of substitutions satisfying Rule 1. Of course, some substitutions are
better than others because they induce higher speed-ups in Structured Inference
(see the βD̂/γD̂ ratio below). So by weighting nodes of V according to the speed-
up improvements they induce, the “best” substitutions we look for correspond
to solutions of a Max Weighted Independent Set problem [9].

3 edges

2 edges

1 edge

4 edges pruned

N( ̂D0) N( ̂D1)

Fig. 3. Dynamic class search tree T

Of course, the size of T is exponential and, thus, some pruning is necessary.
Pruning rules will be described in the next subsection. But, to guaranty their
efficiency, we shall construct T in such a way that the “best” dynamic classes
are constructed first. For this purpose, gSpan defines a linear order that ensures
that the more promising the node the smaller its index in the order and suggests
to sort all the nodes of each level of T according to this order [26]. Thus, parsing
T in a depth-first search (DFS) manner guarantees that the “most promising”
dynamic classes are constructed first. This leads to the following algorithm:

4.3 Pruning Rules

For the first pruning rule, note that the descendants of a node in T define the
possible extensions of its corresponding dynamic class. Hence, if another node
of the search tree corresponds to the same dynamic class (say, e.g., that D̂1 is
the same class as D̂0), then both nodes and their descendants represent identical
dynamic classes. So, N(D̂1) and its descendants can be safely pruned from the
search. Determining whether two nodes represent the same dynamic class is
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Input: A PRM and its boundary graph BBGG
Output: A set of dynamic classes/substitutions
T← all dynamic classes of 1-edge subgraphs of BBGG
sort the nodes in T according to the gSpan linear order
parse T in a DFS manner
foreach node N(D̂) visited do

create the children of N(D̂), sort them w.r.t. gSpan’s linear order and add
them to T
prune the “unpromising” children

end
solve a Max Weighted Independent Set
return the set of “best” dynamic classes/substitutions

Algorithm 1. Computing dynamic classes/substitutions

simply achieved through gSpan’s canonical labeling of subgraphs (see [26] for a
detailed description).

The second rule is related to the gain achievable in Structured Inference using
dynamic classes: nodes N(D̂) that define classes whose subgraph substitutions
do not speed-up Structured Inference can be pruned. To estimate the gain in
speed, recall that, by Rule 1, only a subset of the subgraphs of O(D̂) can be
substituted in BBGG by instances of D̂. Let sD̂ denote the cardinal of this subset.
The number of operations (multiplications, additions) performed by Structured
Inference on these substitutions is equal to wD̂ + sD̂ × wD̂, where wD̂ and wD̂
denote the number of operations necessary to eliminate D̂’s inner nodes at class
level and D̂’s outer nodes at instance level respectively. Now remember that, in
tree T, D̂ corresponds to a 1-edge extension of its parent π(D̂). So, the subgraphs
of O(D̂) that were not substituted are 1-edge extensions of subgraphs of O(π(D̂)).
Assuming that they were all substituted as instances of π(D̂), their eliminations
by Structured Inference would have cost wπ(D̂) + (|O(D̂)| − sD̂) × wD̂ where
wD̂ = wπ(D̂) + kD̂ and kD̂ corresponds to the elimination of the edge added
to π(D̂). So the total cost incurred by the exploitation of N(D̂) is βD̂ = wD̂ +
wπ(D̂) + sD̂×wD̂ +(|O(D̂)|− sD̂)×wD̂ whereas, by just exploiting π(D̂), it would
have been γD̂ = wπ(D̂) + |O(D̂)| × wD̂. So, class D̂ is unattractive for inference
and N(D̂) may be pruned whenever αD̂ = βD̂− γD̂ = wD̂ + sD̂× (wD̂ −wD̂) > 0.
Finally, note that sD̂, wD̂, wD̂, kD̂ can be estimated quickly: as shown in the
preceding subsection, sD̂ can be estimated by solving a Max Independent Set
problem induced by O(D̂). To estimate wD̂, it is sufficient to compute a junction
tree of D̂’s DAG [23], eliminating only inner nodes, and to sum-up the sizes of
its cliques. Eliminating the remaining variables provides an estimation of wD̂.
kD̂ can be estimated similarly.

Note however that T is not α-decreasing, i.e., it may happen that αD̂ > 0 for
a given node N(D̂), but not for some of its descendants. This property results
from the fact that, in these descendants the number of inner nodes may be far
higher than that in D̂, hence decreasing wD̂ (dropping constraints on the junction
tree’s elimination order) as well as wD̂ (the inner nodes do not belong to the
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boundary). The α-non-decreasing property does not allow for a clear pruning
rule. In the paper, we used the following rule: whenever a node in T had an
αD̂ > 0, we pruned the node and its descendants.

5 Experimental Results

We now describe different set of experiments that highlight the gain in inference
speed resulting from the combination of structured inference and pattern mining.
In each experiment, we compared our new algorithm (subsequently denoted as
PD for Pattern Discovery) with Structured Variable Elimination (SVE), the
standard inference algorithm for structured inference [24], and also with Variable
Elimination (VE), a classic and standard probabilistic inference algorithm for
Bayesian Networks [4]. Response times reported for PD take into account both
pattern mining and inference. For experiments using VE, results include both
grounding and inference time. It is important to note that our experiments
included no evidence. This choice was motivated by the fact that the structure
of the network varies drastically given evidence. Our goal here was to show
how pattern mining can improve inference when there exist repetitions in the
network. Moreover, evidence is not a good indicator of repetitions as it can either
be identically applied in each pattern, thus preserving repetition, or applied
randomly, thus breaking the structure. Experiences 1 and 2 show the results of
our new approach on networks with and without repetitions, hence providing
a good insight of PD’s performance. All our experiments were performed on
an Intel Xeon at 2.7 Ghz. The source code of our PRMs implementation, the
inference algorithm and the generation algorithms can be found in the aGrUM
project2.

The key to understand these experimentations lies in the generation of the
benchmarked PRMs. High level frameworks such as PRMs offer a wide variety of
generation methods. Here, our primary concern was the generation of PRMs in
which we could control the amount of structure repetition in order to prove that,
when confronted to a large amount of pattern repetitions, i) a substantial speed
gain can be achieved and ii) our approach does not suffer from a prohibitive
pattern mining cost. Our generator takes the following parameters as inputs:
domain is the domain size of each attribute; minattr is the number of attributes
common to all classes; maxattr is the number of attributes in each class; c is
the minimal number of classes; maxref is the maximal number of reference slots
allowed per class; n is the number of instances in the system.

The PRM’s generation process is performed as follows: first, we generate an
interface3 with minattr attributes which will be implemented by all classes
and will be the slot type of each reference slot in each class. Next, for all
k ∈ [0, . . . , maxref ], a class with precisely k reference slots is created. Then,
if maxref < c, we generate new classes until exactly c classes have been created.

2 http://agrum.lip6.fr
3 If a class implements a given interface, then it guarantees the existence of the at-

tributes and reference slots defined in that interface [25].



Patterns Discovery for Structured Inference 257

#instances

SVE
VE

 10

 0

 20

 30

 40

 50

 60

tim
e 

in
 s

.

 100  200  300  400  500  600  700  800  900  1000

PD

(a) First set of experiments

 100 0

SVE

#classes

VE

 500
 0

 5

 10

 15

 20

 25

 30

tim
e 

in
 s

.

 400 300 200

PD

(b) Second set of experiments

Fig. 4. Structural repetition is an important factor for PD’s performance. Unsurpris-
ingly, performance decrease dramatically for systems with no structural repetition.

For those new classes, the number of reference slots is chosen randomly between
0 and maxref . Finally, we generate a DAG S representing the relational skele-
ton of our generated system: each node represents an instance and an arc i→ j
represents the fact that there exists ρ ∈ R(j) such that i = j.ρ. For a given node
i with πi parents in S, we instantiate a class randomly chosen among all the
classes with precisely πi reference slots. A given class C is generated as follows:
we first create a DAG GC with maxattr nodes, we then add to C k reference
slots and maxattr attributes. Dependencies between attributes are defined using
GC . For each reference slot ρ, we create a slot chain ρ.A, where A ∈ A(I) is
chosen randomly among all the attributes in A(I). The slot chain is then added
as a parent of an attribute of C chosen randomly. DAGs are generated using the
algorithm provided in [11].

In our first set of experiments, we generated systems with an increasing num-
ber of instances. Each class contains 15 attributes (maxattr = 15), each at-
tribute’s domain size is equal to 4 (domain = 4) and each class has at most 4
incoming arcs (maxref = 4). Finally, the minimal amount of classes required was
set to c = 5, which implies that there are precisely maxref +1 = 5 classes in each
system. These experiments highlight the behavior of PD when many repetitions
can be found in the system. Fig. 4(a) shows the response times of PD, SVE and
VE when no evidence is observed and with a number of instances varying from
100 to 1000. Clearly, in this case, PD significantly outperforms both VE and
SVE.

An important factor is the ratio of PD’s inference time over that of SVE. The
gain of PD against SVE and that of SVE against VE are due to the presence
of structural repetition in the generated networks. It can be seen that SVE’s
complexity is less impacted by the size of the system than VE’s complexity. But
for small systems with small classes, SVE does not guarantee a considerable
speed gain. By exploiting pattern mining, PD significantly increases the gain
obtained by repetition. Thus, where SVE does not perform well compared to
VE, PD infers larger patterns that can drastically increase performance. In our
first experiments, there is enough structure to see the possible gain provided by
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Table 1. Third experiment: patterns mining efficiency for PD. Values are averages.
Inst. stands for instances, attr. for attributes and pat. for pattern.

#inst. #pat. pat. max pat. #inst. max inst. % of attr.

repetition repetition per pat. per pat. in a pat.

200 11.88 2.92 6.26 2.15 4.08 37.29%

400 24.68 3.40 10.46 2.25 4.71 47.20%

600 36.35 3.91 15.92 2.36 5.25 55.90%

800 46.51 4.50 20.25 2.45 5.62 64.09%

1000 54.19 5.25 30.07 2.62 6.12 75.54%

our new approach. Yet, we must also consider cases where there are few or even
no structural repetitions. The amount of pattern repetitions can be influenced
by the number of classes, so if we increase that number we should observe a less
favorable ratio between PD’s and SVE’s inference time against VE. This is the
purpose of our second set of experiments.

In our second set of experiments we generated systems with an increasing
number of classes (c ∈ [0, 500]) and 500 instances. The remaining parameters
are equal to those of the first experiment. The goal here is twofold: we want to
show that, when no structure is exploitable, there is no overhead in proceeding
with the pattern mining and that pattern repetitions is critical for PD’s perfor-
mance. Fig. 4(b) shows that when the number of classes increases dramatically,
the speed gain induced by PD and SVE are considerably less significant. If we
compare those results with those obtained by VE, we see that PD and SVE are
considerably counter-performing. To anyone familiar with structural inference,
this is an unsurprising result and these results can be explained by the fact that
the elimination order used by PD and SVE (inner attributes before outer at-
tributes) is in most cases suboptimal. If PD and SVE show better results than
VE in Fig. 4(a) it is only because the gain resulting from the reduction of redun-
dant computations compensate the suboptimal elimination order. Fortunately,
detecting repetition is trivial in an object-oriented framework as the amount of
instantiations of each class is a good indicator of structural repetition. The pres-
ence of evidence is also a good indicator, as different evidence will break down the
structure and thus reduce the amount of repetition in the network. We can eas-
ily switch to classic inference if needed by detecting situations which would lead
to counter-performing results: few instantiations of each classes, heavy evidence,
seemingly random evidence. Finally, we observe no over-cost due to pattern min-
ing. This is also an unsurprising result as our pruning rules take into account
frequencies and cut the mining process when such value is too low (here the
minimal frequency allowed was set to 2).

In our third experiment, we analyze the amount of patterns found by PD with
the parameters from experiment 1 (maxattr = 15, domain = 4, maxref = 4, c =
5, maxref + 1 = 5). The results of this experiment are summarized in Tab. 1.
A noticeable point is the low number of instances in each pattern. This is a
consequence of our pruning rule which was designed to be strict. It favors smaller
patterns because larger ones are in most cases less cost effective (they often
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induce a larger clique than an optimal elimination order would) and because
they are less frequent. In general, discovered patterns consisted of few small
patterns largely repeated and many different patterns less repeated. The latter
were used to fill-in the gaps in the structure once the main patterns were applied.
If we consider the last column of Tab. 1 we can see that the larger a system,
the more the attributes covered. The fact that the coverage increases with the
system size explains why the inference time of PD increases linearly with the
system size: the large number of usable patterns compensates the complexity
induced by the number of instances.

To conclude our experiments, we applied PD to a classic BN: the Pigs network.
This network is remarkable in that it only contains two distinct CPTs, which are
represented in our framework by two classes. The network in itself is too small
to point out any significant gain in inference time, however it is still interesting
to analyze the patterns found by PD. Our approach mined 14 different patterns.
On average, they are repeated 11 times and the maximal amount of repetitions
equals 45. Only patterns with 2 instances are found. Discovered patterns cover
up to 69% of the 441 attributes present in the Pigs network. As for our previous
results, our pruning rules favor smaller patterns since larger ones tend to be
less cost effective and less frequent. While the size of the Pigs network does not
enable to point out the efficiency of our approach in terms of inference time, the
existence of such structures and the results we obtained over random networks
can help conclude to the efficiency of our approach. We can also point out its
usefulness w.r.t. modeling: by pointing out frequent patterns in a system we can
infer new classes which can then be used by experts for modeling purposes.

6 Conclusion

In this paper, we showed that mining patterns can significantly alleviate inference
costs. Although finding the optimal set of patterns is NP-hard, we provided
an efficient approximate mining algorithm. Our experimental results confirm
that this approach can lead to a significant improvement of inference tasks in
PRM. But there is still room for improving inference in PRMs. For instance,
our approach, especially its pruning, can still be improved. In addition, many
refinements of the PRM framework like class inheritance, structural uncertainty
or multiple references, should be used to speed-up inference.
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Abstract. To specify a Bayes net, a conditional probability table, often of an
effect conditioned on its n causes, needs to be assessed for each node. Its com-
plexity is generally exponential in n and hence how to scale up is important to
knowledge engineering. The non-impeding noisy-AND (NIN-AND) tree causal
model reduces the complexity to linear while explicitly expressing both reinforc-
ing and undermining interactions among causes. The key challenge to acquisition
of such a model from an expert is the elicitation of the NIN-AND tree topology.
In this work, we propose and empirically evaluate two methods that indirectly
acquire the tree topology through a small subset of elicited multi-causal proba-
bilities. We demonstrate the effectiveness of the methods in both human-based
experiments and simulation-based studies.

1 Introduction

To specify a Bayes net (BN), a conditional probability table (CPT), needs to be assessed
for each non-root node. A BN is often constructed in the causal direction, where a CPT
is about an effect conditioned on its n causes. In general, specifying a CPT has the
complexity exponential in n. Noisy-OR [Pearl(1988)] and a number of extensions, e.g.,
[Heckerman and Breese(1996), Galan and Diez(2000), Lemmer and Gossink(2004)] re-
duce the complexity to linear, but are limited to the reinforcing causal interaction.

The NIN-AND tree [Xiang and Jia(2007)] causal model, as well as its special case
[Maaskant and Druzdzel(2008)], extends noisy-OR and explicitly encodes reinforcing
and undermining causal interactions, as well as their mixture. Its specification consists
of a linear (in n) number of probability parameters and a linear sized tree topology.
Its default independence assumptions may be flexibly relaxed to trade efficiency for
expressiveness. That is, by relaxing the assumptions incrementally and specifying more
parameters, any CPT can be encoded.

The key challenge to specifying a NIN-AND tree causal model is the acquisition of
the tree topology, which encodes types of causal interactions among causes. Elicitation
of the tree topology requires nontrivial training of a domain expert on the syntax and
semantics of NIN-AND tree causal models, and demands nontrivial mental exercise by
the expert to articulate the partial order of causal interactions among causes. Usability
of NIN-AND tree causal modeling will be enhanced if such training and mental exercise
can be avoided during model acquisition.

We accomplish this by proposing two model acquisition methods that bypass direct
elicitation of the NIN-AND tree topology. Instead, a small subset of causal probabilities
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in the order of O(n2) or O(n3) are elicited, from which a NIN-AND tree topology
is generated. From these probabilities and the tree topology, a NIN-AND tree causal
model is defined and the corresponding CPT can be constructed. We show that the
acquired CPT is a good approximation of the underlying true CPT.

The remainder of the paper is organized as follows: Background on NIN-AND tree
causal models is covered in Sect. 2. The task of NIN-AND tree acquisition and the
assumption underlying this work are presented in Sect. 3. In Sect. 4 and 5, we propose
two novel techniques for the task. Setup of human-based experiments for evaluation is
described in Sect. 6 and results are presented in Sect. 7. They are followed in Sect. 8 by
simulation-based studies. Sect. 9 draws the conclusion.

2 NIN-AND Tree Causal Models

An uncertain cause is a cause that can produce an effect but does not always do so. We
denote a binary effect variable by e ∈ {e+,e−}, where e+ denotes e = true, and a set of
binary cause variables of e by X = {c1, ...,cn}, where ci ∈ {c+

i ,c−i } (i = 1, ...,n).
A single-causal success is an event where ci caused e to occur successfully when

all other causes are absent. We denote the event by e+ ← c+
i and its probability by

P(e+← c+
i ). For instance, smoking causing lung cancer is denoted by lc+← smk+. A

single-causal failure, where e is false when ci is true and all other causes of e are false,
is denoted by e+ �← c+

i . A multi-causal success is an event where a set X = {c1, ...,cn}
(n > 1) of causes caused e, and is denoted by e+← c+

1 , ...,c+
n or e+← x+. Denote the

set of all causes of e by C.
CPT P(e|C) relates to probabilities of causal events as follows: If C = {c1,c2,c3},

then P(e+|c+
1 ,c−2 ,c+

3 ) = P(e+← c+
1 ,c+

3 ). C is assumed to include a leaky variable (if
any) to capture causes not represented explicitly, and hence P(e+|c−1 ,c−2 ,c−3 ) = 0.

Causes reinforce each other if collectively they are at least as effective as when some
are active. For example, radiotherapy and chemotherapy are reinforcing causes for cur-
ing cancer. If collectively causes are less effective, they undermine each other. Living
with mother and living with wife are undermining causes for the happiness of a man,
as often observed. If C = {c1,c2}, and c1 and c2 undermine each other, the following
hold: P(e+|c−1 ,c−2 ) = 0, P(e+|c+

1 ,c−2 ) > 0, P(e+|c−1 ,c+
2 ) > 0,

P(e+|c+
1 ,c+

2 ) < min(P(e+|c+
1 ,c−2 ),P(e+|c−1 ,c+

2 )).

The following Def.1 defines the two types of causal interactions generally.

Definition 1. Let R = {W1,W2, ...} be a partition of a set X of causes, R′ ⊂ R be any
proper subset of R, and Y = ∪Wi∈R′Wi. Sets of causes in R reinforce each other, iff

∀R′ P(e+← y+)≤ P(e+← x+).

Sets of causes in R undermine each other, iff ∀R′ P(e+← y+) > P(e+← x+).

Reinforcement and undermining occur between individual causes as well as sets of
them. When the interaction is between individual causes, each Wi is a singleton. Oth-
erwise, each Wi can be a generic set. For instance, consider X = {c1,c2,c3,c4}, W1 =
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{c1,c2}, W2 = {c3,c4}, R = {W1,W2}, where c1 and c2 reinforce each other, and so do
c3 and c4. But sets W1 and W2 can undermine each other.

Disjoint sets of causes W1, ...,Wm satisfy failure conjunction iff

(e+ �← w+
1 , ...,w+

m) = (e+ �← w+
1 )∧ ...∧ (e+ �← w+

m).

That is, when causes collectively fail to produce the effect, each must have failed to do
so. They also satisfy failure independence iff

P((e+ �← w+
1 )∧ ...∧ (e+ �← w+

m)) = P(e+ �← w+
1 ) ... P(e+ �← w+

m). (1)

Disjoint sets of causes W1, ...,Wm satisfy success conjunction iff

(e+← w+
1 , ...,w+

m) = (e+← w+
1 )∧ ...∧ (e+← w+

m).

That is, collective success requires individual effectiveness. They also satisfy success
independence iff

P((e+← w+
1 )∧ ...∧ (e+← w+

m)) = P(e+← w+
1 ) ... P(e+← w+

m). (2)

It has been shown [Xiang and Jia(2007)] that causes are undermining when they satisfy
success conjunction and independence. Hence, undermining can be modeled by a direct
NIN-AND gate (Fig. 1, left). Its root nodes (top) are single-causal successes, and its leaf
node (bottom) is the multi-causal success in question. Success conjunction is expressed
by AND gate, and success independence by disconnection of root nodes other than
through the gate. The probability of the leaf event can be computed by Eqn. (2). Sim-
ilarly, causes are reinforcing when they satisfy failure conjunction and independence.
Hence, reinforcement can be modeled by a dual NIN-AND gate (Fig. 1, middle). The
leaf event probability is obtained by Eqn. (1).

By organizing multiple direct and dual NIN-AND gates in a tree, both reinforce-
ment and undermining, as well as their mixture at multiple levels can be expressed
in a NIN-AND tree model. A simple example is given below and more can be found
in [Xiang and Jia(2007)]. Consider C = {c1,c2,c3}, where c1 and c3 undermine each
other, but collectively they reinforce c2. Assuming event conjunction and indepen-
dence, their causal interaction (a two-level mixture of reinforcement and undermin-
ing) relative to the event e+ ← c+

1 ,c+
2 ,c+

3 can be expressed by the NIN-AND tree in
Fig. 1 (right). The top gate is direct and the bottom gate (the leaf gate) is dual. The
link downward from node e+ ← c+

1 ,c+
3 has a white oval end (a negation link) and

+        ++        +

+        +           +e     c  ,...,c1           n

1 n...
e     ce     c +        ++        +

+        +           +e     c  ,...,c1           n

1 n...
e     ce     c

e     c+        +
2+        +     +

1     3    e     c , c 

e     c1
+        + e     c+        +

3

e     c , c , c1     2     3
+        +     +     +

Fig. 1. Direct (left), dual (middle) NIN-AND gates, and a NIN-AND tree (right)
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negates the event. All other links are forward links. Probability of the leaf event can
be computed by Eqn. (1) and (2). For instance, from single-causal probabilities for
root events, P(e+ ← c+

1 ) = 0.85, P(e+ ← c+
2 ) = 0.8, P(e+ ← c+

3 ) = 0.7, probability
P(e+ �← c+

1 ,c+
2 ,c+

3 ) is derived:

P(e+← c+
1 ,c+

3 ) = P(e+← c+
1 )P(e+← c+

3 ) = 0.595
P(e+ �← c+

1 ,c+
2 ,c+

3 ) = P(e+ �← c+
1 ,c+

3 )P(e+ �← c+
2 )

= (1−P(e+← c+
1 ,c+

3 ))(1−P(e+← c+
2 )) = 0.081

Furthermore, using a more sophisticated algorithm [Xiang(2010a)], the CPT in Table 1
can be obtained from the NIN-AND tree and these parameters.

Table 1. CPT of the example NIN-AND tree model

P(e+|c−1 ,c−2 ,c−3 ) 0 P(e+|c−1 ,c+
2 ,c−3 ) 0.8 P(e+|c+

1 ,c−2 ,c+
3 ) 0.595 P(e+|c+

1 ,c+
2 ,c−3 ) 0.97

P(e+|c+
1 ,c−2 ,c−3 ) 0.85 P(e+|c−1 ,c−2 ,c+

3 ) 0.7 P(e+|c−1 ,c+
2 ,c+

3 ) 0.94 P(e+|c+
1 ,c+

2 ,c+
3 ) 0.919

Variables in a NIN-AND tree model can generally be multi-valued [Xiang(2010b)].
Assumptions on event conjunction and independence can also be relaxed, in which
case some root events will be multi-causal. In this work, we focus on binary effect and
causes, and on models whose root events are single-causal.

3 Acquisition of NIN-AND Tree Models

As illustrated above, a NIN-AND tree model over e and C consists of its tree topology
as well as a single-causal probability for each ci ∈C. In general, a NIN-AND tree causal
model M is a tuple M = (e,C,T,PS), where e is the effect, C is the set of all causes of e,
T is a NIN-AND tree, and PS is the set of single causal probabilities one for each cause
in C. From M, a CPT P(e|C) can be uniquely constructed. M and P(e|C) are said to be
consistent.

Furthermore, NIN-AND tree causal models M = (e,C,T,PS) and M′= (e,C,T ′,PS′)
are said to be structurally consistent if T and T ′ are isomorphic. M and M′ are said to
be consistent if they are consistent with the same CPT.

To acquire M, its tree topology T may be elicited directly from the expert. To com-
plete such a task, the expert must have a thorough understanding of the syntax and se-
mantics of NIN-AND tree models, in order to assess and articulate the partial order of
causal interactions among causes and cause groups. This demands an nontrivial amount
of training of the domain expert before elicitation and nontrivial mental exercise of the
expert during elicitation.

To ease these burdens for model acquisition, we investigate the idea to bypass direct
tree elicitation. Instead, we elicit a small number of multi-causal probabilities (in ad-
dition to the single-causal probabilities PS), and generate T from elicited probabilities.
Our work is based on the following assumption:

Assumption 1. Let Pt(e|C) be the (true) CPT that characterizes the probabilistic rela-
tion over an effect e and its causes C, such that the following hold:
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1. There exists a NIN-AND tree causal model Mt = (e,C,T,PS) that is consistent with
Pt(e|C).

2. A domain expert is able to approximately assess all single-causal probabilities and
some multi-causal probabilities relative to Pt(e|C).

The first condition is justified by the observation that reinforcement and undermining
capture intuitive patterns of causal interaction, and reinforcement based causal mod-
els, such as Noisy-OR, have been widely applied. The second condition is justified by
knowledge engineering practice in building BNs. Note that the condition does not re-
quire the expert to assess all multi-causal probabilities, nor to assess them accurately.

In the following, we investigate two alternative techniques to generate tree topology
based on structure elimination (SE) and pairwise causal interaction (PCI).

4 Generate NIN-AND Tree by Structure Elimination

The SE technique builds on minimal NIN-AND tree models [Xiang et al(2009a)] and
their enumeration [Xiang et al(2009b)]. Models M = (e,C,T,PS) and M′= (e,C,T ′,PS)
may be consistent even though they are not structurally consistent. By limiting T and
T ′ within the space of minimal NIN-AND trees, model consistency implies structure
consistency in general. This means that a unique minimal tree exists for each pattern of
causal interactions among a set of causes.

Definition 2. Let T be a NIN-AND tree. If T contains a gate t that outputs to a gate g of
the same type (direct or dual), delete t and connect its inputs to g. Apply such deletion
until no longer possible. The resultant NIN-AND tree is minimal.

The uniqueness of minimal NIN-AND trees allows them to be enumerated explicitly,
e.g., using the two-step enumeration algorithm in [Xiang et al(2009b)]. For binary ef-
fect and causes, if |C|= 4, there are 52 minimal NIN-AND trees. For |C| = 5,6,7, the
number is 472, 5504, 78416, respectively.

We propose the SE technique as follows. Denote n = |C|. First, a set PSe of n single-
causal probabilities, e.g., Pe(e+|c+

i ), are elicited from the expert, where subscript e
denotes ‘elicited’. Then the set T M of minimal NIN-AND trees over C are enumerated.
Combining each T ∈ T M with PSe, a set NMe of NIN-AND tree models is obtained.
In general, a unique CPT over e and C can be constructed from each model in NMe. A
set CPTe of CPTs is thus defined. Note that there is a one-to-one mapping between TM
and NMe, and generally also between NMe and CPTe.

Subsequently, the expert is asked to assess some multi-causal probabilities. Let
Pe(e+|c+

i ,c+
j ,c+

k ) be elicited from an expert, and P′(e+|c+
i ,c+

j ,c+
k ) be from a CPT

P′(e|C)∈CPTe. If P′(e+|c+
i ,c+

j ,c+
k ) differs significantly from Pe(e+|c+

i ,c+
j ,c+

k ), P′(e|C)
is deemed to be inconsistent with the true CPT, and the NIN-AND tree model corre-
sponding to P′(e|C) is eliminated from the candidate set NMe. Based on such compar-
ison of CPTs in CPTe and elicited multi-causal probabilities, all models in NMe except
one, Me = (e,C,Te,PSe), will be eliminated. Me is returned as the indirectly elicited
model and Te is the indirectly elicited NIN-AND tree. Below, we investigate several
variations for elicitation and elimination procedures:
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[Threshold based sequential elimination] Since elicitation from an expert is sequen-
tial, it is natural to interleave model elimination with elicitation. Elicitation and elimina-
tion proceed in rounds. Each round starts with elicitation of a multi-causal probability,
followed by elimination of one or more inconsistent NIN-AND tree models. The pro-
cess continues until a single model in NMe remains in the last round.

The elimination operation requires a threshold s. Only when difference δ =
|Pe(e+|c+

i ,c+
j ,c+

k )− P′(e+|c+
i ,c+

j ,c+
k )| > s, P′(e|C) is deemed inconsistent with the

true CPT. However, choosing the adequate threshold value is difficult in practice for
the reason below.

By Assumption 1, the expert assessment of single-causal probabilities PSe is ap-
proximate. Hence, none of the models in NMe is consistent with the true model Mt .
Furthermore, by assumption, an elicited multi-causal probability may also differ from
the corresponding true probability. Hence, δ above contain elicitation errors. If s is set
too low, even if a model M ∈ NMe is structurally consistent with the true model Mt ,
it may still be eliminated because δ exceeds s. On the other hand, if s is set too high,
multiple models structurally inconsistent with the true model Mt may pass each round,
and no single model can be selected in the last round.

[Bounded sequential elimination] Elicitation and elimination proceed in K rounds,
where K is the number of multi-causal probabilities to be elicited, is predetermined,
and can be varied based on expert availability. In each round, after elicitation of a multi-
causal probability, its difference δ from each CPT in CPTe is calculated, a given number
of models in NMe with the minimum δ values are retained, and the other models are
eliminated. The number of models retained in each round decreases over consecutive
rounds, and it is one for the Kth round.

The threshold is no longer needed, and its drawback is avoided. Instead, a set of K
bounds is used, one for the number of retained models in each round. For example, if
K = 4, numbers of models retained in succeeding rounds can be 16, 8, 4, and 1.

One limitation is that the model returned may depend on the order in which the
K multi-causal probabilities are elicited. The NIN-AND tree model M ∈ NMe that is
structurally consistent with Mt (such M is unique whenever single-causal probabilities
by Pt(e|C) are distinct) may be eliminated in an earlier round. This occurs when the
probability elicited in the current round is not distinguishing, and too many models in
NMe have similar, small δ values: If the bound for the current round is m, the model M
may be eliminated because its δ value is slightly larger than that of the model ranked m.
Whereas if multi-causal probabilities were elicited in another order, M may be retained
in each round and returned in the end.

[Simultaneous elimination] Only one round of elicitation and elimination is con-
ducted. A set PMe of K multi-causal probabilities are first elicited. Its root-mean-square
(rms) distance from the corresponding set PM′ of multi-causal probabilities determined
by each CPT in CPTe is calculated:

d(PMe,PM′) =

√
1
K

K

∑
i=1

(Pe(e+|x+
i )−P′(e+|x+

i ))2 (3)

The model in NMe with the minimum distance will be returned.
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The method overcomes the limitation on threshold or elicitation order by the two
alternative procedures. It is thus used in the further investigation of the SE technique.
Although any multi-causal probabilities may be used with the SE technique, in the
remainder of the paper, we assume that they are triple-causal.

5 Generate NIN-AND Tree by Pairwise Causal Interaction

The PCI technique builds on the pairwise causal interaction function defined by a NIN-
AND tree [Xiang et al(2009a)].

Proposition 1. Let T be a minimal NIN-AND tree for effect e and its causes C. Then T
defines a function pci from pairs of distinct causes {ci,c j} ⊂C, where i �= j, to the set
{ri f ,udm}, where ri f stands for reinforcing and udm for undermining.

The pci function signifies explicitly the causal interaction between each pair of causes.
For instance, the NIN-AND tree in Fig. 1 (right) defines the function: pci(c1,c2) =
ri f , pci(c1,c3) = udm, pci(c2,c3) = ri f .

Let TM be the set of all minimal NIN-AND trees over n causes. Then each NIN-
AND tree T ∈ T M has a distinct pci function (exhaustively confirmed for n = 3, ...,10).
Hence, a NIN-AND tree can be identified from a given pci function.

Based on this idea, we propose the PCI technique for generating a NIN-AND tree
as follows: First, elicit a set PSe of single-causal probabilities from the expert, and enu-
merate the set T M, as done in the SE technique. From T M, a set PCIF of pci functions,
one for each NIN-AND tree T ∈ TM is defined. Then, a set PDe of all double-causal
probabilities (a total of n (n−1)/2 values) are elicited from the expert.

From PSe and PDe, a pci function pcie() can be determined according to Def. 1.
For example, suppose the CPT in Table 1 is the true CPT, elicited single-causal prob-
abilities include Pe(e+← c+

2 ) = 0.82, Pe(e+← c+
3 ) = 0.67, and elicited double-causal

probabilities include Pe(e+ ← c+
2 ,c+

3 ) = 0.91. From Pe(e+ ← c+
2 ,c+

3 ) > Pe(e+ ← c+
2 )

and Pe(e+← c+
2 ,c+

3 ) > Pe(e+← c+
3 ), the function value pci(c2,c3) = ri f can be deter-

mined.
Subsequently, the derived pcie() is compared against functions in PCIF . If pcie()

matches pci′() ∈ PCIF , then the NIN-AND tree T ′ ∈ T M that produces pci′() will be
returned.

The key operation of the PCI technique is the derivation of pcie() function from PSe

and PDe. Below, we consider how to carry out the operation in practice. For any pair of
causes ci and c j, pci(ci,c j) ∈ {ri f ,udm}. By Def. 1, pci(ci,c j) = ri f iff

P(e+← c+
i ,c+

j )≥max(P(e+← c+
i ),P(e+← c+

j )), (4)

and pci(ci,c j) = udm iff

P(e+← c+
i ,c+

j ) < min(P(e+← c+
i ),P(e+← c+

j )). (5)

Therefore, in theory, it suffices to compare P(e+← c+
i ,c+

j ) and P(e+← c+
i ), and use

the outcome to determine the value for pci(ci,c j).
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In practice, however, due to elicitation errors, it is possible that

Pe(e+← c+
i ) < Pe(e+← c+

i ,c+
j ) < Pe(e+← c+

j ).

For example, if Pt(e+← c+
i ) = 0.6, Pt(e+← c+

j ) = 0.9, and ci undermines c j, we have
Pt(e+← c+

i ,c+
j ) = 0.54. Elicited values, however, may be

Pe(e+← c+
i ) = 0.56 < Pe(e+← c+

i ,c+
j ) = 0.59 < Pe(e+← c+

j ) = 0.93

due to elicitation errors. Similarly, when ci reinforces c j, we have Pt(e+ ← c+
i ,c+

j ) =
1− (0.4 ∗ 0.1)= 0.96, while elicited values may be

Pe(e+← c+
i ) = 0.56 < Pe(e+← c+

i ,c+
j ) = 0.91 < Pe(e+← c+

j ) = 0.93.

When these happen, comparing Pe(e+← c+
i ,c+

j ) against one of Pe(e+← c+
i ) and Pe(e+←

c+
j ) has a 0.5 chance to assign pci function value incorrectly. Comparing against both

is not even feasible, because Eqn. (4) and (5) will both fail. To address this issue, we
develop the following algorithm:

1. If Eqn. (4) holds for elicited probabilities, assign pci(ci,c j) = ri f .
2. Else if Eqn. (5) holds for elicited probabilities, assign pci(ci,c j) = udm.
3. Else if

|P(e+← c+
i ,c+

j )−min(P(e+← c+
i ),P(e+← c+

j ))|

< |P(e+← c+
i ,c+

j )−max(P(e+← c+
i ),P(e+← c+

j ))|,
assign pci(ci,c j) = udm.

4. Else assign pci(ci,c j) = ri f .

The algorithm handles normal cases (1 and 2) according to Eqn. (4) and (5). When elici-
tation errors fail these equations (cases 3 and 4), the pci function value is determined by
assuming small errors. For the first example above, pci(ci,c j) = udm will be assigned
correctly due to case 3. For the second example, pci(ci,c j) = ri f will be assigned due
to case 4.

It is possible that a derived function pcie() �∈ PCIF . That is, there exists no NIN-
AND tree model that would produce the function pcie(). The pcie() is said to be invalid.
When this occurs, we apply a method in [Xiang(2010a)]: A valid pci function pci∗e() in
PCIF which differs from pcie() the least will be selected, and its corresponding NIN-
AND tree model will be returned as the indirectly elicited model.

6 Experimental Setup

To evaluate the effectiveness of SE and PCI techniques, human-based experiments are
conducted, using an approach that extends that in [Zagorecki and Druzdzel(2004)]. A
true causal model is simulated, from which a human is trained into an expert. A sub-
set of causal probabilities are then elicited from the expert, from which a NIN-AND
tree model is generated using the SE or PCI technique. The rms distance between the
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discovered model and the true model (similar to Eqn. (3)) is then measured to evalu-
ate the effectiveness of these techniques. The experiment is organized into three stages
elaborated below.

The first is expert training, during which each human participant is trained into an
expert. A simulated NIN-AND tree model Mt = (e,C,T,PS) is used as the true model,
from which the true CPT Pt(e|C) is constructed. Given the presence of a subset X ⊆C
of active causes, an example (e,x+), where e ∈ {e+,e−}, is generated by stochastic
simulation from causal probability Pt(e+ ← x+). After seeing a sufficient number of
examples for a sufficient number of distinctive x+ (detailed below), the participant is
deemed to be an expert on model Mt .

To ensure that a participant’s knowledge on Mt is obtained entirely from the training,
and is not biased by outside experience, we presented Mt to be about phenomena from
an imaginary planet. A software Environment Simulator (ES) is implemented accord-
ingly to allow a participant to specify active causes x+ and observe simulated effects e.
Note that this setup ensures condition 1 of Assumption 1.

The second stage is elicitation, during which a subset of causal probabilities Pe(e+←
x+) are elicited from the expert. As stated in Assumption 1, generally, Pe(e+← x+) �=
Pt(e+← x+). Their difference has so far been referred to as elicitation error, but in fact
is the combination of two sources of errors.

1. Sampling error: Assuming Pe(e+ ← x+) is based on observed relative frequency
F(e+← x+) = N(e+← x+)/N(x+), where N(e+← x+) is the number of observa-
tions of example (e+,x+) and N(x+) is the number of observations of x+, we have
F(e+← x+) �= Pt(e+← x+) because N(x+) is finite.

2. Retention-Articulation (RA) error: The participant may not be able to retain and
articulate either N(e+← x+) and N(x+), or F(e+← x+) accurately
[Kahneman et al(1982)].

To ensure condition 2 of Assumption 1, both the sampling error and RA error need
to be controlled. To control sampling error, we setup ES to enforce the requirement
N(x+) ≥ 100 for each Pe(e+← x+) to be elicited. That is, the participant must have a
sufficient number of observations of x+ during training.

To control RA error, for each distinct x+, the frequency pair F(e+← x+) and F(e−←
x+) observed during the training stage is shown in a stacked bar graph (Fig. 2). The
bar graph helps to reduce the RA error by providing a visual hint for the observed
F(e+← x+). Yet, it does not eliminate RA error as it is visual, while Pe(e+ ← x+) is
elicited numerically.

The final stage is discovery, during which the set of Pe(e+|x+) elicited is used to
generate a NIN-AND tree model Me.

Participants are recruited from university students (second year or above). Each par-
ticipant is trained with a distinct true model Mt = (e,C,T,PS). All models used have
|C|= 4, but they differ in both T and PS.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 2. A stacked bar graph where F(e+← x+) = 0.72
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Our objective is to evaluate the effectiveness of SE and PCI techniques. To facilitate
the evaluation, we compare them against direct elicitation of each causal probability
(all 15 parameters in Pt(e|C)). We refer to it as the direct numerical (DN) technique.
For SE, we elicit 8 parameters (4 single-causal and 4 triple-causal). For PCI, we elicit
10 parameters (4 single-causal and 6 double-causal).

7 Experimental Results

Each data set consists of a number of causal probabilities elicited from one participant.
A data set for evaluation of DN, SE, or PCI technique contains 15, 8 or 10 elicited prob-
abilities, respectively, and the number of data sets collected are 23, 29, 29, respectively.

From the true CPT used to simulate training examples for a participant and prob-
abilities elicited from the participant, the elicitation error (Section 6) of the partici-
pant is measured by the rms distance between the true CPT and elicited probabilities.
The mean and standard deviation of elicitation errors over all participants are shown in
Table 2 (column 4). Th elicitation error consists of sampling and RA errors (Section 6).
From ES log of examples generated for training a participant and the true CPT used
in example generation, the sampling error of training examples is measured by the rms
distance between example frequencies and the true CPT. From the log of examples gen-
erated for training a participant and elicited probabilities, RA error of the participant is
measured by rms distance between example frequencies and elicited probabilities. The
means and standard deviations of sampling and RA errors over all participants are also
shown in the table (columns 2 and 3). It can been seen that our elicitation aid by stacked
bar graphs has effective control of the RA error. Hence, the elicitation error is composed
mainly of the sampling error.

The DN technique directly elicits a CPT from the expert, which we refer to as the
CPT elicited with the DN technique. On the other hand, for each data set collected for
SE evaluation, the SE technique is applied to generate a NIN-AND tree model, from
which a CPT is constructed. We refer to it as the CPT elicited with the SE technique.
The CPT elicited with the PCI technique is similarly defined.

For each data set, the CPT elicited by the corresponding technique is compared
against the true CPT used to drive expert training, and the rms distance between the
two CPTs is calculated. For each of DN, SE, and PCI technique, the mean and standard
deviation over the corresponding data sets are summarized in Table 3.

Results from all three techniques are comparable. Note that PCI technique depends
on single and double-causal probabilities (10), SE technique depends on single and
triple-causal probabilities (8), while DN technique depends on all causal probabilities
(15). Hence, the results demonstrate that both SE and PCI techniques improve efficiency
in CPT acquisition while maintaining comparable accuracy.

Table 2. Mean (μ) and standard deviation (σ ) of errors over all participants

Sampling Errors RA Errors Elicitation Errors
μ 0.0293 0.0076 0.0301
σ 0.0096 0.0038 0.0099
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Table 3. Mean (μ) and standard deviation (σ ) of model distance by DN, SE and PCI techniques

DN SE PCI
μ 0.0301 0.0356 0.0281
σ 0.0099 0.0343 0.0146

8 Simulation Study

Due to resource involved in human-based experiments, large numbers of participants
and multiple setups are not feasible. To compensate this limitation, we enhanced human
experiments with simulation-based studies.

For the DN technique, we simulated a true model Mt = (e,C,Tt ,PSt) and constructed
the true CPT Pt(e|C) from Mt . For each subset X ⊆ C of active causes, K examples
(e,x+) are stochastically generated from Pt(e+|x+). The elicited probability Pe(e+|x+)
is simulated as the ratio between the number of examples (e+,x+) and K. This is jus-
tified by two observations. First, the elicitation errors in human experiments are made
up mainly by sampling errors (Table 2). Second, as we decrease K, the elicitation error
|Pe(e+|x+)−Pt(e+|x+)| will increase. Hence, simulated elicitation errors can be well
controlled through K.

After the elicited CPT Pe(e|C) is thus simulated, we calculate the rms distance be-
tween Pe(e|C) and Pt(e|C). We repeat the above for W true models, and the effectiveness
of the DN technique is evaluated by the mean distance from the W trials.

For the PCI technique, the true model Mt = (e,C,Tt ,PSt) and true CPT Pt(e|C) are
simulated as above. A set PSe = {Pe(e|c+

i )} of single-causal elicited probabilities and
a set PDe = {Pe(e|c+

i ,c+
j )} of double-causal elicited probabilities are simulated from

Pt(e|C). Applying the PCI technique to PSe and PDe, an indirectly elicited model Me =
(e,C,Te,PSe) is generated.

From Me, the elicited CPT Pe(e|C) is constructed and the rms distance between
Pe(e|C) and Pt(e|C) calculated. The effectiveness of the PCI technique is evaluated by
repeating the above for W true models, and obtaining the mean distance.

For the SE technique, a set PSe of single-causal elicited probabilities and a set PTe =
{Pe(e|c+

i ,c+
j ,c+

k )} of triple-causal elicited probabilities are simulated from Pt(e|C). The
set of all NIN-AND tree models NMe = {(e,C,T,PSe)} are obtained by enumeration.
Note that each model M ∈ NMe has a distinct NIN-AND tree topology T , but has the
same PSe. An indirectly elicited NIN-AND tree model Me is then selected from NMe if
its corresponding CPT has the minimum distance from PTe.

From Me, CPT Pe(e|C) is constructed and the rms distance between Pe(e|C) and
Pt(e|C) is calculated. The SE technique is evaluated by the mean distance from simula-
tion over W true models.

In simulation studies for the three techniques, we used K = 100 and W = 1000.
K = 100 is chosen so that magnitudes of simulated elicitation errors are similar to those
observed in the human-based study. W = 1000 is used as higher W values do not show
significant difference in outcomes. For each technique, simulations are run for each of
n = |C|= 4,5,6,7. Table 4 shows the number of causal probabilities simulated for each
technique and each n value.
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Table 4. Number of simulated causal probabilities used by DN, SE and PCI studies

n # CPT probs # probs for DN # probs for SE # probs for PCI
4 16 15 8 10
5 32 31 15 15
6 64 63 26 21
7 128 127 42 28

The second column shows the number of independent probability parameters in
P(e|C), which is 2n. The third column shows the number of elicited probabilities simu-
lated by DN evaluation, which is 2n−1, because NIN-AND tree models satisfy P(e+|c−)
= 0. The fourth column shows the count for SE evaluation, which is n +C(n,3). The
last column shows the count for PCI evaluation, which is n +C(n,2).

Results from simulation-based studies are summarized in Table 8. Means and stan-
dard deviations of model distances for the three techniques are shown in columns 2, 3,
4, 5, 7, 8. Columns 6 and 9 show percentages of models indirectly elicited by SE and
PCI that recover true tree topology Tt . The last column shows percentages of indirectly
elicited pci functions that are invalid.

Table 5. Model distance by DN, SE and PCI techniques from simulation study

n DN (μ) DN (σ ) SE (μ) SE (σ ) Rcv (%) PCI (μ) PCI (σ ) Rcv (%) Ivad (%)
4 0.0363 0.0099 0.0470 0.0485 79.6 0.0352 0.0340 98.5 0.9
5 0.0368 0.0086 0.0352 0.0268 86.5 0.0369 0.0397 98.1 0.5
6 0.0364 0.0076 0.0317 0.0215 88.2 0.0338 0.0237 95.7 2.2
7 0.0356 0.0076 0.0311 0.0183 85.8 0.0344 0.0284 94.2 3.6

The mean distances for DN indicate the magnitudes of simulated elicitation errors
in the studies of all three techniques, since the same K = 100 value is used. Note that
the magnitudes are slightly higher than that observed in human-based experiments (Ta-
ble 2).

Comparing columns 6 and 9, PCI technique performs better than SE in recovering
true NIN-AND tree topology. On the other hand, although SE technique is less accu-
rate in tree recovery, the mean model distance and standard deviation for n = 5,6,7 are
slightly smaller than PCI. This observation shows that given the existence of elicitation
errors, multiple NIN-AND tree models may generate similar CPTs, and the SE tech-
nique is robust under such condition. We attribute the reverse performance difference
when n = 4, i.e., SE(μ) > PCI(μ), to the number of elicited probabilities used (8 for
SE and 10 for PCI).

Overall, SE and PCI techniques achieved the comparable model distance in compar-
ison with DN technique, while requiring a much less number of elicited probabilities.
In general, the number of probabilities to be elicited by the DN technique is O(2n).
The number is O(n3) for SE and O(n2) for PCI. The performance of PCI technique
makes it particularly attractive: It achieves about the same elicitation accuracy while
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requiring the smallest number of elicitations. For instance, when n = 7, DN requires
127, SE requires 42, while PCI requires only 28.

Finally, column 10 shows that although elicitation errors sometimes cause failure in
constructing the pci function, our fault-tolerance method recovers from the failure well.
Not only a valid NIN-AND tree model is returned under the failure condition, but the
model is sufficiently close to the true model (shown by columns 7 and 8).

9 Conclusion

NIN-AND tree causal models provide an efficient tool for CPT acquisition in construc-
tion of Bayes nets. Direct elicitation of such a model involves elicitation of a number
(linear in n) of single-causal probabilities, and a NIN-AND tree (of a size linear in n).
The tree elicitation step requires nontrivial training of an expert on the syntax and se-
mantics of these models, as well nontrivial mental exercise by the expert to identify
correctly the partial order of interactions among causes.

In this work, we investigate the novel idea to substitute direct elicitation of a NIN-
AND tree with elicitation of some multi-causal probabilities. The NIN-AND tree is
then automatically generated based on elicited probabilities. We propose two alter-
native techniques that implement this idea with low-order multi-causal probabilities.
Our human-based and simulation-based studies demonstrated the feasibility of the idea.
These techniques eliminate above-mentioned expert training and demanding mental ex-
ercise, while remaining efficient. Numbers of probabilities to be elicited are O(n3) and
O(n2) for (triple-causal based) SE and PCI, respectively.

The main assumption these techniques depend on is the expert’s ability to approx-
imately assess required causal probabilities. Elicitation error can be decomposed into
sampling error and RA error. The RA error may be reduced through training and/or
technical aids, although detailed investigation is beyond the scope of this work. Sam-
pling error may be controlled by the number of examples observed for each causal
combination (i.e., x+). Our experiments have shown that 100 examples per causal com-
bination is sufficient for our techniques to work well.

Acknowledgements. Financial support from NSERC, Canada to the first author is
acknowledged.
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Abstract. This article studies a specific kind of change in an argumentation sys-
tem: the removal of an argument and its interactions. We illustrate this operation
in a legal context and we establish the conditions to obtain some desirable prop-
erties when removing an argument.
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1 Introduction

Argumentation is a very active research area, in particular for its applications concern-
ing reasoning ([10,2]) or negotiation between agents ([4]). It allows to model the ex-
change of arguments between several agents (dialog), but also allows a single agent to
manage incomplete and potentially contradictory information. Hence, argumentation is
a way to handle uncertainty about the outcome of a dialog or the conclusion of a rea-
soning process. The arguments thus emitted are in interaction, generally by means of
an attack relation representing the conflicts between arguments (for example, when the
conclusion of an argument contradicts an assumption of another one).

Argumentation theory proposes several methods for drawing a conclusion about a
set of interacting arguments. One of these methods is the study of “extensions”, sets
of arguments that are said acceptable (i.e. a set able to defend itself collectively while
avoiding internal conflicts). Another method is the study of the individual status of each
argument determined by its membership to one or all extensions. Formal frameworks
were proposed for representing argumentation systems, in particular [10] which allows
to handle the arguments like purely abstract entities connected by binary relations.

Although dynamics of argumentation systems has been recently explored by several
works ([6,7,5,11]), the removal of an argument has scarcely been mentioned. However,
there exist practical applications. First of all, a speaker can need to occult some ar-
gument, in particular when he does not want, or is not able, to present this argument
in front of a given audience1; it is then necessary to know what would be the output
of the speaker’s argumentation system without this argument: that can be achieved by a
removal in his initial system. In addition, this same audience can force the speaker to re-
move an argument, in particular when this last is regarded as illegal in the context. Note

1 Social norms, or the will to avoid providing information to an adversary, etc.
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that, when the argument is uttered, it is not discarded by default because the audience
may not know that this argument is illegal; however, it could be removed later, when
proved to be illicit. Moreover, the removal turns out to be useful in order to evaluate a
posteriori the impact of a precise argument on the output of the system. In particular
for evaluating the quality of a dialog, it is important to be able to differentiate the un-
necessarily uttered arguments from the decisive ones (see [3]: an argument is decisive
if its removal makes it possible to change the conclusion of the dialog). Lastly, it can
be interesting to know how to guarantee that one or more arguments are accepted by
removing a minimal set of arguments. Note that the removal of an argumentX cannot
always be reduced to the addition of a new argument Y attacking X , in particular be-
cause it may happen that an attacked argument remains acceptable. Furthermore, it is
more economic to remove an argument rather than to add one, which might progres-
sively overload the system. We thus propose to study theoretically the impact that the
removal of one argument may produce on the initial set of extensions of an argumenta-
tion system.

The article is organized as follows. An example illustrating the interests of removing
an argument is presented in Section 2. Section 3 gives a brief state of the art about
argumentation. Section 4 exposes some properties of the extensions and of the status of
some arguments when a particular argument is removed. Lastly, Section 5 establishes
the links with related works and concludes this article.

2 Illustrative Example

We describe a four players game example inspired from the one given by Brewka in
[8]. This game involves two speakers (the prosecutor and the lawyer) and two listeners
(the judge and the jury). Although the discussion concerns only the two speakers, we
choose to also model the audience in order to be able to study the dialog from the point
of view of a neutral external observer. The presence of a judge makes it possible to
illustrate a case of permanent removal: the objection. Let us note that this example can
be expanded easily with more than two speakers.

2.1 Presentation of the Game

This game takes place during an oral hearing, gathering four entities which play quite
distinct roles and which interact in order to determine whether an argument is accept-
able or not.

– the prosecutor (P) wants to make accept a particular argumentQ which is the sub-
ject of the hearing by the court. He has his own argumentation system in which
he can occult arguments threateningQ, i.e., withdraw temporarily some arguments
which could prevent Q from being accepted. He can also occult some other argu-
ments not threatening Q, but considered, for example, irrelevant or dangerous in
front of a particular jury (according to his strategy of argumentation).
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– the defense lawyer (D) possesses also its own argumentation system2, he behaves
like the prosecutor, but he tries to make the argumentQ defeated.

– the judge ensures that the argumentation process takes place under good conditions.
He gets involved when one participant makes an objection; he can then accept this
objection (thus force the corresponding argument to be deleted), or reject it.

– the jury3 has the last word. Its role is to listen to the prosecutor’s and lawyer’s ar-
guments and to draw from them a conclusion concerning the acceptability of the
argument Q. The jury begins the game with an argumentation system containing
only the argumentQ and supplement it with the arguments presented successively
by the prosecutor and the lawyer (if these arguments are not cancelled by objec-
tions). When the hearing is closed (i.e. when neither the prosecutor nor the lawyer
can give new arguments), the jury can determine whether Q is acceptable or not.

In our example, the subject of the argumentation is the guilt of the defendant concerning
the murder of his wife. Table 1 summarizes the set of existing arguments concerning
this example and their distribution between the prosecutor and the defense lawyer.

Table 1. Arguments concerning the case of Mr. X

Argument Known by

1 Mr.X is guilty of premeditated murder of Mrs. X, his wife. P & D

2
The defendant has an alibi, his business associate having solemnly
sworn that he had seen him at the time of the murder.

D

3
The close working business relationships between Mr X. and his
associate induce suspicions about his testimony.

P

4
Mr.X loves his wife so extremely that he asked her to marry him twice.
Now, a man who loves his wife could not be her murderer.

P & D

5 Mr.X has a reputation for being promiscuous. P

6
The defendant would not have had any interest to kill his wife, since he
was not the beneficiary of the enormous life insurance she had
contracted.

P

7
The defendant is a man known to be venal and his “love” for a very
rich woman could be only lure of profit.

D

2.2 Arguments of the Prosecutor

Let us examine the arguments of the prosecutor. He knows only two arguments attacking
his thesis (Argument 1): Arguments 6 and 4. The prosecutor is not over worried about

2 In order to have a genuine confrontation, it is necessary that the prosecutor and the lawyer
share some arguments. However, these arguments are dealt differently by the two speakers:
often considered as positive for one and negative for the other one.

3 Although being a group of persons, the jury is considered to be only one decision-making
entity.
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4 because 5 enables him to defend his thesis against it. The prosecutor knows, on the
other hand, no argument which can defeat 6. Not being able to find what could beat this
argument, and hoping that the lawyer is not informed about it, the prosecutor decides to
occult it in order to ensure the acceptability of his thesis in his argumentation system.

2.3 Arguments of the Defense

Now let us examine the arguments of the defense lawyer who aims at preventing the ac-
ceptability of Argument 1. The lawyer has two arguments attacking directly 1, namely,
4 and 2. While 2 is not attacked (as far as he knows), it is not the same for 4 which is
attacked by 7; unable to find something to oppose to 7, the lawyer thus prefers to occult
7 (in order to be sure that 1 will be rejected), hoping that the prosecutor will not utter it.

2.4 The Oral Hearing in Front of the Court

Now that we know the arguments of the two speakers, we can consider the exchanges
between them during the hearing (see Table 2).

Table 2. Successive turns of the hearing

Turn Player Action

0 Prosecutor 1
1 Defender 2
2 Prosecutor 3
3 Defender 4
4 Prosecutor 5
5 Defender Objection
6 Judge Sustained
7 Prosecutor Close
8 Defender Close
9 Jury Deliberation

Turn 0 establishes the subject of the dialog; it is a mandatory stage fixing the argu-
ment that the prosecutor and the lawyer will try to make, respectively, accept or reject.

Turns 1 to 4 are “normal” exchanges of arguments between the speakers, these ar-
guments are used by the jury to build its argumentation system.

Turn 5 introduces the objection process, i.e., opposition by the adverse party to an
argument considered as illegal4. Here, the defense lawyer utters an objection against
Argument 5 because it is based on hearsay.

The validity of the objection is examined at Turn 6: the judge has to decide if the
argument presented in Turn 4 is illegal (by referring to the protocol in force in this
context). The judge has chosen to sustain the objection requested by the lawyer, which
introduces the mechanism of removal. Indeed, an objection indicates that the targeted

4 Arguments illegality criteria are defined by the protocol governing the hearing and may evolve
according to the context; nevertheless arguments that are fallacious, irrelevant or obtained by
hearsay, are assumed to be illegal.
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argument should not be taken into account anymore nor registered in the official re-
port. Note that adding a new argument is not equivalent to the removal of an argument
since addition increases the number of arguments, hence the complexity of the system.
Moreover, adding an argument that attacks the illegal argument does not guarantee the
rejection of the latter, especially through mechanisms, such as defense, that can lead the
illegal argument to remain accepted. Removing the illegal argument thus ensures im-
possibility of taking this argument into account anymore. Still during Turn 6, the jury
proceeds to the removal of the objected argument from his argumentation system, and
both speakers are occulting this argument definitely.

Turns 7 to 9 are closing the hearing: none of the two speakers has any new argument
to present, which they successively indicate by the action “Close”. The deliberation
of the jury follows, in order to determine if the subject of the hearing (Argument 1) is
accepted or not.

The result of this deliberation will be given in the following section after some re-
minders about argumentation theory and a formalization of the example.

3 Formal Framework

The work presented in this article uses the formal framework proposed by [10].

Definition 1 (Argumentation System). An argumentation system is a pair 〈A,R〉,
where A is a finite nonempty set of arguments and R is a binary relation on A, called at-
tack relation. Let A,B ∈ A, ARB means thatA attacksB. 〈A,R〉 will be represented
by a graph whose vertices are the arguments and whose arcs correspond to R.

The acceptable set of arguments (“extensions”) are determined according to a given
semantics whose definition is usually based on the following concepts:

Definition 2 (Conflict-free set, defense and admissibility). Let A ∈ A and S ⊆ A,
– S is conflict-free iff there does not exist A,B ∈ S such that ARB.
– S defends an argumentA iff each attacker ofA is attacked by an argument of S. The

set of the arguments defended by S is denoted F(S); F is called the characteristic
function of 〈A,R〉.

– S is an admissible set iff it is conflict-free and it defends all its elements.

In this article, we restrict our study to the most traditional semantics proposed by [10]:

Definition 3 (Acceptability semantics). Let E ⊆ A,
– E is a preferred extension iff E is a maximal admissible set (with respect to set

inclusion ⊆).
– E is the only grounded extension iff E is the least fixed point (with respect to ⊆) of

the characteristic function F .
– E is a stable extension iff E is conflict-free and attacks any argument not belonging

to E .

The status of an argument is determined by its presence in the extensions of the se-
lected semantics. For example, an argument can be “accepted sceptically” (resp. “cred-
ulously”) if it belongs to all the extensions (resp. at least to one extension) and be
“rejected” if it does not belong to any extension.
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We now recall the definition given by [9] for the removal of an argument and its
interactions:

Definition 4 (Removing an argument). Let 〈A,R〉 be an argumentation system. Re-
moving an argument Z ∈ A interacting with other arguments is a change operation,
denoted�aI , providing a new argumentation system such that:

〈A,R〉 �aI Z = 〈A \ {Z},R \ Iz〉
where Iz = {(Z,X) | (Z,X) ∈ R}∪{(X,Z) | (X,Z) ∈ R} is the set of interactions
concerning Z5.

The set of extensions of 〈A,R〉 is denoted by E (with E1, . . . , En standing for the
extensions). A change creates a new argumentation system 〈A′,R′〉 represented by a
graph G′, whose set of extensions is denoted by E′ (with E ′1, . . . , E ′m standing for the
extensions). It is assumed that the change does not concern semantics, i.e., the semantics
remains the same after the change.

Note that if an argumentation system 〈A′,R′〉 is obtained by removing an argument
Z in the argumentation system 〈A,R〉, then 〈A,R〉 can be obtained by adding Z to
〈A′,R′〉. The study of the duality of addition with respect to removal is left for fu-
ture work, along with another kind of duality, evoked below, concerning the change
properties.

A change operation has an impact on the structure of the set of extensions and thus
on the status of particular arguments. The reader may refer to [9] for a presentation of
these properties and for their detailed analysis in the case of the addition of an argument.
Among all these properties, one may find for example the expansive change that occurs
when the number of extensions remains the same, whereas each extension of G′ includes
strictly an extension of G, and any extension of G is strictly included in an extension of
G′6.

Definition 5 (Expansive change). The change from G to G′ is expansive7 iff⎧
⎨

⎩

(1) E �= ∅, |E| = |E′|,
(2) ∀E ′j ∈ E′, ∃Ei ∈ E, Ei ⊂ E ′j and
(3) ∀Ei ∈ E, ∃E ′j ∈ E′, Ei ⊂ E ′j

Example 1

Under preferred semantics, the change �aIZ with
Iz = {(Z,C), (D,Z)} is expansive because E =
{{A}} and E′ = {{A,C}}.

A B C

D Z

5 In the symbol �aI , the a stands for “argument” and I for “interactions”, meaning that the
removal concerns an argument and its interactions.

6 The notation ⊂ stands for strict set-inclusion.
7 We give here a more restrictive definition than the one given by [9] (the third condition has

been added). Strict inclusion is used in order to avoid overlap with other properties.
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In the following, we introduce a property which could be considered as dual of the pre-
vious one. Indeed, a narrowing change occurs when the number of extensions remains
the same while any extension of G′ is strictly included in an extension of G and any
extension of G includes strictly an extension of G′.
Definition 6 (Narrowing change). The change from G to G′ is narrowing iff⎧
⎨

⎩

(1) E �= ∅, |E| = |E′|,
(2) ∀E ′j ∈ E′, ∃Ei ∈ E, E ′j ⊂ Ei and
(3) ∀Ei ∈ E, ∃E ′j ∈ E′, E ′j ⊂ Ei

Example 2

The change �aIZ with Iz = {(B,Z)} is narrow-
ing under the preferred and stable semantics because
E = {{A,C,Z}, {A,D,Z}} and E′ = {{A,C},
{A,D}}, and also under the grounded semantics be-
cause E = {{A,Z}} and E′ = {{A}}.

A B C

Z D

Back to the Example

The previous definitions enable us to deal with our example. Indeed, the argumentation
systems of the prosecutor and lawyer at the beginning of the hearing are represented by
Turn 0 of Table 3 and, for each semantics recalled in Definition 3, the prosecutor’s (resp.
lawyer’s) system admits only one extension E = {1, 3, 5} (resp. E = {2, 4}). Note that
it could be the case that each agent uses her own semantics since her reasoning (and
thus her argumentation system and semantics) is personal. Nevertheless, in the current
example, we consider that all agents use the same semantics because it seems natural to
assume that the prosecutor and the lawyer know which semantics the jury is using and
so they use the same one.

Let us note that at the beginning of the hearing, some existing attacks between ar-
guments may not belong to any of the two speakers’ argumentation systems; here, for
example, the attack from 3 to 2, observable at Turn 1 of Table 3, was not present for
the prosecutor nor for the lawyer at Turn 0. Nevertheless, at each turn, the latter up-
date their argumentation systems when they encounter a new argument that they did not
know (the jury is supposed to ignore every argument at the beginning but after that, it
proceeds in the same way). Table 3 shows the evolution of the various argumentation
systems throughout the hearing.

At the deliberation time, the jury must decide upon the case of the hearing, namely
Argument 1. For that, the jury should determine its status (accepted or rejected) by com-
puting the extension(s) of its argumentation system with respect to a selected semantics.
Whatever the semantics adopted by the jury among those recalled in Definition 3, its ar-
gumentation system has only one single extension E = {3, 4}. Thus the jury can found
the defendant “not guilty” since 1 do not belong to this extension.

Let us note that the removal of 5, to which the objection is related, has an influence on
the acceptability of 1. Indeed, if the objection had been rejected, 5 could have defended
1 and ensured its presence in the extension, making it possible to convict the defendant.
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Table 3. Argumentation systems throughout the hearing (a diamond is surrounding the current
turn argument)

Turn Prosecutor Lawyer Jury

0 (P)
3 5

6 1 4

2

1 4 7
1

1 (D)
2 3 5

6 1 4

2

1 4 7

2

1

2 (P)
2 3 5

6 1 4

2 3

1 4 7

2 3

1

3 (D)
2 3 5

6 1 4

2 3

1 4 7

2 3

1 4

4− 5

(P;D)

2 3 5

6 1 4

2 3 5

1 4 7

2 3 5

1 4

6− 9

(J;P;D)

2 3 5

6 1 4

2 3 5

1 4 7

2 3

1 4

Moreover, let us notice that the lawyer was quite right to occult 7 because by doing so
he has saved his client.

4 First Steps towards a Decision of Removal

In this section, we study some properties characterizing the operation of removal. This
kind of work may help a user to decide with full knowledge, in which situation and
how to make a removal according to its strategic objectives. Note that the properties
presented here are the first results of our study of the removal operation and will have
to be deepened.
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4.1 Some Properties Concerning “Monotony”

In the framework of change in argumentation, “monotony” is related to the conserva-
tion of the extensions. More precisely, [9] defines it as follows: a change from G to G′
satisfies monotony iff any extension of G is included into at least one extension of G′.
The following property gives the conditions under which a set of arguments that was
jointly accepted remains so after the change.

Proposition 1 (Sufficient conditions for monotony/non-monotony). When removing
an argument Z (according to Definition 4) under the preferred, stable or grounded
semantics,

– if ∃Ei ∈ E such that Z ∈ Ei then ∃Ej ∈ E such that ∀E ′ ∈ E′ Ej �⊂ E ′;
– if �Ei ∈ E such that Z ∈ Ei then ∀Ej ∈ E ∃E ′ ∈ E′ such that Ej ⊆ E ′.

Since before the change, the removed argument may belong to an extension, it can be
interesting to also consider the conditions for a “weak monotony” (i.e., conservation of
an extension without taking the removed argument into account), as defined by [6]:

Proposition 2. When removing an argumentZ , if Z does not attack any argument then

– ∀E preferred extension of G,

{E \ {Z} is admissible in G′ and thus
∃E ′ preferred extension of G′ s.t. E \ {Z} ⊆ E ′

– ∀E stable extension of G, E \ {Z} is a stable extension of G′.
Proposition 3. When removing an argumentZ under the preferred, stable or grounded
semantics, if Z does not attack any argument of G, then ∀E extension of G such that
Z /∈ E , E is an extension of G′.

4.2 Some Properties of the Expansive Change

An expansive change increases the size of the extensions and thus allows to obtain a
larger number of arguments in the extensions. The following properties give the condi-
tions under which a change cannot be expansive.

Proposition 4. It is impossible to have an expansive change�aI under stable semantics.

Proposition 5. When removing Z under the preferred or grounded semantics,

if this change is expansive then

{
Z does not belong to any extension of G,
and Z attacks at least one element of G.

4.3 Some Properties of the Narrowing Change

The narrowing change may be considered as dual of the expansive change since it de-
creases the size of the extensions. This can be desirable when one wishes to reduce the
possibilities of argumentation of the adverse party. The following property merges three
properties (one for each semantics) that provide a necessary condition for obtaining a
narrowing change.

Proposition 6. When removing Z under the preferred, stable or grounded semantics,
if the change is narrowing then there exists one extension E of G s.t. Z ∈ E .
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5 Discussion and Conclusion

In this article, we studied a particular kind of change in argumentation: the removal of
an argument and its interactions. First, we have presented an example coming from the
legal world. This example illustrates the need to remove arguments in an argumentation
system. In this application, at least two reasons are invoked in order to remove an argu-
ment: namely objection and occultation. After having pointed out the theoretical bases
of argumentation, we have been able to model our example while showing the impact
of these removals. Then we have studied some properties of the operation of removal.

Although the removal of an argument has been given little attention in the litera-
ture, at least three papers have focused on it. Namely, [6] has studied the removal of
arguments and attacks (called “abstraction”) in a quite particular case since the authors
were interested in the situations where there exists only one single extension which one
wants to preserve at identical after removal8. The results given by [6] make it possible
to characterize the set of attacks to remove in order to “conserve the extension” under a
given semantics (generally the grounded semantics). This paper also characterizes the
set of interactions relating an argument to the argumentation system when the removal
of this argument should respect the property of conservation. This may give birth to
promising lines of research when developing further the study of the properties defined
by [9] applied to removal.

[5] deals with the question (called “enforcement”) of how to modify an argumen-
tation system so as to guarantee that a given set of arguments would belong to an
extension. The modifications they considered are additions of arguments (with their
associated interactions) and semantics switches. Results of impossibility and results
concerning monotony are proposed. The authors stress that the removal of argument
presents little interest for the problem considered, since it would offer the trivial solu-
tion of removing all the arguments that differs from those which one wants to guarantee.
However, with a minimal change criterion, it could be interesting to compute the min-
imal set of arguments to remove so as to guarantee a given set of arguments. It is one
prospect of our work.

Let us note finally that [9] gives also examples of removal illustrating various proper-
ties of change. Besides, this same article shows that doing a parallel between addition in
an argumentation system and revision in the sense of [1] (AGM) is not convenient (the
formalisms are different and the concept of consistency which is central in the work of
AGM does not have any equivalent in argumentation). For the same reasons, a parallel
between removal of argument and the AGM contraction is not really meaningful (even
if some concepts of AGM have inspired our work).

Several issues are to be specified and improved, we next describe some future orien-
tations of our research.

– Many properties about change in argumentation are to be discovered or deepened,
particularly for the removal change.

– Intuitively, it seems that an objected argument, and thus removed one, makes nev-
ertheless its effect on the audience; the jury cannot instantaneously delete this

8 This “conservation of the extension” preserves all the arguments except for the removed argu-
ment.
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argument from its mind and is likely to be influenced about it. It would be in-
teresting to study the impact that such an argument can have on the preferences, or
on the moral values, of the jury.

– The narrowing change seems to be a dual property of the expansive change. This
concept of duality between operations and changes should be studied more deeply.

– In the illustrative example, we have seen that it may be beneficial not to reveal
some arguments. One of our prospects is to characterize situations, in the way of
[12], where it is crucial to select which arguments to reveal or to hide. This will
allow us to develop strategies to maximize the chances that the audience accepts a
specific argument. Furthermore, it would be interesting to focus particularly on the
cases where the participants do not share the same semantics, and on the strategic
choices which might arise consequently.

Acknowledgements. We would like to thank the reviewers for their help and valuable
suggestions.
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Annex: Proofs

Proof of Proposition 1. For the first item of this proposition, under any semantics, if
there exists an extension E ∈ E such that Z ∈ E then ∀E ′ ∈ E′, E �⊂ E ′, since, the
change being a suppression, Z does not belong to any extension of G′. For the second
item of this proposition, we consider each semantics separately:

Preferred Semantics: let us suppose that Z does not belong to any extension of G. We
show that any extension E of G is admissible in G′. Let E ∈ E:

– E is conflict-free in G and thus still conflict-free in G′.
– Let us show that E defends its elements in G′. IfX ∈ E such that X is attacked by
Y in G′, then X is also attacked by Y in G, but X ∈ E , therefore it is defended by
an argument T which attacks Y in G. Since, we had assume that Z /∈ E , we know
that T �= Z , therefore T ∈ A′ and thus T attacks also Y in G′. Thus, E defendsX
in G′.

E is thus admissible. In conclusion, since E is admissible in G′, it is included in one of
the preferred extensions of G′.
Stable Semantics: let us suppose that Z does not belong to any extension of G. We
show that any stable extension E of G is a stable extension in G′. Let E ∈ E:

– E is conflict-free in G and thus still conflict-free in G′.
– If Y ∈ A′ and Y /∈ E then Y ∈ A and Y /∈ E . Since the extension E is stable in G,
E attacks Y in G. Therefore, there exists T ∈ E such that T attacks Y . As we had
assumed that Z /∈ E , we know that Z �= T , so T attacks Y in G′.

E is thus stable in G′, hence E ∈ E′ so E is included in a stable extension of G′.
Grounded Semantics: Case where E = {{}}: Let us proceed similarly to preferred
semantics: it is known that E′ is nonempty (since we are under the grounded semantics).
Thus there exists E ′ ∈ E′. Since E = ∅ ⊆ E ′, hence the proposition is true.
Case where E �= {{}}: Let us suppose thatZ does not belong to the grounded extension
of G. It is enough to show that the extension E of G is included in the grounded extension
E ′ of G′. We know, thanks to Definition 1, that the binary relation R is finite. However,
according to [10], if R is finite then E =

⋃
I≥1 F i(∅) and E ′ =

⋃
I≥1 F ′i(∅). Let us

prove by induction on i ≥ 1 that F i(∅) ⊆ F ′i(∅).
– i = 1: for any argument Y , if Y ∈ F(∅) then Y is not attacked in G. Removing
Z does not change anything about that, Y is thus not attacked in G′, and thus Y ∈
F ′(∅).

– Induction assumption (for 1 ≤ I ≤ p,F i(∅) ⊆ F ′i(∅)): Let S = Fp(∅) and
S′ = F ′p(∅). First of all, let us prove that F(S) ⊆ F ′(S). Let Y ∈ F(S). By
definition, F(S) ⊆ E , therefore Y ∈ E . If Y is attacked by X in G′ then Y is
attacked by X in G. But since Y ∈ F(S), S defends Y , therefore ∃T ∈ S such
that T attacks X in G. By assumption, Z /∈ E , therefore Z /∈ S, therefore T �= Z
and thus T ∈ A′. Thus, S defends Y in G′. Thus Y ∈ F ′(S).

We have just shown that F(S) ⊆ F ′(S) and we also have, using the induction
assumption, S ⊆ S′. Knowing that F ′ is monotonous (by definition), we have
F(S) = Fp+1(∅) ⊆ F ′(S) ⊆ F ′(S′) = F ′p+1(∅). Therefore, E ⊆ E ′. �
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Proof of Proposition 2. Preferred semantics: Let us suppose that E \{Z} is not admis-
sible in G′. E being an extension of G, there is no conflict in E \ {Z}, therefore it exists
an argument Y ∈ E \ {Z} such that Y is not defended by E \ {Z} in G′. Thus there
exists an argument T ∈ G′ such that T attacks Y in G′. Since we are removingZ , Z can
be neither Y , nor T , therefore T also attacks Y in G. Moreover, Y cannot be defended
by Z in G since Z does not attack any argument, therefore Y is not defended by E \{Z}
in G, and thus E \{Z} is not admissible in G, which contradicts our starting assumption.
Thus, E \ {Z} is admissible in G′ and is thus contained in a preferred extension of G′.
Stable Semantics: let Y be an argument such that Y /∈ E \ {Z}, and Y ∈ G′. Then,
Y �= Z and thus Y /∈ E . However, E is a stable extension of G, therefore E attacks Y in
G. As Z does not attack any argument, E \ {Z} attacks also Y in G. Besides since the
change is a removal, E \ {Z} attacks also Y in G′ and thus E \ {Z} is stable in G′. �

Lemma 1. When removing an argument Z under the preferred semantics, if Z does
not attack any argument, any extension of G′ is admissible in G.

Proof of Lemma 1. Let E ′ be a preferred extension of G′. E ′ is conflict-free in G′ and
thus in G also. If an argument Y ∈ E ′ is attacked in G by another argument X then
X �= Z andX ∈ G′, therefore Y is also attacked byX in G′. E ′ is a preferred extension
of G′ which contains Y , hence E ′ attacksX in G′, so in G. �

Proof of Proposition 3. Preferred semantics: let E be a preferred extension of G.
According to Proposition 2, there exists an extension E ′ of G′ such that E \ {Z} ⊆ E ′.
However, Z /∈ E , therefore E = E \ {Z} ⊆ E ′. In addition, according to Lemma 1,
since Z does not attack any argument, any extension of G′ is admissible in G, therefore
there exists an extension Ei of G such that E ′ ⊆ Ei. Thus E ⊆ E ′ ⊆ Ei. However, E
is a maximal admissible set for set-inclusion in G. Thus E = E ′ = Ei. Thus, E is an
extension of G′.
Stable semantics: it is directly due to Proposition 2 and to the fact that E \ {Z} = E .

Grounded semantics: let E be the single grounded extension of G and let Z ∈ G be an
argument such that Z /∈ E . According to Proposition 1, we get E ⊆ E ′, where E ′ is the
grounded extension of G′.

It remains to establish that E ′ ⊆ E . For this purpose, we show that E is a fixpoint of
F ′ and since E ′ is the least one, we have E ′ ⊆ E . Thus let us show that F ′(E) = E .

– First, let us prove that F ′(E) ⊆ E . Let Y ∈ F ′(E) then Y �= Z and E defends Y in
G′. Since Z does not attack any argument, the only attackers of Y in G are those of
G′, therefore E defends Y in G and Y ∈ F(E) = E .

– Conversely, let us show now that E ⊆ F ′(E). Let Y ∈ E = F(E) then E defends
Y in G. We know that Z /∈ E thus Y �= Z . Since Z attacks no argument, E thus
defends Y in G′ and Y ∈ F ′(E).

Thus E = F ′(E) and we have E ′ ⊆ E . In conclusion, E is an extension of G′. �

Proof of Proposition 4. Let us suppose that there exists an expansive suppression. It is
thus assumed that E �= ∅, |E| = |E′|, and for any extension E ′ of G′, there exists an
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extension E of G such that E ⊂ E ′. Let us consider any extension E ′j of G′ then there ex-
ists an extension Ei of G such that Ei ⊂ E ′j . Thus there exists an argument Y ∈ E ′j such
that Y /∈ Ei. Let us note that Y ∈ G since we are in the case of the suppression of an
argument. Ei being stable in G, there exists an argument T ∈ Ei such that T attacks Y
in G. However, Ei ⊂ E ′j , therefore T ∈ E ′j , and, by assumption, Y ∈ E ′j . Thus T attacks
Y in G′ and thus E ′j is not conflict-free, which contradicts our starting assumption. �

Proof of Proposition 5. The first item of this proposition comes directly from the def-
inition of the expansive change and Proposition 1, both for preferred semantics or
grounded semantics.

For the second item, Preferred semantics: let us suppose that there exists an expan-
sive change and that Z does not attack any argument from G. It is thus supposed that
E �= ∅, |E| = |E′| and for any extension E ′ of G′, there exists an extension E of G such
that E ⊂ E ′. Due to the first item of Proposition 5, we know that Z does not belong to
any extension of G. If Z does not attack any argument of G then ∀E ∈ E, E \ {Z} = E
and, according to Proposition 2, E is an admissible set in G′. Therefore, E ⊆ E ′, where
E ′ is a maximal admissible set of G′. However, according to Lemma 1, since Z does
not attack anything, E ′ is also an admissible set in G, therefore E ′ ⊆ E and thus E = E ′,
which contradicts our starting assumption.

Grounded semantics: let us suppose that there exists an expansive change and that Z
attacks no argument of G. According to item 1 of Proposition 5, Z does not belong to
the grounded extension of G and, due to Proposition 3, it holds that E = E ′, where E ′ is
the grounded extension of G′, which contradicts the expansive change. �

Proof of Proposition 6. Grounded semantics: let us suppose that Z does not be-
long to any extension of G. According to Proposition 1, we have E ⊆ E ′, where
E (resp. E ′) is the single grounded extension of G (resp. G′), which is contradictory
with the definition of the narrowing change. Preferred and stable semantics: let us
suppose that Z does not belong to any extension of G. According to Proposition 1,
∀E ∈ E, ∃E ′ ∈ E′, E ⊆ E ′. However, the change being narrowing, E �= ∅ and
E′ �= ∅. Let Ei ∈ E be an extension, thus it exists an extension E ′j ∈ E′ such that
Ei ⊆ E ′j . In addition, still due to the definition of the narrowing change, there exists an
extension Ek ∈ E such that E ′j ⊂ Ek. We get Ei ⊂ Ek. In the case of the Preferred
semantics, Ei is not a maximal admissible set and consequently, is not an extension of
G, which contradicts our assumption. In the case of the Stable semantics, each stable
extension being also preferred, this is also impossible under the stable semantics. �
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Abstract. Today, probabilistic databases (PDB) become helpful in sev-
eral application areas. In the context of cleaning a single PDB or integrat-
ing multiple PDBs, duplicate tuples need to be merged. A basic approach
for merging probabilistic tuples is simply to build the union of their sets
of possible instances. In a merging process, however, often additional do-
main knowledge or user expertise is available. For that reason, in this
paper we extend the basic approach with aggregation functions, knowl-
edge rules, and instance weights for incorporating external knowledge in
the merging process.

Keywords: probabilistic data, tuple merging, external knowledge.

1 Introduction

In recent time, the need for probabilistic databases grows in many real-world
applications [17,18,8,15]. In general, for certain databases as well as for proba-
bilistic databases duplicates are pervasive problems of data quality [7]. To solve
this problem duplicates have to be identified and merged. Strategies for resolving
data conflicts in a merge of certain tuples is extensively discussed in the litera-
ture [3,11]. However, there is only a low attention on the merge of probabilistic
tuples, so far. Nevertheless, if probabilistic source data are given, the degree of
uncertainty which has to be resolved during the merging process is higher than
in the merge of certain tuples. On the other hand, probabilistic data models pro-
vide new capabilities for handling conflicts in the merging process. Thus, tuple
merging becomes also more powerful [6,16]. In [12] we introduce a basic approach
for merging the instance data of probabilistic tuples which is conceptually based
on the set union operator. In real duplicate elimination scenarios, however, of-
ten a lot of domain knowledge or user expertise is available. This knowledge
cannot be included in our simple merging approach. For that reason, we extend
this approach by enabling the user to define aggregation functions for single at-
tributes, and instance weights as well as knowledge rules for whole instances.
The incorporation of external knowledge is an important property, because in
several scenarios a simple union of all possible instances does not correspond
with the semantics of some attributes (see motivating example below), or the
set of possible instances can be evidently reduced.
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(i) Source Data: t1 and t2

name producer stock
I1 Twix Maas Inc. 15
I2 Dwix Nestle 20

name producer stock
I3 Twix Mars Inc. 6
I4 Raider Mars Inc. 8

r : (producer=’Mars Inc.’) → (stock < 25)

(ii) Basic Approach: (iii) Extended Approach:

name producer stock

Twix Maas Inc. 15

Dwix Nestle 20

Twix Mars Inc. 6

Raider Mars Inc. 8

name producer stock

Twix Mars Inc. 21

Twix Mars Inc. 23

Raider Mars Inc. 23

Dwix Mars Inc. 26

Twix Mars Inc. 26

Dwix Mars Inc. 28

Raider Mars Inc. 28

Fig. 1. The possible instances of t1 (I1 and I2) and t2 (I3 and I4) (i), the instances
resulting from merging {t1, t2} with the basic approach (ii), and the instances resulting
from merging {t1, t2} whilst taking external knowledge into account (iii)

As a motivating example, we consider a merge of the two base-tuples t1 and
t2 as shown in Figure 1. Both tuples have two possible instances ({I1, I2} for
t1 and {I3, I4} for t2) and are defined on a schema inventory with the three
attributes name, producer and stock. Both tuples represent the same product
(and hence are duplicates), but the stock information of each tuple belongs to
different orders. Therefore, in this scenario neither 15, 20, 6 nor 8 items of this
product, but rather 21, 23, 26 or 28 items are available. As a consequence, the
true stock value of this product results from the sum of the stocks of both base-
tuples instead of being the stock of one of them. Moreover, the responsible user
knows that the producer name of the second tuple (’Mars Inc.’) is the correct
one. Thus, this value is chosen for all possible instances of the merged tuple.
Finally, it is known that the company never bought more than 25 items of an
article produced by ’Mars Inc.’. Hence some of the resultant instances can be
excluded for sure (see knowledge rule r). In conclusion, the result of the extended
approach is much more accurate than the result of the basic approach. Moreover,
by using the extended approach the final values of all attributes are nearly known
for sure (’Mars Inc.’ with certainty 1, ’Twix’ and ’23’ with certainty 2/3).

The main contributions of this paper are:

• a discussion about different kinds of external knowledge and in which way
these can be incorporated into the merging process.
• a detailed description of a merging approach extended by aggregation func-

tions, knowledge rules, and instance weights. Moreover, we show that this
approach is a generalization of existing methods for merging certain tuples
and is a generalization of our basic approach based on the set union operator.
• a discussion about the characteristics of the extended merging approach.

The outline of the paper is as follows: First we present some basics on probabilis-
tic data and duplicate elimination including our basic approach for probabilistic
tuple merging (Section 2). Then we present the types of external knowledge we
handle in this work (Section 3). In Section 4, we discuss aggregation functions,
knowledge rules, and instance weights in more detail, before introducing the ex-
tended version of our probabilistic tuple merging approach in Section 5. Finally,
we present related work in Section 6 and conclude in Section 7.
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2 Basics

In this section, we introduce a definition of probabilistic tuples, before we present
the concept of duplicate elimination including our basic approach for merging
probabilistic tuples [12].

2.1 Probabilistic Tuples

In this paper, we primarily focus on the merge of tuples in relational tuple-
independent probabilistic databases defined on an arbitrary probability measure
P . This class of databases includes BID-tables [4], x-relations [2] without lineage
(e.g. base x-relations without external lineage), and U-relations [9] where tuples
with different TIDs do not share same variables.

Due to duplicates are most often detected in base relations (data cleaning) or
in combining multiple independent source (data integration) duplicate elimina-
tion in tuple-independent PDBs already covers a wide space of real-world sce-
narios. To be independent from the used representation system (BID, MayBMS,
etc.), we consider a probabilistic tuple within the possible world semantics [4].
Thus, similar to the ULDB model [2], we define a probabilistic tuple as a set of
possible mutually exclusive instances, also denoted as tuple alternatives [2] and
define a probabilistic relation (referred to as Rp) as a set of probabilistic tuples.

Definition 1 (Probabilistic Tuple): Let sch(R) be a relation schema with
the domain dom(R). A probabilistic tuple t defined on sch(R) is a set of pos-
sible instances pI(t) = {I1, . . . , Ik} where each instance is an ordinary tuple
Ii ∈ dom(R). Moreover, each instance I ∈ pI(t) is assigned with a probability
P (t[I]) > 0 where t[I] is the event that I is the true instance of t. Trivially, all
possible instances of t are mutually exclusive: (∀I1, I2 ∈ pI(t)) : P (t[I1] | t[I2]) =
0. The probability that t exist is: P (t) =

∑
I∈pI(t) P (t[I]) ≤ 1.

Since all tuples are independent of each other, the true instantiation of one tuple
does not depend on the true instantiation of another tuple:

(∀t1, t2 ∈ Rp, t1 �= t2) : (∀I1 ∈ pI(t1), I2 ∈ pI(t2)) : P (t1[I1] | t2[I2]) = P (t1[I1])

To make some of the considerations of this paper easier, we introduce the
null-instance I⊥ which represents the case a probabilistic tuple does not ex-
ist (P (t[I⊥]) = 1 − P (t)). The null-instance is schemaless, i.e. πA(I⊥) = I⊥
for every valid set of attributes A and I⊥ × S = I⊥ for every relation S. For
simplification, we also define the set pI⊥(t):

pI⊥(t) =

{
pI(t) ∪ {I⊥}, iff P (t) < 1
pI(t), else

(1)

Note that the null instance I⊥ and hence the set pI⊥(t) are only virtual and not
stored in the database.

In the rest of the paper, we represent the set of possible instances of a prob-
abilistic tuple by an own table (one row per instance). Figure 2.1 shows an
example of a tuple modeling the movie ’Crash’ with two possible instances I1

and I2.
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title year studio total P

I1 Crash 2004 WB 12k 0.5
I2 Cash 2005 US 15k 0.2
I⊥ ————————— 0.3

Fig. 2. A probabilistic tuple t with pI⊥(t)={I1, I2, I⊥}, I1 =(”Crash”,2004,”WB”,12k),
I2 = (”Cash”,2005,”US”,15k), P (t[I1]) = 0.5, P (t[I2]) = 0.2, and P (t[I⊥]) = 0.3

2.2 Duplicate Elimination

In the first duplicate elimination step multiple representations of same real-world
entities are detected [7]. The result of this step is a partitioning of the set of input
tuples into duplicate cluster (one cluster for each real-world entity).

In the second step, all tuples of one duplicate cluster are merged to a single
one. This step is usually denoted as tuple merging [19] or data fusion [3]. In
[12] we gave a first discussion on tuple merging in probabilistic data. We split
probabilistic tuple merging into two steps: (a) a merging of instance data and
(b) a merging of tuple membership. In this paper, we consider only merging
of tuples defined in same contexts and hence we simply include membership
merging in instance merging by using the null-instance I⊥. In the following, we
always consider a single cluster and hence denote the merged tuple as tμ.

Basic Merging Approach. The basic approach for probabilistic tuple merging
we present in [12] is based on the set union operator. This means that an instance
is possible for the merged tuple, if it was possible for at least one base-tuple. Since
the merging is not associative, if the resultant probability is simply computed by
the probabilities of the base-tuples, we assign a weight w(t) to each base-tuple
t and define that the weight of a merged tuple tμ = μ({t1, . . . , tk}) results from
the sum of the weights of its base-tuples (w(tμ) = w(t1) + . . . + w(tk)). If tuple
merging is considered within the context of data integration, the reliabilities of
the corresponding sources can be used as tuple weights. Probabilities are com-
puted by a weighted average. Let tμ be the tuple merged from the base-tuples of
cluster C, our basic approach of probabilistic tuple merging can be formalized as:

pI⊥(tμ) =
⋃
t∈C

pI⊥(t) (2) ∀I∈ pI⊥(tμ), P (tμ[I]) =
∑
t∈C

w(t)
w(tμ)

P (t[I]) (3)

3 Domain Knowledge and User Expertise

In this paper, we consider two different kinds of external knowledge: (i) domain
knowledge which is generally applicable for a specific domain, as for example the
information that stock values have to be summed up (see motivating example)
and (ii) user expertise which is only applicable for individual items or groups
of items (sources, tuples, values, etc.), as for example the information that the
studio ’WB’ does not produce movies for adults. Domain knowledge usually
concerns metadata like the correct semantics of relational schemas or the correct
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scope of attribute domains. Therefore, domain knowledge does not change over
time very frequently and hence acquired once, it can be used for multiple merging
processes. In contrast, user expertise often concerns only the given instance data
(see example above). Thus, a user can be very competent for the data of one
merging process and incompetent for the data of another, even if both processes
work on equivalent schemas. For example, a user can be an expert for horror
movies and a non-expert for romantic movies.

With respect to its effects on the merge result, external knowledge can be
furthermore classified into the following four types:

1. Knowledge about specific semantics of individual attributes or sets of at-
tributes. For example, the knowledge that the numbers of sold tickets stored
in duplicate entries in a box office list belong to different points of time and
hence the maximum value has to be chosen. Knowledge of this type is usually
domain knowledge.

2. Knowledge about the true instance of one attribute value or a set of attribute
values. For example, the user knows that one of the given values is the true
one, or the user knows that the true value is missing and introduces it himself.
Knowledge of this type usually results from user expertise.

3. Knowledge required for excluding some combinations of attribute values for
sure. For example, such knowledge can be based on physical rules (e.g. a
studio cannot have produced movies before it was founded), economical rules
(e.g. a salary cap), or private guidelines (e.g. a specific company never buys
more than 100 items from a single article per month). Knowledge of this
type can be domain knowledge, user expertise or a combination of both.

4. Knowledge about new evidence or further evidence, or a user’s own degree
of belief. For example, at merging time a person is known to life rather in
Italy than in France. Knowledge of this type is most often user expertise.

A modeling of knowledge about tuple correlations (e.g. a specific attribute has
to be unique) implies a definition of new tuple dependencies. Since we restrict
to tuple-independent PDBs, this is out of the scope of this paper.

4 Methods for Incorporating External Knowledge

For incorporating domain knowledge and user expertise, we resort to three clas-
sical concepts which have already been partially used in the merge of certain
data: user-defined aggregation functions, user-defined knowledge rules, and user-
defined weights of possible instances.

Aggregation functions can be used to assign specific semantics to concrete
attributes (knowledge of Type 1) or to define the true value for a concrete at-
tribute by hand (knowledge of Type 2). In contrast, knowledge rules are excel-
lently suited for excluding instances which violate a given pattern of regulations
(knowledge of Type 3). Instance weights can be used to accommodate new evi-
dence (knowledge of Type 4).

Aggregation functions are already used for resolving conflicts in the fusion of
certain data by Bleiholder et al. [3]. Note that we use the concept of aggregation
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for another purpose. In the merge of certain data for each attribute only a single
value can be stored. Thus, conflicting values need to be resolved and the usage
of aggregation functions is often mandatory, even if the user does not know how
to aggregate these values at best. In contrast, such a conflict resolution is not
required by using a probabilistic data model as the target model because all
possible values can be stored simultaneously. We use these functions only for
incorporating available context information. Therefore, in our approach these
functions should be only used, if this information is given for sure (or at least
very likely). This in turn implies that a lot of aggregation functions listed in [3]
are not suitable for our purpose (e.g. First, Last, Random, etc.), because they
do not express a certain kind of knowledge.

Knowledge rules are already used by Whang et al. [19] for preventing invalid
merging results and hence for detecting the best merging easier. In general, we
use these rules for same purposes, because we use them to avoid invalid instances.

In the rest of this section, we take a closer look at these three concepts and
how they can be used to express a certain kind of knowledge.

4.1 Aggregation Functions

Aggregation functions are a simple and adequate method for incorporating ex-
ternal knowledge into a tuple merging process. For aggregation we consider func-
tions as defined for conflict resolution in certain data [3]. This set of functions
can be classified into deciding functions which choose one of the given values
and mediating functions which create a new value.

Moreover, aggregation functions can be of a simple or complex nature. A sim-
ple aggregation function only takes the values of the considered attribute into
account or is a constant function which does not need any input at all. In con-
trast, complex aggregation functions also consider the values of other attributes
(from input as well as output) as own input. Thus, they aggregate a set of given
input values depending from the result of aggregating other attributes or from
the initial values of other attributes. As an example, consider a deciding function
with takes the value for attribute ai that occurs as most often with the value
already chosen for attribute aj .

Simple Aggregation Functions. A simple aggregation function aggregates
only the values of the attribute it is defined for or returns a constant. Let fi be a
simple aggregation function which aggregates the input values AI

i = {v1, . . . , vm}
of an attribute ai to the single output value vfi ∈ dom(ai), fi(AI

i ) is defined as:

fi : dom(ai)m → dom(ai) fi : {v1, . . . , vm} %→ vfi

If for aggregating a set of instances M only simple functions are used (each for
another attribute), each function can be applied independently and the output
instance IO results by the cross product of all the functions’ output values. Let
A = {a1, . . . , an} be a set of attributes an aggregation function is defined for (fi

for ai), the result from aggregating the input set πA(M) with f1 − fn is:

IO = f1(πa1 (M))× f2(πa2 (M))× . . .× fn(πan(M)) = (vf1 , vf2 , . . . , vfn)
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AI
1 AI

2 AI
3 AI

4 AI
5

f1

f2

f3

f4

f5

vf1 vf2 vf3 vf4 vf5

f1(In = {a1}, Out = ∅)
f2(In = {a2}, Out = {a1, a3})
f3(In = {a3}, Out = ∅)
f4(In = {a4, a5},Out = {a2})
f5(In = {a5}, Out = ∅)

resultant partial order
of the time of execution:

f1

f3

f2 f4

f5

Fig. 3. Set of five sample aggregation functions {f1, . . . , f5} along with the dependen-
cies between their input AI

i = πai(M) and output vfi = fi(In,Out) (left side) and the
resultant partial order of their time of execution (right side, below)

Complex Aggregation Functions. A complex aggregation function also con-
sider the input values and/or output values of other functions for producing its
own output. Thus, we need a more general definition of aggregation functions.
In the following, a function fi aggregating the values of attribute ai is described
by a set of attributes In which values are used from the input data1 and by a
set of attributes Out which values are used from the output data. Note, for each
aj ∈ In a set of input values is used, i.e. AI

j , but for each aj ∈ Out only a single
output value is processed, i.e. vfj . Thus, fi(In, Out) is defined as:

fi : {AI
j | aj ∈ In} × {vfj | aj ∈ Out} %→ vfi

Note, by using this description, a function fi is simple, if the set In contains at
most the attribute ai and the set Out is empty: fi(In = {ai},Out = ∅).

The combined execution of aggregation functions becomes much more com-
plicated, if complex functions are involved. Certainly, an output value of one
function has to be produced before it can be serve as the input for another func-
tion. In general, a given set of complex aggregation functions has to be executed
according to the partial order of the dependencies between their input values
and output values. This fact is illustrated in Figure 3 where the dependencies
between the input values and output values of five aggregation functions (left
side) as well as their resultant partial order (right side) are depict.

The combined execution of a set of complex aggregation functions F for ag-
gregating the set of instances M to the output instance IO using the set of
attributes A as input is in the following denoted as IO = F(F, πA(M)).

4.2 Knowledge Rules

Compared to aggregation functions, knowledge rules enhance the capability
to incorporate knowledge further on in two ways: First, whereas aggregation
1 The input of a function can also contain metadata like the age of a value [3].
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functions only influence the set of attributes {al, . . . , an} for which such a func-
tion is defined, by the usage of knowledge rules conditions for whole instances
can be specified. Second, it is in the nature of aggregation functions that they
choose a single value and exclude all other ones. Nevertheless, such a restrictive
knowledge is often not available (knowledge of Type 3), but instead we can only
exclude a single value (or few values) to be the true one. Such restrictions of the
set of possible instances, however, cannot be realized by aggregation functions.

Knowledge rules are logical rules of inference (premises → conclusions) which
take premises and return conclusions. A rule is violated by an instance, if for
this instance all premises are valid, but the conclusions are not. In this way,
impossible instances can be excluded from the merging result.

As an example we consider a combination of the general domain knowledge
that studios cannot have produced movies before they were founded and the
specific user expertise that the studio ’WB’ (Warner Bros. Entertainment) was
founded in 1923. Thus, we can conclude that each instance having the value
’WB’ as studio name and having a value year lower than 1923 cannot be true:

rule r1 : studio=’WB’→ year ≥ 1923 (4)

A knowledge rule can use values from the output (the instances of the merged
tuple) as well as values from the input (the instances of the base-tuples). One
meaningful example is the condition that a combination of values for an attribute
set A is only valid for the merged tuple, if it was valid for at least one base-tuple:

rule r2 : I ∈ πA(pI(tμ))→ (∃t ∈ C) : I ∈ πA(pI(t)) (5)

Knowledge rules are applied to each possible instance individually. Instances
violating one or more of the defined rules can be excluded to be the true one
and hence are removed from the merging result.

4.3 Instance Weights

In our basic approach (Section 2.2), we use tuple weights for (a) making the
merging process associative and (b) allowing an assignment of different degrees
of trust to individual sources. To make the merging process more adaptable to
further evidence known at merging time, we also allow a definition of weights on
instance level: w(t, I) is the weight of instance I for tuple t. Thus, the user can
prefer a base-instance I1 to another base-instance I2 (w(t, I1) > w(t, I2)) or can
exclude a base-instance I from the merging process for sure (w(t, I) = 0) without
manipulating the original probabilities. Typically, weights are assigned for each
instance individually and hence represent user expertise. Nevertheless, weights
can be also assigned by a given pattern (e.g. a weight w is assigned to instances
satisfying a specific condition derived from the semantics of the considered
universe of discourse) and hence also can be used to express domain knowledge.

We define the weight of a tuple t as the expected weight of its instances:
w(t) =

∑
I∈pI(t) w(t, I)P (t[I]). For ensuring associativity, the weight of a merged

tuple is still the sum of the tuple it is merged from. Moreover, all instances of the
merged tuple are weighted equally, i.e. the new evidence is already incorporated
in the resultant probabilities.
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5 Extended Approach for Probabilistic Tuple Merging

For incorporating external knowledge according to the possible world semantics,
the aggregation functions have to be applied to each possible combination (so
called merging lists) of the base-tuples’ instances (one instance per base-tuple)
individually. Each merging list M = {I1, . . . , Ik} contains as many instances as
base-tuples to be merged (in this case k). We consider the instances in a merging
list to be sorted by their corresponding base-tuples, meaning that Ii originates
from tuple ti. Performing aggregation on a single merging list is denoted as
fusion. Knowledge rules are applied to the merging lists’ fused instances.

Let C = {t1, . . . , tk} be a set of base-tuples to be merged. Let w(t, I) be
the weight defined for instance I ∈ pI(t), t ∈ C and let w(tμ) =

∑
t∈C w(t) be

the total weight of all base-tuples. Moreover, let N = {r1, . . . , rq} be a set of
knowledge rules and let A = {a1, . . . , al−1, al, . . . , an} be the attributes of the
considered schema, where for each of the attributes A2 = {al, . . . , an} an aggre-
gation function is defined for (fi for ai). Our tuple merging approach extended
with aggregation functions, knowledge rules, and instance weights is performed
by the following steps (the first two steps are illustrated in Figure 4):

1. Divide the Input. First, all merging lists are built:

M({t1, t2, . . . , tk}) = {{I1, I2 . . . , Ik} | Ii ∈ pI⊥(ti), ti ∈ C} (6)

2. Apply Aggregation. Then, each merging list M ∈ M(C) is fused by apply-
ing the set of aggregation functions F = {fl, . . . , fn} (defined for attributes
{al, . . . , an}) having the attribute set AI ⊆ A as input. For the attributes
without any aggregation function (attributes A1 = {a1, . . . , al−1}) all possi-
ble values are taken into account (recall I⊥ × S = I⊥ and πA(I⊥) = I⊥):

∀M ∈ M(C), μ(M) = πA1(M)× F(F, πAI (M)) (7)

During this step the probabilities of the resultant instances can be directly
computed. Let P (M) =

∏
I∈M P (I) be the probability2 of the merging list

M . The probability of an instance Iμ dependent on M results in:

P (Iμ |M) =
1

w(tμ)
×
∑

Ii∈M,πA1(Ii)=πA1(Iμ)
w(ti, Ii) (8)

Note, the probabilities of duplicate instances eliminated by the relational
projection operator in Formula 7 are added up. Duplicate instances result-
ing from the fusion of different merging lists are handled in Step 4.

3. Apply Rules. Third, the set of knowledge rules N is checked for each in-
stance resulting from fusing the merging list M . If an instance is invalid for
at least one rule, this instance is removed from the fusion result μ(M).

2 Due to all tuples are independent of each other, the probability of M is equal to the
product of the probabilities of all its instances I ∈M .
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title year studio total
I1 L.A.Crash 2006 US 150k
I2 Crash 2004 WB 120k

title year studio total
I3 L.A.Crash 1997 WB 115k
I4 Crash 2004 US 120k
I⊥ —————————

title year studio total
I6 Cash 2004 WB 60k

1

2

Merging Lists

M1 = {I1, I3, I6}
M2 = {I1, I4, I6}
M3 = {I1, I⊥, I6}
M4 = {I2, I3, I6}
M5 = {I2, I4, I6}
M6 = {I2, I⊥, I6}

title year studio total

L.A.Crash 2006 US 150k

—————————

Cash 2004 WB 60k

title year
I ′
1 L.A.Crash 2006

I⊥ ———
I ′
6 Cash 2004

×
studio total
WB 210k IA

μ({I1, I⊥, I6}) = {I ′
1 × IA, I⊥, I ′

6 × IA}

take t3 SUM

Fig. 4. Building of all merging lists (Step 1) and fusing the merging list M3 =
{I1, I⊥, I6} (Step 2). The total values are added up (mediating function). For the
studio name the value from the instance of tuple t3 is chosen (deciding function). For
the movie title and the production all values are taken into account.

4. Combine Results. Finally, the fusion results of all merging lists are com-
bined to the final set of possible instances pI⊥(tμ) and all probabilities
P (tμ[I]), ∀I ∈ pI⊥(tμ) are computed. If instances are eliminated by knowl-
edge rules, a final normalization need to be applied.

pI⊥(tμ) =
⋃

M∈M(C)

μ(M) (9) P (tμ[I]) =
∑

M∈M(C)

P (I |M) P (M) (10)

Note, if for all attributes an aggregation function is defined (l = 1), for each
merging list a single possible instance results (we denote this setting a full-
aggregation). Otherwise, for each merging list at most as many instances as
base-tuples can result (one for each of the merged instances).

If the instance data of each base-tuple is certain (each tuple has exact one
possible instance), only one merging list is built. If in addition a full-aggregation
is applied, from tuple merging a single possible instance results. Thus, this ap-
proach is a generalization of conflict resolution used for tuple merging in certain
databases. In contrast, if no aggregation function is defined, the result contains
each instance possible for at least one base-tuple. Therefore, this approach is
also a generalization of our basic approach for probabilistic tuple merging.

In the example of Figure 4, three tuples of a relation box office are merged.
Two aggregation functions are defined. The total amount of sold tickets results in
the sum of all values of attribute total (mediating function). Moreover, the user
knows that the studio name of the third tuple is correct. For that reason, this
value is chosen for all instances (deciding function). For the attributes title and
year no functions are specified. Thus, all possible values are taken into account.

5.1 Scalability

Given a duplicate cluster of size k. Assume that each tuple has averagely l
possible instances (including I⊥). From the basic approach at most k×l instances
result. In contrast, in the extended approach lk merging lists are built. Thus, if
aggregation functions are used, at most k× lk instances can be result. This is an
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increase to the basic approach of lk−1 times. Experience has shown that cluster
rarely have more than 5 tuples and uncertainty often can be adequate modeled
by around 10 possible instances. Certainly, this increase is still tremendous (5·105

instead of 50), but can be flexibly reduced to a desired amount of data by only
taking the most likely (resultant or base) instances into account. An important
reflection of future work is to compute the most probable resultant instances
more efficiently by pruning of irrelevant merging lists first.

5.2 Characteristics of Merging Approaches

In [12], we introduce a set of characteristics of merging approaches which are
useful in many merging scenarios. Some of these characteristics are:

• Independence of the Merging Order: The tuple resulting from merging
multiple base-tuples should be independent from the merging order. This
requirement is important, if tuple merging is considered as a part of a data
integration process and the integration is performed in a pairwise fashion
instead of integrating all sources at one time. This independence is given, if
tuple merging is associative:

μ(T ) = μ({μ(T \ Ti), μ(Ti)}) for all Ti ⊂ T (11)

• Stability: We denote a merging to be stable, if from deduplicating a dupli-
cate free relation the relation itself results. This property is given, if tuple
merging is idempotent (μ({t}) = t).

• SP-Query Consistency: Query consistency means that the result of query-
ing a merged tuple should be equal to merging the tuples resulting from
querying the individual base-tuples. Since we only consider queries on single
tuples, joins and set-based operators are not taken into account. Moreover,
aggregation functions change the tuples’ schema. Thus, a consistency w.r.t.
queries with aggregations is generally not possible and we restrict to the
probabilistic equivalences of the algebraic operations selection and projec-
tion (we use the definition of the world-set algebra [9]). In the following, we
define this class of queries as SP-Queries. Let Rp be a probabilistic relation
and let Q be the set of all possible SP-Queries which can be formulated on
Rp, the requirement of SP-Query consistency is formalized as:

(∀T ⊆ Rp, ∀q ∈ Q) : μ({q(t) | t ∈ T }) = q(μ(T )) (12)

SP-Query consistency is very useful to reduce the dataflow between source
databases and target database, because irrelevant data (tuples in case of se-
lection, attributes in case of projection) can be already excluded at the source
databases’ sides. This is especially important, if data are paid by amount.
However, for doing that there must be a certain attribute serving as real-
world identifier. Otherwise, the duplicate detection result can be influenced
by an early performing of SP-Queries.
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Now, we discuss the influences on these characteristics by using aggregation
functions, knowledge rules, and instance weights:

Basic Approach: The basic approach is independent of the merging order, SP-
Query consistent and stable.

Ext. Approach + Instance Weights: Instance weights only affect stability,
but non-stability is even the goal of taking further evidence into account.

Ext. Approach + Aggregation Functions: The approach extended with ag-
gregation functions (simple or complex) is associative, if all these functions
are associative and stable, if all these functions are idempotent. Both proper-
ties are satisfied by aggregation functions usually used for modeling attribute
semantics (e.g. sum, max). The extended approach is not consistent with se-
lections, because a removing of tuples and instances definitely influences the
set of values to be aggregated. This approach, however, is consistent with
projections, if either only simple aggregation functions are used or none of
the excluded attributes is required as input for one of the aggregation func-
tions defined for the remaining attributes.

Ext. Approach + Knowledge Rules: The approach extended with knowl-
edge rules is stable, if none of the base-instances violates a rule, i.e. the
source data is consistent with the set of given rules. Independence of merg-
ing order is not satisfied, if an intermediate result violates a rule which would
not be violated by the final result. This can only happen, if new values arise
and hence only, if knowledge rules are used in combination with aggregation
functions. Nevertheless, the most useful aggregation functions are monoton-
ically increasing (sum, max) or monotonically decreasing (min). Thus, rules
restricting an attribute domain to a range with an lower and an upper bound
(e.g. the stock value is between 10 and 100) do not pose a problem. Finally,
this approach is consistent with selection, but not consistent with projection,
in cases one of the excluded attributes is used in a rule.

In summary, the merging approach extended with aggregation functions, knowl-
edge rules, and instance weights guarantees independence of the merging order
in the most useful scenarios (associative aggregation functions and meaningful
rules). Stability can be ensured, if wanted by using only tuple-uniformly weighted
instances and cleaning data first. Consistency with selection cannot be ensured in
general, if aggregation functions are used. In contrast, if attributes are projected
carefully, consistency with projection can be achieved easily.

6 Related Work

Tuple merging in certain data is considered in different works [5,3,11,19]. Since in
certain data only single values can be stored, conflicts always have to be resolved
by applying aggregation functions. In contrast, because we process probabilistic
data, in our approach such functions are not mandatory, but a helpful capability
to incorporate external knowledge into the merging process.
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Robertson et al. [14] consider tuple merging within a transposition of certain
data. Merging of two tuples with contrary instance data is not provided (in such
cases both tuple are denoted to be non mergeable).

DeMichiel [6] and Tseng et al. [16] use partial values (resp. probabilistic values)
to resolve conflicts between certain values by taking multiple possible instances
into account. Consequently, these approaches already produce uncertain data as
result data. This is similar to our basic approach for instance merging if each
base-tuple is considered to be certain. Nevertheless, both approaches consider
conflict resolution on an attribute by attribute basis. Dependencies between
possible attribute values are not considered.

Andritsos et al. [1] define queries on multiple conflicting duplicates. Thus
instead of merging the tuples of each cluster into a single one, query results are
derived from sets of mutual exclusive base-tuples. Since to each cluster’s tuple
a probability can be assigned, this approach is mostly identical to our basic
approach applied to certain base-tuples. However, concepts for incorporating
external knowledge are not provided.

Van Keulen et al. [17] store conflicting duplicates in a probabilistic database
and use user feedback to resolve these conflicts at query time. Thus, they do not
directly incorporate the user expertise into the merging process.

A merging of tuples representing uncertain information is proposed by Lim et
al. [10], but instead of probability theory this approach is based on the Dempster-
Shafer theory of evidence and hence is not applicable for probabilistic data.

None of these studies, however, allows probabilistic data as source data.

7 Conclusion

Many applications naturally produce probabilistic data. For integrating prob-
abilistic data from multiple sources in a consistent way or to clean a single
database duplicate tuples need to be identified and merged. We consider dupli-
cate detection in probabilistic data in [13] and introduce a basic approach for
merging the instance data of probabilistic tuples in [12]. In this paper, we focus
on the incorporation of external knowledge (domain knowledge or user expertise)
in the merging process making the merging result more accurate. For that pur-
pose, we generalize our basic approach by incorporating aggregation functions,
knowledge rules, and instance weights. Finally, we analyze in which way these
extensions influence several important characteristics of merging processes.

In future research we aim to make the merging process more adaptable for in-
dividual needs. The merging approach based on the set union operator produces
data correct as possible. Moreover, this approach is associative and SP-Query
consistent. Nevertheless, the more base-tuples are merged, the more possible in-
stances result. Thus, the merged tuple becomes more and more uncertain. For
that reason, we need new methods enabling the user to make a trade-off be-
tween correctness and certainty being best for him. Finally, we are working on
techniques making the extended merging approach more efficient.
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Abstract. Various forms of commonsense reasoning may be used to
cope with situations where insufficient knowledge is available for a given
purpose. In this paper, we rely on such a strategy to complete sets of sym-
bolic categorization rules, starting from background information about
the semantic relationship of different properties and concepts. Our solu-
tion is based on Gärdenfors conceptual spaces, which allow us to express
semantic relationships with a geometric flavor. In particular, we take the
inherently qualitative notion of betweenness as primitive, and show how
it naturally leads to patterns of interpolative reasoning. Both a seman-
tic and a syntactic characterization of this process is presented, and the
computational complexity is analyzed. Finally, some patterns of extra-
polative reasoning are sketched, based on the notions of betweenness and
parallelism.

1 Introduction

Applications of AI paradigms are often hampered by the fact that the knowledge
bases on which they rely are incomplete. The causes for incompleteness are many.
When a knowledge base is built by an expert, for instance, the expert may have
forgotten to add some relevant information, or he may have deliberately chosen
to omit certain pieces of information (e.g. because he is ignorant about them,
or because a complete description of the domain at hand would be infeasible).
Along similar lines, when knowledge is extracted (semi-)automatically from some
corpus, incompleteness may result from limitations of the extraction methods
that are used, or from the absence of relevant documents in the corpus.

Example 1. Consider the following rule base about housing options:

bungalow→ medium bungalow→ detached (1)
mansion→ very-large mansion→ detached (2)

large ∧ detached→ comf ∨ lux large ∧ row-house→ comf (3)
small ∧ detached→ bas ∨ comf mansion→ excl (4)

S. Benferhat and J. Grant (Eds.): SUM 2011, LNAI 6929, pp. 303–316, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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where excl (exclusive), lux (luxurious), comf (comfortable) and bas (basic) refer
to different comfort levels.

The rule base (1)–(4) is incomplete, as e.g. nothing is stated about the size of
villas and cottages, nor is anything asserted about the comfort level of medium-
sized or semi-detached houses. In the face of incomplete knowledge, human rea-
soning heavily relies on information about similar situations [2]. For instance,
as medium-sized houses are somewhat similar to both large and small houses,
their comfort level should also be somewhat similar to that of large houses and
that of small houses. Formalizing this kind of commonsense inferences seems a
promising way of alleviating the incompleteness of knowledge bases.

Existing formalisms such as case-based reasoning, or fuzzy rules, are based
on the premise that if α → β is a valid rule and α is sufficiently similar to
α′, then whenever α′ holds, some β′ which is similar to β should be the case
[15,3,18]. However, such approaches put high demands on the availability of
quantitative background information. Indeed, often there is no principled way
of determining, given a particular α′, how similar β′ and β should be before we
can consider β′ to be among the possible conclusions of α′ (at a given confidence
level). For instance, knowing only that cottages are similar to bungalows1, what,
if anything, can we actually derive about the size of cottages from (1)–(4)?
Moreover, it is hard to come up with a similarity measure that always yields
plausible results, and even if there were a unique way of measuring similarity
among literals, it is usually not clear how similarity among conjunctions of literals
should be evaluated.

The aim of this paper is to introduce a qualitative model for commonsense
reasoning which does not (directly) rely on measuring similarity, but rather
relies on notions such as betweenness and direction of change. For instance, as a
villa can be seen as being conceptually between a bungalow and a mansion, we
may conclude that the size of a villa should be between that of a mansion and
that of a bungalow, i.e. medium-sized or large or very-large. In addition to such
interpolative inference patterns, we may also consider extrapolative patterns:
as the change from mansion to bungalow goes in the same direction as the
change from bungalow to cottage, and as bungalows are known to be smaller
than mansions, we could conclude that cottages are smaller than bungalows, i.e.
that the size of a cottage is very-small or small or medium-sized.

There is a need for a principled and general approach to interpolative and
extrapolative reasoning that goes beyond ad-hoc techniques, similar in spirit to
what was done for exception-tolerant reasoning within the realm of nonmono-
tonic reasoning [9]. To this end, we propose a formalization based on the theory
of conceptual spaces [6], which identifies (natural) properties with (convex) re-
gions in an appropriate geometric space. Within such conceptual spaces, the

1 The terms cottage and bungalow may be used with somewhat different mean-
ings. Throughout the examples, we use cottage for a small detached house,
and bungalow for a somewhat larger detached house, in accordance with
http://en.wikipedia.org/wiki/Single-family_detached_home (accessed on
April 25, 2011).

http://en.wikipedia.org/wiki/Single-family_detached_home
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aforementioned notions of betweenness and direction of change have a clear geo-
metric interpretation. As a result, using conceptual spaces, we can make explicit
under which assumptions the considered inference patterns are valid. Although
conceptual spaces are crucial to justify our approach, in practical applications,
we do not actually require that the conceptual spaces representation of proper-
ties are available. In particular, the inference mechanism itself will only require
qualitative knowledge about how these representations are spatially related.

The paper is structured as follows. In the next section, we explain how a
propositional rule base can be seen as the approximation of a mapping between
conceptual spaces. By making the assumption that this mapping preserves geo-
metrical relations such as betweenness, different commonsense inference relations
can be obtained. In Section 3, we focus on betweenness and show how it leads to
a form of interpolative reasoning. We first present a semantic approach and then
provide its syntactic counterpart and an analysis of the computational complex-
ity. Section 4 illustrates how extrapolative inference relations can be obtained in
a similar way. Finally, an overview of related work is provided.

2 A Functional View on Propositional Knowledge

2.1 Mappings between Attribute Spaces

Let A1, ..., An be finite sets of atomic properties, where each Ai corresponds to
a certain type of properties (e.g. colors), and the elements of Ai correspond to
labels describing particular properties of the corresponding type (e.g. red, green,
orange). The labels in Ai are assumed to be jointly exhaustive and pairwise
disjoint (JEPD). Note that each element (a1, ..., an) from the Cartesian product
A = A1 × ... × An then corresponds to a maximally descriptive specification
of the properties that some object may satisfy. We will refer to the sets Ai as
attribute spaces.

Example 2. Consider the following attribute spaces:

A1 = {cottage, bungalow, villa,mansion, bedsit, studio, one-bed-ap,

two-bed-ap, three-bed-ap, loft, penthouse}
A2 = {detached, semi-detached, row-house, apartment}
A3 = {very-small, small,medium, large, very-large}
A4 = {basic, comfortable, luxurious, exclusive}

We will sometimes use abbreviations of these labels, as e.g. in Example 1.

We consider propositional rules of the form β → γ, where β and γ are proposi-
tional formulas, built in the usual way from the set of atoms A1 ∪ ... ∪ An and
the connectives ∧ and ∨. We say that an element (a1, ..., an) ∈ A is a model of
a rule β → γ, written (a1, ..., an) |=A β → γ iff the corresponding propositional
interpretation {a1, ..., an} is a model of β → γ, where we see interpretations as
sets containing all atoms that are interpreted as true. For β1 → γ1 and β2 → γ2
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rules, we say that β1 → γ1 entails β2 → γ2, written β1 → γ1 |=A β2 → γ2

if for every ω ∈ A, ω |=A β1 → γ1 implies ω |=A β2 → γ2, and analogously
for entailment between sets of formulas. Note that the notion of entailment we
consider is classical entailment, modulo the assumption that the propositions in
each set Ai are JEPD.

In the following, we consider a rule base R over A which encodes knowledge
about how different attribute spaces are related to each other. In particular, we
consider subconcept relations (“every bungalow is a house”) and other catego-
rization rules (“a small, rural, detached house is a cottage”). Different types of
rules, such as association rules, causal rules, or deontic rules may require mech-
anisms that are different from the ones we present in this paper. Our goal is to
generate new categorization rules from a given set of categorization rules R, us-
ing generic meta-principles. In this respect, our aim is similar to that of System P
[9], where (other) generic meta-principles are used to support exception-tolerant
reasoning.

Let B1, ..., Bs be the attribute spaces whose labels occur in the antecedent of
rules in R, and C1, ..., Ck the attribute spaces whose labels occur in the conse-
quent of rules in R. Each knowledge base R can equivalently be expressed as a
function fR from subsets of B = B1 × ... × Bs to subsets of C = C1 × ... × Ck,
defined for X ⊆ B as

fR(X) =
⋂{

Y ∈ 2C |R |=A
( ∨

(x1,...,xs)∈X

s∧
i=1

xi

)
→
( ∨

(y1,...,yk)∈Y

k∧
i=1

yi

)}
In other words, knowing that the state of the attribute spaces in B is among
those in X , the possible states of the attribute space in C, given R, are exactly
those in fR(X).

Example 3. Consider the set of rules R from Example 1 and the attribute spaces
from Example 2, where we have B = A1×A2×A3 and C = A2×A3×A4. Then
we find that a large detached villa is either comfortable or luxurious:

fR({(villa, det, large)}) = {(det, large, comf), (det, large, lux)}

Similarly, we find that a bungalow is detached and medium-sized, while we find
no restrictions on the possible comfort levels:

fR({(bun, x, y) |x ∈ A2, y ∈ A3}) = {(det,medium, z) | z ∈ A4}

We may see fR as an approximate (i.e. incomplete) model of the world, which
may be refined as soon as new information becomes available. In particular, for
two 2B → 2C functions f and f ′ which are monotone w.r.t. set inclusion, we say
that f is a refinement of f ′, written f ≤ f ′, iff

∀X ⊆ B . f(X) ⊆ f ′(X) (5)

Hence at the semantic level, completing the rule base R amounts to refining the
corresponding function fR.
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2.2 Mappings between Conceptual Spaces

Our approach is motivated by the idea that knowledge about the cognitive mean-
ing of the labels in the attribute spaces can be used to refine the rule base R in an
appropriate way. In particular, we assume that only qualitative knowledge about
the cognitive relationships of the labels is available. This qualitative knowledge
can be given a precise, geometric meaning using the theory of conceptual spaces.

The theory of conceptual spaces [6] is centered around the assumption that
a natural property is represented as a convex region in some, typically high-
dimensional space. Formally, a conceptual space is the Cartesian product Q1 ×
...×Qm of a number of quality dimensions, each of which corresponds to a certain
quality (i.e. an atomic, cognitively meaningful attribute). A typical example is
the conceptual space of colors, which can be described using the qualities hue,
saturation and intensity. Labels to describe colors, in some natural language, are
then posited to correspond to convex regions in this conceptual space. Note that
while e.g. red may be an atomic property at the symbolic level, at the cognitive
level it is defined in terms of more primitive notions. As is common [7], we
will identify conceptual spaces with Euclidean spaces. Cognitive similarity can
then be determined by evaluating the Euclidean distance in the corresponding
conceptual space. Note that the context-dependent nature of concept similarity
can be addressed by appropriately rescaling the relevant quality dimensions [6].

Each attribute space Ai may be seen as a tessellation of some conceptual space
in convex regions. More generally, the elements of B and C will also correspond
to convex regions in conceptual spaces. We will denote these conceptual spaces
respectively by B and C. The mapping fR, induced by the knowledge base R, can
then be seen as a mapping from subsets of B to subsets of C. As explained above,
fR represents an approximate model of the real world. More precisely, we take
the view that fR is the approximation of an unknown mapping m from points of
B to points of C, i.e. for X ⊆ B, we then have reg(fR(X)) ⊇ {m(p) | p ∈ reg(X)},
where we write reg(X) for the geometric representation of X as a region in B
or C. The actual conceptual spaces B and C, and a fortiori the mapping m, are
inaccessible in most applications. For instance, we cannot assume that a precise
definition of a loft is available, or even an exhaustive enumeration of the qualities
on which such a definition would depend. On the one hand, we thus assume the
existence of a precise, but unknown mapping m between B and C. On the other
hand, given our finite vocabulary, we can only describe approximate models. Let
us write f̂ for the most informative approximation that can be described using
the available labels, i.e. f̂ is the 2B → 2C mapping defined for X ⊆ B by

f̂(X) = {y ∈ C |x ∈ X, m∗(reg(x)) ∩ reg(y) �= ∅}

where the 2B → 2C mapping m∗ is defined as the pointwise extension of m.
All we know about f̂ is that f̂ ≤ fR holds. By making further assumptions

about the nature of the mapping m, we will be able to derive further restrictions
on f̂ , which will, in turn, allow us to determine some refinement f̂R, satisfying
f̂ ≤ f̂R ≤ fR. In particular, the fact that we restrict R to contain only cate-
gorization rules means that the relevant quality dimensions of C are a subset
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of those of B. In other words, categorization rules, as we use the term, express
relationships that follow from the cognitive representation of concepts, rather
than e.g. from observations about the world. Consider, for instance, the rule
that bungalows are of medium size. The conceptual space in which bungalows
are defined includes a quality dimension which refers to the size, whereas the
conceptual space in which medium size is defined clearly is a unidimensional
space with size as the only quality dimension. On the other hand, the concep-
tual space in which detached house is defined may consist of the same qualities as
the conceptual space in which bungalow is defined, but the relative importance
of size may be higher in the latter case. This view suggests that m can be de-
scribed as a combination of operations such as projection and scaling, and more
in particular, that m satisfies most of the properties of an affine transformation.

We now consider betweenness and parallelism in B and C. In contrast to
distance or similarity, betweenness and parallelism remain invariant under affine
transformations. Using betweenness as primitive thus leads to an approach which
is more robust to context changes. Let us write bet(p, q, r) to denote that q lies
between p and r (on the same line), and par(p, q, r, s) to denote that the vectors
−→pq and −→rs point in the same direction. The fact that point q is between points p
and r means that for every point x it holds that d(q, x) ≤ max(d(p, x), d(r, x)),
and in particular, that whenever p and r are close to a prototype of some concept,
then q is close to it as well. In this sense, we may see bet(p, q, r) as a way to express
that whatever relevant properties p and r have in common, p and q have them
in common as well (identifying points in a conceptual space with instances). On
the other hand, par(p, q, r, s) intuitively means that to arrive at s, r needs to be
changed in the same direction as p needs to be changed to arrive at q. We also
consider a notion of comparative distance, writing d(p, q) < d(r, s) to denote
that the distance between p and q is smaller than the distance between r and
s. The validity of interpolative and extrapolative inference will be tied to the
following postulates (p, q, r, s ∈ B):

(bet1) bet(p, q, r)⇒ bet(m(p), m(q), m(r))
(bet2) bet(p, q, r) ∧ d(p, q) < d(r, q)⇒ d(m(p), m(q)) < d(m(r), m(q))
(par1) par(p, q, r, s)⇒ par(m(p), m(q), m(r), m(s))
(par2) par(p, q, r, s) ∧ d(p, q) < d(r, s)⇒ d(m(p), m(q)) < d(m(r), m(s))

Each of these four postulates are valid whenever m is an affine mapping. In this
paper, we mainly consider Postulate (bet1), as is discussed in detail in the next
section. The remaining postulates are briefly discussed in Section 4.

3 Basic Interpolative Reasoning

3.1 Betweenness

We assume that extra-logical information is available about the betweenness of
properties from the same attribute space. For example, we may intuitively think
of a studio to be between a bedsit and a one-bedroom apartment. Note that this
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notion of betweenness acts on labels, assumed to belong to an attribute space Ai,
and thus on convex regions, whereas (bet1) deals with betweenness of points.
As is well known, notions such as collinearity and betweenness can be extended
to regions in different ways [1]. We will consider the following two notions for
regions A, B, and C:

bet(A, B, C) iff ∃q ∈ B . ∃p ∈ A . ∃r ∈ C . bet(p, q, r)
bet(A, B, C) iff ∀q ∈ B . ∃p ∈ A . ∃r ∈ C . bet(p, q, r)

In other words, bet(A, B, C) holds if B overlaps with the convex hull of A ∪ C,
whereas bet(A, B, C) holds if B is included in this convex hull. Note in particular
that both relations are reflexive w.r.t. the first two arguments, in the sense that
bet(A, A, C), as well as symmetric, in the sense that bet(A, B, C) ≡ bet(C, B, A)
(and similar for bet). However, in contrast to points, transitivity does not nec-
essarily hold for regions, e.g. from bet(A, B, C) and bet(B, C, D) we cannot infer
that bet(A, B, D), which indeed agrees with the geometric interpretation in terms
of convex hulls. In the terminology of rough set theory [12], bet and bet corre-
spond to upper and lower approximations of betweenness. In the following, we
will often identify labels with the corresponding regions, writing e.g. bet(a, b, c)
for bet(reg(a), reg(b), reg(c)).

Example 4. We may consider that bet(three-bed-ap, loft, penthouse) holds but not
bet(three-bed-ap, loft, penthouse), which corresponds to the view that some, but
not all lofts are conceptually between a three-bedroom apartment and a pent-
house. On the other hand, we may consider that all studios are between bedsits
and one-bedroom apartments, and thus that both bet(bedsit, studio, one-bed-ap)
and bet(bedsit, studio, one-bed-ap) hold.

Regarding the applicability of our approach, an important question is where
the specification of bet and bet comes from. Depending on the application, such
relations may be specified by an expert, or derived indirectly from available meta-
data [17]. For instance, [7] suggests to start from pairwise similarity judgements
between instances, and use multi-dimensional scaling to obtain coordinates for
them in a Euclidean space. Representations of concepts can then be obtained
by determining the corresponding Voronoi tessellation, after which the relations
bet and bet can be evaluated by straightforward geometric calculations. Another
method might be to consider that instance q is between instance p and instance
r if for every known instance x, it holds that d(q, x) ≤ max(d(p, x), d(r, x)), and
then lift this betweenness for instances to concepts, by considering that bet(a, b, c)
(resp. bet(a, b, c)) holds for concepts a, b and c iff some (resp. every) known in-
stance of b is between some known instance of a and some known instance of c.
Such data-driven approaches rely on the assumption that a lot of information is
available about the relationship between labels from the same attribute space,
while little information is available about the relationship between labels from
different attribute spaces. It is also interesting to note that such approaches con-
vert similarity scores, which are sensitive to changes in context, to betweenness
information, which is in principle robust against context changes.
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3.2 Semantic Characterization

To perform interpolative reasoning based on rules with conjunctions in the an-
tecedent, we need to lift the relations bet and bet to betweenness relations on
Cartesian products of attribute spaces. Here the intuition of bet and bet as upper
and lower approximations of betweenness becomes important. Indeed, in general,
betweenness for a vector of labels cannot be reduced to betweenness for the labels
in the respective components. In particular, notice that when bet(a1, b1, c1) and
bet(a2, b2, c2) hold, we do not necessarily have that (b1, b2) is between (a1, a2)
and (c1, c2). Indeed, even for points in a Euclidean space of dimension two or
more, betweenness in each dimension does not entail collinearity. First consider
a Cartesian product D1× ...×Dl of attribute spaces such that no two attribute
spaces Di and Dj rely on the same quality dimensions, i.e. such that every ele-
ment of D1×...×Dl corresponds to a non-empty region in some conceptual space.
We call such attribute spaces orthogonal (expressing logical independence). The
relation bet is then defined for elements of D1 × ...×Dl as

bet(a,b, c) iff a = b ∨ b = c ∨
(
∃j . (∀i �= j . ai = bi = ci) ∧ bet(aj , bj , cj)

)
where we write e.g. ai for the ith component of a. Note that this is a conserva-
tive approach, and that indeed bet can still be seen as a lower approximation of
betweenness, under the assumption of orthogonality. On the other hand, when
some attribute spaces rely on the same quality dimensions, nothing can be de-
rived about the betweenness of elements from D1× ...×Dl, except for the trivial
cases where b = a or b = c.
Example 5. The quality dimensions underlying attribute spaces A1 and A2 from
Example 2 clearly overlap. For example, it is not possible for a bungalow to also
be an apartment, or for a loft to be a row-house. On the other hand, we may
consider that attribute spaces A2 and A3 are orthogonal. Note that this orthog-
onality holds irrespective of whether there actually exist apartments that are
very-large. What is important is that nothing in the definition of an apartment
prevents it from possibly being very-large. As a result, we can derive e.g. that

bet
(
(apartment, small), (apartment, large), (apartment, very-large)

)
holds but not e.g.

bet
(
(bungalow, detached), (bungalow, semi-detached), (bungalow, row-house)

)
For any Cartesian product D1 × ...×Dl of attribute spaces, bet is defined as

bet(a,b, c) iff ∀j . bet(aj , bj , cj)

which is in accordance with the idea of bet as an upper approximation of between-
ness. We can now consider the sets bet(X1, X2) and bet(X1, X2) of all elements
between X1 and X2, with X1 and X2 subsets of D1 × ...×Dl:

bet(X1, X2) ={b |a ∈ X1, c ∈ X2, bet(a,b, c)}
bet(X1, X2) ={b |a ∈ X1, c ∈ X2, bet(a,b, c)}

∪ {(b1, ..., bi−1, x, bi+1, ..., bl) |b ∈ bet(X↓i
1 , X↓i

2 ), 1 ≤ i ≤ l, x ∈ Di}
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where

(a1, ..., ai−1, ai+1, ..., al) ∈ X↓i
j iff ∀x ∈ Di . (a1, ..., ai−1, x, ai+1, ..., al) ∈ Xj

Intuitively, b is in bet(X1, X2) if it is between (w.r.t. bet) some element from X1

and some element from X2. The definition of bet(X1, X2) is slightly more complex
to correctly address the case where some of the attribute spaces D1, ..., Dl are not
orthogonal. In such a case, bet(a,b, c) will only hold for b = a or b = c. How-
ever, when (a1, ..., ai−1, ai+1, ..., al) ∈ X↓i

1 and (c1, ..., ci−1, ci+1, ..., cl) ∈ X↓i
2 , we

know that (b1, ..., bi−1, x, bi+1, ..., bl) will geometrically be between X1 and X2

for every x ∈ Di if (b1, ..., bi−1, bi+1, ..., bl) is between (a1, ..., ai−1, ai+1, ..., al)
and (c1, ..., ci−1, ci+1, ..., cl). Along similar lines, it should be noted that e.g. b
may geometrically be between a1∪...∪ap and c1∪...∪cq even if b is not between
ai and cj for any i and j. In this sense, the definition of bet(X1, X2) is again
conservative, and may be further refined if information is available about the
betweenness of disjunctions of labels.

Example 6. Let X1 = {(x, det, small) |x ∈ A1} and X2 = {(x, det, large) |x ∈
A1}, and assume that A2 and A3 are orthogonal (considering that the size of a
house is irrelevant in deciding whether it is e.g. detached or not), while A1 and
A2 are not. First note that

bet({(det, small)}, {(det, large)}) = {(det, small), (det,medium), (det, large)}

from which we find bet(X1, X2)={(x, det, y) |x ∈ A1, y ∈ {small,medium, large}}
From Postulate (bet1), we know that for all A1, A2 ∈ 2B

m∗(bet(A1, A2)) ⊆ bet(m∗(A1), m∗(A2))

where bet(A1, A2) is the true set of points between A1 and A2 and m∗ is the
pointwise extension of m as before. As a result, we also find that for X1, X2 ∈ 2B

f̂(bet(X1, X2)) ⊆ bet(f̂(X1), f̂(X2)) (6)

This observation allows us to improve our approximation of f̂ to the most con-
servative refinement f̂R which satisfies the constraint (6), i.e. we define f̂R to be
the largest fixpoint, w.r.t. the ordering ≤ defined in (5), of

f̂R({x})=fR({x}) ∩
⋂
{bet(f̂R(Y ), f̂R(Z))|x∈ bet(Y, Z)}

and f̂R(X) =
⋃

x∈X f̂R({x}). The existence of this unique largest fixpoint follows
from the well-known Knaster-Tarski theorem.

Example 7. Let us determine the comfort level of a medium-sized detached villa:

f̂R({(villa, det,med)})
⊆ f̂R(bet(X1, X2)) ⊆ bet(f̂R(X1), f̂R(X2)) ⊆ bet(fR(X1), fR(X2))

= bet({(det, small, bas), (det, small, comf)}, {(det, large, comf), (det, large, lux)})
= {(det, x, y) |x ∈ {small,med, large}, y ∈ {bas, comf, lux}}
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where X1 and X2 are as defined in Example 6. Furthermore, we also have

f̂R({(villa, det,med)}) ⊆ fR({(villa, det,med)}) = {(det,med, x) |x ∈ A4}

Together we thus find

f̂R({(villa, det,med)}) ⊆ {(det,med, bas), (det,med, comf), (det,med, lux)}

3.3 Syntactic Characterization

In this section, we develop a syntactic counterpart of the mapping f̂R. First, we
introduce the connectives ⊕ and ⊕ which capture the upper and lower approx-
imations of betweenness, and which act on formulas in disjunctive-normal form
(DNF). First we consider conjunctions of atoms β = b1∧...∧bl and γ = c1∧...∧cm,
where each bi and cj belongs to some attribute space. Recall that such a conjunc-
tion of atoms is consistent iff it contains at most one atom from each attribute
space. We define

β⊕γ ≡ β ∨ γ ∨ (δ1 ∧ δ2 ∧
∨
{b ∈ Ai | bet(a, b, c)})

if (i) the attribute spaces underlying b1, ..., bl and c1, ..., cl are orthogonal, (ii) β
and γ are consistent and (iii) a, c, δ1 and δ2 exist such that β ≡ δ1∧a, γ ≡ δ2∧c,
where a and c belong to the same attribute space and δ1 ∧ δ2 is consistent.
Otherwise, we define β⊕γ ≡ β ∨ γ. If β and γ are consistent, connective ⊕ is
defined as

β⊕γ ≡
∨
{y1 ∧ ... ∧ ys | yi ∈ Ai ∧ bet(xi, yi, zi)}

where xi, zi ∈ Ai, β ≡ δ1 ∧ x1 ∧ ... ∧ xs, γ ≡ δ2 ∧ z1 ∧ ... ∧ zs, and none of the
atoms from δ1 is in the same attribute space as an atom from δ2. If β or γ is
inconsistent, we define β⊕γ ≡ β ∨ γ. Finally, we define

(β1 ∨ ... ∨ βn)⊕(γ1 ∨ ... ∨ γm) ≡
∨
i,j

(βi⊕γj)

(β1 ∨ ... ∨ βn)⊕(γ1 ∨ ... ∨ γm) ≡
∨
i,j

(βi⊕γj)

We now define an interpolative inference relation �i as:

1. If R |=A β → γ then R �i β → γ.
2. If R �i β1 → γ1 and R �i β2 → γ2 then R �i (β1⊕β2)→ (γ1⊕γ2)
3. If R �i β1 → γ1, R �i β2 → γ2 and {β1 → γ1, β2 → γ2} |=A β3 → γ3 then

R �i β3 → γ3

The first rule ensures that �i refines the classical consequence relation, while the
second rule allows for a form of interpolation: for every β between β1 and β2,
we should be able to conclude that something between γ1 and γ2 is the case.
Finally, the third rule ensures that the set of conclusions of R is closed under
classical deduction (modulo A).
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Example 8. Consider again the comfort level of a medium-sized detached villa.
From the rules in Example 1, we find

R �i small ∧ det→ bas ∨ comf R �i large ∧ det→ comf ∨ lux

which together leads to

R �i (small ∧ det)⊗(large ∧ det)→ (bas ∨ comf)⊗(comf ∨ lux)

which is equivalent to R �i (small∨med∨ large)∧det→ bas∨comf∨ lux entailing
R �i villa ∧ det ∧med→ bas ∨ comf ∨ lux, which indeed corresponds to what we
have found in Example 7.

In general, the following soundness and completeness result can be shown.

Proposition 1. Let X ⊆ B and Y ⊆ C. It holds that f̂R(X) ⊆ Y iff

R �i
( ∨

(x1,...,xs)∈X

∧
i

xi

)
→
( ∨

(y1,...,yk)∈Y

∧
i

yi

)
Somewhat surprisingly, the computational complexity of interpolative inference
is quite high in general.

Proposition 2. Let R be as before and let b1, ..., br and c be atoms from different
attribute spaces. The problem of deciding whether R �i b1 ∧ ... ∧ br → c is
PSPACE-hard.

Having a few large attribute spaces is computationally more desirable than hav-
ing a large number of small attribute spaces. In particular, if the number of
attribute spaces is bounded by a constant, then A contains a polynomial num-
ber of vectors, from which we can prove the following result.

Proposition 3. Let R be as before, and let φ and ψ be propositional formulas
over A. If the number of attribute spaces is bounded by a constant, the problem
of deciding whether R �i φ→ ψ is in P .

4 Refinements and Extrapolative Reasoning

The approach that was presented in the previous section suggests a general
scheme for studying interpolative and extrapolative inference: starting from par-
ticular constraints on the mapping m and a particular type of ontological back-
ground information, we may derive constraints on f̂ , which translate to con-
straints on fR and thus lead to a particular inference relation. In this section,
we further illustrate this general idea.

Considering the rules of Example 1, then nothing can be concluded about
the size of a cottage using the inference relation �i. However, if we consider
bungalows to be between cottages and mansions, then the fact that bunga-
lows are known to be smaller than mansions should intuitively enable to con-
clude that cottages are smaller than bungalows. The reason that �i falls short
in this respect is that such conclusions depend on extrapolation rather than
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interpolation. Such extrapolative inferences also rely on Postulate (bet1), but
they require background knowledge of a slightly different nature. Specifically, let
us define bet’ as

bet’(A, B, C) iff ∀p ∈ A . ∃q ∈ B . ∃r ∈ C . bet(p, q, r)

Note that bet’(A, B, C) expresses some form of betweenness which focuses on
area A instead of B. Accordingly, the role played by the convex hull in Section 3
is replaced by a notion of conical extension. For b, c ∈ B and y, z ∈ C, we define

con(y, z) = {x | bet(x, y, z)} con(b, c) = {a | bet’(a, b, c)}

where geometrically e.g. a ∈ con(b, c) if region a is included in a conical extension
of region b, in the directions determined by region c. Postulate (bet1) entails
that for all b, c ∈ B

f̂(con(b, c)) ⊆ con(f̂(b), f̂(c))

which leads to an extrapolative inference relation �e such that for the rules of
Example 1, we find

R �e cottage→ small ∨medium

due to the rules bungalow → medium and mansion → very-large. The idea of
conical extension can be generalized to reasoning based on information about
parallel directions (i.e. analogies), assuming Postulate (par1). The relation par
can be extended to regions in four different ways, depending on which of the
four arguments we focus on. In each case, we get par(A, B, C, D) iff

∃p ∈ A, q ∈ B, r ∈ C, s ∈ D . par(p, q, r, s)

If we focus on the first argument, for instance, we get par(A, B, C, D) iff

∀p ∈ A . ∃q ∈ B, r ∈ C, s ∈ D . par(p, q, r, s)

The corresponding notion of conical extension is given for x, y, z ∈ C and b, c, d ∈
B by

con(x, y, z) = {u | par(u, x, y, z)} con(b, c, d) = {a | par(a, b, c, d)}

From (par1), we can derive the following constraint:

f̂(con(b, c, d)) ⊆ con(f̂(b), f̂(c), f̂(d)) (7)

Example 9. Consider the following rules:

R = {mansion→ excl, bungalow→ comf, three-bed-ap→ lux}

Assuming furthermore that par(penthouse, three-bed-ap,mansion, bungalow), we
obtain from (7) an analogical-like inference relation �a which is such that R �a

penthouse → lux ∨ excl. Note in particular how the first two rules together de-
termine the direction of the change in comfort level when going from mansion
to bungalow, which was asserted to be the same as when going from penthouse
to three-bed-ap.
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Finally, note that using Postulates (bet2) and (par2), refined inference rela-
tions can be obtained, which take comparative distance information into account.

5 Related Work

The problem of interpolation from rules, and more generally similarity-based rea-
soning, has mainly been studied in a quantitative way, based on fuzzy set theory
[15,3] or neural networks [18] among others. In the propositional setting, the idea
of interpolation and extrapolation has been studied in [4], but from a rather dif-
ferent angle. In particular, the paper discusses how the belief that certain propo-
sitions hold at certain moments in time can be extended to beliefs about other
moments in time, using persistence assumptions as a starting point. The general
idea of augmenting the incomplete specification of a function based on some ratio-
nality postulates also seems related to some of the work on multi-criteria decision
making, such as the well-known family of ELECTRE methods [14], or for instance
the approach presented in [8]. In contrast to our paper, the aforementioned works
do not rely on any ontological information (other than some meta-knowledge in
the form of rationality postulates). On the other hand, the importance of extra-
logical information is well-recognized in settings such as belief revision (e.g. in the
form of epistemic entrenchment orderings). Recently, the use of ontological back-
ground information in the context of merging conflicting multi-source information
has also been advocated [16]. Apart from the work on conceptual spaces, the idea
of assuming a spatial representation to reason about concepts also underlies [11],
where an approach to integrate heterogeneous databases is proposed based on spa-
tial relations between concepts. Finally, there is some resemblance between our
inference procedure and the early work on qualitative reasoning about physical
systems [5,10], which deal with monotonicity constraints like “if the value of x in-
creases, then (all things being equal) the value of y decreases”. Our inference pro-
cedure differs from these approaches as the domains we reason about do not need
to be linearly ordered. Moreover, in the special case of linearly ordered domains,
we assume no prior information about which partial mappings are increasing and
which are decreasing.

6 Conclusions

We have studied the problem of interpolating and extrapolating propositional
knowledge about concepts, as a vehicle to formalize commonsense approaches
for dealing with incompleteness. We have introduced a general semantics, which
relates such inferences to the existence of an affine mapping between conceptual
spaces. A knowledge base is then seen as an approximation of this mapping,
which can be further refined by exploiting different types of ontological back-
ground information with a geometric flavor. We have zoomed in on one particu-
lar case, namely interpolative reasoning based on knowledge about betweenness
of properties. We have syntactically characterized the resulting inference rela-
tion, and analyzed the computational complexity. Finally, we have outlined how
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information about betweenness or parallelism can be exploited to support extra-
polative inference. In that respect, a deeper investigation of links between the
proposed approach and analogical reasoning [13] would be worth of interest.
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the Research Foundation – Flanders (FWO).
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Abstract. In a multi-agent system (MAS), an agent may often receive
information through a potentially large number of informants. We will
consider the case where the informants are independent agents who have
their own interests and, therefore, are not necessarily completely reliable;
in this setup, it will be natural for some agent to believe an informant
more than other. The use of the notion of credibility will allow agents to
organize their peers in a partial order that will reflect the relative credi-
bility of their informants. It is also natural that the assigned credibility
will change dynamically, leading to changes in the associated partial or-
der. We will investigate the problem of updating the credibility order to
reflect the change in the perceived agent’s credibility, seeking to define
a complete change theory over the agents’ trust and reputation. The fo-
cus will be on the characterization and development of change operators
(expansion, contraction, and revision) for modeling the dynamics of this
partial order of agents. These operators, characterized through postu-
lates and representation theorems, can be used to dynamically modify
the credibility of informants to reflect a new perception of informant’s
plausibility, or admit the arrival of a new agent to the system.

1 Introduction and Motivation

In a multi-agent system (MAS), an agent may often receive information through
informants. Although the number of these informants is dependent on the par-
ticular application, many real life situations present themselves as web related,
thus involving a potentially large number of informant agents. For instance, the
Amazon Mechanical Turk is an example of crowdsourcing [5] that coordinates
the use of human intelligence to perform tasks that computers are unable to do
yet, like finding specific objects in pictures. Clearly, this complex entity can be
perceived as a massive multi-agent system where there is a need for establishing
a partial order among the capabilities of the agents with the goal of maximizing
the quality and precision of the result. The partial order among the participants
could be affected by the result of training tasks or just by the performance of
the agents. This in turn motivates the work on the formalization of the handling
of the set of information providers, considering the changing situation regard-
ing the perceived quality of the results obtained. The crowdsourcing model for
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solving tasks can be applied to many problems where the agents in a massive
multi-agent system can be seen as competing towards finding the best solution.

Multi-Source Belief Revision (MSBR) can be defined as belief revision per-
formed by a single agent that can obtain new beliefs from multiple sources of
information. In [18] we have introduced an epistemic model for MSBR that
considers both beliefs and meta-information representing the credibility of the
belief’s source. We have investigated how the agent’s belief base can be ratio-
nally modified when the agent receives information from other agents that can
have different degrees of credibility. Thus, the main contribution was the defini-
tion based on the AGM model [1] of different belief change operators that use
the credibility of informant agents in order to make decisions regarding what
information prevails. These operators were defined through constructions and
representation theorems.

It is important to note that the revision operator that we proposed in [18]
is similar to the revision operator proposed in [3]. However, these operators are
built in a different way. In [3], the epistemic state is represented by a possibility
distribution which is a mapping from the set of classical interpretations or worlds
to the [0,1] interval. This distribution represents the degree of compatibility of
the interpretations with the available information and the revision is done over
the possibility distribution. This revision modifies the ranking of interpretations
so as to give priority to the input information.

In [18] we have required a total order among agents, but we have shown that
this assumption can be generalized by considering a partial order over the set
of agents. Also, we have assumed that this order is fixed; however, we have
observed that the order relation can be changed without affecting the definition
of the operators.

In this paper, we will extend the applications of the framework proposed
in [18] considering environments in which the credibility of agents varies. That
is, we will investigate the problem of updating the partial order among agents
to reflect the change in credibility, seeking to define a complete change theory
over the agents’ trust and reputation. The use of a credibility order will allow
agents to rank their peers according to the credibility they assign to each other.
In [18], this order was used to define a rational way to compare beliefs for decision
making during the knowledge revision process.

Our goal is therefore to formalize change operators over the credibility or-
der. These operators will provide the capability of dynamically modifying the
credibility of informants to reflect a new perception of the informant’s plausibil-
ity, or extend the set of informants by admitting the arrival of a new agent to
the system. While the concepts of trust and reputation are complex, we will
take the position here that they can be seen as a kind of credibility value
that the agents assign to each other. The approach taken here is to combine
belief revision formalisms with trust and reputation maintenance techniques
for agents in a distributed environment. Although there exist relevant works
in both areas (e.g., Multi-Agent Belief Revision [14,13,10,6] and Trust and
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Reputation [15,16,9,2]) using these techniques independently, their combination
in one formalism is novel.

The need for such a formalism can be exemplified by a real-world scenario.
Consider the case of an agent that needs weather information. It is highly possible
that there will be several weather-forecasting informants available to the agent,
e.g., there might be a number of web pages providing such services. However,
given a particular time and date, different informants could predict different
conditions. In such a case the agent would act based on the forecast of the most
reliable informant and then use historic information on the reliability of the
forecasts to update these relations.

Since its publication, the AGM paradigm has been widely accepted as a stan-
dard framework for belief revision. With the aim of modeling the dynamics of
trust and reputation of agents in a system, and following AGM’s style, we will
develop change operators (expansion, contraction, and revision). This will give
the agents the capability of updating the order relation representing the reputa-
tion of their peers. AGM’s impact was due in part to the representation theorems
(also called axiomatic characterizations) of contraction and revision, characteriz-
ing operations in terms of algorithms and a set of postulates. In the same spirit,
the operators proposed in this research will be characterized by postulates and
representation theorems. Work relevant to this effort began in [17].

An interesting critique to AGM’s formalism was put forward in [11]. The
authors observed that there is no reason to believe that the relative strength of
the agent’s beliefs will be maintained after a change. This implies that iterated
belief change in the AGM framework as originally presented in [1] cannot be
correctly defined. There are some models of iterated belief change [4,7,8] that
generate a new order from the previous order, but their capabilities are limited.
One of the main advantages of the model proposed in [18] (defined on belief
bases) is that, after a belief change is effected, new changes can be applied
because the plausibility of beliefs is preserved after a change.

The model presented here is more general because the change in the belief’s
order can be produced for different reasons:

– the addition of a new informant,

– the elimination of an informant, or

– a change in the credibility order among the informants.

That is, a belief change is not the only way in which the credibility order of
informants can be altered and, consequently not the only way the strength of
beliefs can be affected.

The rest of this paper is structured as follows. Next, in Section 2 we introduce
a model for representing plausibility relations among informants in the context
of a multi-agent system. In Section 3 we define the change operators on the
credibility order: expansion, contraction, and revision. Finally, in Section 4 we
offer our conclusions and the future work that lies ahead.
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2 Representation of Informant Credibility Relations

Let us begin assuming that we have an universal set of informants, A, and that,
of these informants, some are to be considered more reliable than others. This
means that in any case when two distinct informants provide an agent with
contradictory information the information provided by the more credible will be
preferred. Thus, the agent must have a mechanism to order the set A. We begin
its formalization with the following structure.

Definition 1. Given a set of informants A, a generator set over A is a binary
relation G on A, (G ⊆ A2). An informant Ai is less credible than an informant
Aj according to G if (Ai, Aj) ∈ G∗, where G∗ represents the reflexive transitive
closure of G.

Graphically, we will represent a generator set as a directed graph, where the in-
formants in A label the nodes. The tuples in G are represented as directed arcs:
for each tuple (Ai, Aj) ∈ G we add an arc from node Ai to node Aj . For ex-
ample, in Figure 1 we can see the graphic representation of the generator set G =
{(A1, A3), (A1, A2), (A2, A6), (A3, A4), (A3, A5), (A4, A7), (A5, A7), (A6, A8), (A7,
A8)}.

A6 

A1 

A4 A5 

A8 

A7 

A2 

A3 

Fig. 1. A graph representation of a generator set

The relation G∗, as the reflexive transitive closure of G, is the smallest pre-
order containing G. Although it is desirable that G∗ be a partial order over A;
the preceding definition does not fulfill the requirement. We address this matter
in the following definition.
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Definition 2. A generator set G ⊆ A2 is said to be sound if G∗ is a partial
order over A.

Example 1. For example, the generator set G1 = {(A1, A2), (A2, A3), (A1, A4)}
is sound. However, G2 = G1 ∪ {(A3, A1)} is not sound because (A1, A3) ∈ G∗

2

and (A3, A1) ∈ G∗
2, violating the antisymmetry condition for partial orders.

For a relation to be a partial order it must obey reflexivity, antisymmetry and
transitivity. Given a generator set G its reflexive transitive closure, G∗, will obey
reflexivity and transitivity. However if antisymmetry is not respected then there
is at least one pair of distinct informants, Ai and Aj such that (Ai, Aj), (Aj , Ai) ∈
G∗. This would mean that both Ai is less trustworthy than Aj and that Aj is
less trustworthy than Ai. Since these beliefs are contradictory, believing them
simultaneously would lead the agent to an inconsistent belief status. For this
reason we require for the generator set to be sound.

Throughout the discussions in the remainder of this paper we will sometimes
speak of a tuple as being entailed by a generator set. This is a shorthand for
saying that the tuple belongs to the reflexive transitive closure of the generator
set, formally:

Definition 3. We will say that a tuple (Ai, Aj) is entailed by a generator set
G if (Ai, Aj) ∈ G∗.

Example 2. The tuple (A1, A4) is entailed by the generator set G = {(A1, A2),
(A2, A3), (A3, A4)}. When we represent a generator set graphically we will show
entailed tuples of interest by using a dashed line as can be seen in Figure 2 (a).

A generator set may contain tuples that, if removed, would still be entailed by
the remaining tuples. In this case we say that the tuple is redundant with respect

(a) (b) 

A2 

A3 

A4 

A1 

A2 

A3 

A4 

A1 

Fig. 2. (a) An entailed tuple, (b) A redundant tuple
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to the generator set. We may also say that the generator set itself is redundant
because it contains a redundant tuple. Formally:

Definition 4. Given a tuple (Ai, Aj) in a generator set G, it is said that (Ai, Aj)
is redundant in G if (Ai, Aj) ∈ (G \ {(Ai, Aj)})∗. A generator set is said to be
redundant if it contains a redundant tuple. Otherwise, the generator set is said
to be non-redundant.

Example 3. The generator set G = {(A1, A2), (A2, A3), (A3, A4), (A1, A4)} is
redundant because it contains the redundant tuple (A1, A4) (See Figure 2 (b)).

3 Change Operators for Credibility Partial Order

In this section we will consider the definition of change operators on the cred-
ibility partial order. We will define operators for expansion, contraction, and
revision, providing the appropriated postulates and constructions for each of
them.

3.1 Expansion Operator for Credibility

Let us assume an agent learns that, of a pair of informants, one is more reliable
than the other. This would warrant the modification of its knowledge accord-
ingly. For this purpose, we define the operator ⊕ : P(A2)× A2 −→ P(A2). This
operator adds new tuples to a generator set in order to establish relations be-
tween informants. Given a pair of informants and a generator set, this function
returns a new generator set in which said agents are now related. According to
this new generator set we may say that the first informant is “less reliable” than
the second.

Postulates for the Expansion Operator

E1-Success: (Ai, Aj) ∈ (G⊕(Ai, Aj))∗

Determining new relations among informants is a costly process for the agent.
Consequently, a desirable property of expansions is that the new relation learnt
will be a member of the agents beliefs.

E2-Inclusion: G∗ ⊆ (G⊕(Ai, Aj))∗

This postulate reflects the fact that the agent will not loose beliefs during the
expansion.

E3-Vacuity: if (Ai, Aj)∈G∗ then (G⊕(Ai, Aj))∗=G∗

What this postulate states is that the equality between the original set and the
product of the expansion will occur when the expansion is by a relation already
entailed by the generator set, i.e., there is no information to be lost or gained
by the addition of redundant data.

E4-Commutativity: ((G⊕(Ak, Al))⊕(Ai, Aj))∗ = ((G⊕(Ai, Aj))⊕(Ak, Al))∗

The order in which tuples are added to the generator set does not affect the
final, closed relation. This is important because sometimes we will use G⊕H as
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a shorthand for the expansion of G by every tuple in H . Such is the case of the
following postulate.

E5-Extensionality: ifH∗=I∗ then (G ⊕H)∗=(G ⊕ I)∗

The expansion of a generator set by two sets whose reflexive transitive closure
is equal yields generator sets whose closure is also equal.

E6-Conditional Soundness Preservation: if G is a sound generator set and
(Aj , Ai) /∈ G∗ then G⊕(Ai, Aj) is a sound generator set.

Construction
The construction of expansions on credibility relations is formally defined as
follows.

Definition 5. Given a pair of informants Ai, Aj ∈ A and generator set G ⊆ A2,
we define the expansion of G by (Ai, Aj) as

G⊕(Ai, Aj) = G ∪ {(Ai, Aj)}

Expansion does not preserve soundness per se, but is conditioned as stated in the
postulate. This property is a consequence of the definition of sound generator
sets and the definition of expansion that we have provided.

3.2 Contraction Operator for Credibility

At the beginning of the previous subsection, we said that an agent may need
to assert the fact that one informant is less reliable than another. In a similar
fashion the opposite may also become true, i.e., we may wish to reflect the fact
that an informant is no longer more reliable than another. For this purpose we
define a contraction operator ) : P(A2)× A2 −→ P(A2).

Assume we have a pair of informants Ai and Aj and a generator set G such
that (Ai, Aj) ∈ G∗. The basic task of the ) function is to construct a new
generator set in which this is no longer the case while losing as little information
as possible. However we cannot simply remove the pair (Ai, Aj) from G. In fact,
(Ai, Aj) may not even be in G. Care must be taken to also remove pairs that,
through transitivity, would entail the pair (Ai, Aj) in G∗. As long as there is a
path in the generator set from Ai to Aj , (Ai, Aj) will be found in its transitive
closure. It is therefore necessary to eliminate a set of pairs so that no path is left
from Ai to Aj in G. This set will be required to be minimal.

Postulates for the Contraction Operator

C1-Success: if Ai �= Aj then (Ai, Aj) /∈ (G)(Ai, Aj))∗

A tuple cannot be entailed by the generator set resulting from its contraction. In
the case of Ai = Aj , the tuple will trivially be in the reflexive transitive closure
of any generator set due to reflexivity.

C2-Inclusion: (G)(Ai, Aj))∗ ⊆ G∗
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If a tuple is entailed by a generator set, then its contraction by said tuple removes
at least one element from the set: the tuple itself. The sets are equal in the case
in which (Ai, Aj) �∈ G∗.

C3-Uniformity: if for all G′ ⊆ G, (Ai, Aj) ∈ (G′)∗ if and only if (Ap, At) ∈
(G′)∗ thenG)(Ai, Aj) = G)(Ap, At).
This property establishes that if two tuples (Ai, Aj) and (Ap, At) are entailed
by exactly the same subsets of G, then the contraction of G by (Ai, Aj) should
be equal to the contraction of G by (Ap, At).

C4-Core retainment: If (Ap, At) ∈ G and (Ap, At) �∈ G ) (Ai, Aj) then
there exist a set G′ such that G′ ⊆ G, (Ai, Aj) �∈ (G′)∗ but (Ai, Aj) ∈ (G′ ∪
{(Ap, At)})∗.
The tuples that we give up in order to contract G by (Ai, Aj) should all be such
that they contributed to the fact that G, but not G− (Ai, Aj), entails (Ai, Aj).

C5-Soundness Preservation: if G is a sound generator set then G)(Ai, Aj)
is a sound generator set.

Construction
In this subsection we will introduce a construction for contractions on credibility
relations. However, before we do so, we will need to present a few concepts.

First let us briefly review the concept of path. We say that a set of tuples P
is a path from Ai to Aj if (Ai, Aj) ∈ P , or (Ai, Ak) ∈ P and there is a path from
Ak to Aj in P . We say that P is a nonredundant path from Ai to Aj if it is a
path from Ai to Aj and there is no path P ′ from Ai to Aj , such that P ′ ⊂ P .

Definition 6. Given a pair of informants Ai, Aj ∈ A and generator set G ⊆
A2, we define the path set from Ai to Aj in G, and we will note it Gij , as
Gij = {C ⊆ G : C is a nonredundant path from Ai to Aj in G}.

Notice that according to this definition the path set from Ai to Aj in a generator
set G is a set of sets. Each set represents a path from Ai to Aj . In the contraction
of G by (Ai, Aj), in order to avoid the occurrence of this tuple, none of these
paths may remain complete. Therefore, we need a selection mechanism to decide
which tuples will be erased from each path in Gij .

Definition 7. Given a path set Gij , we say that γ is a cut function for Gij if
and only if:

1. γ(Gij) ⊆
⋃

(Gij).
2. For each C ∈ Gij , C �= ∅, C ∩ γ(Gij) �= ∅.

Now we may present our definition of contraction.

Definition 8. Given a pair of informants Ai, Aj ∈ A and generator set G ⊆ A2,
we define the contraction for credibility of G by (Ai, Aj) as

G)(Ai, Aj) = G \ γ(Gij)
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It is important to note that we have defined a family of contraction operators
following other established formalisms of belief revision [1,12]. The specification
of the cut function will allow the introduction of different possibilities.

Example 4. Consider the generator set G = {(A1, A2), (A1, A3), (A1, A8), (A8,
A2), (A2, A3)} of the agent A8. Then, suppose A8 wants to contract G by
(A1, A2) using “)”. Note that, there exist two paths from A1 to A2 in G.
That is, G12 = {{(A1, A2)}, {(A1, A8), (A8, A2)}}. Then, in order to avoid the
occurrence of (A1, A2), the cut function selects the tuples that will be erased
from each path in G12. Note that in the second path the cut function can se-
lect the two tuples or either one of these, depending on its specification. Sup-
pose that (A1, A8) is selected by the cut function from the second path. Then,
G)(A1, A2) = {(A1, A3), (A8, A2), (A2, A3)} (See Figure 3).

A2 A3A2 A3

G = G (A2, A1)=

A8 A1A8 A1

Fig. 3. Contraction operator

Notice that here, in contrast to the case of expansion, the soundness preser-
vation property of contraction is not conditioned. This is due to the way we
define contraction. Since contraction is basically a process of elimination, it is
impossible for this operation to introduce cycles if there were none with which
to begin.

Next, we give a proposition used in the representation theorem of contraction
operator (Theorem 1). This Theorem gives a summary of the properties of the
contraction operator.

Proposition 1. Gij = Gpt if and only if for all subsets G′ of G: (Ai, Aj) ∈
(G′)∗ if and only if (Ap, At) ∈ (G′)∗.

Proof
We will use reductio by absurdum.
(⇒) Suppose that there is some subset B of G such that (Ai, Aj) ∈ B∗ and
(Ap, At) �∈ B∗. Then, there is some path P of Gij such that P ⊆ B. Since
P ⊆ B and (Ap, At) �∈ B∗, we have (Ap, At) �∈ P ∗, so that P �∈ Gpt. Then
P ∈ Gij and P �∈ Gpt contrary to Gij = Gpt.
(⇐) Suppose that Gij �= Gpt. We may assume that there is some P ∈ Gij such
that P �∈ Gpt. There are two cases:

- (Ap, At) �∈ P ∗: then we have (Ai, Aj) ∈ P ∗ and (Ap, At) �∈ P ∗, showing that
the conditions of the proposition are not satisfied.
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- (Ap, At) ∈ P ∗: then it follows from P �∈ Gpt that there is some P ′ such
that P ′ ⊂ P and (Ap, At) ∈ (P ′)∗. We than have (Ap, At) ∈ (P ′)∗ and
(Ai, Aj) �∈ (P ′)∗, showing that the conditions of the proposition are not
satisfied.

Theorem 1. Let G be a generator set and let “)” be a contraction operator.
“)” is a contraction for credibility for G iff it satisfies C1, ..., C4, i.e., it
satisfies success, inclusion, uniformity and core retainment.

Proof
• Postulates to Construction. We need to show that if an operator (−) satisfies
the enumerated postulates, then it is possible to build an operator in the way
specified in the theorem ()). Let “γ” be a function such that, for every generator
set G (G ⊆ A2) and for every tuple (Ai, Aj), it holds that:
[Hypothesis] γ(Gij) = G \G− (Ai, Aj).
We must show:
− Part A.

1. “γ” is a well defined function.
2. γ(Gij) ⊆

⋃
(Gij).

3. For each C ∈ Gij , C �= ∅, C ∩ γ(Gij) �= ∅.

− Part B. “)” is equal to “−”, that is, G) (Ai, Aj) = G− (Ai, Aj).
Part A.
1. “γ” is a well defined function.
Let (Ai, Aj) and (Ap, At) be such that Gij = Gpt. We need to show γ(Gij) =
γ(Gpt). It follows from Gij = Gpt, by Prop. 1, for all subset G′ of G, (Ai, Aj) ∈
(G′)∗ iff (Ap, At) ∈ (G′)∗. Thus, by uniformity, G − (Ai, Aj) = G − (Ap, At).
Then, by the definition of γ adopted in the hypothesis, γ(Gij) = γ(Gpt).
2. γ(Gij) ⊆

⋃
(Gij).

Let (Ap, At) ∈ γ(Gij). By the definition of γ adopted in the hypothesis (Ap, At) ∈
G \G− (Ai, Aj). Thus, (Ap, At) ∈ G and (Ap, At) �∈ G− (Ai, Aj). It follows by
core retainment that there is some G′ ⊆ G such that (Ai, Aj) �∈ (G′)∗ but
(Ai, Aj) ∈ (G′∪{(Ap, At)})∗. Then, there is some finite subset G′′ of G′ such that
(Ai, Aj) ∈ (G′′ ∪ {(Ap, At)})∗. Since (Ai, Aj) �∈ (G′)∗ we have (Ai, Aj) �∈ (G′′)∗.
It follows from (Ai, Aj) �∈ (G′′)∗ and (Ai, Aj) ∈ (G′′ ∪ {(Ap, At)})∗ that there is
some path that contains (Ap, At). Hence, (Ap, At) ∈

⋃
(Gij).

3. For each C ∈ Gij , C �= ∅, C ∩ γ(Gij) �= ∅.
Let ∅ �= C ∈ Gij , we need to show that C ∩ γ(Gij) �= ∅. We should prove that,
there exists (Ap, At) ∈ C such that (Ap, At) ∈ γ(Gij). By success, (Ai, Aj) �∈
(G − (Ai, Aj))∗. Since C �= ∅ then (Ai, Aj) ∈ C∗ and C � G − (Ai, Aj); i.e.,
there is some (Ap, At) such that (Ap, At) ∈ C and (Ap, At) �∈ G− (Ai, Aj). Since
C ⊆ G it follows that (Ap, At) ∈ (G \G − (Ai, Aj)); i.e., by the definition of γ
adopted in the hypothesis (Ap, At) ∈ γ(Gij). Therefore, C ∩ γ(Gij) �= ∅.
Part B. “)” is equal to “−”, that is, G) (Ai, Aj) = G− (Ai, Aj).
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Let “)” a contraction operator defined as G ) (Ai, Aj) = G \ γ(Gij) and γ
defined as in the hypothesis.
(⊇) Let (Ap, At) ∈ G − (Ai, Aj). Then, (Ap, At) ∈ (G − (Ai, Aj))∗. It follows
by inclusion that (G − (Ai, Aj))∗ ⊆ G∗ and (Ap, At) ∈ G∗. It follows from
(Ap, At) ∈ G− (Ai, Aj) and (Ap, At) ∈ G∗ that (Ap, At) �∈ (G∗ \G− (Ai, Aj)).
Since G ⊆ G∗, then (Ap, At) �∈ (G \G − (Ai, Aj)). Thus, by the definition of γ
adopted in the hypothesis, (Ap, At) �∈ γ(Gij). Hence, (Ap, At) ∈ G) (Ai, Aj).
(⊆) Let (Ap, At) ∈ G ) (Ai, Aj). By definition (Ap, At) ∈ G \ γ(Gij). Then,
(Ap, At) ∈ G and (Ap, At) �∈ γ(Gij). Thus, by the definition of γ adopted in the
hypothesis, (Ap, At) �∈ G \G− (Ai, Aj). Hence, (Ap, At) ∈ G− (Ai, Aj).

• Construction to Postulates. Let ) be a contraction for credibility for G. We
need to show that it satisfies the four conditions of the theorem.

(C1) Success: if Ai �= Aj , then (Ai, Aj) �∈ (G) (Ai, Aj)).

Proof. Suppose to the contrary that Ai �= Aj and (Ai, Aj) ∈ (G ) (Ai, Aj)).
There is then a path P ∈ Gij such that P ⊆ G ) (Ai, Aj). It follows from
Ai �= Aj that P �= ∅. By clause (2) of Definition 7, there is some (Ap, At) ∈ P
such that (Ap, At) ∈ γ(Gij). By Definition 8, (Ap, At) �∈ (G) (Ai, Aj)), contrary
to (Ap, At) ∈ P with P ⊆ G) (Ai, Aj).

(C2) Inclusion: (G) (Ai, Aj))∗ ⊆ G∗.

Proof. Straightforward by definition.

(C3) Uniformity: If for all G′ ⊆ G, (Ai, Aj) ∈ (G′)∗ if and only if (Ap, At) ∈ (G′)∗

then G) (Ai, Aj) = G) (Ap, At).

Proof. Suppose that for all subset G′ of G, (Ai, Aj) ∈ (G′)∗ if and only if
(Ap, At) ∈ (G′)∗. By Proposition 1, Gij = Gpt. Since “γ” is a well defined func-
tion then γ(Gij) = γ(Gpt). Therefore, by Definition 8 G)(Ai, Aj) = G)(Ap, At).

(C4) Core retainment : If (Ap, At) ∈ G and (Ap, At) �∈ G)(Ai, Aj) then there ex-
ist a set G′ such that G′ ⊆ G, (Ai, Aj) �∈ (G′)∗ but (Ai, Aj) ∈ (G′∪{(Ap, At)})∗.

Proof. Suppose (Ap, At) ∈ G and (Ap, At) �∈ G) (Ai, Aj). Then, by Definition 8,
(Ap, At) ∈ γ(Gij). By Definition 7 of cut function, γ(Gij) ⊆

⋃
(Gij), so that

there is some path P such that (Ap, At) ∈ P ∈ Gij . Let X = P \ {(Ap, At)}.
Then, since P is minimal, (Ai, Aj) �∈ (P )∗ but (Ai, Aj) ∈ (P ∪ {(Ap, At)})∗.

3.3 Revision Operator for Credibility

Suppose that an agent learns that an informant is less reliable than another. The
agent’s current generator set should be modified to reflect this new information.
However, it would be convenient if the generator set were also modified, when
necessary, so that the opposite can no longer hold. That is to say, if up to now
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the agent believed that the second informant was less reliable then this should
be retracted.

For this purpose we define the revision operator ⊗ : P(A2) × A2 −→ P(A2).
Assume we have a pair of informants Ai and Aj and a generator set G, and the
agent now has reason to believe that Ai is less reliable than Aj . The basic task of
the ⊗ operator is to construct a new generator set in which (Ai, Aj) is entailed
but (Aj , Ai) is not.

Postulates for the Revision Operator

R1-Success: (Ai, Aj) ∈ (G⊗(Ai, Aj))∗.
This is basically a consequence of the definition given for revision and the success
postulate for expansion.

R2-Inclusion: (G⊗(Ai, Aj))∗ ⊆ (G⊕(Ai, Aj))∗.
This is due to the fact that expansion simply inserts the new tuple into the
generator set while revision may need to remove tuples before adding the new
one. The border case of equality presents itself when (Aj , Ai) /∈ G∗.

R3-Soundness Preservation: if G is a sound generator set then G⊗(Ai, Aj)
is a sound generator set.

The main aim of the revision operator is to hold soundness in the generator
set revised.

R4-Uniformity: If for all G′ ⊆ G, {(Ai, Aj)} ∪ G′ is not sound if and only if
{(Ap, At)} ∪G′ is not sound then G ∩ (G⊗ (Ai, Aj)) = G ∩ (G⊗ (Ap, At)).

This postulate determines that if two tuples (Ai, Aj) and (Ap, At) are incon-
sistent with the same subsets of G then G revised by those tuples should preserve
the same tuples from G.
R5-Core retainment: If (Ap, At) ∈ G and (Ap, At) �∈ G ⊗ (Ai, Aj) then
there exist a set G′ such that G′ ⊆ G, (Ai, Aj) �∈ (G′)∗ but (Ai, Aj) ∈ (G′ ∪
{(Ap, At)})∗.

The intuition behind this postulate is similar to that of the core-retainment
postulate (C4) for contractions introduced above.

Construction
In this subsection, we will introduce a construction of revisions on credibility
relations.

Definition 9. Given a pair of informants Ai, Aj ∈ A and generator set G ⊆ A2,
we define the revision for credibility of G by (Ai, Aj) as

G⊗(Ai, Aj) = (G)(Aj , Ai))⊕(Ai, Aj)

Example 5. Consider the generator set G = {(A1, A2), (A1, A3), (A8, A2), (A2,
A3)} of the agent A8. Then, suppose A8 wants to revise G by (A2, A1) using “⊗”.
Since (A1, A2) ∈ G∗ then it is necessary to contract G by (A1, A2) and then ex-
pand G by (A2, A1). Thus, G⊗(A2, A1) = {(A1, A3), (A8, A2), (A2, A3), (A2, A1)}
(See Figure 4).
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A2 A3A2 A3

G = G (A2, A1)=

A8 A1A8 A1

Fig. 4. Revision operator

The following result enunciate an interesting property of the revision operator.

Theorem 2. Let G be a generator set and let “⊗” be a revision operator. “⊗”
is a revision for credibility for G if and only if it satisfies R1, ..., R5, i.e., it
satisfies success, inclusion, soundness preservation, uniformity and core retain-
ment.

Proof: This proof is analogous to the proof of Theorem 1.

Again here, as in the case of contraction, soundness preservation is not condi-
tioned. In the case that the new tuple to be inserted, (Ai, Aj) were to complete
a cycle, the previous contraction of (Aj , Ai) would insure that there is no link
between Aj and Ai. Hence, it is impossible for revision to introduce cycles.

4 Conclusions and Future Work

In this work, we have introduced a model for representing credibility relations
among informants in the context of a potentially massive multi-agent system.
This was done through the use of generator sets which, when sound, establish
a partial order over the set of an agent’s informants. Thus, when faced with
contradicting information, the agent can solve the inconsistency by believing
the more reliable informant as determined by the generator set.

Given the dynamic nature of multi-agent systems, we also have proposed op-
erators for the modification of the plausibility relation. These change operators
(expansion, contraction and revision) were defined over the generator sets. They
were formally characterized through postulates, analogous in some cases to those
of the AGM model, and unique in others. Furthermore, we have proved repre-
sentation theorems for the more important changes (contractions and revisions).
Finally, a construction was provided for each of these change operators, thus
completing their definition.

As future work, we will extend the framework adding a reliability measure
to the relation tuples. With this, the cut function can be specified to determine
a rational way for cutting the tuples during the revision process. Furthermore,
based on the reliability, a non-prioritized revision operator for credibility partial
orders can be defined.
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Abstract. Historical data reports on numerous events for overlapping time 
intervals, locations, and names. As a result, it may include severe data conflicts 
caused by database redundancy that prevent researchers from obtaining the 
correct answers to queries on an integrated historical database. In this paper, we 
propose a novel conflict-aware data fusion strategy for historical data sources. 
We evaluated our approach on a large-scale data warehouse that integrates 
historical data from approximately 50,000 reports on US epidemiological data 
for more than 100 years. We demonstrate that our approach significantly 
reduces data aggregation error in the integrated historical database. 

1   Introduction 

Efficient interdisciplinary research requires consolidation of large amounts of 
historical data from disparate data sources in different subject areas. For example, 
epidemiological data analysis often relies upon knowledge of population dynamics, 
climate changes, migration of biological species, drug development, etc.  As another 
example, consider the task of exploring long-term and short-term social changes that 
require consolidating a comprehensive set of data on social-scientific, health, and 
environmental dynamics. 

The historical data reports on events of interest occurring within various time 
intervals. As a result, it may include severe data conflicts that prevent researchers 
from obtaining the correct answers to queries on an integrated historical database.  It 
is common to have multiple concurrent reports about the same event within 
overlapping time intervals. For example, we may have hundreds of reports from 
different authorities about cases of measles in LA for the year 1900. We may also 
have multiple reports on historical statistics for overlapping locations. A cumulative 
report on the total number of measles cases for the state of California may differ 
considerably from the available reports on the total number of measles cases in 
California cities. Another challenge is overlapping names: evolving concepts may be 
reported under different names and categories co-existing at different time intervals. 
For example, many 19th century reports on yellow fever were actually referring to 
cases of hepatitis.  In 1947, viral hepatitis was classified as hepatitis A and hepatitis 
B; that distinction was not immediately reflected in the epidemiological records. 
Determining the correct number of cases from all of those reports is problematic. 
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Consideration of only non-overlapping reports may result in significant 
underestimation; at the same time, by ignoring the overlaps, we risk over-estimating 
that number. 

Resolving historical data conflicts requires efficient data fusion strategies. 
Research on the data fusion for the data integration systems is relatively recent. Our 
work is one of the first attempts to systematically investigate the challenge of large-
scale historical data fusion.  Towards this end, the paper has three primary 
contributions: (a) development of conflict-aware data fusion for efficient aggregation 
of historical data, (b) simulation-based study of the tradeoffs between the data fusion 
solutions and data accuracy, (c) evaluation of the solutions in a large-scale integrated 
framework that includes historical data from heterogeneous sources in different 
subject areas. The last contribution utilizes our ongoing effort on the design and 
development of Tycho, an integrated epidemiological data warehouse. This work is 
undertaken in collaboration with the University of Pittsburgh School of Public Health. 
Currently, Tycho consolidates information from approximately 50,000 reports on 
United States epidemiological data for more than 100 years. This work enabled us to 
address realistic historical data fusion challenges that go far beyond purely academic 
interests.  

2   Background and Related Work 

In this paper we investigate issues of efficient data fusion from heterogeneous 
historical data sources. Our proposed approach is of general applicability to large-
scale Data Integration Systems that address two major challenges: (1) heterogeneous 
data and (2) conflicting data. Disparate data sources can describe the same 
application domain using different schemas, which causes schema heterogeneity. 
Various techniques for resolving schema heterogeneity include schema matching 
[24], data exchange [19], and model management [4]. Another type of heterogeneity 
occurs at the instance level. Data sources can represent the same entity in different 
ways due to the lack of standard formats. In this case, the integrated database may 
include duplicate records which do not share a common key.  The duplicates may also 
occur as the result of transcription errors, or incomplete information. Resolving 
instance heterogeneity typically requires using duplicate detection algorithms based 
on various record similarity metrics. [16] provides a comprehensive review of this 
area.  

Resolving data heterogeneities has been the focus of active research and 
development for more than two decades [9,20]. There are numerous tools on the 
market for efficient mapping of data sources in a homogenous schema with proper 
data cleaning (eliminating typos, misspellings, and formatting errors), standardization 
of names, conversion of data types, duplicate elimination, etc. A separate body of 
research deals with Web data integration, which includes our work on accessing 
heterogeneous Web data sources [33,34,35]. 

Conflicting data may occur in an integrated data set even after the data 
heterogeneities have been resolved.  While each data source may provide a consistent 
data set, the integrated data can violate application integrity constraints -- resulting in 
numerous data conflicts. Consider Fig. 1, which shows a fragment of an integrated 
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employment database. Tuples t1 and t4 were extracted from independent data sources 
s1 and s2, correspondingly. The integrated table violates an application requirement 
that each employee receives only one salary. This constraint is expressed as a 
functional dependency emp_name  salary. Violation of this constraint makes it 
problematic to obtain consistent answers to aggregate queries. For example, we 
cannot find a correct value of total salary for all employees. We say that tuples t1 and 
t4 are conflicting with respect to the functional dependency constraint. 

 

Fig. 1. Example of an inconsistent integrated database 

Assuming that we consider only one employer and that there is only one Smith 
among the employees, this inconsistency may occur if s1 and s2 refer to different time 
intervals where Smith indeed received different salaries.  If s1 reports Smith’s salary 
from 1/2004 to 12/2004 and s2 reports Smith’s new salary as of 1/2005 – 12/2005, 
then we can easily obtain the correct total salary value within a specific time interval. 
Consider now a different scenario in which s1 reports Smith’s salary from 1/2004 to 
12/2004 while s2 reports it from 5/2004 to 12/2005, i.e. the reporting time intervals 
overlap. Obtaining the correct total salary in this case is not possible since we do not 
know Smith’s actual salary during the intersection of the reported time intervals (i.e., 
from 5/2004 to 12/2004). Most likely, this situation indicates that there was an 
accounting error either in s1 or in s2, which can be repaired by consulting related 
employer documents.    

In summary, data sources s1 and s2 report on historical data about salaries. 
Overlapping reporting periods for someone’s salary are unexpected and indicate an 
error. Such an error can be fixed using readily-available additional information. The 
class of historical data sources considered in this paper also report on events of 
interest occurring within various time intervals. However, overlapping reporting 
periods are expected. For example, it is common to have multiple concurrent reports 
about the same event within the same time interval. We may have hundreds of reports 
from different authorities about measles cases in LA for the year 1900.  

Thus, as in the employment database, historical tuples reporting the same event for 
overlapping time intervals conflict and may prevent us from obtaining the correct 
result to a query on an integrated historical database.  At the same time, the nature of 
conflicts in historical data differs from the nature of the conflict considered in Fig. 1. 
Historical data conflicts do not necessary imply an inconsistency in the integrated 
database. If the overlapping historical reports are accurate, the conflicts reflect data 
redundancy that prevents us from obtaining accurate aggregate query results. The 
inconsistency may be caused by inaccurate reports. For example, two historical tuples 
may report different values for the same time interval.  Historical data conflicts 
cannot be easily resolved using readily-available external information, as was the case 
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with Smith’s salary. Moreover, the number of conflicting tuples in the integrated 
historical data can be quite large.   

The amount of research in the area of data conflict resolution and querying 
inconsistent data is considerable. See [7,15] and [5,6] for a comprehensive review of 
the current state of the art.  Generally speaking, data conflict handling strategies are 
classified in three groups: conflict ignoring, conflict avoidance, and conflict 
resolution. Conflict ignoring is a straightforward approach that may result in 
inconsistent query results. For example, in Fig. 1 the conflict ignoring strategy would 
return a total salary of $10,000. Conflict avoidance utilizes some data preference logic 
that can be applied uniformly to all conflicting data (i.e., ignore all conflicting data 
from the data source s1). In Fig. 1, tuple t1 would be ignored as coming from source 
s1, which would produce a total salary of $9000. Finally, conflict resolution performs 
a fusion of each individual conflict. For example, in Fig. 1 we could consider a 
weighted average of salaries from conflicting tuples, or choose a more recent salary. .  
Alternatively, we could introduce some uncertainty and consider ranges of possible 
aggregate values, e.g., for the total salary it could be between $6000 and $9000. This 
conflict can also be resolved using metadata about data source accuracy [32] and 
freshness [30]. Another approach exploits dependencies between data sources, where 
information from one source can be re-used in another source [31]. Source 
dependencies are common in historical data, where publications reflect recorded 
history from older reports. Conflict resolution is the most advanced approach: it is the 
focus of our work as well. 

Early research on handling inconsistencies was mostly theoretical and did not 
relate this problem directly to data integration [21]. Data inconsistency as a key 
integrity constraint violation was considered in [2]. Consistent query answering that 
ignores inconsistent data that violates integrity constraints was introduced in [11]. 
This approach is related to more recent research on query transformation for 
consistent query answering [28]. An alternative approach is based on inconsistent 
database repair, producing a minimally different – yet consistent -- database that 
satisfies integrity constraints [8,29]. A notable body of related research considered 
different classes of queries and constraints for both query transformation and database 
repair strategies [1,12].  An interesting research direction was to investigate query 
transformation and database repair using logic programming techniques [3]. Another 
promising research direction is related to consistent aggregate query answering for 
data analysis. This involves research on aggregation constraints on numerical data 
[17, 18].  A separate body of research on temporal databases explored mechanisms for 
managing time-varying information [14,22,26]. We are not aware of any works in this 
area that systematically consider fusing temporal data.  

In summary, there is a considerable ongoing work around Data Integration Systems 
focused on resolving data heterogeneities. There is also a less substantial body of 
relatively recent research exploring the concept of data fusion from the perspective of 
data consistency, data completeness, and computational complexity. To the best of 
our knowledge, the problem of large-scale fusion of redundant historical data has not 
been systematically addressed in related research. 
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3   Problems in Historical Data Fusion 

Historical data fusion explores conflicting tuples and their impact on the accuracy of 
results of aggregate queries over the historical database. Next, we discuss three major 
types of conflicts that may occur between the historical tuples: (1) temporal conflicts, 
(2) spatial conflicts, and (3) naming conflicts.  
 
Temporal Conflicts. Fig. 2 shows an example of a historical database including data 
references for total number of cases of measles in NYC (tuples t1, t4). Note that we 
use this and following examples for illustration purposes only and they do not 
represent any actual disease occurrences. We cannot simply add the values of t1 and 
t4 to find the total number of cases of measles, as t1 and t4 have overlapping time 
intervals. We say that there is a temporal conflict between t1 and t4. 

Spatial Conflicts. Fig. 2 also shows an example of  two data references for total 
number of cases of smallpox in the state of New York (tuple t2), and the 
corresponding total cases of smallpox in New York City (tuple t3).  Although time 
intervals of t2 and t3 do not overlap, we cannot simply add up their corresponding 
data values to obtain the total number of smallpox cases in the state of New York. 
Tuple t2 refers to the total number of smallpox cases reported for the state of New 
York. Meanwhile, it is unknown if this includes all New York City cases reported in 
t3. There is a spatial conflict between t2 and t3.   

Naming Conflicts. Historical data sources often report on conditions that evolve over 
time and can be noted under different names and categories within different time 
intervals. Moreover, different names for the same condition can co-exist within the 
same time interval. As we already mentioned in the introduction, many 19th century 
reports on yellow fever were actually referring to cases of hepatitis.   

 

Fig. 2. Example of temporal and spatial conflicts 

A historical database is redundant if it includes two or more conflicting tuples. As 
we mentioned in section 2, redundancy does not necessary imply inconsistency, 
which may be caused by presence of inaccurate reports.  In this paper, we focus on 
handling temporal conflicts, although our approach can also be extended to deal with 
other conflict types. More specifically, we consider a novel approach for conflict-
aware historical data fusion.  
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4   Conflict-Aware Fusion of Historical Data 

A redundant historical database includes conflicting tuples. As a result, there is a risk 
of double-counting and over-estimating the value of the aggregate data.  At the same 
time, non-redundant databases ignore conflicting tuples and take into account only 
non-overlapping reports, which may result in notable underestimations of the 
aggregate value. Consider again the conflicting measles reports from Fig. 2. Fig. 3 
refines the impact on the estimation accuracy of ignoring the conflict (keeping both 
reports) and enforced non-redundancy (excluding one of the reports from 
consideration). Counting both of them will overestimate the actual number of measles 
cases for the period of 10/10/1900-10/30/1930. Ignoring report R1 will leave the cases 
between 10/10/1900 and 10/20/1910 unreported (uncovered) and thus underestimate 
the actual number. Ignoring report R2 will underestimate the actual number by 
excluding from consideration the cases between 10/10/1920 and 10/30/1930. 

 

Fig. 3. Effect of redundancy and enforced non-redundancy 

We propose a concept of conflict degree (CD) to assess the risk of misestimation of 
values reported in conflicting historical tuples. 

4.1   Measuring Conflict Degree 

Without losing generality, we will represent conflicting tuples as triples (From, To, 
Value), where Value is a historical statistic (number of events) reported within the 
[From, To] time interval.  Fig. 4 shows two scenarios for redundant databases DB1 
and DB2. Here, we show only the time intervals of conflicting tuples annotated with 
corresponding reported values. Consider Scenario (a) first. In both cases of redundant 
databases, the time overlap is equal, but the relative contributions of conflicting tuples 
in the aggregated total value estimate are different. Both DB1 and DB2 can be split 
into two non-redundant snapshots including only one of the conflicting tuples. The 
total value estimated over non-redundant snapshots of DB1 is 100 in both cases, while 
corresponding values estimated over non-redundant snapshots of DB2 are 10 and 100. 
For DB2, the difference between the non-redundant estimates is greater, thus we 
conclude that degree of conflict between tuples in DB1 is higher than degree of 
conflict between DB2 tuples. Consider now Scenario (b), where the time overlaps of 
conflicting tuples are different while reported values are equal. The difference 
between total values estimated for non-redundant database snapshots is the same in 
both cases. Meanwhile, it is safer to assume that the risk of double counting is higher 
in the case of conflicting tuples with a larger time overlap (DB1).  Thus, we expect to 
see that the conflict degree is higher for DB1. 
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To sum up, we would like to define a conflict degree measure between two 
historical tuples with the following characteristics: 

 

- Conflict degree ranges within [0,1] interval;  
- Tuples with non-overlapping time intervals have a conflict degree of 0; 
- Tuples with overlapping time intervals have a higher conflict degree if their 

reported values are closer to each other (i.e., relative contributions of the reports are 
comparable)1. 

- Tuples with comparable reporting values have a higher conflict degree if their time 
overlap is higher. 

We also alternative definitions of the conflict degree measure. For example, a 
relative contribution of two conflicting tuples can be defined in such a way that 
closer values reduce the conflict. The expected fusion strategy in this case would 
favor reports with similar event distributions. 

 

Fig. 4. To explanation of conflict degrees 

Below, we define the conflict degree measure reflecting those characteristics. 
Informally, the conflict degree should account for both relative contributions and time 
overlaps of the conflicting tuples. We define a relative contribution of two conflicting 
tuples r1 = (F1,T1,V1) and r2 = (F2,T2,V2) as                 

RC(r1,r2) = 1 - |V1-V2|/(V1+V2). 

Here, we assume that at least one of the two, V1 and V2, is non-zero. For example, 
consider Scenario (a) in Fig. 4. The relative contribution of conflicting tuples in DB1 
is 1 - |100-100|/100+100 = 1, while the relative contribution of conflicting tuples in 
DB2 is 1 - |10-100|/100+100 = 0.45. 

In order to define a relative time overlap of two conflicting tuples, we introduce 
several operations similar to some of the interval operations from [14]. Length of time 
interval t = [F,T] (denoted |t|) is the difference T-F plus one, i.e. |t| = T-F+1. Unit 
time interval 1 is a time interval whose length is equal to one: |1| = 1 (i.e, unit time 
interval has equal From and To components). Thus, |t| is a number of unit time 
intervals covered by t.  Time interval t = [F,T] is consistent iff F ≤ T. Below we 
consider only consistent time intervals if not stated otherwise. Time intervals t1 = 
[F1,T1] and t2 = [F2, T2] overlap if F1 ≤ F2 ≤ T1. For two time intervals  

                                                           
1  Under alternative definitions of the conflict degree a relative contribution of two conflicting 

tuples could be defined in such a way that closer values reduce the conflict. The expected 
fusion strategy in this case would favor reports with similar event distributions. We plan to 
explore this approach in future work.  
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t1 = [F1,T1] and t2 = [F2, T2], we define their sum t1+t2 and intersection t1 o t2  
as follows 

t1 + t2 = [min(F1,F2), max(T1,T2)];   t1 o t2 = [max(F1,F2), min(T1,T2)]. 

Note that the result of t1 o t2 may be an inconsistent time interval with a zero or 
negative intersection length. This would indicate that there is a gap between the time 
intervals t1 and t2. We will use this feature to define relative overlap RO of two 
consistent time intervals t1 = [F1,T1] and t2 = [F2, T2] as follows: 

RO(t1, t2 ) = max( |t1 o t2|/|t1+t2|, 0), 

i.e., RO(t1, t2 ) = 0 means that  t1 and t2 do not overlap. Fig. 5 illustrates the 
introduced time interval operations. 

 

Fig. 5. Time interval operations 

We define the relative time overlap RO(r1,r2) of two historical tuples r1 and r2 to 
be equal to the relative overlap of their corresponding time intervals. Next, we define 
the conflict degree CD(r1,r2) of two historical tuples r1 and r2 as the following 
exponential function: 

)1)2,1())(2,1(1()2,1()2,1( −−×= rrROrrRCkerrROrrCD  

Assuming that r1 and r2 are known from their context, we can specify the CD in a 
more compact format: 

)1)(1( −−×= RORCkeROCD  

This definition captures the desired characteristics of a CD measure. Fig. 6 illustrates 
the behavior of the CD function as we change RO, RC and k. In general, a higher 
value of RO implies a higher CD.  Meanwhile, the lower value of RC slows down the 
rate at which the CD grows as the RO increases. A higher value of k amplifies the 
impact of RC on the CD value. 

 

Fig. 6. Behavior of CD measure 
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4.2   Conflict-Aware Data Fusion 

Using the CD measure, we can assess a redundant database with respect to conflict 
degrees between its tuples.  Moreover, the CD measure allows us to better aggregate 
tuples performing conflict-aware data fusion. The idea is to set up a target database 
that can tolerate a certain value of conflict degrees (CD threshold) between its tuples.  
The expectation is that we can define an optimal CD threshold value that will 
minimize the misestimation error caused by underestimations due to uncounted events 
as well as the overestimation due to double counting. Next we will elaborate on 
characteristics of conflict-aware historical data fusion. The questions that we are 
going to address are (1) how does conflict-aware data fusion perform under different 
application constraints; (2) is there a practical way to find an optimal conflict 
threshold that minimizes the data fusion misestimation error?  

Characteristics of Conflict-Aware Data Fusion. In order to explore characteristics 
of the conflict-aware data fusion techniques in the context of the aforementioned 
questions, we performed a simulation-based study using Matlab Version 7.11. Fig. 7 
summarizes the simulation set-up. First, we randomly generated different numbers of 
events of interest per recording interval within a reasonably large span of time. We 
specify the time duration in units of minimal recording intervals. The size of the 
minimal recording interval (e.g, day, week, month, etc.) does not impact the results of 
our study.  Then, we consider a maximal time duration of 1000 minimal recording 
intervals. The number of events can be reflected in multiple reports.  Each report 
collects the number of events within a certain time interval (report duration or length).   

 

Fig. 7. Simulation setup and scenarios 

We assume that each event corresponds to the same data reference, i.e., overlapping 
reports result in conflicting tuples. We used normal distributions to configure (1) 
number of events of interest per minimal recording interval; (2) number of reports per 
total time duration, and (3) report durations (lengths). We selected several significantly 
different configurations to explore various real-life scenarios. They are summarized in 
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the lower section of Fig. 7 with corresponding expected values (mu) of the simulated 
parameters. We expect that many lengthy reports on densely populated events would 
result in numerous high-degree conflicts. Meanwhile, a few short reports on sparsely 
populated events would hardly produce any conflict at all.  The expectation is that a 
proper data fusion strategy would combine information from multiple reports, 
minimizing misestimation of the actual number of events within the time duration.     

We performed simulations changing the acceptable CD threshold within the [0, 1] 
range with a step of 0.01. We aggregated only reports with a conflict degree below the 
CD threshold value and calculated the misestimation error in each case. For every 
combination of simulation scenario and CD threshold, we performed multiple 
simulation runs. Fig. 8 shows frequency histograms of relative misestimation errors 
for each scenario in Fig. 7 as we change the CD threshold (names of the axes are 
shown on the bottom left subplot). We observe that the number and scale of the 
misestimation errors differ notably for different event and report densities. Note that 
the report density has a higher impact on the error dynamics than the event density.  
Fig. 9 also shows heat maps under the histogram plots that help us to observe the 
dynamics of the underestimations (positive relative errors) and overestimations 
(negative relative errors). The overestimation error due to double-counting from 
overlapping reports grows considerably as the report density increases.   The 
underestimation error results from uncovered events and manifests itself more clearly 
in the scenarios with lower report densities. In all cases, the CD threshold has a 
notable impact on the misestimation error dynamics. 

 
Fig. 8. Frequency histograms for error dynamics 

Fig. 9 plots the CD threshold versus absolute value of the relative error in order to 
clarify how exactly they are related. For all scenarios, we observe similar error 
dynamics: the error decreases before some critical value of the CD threshold; after 
that, the error increases. This is an expected behavior: the initial error decrease is due 
to increased event coverage from a larger number of aggregated reports and, as a 
consequence, reduced underestimation errors. Meanwhile, after the critical CD 
threshold value is reached, the overlapping reports start accumulating overestimation 
errors due to double-counting. Here, we make another important observation: each 
scenario is associated with an optimal CD threshold that minimizes the 
misestimation error. This also provides inspiration for a feasible way to estimate an 
optimal CD threshold, as we explain next. 
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Estimating Optimal CD Threshold. Let us repeat two important observations noted 
above: (1) the report density has a higher impact on the error dynamics than the event 
density, (2) each scenario is associated with an optimal CD threshold that minimizes 
the misestimation error. In real life, we do not have information about actual numbers 
of events per reporting interval (actual event density). The information available in 
historical databases includes only reported event numbers from a set of potentially 
conflicting reports.  The challenge is to define the optimal CD threshold for each 
group of conflicting reports that would minimize the misestimation error without 
knowledge of actual event numbers.  

 

Fig. 9. Impact of CD threshold on error dynamics 

We propose to use a Monte-Carlo simulation-based method to estimate such 
optimal CD thresholds for groups of conflicting reports corresponding to data 
references in the historical database. For a group of conflicting reports, our method 
will perform repeated random sampling of events. The sampling probability 
distribution can be adjusted using event density estimated from the conflicting reports 
in the group. For example, we can estimate minimal and maximal reported event 
densities to achieve uniform event sampling. Alternatively, we can estimate mean and 
standard deviation of reported event densities to perform normal event sampling. We 
expect the CD threshold to converge to an optimal value as the number of sampling-
based simulation runs increases.  

 

Fig. 10. Estimating optimal CD threshold 
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We tested this approach using our simulation testbed. Instead of randomly 
generating reports for a random event distribution, we were fixing different (random) 
report configurations. As before, each fixed report configuration was generated using 
a predefined event distribution. However, this time we assumed that the actual 
numbers of events are unknown; therefore, the impact of the CD threshold on the 
misestimation error was evaluated using randomly sampled events. Fig. 10 shows 
results of this evaluation for a uniform event sampling and 100 simulation runs. In 
order to make the dynamic more obvious, we used a log10 error scale. We observe 
that, in each of the considered scenarios, we converge on an optimal CD threshold 
value. In order to estimate the quality of this convergence, please refer to the optimal 
CD threshold plots for the actual number of events (Fig. 9). As we can see, the 
convergence process is consistent with the actual dynamics. 

5   Conflict-Aware Data Warehousing 

In the previous section, we suggested a simulation-based approach to estimate an 
optimal CD threshold value for groups of overlapping reports without the knowledge 
of actual event distributions.  Such estimation can be performed periodically as a part 
of the data warehouse loading procedure for each data reference in the integrated 
historical database. The value of the estimated optimal CD threshold can be used to 
maximize accuracy of the query results. Fig. 11 illustrates this approach. Here, we 
considered two groups of conflicting reports on cases of measles and smallpox in 
NYC. For each of those groups, we evaluated an optimal Conflict Degree that 
minimizes a missestimation error of data aggregation.   The value of the estimated 
optimal CD threshold was used to maximize accuracy of the query results. 

 

Fig. 11. Estimating optimal Conflict Degree in an integrated data warehouse 

We implemented and tested our approach in Tycho, - a large integrated 
epidemiological data warehouse that includes historical data from numerous 
heterogeneous sources. As a part of our ongoing efforts, we have completed the first 
stage of Tycho data integration including heterogeneity resolution and data validation. 
We have integrated information from approximately 50,000 reports on United States 
epidemiological data for more than 100 years. The original reports are digitized and 
represented as semi-structured Excel spreadsheets with heterogeneous data formats 
and multiple transcription errors. After performing the heterogeneity resolution, we 
loaded more than 26 million records into the Tycho data warehouse. Then we  
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Fig. 12. Conflict-aware error reduction in Tycho 

performed an aggregate assessment of conflicting data in the data warehouse. For this 
assessment we considered only temporal conflicts. We evaluated the numbers of 
conflicting reports per time span. We observed up to 32 conflicts occurring over the 
time spans of days, weeks, months, and years.   

Fig. 12 shows results of conflict-aware data fusion for a representative set of Tycho 
reports. We selected three hundred Tycho data references including up to 32 conflicts, 
determined corresponding optimal CD threshold, and estimated error reduction due to 
conflict-awareness. We observe up to sixty percent in error reduction, - a notable 
improvement in the estimation accuracy.  

6   Conclusion 

We have considered a novel conflict-aware approach to historical data fusion. Our 
experimental results demonstrate high efficiency of the proposed approach. In future 
works we will further explore the performance and accuracy tradeoffs associated with 
the various conflict-aware query evaluation strategies. We will design and develop a 
query optimizer that efficiently utilizes those tradeoffs. We will further investigate 
conflict-aware data fusion for spatial and naming conflicts. We will investigate 
alternative historical data fusion strategies based on different notions of maximal 
likelihood estimation to estimate the event distribution from a set of reported numbers 
of events. 
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Abstract. The obvious analogy between an Objects×Properties binary
relationship (called a formal context) and a binary Documents×Terms
incidence matrix has led to a growing interest for the use of formal con-
cept analysis (FCA) in information retrieval (IR). The main advantage of
using FCA for IR is the possibility of creating a conceptual representation
of a given document collection in the form of a lattice. Also, potentials
of FCA for IR have been highlighted by a number of research studies
since its inception. It turns out that almost all existing FCA-based IR
approaches rely on: i) a Boolean Documents×Terms incidence matrix
and, ii) the use of the classical Galois connection initially proposed by
Wille. In such a case, there is no way for expressing weighted queries as
well as there is no way for ranking query results that is usually done by
query refinement or empirical navigation trough the concept lattice. In
this paper we first enlarge the use of FCA for IR to the fuzzy setting
which allows for a fuzzy incidence matrix and weighted queries. For in-
stance, an incidence matrix may now allow for (normalized) numerical
entries that may be achieved using the well known term frequency mea-
sure. Furthermore, it is worth noticing that in the existing approaches,
user queries are restricted to the conjunctive form. Thus, another con-
tribution consists in considering, in an original way, the use of other
Galois derivation operators (namely the possibility, necessity and dual
sufficiency) in order to express disjunction and negation in queries.

1 Introduction

The main aim of Formal Concept Analysis (FCA for short) is to extract in-
teresting clusters of knowledge, called formal concepts, from a particular rep-
resentation of data, called formal context. The original idea of FCA has been
introduced by Wille [19] and is becoming increasingly popular among various
methods of conceptual data analysis and knowledge processing. In the classical
setting [19, 12], a formal context consists of a (crisp) binary relationship between
a set of objects and a set of properties. Whereas a formal concept consists of a
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pair 〈objects, properties〉, where the set of objects is referred to as the extent, and
the set of properties as the intent. They uniquely determine each other. The fam-
ily of all formal concepts is a complete lattice. The classical model [19, 12] relies
on two assumptions: i) properties are Boolean: a property is true or false for an
object (and thus it is supposed to always apply); ii) information is complete: it
is always known if a property holds or not for an object. As an effective method
for data analysis, formal concept analysis has been widely applied to many fields
like psychology, sociology, anthropology, medicine, biology, linguistics, etc.

The obvious analogy between an Objects×Properties binary relationship (i.e. a
formal context) closely related to FCA theory and a binary Documents×Terms
incidence matrix closely related to information retrieval has led to a growing
interest for the use of the theory of FCA and the underlying notion of concept
lattice in information retrieval. In this case, the documents correspond to formal
objects and indexing terms (descriptors, thesaurus elements, etc..) correspond
to the properties [17].

Almost all existing information retrieval approaches based on FCA rely on the
use of the lattice structure of the formal concepts [17]. It is also worth noticing
that the use of general lattice structures (i.e. not especially concept lattices) in
information retrieval has been early addressed. Indeed, in the 1960’s other re-
trieval approaches were considered besides the usual vector space model among
them lattice representations [18]. The theoretical consolidation of FCA on a
mathematical (algebraic) model has given rise to a practical and efficient use of
formal concept lattices in information retrieval [17], [3], [16], [5], [15], [11]. Nowa-
days, with the recent advances on FCA theory, retrieval models based on concept
lattices outperform significantly classical information retrieval approaches [3].

One of the most natural applications of concept lattices in information re-
trieval is query refinement which relies on the two fundamental observations
stated hereafter [15]:

1. A formal concept c of a concept lattice may be seen as a pair 〈answer, query〉
where the query corresponds to the intent of c whereas the answer corre-
sponds to the extent of c.

2. Following edges departing upward (resp. downward) from a query (i.e. a
formal concept) produces all minimal refinements (resp. enlargements) of
the query w.r.t. the collection of documents from which the concept lattice
has been built.

It may be remarked that almost all encountered information retrieval approaches
based on FCA assume:

1. A Boolean incidence matrix (Boolean formal context).
2. Boolean queries (i.e. the terms of the queries can take only the weights 0 or

1).
3. Queries limited to conjunctive expressions.
4. No ranked results (the different results are achieved through an ad hoc nav-

igation among the concept lattice structure without supplying any order
between them).
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Concerning the first and second points, it is well known that Boolean retrieval
systems [4] have several limitations. One of the most important limitation is that
only documents that satisfy a query exactly are retrieved. Concerning the third
point, the “and” operator may appear too restrictive because it fails even in the
case when all its arguments except one are satisfied which is counter intuitive
with the principle of information retrieval.

This paper gives proposals for the above mentioned drawbacks. We first pro-
pose to enlarge classical FCA to the fuzzy setting which allows for fuzzy incidence
matrices and for weighted queries. Secondly, we give a fuzzy extension of possi-
bilistic Galois derivation operator in order to consider the disjunction as well as
the negation in the expression of the queries.

The paper is organized as follows. The next section gives a background on
formal concept analysis. The possibility-theoretic view of FCA is also presented
in this section. In section 3, we gives the extension of possibilistic derivation
operators to the fuzzy setting. In the next section, we give our proposals about
the use of possibilistic derivation operators in order to allow disjunction and
negation whereas the section 5 gives an illustrative example.

2 Formal Concept Analysis: A Survey

2.1 Classical Settings

Let D be a finite set of documents (D = {d1, d2, . . . , dn}) and T be a finite set of
index terms (descriptors) (T = {t1, t2,. . . , tm}). A (crisp) binary formal context is
a triple K := (D, T ,R) where R corresponds to a crisp binary relationship func-
tionally given as R : D × T −→ {⊥,�}, where R(d, t) = � (resp. R(d, t) = ⊥)
means that document d is related to (resp. is not related) the term t. The rela-
tion R is usually represented as a table with rows corresponding to documents,
columns corresponding to properties (or conversely). The entries in the table in-
dicate whether a document satisfies or does not satisfy the corresponding term
(generally by using cross mark or respectively blank mark). We shall also use in
the rest of this paper an equivalent notation dRt which means that document d
satisfies term t. Let R(d) = {t ∈ T | dRt} be the set of properties satisfied by
document d. In a polymorphic notation, let R(t) = {d ∈ D | dRt} be the set of
documents that satisfy term t.

By extending singleton operators R(.) to powerset operators (also called Ga-
lois derivation operators) between 2D and 2T , we can establish relationships
between subsets of documents and subsets of terms. The derivation operator
which is at the basis of formal concept analysis is here called sufficiency opera-
tor as in [10, 9] and denoted (.)�. It is given as follows. For a set of terms T , we
define the set T� of documents that satisfy all terms in T as:

T� = {d ∈ D | ∀t ∈ T (t ∈ T ⇒ dRt)}
= {d ∈ D | T ⊆ R(d)}
=
⋂

t∈T R(t)
(1)

The set D� of terms that are satisfied by all documents in D is dually defined.
Thus, a formal concept is a pair 〈D, T 〉 s.t. D� = T and T� = D.



Extended Galois Derivation Operators for Information Retrieval 349

An important feature of formal concept analysis is that the pair ((.)�, (.)�)
of derivation operators forms a Galois connection [19, 12]. A further interesting
feature is that a “closure” property of the composition (.)�� of the derivation
operators is implicitly conveyed.

The main objective in formal concept analysis consists of inducing all formal
concepts. Given a formal context K, the set of all formal concepts is naturally
equipped with a partial order (denoted *) defined as: 〈D1, T1〉 * 〈D2, T2〉 iff
D1 ⊆ D2 (or, equivalently, T2 ⊆ T1). In [12] authors have proved that the set of
all formal concepts ordered with * forms a complete lattice, called the concept
lattice of K and denoted L (K). Its structure is given by the following theorem.

Theorem 1. [12]. The concept lattice L (K) is a complete lattice in which infi-
mum and supremum are given by:∧

j∈J

〈Dj , Tj〉 = 〈
⋂
j∈J

Dj, (
⋃
j∈J

Tj)��〉 ,
∨
j∈J

(Dj , Tj) = 〈(
⋃
j∈J

Dj)��,
⋂
j∈J

Tj〉

2.2 Possibility-Theoretic View of Formal Concept Analysis

Dubois et al [9] and more recently Dubois and Prade [8] have given a possibility-
theoretic [20] reading of FCA which allows for the use of three other operators,
namely possibility (.)Π, necessity (.)N and dual sufficiency (.)∇ operators beside
the sufficiency one (.)�. In this spirit, we have already highlighted the interest of
the necessity operator for formal context decomposition [6] and have also given
the appropriate (minimal) requirements for building sound compositions of the
four operators w.r.t. to the closure property in the fuzzy settings [7]. Note that
the four powerset operators have been also considered in qualitative data analysis
by [10, 13]. We recall these three operators:

– T Π is the set of documents that satisfy at least one term in T :

T Π = {d ∈ D | T ∩R(d) �= ∅}
= {d ∈ D | ∃ t ∈ T : dRt} (2)

– T N is the set of documents such that any term satisfied by one of them is
necessarily in T :

T N = {d ∈ D | R(d) ⊆ T }
= {d ∈ D | ∀ t ∈ T (dRt⇒ t ∈ T )} (3)

– T∇ is the set of documents that do not satisfy at least one term in T :

T∇ = {d ∈ D | T ∪R(d) �= D}
= {d ∈ D | ∃ t ∈ T , dRt} (4)

Operators DΠ, DN, D∇ are dually defined.
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3 Extending Possibilistic Derivation Operators to the
Fuzzy Setting

Let us recall that almost all existing FCA-based information retrieval approaches
are restricted to Boolean conjunctive queries that address Boolean incidence
matrix. A fuzzy FCA-based approach which allows conjunctive weighted queries
is also proposed in [14]. However, this approach assumes the use of a specific
fuzzy implication, namely the Rescher-Gäınes implication (p → q = 1 if p � q
0 otherwise). We are not aware about the use of the disjunction and negation.
Thus this section generalizes a Boolean querying process to the fuzzy setting
which allows for the use of a fuzzy incidence matrix as well as weighted queries,
whereas our proposal for considering the disjunction and negation is illustrated
in the next section.

A fuzzy formal context is a tuple K = (L,D, T ,R) where the fuzzy incidence
matrix R ∈ LD×T is defined as a mapping : D ×T −→ L (generally L = [0, 1]).
The generalization of the four derivation operators (i.e. sufficiency, possibility,
necessity and dual sufficiency) to the fuzzy setting arises quite naturally from
their crisp counterpart. Since Expressions 1 and 3 of sufficiency and necessity
operators are based on inclusions, their generalization are naturally based on
fuzzy implications. Expressions 2 and 4 correspond to conditions of non empti-
ness for the intersection of subsets. Their generalization are naturally given by
the largest value over t (or d) of a fuzzy conjunction of the membership degrees.
Their definitions are given as:

Definition 1. The generalization of sufficiency, possibility, necessity and dual
sufficiency powerset operators to the fuzzy setting is defined for a fuzzy set T̃ ∈
LT as (and similarly defined for a fuzzy set D̃ ∈ LD):

T̃� (d) =
∧
t∈T

(
T̃ (t)→R(d, t)

)
(5)

T̃ Π (d) =
∨
t∈T

(
T̃ (t) ∗ R(d, t)

)
(6)

T̃ N (d) =
∧
t∈T

(
R(d, t)→ T̃ (t)

)
(7)

T̃∇(d) =
∨
t∈T

(
¬T̃ (t) ∗ ¬R(d, t)

)
(8)

In the above definition, the → operator denotes a fuzzy implication operator,
which is decreasing (in the broad sense) in its first component and increasing
(in the broad sense) in its second component and verifies boundaries conditions
(0 → 0 = 0 → 1 = 1 → 1 = 1 and 1 → 0 = 0). Whereas, the connective
denoted ∗ with a fuzzy conjunction semantics, is a binary increasing operator
(in the broad sense) which verifies identity condition (p ∗ 1) = p and boundaries
conditions (0 ∗ 0 = 0 ∗ 1 = 1 ∗ 0 = 0). Note that ∗ is not necessarily a t-norm.

Like for the crisp setting, a fuzzy formal concept consists of a pair 〈D̃, T̃ 〉 s.t.
D̃� = T̃ and T̃� = D̃. It is also important to point out that the generalization
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of formal concept analysis theory to the fuzzy setting implies some algebraic
requirements on the fuzzy implication → used in expression 5 (see [7]) Indeed,
depending on the choice of “→”, the fuzzy operator (.)�� could not fulfill the
closure property (recalled below) and consequently may not form a Galois con-
nection. Under the appropriate requirements, the set of all fuzzy formal concepts
is a complete lattice called fuzzy concept lattice [1].

Definition 2. Given a universe U , a mapping Φ : LU −→ LU is a fuzzy closure
operator iff ∀ U, V ∈ LU it satisfies :
(1): U ⊆ V =⇒ Φ(U) ⊆ Φ(V )
(2): U ⊆ Φ(U)
(3): Φ

(
Φ(U)

)
= Φ(U)

4 Flexible Querying Based of Fuzzy Formal Concepts

This section enlarges FCA-based information retrieval approaches to the fuzzy
setting and illustrates also that such approaches may take advantage of the other
possibilistic operators rather than the sufficiency operator.

4.1 Conjunctive Queries

Let K := (D, T ,R) be a formal context s.t. R is a Boolean incidence matrix,
D ⊆ D, and T ⊆ T . Let Q̂(T ) ≡ t1 ∧ t2 ∧ . . . ∧ tk denotes a conjunctive query
built on the set T . According to Salton’s Boolean retrieval model, we define the
satisfaction of Q̂(T ) by a set of documents D as: D |= Q̂(T )⇔ D =

⋂
t∈T {t}� =

T�.
Let D̃ ∈ LD and T̃ ∈ LT . A fuzzy (weighted) conjunctive query Q̂(T̃ ) is of

the form tw1
1 ∧ tw2

2 ∧ . . . ∧ twk

k where T̃ (ti) = wi. The satisfaction of Q̂(T̃ ) by a
fuzzy set D̃ of documents arises quite naturally from its crisp counterpart. That
is: D̃ |= Q̂(T̃ )⇔ D̃ = T̃�.

Relatively to a fuzzy concept lattice L(K), let us consider the two functions
Ext(c) and Int(c) that correspond to the intent and the extent of the fuzzy
formal concept c. Thus, a fuzzy conjunctive query is satisfied by c iff Ext(c) = T̃�

or Int(c) = T̃��. Since (.)�� is a fuzzy closure operator (i.e. (T̃��)�� = T̃��

and (T̃�)�� = T̃�), it is easy to conclude that for any fuzzy conjunctive query
Q̂(T̃ ) there exists one and just one fuzzy formal concept satisfying Q̂(T̃ ).

According to the expression of T̃� namely T̃�(d) =
∧

t∈T
(
T̃ (t) → R(d, t)

)
,

it is obvious that the result of a given query depends of the choice of a fuzzy
implication. However some eligible implications (e.g. Goguen implication) make
the fuzzy concept lattice infinite which is counter intuitive with the idea of
information retrieval based on lattice representation and navigation. For this
purpose, the following proposition advocates the use of the Gödel implication
that makes the concept lattice finite (a deep investigation about the conveyed
semantics of fuzzy implications is left for further research).
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Proposition 1. Let K = (L,D, T ,R) be a fuzzy formal context where L is an
arbitrary scale (not necessarily finite). Then, the fuzzy concept lattice is a finite
set under Gödel implication.

Proof. It is a well known result that the set of all intents and the set of all
extents are isomorphic complete lattices [2]. Thus, it is sufficient to prove that
one of them is a finite set, namely the set of all extents. Thus, we have:

D̃��(d) =
∧
t∈T

(
D̃�(t)→R(d, t)

)
=
∧
t∈T

({
1 if D̃�(t) � R(d, t)
R(d, t) otherwise

)

Thus, necessarily D̃��(d) ∈ {R(di, tj)} ∪ {1} s.t. i � n and j � m where n and
m are finite since n = |D| and m = |T |. This implies that the set of all extents
is finite. ��

4.2 Disjunctive Queries

Let Q̌(T ) ≡ t1 ∨ t2 ∨ . . . ∨ tk denotes a disjunctive query in the crisp setting.
The satisfaction of Q̌(T ) by a set of documents D is easily expressed by means
of the possibility operator as: D |= Q̌(T ) ⇔ D ⊆

⋃
t∈T {t}Π = T Π. Note that

{t}Π = {t}� since {t} is a singleton.
A fuzzy disjunctive query Q̌(T̃ ) is of the form tw1

1 ∨tw2
2 ∨. . .∨twk

k where T̃ (ti) =
wi. As a generalization of the crisp setting, the satisfaction of Q̌(T̃ ) by by a fuzzy
set D̃ is defined as: D̃ |= Q̌(T̃ )⇔ D̃ ⊆ T̃ Π where ⊆ denotes the standard fuzzy
set inclusion (defined by the pointwise inequality of the membership functions
i.e. D̃ ⊆ T̃ Π ⇔ ∀d ∈ D : D̃(d) � T̃ Π(d).

Relatively to a fuzzy concept lattice L(K), a fuzzy disjunctive query Q̌(T̃ )
is satisfied by a fuzzy formal concept c ∈ L(K) iff Ext(c) ⊆ T̃ Π. Let B(Q̌(T̃ ))
denotes the set of all formal concepts c s.t. c satisfies Q̌(T̃ ). The following propo-
sition establishes a significant property for information retrieval purpose.

Proposition 2. Let T̃ ∈ LT and Q̌(T̃ ) corresponds to a disjunctive query. The
set B(Q̌(T̃ ))

⋃
{〈T̃ Π, (T̃ Π)�〉} is a complete lattice.

Proof. We prove first that the composition ((.)Π)� is not a closure operator.
We do this by giving the counter example illustrated in Table 1. Applying the
possibility operator to the set {t2, t3} we get {t2, t3}Π = {d1, d2}. Applying then
the sufficiency operator we get {d1, d2}� = {t1}. Consequently, it appears that
{t2, t3} � ({t2, t3}Π)�. That is, ((.)Π)� is not a closure operator.

On the other hand, since: i) B(Q̌(T̃ )) is a bounded sublattice of L(K) and,
ii) {〈T̃ Π, (T̃ Π)�〉} is an upper bound of B(Q̌(T̃ )), it comes that B(Q̌(T̃ ))

⋃
{〈T̃ Π, (T̃ Π)�〉} is a complete lattice. ��
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Table 1. Counter example for the composition ((.)Π)�

R1 t1 t2 t3 t4

d1 × ×
d2 × ×
d3 ×

4.3 Negation in Queries

In the following, let us use the notations (.)�R , (.)ΠR, (.)NR, (.)∇R when the con-
sidered derivation operators apply to the complementary fuzzy formal context
K = (L,D, T ,R) where R(d, t) = ¬R(d, t) and ¬ is an involutive negation (i.e.
¬¬p = p). The following proposition establishes useful correspondences between
the four fuzzy possibilistic derivation operators given in Section 3.

Proposition 3. Let the fuzzy lattice L = (L,→, ∗,¬). The following properties
hold ∀ T̃ ∈ LT (similarly ∀ D̃ ∈ LD) if the condition (R0): p → q = ¬(p ∗ ¬q)
is satisfied:

(P1) : T̃� = T̃
∇

(P1′) : T̃∇ = T̃
�

(P2) : T̃ N = T̃
Π

(P2′) : T̃ Π = T̃
N

(P3) : T̃� = T̃ Π
R (P3′) : T̃� = T̃

N

R

Proof. We just prove (P1), the proofs for the remaining properties are similar.

T̃
∇

(d) =
∨
t∈T

(
¬¬T̃ (t) ∗ ¬R(d, t)

)
=⇒ T̃

∇
(d) =

∨
t∈T
¬
(
T̃ (t)→R(d, t)

)
, by using (R0)

=⇒ T̃
∇

(d) = ¬
∧
t∈T

(
T̃ (t)→ R(d, t)

)
=⇒ T̃

∇
(d) =

∧
t∈T

(
T̃ (t)→R(d, t)

)
, since ¬ is involutive

=⇒ T̃
∇

(d) = T̃�(d) ��

In order to express negation of both conjunctive and disjunctive queries, one
may take advantage of Proposition 3. Indeed, from property (P3), it comes that

T̃� = T̃ Π
R . Consequently, fuzzy sets of documents D̃ satisfying the negation of

a conjunctive query Q̂(T̃ ) are the ones that satisfy the disjunctive query Q̌(T̃ )
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which is built upon the formal context K = (L,D, T ,R) with R(d, t) = ¬R(d, t).
Since the satisfaction of a disjunctive query has been already treated in Sec-
tion 4.2, it remains to build once the concept lattice of K and then apply the
results of Proposition 3 to obtain the set (i.e. a complete lattice w.r.t Proposi-
tion 3) of formal concepts satisfying a negative disjunctive query.

From property (P3), it comes also that T̃ Π = T̃�
R . Consequently, the fuzzy

sets of documents satisfying a negative disjunctive query Q̌(T̃ ) are the ones
that satisfy the conjunctive query Q̂(T̃ ) which is built upon the formal context
K = (L,D, T ,R). Once the concept lattice of K has been built, from the results
presented in Section 4.1, it comes that there is one and just one formal concept
c ∈ L(K) satisfying a negative disjunctive query.

5 Illustrative Example

Example 1. We give an example which illustrates the interest of Proposition 2.
Let us consider the incidence matrix R2 given in Table 2 and a disjunctive
query Q̌(T ) ≡ t1 ∨ t2 ∨ t3. All formal concepts c s.t Ext(c) ⊆ {t1, t2, t3}Π =
{d2, d3, d4, d5} satisfy this query (for instance, 〈{d3, d4}, {t2}〉). One may also
remark that the upper bound

(
{t1, t2, t3}Π, ({t1, t2, t3}Π)�

)
is not a formal con-

cept. Figure 1 depicts the whole concept lattice related to the incidence matrix
R̃2. Whereas, according to Proposition 2, Figure 2 illustrates in dashed lines
the (complete) sublattice of formal concepts that satisfy the above disjunctive
query.

Table 2. Boolean incidence matrix

R2 t1 t2 t3 t4 t5

d1 ×
d2 ×
d3 ×
d4 × ×
d5 × × ×

Example 2. Let us now consider a fuzzy incidence matrix R3 illustrated in the
left part of Table 3. For instance, let us take ¬p = 1 − p. Thus, the right part
of Table 3 illustrates R3 (R3(d.t) = 1 − R3(d, t)). We want to retrieve formal
concepts satisfying the negation of the weighted conjunctive query t0.0

1 ∧t0.3
2 ∧t0.1

3 .
For this purpose we have to build the concept lattice of R3 which corresponds to
the whole lattice illustrated in Figure 3 (except the node in red color). The formal
concepts satisfying the considered query are the ones that satisfy the disjunctive
query t0.0

1 ∨ t0.3
2 ∨ t0.1

3 and are s.t. Ext(c) ⊆ (t0.0
1 t0.3

2 t0.1
3 )Π = (d0.2

1 d1
2d

0.3
3 d0.7

3 ). This
corresponds to the (complete) sublattice represent in dashed lines. Note that we
have considered the Gödel implication and the corresponding min t-norm ∗.
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{d1,d2,d3,d4,d5},{Ø}

{d1},{t3,t4,t5}

{d2},{t1}

{d1,d5},{t5} {d4,d5},{t3} {d3,d4},{t2}

{Ø},{t1,t2,t3,t4,t5}

{d4},{t2,t3}

Fig. 1. Concept lattice corresponding to the incidence matrix R2

{d2,d3,d4,d5},{Ø}

{d5},{t3,t4,t5}

{d2},{t1}

{d4,d5},{t3} {d3,d4},{t2}

{Ø},{t1,t2,t3,t4,t5}

{d4},{t2,t3}

Fig. 2. Lattice of formal concepts satisfying the disjunctive query t1 ∨ t2 ∨ t3
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0.0 0.6 0.0 0.5

{d1 d2 d3 d4 },0.0 1.0 0.0 0.5

0.0 0.0

0.7 0.9 0.5

0.0 1.0 0.0 0.7

0.2 0.1 0.5

0.3 0.1 0.50.2 0.1

0.3 0.1
0.2 0.4

0.10.2

0.9 0.5

{t1 t2 t3 }1.0

0.0 0.9 0.1

0.0 0.4 0.1

0.0 0.9 0.5
0.0 0.2 0.6

0.0 0.9 0.6

0.0 0.2 0.5

0.0 0.2 0.3

0.1

{d1 d2 d3 d4 },

{t1 t2 t3 }

{d1 d2 d3 d4 },

{t1 t2 t3 }

{d1 d2 d3 d4 },

{t1 t2 t3 }

{d1 d2 d3 d4 },

{t1 t2 t3 }

1.0

1.0 1.0

1.0

{d1 d2 d3 d4 },

{t1 t2 t3 }1.01.01.0

{d1 d2 d3 d4 },

{t1 t2 t3 }

1.0
{d1 d2 d3 d4 },

{t1 t2 t3 }

{d1 d2 d3 d4 },

{t1 t2 t3 }

{d1 d2 d3 d4 },

{t1 t2 t3 }

1.0 1.0

1.0 1.0

1.0 1.0 1.0

{d1 d2 d3 d4 },

{t1 t2 t3 }

1.0 1.0

1.0 1.01.0

0.1

0.0 0.2

{d1 d2 d3 d4 },

{t1 t2 t3 }

1.0 1.01.0

0.60.9

Fig. 3. Formal concepts satisfying a negative conjunctive query
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Table 3. Fuzzy incidence matrix R3 and R3

R3 t1 t2 t3 R3 t1 t2 t3
d1 1 0.8 0.7 d1 0.0 0.2 0.3

d2 0.0 0.1 0.4 d2 1 0.9 0.6

d3 1 0.6 0.9 d3 0.0 0.4 0.1

d4 0.3 0.1 0.5 d4 0.7 0.9 0.5

6 Conclusion

Contributions of this paper are manifold. First, it extends the framework of FCA-
based information retrieval approaches to the fuzzy setting which allows for fuzzy
incidence matrices as well as weighted queries in a sound truth structure. Fuzzy
settings may be useful for information retrieval purpose since it allows to obtain
relevant incidence matrices using (normalized) numerical values such the well
known term frequency measure.

Another original contribution consists of considering possibilistic derivation
operators in order to express disjunction and negation in queries. We have showed
that the results of a disjunctive query is also a complete lattice whereas the
negation is easily expressed by means of a proposition that establishes corre-
spondences between possibilistic derivation operators.

As a perspective, we intend to address the problem of ranking the query results
in a deterministic (lattice-based) way. We intend also to consider the case where
the entries of the incidence matrix are partially or even completely unknown.
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Abstract. In this paper, we consider the situation where a fuzzy query is submit-
ted to distributed data sources. In order to save bandwith and processing cost, we
propose an approach whose aim is to forward the query to the most
relevant sources only. An efficient fuzzy-cardinality-based technique for sum-
marizing each data source is described. The approach we propose consists in
estimating the relevance of a source with respect to a user query, based on its
associated summary. Some experiments illustrate the efficiency of the approach.

1 Introduction

In recent years, many research works have acknowledged the need for flexible ways to
access information. A typical example is the “top-k query” approach where a user can
incorporate vague terms in his/her query and the system aims at providing the user with
the best k answers. A more general approach is that based on fuzzy set theory, which
allows for a large variety of flexible terms and connectives. Another important recent
phenomenon in the world of information systems is the emergence of decentralized
approaches to data sharing, illustrated in particular by peer-to-peer systems (P2P). A
PDMS (Peer Data Management System) consists of a set of peers, each of which acts as
an information integration component [1]. Queries submitted to one peer are answered
by local data as well as by data that is reachable along paths of mappings through the
network of peers. In such a context, due to the bandwith costs related to query propa-
gation, it becomes crucial to assess data sources in order to optimize query processing.
Having available summaries of the different source contents enables to propagate the
query only to the (more or less) relevant sources. In this paper, we tackle the problem
of fuzzy query processing in a context of large-scale distributed relational databases.
The main objective is to determine as efficiently as possible the set of databases which
are likely to provide “good answers” to a fuzzy query submitted by a user. We study a
specific type of “fuzzy summaries” — based on the concept of fuzzy cardinality — that
proves useful for this purpose. In the following, we assume that the sources share the
same schema. Otherwise, one would need to have available some mappings between
schema sources, but this data mediation issue is beyond the scope of the paper.

The remainder of the paper is organized as follows. Section 2 is devoted to a reminder
about fuzzy queries whereas Section 3 describes a database summarization technique
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based on the use of fuzzy partitions of the domains and the computation of fuzzy car-
dinalities. In Section 4, we describe the principle of the computation of an estimated
relevance degree for a source wrt to a given fuzzy query. Section 5 presents an appli-
cation scenario of this technique in the context of a PDMS. Section 6 presents some
experimental results which illustrate the efficiency of the approach. Related work is
discussed in Section 7, whereas Section 8 recalls the main contributions of the paper
and outlines some perspectives for future work.

2 Fuzzy Queries

Regular sets allow for the definition of Boolean predicates. In an analogous way, grad-
ual predicates (or conditions) can be associated with fuzzy sets [2] aimed at describing
classes of objects with vague boundaries. A fuzzy predicate P can be modeled as a func-
tion μP (usually of triangular or trapezoidal shape) from one (or several) domain(s) X
to the unit interval. The degree μP (x) represents the extent to which element x satisfies
the vague predicate P (or equivalently the extent to which x belongs to the fuzzy set
of objects which match the fuzzy concept P ). A fuzzy predicate can also compare two
attributes using a gradual comparison operator such as “more or less equal”.

Conjunction (resp. disjunction) is interpreted by means of a triangular norm� (resp.
co-norm⊥), for instance the minimum or the product (resp. the maximum or the prob-
abilistic sum). As to negation, it is interpreted as: ∀x, μ¬P (x) = 1− μP (x). Weighted
conjunction and disjunction as well as weighted averaging operators can be used to
assign a different importance to each of the predicates (see [3] for more details).

The operations from relational algebra can be extended to fuzzy relations by consid-
ering fuzzy relations as fuzzy sets on the one hand and by introducing gradual predicates
in the appropriate operations on the other hand. The definitions of these extended oper-
ators can be found in [4]. As an illustration, we give the definition of the fuzzy selection
hereafter, where r denotes a (fuzzy or crisp) relation, t is a tuple from r, and cond is a
fuzzy predicate.

μsel(r, cond)(t) = �(μr(t), μcond(t)).

The language called SQLf described in [5] extends SQL so as to support fuzzy queries.
Here, we just describe the base block in SQLf since this is all we need for our purpose.
The principal differences w.r.t. SQL affect mainly two aspects :

– the calibration of the result, which can be achieved through a number of desired
answers (k), a minimal level of satisfaction (δ), or both, and

– the nature of the authorized conditions as mentioned previously.

Therefore, the base block is expressed as:

select [distinct] [k | δ | k, δ] attributes from relations where fuzzy-condition.

3 Summarizing a Relation

We first recall the principle of the fuzzy-cardinality-based approach to database sum-
marization introduced in [6]. Let r be a (non fuzzy) relation involving attributes A,
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Fig. 1. Fuzzy partitions of the domains of attribute age (left) and salary (right)

B, and C (for notational simplicity, we use only three attributes, which is sufficiently
general for discussing the main issues, but the relation may involve any number of at-
tributes). Let (ai, bj , ck) denote a tuple of r. Let DA, DB, DC be the attribute domains.
We assume that each domain is equipped with a fuzzy partition (A1, A2, . . . , Ana),
(B1, B2, . . . , Bnb), (C1, C2, . . . , Cnc) respectively (cf. Fig. 1). Each fuzzy set in a
partition is assumed to be normalized and of trapezoidal form. Each partition is ordered,
and a fuzzy set, say Ai, can only overlap with its predecessor Ai−1 or/and its successor
Ai+1 (when they exist).

We further assume that a finite scale (with m + 1 levels) is used for assessing the
membership degrees, namely 1 = σ1 > . . . > σm > 0. Each level corresponds to a
different possible understanding of Ar as the crisp level-cut (Ar)σi .

From relation r, we build a new relation rsu (for “r summarized”) by a procedure
involving two main steps which are now described.

3.1 The Labelling Step

We replace each tuple 〈ai, bj , ck〉 by one or several tuples of fuzzy sets 〈Ar, Bs, Ct〉
subject to the constraint: Ar(ai) > 0 1, Bs(bj) > 0, Ct(ck) > 0. Thus 〈ai, bj , ck〉may
be replaced by one tuple 〈Ar, Bs, Ct〉 if all the three degrees of membership are equal
to 1, or by several (up to 23 = 8) in case one or several of the element(s) in the tuple
belong to two fuzzy sets. For instance, if Ar(ai) = 1, Bs(bj) = 0.8, Bs+1(bj) = 0.2,
Ct−1(ck) = 0.6, Ct(ck) = 0.4, four tuples are produced:

〈Ar, 0.8/Bs, 0.6/Ct−1〉, 〈Ar , 0.8/Bs, 0.4/Ct〉,
〈Ar, 0.2/Bs+1, 0.6/Ct−1〉, 〈Ar, 0.2/Bs+1, 0.4/Ct〉

where we keep track of the membership degrees (Ar stands for 1/Ar). This corresponds
to all the possible “readings” of the tuple 〈ai, bj , ck〉 in terms of the vocabulary pro-
vided by the fuzzy partitions. In the context we consider, it is not necessary to store
the summarized relation rsu. The only additional data that has to be stored is the fuzzy
cardinalities, whose computation is described in the following subsection.

3.2 Fusion Step and Computation of Fuzzy Cardinalities

We want to know how many tuples from r are Ar, are Bs, are Ct, are Ar and Bs, ...,
are Ar and Bs and Ct, and this, for all the fuzzy labels. It is then necessary to compute

1 Ar(ai) denotes the membership degree of ai in Ar.
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the different cardinalities related to each linguistic label and to the diverse conjunctive
combinations of these labels.

All the tuples of the form 〈x/Ar , y/Bs, z/Ct〉 which are identical with respect to
the three labels are fused into one tuple 〈Ar, Bs, Ct〉 of rsu. At the same time, we
compute the cardinalities FAr , FBs , FCt , FArBs , FArCt , FBsCt , FArBsCt where FAr

(resp. FBs , ..., FArBsCt) is a fuzzy set defined on the integers {0, 1, ...}which represents
the fuzzy number of tuples which are somewhat Ar (resp. Bs, ..., Ar and Bs and Ct)
and which are fused into the considered tuple. In the following, a fuzzy cardinality is
represented as FAr = 1/c1 + σ2/c2 + ... + σf/cf , where ci is the number of tuples in
the concerned relation that are Ar with a degree at least equal to σi. Each cardinality is
computed incrementally in the following way. At the beginning FAr = 1/0. Let:

FAr = 1/c1 + σ2/c2 + . . . + σk/ck + . . . + σf/cf

be the current value of FAr . Let us consider a new tuple whose A-value rewrites Ar.
Let x′ be the degree attached to Ar in this tuple. FAr must then be modified. If x′ = 1,
FAr becomes:

1/(c1 + 1) + σ2/(c2 + 1) + . . . + σk/(ck + 1) + . . . + σf/(cf + 1)

If x′ < 1, there are two cases. If ∃i, x′ = σi then FAr is modified into:

1/c1 + σ2/c2 + . . . + σi−1/(ci−1) + σi/(ci + 1) + . . . + σf/(cf + 1).

Otherwise, ∃j, σj > x′ > σj+1 and FAr becomes:

1/c1 + . . . + σj/cj + x′/1 + σj+1/(cj+1 + 1) + . . . + σf/(cf + 1).

If, for the computation of FAr (resp. FBs and FCt ), one takes into account the value
x′ (resp. y′ the degree related to Bs, and z′ the degree related to Ct), the computation
of FArBs (resp. FArCt , FBsCt and FArBsCt), takes into account the value min(x′, y′)
(resp. min(x′, z′), min(y′, z′), min(x′, y′, z′)), thus reflecting the fact that the tuple
to fuse is both Ar and Bs (resp. Ar and Ct, Bs and Ct, Ar and Bs and Ct).

Table 1. Tuples from emp (left) and their degrees (right)

#e name age sal(k$)
17 Smith 51 65
76 Martin 40 45
26 Jones 24 19
12 Green 39 32
19 Duncan 28 24
8 Brown 54 57
31 Harris 29 18
9 Davis 61 15
44 Howard 22 45
23 Lewis 62 59

μyg μma μold μlow μmed μhigh

0 0.9 0.1 0 0 1
0 1 0 0 1 0
0.6 0.4 0 1 0 0
0 1 0 0.3 0.7 0
0.2 0.8 0 1 0 0
0 0.6 0.4 0 0.8 0.2
0.1 0.9 0 1 0 0
0 0 1 1 0 0
0.8 0.2 0 0 1 0
0 0 1 0 0.6 0.4
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Example 1. Let us consider a relation emp of schema (#e, name, age, salary) describing
employees of a company, cf. Table 1 (left). Let us consider the fuzzy partition on the
domain of attribute age (resp. salary) given in Figure 1. The degrees associated with
the tuple values from emp are given in Table 1 (right). The fuzzy cardinalities which
summarize relation emp are given in Table 2. +

Table 2. Fuzzy summary associated with relation emp

young 0.8/1 + 0.6/2 + 0.2/3 + 0.1/4
middle-aged 1/2 + 0.9/3 + 0.9/4 + 0.8/5 + 0.6/6 + 0.4/7 + 0.2/8
old 1/2 + 0.4/3 + 0.1/4
low 1/4 + 0.3/5
medium 1/2 + 0.8/3 + 0.7/4 + 0.6/5
high 1/1 + 0.4/2 + 0.2/3
{young, low} 0.6/1 + 0.2/2 + 0.1/3
{young, medium} 0.8/1
{young, high} 1/0
{middle-aged, low} 0.9/1 + 0.8/2 + 0.4/3 + 0.3/4
{middle-aged, medium} 1/1 + 0.7/2 + 0.6/3 + 0.2/4
{middle-aged, high} 0.9/1 + 0.2/2
{old, low} 1/1
{old, medium} 0.6/1 + 0.4/2
{old, high} 0.4/1 + 0.2/2 + 0.1/3

3.3 Constructing the Summary of a Data Source

The summarization process of a data source relies on a first step of tuple interpretation
in terms of the fuzzy vocabulary. This task has a complexity which is linear in the
size of the data source. The second step concerns the update of the fuzzy cardinalities
for all possible conjunctions of predicates taken from the set of interpretations for the
concerned tuple. For each tuple this step has a maximum complexity of 2A where A
is the number of attributes. Section 6, dedicated to the evaluation of this approach on a
concrete example, shows that the time needed to compute such summaries is acceptable,
all the more so as these summaries can be updated incrementally. For example, it takes
less than 7 minutes to compute the cardinalities associated with a database containing
46,069 tuples and 10 attributes.

A strategy to reduce the size of the summaries and the time needed to compute
them, is to focus on attributes or predicates that have been frequently combined by
users in their previously submitted queries. Such a workload can be used to initialize
a first version of the summaries that can then be easily refined when new queries are
submitted. Using such a progressive construction of summaries, a new query that is not
related to one of the stored fuzzy cardinalities is forwarded to all possible data sources.
The results returned are then used to (incrementally) update the summaries.

4 Estimating the Relevance of a Data Source

As explained before, one wants to estimate the relevance of a data source S with respect
to a given query Q, i.e., to assess the extent to which S may provide “good answers” to
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Q. This covers two aspects: a qualitative one (how satisfactory are the answers returned
by S) and a quantitative one (how many answers are returned by S). Both these aspects
are captured by the fuzzy cardinality attached to the result of Q in S. Its estimation —
whose principle was introduced in [7] — is presented hereafter.

4.1 Principle of the Approach

Let PA be a fuzzy predicate from the user query (expressed in a language such as
SQLf [5]). It is assumed that PA concerns attribute A. Let Gi(A) be the fuzzy partition
defined on the domain of attribute A in relation ri present in the data source Si. The
objective is to estimate the fuzzy cardinality relative of the fuzzy set of answers to PA in
Si, using the fuzzy cardinalities attached to the labels from Gi(A). Along with his/her
query, the user may specify either a threshold δ ∈ {σ1, . . . , σm} (then, a data source
will be selected only if it contains tuples whose satisfaction degree with respect to the
user query is at least δ) or a number k (then, only the k “best” data sources will be
selected, a source being all the better as the average satisfaction degree of its tuples
with respect to the query is high). Let Li(PA) be the set gathering the predicates of
Gi(A) which have a nonempty intersection with PA (Li(PA) is nonempty since Gi(A)
is a partition.) We assume that each domain is bounded. Then, every α-cut is a closed
interval, even if the membership function is a right- or a left-shoulder. One can easily
derive the number of tuples which have a certain degree μ for a given label, from the
fuzzy cardinality attached to this label. For instance, if one has the fuzzy cardinality
FPj = 1/7 + 0.8/16 + 0.7/21, one deduces that 7 elements in ri get degree 1 for Pj ,
9 (16− 7) get degree 0.8, and 5 (21− 16) get degree 0.7.

4.2 Single Predicate Case

Let us first consider the case where query Q involves a single fuzzy predicate P .

Qualitative Thresholding. If δ is specified, it is then necessary to evaluate only the α-
cuts such that α ≥ δ. For a given source Si, a given α from {σ1, . . . , σm} and a given
fuzzy predicate Pj from Li(P ), we denote by interi

j(α) the interval which corresponds
to the intersection between the α-cut of P and that of Pj , and cardi

j(α) its associated
estimated cardinality. We denote by cardi(α) the overall estimated cardinality of the
α-cut of P in Si. From the different cardi(α), one can build the estimated fuzzy cardi-
nality F i

P, δ associated with P in Si. The algorithm is as follows.

for each source Si do
for α := σm down to δ do

cardi(α) = 0;
for each Pj in Li(P ) do

compute interi
j(α);

estimate cardi
j(α);

endfor;
compute cardi(α) from the cardi

j(α)’s;
endfor;
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build the fuzzy cardinality F i
P, δ;

endfor;
forward Q only to the sources such that cardi(δ) > 0;

Notice that this algorithm does not induce any access to the data from Si, but only
simple computations involving membership functions and fuzzy cardinalities, which
means that its processing time is negligible with respect to the cost of actually evaluat-
ing Q against Si. Notice also that a more demanding view would be to select only the
sources which contain at least n tuples whose degree is at least δ. Then, the condition
cardi(δ) > 0 is replaced by cardi(δ) ≥ n, where n is a user-specified parameter. The
following example illustrates the way the approach works. We assume that the scale
used for assessing the membership degrees is {0, 0.2, 0.4, 0.6, 0.8, 1}.

Example 2. Let us consider the user-defined predicate PA of support [310, 410] and
core [330, 350] (cf. Figure 2) and the user-specified threshold δ = 0.4. It is assumed
that the domain of A is a subset of the integers. We have:

1-cut(PA) = [330, 350], 0.8-cut(PA) = [326, 362],
0.6-cut(PA) = [322, 374], 0.4-cut(PA) = [318, 386].

We assume that for the source Si, one has Li(P ) = {P1, P2} (cf. Figure 2) with

– P1 a predicate of support [250, 390] and of core [300, 340], such that: FP1 =
1/70 + 0.8/161 + 0.6/317 + 0.4/555, which gives:

1-cut(P1) = [300, 340]; card = 70; 0.8-cut(P1) = [290, 350]; card = 161;
0.6-cut(P1) = [280, 360]; card = 317; 0.4-cut(P1) = [270, 370]; card = 555.

From FP1 and the shape of μP1 , one can also deduce that:
• 70 elements are in [300, 340],
• 91 (= 161− 70) elements are in [290, 300[∪ ]340, 350],
• 156 (= 317− 161) elements are in [280, 290[ ∪ ]350, 360],
• 238 (= 555− 317) elements are in [270, 280[ ∪ ]360, 370].

– P2 a predicate of support [340, 470] and of core [390, 420], such that: FP2 =
1/0 + 0.8/82 + 0.4/363, which gives:

1-cut(P2) = [390, 420]; card = 0; 0.8-cut(P2) = [380, 430]; card = 82;
0.6-cut(P2) = [370, 440]; card = 82; 0.4-cut(P2) =[360, 450]; card = 363.

Fig. 2. A fuzzy partition of the domain of A and a user predicate PA
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From FP2 and the shape of μP2 , one can also deduce that:

• 0 elements are in [390, 420],
• 82 elements are in [380, 390[ ∪ ]420, 430],
• 0 (= 82− 0) elements are in [370, 380[ ∪ ]430, 440],
• 281 (= 363− 82) elements are in [360, 370[ ∪ ]440, 450].

The estimation of the fuzzy cardinality relative to PA based on those relative to P1 and
P2 is performed as follows.

– α = 1:
interi

1(1) = [330, 340];
cardi

1(1) = !70 × 340−330+1
340−300+1" = 19 (here, one assumes that the elements are

uniformly distributed in the core of P1);
interi

2(1) = ∅; cardi
2(1) = 0; cardi(1) = cardi

1(1) + cardi
2(1) = 19;

– α = 0.8:
interi

1(0.8) = [326, 350];
cardi

1(0.8) = ! 340−326+1
340−300+1 + 161−70

2 " = 71 (here, one assumes that the elements of
degree 0.8 are evenly distributed on the left and the right shoulders of the function,
i.e., in [290, 300[ and ]340, 350]);
interi

2(0.8) = ∅; cardi
2(0.8) = 0; cardi(0.8) = cardi

1(0.8) + cardi
2(0.8) = 71;

– α = 0.6:
interi

1(0.6) = [322, 360];
cardi

1(0.6) = ! 340−322+1
340−300+1 + 161−70

2 + 317−161
2 " = 156;

interi
2(0.6) = [370, 374]; cardi

2(0.6) = 0;
cardi(0.6) = cardi

1(0.6) + cardi
2(0.6) = 156;

– α = 0.4:
interi

1(0.4) = [318, 370];
cardi

1(0.4) = ! 340−318+1
340−300+1 + 161−70

2 + 317−161
2 + 555−317

2 " = 282;
interi

2(0.4) = [360, 386]; cardi
2(0.4) = ! 386−380+1

389−380+1 )× 82−0
2 + 363−82

2 " = 169
Since interi

1(0.4) ∩ interi
2(0.4) = [360, 370] �= ∅, one must be careful not to

count the same elements twice. Using FP1 , the estimated number of elements in
[360, 370] is: ! 555−317

2 " = 119. Using FP2 , it is: ! 363−82
2 " = 141. A solution

is to use the average of these two estimations, i.e. 130, and we get: cardi(0.4) =
cardi

1(0.4) + cardi
2(0.4)− 130 = 321.

Finally, the estimation of F i
PA, 0.4 is: 1/19 + 0.8/71 + 0.6/156 + 0.4/321.+

Quantitative Thresholding. Let k be the number of answers (the best possible ones) that
the user intends to obtain. The idea is to rank-order the sources according to their rele-
vance wrt the query, and to select the best ones, to which the query will be forwarded.
Two methods for ranking the sources may be thought of:

– lexicographic ordering of the sources so that the satisfaction degree is prioritary
over the associated cardinality. For instance, if we have F 1

P = 1/3+0.8/5+0.6/72,
F 2

P = 1/7 + 0.8/7 + 0.6/7, and F 3
P = 0.8/51 + 0.6/172, we get S2 , S1 , S3.



Processing Fuzzy Queries in a Peer Data Management System 367

– ordering based on the relative scalar cardinality Si
P which “synthesizes” the fuzzy

cardinality F i
P attached to a source Si. For instance, the fuzzy cardinality computed

in Example 2 may be synthesized into:

Si
PA

=
19 + 0.8× (71− 19) + 0.6× (156− 71) + 0.4× (321− 156)

321
≈ 0.55.

We get: S1
P = 0.62, S2

P = 1, and S3
P = 0.66, which yields S2 , S3 , S1.

The first strategy favors the sources which provide good quality answers (even if not
many) whereas the second technique mixes the qualitative and the quantitative aspects
in its assessment of a source. The generic algorithm is as follows.

for each source Si do
for α := σm down to σ1 do

cardi(α) = 0;
for each Pj in Li(P ) do

compute interi
j(α); estimate cardi

j(α);
endfor;
compute cardi(α) from the cardi

j(α)’s;
endfor;
build the fuzzy cardinality F i

P ;
endfor;
rank-order the sources Si;

Again, no disk access to the tuples from Si is necessary. The last step is to select the
sources to which the query will be forwarded, i.e. to determine the smallest number k′

such the k′ best sources provide together at least k answers. This can be done using the
fuzzy cardinality associated with each source.

4.3 Case of a Conjunctive Fuzzy Query

When the user query involves several fuzzy predicates, we proceed as follows. Let us
suppose that the query involves a fuzzy predicate PA on attribute A and another PB

on attribute B. Let us consider the source Si. As before, one first determines the set of
predicates from Gi(A) which intersect PA — denoted by Li(PA) — and those from
Gi(B) which intersect PB — denoted by Li(PB). Let us recall that we have available
the fuzzy cardinality F i

PjPk
related to Si for every Pj ∈ Li(PA) and Pk ∈ Li(PB).

For every α of the scale considered, and for every Pj , Pk from Li(PA) × Li(PB),
one computes the cardinality of the intersection between the α-cut of PA (resp. PB)
and that of Pj (resp. Pk) divided by the cardinality of the α-cut of Pj (resp. Pk). These
computations rest on the same principle as in the single predicate case. Let us denote
by γA (resp. γB) the ratios obtained. Let us denote by ρ = cardi

jk(α) the cardinality
associated with α in F i

PjPk
. The estimated contribution of (Pj , Pk) to the cardinality

associated with α in F i
PAPB

is:

ci
jk(α) = γA × γB × ρ
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This corresponds to assuming that if γA (resp. γB) percent of the items which are Pj

(resp. Pk) to a degree α are also PA (resp. PB) to a degree α, and if ρ items satisfy
Pj ∧ Pk to a degree α, then γA × γB × ρ items satisfy PA ∧PB to a degree α. In other
words, the (rather strong) assumption underlying this formula is that the proportion of
elements which are PA (resp. PB) among those which are Pj (resp. Pk) is equal to the
proportion of elements which are PA (resp. PB) among those which are Pj ∧ Pk.

Finally, the overall estimated cardinality ci(α) associated with α in F i
PAPB

is com-
puted in the same way as in the single predicate case, taking care of not counting twice
the elements which belong to two adjacent labels.

5 Application Scenario

Let us now outline the way a fuzzy query can be processed in the context of a PDMS
organized according to a super-peer architecture.

5.1 The X-Peer Architecture

In the XPeer architecture [8], an information system plays the role of a peer. A set of
peers sharing the same schema are grouped into a cluster where the mediated schema
for the set is managed by a cluster-peer node. A cluster-peer is also called super-peer in
the data mediation literature [9].

While a cluster-peer provides an integration of a set of peers within its cluster, this
is insufficient for providing a large scale information system. The authors of [8] take
the example of an information system for healthcare, where one needs to group to-
gether information from physicians, clinics, medicine industries as well as government
resources. These different resources do not share the same schema and even the same
resource may have different schemas and data access. To manage these heterogeneities,
Roantree et al. [8] introduce two further layers in the peer hierarchy: domain-peers (a
single domain-peer manages a set of cluster-peers), and a global-peer which manages
the set of domain-peers. The authors define a domain as a set of clusters sharing the
same category of information (physicians for instance). They also define a special node
called a domain peer for each domain, which acts as the entry point for this domain.

5.2 Processing Strategy

Let us assume that each cluster-peer stores the schema mappings associated with ev-
ery of its descendant nodes, as well as the summaries attached to them. When a peer
receives a fuzzy query Q (associated either with a minimal satisfaction threshold δ or
a quantitative threshold k), it forwards it to its cluster-peer which assesses every of its
descendant nodes (data sources) by means of the estimation technique described in Sec-
tion 4. The fuzzy query is forwarded to the peers corresponding to the selected sources
(either the k best ones or those which are able to provide tuples whose satisfaction de-
gree is at least equal to δ), which processes it and forwards the result to its cluster-peer.
When the cluster-peer which forwarded the query has received all the results, it merges
them into an ordered list and returns it via the peer which initiated the query.
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6 Experimentation

We consider 46,089 ads provided by www.eurotaxglass.fr about second hand
cars distributed over 6 databases. Each ad is described with the following schema
(idAds, model, description, year, mileage, price, make, length, height, nbseats, con-
sumption, acceleration, co2emission) and a common sense vocabulary has been defined
on the 10 last attributes with 73 fuzzy predicates. A super node, acting as an access
node, stores the summaries of these 6 data sources.

Summarization. To study the behavior of this fuzzy-cardinality-based summarization,
we have conducted some experiments. Figures 3 shows how the computation time of
the fuzzy cardinalities (left) as well as the space needed to store them in a database
(right) increase according to a varying number of tuples between 5,000 and 46,089. It
confirms a predictable phenomenon, i.e. the convergence of the size of the summary,
which can be explained by the fact that whatever the number of tuples, the number
of possible combinations of properties to describe them is finite and relatively small.
So, one may expect that even for very large databases, the summaries will easily fit
in the memory of the super node. The time complexity of the summarization process
is linear with respect to the cardinality of the database and exponential with respect
to the size of the vocabulary. Thus, according to the behavior of the computation time
observed on a dataset varying between 5,000 and 45,000, one can estimate that it would
take approximately 170 minutes to compute the summary of a database containing one
million tuples with a shared vocabulary of 73 predicates. Such a summary has to be
computed only once and can then be updated incrementally. Fuzzy cardinalities have
been stored in a PostgreSQL DBMS hosted in a 2.53 GHz Intel Core2 Duo computer
with 4GB of memory, and one can perform up to 6 modifications per second on the
summary.

As to the exponential increase of the processing time and the storage space of the
fuzzy cardinalities according to the number of predicates involved in the shared vo-
cabulary, this is not a problem in practice as, even if databases are getting larger every
day, the number of attributes and subsequently, the number of predicates that can be
specified through query interfaces is stable (generally around 10). Moreover, as fuzzy

Fig. 3. Evolution of the processing time and space with respect to the number of tuples

www.eurotaxglass.fr
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cardinalities can be updated incrementally according to modifications performed on the
databases, time complexity is not a crucial issue as this summarization step can be done
off-line and dynamically maintained.

Cardinality estimation and query routing. The fuzzy cardinality of a user query is
estimated from the data source summaries. We have evaluated the precision of this es-
timation process and especially the bias introduced by the hypothesis used during this
estimation process (uniform distribution of the tuples over the intervals of the α-cuts).
To do this, we have manually defined and submitted 30 atomic flexible queries. The
estimated fuzzy cardinalities have then been compared to the actual cardinalities and
we have observed a global error rate of 10.5%. Using two a priori defined demand-
ing thresholds (α = 0.6 and k = 40), we have then evaluated the extent to which the
estimated fuzzy cardinalities are helpful for an efficient query routing among the dis-
tributed databases. For the submitted queries that can be satisfied, i.e. queries for which
there exist at least k answers with a satisfaction degree of 0.6 across all the databases,
90% of them have been efficiently routed to an average of only 2.4 sources instead of
a full propagation to the six databases. This shows that fuzzy summaries constitute a
useful tool for defining efficient query routing strategies.

7 Related Work

7.1 Fuzzy Queries

In [10], Saint-Paul et al. propose an approach to the production of linguistic summaries
structured in a hierarchy, i.e., a summarization tree where the tuples from the database
are rewritten using the linguistic variables involved in fuzzy partitions of the attribute
domains. The deeper the summary in the tree, the finer its granularity (basically, the
father node of a set of nodes is associated with a set of disjunctions of fuzzy labels).
First, the tuples from the database are rewritten using the linguistic variables involved in
fuzzy partitions of the attribute domains. Then, each candidate tuple is incorporated into
the summarization tree and reaches a leaf node (which can be seen as a classification
of the tuple). In the hierarchical structure, a level is associated with the relative pro-
portion (crisp ratio) of data that is described by the associated summary, as well as the
maximal satisfaction degree of the tuples which rewrite into that summary. Hayek et al.
further use this framework in [11] for minimizing query routing in a P2P database con-
text. Obviously, this approach has a lot in common with the present work (use of fuzzy
summaries for optimizing the processing of fuzzy queries in a PDMS context) but the
main difference lies in the type of fuzzy summaries used. The summarization approach
defined in [10] has indeed a much poorer semantics than that we propose, since it does
not provide a fine description of the satisfaction degrees of the tuples which rewrite
into a given fuzzy label (again, only a crisp ratio and a maximal satisfaction degree
are associated with a given summary in the sense of [10], whereas a fuzzy cardinality
conveys much more information about the distribution of the tuples in the different α-
cuts of each fuzzy label). The approximate query answering technique that the authors
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of [11] propose is thus necessarily much less precise than the estimation based on fuzzy
cardinality which constitutes the heart of our approach.

7.2 Top-k and Skyline Queries

In [12], Yu et al. use regular histograms, maintained at a central site, to estimate the
score (which corresponds to what we call relevance degree) of distributed databases wrt
a top-k query and send the query to the databases that are more or less likely to involve
top results (see also [13,14,15,16] where similar approaches are advocated). Some au-
thors have also proposed to use histogram-based summaries or bitmap indexes for op-
timizing skyline query processing in a decentralized database context (see in particular
[17,18,19]). Even though the approaches which deal with top-k or skyline queries in
P2P systems have an objective in common with the present contribution — that of en-
riching PDMSs with flexible querying capabilities —, they differ a lot on the techniques
used, since:

– top-k queries take into account a limited form of flexibility in the selection condi-
tions (only conditions of the type “attribute = constant” are considered, and trans-
formed into “attribute ≈ constant”) and the goal is not to get answers which are
good enough, but the best answers (even if these answers are all mediocre),

– the skyline approach rests on a Pareto ordering of the answers and looks for the el-
ements which are not dominated by any other; only a partial order is obtained since
there is no global scoring function used (unlike the fuzzy-set-based approach which
assumes commensurability between the degrees coming from different predicates).

8 Conclusion

In this paper, we have proposed an approach aimed at assessing different data sources
wrt to a fuzzy query in the context of peer data management systems so as to opti-
mize query processing. The idea is to forward the query to the most relevant sources
only. The approach rests on the use of fuzzy partitions of the attribute domains, which
themselves constitute the basis to the construction of fuzzy summaries of the differ-
ent sources involved. A fuzzy summary gathers the fuzzy cardinalities attached to the
different rewritings of the tuples in terms of the fuzzy labels from the partitions consid-
ered. The assessment of a data source is based on the estimation of the fuzzy cardinality
attached to the user query in this source, which is computed from the summaries and
takes into account the intersection of the α-cuts of the user predicates on the one hand
and the fuzzy labels involved in the summaries on the other hand.

We have shown that the fuzzy cardinalities stored in the access node can be easily and
incrementally updated according to modifications performed on the data sources. As a
perspective for future work, let us mention that the comparison of the estimated fuzzy
cardinalities with the results returned by the data sources can also serve for updating
the fuzzy partitions on which summaries are pre-computed. Indeed, in order to mini-
mize the error rate for predicates that are frequently used and to refine the summaries
involving such predicates, one can use a more detailed scale of membership degrees to
get more accurate summaries or even revise the shape of the fuzzy predicates.
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Abstract. Though forecasting methods are used in numerous fields, we have
seen no work on providing a general theoretical framework to build forecast op-
erators into temporal databases. In this paper, we first develop a formal defini-
tion of a forecast operator as a function that satisfies a suite of forecast axioms.
Based on this definition, we propose three families of forecast operators called
deterministic, probabilistic, and possible worlds forecast operators. Additional
properties of coherence, monotonicity, and fact preservation are identified that
these operators may satisfy (but are not required to). We show how deterministic
forecast operators can always be encoded as probabilistic forecast operators, and
how both deterministic and probabilistic forecast operators can be expressed as
possible worlds forecast operators. Issues related to the complexity of these op-
erators are studied, showing the relative computational tradeoffs of these types of
forecast operators. Finally, we explore the integration of forecast operators with
standard relational operators in temporal databases and propose several policies
for answering forecast queries.

1 Introduction

Though time series analysis methods have been studied extensively over the years in
many contexts [3], there has only recently been work that merges classical forecasting
with standard operations in temporal databases [1,5,6]. Given the widespread use of
temporal data, there are numerous applications that require such capabilities, allowing
for the consistent use and application of time series forecasts in databases. A university
might want to forecast research grant income (or expenditures) in the future by examin-
ing a database of research projects. A stock market firm might want to include support
for various kinds of specialized forecasting algorithms that predict the values of mutual
fund portfolios or a single stock over time. A government might want to forecast the
number of electricity connections or other development indicators in their country over
time. Such forecasts might not just be made about the future, but also used to fill in gaps
about the past. For instance, using data about the number of electricity connections in
Ecuador from 1990–2000 and 2002–2007, officials may want to interpolate the number
of connections there might have been in 2001.

This paper is not about how to make such forecasts. Currently, in all forecasting
applications, the model building and forecasting is performed outside of the database
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system itself, rather than as a smoothly integrated process. The implementation of these
forecasting models are often ad hoc in nature, and general relationships between differ-
ent forecasting tasks and domains are not exploited to their full potential. Yet, the broad
demand for forecasting and predictive analyses creates a need for a robust theoretical
framework that can incorporate forecasting directly into temporal databases.

The field of forecasting is extensive and widely studied, with an array of general
techniques [3] as well as specialized forecast models for a variety of domains, such as fi-
nance [15], epidemiology [9], politics [2,10,11,14], and even product liability
claims [13]. All these methods are very different from one another, and even within
a restricted domain such as the stock market, there are hundreds of forecasting mod-
els available, each with varying strengths and weaknesses. In spite of these variations,
we can identify general properties of forecasting that will facilitate integration of these
methods into query languages, making them available for managing and analyzing tem-
poral databases.

In this paper, the question “what should count as a forecast operator” is answered
by first providing a set of axioms that a forecast operator must satisfy. We assume that
forecast operators apply to temporal relational databases—the main reason for this as-
sumption is that in today’s world, most (though certainly not all) temporal data is in fact
stored in such databases. Subsequently, we define three classes of forecast operators—
deterministic forecast (DF) operators, probabilistic forecast (PF) operators, and pos-
sible worlds forecast (PWF) operators. We show that DF operators are a special case
of PF operators which in turn are a special case of PWF operators. Certain classi-
cal forecasting methods such as linear regression, polynomial regression, and logistic
regression methods are all demonstrated to be special cases of this framework. Some
new operators for forecasting are also developed, along with results characterizing the
complexity of applying certain forecast operators. This generalized understanding of
the properties and relationships of forecast operators will allow such forecasts to be
incorporated into temporal databases in a consistent way, as well as provide possible
transformations for choosing the best operator for a particular application.

The remainder of this paper is organized as follows. Section 2 contains two moti-
vating examples—one about forecasting academic grant incomes, and another about
electricity connections in developing countries based on real data from the World Bank.
Section 3 introduces basic notation for temporal databases. Section 4 provides an ax-
iomatic definition of a forecast operator and then defines the classes of DF, PF and
PWF forecast operators. This section also develops theorems showing relationships be-
tween DF, PF and PWF operators and the complexity of specific types of operator
constructions. In Section 5, query answering mechanisms are presented that incorpo-
rate forecast operators into the standard relational algebra. Finally, related work and
conclusions are given in Section 6.

2 Motivating Examples

Two motivating examples are used throughout this paper. The grants example specifies
the total dollar amount (“Amount”) of grants and number of employees (“Employees”)
of a Math and a CS department. Here, we are interested in predicting both of these
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attributes. The electricity example is drawn from real World Bank1 data about the total
expenditures (“Expend”) on electricity and the number of electricity connections (“Con-
nections”) in some Latin American countries. Here, we wish to forecast the number of
electricity connections and the amount of total expenditures (which includes operating
costs and capital investment).

Year Dept Amount Employees
t1 2000 CS 6M 70
t2 2001 CS 6.2M 70
t3 2002 CS 7M 75
t4 2003 CS 6M 75
t5 2004 CS 7.3M 74
t6 2005 CS 9M 80
t7 2000 Math 1M 71
t8 2001 Math 1.1M 74
t9 2002 Math 1M 73
t10 2003 Math 0.5M 66
t11 2004 Math 1.5M 79
t12 2006 Math 1.2M 77

Year Country Connections Expend
e1 2000 Brazil 48,000,000 6.8B
e2 2001 Brazil 50,200,000 7.5B
e3 2002 Brazil 52,200,000 6.9B
e4 2003 Brazil 53,800,000 6.3B
e5 2004 Brazil 56,300,000 7.7B
e6 2005 Brazil 57,900,000 10.7B
e7 2000 Venezuela 4,708,215 7.7B
e8 2001 Venezuela 4,877,084 5.2B
e9 2002 Venezuela 4,998,433 4.3B
e10 2003 Venezuela 5,106,783 3.3B
e11 2004 Venezuela 5,197,020 3.1B
e12 2005 Venezuela 5,392,500 3B

The grants relation The electricity relation

3 Basic Notation

The forecasting framework discussed in this paper applies only to temporal databases.
Therefore, some basic temporal database (DB) notation is introduced in this section.
We assume the existence of a finite set rel of relation names, and a finite set att
of attribute names, disjoint from rel. A temporal relation schema will be denoted as
S(A1, . . . , An−1, AT ) where S ∈ rel and A1, . . . , An−1, AT ∈ att. Each attribute
A ∈ att is typed and has a domain dom(A). Assume the existence of a special attribute
AT denoting time whose domain dom(AT ) is the set of all integers (positive and nega-
tive). Also assume that each attribute is either a variable or invariant attribute. Invariant
attributes do not change with time, while variable attributes might. In grants, “Dept”
is an invariant attribute, while “Amount” and “Employees” are variable attributes. In
electricity , “Country” is invariant, while “Connections” and “Expend” are variable.

A temporal tuple over S(A1, . . . , An−1, AT ) is a member of dom(A1) × · · · ×
dom(An−1) × dom(AT ). A temporal relation instance R over the relation schema
S is a set of tuples over S.

Given a tuple t over S(A1, . . . , An), we use t[Ai] (where i ∈ [1...n]) to denote the
value of attribute Ai in tuple t. We use Attr(S) to denote the set of all attributes in S.
Given a relation schema S, we say that schema Se is an extension of schema S, denoted
Se ⊇ S iff Attr(Se) ⊇ Attr(S).

1 Benchmarking Data of the Electricity Distribution Sector in the Latin America and Caribbean
Region 1995-2005. Available at: http://info.worldbank.org/etools/lacelectricity/home.htm
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Throughout the rest of the paper, we will abuse notation and write S(A1, . . . , An)
instead of S(A1, . . . , An−1, AT ), simply assuming that the last attribute in any schema
is the time attribute.

Definition 1 (Equivalence of tuples). Let R be a temporal relational instance R over
schema S,A ⊆ Attr(S) a set of attributes of S, and t1, t2 tuples over S. t1 ∼A t2 iff for
each Ai ∈ A, t1[Ai] = t2[Ai]. It is easy to see that ∼A is an equivalence relation—we
define a cluster for relation R w.r.t. the set of attributes A to be any equivalence class
under∼∗

A, and clusters(R,A) denotes the set of clusters of R w.r.t. A.

The following example shows clusters w.r.t. the grants and electricity examples.

Example 1. Consider the grants relation and suppose A = {Dept}. Then
clusters(grants, {Dept}) contains two clusters {t1, . . . , t6} and {t7, . . . , t12}. On
the other hand, if the electricity relation and the invariant set A = {Country}
are considered, there are again two clusters ({e1, . . . , e6} and {e7, . . . , e12}) in
clusters(electricity, {Country}).

4 Forecast Operator

In this section, we formally define a generic forecast operator for any temporal DB
and identify several families of forecast operators. Intuitively, a forecast operator must
take as input some historical information and a time period for which to produce a
forecast, which might include the future as well as past times where data is missing.
The output of a forecast operator, however, can vary dramatically in form. For instance,
forecasts can contain a single unambiguous prediction (called deterministic forecasts),
or a single probabilistic forecast (called a probabilistic forecast), or a set of possible
situations (called a possible worlds forecast). For each of these “types” of forecasts,
the content can vary widely as well. The following definition accounts for all of these
classes of forecasts, but requires that they satisfy specific desired properties.

Definition 2 (Forecast Operator). Given a temporal relation instance R over the
schema S and a temporal interval I defined over dom(AT ), a forecast operator φ is
a mapping from R and I to a set of relation instances {R1, . . . , Rn} over a schema
Se ⊇ S satisfying the following axioms:

Axiom A1. Every tuple in each Ri (i ∈ [1..n]) has a timestamp in I. This axiom says
that the forecast operator only makes predictions for the time interval I.

Axiom A2. For each relation Ri (i ∈ [1..n]) and for each tuple t ∈ R such that t[AT ] ∈
I, there is exactly one tuple ti ∈ Ri such that ∀A ∈ Attr(S), t[A] = ti[A]. This
axiom says that tuples of R having a timestamp in I are preserved by the forecast
operator (though they can be extended to include new attributes of the schema Se).

Axiom A3. For each timestamp ts ∈ I and tuple t ∈ R, there is relation Ri with i ∈
[1..n] containing the (forecasted) tuple t′ such that t′[AT ] = ts and t′ ∼A t where
A ⊆ Attr(S) is a set of invariant attributes. This axiom says that the forecasting
is complete with respect to the timestamps in I and original tuples in R.

Note that axioms (A1) to (A3) above are not meant to be exhaustive. They represent
a minimal set of conditions that any forecast operator should satisfy. Specific forecast
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operators may satisfy additional properties. In addition, we reiterate that the temporal
interval I in the above definition can represent both the future and the past, i.e., it can
include times that follow and/or precede those in relation R.

Forecast operators may satisfy the following additional properties; however, they are
not mandatory for definition as an operator.

Definition 3 (Coherence). Suppose R is a temporal relational instance over a tempo-
ral relational schema S, I is a temporal interval, andA a set of invariant attributes. A
forecast operator φ is coherent w.r.t.A iff for each Ri ∈ φ(R, I) = {R1, R2, . . . , Rn},
there is a bijection βi : clusters(R,A) → clusters(Ri,A) such that for each
cl ∈ clusters(R,A), it is the case that φ(cl, I) = {β1(cl), β2(cl), · · · , βn(cl)}.

Basically, a forecast operator φ is coherent w.r.t. a set of attributes A if the result of
applying φ on the whole relation R is equivalent to the union of the results obtained by
applying φ on every single cluster in clusters(R,A). For instance, consider the elec-
tricity example andA = {Country}. In this case, a coherent forecast operator says that
the number of electricity connections and the amount of expenditures in a country only
depends on that country. Likewise, in the grants example with A = {Dept}, using a
coherent forecast operator implies that the amount of grants and number of employees
only depend upon the department. Forecast operators are not required to be coherent
because this property may not always be valid in all applications. For instance, there
may be a correlation between grant amounts in the CS and Math departments (e.g., de-
creases in NSF funding may affect both of them proportionately). As a consequence, if
the grants relation had an additional tuple t13 with information on the 2007 grant in-
come of Math, then this may be relevant for a forecast about CS’s grant income in 2007,
but the coherence assumption would not allow this dependency. As such, coherence is
not considered a basic forecast axiom.

Another property that forecast operators may satisfy (but are not required to) is
monotonicity. Given a relation R, two disjoint sets A,B of attributes2, and two clus-
ters cl1, cl2 ∈ clusters(R,A), we say that cl1 <B cl2 iff ∀ t1 ∈ cl1, t2 ∈ cl2, B ∈ B it
is the case that t1[B] ≤ t2[B] We now use this ordering to define monotonicity.

Definition 4 (Monotonicity). Let R be a temporal relational instance over a schema
S, I a temporal interval, and A,B ⊆ Attr(S) \ AT two disjoint sets of attributes. A
forecast operator φ is monotonic w.r.t. the pair 〈A,B〉 iff for each Ri ∈ φ(R, I), there
is a bijection βi : clusters(R,A)→ clusters(Ri,A) such that:

(i) ∀ cl ∈ clusters(R,A), cl ∼A βi(cl) (i.e., ∀ t1 ∈ cl, t2 ∈ βi(cl), A ∈ A it is the
case that t1[A] = t2[A]); and

(ii) ∀ cl1, cl2 ∈ clusters(R,A) such that cl1 <B cl2, it is the case that βi(cl1) <B
βi(cl2).

A forecast operator is monotonic if trends of attributes in B in the clusters w.r.t. A of
the original relation R are preserved by the clusters w.r.t. A in the predicted relations
R1, R2, . . . , Rn. In the rest of this section, we study three families of forecast operators
— deterministic forecasts, probabilistic forecasts, and possible world forecasts.

2 An ordering of Dom(B) for each B ∈ B is assumed.
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4.1 Deterministic Forecast Operator

A deterministic forecast operator is one that returns a single relation with exactly the
same schema as the input relation.

Definition 5 (Deterministic Forecast Operator). Given a temporal relation R over
the schema S and a temporal interval I, a deterministic forecast operator (DF operator
for short) δ is a forecast operator such that δ(R, I) = {R′} with R′ defined over S.

DF operators can be built on top of any standard time series forecast algorithm. The
following example shows how simple linear regression is an instance of the class of
deterministic forecast operators.

Example 2. Suppose (w.r.t. the electricity example) we want to forecast the amount of
connections and expenditures in 2006 and 2007 using simple linear regression3. The
function LINREG(R, I) applies linear regression to each variable attribute in relation
R for time interval I. The result of LINREG(electricity, [2006, 2007]) is given below:

Year Country Connections Expend
2006 Brazil 60,006,666.67 9.6B
2007 Brazil 61,989,523.81 10.157B
2006 Venezuela 5,495,630.8 1.353B
2007 Venezuela 5,623,904.6 0.473B

LINREG(R, I) is an example of a DF operator, as it maps electricity and a time inter-
val I to the single relation electricity′ = LINREG(electricity, [2006, 2007]). In this
example, LINREG(R, I) also satisfies coherence w.r.t. the set A = {Country} and
monotonicity w.r.t. the pair 〈{Country}, {Connections}〉.

4.2 Probabilistic Forecast Operator

Deterministic forecasts are 100% certain in their forecasts. In contrast, probabilistic
forecasts also include information about the probability that a forecast is correct.

Definition 6 (Probabilistic Forecast Operator). Given a temporal relation instance
R over the schema S and a temporal interval I, a probabilistic forecast operator (PF
operator for short) μ is a forecast operator such that μ(R, I) = {R′} with R′ defined
over the schema S′ = Attr(S) ∪ {P} where dom(P ) = [0, 1].

PF operators are just like DF operators except they have an additional probability at-
tribute P . Each tuple returned by a PF operator includes the probability of that tuple be-
ing valid at the timestamp (associated with that tuple). Basically, the result of applying
a PF operator can be seen as a probabilistic database [4] with tuple-level uncertainty4.
In addition to the general axioms (A1)–(A3), we often want PF operators to satisfy a
property called fact preservation.

3 The same method shown in this example would allow us to use a variety of other traditional
forecasting methods, such as logistic regression, nonlinear regression, etc.

4 Extending the framework to the case of forecast operators dealing with attribute-level uncer-
tainty is left as future work.
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Property 1 (Fact Preservation). Let R be a temporal relational instance over S and I
a temporal interval. PF operator μ preserves facts of R if for each tuple t ∈ R such
that t[AT ] ∈ I, there is a tuple t′ ∈ R′ with R′ ∈ μ(R, I) such that ∀A ∈ Attr(S),
t[A] = t′[A] and t′[P ] = 1.

Axiom (A2) ensures that tuples having a timestamp in I are preserved by the forecast
operator, i.e., for each tuple t ∈ R such that t[AT ] ∈ I there is a certain tuple t′ ∈ R′

such that t and t′ have the same values in the attributes in Attr(S). This property
strengthens axiom (A2) for PF operators since it requires the additional condition that
the probability values of the tuples in the resulting relation R′ corresponding to those
of R (preserved tuples) must be exactly 1.

The fact preservation property should be satisfied by a PF operator when the user
trusts what is in the database; in other cases when the user does not trust the content of a
database, he may choose to use a PF operator that does not guarantee fact preservation.

Example 3. Consider the grants relation. Suppose we want to forecast the amount of
grants and employees for the CS and Math departments for 2006 and 2007, along with
their probabilities. We may choose to apply a polynomial regression method P REG(R,
A, I), to variable attributes in each cluster in relation R w.r.t. A for a time interval I.
P REG(R,A, I) is an operator that computes the probability that the actual value will
be within one standard deviation of the forecasted value, based on a normal distribu-
tion. Assuming independence, the probability of the entire tuple is the product of the
probabilities for the individual attributes.

P REG(R,A, I) is an example of a PF operator. It first computes the forecasted
values for each cluster:

Year Dept Amount Employees
2006 CS 6.929471566 74
2007 CS 6.932925939 74
2006 Math 1.051905341 73
2007 Math 1.052429721 74

The probability of each forecasted value is computed as mentioned above:

CS: P (Amount = 6.929471566 ± σ|Y ear = 2006) = 0.68266
P (Amount = 6.932925939 ± σ|Y ear = 2007) = 0.68264
P (Employees = 74± σ|Y ear = 2006) = 0.68268
P (Employees = 74± σ|Y ear = 2007) = 0.68268

Math: P (Amount = 1.051905341 ± σ|Y ear = 2006) = 0.68268
P (Amount = 1.052429721 ± σ|Y ear = 2007) = 0.68267
P (Employees = 73± σ|Y ear = 2006) = 0.68141
P (Employees = 74± σ|Y ear = 2007) = 0.6776

The final relation, grants′ is shown below:

Year Dept. Amount Employees Prob
2006 CS 6.929471566 74 0.46604
2007 CS 6.932925939 74 0.46603
2006 Math 1.051905341 73 0.46519
2007 Math 1.052429721 74 0.46258
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It is clear that every deterministic forecast can be expressed as a probabilistic forecast.
Given a DF δ, a temporal relation instance R over schema S, and a time period I, we
can define a simple probabilistic forecast operator μsimp,δ(R, I) to return {(t, 1) | t ∈
R′} where δ(R, I) = {R′}.
Theorem 1. Suppose δ is a DF operator. Then, the following relationships are true:

(i) μsimp,δ is a probabilistic forecast operator.
(ii) If δ is coherent w.r.t.A (resp. monotonic w.r.t. pair 〈A,B〉), then μsimp,δ is coherent

w.r.t. A (resp. monotonic w.r.t. pair 〈A,B〉).
(iii) μsimp,δ is fact-preserving.

4.3 Possible Worlds Forecast Operator

Probabilistic forecasts still only give one value for the attributes being forecasted per
time period. However, in general, there may be many possible instances of relation R
at a future (or past) time point t. Possible worlds forecasts try to return not one instance
as the output of a forecast, but a set of relations, each of which is a possible instance of
the relation at the time being forecast.

Definition 7 (Possible Worlds Forecast Operator). Given a temporal relation in-
stance R over the schema S and a temporal interval I, a possible worlds forecast
operator (PWF operator for short) ω is a forecast operator such that ω(R, I) =
{R1, . . . , Rn} where each Ri is defined over S and has probability value P(Ri) such
that (i) P(Ri) > 0 and (ii)

∑
i∈[1..n] P(Ri) = 1.

Basically, every resulting relation instance Ri represents a possible forecasted world.
Observe that axiom (A2) entails that every world includes the tuples representing facts
in the temporal interval I that were assumed to be true in the original relation R.

Given any DF operator δ, we can define a PWF operator ωδ. One possible method
called the discretized PWF w.r.t. δ, denoted ωdisc,δ, is given below. Suppose R is a
temporal relation over schema S and I is a temporal interval; ωdisc,δ is defined as:

1. Let R′ be the relation returned by δ(R, I). Consider each tuple t ∈ R′. For each
variable attribute A ∈ Attr(S), define P(!t[A]") = .t[A]/−t[A] and P(.t[A]/) =
1 − P(!t[A]"). The set of tuple worlds tw(t) associated with any tuple t ∈ R′ is
now defined to be:
(a) tw(t) = {t′ | for all variable attributes A ∈ Attr(S), t′[A] = !t[A]" or

t′[A] = .t[A]/ and for all invariant attributes B ∈ Attr(S), t[B] = t′[B]}.
(b) tw(t) = {t} if t[AT ] ∈ I.

2. The probability of a tuple t′ ∈ tw(t) is defined to be the product of the probabilities
of all the variable attribute elements of t′, i.e., if X ⊆ S is the set of all variable
attributes in the schema of R, then P(t′) = ΠA∈XP(t′[A]). If tw(t) coincides
with t, then P(t) = 1.

3. The set of relation worlds rw(δ, R, I) is now defined to be the Cartesian product
of all tuple worlds, i.e., Πt∈δ(R,I)tw(t). Each member of rw(δ, R, I) is called a
relation world. The probability of a given relation world w ∈ rw(δ, R, I) is given
by P(w) = Πt′∈wP(t′)5.

5 This assumes that the events represented by different tuples in δ(R,I) are independent of one
another.
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4. Return rw(δ, R, I) and the probability distribution P on rw(δ, R, I).

Theorem 2. Suppose δ is any deterministic forecast operator. Then, the following re-
lationships are true:

(i) ωdisc,δ is a PWF operator.
(ii) If δ is coherent w.r.t. the set of attributesA, then ωdisc,δ is coherent w.r.t. A.

Example 4. Let us return to the electricity relation and consider using the simple linear
regression LINREG(electricity, [2006, 2006]) for just the one year 2006. The result
of this operator follows immediately from Example 2 and consists of the first and third
tuple in the relation electricity′ of Example 2. For this relation, the construction ωdisc,δ

creates 16 possible relation worlds. The total number of connections in Brazil in 2006
could be 60,006,666 (33%) or 60,006,667 (67%), and the corresponding number in
Venezuela could be 5,495,630 (20%) or 5,495,631 (80%). The possible expenditures in
Brazil are 9B (40%) or 10B (60%), and in Venezuela are 1B (64.7 %) or 2B (35.3 %).
The probability of each world is the product of the probabilities of the tuples selected.
As an example, for world w given below, P (w) = (0.33 ∗ 0.6) ∗ (0.8 ∗ 0.647) = 0.102.

Year Country Connections Expend
2006 Brazil 60,006,666 10B
2006 Venezuela 5,495,631 1B

It is worth noting that, as both DF and PWF operators satisfy axiom (A2), the tuples of
the original relation belonging to the predicted temporal interval are preserved by DF
operator δ, and then preserved by PWF operator ωdisc,δ as well.

The following example shows that ωdisc,δ does not preserve monotonicity.

Example 5. Assume that for countries C1 and C2, electricity connections are almost
the same in a given year, differing only in their decimal number, as shown below:

Year Country Connections
2005 C1 50,900,800.4
2005 C2 50,900,800.8

Year Country Connections
2008 C1 50,900,802.3
2008 C2 50,900,802.9

Relation el Relation δ(el, [2008, 2008])

Suppose the result of δ(el, [2008, 2008]) is the relation given above. Clearly, δ
is monotonic w.r.t. the pair 〈{Country}, {Connections}〉. In contrast, ωdisc,δ is
not monotonic w.r.t. 〈{Country}, {Connections}〉, since there is relation world
w = {(2008, C1, 50, 900, 803), (2008, C2, 50, 900, 802)} in rw(δ, el, [2008, 2009]) for
which the number of electricity connections of C2 is not greater than that of C1.

The ωdisc,δ construction takes exponential time to enumerate the possible relation
worlds and compute the associated probability distribution; the number of tuple worlds
tw(t) for a tuple t is exponential in the number of variable attributes, and the total
number of relation worlds is exponential in the number of tuple worlds.

Theorem 3. Suppose R is a temporal relation instance over schema S, I is a temporal
interval, and A ⊂ Attr(S) is a set of variable attributes. For any DF operator δ, the
running time of ωdisc,δ is O(2|A|·|R′|), where R′ is the relation returned by δ(R, I).
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From the possible relation worlds produced by ωdisc,δ, a user may only be interested in
examining those relations that are sufficiently probable and contain a given tuple.

Proposition 1. Suppose R is a temporal relation instance over schema S, I is a tempo-
ral interval, and δ is a polynomial-time computable DF operator. Given a tuple t over
the schema S and probability threshold k, deciding whether there is a relation world
w ∈ rw(δ, R, I) such that t ∈ w and P(w) ≥ k (or P(w) ≤ k) is in PTIME.

Proof (Sketch). Let R′ be the relation returned by δ(R, I). First check if there is tuple
t′ ∈ R′ such that by rounding its value, for each variable attribute A, we obtain t. If
no, the answer to our decision problem is “no.” Otherwise, keep this tuple t′ and find
a relation world wmax with max probability, i.e., ∀t′′ ∈ R′, t′′ �= t′ create a maximal
tuple world by choosing t′′[A] = argmax P(t′′[A]) for all variable attributes A. If
P(wmax) ≥ k, then the answer is “yes.”

We can also convert a PF operator μ to a PWF operator. Two possible mechanisms are
provided below where R is a temporal relation and I is a temporal interval:

(i) ωsimp,μ(R, I) returns just one world as follows. Suppose μ(R, I) = {R′}. Then
ωsimp,μ(R, I) = {πAttr(S)(R′)}. In other words, it eliminates the probability col-
umn in R′. This one world has probability 1 according to the PWF ωsimp,μ.

(ii) ωind,μ(R, I) operates as follows:
1. Compute μ(R, I) = {R′} as above.
2. LetW be the power set of πAttr(S)(R′).
3. For each tuple t in a relation Ri ∈ W , let P(t) be the probability attribute of

the tuple in R′ whose non-probability attributes are identical to those of t. The
probability of a particular relation Ri in W is set to P(Ri) = Πt∈RiP(t) ×
Πt′∈πAttr(S)(R′)\Ri

(1 −P(t′)).
4. Let W ′ be the set of relations Ri ∈ W such that P(Ri) > 0. Return W ′

together with the above probability distribution on this set.

The following theorem shows a strong relationship between a PF operator μ and the
PWF operator ωsimp,μ.

Theorem 4. Suppose μ is any PF operator. Then the following relationships are true:

(i) ωsimp,μ is a PWF operator.
(ii) If μ is coherent w.r.t. A (resp. monotonic w.r.t. 〈A,B〉), then ωsimp,μ is also coher-

ent w.r.t. A (resp. monotonic w.r.t. 〈A,B〉).

The above theorem holds irrespective of whether the PF operator μ is fact preserving
or not. In contrast, ωind,μ will be a PWF operator only if constructed using a fact
preserving PF operator. To see this, consider a relation R containing tuple t such that its
timestamp t[AT ] belongs to the temporal interval I. If PF operator μ(R, I) forecasts t′

whose invariant attributes are identical to those of t and its probability value is P(t′) <
1, then there is a possible world returned by ωind,μ that does not contain any tuple
having invariant attributes identical to those of t. Hence, A2 would be violated.
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Theorem 5. Suppose μ is any fact preserving PF operator. Then the following rela-
tionships are true:

(i) ωind,μ is a PWF operator.
(ii) If μ is coherent w.r.t.A (resp. monotonic w.r.t. 〈A,B〉), then ωind,μ is also coherent

w.r.t. A (resp. monotonic w.r.t. 〈A,B〉).

Theorem 6. Suppose R is a temporal relation instance over schema S and I is a tem-
poral interval. For any probabilistic operator μ, the running time complexity of ωind,μ

is O(2|R
′|), where R′ is the relation returned by μ(R, I).

We characterize the complexity of determining whether there is a possible world re-
turned by ωind,μ such that it is sufficiently probable and contains a tuple of interest
t.

Proposition 2. Suppose R is a temporal relation instance over schema S, I is a tem-
poral interval, and μ is a polynomial-time computable PF operator. Given a tuple t
over the schema S and a probability threshold k, deciding whether there is a world w
returned by ωind,μ such that t ∈ w and P (w) ≥ k (or P (w) ≤ k) is in PTIME.

Proof (Sketch). First check if t ∈ πS(R′), where R′ is the relation returned by μ(R, I).
If t �∈ πS(R′), then it cannot belong to ωind,μ, thus the answer is ‘no’. If t ∈ πS(R′),
then there is at least one possible world w that contains t. The possible world wmax

(resp. wmin) that contains t is constructed using a strategy similar to that in the proof
of Proposition 1. Finally, verify whether P (wmax) ≥ k (or P (wmin) ≤ k).

5 Query Answering with Forecasting Operators

In this section, we study the relationship between forecast operators and standard rela-
tional algebra (RA) operators. We suggest adding new operators to the relational algebra
to combine classical operators with the forecast operators presented here. Each RA op-
erator can be augmented by forecast operators by either applying the forecast operators
first and then applying the RA operator, or the other way around. Before formalizing
this concept, we introduce two semantics for the evaluation of RA operators (these se-
mantics are inspired by the notions of possible and certain answers introduced in [8]).

Definition 8 (Possibility and cautious semantics). Given two sets of temporal relation
instances S1, S2 whose elements are defined over the schemas S1,S2 respectively, and
a binary relational algebra operator op(·, ·),

(i) the possibility semantics for op is the set opposs(S1, S2) =
⋃

R1 ∈ S1
R2 ∈ S2

op(R1, R2)

(ii) the cautious semantics for op is the set opcaut(S1, S2) =
⋂

R1 ∈ S1,
R2 ∈ S2

op(R1, R2)

This definition can be straightforwardly extended to the case of unary RA operators.

Definition 9 (Forecast-first and forecast-last plans). Given two temporal relation in-
stances R1, R2 over the schemes S1,S2, respectively, a temporal interval I, a forecast
operator φ, a relational algebra operator op, and semantics sem ∈ {poss, caut},
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(i) a forecast-first plan is defined as
Φforecast−first(R1, R2, I, φ, op) = opsem(φ(R1, I), φ(R2, I))

(ii) a forecast-last plan is defined as
Φforecast−last(R1, R2, I, φ, op) = φ(opsem({R1}, {R2}), I) = φ(op(R1, R2), I)

The latter equality in the forecast-last plan follows from the fact that opsem(·, ·), with
sem ∈ {poss, caut}, is equivalent to op(·, ·) if applied to singletons. A forecast-first
plan returns a set of tuples, whereas a forecast-last plan returns a set of relations.

For some classes of forecast operators, these query policies satisfy some additional
properties. The following proposition follows directly from the definition of possibility
and cautious semantics for a given RA operator.

Proposition 3. Let R1, R2 be temporal relation instances, I a temporal interval, and
op an RA operator. For DF and PF operators φ, the forecast-first plans under pos-
sibility and cautious semantics are equivalent, that is, opposs(φ(R1, I), φ(R2, I)) =
opcaut(φ(R1, I), φ(R2, I)).

Depending on the particular query application, the basic forecast-first plan as given in
Definition 9 can be further extended to allow for more flexibility in the forecast intervals
and operators. Given temporal relation instances R1, R2 and RA operator op, then we
can define the following variations of the forecast-first plan:

(i) Multiple interval plan. Consider two temporal intervals I1, I2, then a multiple in-
terval (MI) forecast-first plan is defined as ΦMI(R1, R2, I1, I2, φ, op) = op(φ(R1,
I1), φ(R2, I2)). Here, two distinct forecasts are made using the intervals I1 and I2
before the RA operator op is applied.

(ii) Multiple operator plan. Given a temporal interval I and two forecast operators
φ1, φ2, a multiple operator (MO) forecast-first plan is defined as ΦMO(R1, R2, I1,
I2, φ1, φ2, op) = op(φ1(R1, I), φ2(R2, I)). In this plan, two different forecast op-
erators are applied to the same interval, and the results are used by the RA operator.

(iii) Hybrid plan. Given two temporal intervals I1, I2 and two fore-
cast operators φ1, φ2. A hybrid forecast-first plan is defined as
ΦHybrid(R1, R2, I1, I2, φ1, φ2, op) = op(φ1(R1, I1), φ2(R2, I2)). This plan
combines the multiple interval and multiple operator forecast-first plans.

The remainder of this section will examine the relationships between forecast operators
and some RA operators, providing results on the resulting extended relational operators
that could, in principle, be used for query optimization. The result below states that,
for specific kinds of selection conditions, using a forecast-first plan with possibility
semantics will yield a superset of the result given by a forecast-last plan, while the
cautious semantics will produce a subset.

Proposition 4. Let R be temporal relation instance over the schema S, I a tem-
poral interval, φ a forecast operator coherent w.r.t. A ⊆ Attr(S), and C a se-
lection condition filtering out whole clusters only (i.e., σC(R) =

⋃
cl∈CL cl, where

CL ⊆ clusters(R,A)). Then,

(i) σposs
C (φ(R, I)) ⊇ Ri where Ri ∈ φ(σC(R), I)
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(ii) σcaut
C (φ(R, I)) ⊆ Ri where Ri ∈ φ(σC(R), I)

For DF and PF forecast operators, the possibility and cautious semantics coincide for
forecast-first plans (Proposition 3). It then follows that, under the conditions specified
above, σC(φ(R, I)) returns the same relation as φ(σC(R), I).

The interaction between forecast plans and projection RA operator is as follows.

Proposition 5. Let R be temporal relation instance over the schema S, I a temporal
interval, φ a forecast operator, andA ⊆ Attr(S) invariant attributes of S. Then,

(i) πposs
A (φ(R, I)) ⊇ Ri where Ri ∈ φ(πA(R), I)

(ii) πcaut
A (φ(R, I)) ⊆ Ri where Ri ∈ φ(πA(R), I)

Analogously to the selection RA operator, by Proposition 3 it follows that πA(φ(R, I))
coincides with the result of φ(πA(R), I) for DF or PF forecast operators. Also for
the union RA operator, the relationship between forecast-first and forecast-last plans
depends on the choice of possibility or cautious semantics.

Proposition 6. Let R1, R2 be temporal relation instances over the schema S, I a tem-
poral interval, and φ a forecast operator coherent w.r.t. A ⊆ Attr(S). If πA(R1) ∩
πA(R2) = ∅, then

(i) φ(R1, I) ∪poss φ(R2, I) ⊇ Ri where Ri ∈ φ(R1 ∪R2, I)
(ii) φ(R1, I) ∪caut φ(R2, I) ⊆ Ri where Ri ∈ φ(R1 ∪R2, I)

As above, φ(R1, I) ∪ φ(R2, I) is equal to φ(R1 ∪R2, I) for DF and PF operators.

6 Related Work and Conclusions

Though there are numerous works on forecasting in general [3], as well as specialized
forecast models for specific domains, such as finance [15], epidemiology [9], or poli-
tics [2,10,11,14,12], all these methods vary dramatically from one another. With a large
array of possible statistical models, one previous attempt to better understand the rela-
tionship between these forecasting procedures is given by [7], which integrates several
forecasting methods into a common mathematical framework.

There has also been some recent work on the issue of forecasting queries in databases
[1,5,6]. [5] describes the Fa data management system that provides support for declar-
ative predictive queries over time series data, incorporating algorithms to effectively
choose the best model type and attributes for the best query performance. Another Pre-
dictive DBMS is presented in [1] which also proposes a declarative forecasting query
language, including the flexibility for both automated and user-defined predictive mod-
els. [6] investigates the I/O efficiency of forecasting queries, using a skip-list to index
the time series and provide access to multiple regression models at varying levels of
granularity. The model of forecasting presented in this paper differs from these prior
efforts by focusing on general characteristics of forecasting rather than specific queries
for a limited set of potential time series analysis methods. In fact, the framework given
here can serve as a generalized, unifying theory for forecasting in databases that en-
compasses the semantics of these other approaches.
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In this paper, we first provide axioms that any forecast operator should satisfy, to-
gether with additional desirable (but not required) properties. Our methods allow us to
take classical forecasting operators and categorize forecast operators into three increas-
ingly expressive categories and then embed them as operators in a temporal database:
(i) deterministic forecast operators, (ii) probabilistic forecast operators, and (iii) possible
worlds forecast operators. These classes of operators all satisfy our forecasting axioms,
and in some cases, additional desirable properties. We have explored several policies for
combining forecast and standard relational algebra operators to answer forecast queries
and started a theoretical analysis on the interaction between these operators. Future
work will focus on further investigating forecast policy w.r.t. relational algebra opera-
tors and exploiting these results as a basis for optimization of forecast queries. Though
forecasting is often complex, we are able to prove that many of the techniques reported
in this paper are tractable.
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similarity. Tversky’s parameterized ratio model of similarity [3] is shown as a 
unifying basis of many of the well-known ontological similarity measures. A 
new family of ontological similarity measures is proposed that allows 
parameterizing the characteristic set used to represent an ontological concept. 
The three subontologies of the prominent GO are used in an empirical 
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well as a comparison of the effects of two different methods of determining a 
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1   Introduction 

In ontologies, similarity measurement is needed to determine how similar one concept 
is to another. An ontological similarity measure [1] is a semantic similarity measure 
specific to assessing similarity between concepts within an ontology. Such measures 
have seen a proliferation in the last several years, particularly in the biomedical and 
bioinformatics area [2]. Just recently more new ontological similarity measures have 
been proposed based on intuitive combination of information-theoretic measures with 
Tversky’s model of similarity [3]. In [4] the contrast model is used and then modified 
in [5] to use the parameterized ratio model of similarity. These recently proposed 
intuitive models are not the first examination of integrating the information-theoretic 
model and the Tversky models of similarity [6][7].  

As new ontological similarity measures are proposed, evaluations of them against 
existing ones have typically used one of three approaches: mathematical analysis, 
domain-specific applications of them, and comparison of them to human judgments of 



388 V. Cross and X. Yu 

similarity [8]. By far, the primary approach, however, has been to compare them to 
human similarity judgments. More recently, due to application of ontological 
similarity within the Gene Ontology (GO) [9] to determine gene product similarity, 
other physical similarity measures such as sequence similarity [10] are being used for 
performance comparisons. Some efforts have been made on mathematical analysis of 
ontological similarity measures [11] [12] [6].  

This paper theoretically and empirically investigates ontological similarity. 
Tversky’s parameterized ratio model of similarity [3] is shown as a unifying basis of 
many of the well-known ontological similarity measures. A new family of ontological 
similarity measures is proposed that allows parameterizing the characteristic set used 
to represent an ontological concept. The three subontologies of the prominent GO are 
used in an empirical investigation of several ontological similarity measures. A new 
ontological similarity measure derived from the proposed family is also empirically 
studied. A detailed discussion of the correlation among the measures is presented.  

Section 2 briefly introduces similarity assessment and the role of Tversky’s two 
models of similarity. Section 3 presents the components of the framework for 
ontological similarity and the theoretical investigation of how these various 
components can be used to create existing ontological similarity measures. In section 
4 an empirical investigation uses the GO to compare two historical ontological 
similarity measures, the two recently proposed intuitive ontological similarity 
measures using Tversky’s models, and a new ontological similarity systematically 
developed from the integration of fuzzy set compatibility measures, information 
content and Tversky’s models. Section 5 provides a summary of this research, 
conclusions, and directions for future efforts.  

2   Similarity Measurement  

In the psychological literature two main approaches to assess similarity are content 
models and geometric or distance models. Distance models have been found to be 
contrary to human similarity judgments in psychological domains since satisfying the 
minimality, symmetry, and the triangle inequality axioms often conflicts with human 
similarity judgments and also such models require quantitative continuous dimensions 
where often human judgments of similarity use qualitative and discrete dimensions.  

The content models use characteristics which are conceptualized “as more or less 
discrete and common elements” to determine the similarity between objects [13]. 
Many of the proposed set theoretic measures in the content model category are 
generalized by Tversky’s parameterized ratio model of similarity [3]: 

STverksy-ratio(X, Y) = 


  X  Y  
. (1)

In the model, X and Y represent sets describing respective objects x and y.    
represents the common features that describe both x and y. X  Y  represents the 
features describing only object x.    represents the features describing only 
object y. The value f(X) for object x is considered a measure of the overall salience of 
that object. Factors adding to an object’s salience include “intensity, frequency, 
familiarity, good form, and informational content” [3]. The function f is an additive 
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function on disjoint sets, i.e., whenever X and Y are disjoint sets and when all three 
terms are defined, then f(X ∪ Y) = f(X) + f(Y). Set cardinality is such a function.  

Parameters α and β allow priority to be given to one object over the other, i.e., one 
object serves as the referent object to which the other object is being matched. If x is 
selected as the referent object, then α should be greater than β to emphasize that 
features describing x but not y are more important than those describing y but not x.  

This measure is normalized so that 0 ≤ STverksy-ratio (X, Y) ≤ 1. With α = β = 1, 
STversky becomes the Jaccard index [3] 

Sjaccard(X, Y) = 


∪ . (2)

With α = β = 1/2, STverksy-ratio becomes Dice’s coefficient of similarity [3] 

Sdice(X, Y) =  . (3)

With α = 1, β = 0, STverksy-ratio becomes the degree of inclusion for X, that is, the 
proportion of X overlapping with Y [3]. Inclusion is not symmetric since α ≠ β. 

Sinclusion(X, Y) = 


 . (4)

Tversky [3] also proposed an unnormalized similarity model, the contrast model. It 
integrates the same components but uses different mathematical operations: 

STverksy-contrast(X, Y) = θ   X  Y   . (5)

Goodman [14] argues that assessing similarity between objects x and y is vague and 
meaningless without a “frame of reference.” He states " 'is similar to' functions as 
little more than a blank to be filled." Asking the question "How similar are x and y?" 
begs the answer to a subtly different question "How are x and y similar?" [15]. Thus, 
crucial to similarity assessment is the method to select on what features similarity is 
being judged. For ontological similarity, “filling in the blank” or feature selection for 
two concepts has varied greatly depending on the perceived objectives of the task.  

3   Synthesizing Ontological Similarity  

Early developers of ontological or semantic similarity measures incorporated the 
ontological structure into the similarity measures. How these measures relate to other 
existing similarity measures such as the Tversky models [3] or fuzzy set compatibility 
measures [16][17] was not explored. Historical ontological similarity measures are 
examples of such existing measures when one examines how the “blanks” are filled 
in, i.e., how the features are selected to describe a concept in ontology and how these 
features may have a fuzzy set-theoretic interpretation.  

3.1   Information Content in Ontologies 

Information content (IC) of a concept in an ontology is a measure of how specific the 
concept is. The more specific (general) it is, then the higher (lower) is its IC. The 
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earliest method to measure IC uses an external resource such as an associated corpus 
for the problem domain. The corpus-based IC measure for concept c [18] is given as  

ICcorpus(c) = -log p(c) (6)

The value p(c), the probability of concept c, is determined using the frequency count 
of the concept, i.e. the count of the number of occurrences of the concept within the 
corpus. The frequency of a concept is the number of occurrences in the corpus of all 
words representing that concept. The frequency of the concept also includes the total 
frequencies of all its children concepts. The taxonomic structure of the ontology, i.e., 
the is-a relationships, determine the children of a concept. In some ontologies such as 
the GO and WordNet, however, the part-of relationship is also used in the calculation 
of the IC value. The probability p(c) is calculated by dividing this total frequency 
count by the total number of words in the corpus. Because the formula is the negative 
logarithm of the probability, as the probability increases the information content 
decreases; therefore, concepts higher in the ontology which have a greater probability 
of occurring have less information content than those lower in the ontology.   

A more recent method [19] uses the ontology structure and does not require an 
external resource, one of its advantages. Leaf concepts are most specific, they contain 
the most information. Root concepts are the least specific and contain the least 
information. The ontology-based IC [19] is defined as 

ICont(c) = log 
_  

/log  = 1- 
_

  (7)

where num_desc(c) is the number of descendants for concept c and maxont is the 
maximum number of concepts in the ontology. It is normalized in [0...1] with the 
maximum for the leaf concepts and deceases to the minimum at the root concepts.  

An extended Information Content (eIC) measure [5] uses other relationships 
between concepts, not only the taxonomic structuring ones historically used. The 
eIC(c) is a parameterized weighting of IC(c) and its total average relationship EIC(c). 
EIC(c) is the summation for each kind of relationship k, of the average of the IC(ci) 
for all concepts ci that are “at the end of a particular relation” [5], i.e., k, with concept 
c. How non-taxonomic relationships and their inverses are handled, i.e., how is “at the 
other end of a particular relation” is not clear. If inverse relationships are not ignored 
or inverse relationships are not clearly identified, a circular calculation of eIC could 
occur. Another concern is how and which non-taxonomic relationships are used.  

3.2   A Synthesis of Fuzzy Set Compatibility Measures, Information Content, 
and Tverksy’s Similarity Models  

A concept within an ontology has many contexts and can be represented by its many 
different features, for example, its properties, its children, its parents, etc [24]. The 
three standard IC ontological similarity measures Resnik [18[, Lin [12], and Jiang-
Conrath[20] use at most three ontological concepts within an ontology. Much more 
information, however, is conveyed in the structure of the ontology. Another view is to 
consider that each concept c can be represented by a fuzzy set. Which fuzzy set is 
used depends on how one proceeds in “filling in the blank.” A variety of sets can be 
transformed into a fuzzy set description of concept c where the membership degrees 
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are some function of the IC associated with each element in the set. For example, one 
fuzzy set describing the concept c uses its ancestor set and the concept itself as  

Fanc+(c)(cj) ={IC(cj)/cj | cj is an ancestor of c or c itself} (9)

where the + indicates to include the concept c itself in the set. Here the function on IC 
is simply the identify function. This fuzzy set specifies each element cj and its 
respective membership IC(cj) in the fuzzy set. Note either ICont or ICcorpus could be 
used. Here the set used to describe the concept c consists of other concepts, but the set 
could also be a set of links for a path associated with concept c. 

Various methods to measure compatibility between fuzzy sets have been proposed 
[16] [17]. One of the most famous is Zadeh's partial matching index between two 
fuzzy sets F1 and F2: 

Ssup-min((F1 , F2) = sup min ( F1(u), F2(u)) (10)

where sup selects the supremum membership degree from the intersection of the two 
fuzzy sets. An early IC ontological similarity measure [18] is formulated as 

 simRES(c1,c2) = max c in S(c1,c2) [IC(c)] (11)

where S(c1,c2) is the set of concepts that subsume both c1 and c2 and IC is 
determined using a corpus. It can be seen as the partial matching index given in (10) 
where Fanc+(c1) and Fanc+(c2) represent the fuzzy ancestor sets for c1 and c2 respectively 
in the ontology and max or sup is the scalar evaluator.  The minimum operation 
between Fanc+(c1) and Fanc+(c2) serves as the intersection operator between the two fuzzy 
ancestor sets and produces the set of all common ancestors for c1 and c2. The concept 
with the greatest membership degree, i.e., the maximum IC, in both fuzzy sets Fanc+(c1) 

and Fanc+(c2), therefore, represents the partial matching similarity between concepts c1 
and c2. The minimum intersection operation just takes the minimum between 
identical IC values for elements in both Fanc+(c1) and Fanc+(c2) since each concept has 
only one IC value within an ontology. Typically, Zadeh’s partial matching or 
consistency measure assumes normalized fuzzy sets, i.e., each fuzzy set has one 
element with membership degree of 1. To satisfy this assumption, the membership 
degrees, i.e., IC values for each ancestor and c1 can be divided by the IC value of c1 
and similarly for the ancestors of c2. This normalization results in different 
membership degrees for ancestor concepts in the two fuzzy sets. Then the minimum 
operator would be necessary when performing the intersection between the two fuzzy 
sets. Another option which follows the general formula for partial matching index 
[16] is to directly normalize the result of (11) by dividing it by the min(sup Fanc+(c1), 
sup Fanc+(c2)) = min (IC(c1), IC(c2)). Since the original Resnik measure is used for the 
experiments described in Section 4, each concept within an ontology has only one IC 
value and no function is applied to modify the IC value used as a membership degree 
in a fuzzy set and no normalization of the Resnik value is performed. Other 
experiments are needed to see how such modifications might affect performance of a 
normalized partial matching measure. 

A major criticism of the Resnik measure is that only the shared information 
between the two concepts is used and not their separate information. Lin [12] defined 
a measure to address this criticism. It is a normalized similarity measure related to 
Jiang and Conrath measure [20] and given as 
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simLin(c1,c2)=  (12)

where c3 is the common ancestor with the greatest IC. The Dice similarity measure 
given in equation (3) is similar in form to the Lin measure in equation (12) if one 
simply substitutes f(X) = IC(c) and interprets f(X ∩ Y) as IC(c3). This approach has 
been proposed in [7] with the goal of integrating information-theoretic and set-
theoretic similarity measures. However, the interpretation of Tversky’s model is 
somewhat misleading in simply replacing f with IC and assuming that the common 
subsumer represents the intersection of the set of features of c1 and the set of features 
of c2. What the sets of features are and how the IC measure provides an additive 
function as specified by Tversky’s similarity model is not clearly described. The IC of 
a concept is based on a function of the probability of the frequencies of all its 
descendent concepts and not simply the intersection of common features of c1 and c2.  

In [6] Dice’s coefficient given in equation (3) has been shown to be the basis for 
both the Wu-Palmer path-based semantic similarity measure [21] given as  

simWu-Palmer(c1,c2)=
,, ,  (13)

and the Lin information-content based semantic similarity measure. Dice’s coefficient 
establishes the connection between the Lin and Wu-Palmer measures.  

Many fuzzy set compatibility measures are generalizations of Tverksy’s 
parameterized ratio model when fuzzy set cardinality, an additive set function, is used 
for f, X and Y are replaced by fuzzy sets F1 and F2, and the crisp set operators are 
transformed to the corresponding fuzzy set operators. The Jaccard fuzzy set 
compatibility measure can be used to calculate IC ontological similarity between two 
concepts represented by their fuzzy sets of ancestors Fanc+(c1) and Fanc+(c2). The set 
intersection uses a t-norm, typically minimum, and the set union uses a t-co-norm, 
typically maximum. The Jaccard ontological similarity measure with the anc+ set to 
fill in the blank then becomes 

simJacAnc(c1, c2) =



++

++

∪∈

∩∈

(c2)anc(c1)anc

(c2)anc(c1)anc

)(

)(
 F

FFc

Fc

cIC

cIC
 (14)

Again the min and max fuzzy set operators do not need to be explicitly used because 
the membership degrees of the ancestors in the fuzzy sets representing both concepts 
c1 and c2 are simply the ancestor's IC value. The IC value of the concept in each 
fuzzy set is the same since it is a function of its number of descendents. As previously 
suggested, however, these IC values could be normalized so that the membership 
degree of an ancestor in each concept's fuzzy set could differ. For this approach, the 
min and max operators would then be needed since the IC membership degrees then 
differ. Ontological similarity could also be modified by describing a concept using a 
different set; for example, instead of the ancestor set to describe the concept, the 
descendent set could be used to describe each concept.  

A wide variety of fuzzy set compatibility measures, many of which are fuzzy 
generalizations derived from Tversky’s parameterized ratio model of similarity, can 
be and have been used as ontological similarity measures. With this model, there still 
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can be variations depending on how each researcher decides to approach “filling in 
the blank”, i.e., the objectives that determine exactly what set is used to describe the 
concept and what method is used to assign the membership degrees in the set.  

3.3   Recent Ontological Similarity Based on Intuitive Uses of Tversky’s Models   

New ontological similarity measures proposed use an intuitive interpretation of 
Tversky’s contrast and parameterized ratio models. The assumption is the function f 
in Tversky’s models is simply replaced with an IC measure [4][5]. This assumption 
was used in [7] to show that the Lin semantic similarity measure is an example of 
Tversky’s parameterized ratio model. This interpretation of f differs from the fuzzy 
set theoretic and information-content modeling of ontological similarity in [6] and 
presented in 3.2 where a concept is directly described by a set of elements and a 
function of IC is used as the membership degree of the element in the fuzzy set.  

The P&S semantic similarity measure [4] uses the contrast model to formulate 

simP&S(c1,c2) = 3 (IC(c3)) - IC(c1) - IC(c2) if c1≠c2, = 1 if c1 = c2 (15)

where c3 is the common ancestor concept with the greatest IC. It is argued that this 
formula represents the information theoretic counterpart of Tversky’s set theoretic 
contrast model. The assumption made is that f(X ∩ Y) is the same as IC(c3) where X 
represents a set of features describing c1 and Y represents a set of features describing 
c2. Similarly, f(X – Y) and f(Y – X) map to (IC(c1) – IC(c3)) and (IC(c1) – IC(c3)) 
respectively. The parameters are set as 1=== βαθ  to produce 

IC(c3) – (IC(c1) - IC(c3)) – (IC(c2) – IC(c3)) (16)

which simplifies to the measure given in equation (15) when c1≠c2. When c1=c2, 
then IC(c1)=IC(c2)=IC(c3); therefore, the result of equation (16) is IC(c3) so they 
assign the value of 1 instead if the two concepts are the same.  

In [22] an investigation of the P & S measure was done mathematically and 
empirically and showed that the P&S measure can produce negative values which 
cause difficulties in understanding the similarity values. Also, the measure sumps had 
the worst correlation with the historical ontological similarity measures in a majority 
of the performed experiments. 

In [5] another ontological similarity measure is proposed. The FaITH ( Feature and 
Information Theoretic) measure still assumes f as simply the IC measure and uses the 
same mappings for f(X ∩ Y), f(X – Y), and f(Y – X) as fro simP&S. The only change is to 
use Tversky’s parameterized ratio model of similarity instead of the contrast model. 
These mappings are substituted into equation (1) with 1==βα  to produce 

simFaITH(c1,c2)=  (17)

which is very similar to the simLin measure in equation (12). Subtracting IC(c3) from 
both the numerator and denominator of equation (12) produces the FaITH measure. 
With this modification, the simFaITH measure must always produce a smaller than or 
equal to (only when both are 0) value compared to simLin. As IC(c3) approaches 0, the 
ratio of simFaITH /simLin approaches 0.5. There is a strong correlation between these 
two measures as the empirical investigations show in the next section.  
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In both simP&S and simFaITH, the key assumption is that an information theoretic 
view of Tversky’s models of similarity is possible by the simple substitution of IC for 
the function f. The f(X ∩ Y) which is a measure of the amount of shared elements, i.e., 
features, between sets X and Y in set-theoretic model is simply replaced by IC(c3), the 
amount of shared information for c1 and c2, i.e., the IC of their most specific ancestor 
concept c3. A difficulty with this interpretation is the difference between a set of 
features representing the intersection of two sets such as the shared set of properties 
between c1 and c2 and the shared information between c1 and c2 as measured by the 
IC of their most specific ancestor c3. For two sets X and Y, a function f of their 
intersection does not change if more sets exist that are included as part of that 
intersection, i.e., that set of shared features. As explained in section 3.1 IC(c3), 
however, representing a measure of shared information between c1 and c2, does not 
solely depend on IC(c1) and IC(c2) but is affected by the IC of all of the children of 
c3. These children also have the same shared information with c1 and c2. The amount 
of this shared information should not decrease simply because more children are 
added to c3. This difference makes a case against a simple substitution of IC(c3) for 
f(X ∩ Y) in both Tversky’s set models of similarity. 

This section has proposed fuzzy set compatibility measures, many based on the 
Tversky ratio model of similarity, that can be combined with information content 
measures to produce a general model for a wide variety of ontological similarity 
measures. The key considerations are what set is used to represent a concept and what 
method is used to determine the degree of membership of each element in the set 
describing a concept. To further explore this model, the following empirical study 
uses the fuzzy set Fanc+(c) for concept c in addition to the two historical Resnik and Lin 
measures and the two recently proposed measures P&S and FaITH. 

4   Empirical Investigations Using the Gene Ontology 

The bioinformatics domain is serving as a primary impetus for the creation of new 
ontological similarity measures. The Gene Ontology (GO) [9] is an important 
ontology used in this domain. It contains concepts used to annotate genes or gene 
products. The GO relationships include two major types of structuring links: “is-a” 
and “part-of”. For determining IC, the standard practice has been to use only these 
two types of relationships [10].  

Besides being a major bioinformatics ontology, the GO contains three mutually 
exclusive subontologies: biological process (BP), cellular component (CC) and 
molecular function (MF) each with varying sizes. The CC subontology has 2636 
concepts, of which 1724 are leaf concepts (approximately 65% leaves). The MF 
ontology has 8668 concepts, of which 6956 are leaf concepts (about 80.2%). The BP 
ontology has 18059 concepts, of which 8442 are leaf concepts (about 46.7%). The 
MF ontology is more single parent structured averaging 1.2 parents per concept while 
the CC and BP average 1.9 parents per concepts.  

Another objective of this investigation is to use a much larger number of concept 
pairs than the very small number of pairs ranging from 28 to 65 used in human 
similarity judgment experiments with WordNet and MeSH. For each subontology,  
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GO concepts are randomly selected and similarities between all pairs of selected 
concepts within a subontology are calculated. Around 5% of each subontology is 
randomly selected: 100 for CC, 500 for MF and 880 for BP, resulting in 5050, 
125250, and 387640 concept pairs, respectively.  

A direct comparison approach is used that does not require an arbitrary gold 
standard for performance comparison. Because the plethora of ontological similarity 
measures are mostly the result of numerous researchers developing a new measure for 
what is perceived as a very specific objective, these measures have typically been 
assessed with that objective in mind. Performance comparisons are limited to a small 
group of measures to an experimentally developed gold standard. The typical 
conclusion, more often than not, is that the new measure performs as well if not better 
than the others in the group. Finding one gold standard to encompass the wide variety 
of uses for ontological similarity is a daunting challenge. In the bioinformatics 
domain, measuring the degree of gene similarity between genes requires an 
aggregation operator in addition to a semantic similarity measure. A wide variety of 
aggregation operators have been used to produce the final gene pair similarity. The 
gene product semantic similarity is then correlated with actual gene sequence 
similarity, a potential gold standard in the bioinformatics domain [1]. The focus here 
is on the ontological similarity measures themselves within the GO subontologies so 
that the need for the selection of various aggregation operators can be eliminated.  

IC based ontological similarity measures are the focus of this study since within 
the bioinformatics, they have been predominantly used [1], and the primary path-
based measure Wu-Palmer has been shown equivalent to the Lin measure when each 
path edge is weighted by the difference in the child’s and parent’s IC value [6]. In the 
following ICont given in equation (7) is used since it is simpler to calculate and has 
also been reported in several studies [4][5][19][23] to perform as well if not better 
than ICcorpus. The five IC ontological similarity measures selected are the Resnik (R), 
the Lin (L), the FaITH (F), the P&S (P), and the proposed JacAnc (J).  

Performance evaluations of semantic similarity measures to human similarity 
judgments typically use the Pearson correlation coefficient. It measures the degree of 
linear relationship between two variables. The assumption is each variable is 
approximately normally distributed. The Spearman coefficient assumes that the 
variables under consideration are measured on at least a rank order or ordinal scale. It 
is can be viewed as the Pearson coefficient in terms of proportion of variability 
accounted for, only the ranks of the observations for each variable are used to 
calculate the Spearman coefficient. The Spearman correlation coefficient produces a 1 
when the two variables being compared are monotonically related and does not 
require the strict linear relationship of the Pearson correlation Both coefficients have 
been calculated. For this investigation, each correlation coefficient calculated had a p-
value < 0.001, which indicate that the result is significant. 

Figures 1 through 3 are for the Pearson coefficient for the CC, MF, and BP, 
respectively. Figures 4 through 6 are for the Spearman. The y-axis is the coefficient 
value; the x-axis is the respective measure: R-Resnik, L-Lin, F-FaITH, P-P&S, and J-
JacAnc. Each line shows how a measure correlates with all the other measures. 

For both coefficients, the Resnik measure correlates best with the Lin and FaITH 
measures across all three subontologies. The FaITH measure is strongly connected to 
the Lin measure. It uses a consistent reduction to both the numerator and denominator 
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of the Lin measure by the IC of the ancestor with the greatest IC. The experiments 
verify this showing that these two measures have 1.0 correlation with each other 
across all subontologies for the Spearman coefficient and have approximately the 
same high Pearson correlation, 0.97, across the three subontologies. Across all three 
subontologies, the Spearman correlation for the Lin measures with each the other 
three ontological similarity measures is identical to that of the corresponding 
Spearman correlation for FaITH.  

 

 

Fig. 1. Pearson Correlation between Measures for CC  

 

Fig. 2. Pearson Correlation between Measures for MF 

  

Fig. 3. Pearson Correlation between Measures for BP 
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Fig. 4. Spearman Correlation between Measures for CC 

  

Fig. 5. Spearman Correlation between Measures for MF 

 

Fig. 6. Spearman Correlation between Measures for BP 

Resnik correlates (Pearson) about the same with P&S and JacAnc for CC but then it 
correlates slightly better with the P&S for both MF and BP. The Resnik has the worst 
Spearman correlation with the P&S measure across all subontologies. The correlation 
results for Lin parallel those for the Resnik since across all three subontologies and 
both correlations coefficients the smallest correlation between the two is 0.988. This 
result occurs because Resnik and Lin measures are identical when ICont is used, i.e., 
simRes(c1, c2) = simLin(c1, c2) = 2IC(c3)/(1 + 1) =IC(c3).  

The FaITH measure correlates (both coefficients) best with the Resnik and Lin 
measures for all subontologies. It has a much higher Spearman correlation with the 
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JacAnc measure than with the P&S measure for all subontologies. Only for Pearson 
and the BP does it correlate slightly better with the P&S than with the JacAnc. 

The P&S measure correlates (Pearson) best with the Resnik, Lin, and FaITH 
measures across all subontologies, with about a 0.04 difference in the range of values. 
Pearson correlation with JacAnc measure is more varied with the best being for the 
CC and the worst being for the BP. A similar result can be seen for the Spearman 
coefficient with lower correlation values and a slightly bigger range in values. The 
JacAnc measure correlates best (Pearson) with the FaITH measures across all three 
subontologies. For the Spearman correlation coefficient with JacAnc, the Resnik, Lin, 
and FaITH have all very close coefficients for each of the subontologies. 

In general Pearson correlations across all subontologies show the same patterns. 
P&S and JacAnc have the poorest correlation with the other three measures though 
there is a flip-flop between the P&S measure and the JacAnc measure for the Lin and 
FaITH measures for the CC and BP only. The worst correlation for P&S occurs with 
JacAnc. In general Spearman correlations show a similar pattern, but the P&S 
measure clearly correlates less with all the other measures. The distinction in the 
correlation values for the other four decreases going from CC to MF to BP. This 
result could be due to the increasing number of concept pairs from CC to MF to BP. 

Generally, Resnik, Lin and FaITH are strongly correlated. The Lin and FaITH 
produce identical results with respect to the Spearman coefficient. From these 
experiments, the lowest correlation between these three measures occurs between 
FaITH and Res for the MF with a 0.961.  

Space limitations prevent fully discussing the IC ontological similarity using 
ICcorpus. The correlation for each ICont ontological similarity with its ICcorpus version is 
summarized. The corpus used is the GOA-UniProt Version 79 database 
(http://www.ebi.ac.uk/GOA/). The experiments showed a very strong correlation 
between the ICont and ICcorpus versions of the ontological similarity measures. P&S has 
the lowest correlations across both coefficients and all subontologies (Pearson 0.74 on 
MF, Spearman 0.58 on MF). The JacAnc has the highest Pearson correlations for all 
subontologies with it lowest value being 0.976 for the BP. For the Spearman 
correlations, all measures but P&S had very high and similar correlation values.  

With FaITH we did not use the eIC discussed in section 3.1. In [5] simFaITH + eIC 
always produced higher Pearson correlations with human similarity judgments than 
any of the others. The paper seems to indicate that the other similarity measures used 
ICont. Since the specific kinds of relationships used to calculate eIC are not clearly 
stated, ICont with only the is-a and part-of links is used in our work.  

Another experiment in [5] uses a data set consisting of 36 concept pairs from the 
MeSH (Medical Subject Headings) ontology to evaluate the performance of simFaITH 
on a domain related ontology. The conclusion again was that simFaITH had the highest 
correlation with the human similarity judgments. It is understood that for MeSH all 
ontological similarity measures including simFaITH were calculated using ICont. As 
previously discussed, the simFaITH measure should always produce a smaller or equal 
value to that of simLin. However, a problem in either the calculation of one or both of 
these measures is seen in [5] since in the reported similarity values for the 36 pairs, 14 
of the simFaITH values are greater than the corresponding simLin values. 
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4   Conclusions and Future Work 

Several IC based ontological similarity measures are theoretically and empirically 
investigated. The motivation of the study is to establish a general fuzzy set-theoretic 
framework of IC ontological similarity that has as its basis Tversky’s similarity 
models, fuzzy set compatibility measures, and information content and to examine 
other recently proposed measures that use an intuitive IC version of Tversky’s model 
[4][5]. Historical ontological similarity measures are shown to be examples of fuzzy 
set compatibility measures when a concept is described by a fuzzy set of elements and 
their membership degrees are determined as a function of IC. The empirical study 
uses two historical measures Resnik [18] and Lin [12], two recently proposed 
measures, P&S [4] and FaITH [5], and JacAnc, a measure presented here and derived 
from the general fuzzy set-theoretic framework for IC ontological similarity. ICont is 
used in comparing these ontological measures. The cellular component (CC), the 
molecular function (MF) and the biological process (BP) of the Gene Ontology are 
used to empirically compare these five measures. The comparison does not use a gold 
standard but instead uses the correlation between their similarity values on sets of 
randomly selected concept pairs from each of the three GO subontologies.  

The FaITH and Lin measures are shown to have a mathematical relationship 
validated by their very high Pearson correlation and identical Spearman correlations 
values. The Resnik and Lin measure are strongly correlated. This result can be partly 
explained by the equivalence of the two measures when the similarity between leaf 
concepts is being determined. The JacAnc measure shows overall the strongest 
correlation between its ICont and ICcorpus versions over all subontologies although each 
measure shows strong correlation between its two IC versions. It appears for JacAnc 
that incorporating more information to represent a concept, i.e. a concept’s set of 
ancestors, mitigates the difference in using ICont in place of ICcorpus. The correlations 
for the two P&S versions are the smallest. Future research is to explore the use of 
several of these ontological similarity measures in various tasks, for example 
ontology alignment in order to further compare their performance.  

References 

1. Cross, V.: Ontological Similarity. In: Popescu, M., Xu, D. (eds.) Data Mining in 
Biomedicine Using Ontologies, pp. 23–43. Artech House, Norwood, MA (2009) 

2. Pesquita, C., Faria, D., Falcão, A.O., Lord, P., Couto, F.M.: Semantic Similarity in 
Biomedical Ontologies. PLoS Comput. Biol. 5(7), e1000443,  
doi:10.1371/journal.p(c)bi.1000443 (2009) 

3. Tversky, A.: Features of Similarity. Psychological Rev. 84, 327–352 (1977) 
4. Pirrò, G., Seco, N.: Design, Implementation and Evaluation of a New Semantic Similarity 

Metric Combining Features and Intrinsic Information Content. In: Chung, S. (ed.) OTM 
2008, Part II. LNCS, vol. 5332, pp. 1271–1288. Springer, Heidelberg (2008) 

5. Pirrò, G., Euzenat, J.: A Feature and Information Theoretic Framework for Semantic 
Similarity and Relatedness. In: Proceedings of International Semantic Web Conference, 
vol. (1), pp. 615–630 (2010) 



400 V. Cross and X. Yu 

6. Cross, V.: Tversky’s Parameterized Similarity Ratio Model: A Basis for Semantic 
Relatedness. In: Proceedings of the 2006 Conference of North American Fuzzy 
Information Processing Society (NAFIPS), Montreal, Canada (June 3-6, 2006) 

7. Cazzanti, L., Gupta, M.R.: Information-theoretic and Set-theoretic Similarity. In: Proc. 
IEEE Intl. Symposium on Information Theory (2006) 

8. Budanitsky, A., Hirst, G.: Semantic Distance in WordNet: An Experimental, Application-
oriented Evaluation of Five Measures. In: Workshop on WordNet and Other Lexical 
Resources, Second meeting of the NAACL, Pittsburgh (2001) 

9. The Gene Ontology Consortium, http://www.geneontology.org/ 
10. Lord, P., Stevens, R., Brass, A., Goble, C.: Investigating semantic similarity measures 

across the Gene Ontology: the relationship between sequence and annotation. 
Bioinformatics 19, 1275–1283 (2003) 

11. Wei, M.: An Analysis of Word Relatedness Correlation Measures. Master’s thesis, 
University of Western Ontario, London, Ontario (May 1993) 

12. Lin, D.: An information-theoretic definition of similarity. In: Proc. of the 15th Int. Conf. 
on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1998) 

13. Attneave, F.: Dimensions of Similarity. American J. of Psychology 63, 516–556 (1950) 
14. Goodman, N.: Seven strictures on similarity. In: Goodman, N. (ed.) Problems and 

projects, pp. 437–447. Bobbs-Merrill, New York (1972) 
15. Medin, D.L., Goldstone, R.L., Gentner, D.: Respects for Similarity. Psychological 

Review 100(2), 254–278 (1993) 
16. Cross, V.: An Analysis of Fuzzy Set Aggregators and Compatibility Measures, Ph.D. 

Dissertation, Computer Science and Engineering, Wright State University, Dayton, OH, 
264 pages (March 1993) 

17. Cross, V., Sudkamp, T.: Similarity and Compatibility in Fuzzy Set Theory: Assessment 
and Applications. Physica-Verlag, New York (2002) ISBN: 3-7908-1458 

18. Resnik, P.: Using information content to evaluate semantic similarity in taxonomy. In: 
Proc. of the 14th Intl Joint Conference on Artificial Intelligence, pp. 448–453 (1995) 

19. Seco, N., Veale, T., Hayes, J.: An Intrinsic Information Content Metric for Semantic 
Similarity in WordNet. In: ECAI, pp. 1089–1090 (2004) 

20. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy, 
In: Proc. of the 10th International Conference on Research (1997) 

21. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proc. of the 32nd Annual 
Meeting of the Assoc. for Computational Ling, NM, Las Cruces, pp. 133–138 (1994) 

22. Yu, X.: A Mathematical and Experimental Investigation of Ontological Similarity 
Measures and their Use in Biomedical Domains. Master’s Thesis, Computer Science and 
Software Engineering, Miami University, Oxford OH (2010) 

23. Cross, V., Sun, Y.: Semantic, Fuzzy Set and Fuzzy Measure Similarity for the Gene 
Ontology. In: Proceedings of the IEEE International Conference on Fuzzy Systems. 
Imperial College, London (2007) 

24. Rodriguez, M.A., Egenhofer, M.J.: Determining Semantic Similarity among Entity 
Classes from Different Ontologies. IEEE Transactions on Knowledge and Data 
Engineering 15(2), 442–456 (2003) 

 
 



Answering Threshold Queries in
Probabilistic Datalog+/– Ontologies

Georg Gottlob, Thomas Lukasiewicz, and Gerardo I. Simari

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom

firstname.lastname@cs.ox.ac.uk

Abstract. The recently introduced Datalog+/– family of ontology languages is
especially useful for representing and reasoning over lightweight ontologies, and
is set to play a central role in the context of query answering and information
extraction for the Semantic Web. Recently, it has become apparent that it is nec-
essary to develop a principled way to handle uncertainty in this domain. In ad-
dition to uncertainty as an inherent aspect of the Web, one must also deal with
forms of uncertainty due to inconsistency and incompleteness, uncertainty result-
ing from automatically processing Web data, as well as uncertainty stemming
from the integration of multiple heterogeneous data sources. In this paper, we
take an important step in this direction by developing the first probabilistic ex-
tension of Datalog+/–. This extension uses Markov logic networks as underlying
probabilistic semantics. Here, we especially focus on scalable algorithms for an-
swering threshold queries, which correspond to the question “what is the set of all
atoms that are inferred from a given probabilistic ontology with a probability of
at least p?”. These queries are especially relevant to Web information extraction,
since uncertain rules lead to uncertain facts, and only information with a certain
minimum confidence is desired. We present two algorithms: a basic approach and
one based on heuristics that is guaranteed to return sound results.

1 Introduction

Recently, Web search companies such as Google, Yahoo!, and Microsoft have realized
that enhancing their products via the incorporation of ideas and developments from the
Semantic Web (to incorporate, for instance, semantic search and complex query an-
swering) must include principled ways in which to manage uncertainty. The Web is full
of examples where uncertainty comes in: as an inherent aspect of Web data (such as
in reviews of products or services, comments in blog posts, weather forecasts, etc.), as
the result of automatically processing Web data (for instance, analyzing a document’s
HTML Document Object Model usually involves some degree of uncertainty), and as
the result of integrating information from many different heterogeneous sources (such
as in aggregator sites, which allow users to query multiple sites at once to save time).
Finally, inconsistency and incompleteness are also ubiquitous as the result of over- and
under-specification, respectively. In order to be applicable to web-sized data sets, any
machinery developed for dealing with uncertainty in these settings must be scalable.
In this paper, we take an important step in this direction by developing the first ex-
tension of Datalog± [5] by means of a probabilistic semantics based on Markov logic
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networks [22]. The former is a recently introduced family of ontology languages that
is especially useful for representing and reasoning over lightweight ontologies. This
formalism is set to play a central role in the context of query answering and informa-
tion extraction for the Semantic Web by means of its novel generalization of database
rules and dependencies (such as tuple-generating dependencies (TGDs) and equality-
generating dependencies (EGDs)) so that they can express ontological axioms. Markov
logic networks, also recently developed, are a simple approach to generalizing classical
logic; their relative simplicity and lack of restrictions has recently caused them to be
well-received in the reasoning under uncertainty community.

The main goal of this paper, apart from introducing the novel probabilistic Datalog±

formalism, will be to develop scalable algorithms for answering threshold queries,
which correspond to the question “what is the set of all atoms that are inferred from
a given probabilistic ontology with a probability of at least p?”. These queries are espe-
cially adequate in the Web information extraction process, since uncertain rules lead to
uncertain facts, and only information with a certain minimum confidence is desired. We
present two algorithms: a basic approach that provides exact answers but is not scalable
in the combined complexity, and an algorithm based on heuristics that is guaranteed to
return sound results with a much more attractive running time.

2 Preliminaries

This section briefly recalls guarded Datalog±and Markov logic networks.

2.1 Guarded Datalog±

We now describe guarded Datalog± [5], which here includes negative constraints and
(separable) equality-generating dependencies (EGDs). We first describe some prelim-
inaries on databases and queries, and then tuple-generating dependencies (TGDs) and
the concept of chase. We finally recall negative constraints and (separable) EGDs, which
are other important ingredients of guarded Datalog± ontologies.

Databases and Queries. For the elementary ingredients, we assume data constants,
nulls, and variables as follows; they serve as arguments in atomic formulas in databases,
queries, and dependencies. We assume (i) an infinite universe of data constants Δ
(which constitute the “normal” domain of a database), (ii) an infinite set of (labeled)
nulls ΔN (used as “fresh” Skolem terms, which are placeholders for unknown values,
and can thus be seen as variables), and (iii) an infinite set of variables V (used in queries
and dependencies). Different constants represent different values (unique name assump-
tion), while different nulls may represent the same value. We assume a lexicographic
order on Δ ∪ ΔN , with every symbol in ΔN following all symbols in Δ. We denote
by X sequences of variables X1, . . . , Xk with k � 0.

We next define atomic formulas, which occur in databases, queries, and dependen-
cies, and which are constructed from relation names and terms, as usual. We assume
a relational schema R, which is a finite set of relation names (or predicate symbols,
or simply predicates). A position P [i] identifies the i-th argument of a predicate P .
A term t is a data constant, null, or variable. An atomic formula (or atom) a has the
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form P (t1, ..., tn), where P is an n-ary predicate, and t1, ..., tn are terms. We denote
by pred(a) and dom(a) its predicate and the set of all its arguments, respectively. The
latter two notations are naturally extended to sets of atoms and conjunctions of atoms.
A conjunction of atoms is often identified with the set of all its atoms.

We are now ready to define the notion of a database relative to a relational schema,
as well as conjunctive and Boolean conjunctive queries to databases. A database (in-
stance) D for a relational schemaR is a (possibly infinite) set of atoms with predicates
fromR and arguments from Δ. Such D is ground iff it contains only atoms with argu-
ments from Δ. A conjunctive query (CQ) overR has the form Q(X) = ∃Y Φ(X,Y),
where Φ(X,Y) is a conjunction of atoms with the variables X and Y, and possibly
constants, but without nulls. Note that Φ(X,Y) may also contain equalities but no in-
equalities. A Boolean CQ (BCQ) over R is a CQ of the form Q(). We often write a
BCQ as the set of all its atoms, having constants and variables as arguments, and omit-
ting the quantifiers. Answers to CQs and BCQs are defined via homomorphisms, which
are mappings μ : Δ ∪ΔN ∪ V → Δ ∪ΔN ∪ V such that (i) c ∈ Δ implies μ(c) = c,
(ii) c ∈ ΔN implies μ(c) ∈ Δ ∪ΔN , and (iii) μ is naturally extended to atoms, sets of
atoms, and conjunctions of atoms. The set of all answers to a CQ Q(X)= ∃Y Φ(X,Y)
over a database D, denoted Q(D), is the set of all tuples t over Δ for which there exists
a homomorphism μ : X∪Y→Δ∪ΔN such that μ(Φ(X,Y))⊆D and μ(X)= t. The
answer to a BCQ Q() over a database D is Yes, denoted D |= Q, iff Q(D) �= ∅.

Tuple-Generating Dependencies. Tuple-generating dependencies (TGDs) describe
constraints on databases in the form of generalized Datalog rules with existentially
quantified conjunctions of atoms in rule heads; their syntax and semantics are as fol-
lows. Given a relational schema R, a tuple-generating dependency (TGD) σ is a first-
order formula of the form ∀X∀Y Φ(X, Y)→∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X,
Z) are conjunctions of atoms overR called the body and the head of σ, denoted body(σ)
and head(σ), respectively. A TGD is guarded iff it contains an atom in its body that in-
volves all variables appearing in the body. We usually omit the universal quantifiers in
TGDs. Such σ is satisfied in a database D forR iff, whenever there exists a homomor-
phism h that maps the atoms of Φ(X,Y) to atoms of D, there exists an extension h′

of h that maps the atoms of Ψ(X,Z) to atoms of D. All sets of TGDs are finite here.
Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases

under a set of TGDs is defined as follows. For a database D for R, and a set of TGDs
Σ onR, the set of models of D and Σ, denoted mods(D, Σ), is the set of all (possibly
infinite) databases B such that (i) D⊆B (ii) every σ∈Σ is satisfied in B. The set of
answers for a CQ Q to D and Σ, denoted ans(Q, D, Σ), is the set of all tuples a such
that a ∈ Q(B) for all B ∈mods(D, Σ). The answer for a BCQ Q to D and Σ is Yes,
denoted D ∪ Σ |=Q, iff ans(Q, D, Σ) �= ∅. Note that query answering under general
TGDs is undecidable [2], even when the schema and TGDs are fixed [4].

The two problems of CQ and BCQ evaluation under TGDs are LOGSPACE-equivalent
[7,14,10,8]. Moreover, the query output tuple (QOT) problem (as a decision version of
CQ evaluation) and BCQ evaluation are AC0-reducible to each other. Henceforth, we
thus focus only on the BCQ evaluation problem, and any complexity results carry over
to the other problems. We also recall that query answering under TGDs is equivalent to
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query answering under TGDs with only single atoms in their heads. In the sequel, we
thus assume w.l.o.g. that every TGD has a single atom in its head.

The Chase. The chase was introduced to enable checking implication of dependen-
cies [19], and later also for checking query containment [14]. It is a procedure for
repairing a database relative to a set of dependencies, so that the result of the chase
satisfies the dependencies. By “chase”, we refer both to the chase procedure and to its
output. The TGD chase works on a database through so-called TGD chase rules (an
extended chase with also equality-generating dependencies is discussed below). The
TGD chase rule comes in two flavors: restricted and oblivious, where the restricted one
applies TGDs only when they are not satisfied (to repair them), while the oblivious one
always applies TGDs (if they produce a new result). We focus on the oblivious one here;
the (oblivious) TGD chase rule defined below is the building block of the chase.

TGD CHASE RULE. Consider a database D for a relational schemaR, and a TGD σ
onR of the form Φ(X,Y)→ ∃ZΨ(X, Z). Then, σ is applicable to D if there exists a
homomorphism h that maps the atoms of Φ(X,Y) to atoms of D. Let σ be applicable to
D, and h1 be a homomorphism that extends h as follows: for each Xi ∈ X, h1(Xi) =
h(Xi); for each Zj ∈ Z, h1(Zj) = zj , where zj is a “fresh” null, i.e., zj ∈ ΔN , zj does
not occur in D, and zj lexicographically follows all other nulls already introduced. The
application of σ on D adds to D the atom h1(Ψ(X,Z)) if not already in D.

The chase algorithm for a database D and a set of TGDs Σ consists of an exhaustive
application of the TGD chase rule in a breadth-first (level-saturating) fashion, which
leads as result to a (possibly infinite) chase for D and Σ. Formally, the chase of level
up to 0 of D relative to Σ, denoted chase0(D, Σ), is defined as D, assigning to every
atom in D the (derivation) level 0. For every k � 1, the chase of level up to k of D
relative to Σ, denoted chasek(D, Σ), is constructed as follows: let I1, . . . , In be all
possible images of bodies of TGDs in Σ relative to some homomorphism such that (i)
I1, . . . , In⊆ chasek−1(D, Σ) and (ii) the highest level of an atom in every Ii is k − 1;
then, perform every corresponding TGD application on chasek−1(D, Σ), choosing the
applied TGDs and homomorphisms in a (fixed) linear and lexicographic order, respec-
tively, and assigning to every new atom the (derivation) level k. The chase of D relative
to Σ, denoted chase(D, Σ), is then defined as the limit of chasek(D, Σ) for k →∞.

The (possibly infinite) chase relative to TGDs is a universal model, i.e., there exists
a homomorphism from chase(D, Σ) onto every B ∈mods(D, Σ) [8,4]. This result
implies that BCQs Q over D and Σ can be evaluated on the chase for D and Σ, i.e.,
D∪Σ |= Q is equivalent to chase(D, Σ) |= Q. In the case of guarded TGDs Σ, such
BCQs Q can be evaluated on an initial fragment of chase(D, Σ) |= Q of constant
depth k · |Q|, and thus be done in polynomial time in the data complexity.

Negative Constraints. Another crucial ingredient of Datalog± for ontological mo-
deling are negative constraints (or simply constraints), which are first-order formulas
of the form ∀XΦ(X) → ⊥, where Φ(X) is a conjunction of atoms (not necessar-
ily guarded). We usually omit the universal quantifiers, and we implicitly assume that
all sets of constraints are finite here. Adding negative constraints to answering BCQs
Q over databases and guarded TGDs is computationally easy, as for each constraint
∀XΦ(X) → ⊥, we only have to check that the BCQ Φ(X) evaluates to false; if one
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of these checks fails, then the answer to the original BCQ Q is positive, otherwise the
negative constraints can be simply ignored when answering the original BCQ Q.

Equality-Generating Dependencies. A further important ingredient of Datalog± for
modeling ontologies are equality-generating dependencies (or EGDs) σ, which are
first-order formulas of the form ∀XΦ(X)→Xi = Xj , where Φ(X), called the body
of σ, denoted body(σ), is a (not necessarily guarded) conjunction of atoms, and Xi

and Xj are variables from X. We call Xi = Xj the head of σ, denoted head(σ).
Such σ is satisfied in a database D forR iff, whenever there exists a homomorphism h
such that h(Φ(X,Y))⊆D, it holds that h(Xi)= h(Xj). We usually omit the universal
quantifiers in EGDs, and all sets of EGDs are finite here.

An EGD σ on R of the form Φ(X)→Xi =Xj is applicable to a database D forR
iff there exists a homomorphism η : Φ(X)→D such that η(Xi) and η(Xj) are different
and not both constants. If η(Xi) and η(Xj) are different constants in Δ, then there is
a hard violation of σ (and, as we will see below, the chase fails). Otherwise, the result
of the application of σ to D is the database h(D) obtained from D by replacing every
occurrence of a non-constant element e∈{η(Xi), η(Xj)} in D by the other element e′

(if e and e′ are both nulls, then e precedes e′ in the lexicographic order). The chase of a
database D, in the presence of two sets ΣT and ΣE of TGDs and EGDs, respectively,
denoted chase(D, ΣT ∪ ΣE), is computed by iteratively applying (1) a single TGD
once, according to the standard order and (2) the EGDs, as long as they are applicable
(i.e., until a fixpoint is reached). To assure that adding EGDs to answering BCQs Q
over databases and guarded TGDs along with negative constraints does not increase the
complexity of query answering, all EGDs are assumed to be separable [5]. Intuitively,
separability holds whenever: (i) if there is a hard violation of an EGD in the chase, then
there is also one on the database w.r.t. the set of EGDs alone (i.e., without considering
the TGDs); and (ii) if there is no chase failure, then the answers to a BCQ w.r.t. the
entire set of dependencies equals those w.r.t. the TGDs alone (i.e., without the EGDs).

Guarded Datalog+/– Ontologies. A (guarded) Datalog± ontology consists of a (finite)
database D, a finite set of (guarded) TGDs ΣT , a finite set of negative constraints ΣC ,
and a finite set of EGDs ΣE that are separable from ΣT .

Example 1. Consider the following set of TGDs and EGDs describing a simple ontol-
ogy regarding a real estate information extraction system for the Web:

− F1 : ann(X, label), ann(X, price), visible(X)→ priceElem(X).
If X is annotated as a label, as a price, and is visible, then it is a price element.

− F2 : ann(X, label), ann(X, priceRange), visible(X)→ priceElem(X).
If X is annotated as a label, as a price range, and is visible, then it is a price element.

− F3 : priceElem(E), group(E, X)→ forSale(X).
If E is a price element and is grouped with X , then X is for sale.

− F4 : forSale(X)→ ∃P price(X, P ).
If X is for sale, then there exists a price for X .

− F5 : hasCode(X ,C ), codeLoc(C, L)→ loc(X, L).
If X has postal code C, and C’s location is L, then X’s location is L.
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− F6 : hasCode(X ,C ) → ∃L codeLoc(C, L), loc(X, L).
If X has postal code C, then there exists L such that C has location L and so does X .

− F7 : loc(X, L1), loc(X, L2)→ L1 = L2.
If X has the locations L1 and L2, then L1 and L2 are the same.

Formulas F1 to F6 are TGDs, while F7 is an EGD. Clearly, all TGDs except for F5 are
guarded. In order to illustrate the chase, assume that we have the following atoms in the
ontology: codeLoc(ox1 , central), codeLoc(ox1 , south), codeLoc(ox2 , summertown),
hasCode(prop1 , ox2 ), ann(e1 , price), ann(e1 , label), visible(e1 ), and group(e1 ,
prop1 ). Consider the chase relative to these atoms and the above formulas F1 to F7

excluding F6; some of the atoms introduced are:

− priceElem(e1 ), by application of F1;

− forSale(prop1 ), by application of F3;

− price(prop1 , z1), by application of F4, with z1 ∈ ΔN .

Consider next the ontology obtained from the one above by adding the two atoms
loc(prop1 , ox1 ) and loc(prop1 , ox2 ). Here, the EGD F7 now leads to a failure in the
chase, since there are two different locations associated with prop1.

2.2 Markov Logic Networks

Markov logic networks (MLNs) [22] combine first-order logic with Markov networks
(MNs; or Markov random fields) [21]. We now provide a brief introduction to both.

Markov Networks. A Markov network (MN) is a probabilistic model that represents a
joint probability distribution over a (finite) set of random variables X = {X1, ..., Xn}.
Each random variable Xi may take on values from a finite domain Dom(Xi). A value
for X = {X1, . . . , Xn} is a mapping x : X →

⋃n
i=1 Dom(Xi) such that x(Xi) ∈

Dom(Xi); the domain of X , denoted Dom(X), is the set of all values for X . An
MN is similar to a Bayesian network (BN) in that it includes a graph G = (V, E)
in which each node corresponds to a variable, but, differently from a BN, the graph
is undirected; in an MN, two variables are connected by an edge in G iff they are
conditionally dependent. Furthermore, the model contains a potential function φi for
each (maximal) clique in the graph; potential functions are non-negative real-valued
functions of the values of the variables in each clique (called the state of the clique). In
this work, we will assume the log-linear representation of MNs, which involves defining
a set of features of such states; a feature is a real-valued function of the state of a clique
(we will only consider binary features in this work). Given a value x ∈ Dom(X) and
a feature fj for clique j, the probability distribution represented by an MN is given by
P (X = x) = 1

Z exp(
∑

j wj · fj(x)), where j ranges over the set of cliques in the
graph G, and wj = log φj(x{j}) (here, x{j} is the state of the j-th clique). The term Z
is a normalization constant to ensure that the values given by the equation above are
in [0, 1]; it is given by Z =

∑
x∈Dom(X) exp(

∑
j wj · fj(x)). Probabilistic inference

in MNs is intractable; however, approximate inference mechanisms, such as Markov
Chain Monte Carlo, have been developed and successfully applied.
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sale uniqueLoc ann(e1, price) ann(e1, priceRange) 

ann(e1, label) 

Fig. 1. The graph representation of the MLN from Example 2

Markov Logic Networks. The main idea behind Markov logic networks (MLNs) is to
provide a way to soften the constraints imposed by a set of classical logic formulas.
Instead of considering worlds that violate some formulas to be impossible, we wish to
make them less probable. A Markov logic network is a finite set L of pairs (Fi, wi),
where Fi is a formula in first-order logic, and wi is a real number. Such a set L, along
with a finite set of constants C = {c1, ..., cm}, defines a Markov network ML,C that
contains: (i) one binary node corresponding to each element of the Herbrand base of the
formulas in L (i.e., all possible ground instances of the atoms), where the node’s value
is 1 iff the atom is true; and (ii) one feature for every possible ground instance of a
formula in L. The value of the feature is 1 iff the ground formula is true, and the weight
of the feature is the weight corresponding to the formula in L. From this characterization
and the description above of the graph corresponding to an MN, it follows that ML,C

has an edge between any two nodes corresponding to ground atoms that appear together
in at least one formula in L. Furthermore, the probability of x ∈ Dom(X) given this
ground MLN is P (X = x) = 1

Z exp(
∑

j wj · nj(x)), where ni(x) is the number of
ground instances of Fi made true by x, and Z is defined analogously as above. This
formula can be used in a generalized manner to compute the probability of any setting
of a subset of random variables X ′ ⊆ X , as we will see below.

Example 2. The following is a simple example of a Markov logic network. Later on,
we will use this MLN in combination with the ontology presented in Example 1.

− ψ1: (ann(X, label) ∧ ann(X, price), 0.3);

− ψ2: (ann(X, label) ∧ ann(X, priceRange), 0.4);

− ψ3: (sale , 0.8);

− ψ4: (uniqueLoc, 1.1).

The graphical representation of this MLN w.r.t. the ground atoms ann(e1 , label ),
ann(e1 , price), ann(e1 , priceRange), sale , and uniqueLoc (obtained by grounding
the formulas w.r.t. the set of constants {e1}) is shown in Fig. 1. This MLN represents a
probability distribution over the possible Boolean values for each node. Given that there
are five ground atoms, there are 25 = 32 possible settings of the variables in the MLN.
The normalizing factor Z is the sum of the probabilities of all possible worlds, which
is computed as shown above by summing the exponentiated sum of weights times the
number of ground formulas satisfied, yielding Z ≈ 127.28. Similarly, the probability
that a formula, such as ann(e1 , label ), holds is the sum of the probabilities that all the
satisfying worlds hold, which in this case is 87.82

127.28 ≈ 0.6903.
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3 Syntax and Semantics of Probabilistic Guarded Datalog±

Considering the basic setup from Sections 2.1 and 2.2, we now present the language of
probabilistic guarded Datalog±.

3.1 Syntax

As in Section 2.1, we assume an infinite universe of data constants Δ, an infinite set of
labeled nulls ΔN , and an infinite set of variables V . Furthermore, we assume a finite set
of random variables X , as in Section 2.2. Informally, a probabilistic guarded Datalog±

ontology consists of a finite set of probabilistic atoms, guarded TGDs, negative con-
straints, and separable EGDs, along with a Markov logic network.

Definition 1. A (probabilistic) scenario λ is a (finite) set of pairs 〈Xi, xi〉, where Xi ∈
X , xi ∈Dom(Xi), and the Xi’s are pairwise distinct. If |λ|= |X |, then λ is a full
probabilistic scenario. If every random variable Xi has a Boolean domain, then we also
abbreviate λ by the set of all Xi such that 〈Xi, true〉 ∈ λ.

Intuitively, a probabilistic scenario will be used to describe an event in which the ran-
dom variables in an MLN are compatible with the settings of the random variables
described by λ, i.e., each Xi has the value xi.

Definition 2. If a is an atom, σT is a TGD, σC is a negative constraint, σE is an EGD,
and λ is a probabilistic scenario, then: (i) a : λ is a probabilistic atom; (ii) σT : λ is
a probabilistic TGD (pTGD); (iii) σC : λ is a probabilistic (negative) constraint; and
(iv) σE : λ is a probabilistic EGD (pEGD). We also refer to probabilistic atoms, TGDs,
(negative) constraints, and EGDs as annotated formulas.

Intuitively, annotated formulas hold whenever the events associated with their prob-
abilistic annotations occur. A probabilistic Datalog± ontology is of the form Φ =
(O, M), where O is a set of probabilistic atoms, TGDs, (negative) constraints, and
EGDs, and M is a Markov logic network. In the sequel, we implicitly assume that ev-
ery such Φ = (O, M) is separable, which means that Σν

E is separable from Σν
T , for

every ν ∈Dom(X), where Σν
T (resp., Σν

E) is the set of all TGDs (resp., EGDs) σ such
that (i) σ : λ ∈ O and (ii) λ is contained in the set of all 〈Xi, ν(Xi)〉 with Xi ∈ X .

Example 3. Consider the guarded Datalog± ontology from Example 1, and the Markov
logic network M from Example 2. Both share the atoms with predicate symbol “ann”;
in the following, we build a probabilistic guarded Datalog± ontology Φ = (O, M) by
having these atoms as a part of the MLN only, as shown below:

− F ′
1 : visible(X)→ priceElem(X): {ann(X, label), ann(X, price)};

− F ′
2 : visible(X)→ priceElem(X): {ann(X, label), ann(X, priceRange)};

− F ′
3 : priceElem(E), group(E, X)→ forSale(X): {sale};

− F ′
7 : loc(X, L1), loc(X, L2)→ L1 = L2: {uniqueLoc}.

Furthermore, F ′
4 and F ′

6 are the same as in Example 1, but with the annotation “∅”:
these formulas hold irrespective of the setting of the random variables of the MLN.
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3.2 Semantics

The semantics of probabilistic Datalog± ontologies is given w.r.t. probabilistic distribu-
tions over interpretations of the form I = 〈D, ν〉, where D is a database over Δ∪ΔN ,
and ν : X → D(X ) is a function that maps random variables to values in their domain.
In the following, we abbreviate “true : λ” with “λ”.

Definition 3. An interpretation I = 〈D, ν〉 satisfies an annotated formula F : λ, de-
noted I |= F : λ, iff whenever ν(X) = x, for all 〈X, x〉 ∈ λ, then D |= F .

A probabilistic interpretation is then a probability distribution Pr over the set of all
possible interpretations such that only a finite number of interpretations are mapped to
a non-zero value. The probability of an annotated formula F : λ, denoted Pr(F : λ), is
the sum of all Pr(I) such that I satisfies F : λ.

Definition 4. Let Pr be a probabilistic interpretation, and F : λ be an annotated for-
mula. We say that Pr satisfies (or is a model of) F : λ iff Pr(F : λ) = 1. Further-
more, Pr is a model of a probabilistic Datalog± ontology Φ = (O, M) iff: (i) Pr
satisfies all annotated formulas in O, and (ii) 1 − Pr(false : λ) = PrM (λ) for all full
probabilistic scenarios λ, where PrM (λ) is the probability of

∧
〈Xi,xi〉∈λ(Xi = xi) in

the MLN M (and computed in the same way as P (X = x) in Section 2.2).

In the rest of this paper, we are especially interested in computing the probabilities
associated with atoms in a probabilistic Datalog± ontology, as defined next.

Definition 5. Let Φ = (O, M) be a probabilistic Datalog± ontology, and a be a ground
atom that is constructed from predicates and data constants in Φ. The probability of a
in Φ, denoted PrΦ(a), is the infimum of Pr(a : {}) subject to all probabilistic interpre-
tations Pr such that Pr |= Φ.

Intuitively, an atom will have the probability that results from summing the probabilities
of all full scenarios under which the resulting universal model contains the atom.

Threshold Queries. The focus of this paper is on queries that request the set of all
atoms that have probability at least p, where p is specified as an input.

Definition 6. Let Φ = (O, M) be a probabilistic Datalog± ontology, and p ∈ [0, 1].
A threshold query is of the form Q = 〈Φ, p〉, and the set of answers to Q contains all
ground atoms a such that PrΦ(a) ≥ p.

The following is an example of such a query over the running example.

Example 4. Consider the probabilistic Datalog± ontology Φ = (O, M) from Exam-
ple 3, and the threshold query Q = 〈Φ, 0.45〉. All the atoms listed in Example 1 have
probability 1, and so belong to the answers to Q. To compute the probabilities of the
other atoms in the chase, we sum the probabilities of the full scenarios that make the
atoms true, yielding, e.g., Pr(priceElem(elem1 )) = 0.492 and Pr(forSale(prop1 ))=
0.339; clearly, the former belongs to the output, while the latter does not.

Before exploring algorithms for threshold queries, we conclude this section with a result
regarding the complexity of finding the set of answers.
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Algorithm 1. basicThresh(Φ = (O, M), p)
1. Initialize πout as a mapping from atoms to values in [0, 1] (default value is zero);
2. for i = 1 to 2|X| do begin // i ranges over all possible probabilistic scenarios
3. λ := computeFullScenario(M, i);
4. Oλ := getRelevantFormulas(O , λ); // Oλ contains formulas “activated” by λ
5. ch := computeChase(Oλ);
6. for each atom a ∈ ch do
7. πout(a) := πout(a) + PrM (λ);
8. end;
9. remove from πout all atoms a such that πout (a) < p;

10. return πout .

Fig. 2. Computes the answer πout (including probabilities) to a threshold query Q = 〈Φ, p〉

Theorem 1. Let Φ = (O, M) be a probabilistic Datalog± ontology. Answering a
threshold query 〈Φ, p〉 is in PTIME in the data complexity.

Proof (sketch). This result is an immediate consequence of the following observations:
(i) M is fixed when considering the data complexity (and therefore inference is done in
constant time); (ii) each (of the polynomially many) threshold queries for a ground
atom can be answered by means of a constant number (in the data complexity) of
BCQs to guarded Datalog± ontologies; and (iii) answering BCQs in guarded Datalog±

is in PTIME in the data complexity [5].

4 Algorithms for Answering Threshold Queries

First, we explore a basic algorithm for answering threshold queries exactly, and then go
on to propose a heuristic algorithm based on an annotated chase graph.

4.1 A Basic Algorithm

Fig. 2 shows the pseudocode for the basicThresh algorithm. The basic approach taken
by this algorithm is to cycle through all possible settings of the random variables in X ;
for each one, the algorithm obtains the formulas whose probabilistic annotations are
satisfied by the current scenario, and computes the chase w.r.t. this set of formulas. The
probability of each atom in the chase is then updated; note that, since each probabilistic
scenario is disjoint from the others being considered, the probabilities can be computed
by summing the individual results (cf. Example 4). The following theorem shows the
correctness and running time of this algorithm.

Theorem 2. Let Φ = (O, M) be a probabilistic Datalog± ontology, k ≥ 1, and
p ∈ [0, 1]: (i) Every atom a : π(a) in the output of Algorithm basicThresh belongs
to the output of threshold query 〈Φ, p〉; (ii) if an atom a : prob(a) belongs to the output
of threshold query 〈Φ, p〉, then it also belongs to the output of Algorithm basicThresh;
(iii) heurThresh runs in time O

(
2|X| ∗ (m + |O| + c)

)
, where m is the cost of com-

puting the probability of a given scenario in the MLN M , and c is the cost of computing
the chase w.r.t. O.
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Algorithm 2. heurThresh(Φ = (O, M), p, k)
1. Initialize πout as a mapping from atoms to values in [0, 1] (default value is zero);
2. for i = 1 to k do begin // i ranges over the k most probable scenarios
3. λi := computeMAP (M, i); // λi is the i-th most probable scenario
4. Oλi := getRelevantFormulas(O , λi); // Oλi contains formulas relevant in λi

5. end;
6. O∗ :=

⋃k
i=1 Oλi ;

7. ch := computeChase(O∗);
8. Gch := chaseGraph(ch);
9. Annotate each node n in Gch with a Boolean vector vn of length k, initialized to all true;

10. for � = 1 to numLevels(Gch) do begin
11. for each node aj in level � of Gch do
12. for i = 1 to k do
13. if ∃ node p ∈ parents(aj) such that either (vp[i] = false) or
14. (aj is obtained from parents(aj) by applying a TGD F /∈ Oλi ) then
15. vp[i] = false;
16. end;
17. for each node aj in Gch do begin
18. for i = 1 to k do
19. πout(aj) := sum of all PrM (λi) such that vaj [i] = true ;
20. if πout(aj) < p then remove aj from πout ;
21. end;
22. return πout .

Fig. 3. Returns πout , a mapping that assigns a lower bound probability to all atoms that appear
in the chase relative to at least one of the k most probable scenarios

We next present a heuristic algorithm, which is sound, but not complete.

4.2 An Annotated Chase Graph-Based Algorithm

In Fig. 3, we present a heuristic algorithm based on annotating the chase graph with
information about the probabilistic scenarios. The main idea in this algorithm is to
avoid going through all 2|X| fully specified probabilistic scenarios; instead, it chooses
the k most probable ones and computes the probabilities of atoms w.r.t. this subset
of scenarios. Since the algorithm is working with a subset of all possible scenarios,
the resulting probabilities will be lower bounds instead of exact; though this is clearly
enough to decide to include an atom in the result, as we will see below (Theorem 3),
it means that the algorithm is in general not complete.

The first steps are similar to those in basicThresh, but instead of going on to com-
pute the chase of every subset associated with a probabilistic scenario, heurThresh
computes the set O∗ (line 6) of formulas that appear given at least one of the top-k
probabilistic scenarios, and computes the chase w.r.t. this set. Every node in the chase
graph (i.e., every atom) then receives an annotation that consists of a Boolean vector of
size k; intuitively, this vector will store information regarding whether or not the atom
belongs to the chase w.r.t. each scenario. The for-loop in lines 10 to 15 contains the work
necessary to update these annotations correctly given two cases: an annotation for an
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atom in a scenario becomes false if (i) one of the parents has a false annotation, or (ii) if
the edge is labeled with a formula that is not relevant in the scenario. Finally, the atoms
receive a probability consisting of the sum of all the probabilities w.r.t. Markov logic
network M for each scenario that has a label of true, and those atoms with probability
less than p are removed from the output.

Example 5. Let Q be the query from Example 4, and let k = 3. Running the algorithm
heurThresh on this input, we obtain that the probability of both priceElem(elem1 )
and forSale(prop1 ) has a lower bound of 0.253; therefore, k = 3 is not enough to
determine that the former should be part of the output, and it is left out.

Even though, as seen in Example 5, some atoms may not be returned when they should
have been, note that all the atoms that have probability 1 will always be returned, since
the “∅” annotations are satisfied by any scenario. The following theorem shows that this
algorithm is sound, and also provides its running time.

Theorem 3. Let Φ = (O, M) be a probabilistic Datalog± ontology, k ≥ 1, and p ∈
[0, 1]: (i) Every atom a in the output of Algorithm heurThresh belongs to the output of
threshold query 〈Φ, p〉; (ii) If a has probability prob(a) in Φ, we have that πout (a) ≤
prob(a); (iii) heurThresh runs in time O (k ∗ (m + |O|+ c)), where m is the cost of
computing the i-th most probable scenario in the MLN M , and c is the cost of computing
the chase w.r.t. O.

5 Related Work

Ontology languages, rule-based systems, and their integrations are central for the Se-
mantic Web [3]. Although many approaches exist to tight, loose, or hybrid integrations
of ontology languages and rule-based systems, and to generalizations of ontology lan-
guages by the ability to express rules, to our knowledge, Datalog± [5] is the first work
on how to generalize database rules and dependencies so that they can express ontolog-
ical axioms. The development of Datalog± was thus quite timely given that there are
recently strong interests in the Semantic Web community on highly scalable formalisms
for the Web of Data, which would benefit greatly from applying technologies and re-
sults from databases. As a consequence of this lack of development in this direction,
to our knowledge, there is also no formalism that combines: (i) ontology languages,
(ii) database technologies, and (iii) the management of probabilistic uncertainty.

Probabilistic ontology languages (combining (i) and (iii)) in the literature (see in par-
ticular [18] for a recent survey) can especially be classified according to the underlying
ontology language, the supported forms of probabilistic knowledge, and the underlying
probabilistic semantics. Some early approaches [12] generalize the description logic
ALC and are based on propositional probabilistic logics, while others [16] generalize
the tractable description logics CLASSIC and FL, and are based on Bayesian networks
as underlying probabilistic semantics. The recent approach in [17], generalizing the
expressive description logics SHIF(D) and SHOIN (D) behind the sublanguages
OWL Lite and OWL DL, respectively, of the Web ontology language OWL [20], is based
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on probabilistic default logics, and allows for rich probabilistic terminological and as-
sertional knowledge. Other recent approaches [23] generalize OWL by probabilistic
uncertainty as in multi-entity and standard Bayesian networks.

The combination of (i) ontology languages (including description logics (DLs) [1])
with (ii) rule systems from databases (such as Datalog [6]) recently plays a central
role in the development of the Semantic Web [3]. Significant research efforts focus on
hybrid integrations of rules and ontologies, called description logic programs, which
are of the form KB = (L, P ), where L is a description logic knowledge base, and P
is a finite set of rules involving either queries to L in a loose integration, or concepts
and roles from L as unary and binary predicates, respectively, in a tight integration (see
[9] for a recent survey). Many of these tight integrations of rule systems and ontology
languages are generalizations of ontology languages by the ability to express rules.

Probabilistic databases (combining (ii) and (iii)) are a new and rapidly evolving re-
search area motivated by the presence of uncertainty in data management scenarios,
such as data integration, sensor readings, or information extraction from unstructured
sources. Key challenges in probabilistic data management are (1) to design probabilis-
tic database formalisms that can compactly represent large sets of possible interpre-
tations of uncertain data together with their probability distributions, (2) to develop
uncertainty-aware data manipulation languages akin to relational algebra for classical
relational databases, and (3) to efficiently evaluate queries on very large probabilistic
data [15]. Promising advances are currently pursued in the MayBMS project at EPFL
and Oxford [13] on the first two challenges, and in the SPROUT project at Oxford on
scalable query processing in probabilistic databases [11].

6 Summary and Outlook

In this work, we have extended the Datalog± language with probabilistic uncertainty,
based on Markov logic networks. This is an important first step in continuing the recent
generalization of database rules and dependencies that began with the Datalog± fam-
ily of languages so that ontological axioms can be expressed. As we have discussed,
managing uncertainty in a principled way is fundamental to both query answering and
information extraction in the Semantic Web.

There remains much work to be done in this line of research. First of all, we plan
to implement and evaluate our formalism and algorithms both on synthetic and real-
world data. Further research efforts will involve, among others, identifying subsets of
our language towards developing algorithms with increased scalability, and developing
novel ranking techniques based on ontology-based preferences.
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Abstract. The integration of distributed information sources is a key
challenge in data and knowledge management applications. Instances of
this problem range from mapping schemas of heterogeneous databases
to object reconciliation in linked open data repositories. In this paper,
we approach the problem of aligning description logic ontologies. We
focus particularly on the problem of computing coherent alignments,
that is, alignments that do not lead to unsatisfiable classes in the re-
sulting merged ontologies. We believe that considering coherence during
the alignment process is important as it is this logical concept that dis-
tinguishes ontology alignment from other data integration problems. De-
pending on the heterogeneity of the ontologies it is often more reasonable
to generate alignments with at most k correspondences because not every
entity has a matchable counterpart. We describe both greedy and opti-
mal algorithms for computing coherent top-k alignments between OWL
EL ontologies and assess their performance relative to state-of-the-art
matching systems.

1 Introduction

The growing number of heterogeneous knowledge bases on the web has made
data integration systems a key technology for sharing and accumulating dis-
tributed information sources. In this paper, we focus on the problem of aligning
description logic ontologies. Due to the explicit semantics of ontologies, align-
ment systems can take advantage of the logical concepts of coherence and con-
sistency. Ensuring complete coherency and consistency is especially important
in the area of ontology merging, where two ontologies are merged to one single
ontology using the generated reference alignment.

Ontology debugging, for instance, is the process of efficiently finding and elim-
inating incoherencies. Several approaches to this problem were presented in [21]
where the debugging process was based on the computation of minimal conflict
sets. Similar concepts and algorithms have been used to debug pre-computed
ontology alignments [13]. Their algorithm scales well for few conflict sets in the
alignment, but if the number of conflict sets increase, the performance decreases
significantly. In [15] they build a set of hard and soft markov logic rules to re-
duce the incoherency of the alignment. Although the performance is still high for
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many conflict sets and most of the incoherencies are filtered out, the delivered
alignments are not guaranteed to be coherent. In both, [13] and [15] a threshold
is used to pre-select correspondences and a reasoner is needed to pre-calculate
certain axioms.

Currently, most state-of-the-art matching systems such as Falcon [10], Aroma
[5], and AgreementMaker [4] generate incoherent alignments [7]. To the best of
our knowledge, only two of the matching systems that participated in the ontol-
ogy alignment evaluation initiative (OAEI) of 2010 reduce the degree of align-
ment incoherence. While the semantic verification algorithm [11] of ASMOV
reduces incoherence in a post-processing step CODI [17] employs incoherence
reducing rules during the alignment process. Both matching systems, however,
do not guarantee the final alignments to be coherent [7]. Another matching
system not participating in the OAEI but focusing on coherent alignments is
PROMPT [18]. It provides the user with different interactive views on the on-
tologies and aids the merging process by pointing out logical conflicts.

Depending on the heterogeneity of the ontologies it is often more sensible to
generate alignments with at most k correspondences because not every entity
in one ontology has a matchable counterpart in the other. Top-k algorithms are
common in the area of information retrieval and ranking and have recently been
applied in more structured data management systems. In the context of database
schema matching, for instance, [8] presented an approach to computing the best
k schema mappings.

With this paper, however, we present an optimal coherent top-k ontology
matching algorithm, that is, an algorithm that generates optimal coherent align-
ments of size at most k. Compared to [13] our approach will still perform well
for large number of conflict sets. The strength of the approach lies in its ability
to incorporate arbitrary confidence values which could have been for example
computed by other matching applications. Hence, the top-k algorithms are not
intended to compete with existing matching systems but rather to complement
their strength in deriving high-quality confidence values.

We present both a greedy and an optimal algorithm for computing coherent
top-k alignments. The optimal algorithm utilizes the existence of a set of ma-
terialization rules for the description logic EL++ [1,12] without nominals and
concrete domains, and formulates the alignment tasks as linear optimization
problems. To reduce the complexity of these problems, the algorithm combines
a cutting plane inference and a delayed column generation algorithm originally
developed in the context of Markov logic [19].

We conduct extensive experiments to evaluate the accuracy and efficiency of
both the greedy and optimal top-k algorithms. We also compare the coherence,
recall, precision, and F1 scores of the computed alignments with those generated
by various state-of-the-art matching systems.

2 Description Logics

Description logics (DLs) are a family of knowledge representation languages [3].
They provide the logical formalism for ontologies and the Semantic Web. We
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Table 1. The description logic EL++ without nominals and concrete domains

Name Syntax Semantics

top � ΔI

bottom ⊥ ∅
conjunction C �D CI ∩DI

existential ∃r.C {x ∈ ΔI |∃y ∈ ΔI :
restriction (x, y) ∈ rI ∧ y ∈ CI}
GCI C � D CI ⊆ DI

RI r1 ◦ ... ◦ rk � r rI1 ◦ ... ◦ rIk ⊆ rI

focus on the DL EL++ which captures the expressivity of numerous real-world
ontologies. EL++ is the description logic on which the web ontology language
profile OWL 2 EL is based [1]. Reasoning tasks such as consistency and instance
checking can be performed in polynomial time. Therefore, EL++ is practical for
applications employing ontologies with large numbers of properties and classes.
It is possible to express disjointness of complex concept descriptions as well
as range and domain restrictions [2] and role inclusion axioms (RIs) allow the
expression of role hierarchies r 0 s and transitive roles r ◦ r 0 r.
EL++ concept descriptions are defined recursively by a set of constructors,

starting with a set NC of concept names, a set NR of role names, and a set NI

of individual names. Concept descriptions and role inclusions in EL++ are built
with the constructors depicted in Table 1. We write r, s to denote role names and
C, D to denote concept descriptions. The semantics of the concept descriptions in
EL++ are defined in terms of an interpretation I = (ΔI , ·I). The interpretation
function ·I is recursively defined as shown in Table 1. A concept C is subsumed
by a concept D with respect to a CBox C, written C 0C D, if CI ⊆ DI in every
model I of C.

A constraint box (CBox) is a finite set of general concept inclusions (GCIs)
and role inclusions (RIs). Given a CBox C, we use BCC to denote the set of basic
concept descriptions, that is, the smallest set of concept descriptions consisting of
the top concept �, all concept names used in C, and all nominals {a} appearing
in C. Then, C is in normal form if all GCIs have one of the following forms, where
C1, C2 ∈ BCC and D ∈ BCC ∪ {⊥}:

C1 0 D; C1 0 ∃r.C2;
C1 � C2 0 D; ∃r.C1 0 D

and if all role inclusions are of the form r 0 s or r1 ◦ r2 0 s. By applying
a finite set of rules and introducing new concept and role names, any CBox
C can be turned into a normalized CBox [1]. For any EL++ CBox C we write
norm(C) to denote the set of normalized axioms that result from the application
of the normalization rules to C. A normalized EL++ CBox is classified when
subsumption relationships between all concept names are made explicit. A CBox
C is coherent if for all concept names C in C we have that C �0C⊥.
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3 Coherent Ontology Alignment

Ontology alignment is the process of inferring correspondences between entities
of two ontologies. We begin by formally defining the notions of correspondence
and alignment based on a definition by Euzenat and Shvaiko [6]. In this pa-
per, each ontology is equivalent to a EL++ CBox without nominals and concrete
domains, that is, an OWL 2 EL ontology without nominals and datatype prop-
erties. We refer the reader to [9] for a primer of the W3C recommendation for
OWL 2 and its profiles.

Definition 1 (Correspondence and Alignment). Given ontologies O1 and
O2, let q be a function that defines sets of matchable entities q (O1) and q (O2).
A correspondence between O1 and O2 is a triple 〈e1, e2, r〉 such that e1 ∈ q (O1),
e2 ∈ q (O2), and r is a semantic relation. An alignment between O1 and O2 is a
set of correspondences between O1 and O2.

The general form of Definition 1 captures a wide range of correspondence types.
In the following we focus on equivalence correspondences between concepts and
object properties, respectively. The majority of matching systems provide nor-
malized confidence values for each correspondence. Based on these confidence
values, an alignment is extracted by applying a threshold τ ∈ [0, 1] meaning
that only the correspondences with a confidence value greater than or equal to
τ are included in the alignment.

In this paper, however, we are interested in solutions to the problem of com-
puting coherent alignments between ontologies. An alignment A is coherent with
respect to the coherent ontologies O1 and O2 if the ontology O1 ∪O2 ∪A is co-
herent, that is, if the ontology that results from merging O1 and O2 under the
alignment A is coherent. Hence, in the remainder of the paper, we assume the
existence of confidence values provided by, for instance, state-of-the-art match-
ing systems. We refer to these values as a-priori confidence values. The score of
an alignment is the sum of confidence values of its correspondences. We say that
an alignment A of size k with score s is optimal if for every other alignment of
size at most k with score s′ we have that s′ ≤ s.

3.1 Greedy Coherent Top-k Alignment

The first algorithm for generating top-k coherent alignments from a set of corre-
spondences with a-priori confidence values follows a greedy strategy. It appends
an initially empty alignment with correspondences according to their a-priori
confidence values in descending order. After each addition, it employs a reasoner
to check whether the resulting alignment causes incoherences, and if it does,
removes the previously added correspondence. The advantage of the approach
is its efficiency – classification and, therefore, checking coherence of OWL EL
ontologies can be performed in polynomial time. However, the approach does not
compute optimal alignments. Once a correspondence has been added it cannot
be revoked in later stages of the computation. The following example from the
conference domain demonstrates said problem.
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Table 2. The first-order theory F . Valid instantiations of the formulas are those com-
patible with the types of the predicates from Definition 2. The predicates cmap and
pmap model the correspondences between concept and role names, respectively. ⊥ and
� are constant symbols representing the bottom and top concept.

F1 ∀c : sub(c, c)

F2 ∀c : sub(c,�)

F3 ∀c, c′, d : sub(c, c′) ∧ sub(c′, d)⇒ sub(c, d)

F4
∀c, c1, c2, d : sub(c, c1) ∧ sub(c, c2)∧

int(c1, c2, d)⇒ sub(c, d)

F5 ∀c, c′, r, d : sub(c, c′) ∧ rsup(c′, r, d)⇒ rsup(c, r, d)

F6
∀c, r, d, d′, e : rsup(c, r, d) ∧ sub(d, d′)∧

rsub(d′, r, e)⇒ sub(c, e)

F7 ∀c, r, d, s : rsup(c, r, d) ∧ psub(r, s)⇒ rsup(c, s, d)

F8
∀c, r1, r2, r3, d, e : rsup(c, r1, d) ∧ rsup(d, r2, e)∧

pcom(r1, r2, r3)⇒ rsup(c, r3, e)

F9 ∀c : ¬sub(c,⊥)

F10 ∀c1, c2 : cmap(c1, c2) ⇒ sub(c1, c2)

F11 ∀c1, c2 : cmap(c1, c2) ⇒ sub(c2, c1)

F12 ∀r1, r2 : pmap(r1, r2)⇒ psub(r1, r2)

F13 ∀r1, r2 : pmap(r1, r2)⇒ psub(r2, r1)

Example 1. Let O1 contain the axiom Review � JournalReviewer 0⊥ and
O2 the axiom Reviewer � PaperReview 0⊥. Moreover, consider the following
correspondences and their associated a-priori confidence values: 〈Reviewer ≡
Review, 0.9〉, 〈PaperReview ≡ Review, 0.7〉, 〈Reviewer ≡ JournalReviewer,
0.6〉. The greedy top-k approach would include the correspondence 〈Reviewer ≡
Review, 0.9〉 and would not add more correspondences due to the resulting in-
coherence. While an optimal top-k approach would also add the same corre-
spondence for k = 1 it would generate the correct alignment {〈PaperReview ≡
Review, 0.7〉, 〈Reviewer ≡ JournalReviewer, 0.6〉} for k = 2 revoking the pre-
vious decision.

In the following we introduce a novel algorithm that computes optimal coherent
top-k alignments. It leverages the completion rules for the DL EL++ without
nominals and concrete domains [1,12].

3.2 Optimal Coherent Top-k Alignment

The optimal top-k alignment algorithm which we describe in the remainder of
this section computes an optimal coherent alignment of size at most k from a
given set of a-priori confidence values. The crucial insight is that the optimal
alignment problem can be reduced to an optimization problem: Given the a-
priori confidence values and the two input ontologies O1 and O2, maximize
the sum of confidence values of correspondences in the alignment subject to
the coherence of the ontology that results when merging O1 and O2 under the
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alignment. In order to guarantee the coherence of the alignment we map the
normalized axioms of the two ontologies to ground predicates and formulate the
optimization problem in such a way that all solutions to the problem correspond
to coherent ontologies. We achieve this through a set of materialization formulas
that capture the underlying DL semantics. We refer the reader to [12] for more
details on materialization calculi and to [1,12] for the completeness of a finite set
of completion rules for EL++ from which the set of formulas F (see Table 2) is
partially derived. Furthermore, we refer the reader to [16] for the introduction
of log-linear description logic which is the foundation of our approach. We begin
by defining the mapping ϕ between ontologies and sets of ground atoms of the
theory F .

Definition 2 (Ontology Transformation). Let O1 and O2 be two normalized
ontologies, let NU = BCO1 ∪BCO2 be the set of basic concept descriptions of both
ontologies, and H be the set of all valid instantiations of predicates in F (see
Table 2) relative to NU (the Herbrand base of F with respect to NU as a set of
constant symbols). The function ϕ maps O1 ∪ O2 to a subset of H as follows.

C1 0 D %→ sub(c1, d)
C1 � C2 0 D %→ int(c1, c2, d)
C1 0 ∃r.C2 %→ rsup(c1, r, c2)
∃r.C1 0 D %→ rsub(c1, r, d)
r 0 s %→ psub(r, s)
r1 ◦ r2 0 r3 %→ pcom(r1, r2, r3).

All predicates are typed meaning that r, s, ri, (1 ≤ i ≤ 3), are role names, C1, C2

basic concept descriptions, and D basic concept descriptions or the bottom con-
cept.

Based on the previously defined mapping, we can state the computation of an
optimal top-k alignment as an instance of integer linear programming (ILP). Let
O1 and O2 be two normalized coherent ontologies, let NU = BCO1 ∪ BCO2 , let
FNU be the set of all valid instantiations of F relative to NU, and let H be the
Herbrand base of F relative to NU. Moreover, let K = ϕ(O1 ∪O2) and let L be
a set of valid instantiations of the predicates cmap and pmap modeling corre-
spondences between classes and object properties, respectively, each associated
with its a-priori confidence.

For each ground atom gi occurring at least once in either L (with a-priori
confidence value wi), K, or in a formula in FNU we associate a variable xi ∈ {0, 1}.
Let CL be the set of indices of ground atoms in L, let CK be the set of indices of
ground atoms in K, and let CF

j (C̄F
j ) be the set of indices of unnegated (negated)

ground atoms in the clause equivalent to Fj ∈ FNU . Then, the top-k ILP with
respect to L is stated as follows

max
∑

i∈CL

wixi subject to
∑

i∈CL

xi ≤ k and
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i∈CK

xi ≥ |CK | and
∑

i∈CF
j

xi +
∑

i∈C̄F
j

(1− xi) ≥ 1, ∀j (2).

Theorem 1. Each solution of the Top-k ILP with respect to L corresponds to an
ontology that results from (a) merging the ontologies O1 and O2 under an optimal
alignment A ⊆ L of size at most k and (b) classifying the merged ontology.

Thus, the algorithm not only computes an optimal coherent top-k alignment but
also classifies the merged ontologies making subsumption relationships between
each pair of classes explicit. For a proof concerning the classification and the
coherency of Theorem 1 the reader is referred to [16].

The immediate addition of all above constraints, however, would result in
a very complex and potentially intractable optimization problem. In order to
avoid this problem, we combine variants of the cutting plane inference algo-
rithm [20] and the delayed column generation algorithm [14] both of which were
first proposed for computing maximum a-posteriori (MAP) states in Markov
logic networks [19]. To compute the solution of a top-k ILP we first construct
the top-k ILP with respect to the set L′ containing only m ≥ k correspondences
with highest a-priori confidence values. The ILP is initially solved without the
constraints of type (2). Given the current solution, the algorithm determines
all violated constraints of type (2) in polynomial time, adds those to the ILP,
and solves the updated problem. This is repeated until no violated constraints
remain. If the solution contains k correspondences we have found an optimal
top-k alignment. Otherwise, the set L′ is augmented with m more correspon-
dences with highest a-priori confidence values and the top-k ILP with respect to
L′ is solved as before. This is repeated until we have found a solution with k
correspondences or until L′ contains all correspondences.

Due to the extendability of the ILP formulation of the top-k alignment prob-
lem it is possible to include additional types of constraints such as constraints
enforcing functional and one-to-one alignments and constraints modeling known
correct correspondences.

4 Experimental Evaluation

We conducted extensive experiments to evaluate the performance of the greedy
and optimal top-k alignment algorithms. In particular, we compared the optimal
with the greedy top-k algorithm both in terms of computation time and align-
ment accuracy. We also assessed the accuracy of the alignments by comparing
them to the alignments generated by state-of-the-art matching systems that par-
ticipated in the latest OAEI of 2010 [7]. Moreover, we analyzed and compared
the degree of coherence of each of the alignments computed by the matching
systems.

4.1 Experimental Set-Up

For the experimental evaluation we used the ontologies of the conference and
anatomy tracks of the OAEI. The availability of reference alignments and recent
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Table 3. Number of classes and properties as well as number of normalized EL axioms
in the respective ontologies we used for the experiments.
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Conference ontologies

cmt 30 49 25 27 0 48 0 0
conference 60 46 56 14 7 47 13 0

confof 39 13 42 43 9 11 0 1
edas 104 30 90 409 3 29 0 0
ekaw 73 33 80 74 6 20 8 3
iasted 141 38 291 3 126 49 0 0
sigkdd 50 17 59 0 15 23 0 0

Anatomy ontologies

mouse anatomy 2744 3 4493 0 1637 0 0 0
nci anatomy 3304 2 5423 17 1662 0 0 1

results from state-of-the-art matching systems make the two tracks particularly
suitable. The conference track consists of several expressive ontologies modeling
the domain of scientific conferences. The ontologies have been developed by
different groups and, therefore, reflect different conceptualizations of the same
domain. Reference alignments for seven of these ontologies are made available
by the organizers of the OAEI. These 21 alignments contain correspondences
between concepts and properties including a reasonable number of non-trivial
instances. The two ontologies of the anatomy track are from the medical domain
modeling the anatomy of humans and mice, respectively, and consist of over
2500 classes each. Since our matching approach is restricted to EL axioms we
used the OWL API to downgrade the more expressive conference ontologies.
We applied the set of rules from [1,2] to normalize the ontologies and to also
include existing range restrictions. Table 3 lists the resulting conference and the
anatomy ontologies along with the number of classes, properties, and normalized
EL axioms.

We have argued that the top-k algorithms are not intended to compete with
existing matching systems but rather to complement their strengths in gener-
ating high-quality a-priori confidence values. Hence, in order to asses the al-
gorithms’ ability to compute alignments from given confidence values we used
the Levenshtein distance normalized to the range [−1, 1]. Using such a näıve
algorithm to derive confidence values lets us evaluate the performance of the
alignment algorithm without being influenced by highly sophisticated confidence
measures. Please note, however, that the strength of the approach is the ability
to incorporate confidence values generated by existing matching systems. We
employed the reasoner Pellet [22] for the greedy algorithm and the mixed ILP
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Fig. 1. F1 scores of the optimal top-k and the greedy top-k algorithms averaged over
the 21 alignment problems in the conference ontologies

solver Gurobi1 for the optimal algorithm. We also augmented the ILP with con-
straints enforcing functional one-to-one alignments and we set the parameter m
to 2k. The experiments were run on a desktop PC with AMD Athlon Dual Core
Processor 5400B with 2.6GHz and 1GB RAM. The source files and supplemen-
tary materials are available at http://code.google.com/p/elmatch/.

4.2 Results of the Evaluation

We first assessed the relative performance of the two top-k algorithms with re-
spect to their F1 score. Figure 1 shows the F1 scores of the optimal and greedy
top-k algorithms averaged over the 21 ontology pairs of the conference track.
For k ≤ 6 the F1 scores are almost identical which is due to the absence of inco-
herence causing correspondences in the small alignments. With k = 8, however,
the optimal algorithm starts to outperform the greedy approach as the larger
alignments cause incoherences and substitutions of correspondences of the type
described in Example 1 are becoming more prevalent.

The runtime of the algorithms is summarized in Table 4. For the conference
ontologies and k ≤ 10 the run time of the optimal algorithm is comparable to the
greedy approach. The reason for the increase in runtime of the optimal algorithm
for k = 20 is caused by the small size of the ontologies – alignments of size 20
exist only between 9 of the 21 pairs of ontologies. Hence, the optimal algorithm
has to include all correspondences in its ILP formulation thus increasing the
complexity of the optimization problem. Interestingly, the effect is reversed for

1 http://www.gurobi.com/

http://code.google.com/p/elmatch/
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Fig. 2. Minimum, maximum and standard deviation of the F1 score for the optimal
top-k algorithm on the conference ontologies. The decrease in standard deviation for
k ≥ 19 is due to the fact that there are only few pairs of ontologies with functional
one-to-one alignments of size k.

the anatomy ontologies. While the optimal algorithm has an overhead of about
40 seconds for classifying the large merged ontology the increase in runtime is
smaller compared to the greedy approach. For k = 1 the greedy approach is
about 10 times faster but only about twice as fast for k = 20. Considering that
the reasoner Pellet is highly optimized for EL ontologies we find this to be a
convincing result.

A suitable choice for the parameter k of the top-k algorithms clearly depends
on the number of matchable elements and, therefore, on the size of the involved
ontologies. Figure 2 shows the minimum, maximum and standard deviation of the
optimal algorithm for the 21 different alignments. The large standard deviation
and the discrepancy between the minima and maxima makes it evident that we
need to adjust the parameter k individually for each alignment instance. We used
the following ad-hoc heuristic to determine a suitable choice for the parameter
k. We first computed the number P of correspondences where both matchable
elements have identical labels. We then computed the parameter k with the
formula k = P + α(kmax − P ) where kmax is the maximal possible number of
correspondences and α ∈ [0, 1]. The parameter α determines the fraction of “non-
trivial” correspondences one wants to derive and depends on the heterogeneity
of the involved ontologies. In our experiments, we set the parameter α to 0.2.
Table 5 depicts precision, recall, and F1 scores of the optimal coherent top-k
algorithm and a selection of matching systems that participated in the OAEI2

2 Please visit http://oaei.ontologymatching.org/2010/ for a complete list of results
and all matching systems that participated at the OAEI 2010.

http://oaei.ontologymatching.org/2010/
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Table 4. The average time in seconds needed to compute coherent top-k alignments
for the benchmark and anatomy ontologies and classifying the merged ontologies

k 1 5 10 15 20

Conference ontologies

Greedy Top-k 0.36 0.41 0.56 0.77 1.21

Optimal Top-k 0.49 0.49 1.21 2.93 14.24

Anatomy ontologies

Greedy Top-k 4.67 4.96 10.39 17.66 29.68

Optimal Top-k 40.76 42.42 45.10 48.74 53.60

Table 5. Comparison of the optimal top-k algorithm with state-of-the-art matching
systems on the conference ontologies. Precision, recall, and F1 scores are measured
relative to the reference alignments. Coh. Align is the fraction of coherent alignments
and Coh. Class is the fraction of coherent classes relative to the number of classes in
all ontologies.

Matcher Top-k Falcon AgrMaker Aroma ASMOV

Precision 0.78 0.59 0.50 0.36 0.45

Recall 0.44 0.58 0.65 0.49 0.07

F1 score 0.57 0.58 0.57 0.42 0.12

Coh. Align 1.0 0.29 0.38 0.14 1.0

Coh. Class 1.0 0.95 0.84 0.64 1.0

with standard threshold 0.5. The coherent top-k algorithm has the best precision
and competitive F1 scores.

The main advantage of both top-k approaches compared to other matching
systems, however, is the coherence of their alignments for EL ontologies. Ta-
ble 5 lists the fraction of coherent alignments and classes, respectively, in the
merged ontologies. Except for ASMOV, whose incomplete semantic verification
algorithm [11] also reduces incoherences, all other matching systems generated
incoherent alignments. In summary, only 14% of Aroma’s, 29% of Falcon’s, and
38% of AgreementMakers alignments were coherent indicating that these sys-
tems do not leverage the notion of coherence during the alignment process.

5 Conclusion and Future Work

With this paper, we presented a greedy and a novel optimal algorithm for com-
puting coherent top-k alignments between OWL EL ontologies. The optimal
algorithm employs integer linear programming solvers to maximize the sum of
confidence values subject to the coherence of the ontology. Our evaluation showed
that although we spent no effort on optimizing the confidence values (we used
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the simple Levenshtein distance), our F1 scores were competitive compared to
the participating systems at the OAEI 2010. The real strength of the top-k
algorithms, however, is their ability to existing incorporate a-priori confidence
values.

Currently, our approach is limited to the description logic EL++ without
nominals and concrete domains but we intend to extend it to more expressive
description logic languages such as Horn-SHIQ. Moreover, we will work on sup-
porting class and role assertions, nominals, and concrete domains. Apart from
this, we will modify our approach to incorporate confidence values for complex
correspondences. To this end, we will express complex matching patterns and
their confidence values and integrate them in the optimization problem to com-
pute coherent complex alignments between ontologies.
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Abstract. Usual propositional possibilistic logic formulas are pairs made
of a classical logic formula associated with a weight thought of as a lower
bound of its necessity measure. In standard possibilistic logic, only con-
junctions of such weighted formulas are allowed (a weighted classical
conjunction is equivalent to the conjunction of its weighted conjuncts,
due to the min-decomposability of necessity measures). However, the
negation and the disjunction of possibilistic logic formulas make sense as
well. They were briefly introduced by the authors some years ago, in a
multiple agent logic context. The present paper hints at the multi-tiered
logic that is thus generated, and discusses its semantics in terms of fami-
lies of possibility distributions. Its practical interest for expressing higher
order epistemic states is emphasized.

1 Introduction

Possibilistic logic formulas [4,5] are pairs made of a classical logic formula p,
which as such can be nothing but true or false, associated with a weight α ∈ [0, 1]
interpreted in connection with different types of set-functions in possibility the-
ory. They are of interest when modeling uncertainty, preferences, or priori-
ties. In the following, we restrict ourselves to propositions estimated in terms
of (strong) necessity measures N and their dual (weak) possibility measures
Π(p) = 1 − N(¬p). The possibilistic formula (p, α) is semantically understood
as standing for the constraint N(p) ≥ α. Necessity measures have the character-
istic property of being min-decomposable: N(p ∧ q) = min(N(p), N(q)). Thus,
it turns out that N(p ∧ q) ≥ α ⇔ N(p) ≥ α and N(q) ≥ α, or if we prefer,
(p ∧ q, α) is equivalent to (p, α) ∧ (q, α). So a possibilistic logic base can be put
in the form of a conjunction of weighted classical clauses.

Necessity measures are neither decomposable w.r.t. disjunction nor w.r.t.
negation. The constraint ‘N(p∨q) ≥ α’ represents a piece of information weaker
than ‘N(p) ≥ α or N(q) ≥ α’, and ‘N(¬p) ≥ α’ is a piece of information
much stronger than ‘not N(p) ≥ α’ ⇔ ‘N(p) < α’ ⇔ ‘Π(¬p) > 1 − α’ (since
min(N(p), N(¬p)) = 0 and N(p) = 0⇔ Π(¬p) = 1). This behavior agrees with
the intuition that being sure of p∧q requires being sure of both p and of q, while
one may be sure of p ∨ q without being sure of p nor of q. Similarly, not being
fully sure of p is much weaker than being sure of ¬p.

In the following, we discuss how to handle the disjunction and the negation of
standard possibilistic logic formulas, at the semantic level and at the syntactic
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level in the setting of a multi-tiered logic, in the multiple agent perspective first
suggested in [6]. Indeed, while we may not be sure whether another agent is
certain of p or certain of q, it is strange to make such a statement about oneself.

2 Semantics of Possibilistic Logic Constraints

A necessity measure N and the dual possibility measure Π are associated with a
possibility distribution [8] over interpretations of the language. Namely, Π(p) =
maxω∈[p] π(ω) where [p] denotes the sets of models of p. Thus, N(p) ≥ α corre-
sponds semantically to the possibility distribution π(p,α)(ω) = max(μ[p](ω), 1−α)
where μ[p] is the characteristic function of [p] [4]. In fact, the constraint N(p) ≥ α
(⇔ Π(¬p) ≤ 1 − α) defines the set of possibility distributions Pi((p, α)) =
{π|maxω∈[¬p] π(ω) ≤ 1 − α} = {π|∀ω π(p,α)(ω) ≥ π(ω)} that are at least as
informative as π(p,α) (the last equality holds since ∀ω ∈ [p] π(p,α)(ω) = 1).

In this view, the pair (p, α) is both a possibilistic logic formula at the object
level, and a classical formula at the meta level. Indeed, since (p, α) is semantically
interpreted as N(p) ≥ α, a possibilistic formula can be manipulated as a formula
that is true (if N(p) ≥ α) or false (if N(p) < α). Then possibilistic formulas can
be combined with all propositional connectives. For instance, the conjunction
‘N(p) ≥ α and N(q) ≥ β’ defines the set of distributions smaller or equal to
the min-combination of the largest possibility distributions representing each
constraint. Indeed:

Pi((p, α) ∧ (q, β)) = {π|π ≤ min(π(p,α), π(q,β))} = Pi((p, α)) ∩Pi((q, β)).

As for disjunction, the set of possibility distributions representing the disjunctive
constraint ‘N(p) ≥ α or N(q) ≥ β’ has no longer a unique extremal element in
general. Indeed: Pi((p, α) ∨ (q, β)) = {π| π(p,α)≥π or π(q,β)≥π} = Pi((p, α)) ∪
Pi((q, β)), while Pi((p ∨ q, α)) = {π|max(π(p,α), π(q,α)) ≥ π} ⊇ {π|π(p,α) ≥
π or π(q,α) ≥ π}. For the negation of a possibilistic formula, we get Pi(¬(p, α)) =
{π|maxω∈[¬p] π(ω) > 1− α} = {π|∃ω ∈ [¬p] π(ω) > 1 − α} = {π|π �≤ π(p,α)} =
Pi((p, α)) ⊃ Pi((¬p, α)), where overline represents complementation.

A possibility-qualified statement in the sense of [9], syntactically denoted by
< p, α >, stands for a constraint of the form Π(p) ≥ α. It represents the set of
possibility distributions Pi(< p, α >) = {π|maxω∈[p] π(ω) ≥ α}. Then again:

Pi(< p, α > ∨ < q, β >) = Pi(<p, α>) ∪Pi(<q, β >),

Pi(<p, α>∧<q, β >)=Pi(<p, α >) ∩Pi(<q, β >),

and Pi(¬<p,α >) = Pi(<p, α>) ⊂ Pi(<¬p,α >). Moreover, Pi(<p ∧ q, α >)⊆
Pi(<p,α>) ∩ Pi(<q,α>). Note that < p, α > ∧ < ¬p, β > represents (graded)
ignorance about p, since it claims that both p and ¬p are somewhat possible.
There is a close connection between <¬p, 1 − α > and ¬(p, α). If the necessity
scale is a finite subset{0 < α1 < · · · < αn = 1} of [0, 1], then ¬(p, αi) is the
same as <¬p, 1 − αi−1 >. On the whole unit interval, though, one should then
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distinguish between formulas that express inequalities in the broad sense such
as N(p) ≥ α or Π(p) ≥ α, and those that express strict inequalities such as
N(p) > α or Π(p) > α, to make this connection at the syntactic level.

A piece of information such as (p, α) is naturally held by an agent or more
generally a set of agents A ⊆ U . This is denoted by (p, α/A). It means that all
the agents in A are certain at level α that p is true. The semantics is given by a
collection of possibility distributions πa

(p,α), where a ∈ U . Namely, πa
(p,α) = π(p,α)

if a ∈ A, and πa
(p,α) = 1 (total ignorance) if a �∈ A.

One can move one step further by considering nested formulas of the form
((p, α), β), viewing (p, α) as a true or false statement (indeed π ∈ Pi((p, α))
or not) using the forcing semantics [3]. One can define the set Pi(((p, α), β))
of higher-order possibility distributions π2 over the π’s such that π ≤ π(p,α)

(that makes N(p) ≥ α true). It possesses a greatest element π2
((p,α),β) such that

π2
((p,α),β)(π) = 1 if π ≤ π(p,α) and π2

((p,α),β)(π) = 1 − β otherwise. The higher-
order formula ((p, α), β) may be then reduced to (p, min(α, β)) via the disjunctive
weighted aggregation max(min(π(p,α), 1), min(1, 1 − β)). Then, ((p, α), β) is in-
terpreted as: either it is the case that N(p) ≥ α with a possibility level equal
to 1, or one knows nothing with possibility 1 − β. Similarly, the semantics of
((p, α/A), β/B), is obtained by associating, to each agent b ∈ B, a possibility
distribution over a set of possibility distributions πa (such that πa ≤ πa

(p,α) or
not) for each a ∈ U . In case a = b, the above reduction may be applied.

Now we can consider expressions such as (¬(p,A) ∨ (q, β/B), γ/C) (stating
that for agents in C it is γ-certain that if the agents in A are certain of p (at
level 1), those in B are certain of q at least at level β), or ((p, α/A), β/B) (for
expressing that agents in B are certain at least at level β that agents in A are
certain at least at level α that p is true).

3 Inference in Generalized Possibilistic Logic

To achieve inference in this kind of generalised possibilistic logic, we shall use
the forcing approach to entailment [3]. The semantic entailment of standard
possibilistic logic defined by an inequality between two maximal possibility dis-
tributions can be equivalently expressed by the inclusion between two sets of dis-
tributions. But only the latter scales up to generalised possibilistic logic. Namely
if Φ and Ψ are generalised possibilistic formulae of the same kind, then Φ |= Ψ
if and only if Pi(Φ) ⊆ Pi(Ψ), which presupposes that both possibility sets refer
to the same universe where possibility distributions are defined.

Syntactic inference from nested possibilistic formulas should be handled as a
two-layer process (assuming for simplicity that nestedness is not iterated, i.e. the
insertion of standard possibilistic logic formulas inside possibilistic logic formulas
is not iterated). More precisely, classical resolution may be applied “externally”
to the possibilistic logic formulas of the highest level (regarding the possibilis-
tic logic formulas inside (if any) as classical formulas), or “internally” to the
possibilistic logic formulas inside, once the “context” has been properly made
homogeneous (by weakening) in agreement with the semantics described above.
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Namely, the following internal inference rule is clearly valid

(¬p ∨ q, α/A); (p ∨ r, β/B) |= (q ∨ r, min(α, β)/A ∩ B)

When A = U = B, we retrieve the standard possibilistic resolution rule. We also
have the following weakening and fusion rules

– ∀ β ≤ α ∀ B ⊆ A (p, α/A) � (p, β/B) (weight weakening)
– si p � q, alors (p, α/A) � (q, α/A) (logical weakening)
– (p, α/A) (p, β/A) � (p, max(α, β)/A) (weight fusion 1)
– (p, α/A) (p, α/B) � (p, α/(A ∪ B)) (weight fusion 2)

This is illustrated on the two following examples.

1. Consider the two following formulas: {((p, α/A′), ρ/C),¬(p, β/A) ∨ (q, γ/B),
δ/D)}. Assume α > β and A′ ⊃ A. Then from the first premise, we get
((p, β/A), ρ/C) by weakening; then by “external” resolution with the second
expression, we obtain

((q, γ/B), min(ρ, δ)/C ∩ D).

2. Consider now {((p, α/A′), ρ/C), ((¬p ∨ q, β/B), δ/D)}. Assume ρ > δ and
C ⊃ D. By weakening, we get ((p, α/A′), δ/D); and by “internal resolution”, we
finally obtain

((q, min(α, β)/A′ ∩ B), δ/D).

It is clear that the above weakening steps can be always applied by taking the
minimum of the certainty levels, and the intersection of the sets of agents, even
if the first statement does not involve higher certainty levels and larger sets of
agents. Mind that getting an empty set of agents after intersection makes the
result trivial.

Lastly, the difference between the formulas (¬p ∨ q, α) and ¬(p, α) ∨ (q, α),
for α > 0, in the presence of (p, α) affects inferences one may draw from them1.
Indeed, consider the formulas (¬p ∨ q, α) and ¬(p, α) ∨ (q, α). The latter means
that either (p, α) cannot be ascertained or (q, α) is sure. It is interesting to
observe that while the formula (¬p ∨ q, α), enables us to deduce both (q, α)
if (p, α) holds, and (¬p, α) if (¬q, α) holds, the formula ¬(p, α) ∨ (q, α) still
enables us to get (q, α) from (p, α) (since (p, α) is taken for granted), but no
longer (¬p, α) in the presence of (¬q, α). Indeed, (¬q, α), α > 0 expresses that
N(¬q) ≥ α, which entails N(q) = 0. Now the latter along with ¬(p, α) ∨ (q, α),
that is, N(p) < α or N(q) ≥ α > 0 entails N(p) < α. It differs from the stronger
conclusion (¬p, α), i.e., N(¬p) ≥ α, which may be obtained from (¬p ∨ q, α)
and (¬q, α). Moreover N(p) < α, i.e., ¬(p, α) is a different kind of possibilistic
formula (it is precisely < ¬p, 1−α− >) where α− < α is the next smaller element
in the necessity scale.

The asymmetric nature of ¬(p, α) ∨ (q, α) appears to be in the spirit of logic
programming (LP), encoding rules of the form “q is certain provided that p is
1 We do not indicate the set of agents here since they do not play any role in the

point.
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certain”. However in LP, such rules are only used to deduce q from p, while
in possibilistic logic, as shown above, it is allowed to use them in the opposite
way. If moreover one wants to introduce negation as failure, as in “q is certain
provided that p is certain and that one cannot establish r”, this can be expressed
as if N(p) ≥ α and Π(¬r) ≥ β then N(q) ≥ α. It corresponds to the generalized
possibilistic formula ¬(p, α) ∨ ¬ < ¬r, β > ∨(q, α). A mixed resolution rule
exists (e.g., [5]) for reasoning from such clauses, namely we have < ¬p ∨ q, α >
; (p∨ r, β) �< q∨ r, β > if β > 1−α. One can indeed mimic non-monotonic logic
programming as suggested in [7].

4 Concluding Remarks

We have highlighted the possibility to substantially enlarge the framework of
possibilistic logic by making possible the manipulation of formulas expressing
the epistemic states of agents in its setting, and advocated the interest of such
an extension. The development of the whole machinery would require an article
much longer than this introductory paper. To this end, one may draw lessons
from modal logic MEL [1] where the binary-valued possibility case is handled as
a two-tiered classical logic. It should enable us to handle constraints of the form
α ≥ N(p) ≥ β (using Π(¬p) > 1−α). It is not to be confused with the situation
where the lower bound of N(p) is imprecisely located inside a given interval, as
studied in the recent interval-based extension of possibilistic logic [2].
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Abstract. In the framework of quantitative possibility theory, two
representation modes were developed: logical representation in term of
quantitative possibilistic base and graphical representation in term of
product-based possibilistic network. This article deals with logical and
graphical representations of uncertain information around quantitative
possibility theory. First, a deep analysis of relationships between these
two forms of representational frameworks is provided. Then, in the logi-
cal setting, syntactical relations between penalty logic and quantitative
possibilistic base are developed. Afterward, the relationship which ex-
ists between UCP networks and product-based possibilistic networks is
pointed out in the graphical setting. These translations are useful for
different applications and are interesting by taking advantage from each
format at the inferential level. From these translations, we also exhibit
the relation which is deduced, between UCP networks and penalty logic.

Keywords: possibilistic logic, product-based possibilistic network, UCP
network, penalty logic.

1 Introduction

Generally, uncertain pieces of information or flexible constraints can be repre-
sented in different equivalent formats. In possibility theory, possible formats can
be:

– logical-based representations which are simple extensions of classical logic,
– graphical-based representations, viewed as counterparts of probabilistic

Bayesian networks [1,2].

In graphical representations [3,4,10], uncertain information is encoded by means
of possibilistic networks which are composed of Directed Acyclic Graph (DAG)
and conditional possibility distributions. In logical representations [6], uncertain
information is encoded by means of possibilistic knowledge bases which are sets
of weighted formulas having the form (φi, αi) where φi is a propositional for-
mula and αi is a positive real number belonging to the unit interval [0,1]. Each
possibilistic network (resp. each possibilistic knowledge base) induces a ranking
between possible interpretations of a language, called a possibility distribution.
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The possibility degree associated with an interpretation is obtained by combining
the satisfaction degrees of this interpretation with respect to each weighted for-
mula of the knowledge base, or with respect to each conditional possibility degree
of the possibilistic network. Two combination operators have been generally used
[6]: minimum operator and product operator. Therefore, there are two kinds of
possibilistic networks: min-based possibilistic networks and product-based possi-
bilistic networks. Similarly, two kinds of possibilistic knowledge bases are defined:
min-based possibilistic logic (standard possibilistic logic) and product-based pos-
sibilistic logic called also quantitative possibilistic logic. In this paper, we first
investigate the syntactic relations which exists between a possibilistic knowledge
base and a penalty knowledge base. The penalty logic has interesting proprieties.
Indeed, on of the important advantage of penalty logic is its ability to deal with
inconsistency. Then, we exhibit relationships between Utility CP-networks and
Product-based possibilistic networks.

The rest of this paper is organized as follows. The following section gives log-
ical models for representing uncertain knowledge. Section 3 describes graphical
models for representing uncertain knowledge. Section 4 relates the transforma-
tion from a product-based possibilistic network to quantitative possibilistic base.
Section 5 provides the main translations released around quantitative possibility
theory. Section 6 concludes the paper.

2 Logical Frameworks for Uncertain Knowledge

2.1 Quantitative Possibilistic Logic

Let L be a finite propositional language and Ω be the set of all propositional
interpretations. Let φ, ψ, . . . be propositional formulas. For interpretation ω and
propositional formula φ, ω |= φ means that ω is a model (in the way of propo-
sitional logic) of φ. A possibility distribution [6] π is a mapping from a set of
interpretations Ω into the unit interval [0,1]. A possibility distribution π is said
to be normalized if an interpretation ω exists such as π(ω) = 1. In this paper,
only normalized possibility distributions are considered. Given a possibility dis-
tribution π, two dual measures are defined on the set of propositional formulas:

– The possibility measure of a formula φ, defined by:

Π(φ) = max{π(ω) : ω |= φ and ω ∈ Ω}

which evaluates the extent to which φ is consistent with the available beliefs
expressed by π. For φ ≡ ⊥ (a contradiction), we have Π(⊥) = 0.

– The necessity measure of a formula φ, defined by:

N(φ) = 1−Π(¬φ)

which evaluates the extent to which φ is entailed by the available beliefs. For
φ ≡ � (a tautology), we have N(�) = 1.
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A possibilistic knowledge base Σ is a set of weighted formulas:

Σ = {(φi, αi) : i = 1, ..., n}

where φi is a propositional formula and αi ∈]0, 1] represents the certainty level
of φi. Each piece of information (φi, αi) of a possibilistic knowledge base can be
viewed as a constraint that restricts possibility degrees associated with interpre-
tations. The possibility distribution associated with a weighted formula (φi, αi)
is: ∀ω ∈ Ω,

π(φi,αi)(ω) =
{

1− αi if ω �|= φi

1 otherwise (1)

More generally, the possibility distribution associated with a possibilistic knowl-
edge base Σ is the result of combining possibility distributions associated with
each weighted formula (φi, αi) of Σ, namely: ∀ω ∈ Ω,

πΣ(ω) = ⊕{π(φi,αi)(ω) : (φi, αi) ∈ Σ}. (2)

where ⊕ is in general either equal to the minimum operator (in standard possi-
bilistic logic), or to the product operator (*). In the rest of the paper, we only
focus on the case where ⊕ = ∗. The possibilistic base Σ is then called product-
based or quantitative possibilistic knowledge base. Equation (2) can then be
written as: ∀ω ∈ Ω,

πΣ(ω) =
{

1 if ∀(φi, αi) ∈ Σ, ω |= φi

∗{1− αi : (φi, αi) ∈ Σ, ω �|= φi} otherwise (3)

2.2 Penalty Logic

Penalty logic introduced by Pinkas [7] and developed in [8], associates to each
formula of a knowledge base the price to pay if this formula is violated. More
the penalty is higher more the formula is important. Formally, let R∗+ be the
union of the set of all the strictly positive real numbers and {+∞}, reserved to
quantify the completely certain formulas which allow no exceptions. A penalty
knowledge base PK is a finite multi-set of pairs (φi,αi) where φi ∈ L and αi ∈
R∗+, αi is the penalty associated to φi. If αi=+∞ then it is forbidden to remove
φi from PK (φi is inviolable).

Cost of an Interpretation. Let PK = {(φi, αi) : i = 1, ..., n} be a penalty
knowledge base. The cost of an interpretation ω ∈Ω with respect to PK, denoted
by κPK , is equal to the sum of the penalties of the formulas in PK violated by
ω [7]:

κPK(ω) =
{

0 if ∀(φi, αi) ∈ PK, ω |= φi∑
{αi : (φi, αi) ∈ PK, ω �|= φi} otherwise (4)

Then, a minimum cost interpretation corresponds to the most interesting one.

Example 1. Let PK = {(¬a ∨ b, 4), (b ∨ ¬c, 8), (¬a ∨ c, 2), (c, +∞)}. The corre-
sponding interpretations costs are given by Table 1.
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Table 1. Interpretations costs of Example 1

ω κPK(ω) ω κPK(ω)

a b c 0 ¬a b c 0
a b ¬c +∞ ¬a b ¬c +∞
a ¬b c 4+8=12 ¬a ¬b c 8

a ¬b ¬c +∞ ¬a ¬b ¬c +∞

Cost of Consistency of a Formula. The cost of consistency of a formula φ
with respect to PK, denoted KPK(φ), is the minimum cost with respect to PK
of an interpretation satisfying φ:

KPK(φ) = minω∈Ω{κPK(ω) : ω |= φ} (5)

3 Graphical Frameworks for Uncertain Knowledge

3.1 Product-Based Possibilistic Networks

A possibilistic network [4,9,10] (which can be viewed as a counterpart of a proba-
bilistic network) is a graphical representation of uncertain pieces of information.
Let V = {A1, A2, .., An} be a set of variables (or attributes). We denote by Di

the domain associated with the variable Ai. For Boolean variables, xi denotes
any of the two instances of Ai which can be either xi = ai or xi = ¬ai. In
this paper, only binary variables are considered without loss of generality. The
Cartesian product of all boolean variable domains in V is simply the set of in-
terpretations. Depending on the context, interpretations are denoted either by
tuples: ω = (a1, ...., an) or by conjunctions: ω = a1 ∧ .... ∧ an. A possibilistic
network, denoted by ΠG, is a Directed Acyclic Graph (DAG), where nodes rep-
resent variables and edges encode the ”causal” (or influence) links between these
variables. When a link exists from a node Ai to a node Aj , Ai is called a parent
of Aj . The set of parents of a node Aj is denoted by Par(Aj), and an instance
of Par(Aj) is denoted by uj . Uncertainty is represented on each node by means
of normalized conditional possibility distributions and expresses the strength of
the links between variables. Conditional possibility distributions are associated
with the DAG in the following way:

– For root nodes Ai, we specify the prior possibility degrees of Π(ai) and
Π(¬ai) with max(Π(ai), Π(¬ai)) = 1 (the normalization condition).

– For other nodes Aj , we specify, for each uj an instance of Par(Aj), condi-
tional possibility degrees of Π(aj | uj) and Π(¬aj | uj) with:
max(Π(aj | uj), Π(¬aj | uj)) = 1.

Example 2. Let us consider the product-based possibilistic network ΠG repre-
sented by the DAG of Figure 1. The local conditional possibility distributions
are given by Tables 2.
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Fig. 1. Example of a DAG

Table 2. Conditional possibility distributions for variables A,B, C, D and E

A Π(A) B Π(B) ABC Π(C | AB) ACD Π(D | AC) CE Π(E | C)

a 1 b 0.2 abc 0.3 acd 1 ce 0.3
¬a 0.4 ¬b 1 ab¬c 1 ac¬d 0.3 c¬e 1

a¬bc 0.4 a¬cd 1 ¬ce 1
a¬b¬c 1 a¬c¬d 0.4 ¬c¬e 0.5
¬abc 1 ¬acd 0.2
¬ab¬c 0.1 ¬ac¬d 1
¬a¬bc 0.2 ¬a¬cd 0.3
¬a¬b¬c 1 ¬a¬c¬d 1

In possibility theory, different kinds of possibilistic conditioning have been de-
fined (for a detailed discussion on possibilistic conditioning see [11,12,13]). In
this section, we only recall the product-based conditionning:

– A product-based conditioning is defined as:

Π(ψ | φ) =

{
Π(ψ∧φ)

Π(φ) if Π(φ) �= 0
1 otherwise

(6)

Each product-based possibilistic network ΠG (DAG and local conditional pos-
sibility distributions) induces a unique joint possibility distribution using a so-
called product-based chain rule similar to the one used in probabilistic Bayesian
networks. Let ω = (x1, x2, ...., xn) be a given interpretation, and xi is an instance
of Ai which can be either xi = ai or xi = ¬ai . The product-based chain rule is
defined by:

πG(ω) = ∗{Π(xi | ui) : ω |= xi ∧ ui, i = 1, .., n} (7)

where ui is an instance of the parents of Ai.

3.2 UCP-Networks

A UCP-network, denoted by UG [14] is a directed graphical representation of
utility functions that combines aspects of two preference models: Generalized
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Fig. 2. A CP-Network

Fig. 3. A UCP-Network

additive models based on the notion of generalized additive independence (GAI)
[15] and CP-network [16] which allows to represent qualitative preference func-
tions that captures conditional preference statements under a cetris paribus (all
else equal) assumption. CP-networks are directed acyclic graphs whose nodes
are the variables of V , where a conditional preference table (CPT) is associ-
ated to each node X specifying a preference order over X ′s values given each
instantiation, of its parents U .

Figure 2 represents a CP-network, given in [14] defined over four variables,
where, for example, the CPT for C specifies that c is preferred to ¬c when a and
b hold. Let X1, ..., Xk be the sets of variables such that V = ∪iXi. X1, ..., Xk

are generalized additive independent (GAI) for an underlying utility function u
if u can be written as [15]:

u(V ) =
k∑

i=1

fi(Xi) (8)

A UCP-net extends a CP-net by allowing quantification of nodes with conditional
utility information. Semantically, the different factors are treated as generalized
additive independent of one another. For example the network in Figure 2 can
be extended with utility information by including a factor for each family in the
network, specifically, f1(A), f2(B), f3(A, B, C) and f4(C, D) (see Figure 3). We
interpret this network using GAI: u(A, B, C, D) = f1(A)+f2(C)+f3(A, B, C)+
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f4(C, D). Each of these factors is quantified by quantitative CPT tables in the
network. For exemple, in Figure 3, f3(a, b, c) = 0.6 while f3(a, b,¬c) = 0.1. Thus,
the CPT tables along with the GAI interpretation provide a full specification of
the utility function. For example, u(a, b,¬c,¬d) = f1(a) + f2(b) + f3(a, b,¬c) +
f4(¬c,¬d) = 5 + 5 + 0.1 + 0.3 = 10.4.

4 Logical Encoding of Product-Based Possibilistic
Networks

In [18], the logical encoding of product-based possibilistic network was given.
Let ΠG be a product-based possibilistic network represented by a set of triples
as in [17]:

PG = {(xi, ui, αi) : Π(xi | ui) = αi �= 1 ∈ ΠG},
where xi is an instance of the variable Ai and ui is an instance of Par(Ai). Then,
the possibilistic base ΣG associated with a product-based possibilistic network
ΠG is defined as follow:

ΣG = {(¬xi ∨ ¬ui, 1− αi) : (xi, ui, αi) ∈ PG}. (9)

Example 3. The possibilistic knowledge base associated with PG of Example 2
is:
ΣG = {(a, 0.6), (¬b, 0.8), (¬a∨¬b∨¬c, 0.7), (¬a∨b∨¬c, 0.6), (a∨¬b∨c, 0.9), (a∨
b∨¬c, 0.8), (¬a∨¬c∨d, 0.7), (¬a∨c∨d, 0.6), (a∨¬c∨¬d, 0.8), (a∨c∨¬d, 0.7), (¬c∨
¬e, 0.7), (c ∨ e, 0.5)}.
The equivalence between the possibility distribution πΣG(ω) associated with a
knowledge base ΣG and the conditional possibility distribution πG(ω) induced
by a product-based possibilistic network PG is given by the following equation:

∀ω ∈ Ω, πΣG(ω) = πG(ω)

where πΣG is obtained using Equation (3) and πG is obtained from Equation
(7).

Note that the transformation from product-based possibilistic networks into
quantitative knowledge bases is efficient. More precisely, it is linear (with respect
to the number of parameters in the product-based possibilistic network ,i.e.,
number of conditional possibility degrees).

5 Transformations around Quantitative Possibility
Theory

This section completes the translations developed around quantitative possibility
theory. First, we exhibit the syntactical relations which exist between quanti-
tative possibilistic base and penalty base. Second, we point out the relations
between product-based possibilistic networks and UCP-networks. Finally, using
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the set of the developed procedures, we provide the relation which permits to
transform a UCP-network to an equivalent penalty base.

5.1 Encoding Quantitative Possibilistic Base to Penalties

Clearly, under a specific scale, there are strong relationships between penalty
logic and quantitative possibilistic base. Indeed, let Σ be a quantitative possi-
bilistic base defined by:

Σ = {(φi, αi) : i = 1, ..., n}, αi ∈]0, 1].

The penalty base PK associated to the quantitative possibilistic base PK is
defined by: PK = {(φi, ki) : (φi, αi) ∈ Σ, ki = −ln(1− αi)}.

Proposition 1. Let Σ be a quantitative possibilistic base defined by:

Σ = {(φi, αi) : i = 1, ..., n, −ln(1− αi) ∈ N}.
Let PK be the penalty base associated to the quantitative possibilistic base Σ
defined by:

PK = {(φi, ki) : i = 1, ..., n, ki ∈ N ∪ {+∞}} with (φi, αi) ∈ Σ and ki =
−ln(1− αi).

Then, πΣ is the possibility distributions associated to Σ and κPK is the distri-
bution associated to the penalty base PK where:

∀ω ∈ Ω, πΣ(ω) = e−κPK(ω) (10)

Proof. Using Equation (3), we consider two cases:

If ∀(φi, αi) ∈ Σ, ω |= φi, then, πΣ(ω) = 1. Using Equation (4), we have
κPK(ω) = 0. We obtain then: πΣ(ω) = e−κPK(ω) = 1
Else, πΣ(ω) = ∗{1− αi : (φi, αi) ∈ Σ, ω �|= φi}
πΣ(ω) = ∗{1− (1− e−ki) : (φi, ki) ∈ PK, ω �|= φi}, as αi = 1− e−ki

πΣ(ω) = ∗{e−ki : (φi, ki) ∈ PK, ω �|= φi}
πΣ(ω) = e{−

∑
ki:(φi,ki)∈PK,ω �|=φi}

Using Equation (4), we obtain then: πΣ(ω) = e−κPK(ω)

Table 3. The distributions associated to Example 4

ω κPK(ω) πΣ(ω)

abc 5 0.0068
ab¬c 0 1
a¬bc 4 0.018

a¬b¬c 1 0.36
¬abc 5 0.0068
¬ab¬c 4 0.019
¬a¬bc 3 0.05
¬a¬b¬c 0 1
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Example 4. Let Σ be the following quantitative possibilistic base:

Σ = {(¬a ∨ b, 0.6321), (a∨ ¬b ∨ c, 0.9816), (¬b ∨ ¬c, 0.8646), (¬c, 0.9502)}
The equivalent penalty base PK is:

PK = {(¬a ∨ b, 1), (a ∨ ¬b ∨ c, 4), (¬b ∨ ¬c, 2), (¬c, 3)}
Using Equations (3) and (4), we obtain the distributions associated to the quan-
titative possibilistic base and the penalty base, represented by Table 3.
Thus, the relation between the two distributions given by Equation (10) is veri-
fied. Indeed, ∀ω, πΣ(ω) = e−κPK(ω).

5.2 From UCP Networks to Possibilistic Product-Based Graph

There is strong relation between UCP networks and possibilistic product-based
graphe. Indeed, each UCP network can be translated into an equivalent product-
based possibilistic network:

– The graphical component represented by the DAG is identic,
– The numerical component is obtained by considering for each variable Xi of

the DAG, the conditional possibility distributions Π(xi | ui) from u(xi, ui)
where xi is an instance of the variable Xi and ui is an instance of Par(Xi)
as follow:

Π(xi | ui) = e−u(xi,ui) (11)

Example 5. Let us consider again the UCP network represented by the Figure 3.
The product-based possibilistic graph associated to the UCP network is repre-
sented by the same DAG and using the equation (11), we obtain the conditional
possibility distributions represented by Table 4.

Table 4. Conditional possibility distributions associated to the Example 5

A Π(A) B Π(B) ABC Π(C | AB) CD Π(D | C)

a 0.0067 b 0.0067 abc 0.5488 cd 0.4065
¬a 0.1353 ¬b 0.1353 ab¬c 0.9048 c¬d 0.4493

a¬bc 0.8187 ¬cd 0.8187
a¬b¬c 0.4493 ¬c¬d 0.7408
¬abc 0.9048
¬ab¬c 0.4493
¬a¬bc 0.4065
¬a¬b¬c 0.7408

Proposition 2. Let u be the utility function associated to a UCP network given
by Equation (8). Let πG be the possibility distribution associated to the product-
based possibilistic graph equivalent to the UCP-network given by Equation (7).
The equivalence between the utility function and the possibility distribution is
given by the following equation:

∀(x1, ..., xn) ∈ Ω, πG(x1, ..., xn) = e−u(x1,...,xn) (12)
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Proof. By definition, using equation (7), we have:

πG(x1, ..., xn) = ∗{Π(xi | ui) : x1, ..., xn |= xi ∧ ui, i = 1, ..., n}
Using Equation (11), we obtain:

πG(x1, ..., xn) = ∗{e−u(xi,ui) : x1, ..., xn |= xi ∧ ui, i = 1, ..., n}
πG(x1, ..., xn) = e{−

∑
i fi(xi,ui):x1,...,xn|=xi∧ui,i=1,...,n}

Using equation (8), we obtain then: πG(x1, ..., xn) = e−u(x1,...,xn)

Example 6. Let ω1 be the following interpretation: ω1 = (¬a¬b¬cd).
Using Equation (7), we obtain the following possibility distribution associated
to ω1:

πG(ω1) = Π(¬a) ∗Π(¬b) ∗Π(¬c | ¬a¬b) ∗Π(d | ¬c) = 0.1353 ∗ 0.1353 ∗ 0.7408 ∗
0.8187 = 0.0111

Applying equation (8), we obtain the following utility function associated to ω1:
u(¬a¬b¬cd) = f1(¬a)+f2(¬b)+f3(¬c | ¬a¬b)+f4(d | ¬c) = 2+2+0.2+0.3 = 4.5

Then, the equation (11) is verified. Indeed, πG(ω1) = e−u(ω1).

5.3 From Possibilistic Product-Based Graph to UCP Networks

The converse translation from a product-base possibilistic network to an equiv-
alent UCP network is also possible. The graphical component is the same and
the numerical components u(xi, ui) , for each variable Xi ∈ V where xi is an
instance of the variable Xi and ui is an instance of variable Xi, are obtained
using the following Equation deduced form Equation (11):

u(xi, ui) = −ln(Π(xi | ui)) (13)

Fig. 4. The UCP-Network equivalent to the product-based possibilistic network of
Example 2
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Example 7. Let us consider the product-based possibilistic graph of Example 2.
Using Equation (13), we obtain the UCP network represented by Figure 4.

5.4 Relating UCP-Networks and Penalty Logic

From these different transformations released around quantitative possibility
theory, we establish a corollary which transforms a UCP network to an associated
penalty base.

Corollary 1. Let UG be a UCP network over X1, X2, ..., Xn represented by a
DAG and u(xi, ai) where xi is an instance of a variable Ai of the DAG and utility
functions ai is an instance of Par(Ai). The penalty base PK = {(φi, ki), i =
1, ..., n} equivalent to the UCP-network UG is obtained by:

1. Transforming the UCP network UG to an equivalent product-based network
ΠG having the same graphical component represented by the DAG and the
numerical component is such that: Π(xi | ai) = e−u(xi,ai) where u(xi | ai)
represent the utilities associated to the UCP network with xi is an instance
of a variable Ai of the DAG and ai is an instance of Par(Ai), as described
in Section 5.2.

2. Transforming the obtained product-based causal network ΠG to an equivalent
quantitative possibilistic base ΣG = {(¬xi∨¬ai, 1−αi)} with αi = Π(xi | ai)
et Π(xi | ai) �= 1 ∈ ΠG, as described in Section 4,

3. Transforming the quantitative possibilistic base ΣG to an equivalent penalty
base PK = {(¬xi ∨ ¬ai, ki)} with ki = −ln(1 − αi) as described in Section
5.1.

Table 5. Conditional possibility distributions associated to the Example 8

A Π(A) B Π(B) ABC Π(C | AB) BCD Π(D | BC)

a 1 b 0.0498 abc 0.0498 bcd 1
¬a 0.0183 ¬b 1 ab¬c 1 bc¬d 0.3679

a¬bc 1 b¬cd 0.0025
a¬b¬c 0.36793 b¬c¬d 1
¬abc 1 ¬bcd 0.1353
¬ab¬c 0.0067 ¬bc¬d 1
¬a¬bc 0.0025 ¬b¬cd 1
¬a¬b¬c 1 ¬b¬c¬d 0.0067

Example 8. Let us consider the UCP network represented by Figure 3.

The corresponding product-based possibilistic network has the same graphical
structure and the numerical component is represented by the Table 5. The cor-
responding quantitative possibilistic base ΣG is: ΣG = {(a, 0.9817), (¬b, 0.9502),
(¬a∨¬b∨¬c, 0.9502), (¬a∨b∨c, 0.6321), (a∨¬b∨c, 0.9933), (a∨b∨¬c, 0.9975), (¬b∨
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Fig. 5. A UCP-Network of Example 8

¬c ∨ d, 0.6321), (¬b ∨ c ∨ ¬d, 0.9975), (b ∨ ¬c ∨ ¬d, 0.6847), (b ∨ c ∨ d, 0.9933)}.
The penalty base PK equivalent to the quantitative possibilistic base ΣG is:
PK = {(a, 4), (¬b, 3), (¬a ∨ ¬b ∨ ¬c, 3), (¬a ∨ b ∨ c, 1), (a ∨ ¬b ∨ c, 5), (a ∨ b ∨
¬c, 6), (¬b ∨ ¬c ∨ d, 1), (¬b ∨ c ∨ ¬d, 6), (b ∨ ¬c ∨ ¬d, 2), (b ∨ c ∨ d, 5)}.

6 Conclusion

In this paper, some transformations between different formats for representing
uncertain knowledge have been proposed. In one hand, the linear transformation
from a product-based possibilistic network to a quantitative possibilistic base has
been recalled, then, the transformation from a quantitative possibilistic base to a
penalty base has been developed. In the other hand, a link which allows bridging
the gap between UCP network and product-based possibilistic network has been
presented. This established translation may have some impact on inferential
issues. Indeed, the propagation algorithm for product based possibilistic network
can be exploited on UCP networks. Furthermore, a link between UCP networks
and quantitative possibilistic bases was shown. It allows an unified framework
for beliefs and preferences.

Nevertheless, it is important to note that in quantitative possibilistic setting,
the minimum specificity principle must be verified. This problem can be resolved
using fusion techniques developed in [21]. Indeed, in [21] authors showed that the
combination of possibility distributions with an operator as the product can be
handled in standard possibilistic logic. Thus we can consider each formula of a
quantitative possibilistic base as an elementary knowledge base, then we can use
the appropriate fusion technic in order to compute the possibility distribution
associated to the resulting knowledge base.

A future work would be to study the similarities which exist between the
product-based possibilistic networks and Valuations Based Systems (VBS) [19,20].
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Indeed, the two graphical representation modes are based on the same definition
of the conditioning based on the product.

References

1. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publ. Inc., San Mateo (1988)

2. Jensen, V.F.: An introduction to Bayesian Networks. UCL Press, University Col-
lege London (1996)

3. Ben Amor, N., Benferhat, S., Mellouli, K.: Anytime propagation algorithm for min-
based possibilistic graphs. Soft Computing, A fusion of foundations: methodologies
and applications 8(2), 150–161 (2003)
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Abstract. Machine learning, and more specifically regression, usually
focuses on the search for a precise model, when precise data are available.
It is well-known that the model thus found may not exactly describe the
target concept, due to the existence of learning biases. So, we are inter-
ested in a learning process that accounts also for the uncertainty around
the predicted value which should not be illusionary precise. The goal of
imprecise regression is to find a model that offers a good trade-off be-
tween faithfulness w.r.t. data and (meaningful) precision. The function
that is learnt associates, to each input vector, a possibility distribution
which represents a family of probability distributions. Based on this in-
terpretation of a possibilistic distribution, we define the notion of possi-
bilistic likelihood. Then, we propose a framework of imprecise regression
based on the previous notion and a particle swarm optimization process.
This approach takes advantage of the capability of triangular possibility
distributions to approximate any unimodal probability distribution from
above. We illustrate our approach with a generated dataset.

1 Introduction

Fuzzy regression methods have been proposed for now more than twenty years
(e.g. [2,12]). The motivations that have been put forward for such extended
forms of regression have been either to generalize regression to fuzzy data, or to
describe envelopes for the data by associating each input with an interval cover-
ing the output data. This second type of regression (often termed ‘possibilistic
regression’) yields interval representations even when input and output data are
non-fuzzy. This suggests that possibilistic regression does not serve exactly the
same purpose as classical regression. Still the purpose of possibilistic regression
has never been fully laid bare (beyond the informal idea of coverage of the data).

The goal of classical least square regression is to learn a function that asso-
ciates a precise value to any input vector, from a set of data. Due to the existence
of learning biases, especially the limited amount of data available and the nec-
essarily incomplete language used for describing them, the model that is found
does not describe exactly the reality. This is particularly true when considering
complex concepts. The regression line is supposed to pass through the “middle”
of the “cloud” of data points. In the statistical view, the regression curve is
interpreted as the mean of a probability distribution, usually a Gaussian one,
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for the output, given an input vector. This interpretation requires that the data
variations obey the assumed law. These assumptions allow for an a posteriori de-
scription of the uncertainty around the prediction. The analysis of the error can
be used for describing the general shape of the uncertainty distribution. A local
estimation of the uncertainty can also be done by considering the neighborhood,
in the training set, of the input vector considered. However, these approaches
suffer from some drawbacks. First, these analyses are done a posteriori and they
will be constrained by the model learnt and the assumption made in order to
learn it. The global uncertainty estimation requires to know a priori the type of
the probability distribution of the error and it supposes that some parameters
of the distribution are fixed (variance for Gaussian distributions for instance).
The local estimation supposes a high density of data and also some knowledge
about the shape of the distribution. Thus, when the data is poorly described (or
are too complex), these methods may provide an illusionary precise description
of the predictions and the uncertainty associated to it. This may be problematic
for risk analysis in particular when strict security constraints should be enforced.

Imprecise regression, whose a preliminary form has been proposed in [10,9],
may be considered as being midway between possibilistic regression (due to its
coverage concern) and least square regression (due to an uncertainty interpreta-
tion). Imprecise regression associates input variables to a possibility distribution
over the values of the output. In this paper, we take advantage of the interpreta-
tion of a possibility distribution in terms of a family of probability distributions
[5]. In this scope, we propose a possibilistic counterpart of the maximum likeli-
hood principle and we consider it as a quality measure for fuzzy functions. We
find the optimal function by using a particle swarm algorithm. This allows us to
learn both the general tendency of the data and the variation around it. Due to
the capability of possibility distributions to upper bound probability distribu-
tions, our imprecise regression approach does not need to have knowledge about
the type of the probability distribution.

The paper is structured as follows. Section 2 provides some background about
possibility distributions and their interpretations in terms of a family of probabil-
ities. In section 3, we propose a definition of a likelihood measure in the context
of possibility theory. Section 4 describes the framework of imprecise regression.
The section 5 is devoted to comparisons with the related literature. Lastly, we
report the results of experiments on a generated dataset, which illustrate the
interest of the approach.

2 Background on Possibility Theory

2.1 Possibility Distribution

Possibility theory, introduced by Zadeh [14], was initially created in order to
deal with imprecision and uncertainty due to incomplete information as the one
provided by linguistic statement. This kind of epistemic uncertainty may not
be handled by probability theory, especially when a priori knowledge about the
nature of the probability distribution is lacking. A possibility distribution π is a
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mapping from Ω to [0, 1] (Ω may be a discrete universe or a continuous one, i.e.
Ω = R). This value π(x) is named possibility degree. For any subset of Ω, the
possibility measure is defined as follows :

∀A ⊆ Ω, Π(A) = max{π(x), x ∈ A}.

If it exists one singleton x ∈ Ω for which we have π(x) = 1, the distribution is
normalized. We can distinguish two extreme cases of knowledge situation:

• complete knowledge: ∃x ∈ Ω such as π(x) = 1 and ∀y ∈ Ω, y �= x, π(y) = 0;
• total ignorance: ∀x ∈ Ω, π(x) = 1.

The necessity is the dual measure of the possibility measure. We have:

∀A ⊆ Ω, N(A) = 1−Π(A).

Let us introduce the α-cuts of the distribution π defined y:

Dα = {x ∈ Ω, π(x) ≥ α}.

It can be checked that if the distribution is normalized, continuous, and Ω = R,
we have ∀α ∈ [0, 1], Π(Dα) = 1 and N(Dα) = 1− α.

2.2 Possibility Distribution as a Family of Probability Distributions

One view of possibility theory is to consider a possibility distribution as a family
of probability distributions (see [3] for an overview). Thus, a possibility distri-
bution π will represent the family of the probability distributions for which the
measure of each subset of Ω will be bounded by its necessity and its possibility
measures. More formally, if P is the set of all probability distributions defined
on Ω, the family of probability distributions Pπ associated with π is defined as
follows:

Pπ = {p ∈ P , ∀A ∈ Ω, N(A) ≤ P (A) ≤ Π(A)}. (1)

where P is the probability measure associated with p. In this scope, the situation
of total ignorance corresponds to the case where all probability distributions
are possible. This type of ignorance cannot be described by a single probability
distribution. The case of complete knowledge corresponds to the case where only
one value is possible and then where there are no randomness nor imprecision.
When Ω = R, this family of probability distribution can also be described in
terms of confidence intervals. Given a probability distribution p, a confidence
interval Iα is a subset of Ω such as P (Iα) = α. We define I∗α, also referred as
quantile, as the smallest confidence interval with probability measure equal to
α. Thus, an alternative to Equation 1 is to look for the family of probability
function:

Pπ = {p ∈ P , ∀I∗α ∈ Ω, I∗α ⊆ D1−α(π)} (2)

where D1−α is the (1−α)-cut of π. Thus, the possibility distribution π contains
the probability distributions for which confidence intervals at level α are upper
bounded by its (1− α)-cuts.
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Fig. 1. probability to possibility transformation of a Gaussian distribution

2.3 Probability to Possibility Transformation

According to this probabilistic interpretation, a method from transforming prob-
ability distributions to possibility distributions has been proposed in [6]. The idea
behind this, is to consider the most informative possibility distribution, i.e. the
tightest one, that contains the probability distribution. Let us consider a prob-
ability distribution p, the possibility distribution π∗ is defined in the following
way:

∀x ∈ Ω, π∗(x) = maxα,x∈Iα(1− α). (3)

Then, in the spirit of Equation 2, given p and its transformation π∗ we have :

D∗
1−α = I∗α

where D∗
1−α is the (1 − α)-cut of π∗. Thus, if p has a finite number of modes,

π∗ is the possibility distribution for which each (1 − α)-cut corresponds to the
α-quantile of p. When p is unimodal, the unique value x such that π∗(x) = 1 is
the mode of p.

3 Possibilistic Likelihood

3.1 Definition of a Likelihood Function

Likelihood measures have been introduced in order to evaluate the adequate-
ness of a probability distribution with respect to a set of data. In this section
we define a likelihood function for a possibility distribution which supports the
interpretation of a possibility distribution in terms of a family of probability dis-
tributions (see [11] for details). We first consider the case of a discrete universe,
i.e. Ω = {C1, . . . , Cq}. Let us consider a set of data X = {x1, . . . , xn} belong-
ing to Ω. Let α1, . . . , αq be the frequency of the elements of X that belong
respectively to {C1, . . . , Cq}.
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Let us also assume that the frequencies of examples in class Ci are put in
increasing order, i.e. α1 ≥ . . . ≥ αq. In this case, the probability distribution
p∗ that maximizes the likelihood is such that p∗(x ∈ Ci) = p∗i = αi. In the
following, given a possibility distribution π, we note πi the value π(x ∈ Ci). It
has been shown in [4] that the transformation of p∗ into a possibility distribution
π∗ (see Equation (3)), is:

∀i ∈ {1, . . . , q}, π∗
i =

q∑
j=i

αj . (4)

This possibility distribution is one of the cumulated functions of p∗. It is worth
noticing that it is the tightest one. What we expect from possibility likelihood
is that the maximum of this function is reached for π∗. In the following, we
assume that π1 ≥ . . . ≥ πq (and not necessarily α1 ≥ . . . ≥ αq). We propose the
following function:

Lpos(π|x1, . . . , xn) =
q∑

i=1

(−αi ∗
i∑

j=1

(1− πj))−
q∑

i=1

(1− πi)2

2

+
q∑

i=1

(1 − πi).

(5)

The following proposition shows that Lpos is an acceptable likelihood function
for possibility distributions viewed as families of probabilities.

Proposition 1. Given a set of data X = {x1, . . . , xn} belonging to a discrete
universe Ω = {C1, . . . , Cq}, the possibility distribution π∗ that maximizes the
function Lpos is the transform of the probability distribution p∗ such as ∀i ∈
{1, . . . , q}, p∗i = αi.

Proof: The result is directly obtained by deriving Lpos with respect to the πi’s
�

This likelihood depends on the surface shared between the considered possibility
distribution and the optimal one.

It is worth noticing that, when optimal distributions can only be approx-
imated, finding the best approximation with respect to Lpos is not equiva-
lent to finding the best probability approximation with respect to probabilis-
tic likelihood and then turning it into a possibility distribution. This result is
fundamental since it illustrates that using a probabilistic likelihood and then
the probability-possibility transformation is not an effective approach for con-
structing a possibility distribution from data. The maximization of Lpos is more
adapted in this scope.

We now consider the continuous case where Ω = R. In the continuous case,
the consideration of the values of π in increasing order is naturally replaced by
the use of α-cuts. We adapt Equation 5 as follows:
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Lpos(π|x1, . . . , xn) =− (
n∑

i=1

∫
Dπ(xi)

(1 − π(t))dt) −
∫

R

(1− π(t))2

2
dt

+
∫

R

(1− π(t))dt

(6)

where Dπ(xi) is the π(xi)-cut of π. If we only consider one piece of data, we
obtain:

Lpos(π|x) = −
∫

Dπ(x)

(1− π(t))dt + C ∗ (−
∫

R

(1− π(t))2

2
dt +

∫
R

(1 − π(t))dt)

(7)

where C is a constant (usually 1
n , where n is the number of pieces of data

considered). Proposition 1 remains true in the continuous case. The possibilistic
counterpart of likelihood being defined, we will now considered the particular
case of triangular possibility distributions.

3.2 Triangular Distribution

We define a triangular possibility distribution as the triple πtri = (m, l, r) where
m is the mode of the triangle and l and r the left and the right spread respec-
tively. Since the 0-cut is infinite for triangular distributions, we assume that X
is bounded and have a maximal size equal to the constant MAXsize.

We consider a piece of data x ∈ X . We note μ = πtri(x) the possibility degree
of x and [a, b] the μ-cut of πtri. There are two cases for the term that depends
on πtri(x) in (7). We consider the case of x ∈]m− l, m + r[. We have:

MemSurf(πtri|x) = −
∫

Dπtri(x)

(1− πtri(t))dt = −(1− μ)2 ∗ l + r

2
.

In the case of x �∈]m− l, m + r[, with the bounding assumption, we obtain:

MemSurf(πtri|x) = −MAXsize +
l + r

2
.

Note that a more flexible approach on the bounding can be used, for instance by
considering that the weight MAXsize depends on the distance between x and
the triangle. The other part of Equation 7 is computed such as:

−
∫

R

(1− πtri(t))2

2
dt +

∫
R

(1 − π(t))dt = − l + r

6
− MAXsize

2
.

The terms MAXsize neither depends on πtri, nor on x, and can then be omitted.
Finally, we obtain :

Lpos(πtri|x) = MemSurf(πtri|x)− C ∗ l + r

6
. (8)
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4 Imprecise Regression Framework

4.1 Definition

Knowing that the representation of the examples corresponds necessarily to an
incomplete view of the world, the goal of imprecise regression is to search for
imprecise hypotheses that take into account this incompleteness. Thus, given a
set of crisp data, we will search for a model that is as precise as possible and
which provides a faithful description of the data. When the imprecision tends to
0, we obtain a crisp hypothesis that describes the concept exactly. In a formal
way, imprecise regression allows us to represent the imprecision associated with
the model by taking into account the incompleteness of the information provided
by the data and the chosen representation space for the hypotheses.

A regression database is a set of m pairs (−→x i, yi), 1 ≤ i ≤ m, where−→x i ∈ Rn is
a vector of n input variables and yi ∈ R is the real output variable. An imprecise
fuzzy function F is a function from Rn → [0, 1]R that associates a distribution
on the possible values of the output to the input vector −→x . The goal of imprecise
regression is to find the fuzzy function F (−→x ) that maximizes the possibilistic
likelihood for each piece of data :

Lpos(F ) = −
m∑

i=1

Lpos(πi|yi) (9)

where πi = F (−→x i). The maximum is reached when the function describes exactly
the data without imprecision. Since the learning bias may prevent reaching this
maximum, the function will describe both the general tendency of the data and
the variations around it. By maximizing the possibility likelihood, the function
that we learn will estimate locally the distribution of the data with respect to
the input vector. In the next section, we propose an algorithm for imprecise
regression with triangular distributions.

4.2 Algorithm

In the following, we consider imprecise regression functions of the form Fm,l,r(−→x ) =
Tfm(−→x ),fl(

−→x ),fr(−→x ) which associate a triangular fuzzy set to a vector of input vari-
ables, although the framework would be applicable to any kind of membership
functions. Triangular-shaped possibility distributions are defined as follows:

Tm,l,r(x) =

⎧⎨⎩
0 if x ≤ l or x ≥ r
x−l
m−l , if x ≤ m and x > l
r−x
r−m if x > m and x < r

The functions fm, fl and fr are independent functions. These can be encoded
by affine functions of the form

f(−→x =< x1, . . . , xn >) = a0 + a1 ∗ x1 + . . . + an ∗ xn,
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or by kernel functions (e.g. Gaussian kernels in our application)

f(−→x ) = a0 + a1 ∗K(s1, x) + . . . + ak ∗K(sk, x),

where s1, sk are support vectors which are computed previously by using a k-
means algorithm. Finding optimal fm, fl, fr constitutes a hard problem which is
not solvable by classical optimization methods. We propose to solve the problem
by using a particle swarm optimization algorithm [7]. The goal of the particle
swarm is to determine the function F that maximizes the possibilistic likelihood.
One of the advantages of the particle swarm optimization with respect to the
other meta-heuristics is that it is particularly suitable for continuous problems.
Here, one particle represents the parameters of a fuzzy function (the parameters
a1, . . . , an for each fm, fl, fr in the affine case). At each step the algorithm, each
particle is moved along its velocity vector (randomly fixed at the beginning). The
velocity vectors are updated at each step by considering the current vectors, the
vector from the current particle position to particle best known position and the
vector from the current particle position to global swarm’s best known position.
The second advantage of the algorithm is that it is easy to tune. The three
parameters for the updating of the velocity ω, φp and φg correspond respectively
to the coefficient for the current velocity, the velocity to the particle best known
position and the velocity to the global swarm’s best known position. The numbers
of particle and the number of iteration will depend on the problem, but generic
values perform well in most of the case.

4.3 Properties of Triangular Possibility Distributions

Due to the convex nature of the result of the probability-possibility transforma-
tion (see Figure 1), triangular possibility distributions offer a convenient way for
upper-approximating unimodal probability distributions. This is illustrated by
the following proposition, proved in [4]:

Proposition 2. The triangular symmetric possibility distribution with support
[x1, x2] and with mode x1+x2

2 is the least upper bound of all the possibility trans-
forms of symmetric probability distributions with support [x1, x2] and with mode
x1+x2

2 .

This proposition shows that triangular distributions may approximate any pos-
sibility transformation of a bounded symmetric unimodal distribution. We have
shown in Section 3 that approximating a possibility distribution by maximiz-
ing Lpos is more efficient that approximating the probability distribution and
then turn it into possibility distribution. It validates the use of the possibilistic
likelihood for building triangular distributions from data. Even if Proposition
2 is not always true when the distribution is asymmetric, triangular possibilis-
tic distribution performs well in general for any type of unimodal distribution.
This allows us to learn fuzzy function that describes the data faithfully without
having any a priori knowledge about the shape of the probability distribution.
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5 Related Works

There are a large number of methods in statistics for computing confidence inter-
vals. However most of these methods still assume that the type of the distribution
is known. Non parametric approaches can then be used for describing the disper-
sion around the curve. However, it also requires the choice of a particular kind
of probability distribution (whose parameters may vary) and a large amount
of data. Since it is a local estimation problem with respect to the data in the
neighborhood, this approach is not suitable for prediction or for handling sparse
data. In quantile regression [8], the goal is to learn a function that associates the
quantile interval (of a prefixed probability) for the output variable to the input
variables. However, there are some limitations. First, a unique probability value
has to be chosen for the quantile. Second it supposes that the error distribution
is symmetric. Imprecise regression with possibilistic likelihood allows us to learn
the general tendency of the data, together with a local estimation of the error.
Contrarily to the probabilistic case where there does not exist a simple prob-
ability distribution that can approximate any other one (due to the constraint
surface requirement), triangular possibility distributions can upper approximate
any unimodal probability distribution. Thus no a priori knowledge about the
distribution of the error is required. If we consider that a possibility distribution
contains the probability distributions for which each quantile of probability α is
a subset of the (1 − α)-cut, our method can be viewed as a non linear infinite
approximation of the quantile regression. In the same way, imprecise regression
is a modal estimator since the top of the triangle corresponds to the mode of
the error distribution.

A first type of fuzzy regression approach assumes that we start with fuzzy
data, which means that the output values are fuzzy and maybe also the input
values. Then, a fuzzy representation is searched for describing such data [1,2].
Diamond’s method is based on the extension of least square error minimization
using a metrics on fuzzy sets. The major advantage of the least square method
is that it appears to be a natural mathematical extension of crisp regression.
In this context, when data inputs and output are not fuzzy, fuzzy least square
regression reduces to standard least square regression, thus leading to a non fuzzy
result. This constitutes a major difference with our approach. In fact, imprecise
regression aims at being faithful to the distribution of the data, and associates
a fuzzy representation with crisp input and output data.

A second type of approach, named possibilistic regression, has been initially
proposed by Tanaka [12], and is reminiscent of quantile regression. The goal of
this approach is to associate the data with a pair of upper and lower regression
functions, while minimizing the total spread of the output coverage. The main
disadvantage of this method is that it is very sensitive to outliers (even if it may
be somewhat controlled [13] by using SVM’s together with outliers tolerance).
Indeed, the optimal upper (resp. lower) bound function is basically a function
that is immediately above (resp. below) the whole set of output data. Thus,
outliers may affect to a large extent the function that is learnt (even if it may be
somewhat controlled [13] by using SVM’s together with outliers tolerance). At
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first glance, imprecise regression may seem to be close to possiblistic regression.
First, the two approaches deal with crisp data. Second, they use separate func-
tions in order to represent fuzzy sets or intervals. However, the two approaches
differ both at the theoretical level and at the algorithmic level. Possibilistic re-
gression aims at finding the most precise function that is totally accurate with
respect to all the examples up to some fixed outliers tolerance. On the con-
trary, the goal of imprecise regression is to find the function that has the better
trade-off between data faithfulness and precision in order to take into account
epistemic uncertainty associated with the learning problem. This is why impre-
cise regression is less sensitive to outliers than possibilistic regression. Moreover,
imprecise regression with possibilistic likelihood has an interpretation in terms
of imprecise probabilities (family of probability measures).

6 Experimentations

We illustrate our approach with a generated dataset. The data have one variable
in input. We assume that for each point in the input space, the output value
follows a skewed normal distribution. The skewed normal distribution has three
parameters : the location ξ (that affects the position of the distribution), the scale
ω (that affects the variance of the distribution) and the shape α (that affects
the symmetry of the distribution). The mean of the distribution is ξ + ωδ

√
2
pi ,

the variance is ω2(1− 2δ2

π ), with α√
1+α2 . We generate 3000 pairs of input-output

values. The input variable values are uniformly distributed in the range [−5, 5].
In a first time, given an input variable x, we randomly take the associated output
value in the skewed distribution of mean equals to cos(x), of variance equals to
0.30 and of shape equals to −4 ∗ cos(x

5 ∗ pi). It makes that the underlined distri-
bution is symmetric when x = −2.5 or x = 2.5 or very asymmetric when x = −5,
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Fig. 2. Non linear least square regression applied to generated data with constant
variance
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Fig. 3. Imprecise regression applied to generated data with constant variance
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Fig. 4. Non linear least square regression applied to generated data with increasing
variance

x = 0, or x = 5. We apply two methods on these data. The first one is the non
linear least square regression with support vector machine. Confidence intervals
are 0.95 quantile of the Gaussian distribution centered on the predicted values
and with a variance equals to the variance of the error. The second method used
is the imprecise regression with possibilistic likelihood. Results are respectively
presented in Figures 2 and 3. The estimated mode of the distribution is in red,
the estimated 0.95 confidence interval (which corresponds to the 0.05-cuts in the
possibility case) is in green.

We can observe that, even that the least square regression predicts well the
mean of the distribution, it fails to identify the mode as expected. We can observe
that the imprecise regression enables us to overcome this problem. We remark
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Fig. 5. Imprecise regression applied to generated data with increasing variance

that the triangular possibility distribution provides the best description of the
data. Indeed, it clearly identifies the mode and the asymmetrical nature of the
data. This is not the case for the distributions based on least square regression
since they are centered on the mean.

In the following experiment. We use the same scheme than the previous experi-
ment except that the variance grows linearly following the equation x

5 ∗0.25+0.30.
Results are respectively presented in Figures 4 and 5. Least square regression
still makes a good prediction for the mean, but does not produce faithful confi-
dence intervals and fails again to predict the mode. On the contrary, imprecise
regression describes both the mode and the increasing of the variance. These two
experiments clearly emphasize the capacity of imprecise regression with possi-
bilistic likelihood to faithfully describe the general tendency of the data and the
variation around it without any information on the shape of the distribution of
the error.

7 Discussion and Conclusion

In this paper we have proposed an imprecise regression method based on the
possibilistic likelihood. This approach allows us to describe both the general
tendency and the variation around it. We have shown that by using triangu-
lar possibility distributions, we obtain a good approximation of the distribution
around the prediction, without any a priori knowledge. More precisely, it de-
scribes an upper bound of each quantile of the distribution. When considering
the 1-cut we obtain the mode of the distribution. The choice of a particular
method depends on the problem at hand. If the shape of the law to be learnt is
known then classical regression is enough for the task. On the contrary, as illus-
trated in the experiments, if the law to be learnt is not completely determined
by the input variables available, imprecise regression allows us to capture the
epistemic uncertainty associated with the model.
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Classical regression when applied to noisy data pertaining to the measurement
of some precise law provides an estimate of this law, while imprecise regression
looks for a possibility distribution that for each input represents a family of
probability distributions which reflects an epistemic uncertainty due to learning
biases.

A further line of research is the handling of multi modal distribution of error
by the use of trapezoidal possibility distributions. We also plan to take into
consideration the quantity of data that are used for determining the possibility
distribution at each point in order to re-inject the uncertainty due the estimation
based on a sample.
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Abstract. In this paper, we deal with two important issues regarding
possibilistic network-based classifiers. The first issue addresses the re-
ject option in possibilistic network-based classifiers. We first focus on
simple threshold-based reject rules and provide interpretations for the
ambiguity and distance reject then introduce a third reject kind named
incompleteness reject occurring when the inputs are missing or incom-
plete. The second important issue we address is the one of concept drift.
More specifically, we propose an efficient solution for revising a possi-
bilistic network classifier with new information.

Keywords: Possibilistic networks, classification, reject option, concept
drift, belief revision, Jeffrey’s rule of conditioning.

1 Introduction

Classification is an important task in several domains. It consists in predicting
the class label of an item described by a set of features. There is in the literature
several classifiers based on different approaches and having different algorithmic
and performance abilities. For instance, Bayesian network classifiers [12], decision
trees [22] and SVM [7] are among the well-known and most efficient classifiers in
practice. Unlike Bayesian network-based classifiers, possibilistic ones are studied
only in few works [4] [15] [2]. While possibilistic networks allow better handling
ignorance and some uncertainty types, some important issues closely related to
possibilistic network-based classifiers have not been addressed.

In some applications, the cost of misclassifications (classification errors) is
more important than ignoring and rejecting the item to classify. This issue is
known as the reject option [6] where a classifier makes predictions only if it is
”reliable” or ”confident” to a given threshold. The key issue when implementing
the reject option in practice is how to measure and interpret a classifier’s confi-
dence. More importantly, after a reject decision one often needs to know about
the reason why the classifier is not confident enough for making good predictions.
In the literature, most reject decision rules are threshold-based and consider two
types of reject: ambiguity and distance ones. In [6], the author proposed a re-
jection mechanism consisting in rejecting any item whose posterior probability
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is less then a predefined threshold t. Several authors proposed more sophisti-
cated rejection rules and strategies. For instance, the author in [14] developed a
method allowing to associate the item to classify with several classes. In [19], a
class-rejective schema is proposed where some classes are first rejected then the
item is associated with the remaining classes. In earlier works [11], the author
proposed a unifying approach of rejection schemas for probabilistic, fuzzy and
possibilistic classifiers and viewed a classifier as a couple (L, H) of a labeling
and hardening functions respectively where the labeling function L provides a
measure of typicality of the item to classify with respect to the different classes
while the hardening function H assigns a class to the item in hand. In all these
works, even those dealing with possibilistic classifiers, the authors adopt a sta-
tistical framework1 and do not address the reject issue from the perspective of
the encoded beliefs representing the classifier in case where this latter is elicited
from an expert.

In the possibilistic framework, a model’s confidence regarding a prediction
can naturally be estimated by the necessity measure. However, this measure is
unable to identify the reject type. In this paper, we interpreted and analyze some
simple threshold-based rejection rules where the used classifiers are possibilistic
networks representing an experts beliefs. More specifically, given a possibilistic
network classifier and a rejection threshold t, then we are interested in identify-
ing situations where a given item may be rejected with respect to the encoded
beliefs. Note that we deal with exclusive classification and we neither consider
reject strategies nor ambiguity reject types as in [11]. This paper provides pre-
liminary results on naive possibilistic network-based classifiers using threshold-
based reject option. In particular, we analyze the distance and ambiguity reject
option then we deal with reject option when the inputs are incomplete.

Over time, the expert’s beliefs or the properties of a model or the studied
problem change and it becomes important to revise the old model to reflect
these changes. For instance, the plausibility order of some events may change
over time. This issue is known as the concept drift [24] and the main problems
here are (i) how to detect that the current model is no more appropriate and (ii)
how to revise it in order to meet the new requirements. In the machine learning
field, the detection and update are mostly performed empirically (testing the
model with data with known labels, and retraining the model for example [23]).
But how can one do this if the system is built on the basis of expert knowledge?
We propose in this paper an efficient solution for implementing the concept
drift. We propose a method for representing the new beliefs to take into account
then revise the old model in order to fully integrate the new knowledge. This
revision gives results that are consistent with the results obtained if the revision is
performed using Jeffrey’s rule of conditioning [17]. Our method can be viewed as
a graphical counterpart of Jeffrey’s rule as the belief revision operation operates
directly on some local distributions associated with the network nodes.

1 For instance, the labeling function in [11] is based on the notion of typicality esti-
mated according to a prototype for each class or class centers, etc.
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2 Possibility Theory and Possibilistic Network Classifiers

2.1 Possibility Theory: A Brief Refresher

Possibility theory [9] provides a powerful and simple alternative to probability
theory in particular for dealing with some types of uncertainty. It lies on a pair
of dual measures (which are the possibility and necessity measures) in order to
assess the knowledge/ignorance. One of the fundamental concepts of possibility
theory is the one of possibility distribution π which is a mapping from the
universe of discourse Ω (possible states of the world) to the unit interval [0, 1]. A
possibility degree π(wi) expresses to what extent a world wi∈Ω can be the actual
state of the world. By convention, π(wi)=1 means that wi is totally possible
and π(wi)=0 denotes an impossible event. The relation π(wi)>π(wj) means
that wi is more possible than wj . A possibility distribution π is normalized if
maxwi∈Ωπ(wi) = 1. The normalization condition ensures that the possibility
distribution is free from contradictions. The other important concept is the one
of possibility measure Π(φ) which evaluates the possibility degree relative to an
event φ⊆Ω. It is defined as follows:

Π(φ) = max
wi∈φ

(π(wi)). (1)

The necessity measure evaluates the certainty entailed by the current knowledge
of the world encoded by the distribution π:

N(φ) = 1−Π(φ) = 1− max
wi �∈φ

(π(wi)), (2)

where φ denotes the complementary of φ in Ω. Note that if Π(φ)<1 then
N(φ)=0.
In possibility theory, there are several interpretations for the possibilistic scale
[0,1]. Accordingly, there are two variants of possibility theory:

1. Qualitative (or min-based) possibility theory where the possibility
measure is a mapping from the universe of discourse Ω to an ”ordinal” scale
where only the ”ordering” of values is important.

2. Quantitative (or product-based) possibility theory: In this case, the
possibilistic scale [0,1] is numerical and possibility degrees are like numeric
values that can be manipulated by arithmetic operators.

In this work, we only focus on the quantitative possibilistic setting. The other
fundamental notion in possibility theory is the one of conditioning which is
concerned with updating the current beliefs encoded by a possibility distribution
π when a completely sure event (evidence) is observed. Note that there are
several definitions of the possibilistic conditioning [16] [9]. The product-based
possibilistic conditioning is defined as follows:

π(wi|φ) =

{
π(wi)
Π(φ)

if wi ∈ φ;

0 otherwise.
(3)
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2.2 Possibilistic Networks

Possibilistic networks [5] [1] are graphical models that allow to compactly and
easily encode an agent’s beliefs. They are possibilistic counterparts of Bayesian
networks [21]. A possibilistic network is composed of two components:

1. A graphical component: it consists in a directed acyclic graph (DAG)
capturing the direct dependence relationships between domain variables.

2. A numerical component: This component is composed of a set of local
possibility distributions assessing the plausibility of each domain variable Ai

in the context of its parents UAi .

In order to guarantee that the joint possibility distribution encoded by a pos-
sibilistic network is normalized, every local possibility distribution must satisfy
the normalization condition expressed as follows:

∀uAi ∈ DUAi
, max
aij

∈DAi

(π(aij |uAi)) = 1. (4)

In Equation 4, aij∈DAi denotes a value aij belonging to the domain of the
variable Ai, denoted DAi . The possibility degree associated with an event is
computed using the product-based chain rule defined as follows:

∀ai ∈ DAi , Π(a1a2..an) =
n∏

i=1

(π(ai|uai)). (5)

2.3 Possibilistic Network Classifiers

Classification consists in predicting the value of a target (non observable) variable
given the values of the observed variables. Namely, given a1a2..an the values of
observed variables A1,..,An describing the items to classify, it is required to
predict the right value of the class variable C among a predefined set of class
instances DC={c1, .., cm}.

Classification based on a possibilistic network classifier is achieved by comput-
ing the a posteriori most plausible class instance given the item to classify. Namely,

c∗ = argmaxck∈DC (Π(ck|a1a2..an)) = argmaxck∈DC (
Π(ck ∧ a1a2..an)

Π(a1a2..an)
), (6)

where the term Π(ck|a1a2..an) denotes the a posteriori possibility degree of
class instance ck given the observation a1a2..an. Note that the denominator in
Equation 6 if a normalization term ensuring that the a posteriori possibility
distribution relative to the class variable C is normalized. The normalization
operation is generally ignored in classification problems since the denominator
is the same over all the classes. It is clear that the computational complexity of
classifying completely certain observations is linear in the number of attributes
and the number of class instances.

A naive possibilistic classifier is a very simple network where the only direct
dependence relationships are from the class node C to every attribute node
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Fig. 1. Example of a naive possibilistic classifier PNC and the corresponding joint
distribution πPNC computed using the product-based chain rule of Equation 5

Ai. Figure 1 provides a naive classifier example with a binary class variable
C and two binary attributes A1 and A2. Naive network classifiers rely on the
assumption that attribute variables are independent in the context of the class
variable. Hence, naive possibilistic network-based classification in the product-
based setting can be achieved as follows:

c∗ = argmaxck∈DC (
∏

i=1..n

π(ai|ck) ∗ π(ck)). (7)

Naive network classifiers are very easy to build either empirically or by elicit-
ing an expert’s beliefs. Moreover, several empirical evaluations show that naive
classifiers such as probabilistic ones are very efficient [12][15].

3 Classification with Reject Option

In several domains, the cost of some misclassifications is more important than
rejecting the item to classify. For instance, in medical diagnosis, military tar-
get identification, etc. it is often better to reject (not classify) an object than
misclassifying it. However, when rejecting an item, it is important to know the
reason why this item is rejected. This problem is extensively studied for some
statistical and machine learning techniques [6][14][19].

A classifier can be seen as the frontiers separating the items composing a
same class. In the literature, there are mainly two kinds of classification with
reject option. These two reject types refer to situations where the classifier is
not ”confident”. In ambiguity reject the object to classify belongs to several
classes simultaneously. This may be due to the fact that the modeled classes are
not completely disjoint. Distance reject identify situations where the instance
to classify does not belong to any of the classes represented by the classification
model. This may be due to the existence of a class which is not represented or
to the fact that the item to classify is an outlier. Distance reject is used to define
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and delimit the classes modeled by the classifier and can thus reject what is
beyond its frontiers.

3.1 Classifiers’ Confidence and Reject Option

The classifier’s confidence concept is a key issue for the reject option and it de-
notes how much the model is confident when making a prediction. In our case,
we are interested in the confidence of a possibilistic network classifier where clas-
sification is of maximum a posteriori (according to Equation 6). Namely, given
a possibilistic network classifier PNC encoding the current knowledge or beliefs
and given an item a1..an to classify, then we compute ΠPNC(ci|a1..an) for every
candidate class instance ci∈DC . Note that the obtained distribution over DC is
normalized. Consequently, the most plausible class instance c∗ is the one(s) hav-
ing ΠPNC(ci|a1..an)=1. Then the necessity degree NPNC(c∗|a1..an) will provide
a kind of confidence degree on the decision. It is inversely proportional to the
possibility degree of the second most plausible class instance. In particular, if at
least two class instances are totally possible, then the necessity degree will be
zero. Hence, computing the necessity degree of a class instance allows to estimate
the confidence but one can not identify what type of reject we are facing. This is
due to the normalization performed by the conditioning operator. As we will see
in the following, it is enough to ignore the normalization operation in order to
identify the reject kind. In this work, we deal with exclusive classification and we
assume that all the misclassifications have a more important cost than rejecting
the item to classify.

3.2 Distance Reject

In practice, distance reject is often used for anomaly and outlier detection and it
is implemented by measuring the degree of belonging (or distance) of the object
to classify to the different classes. A threshold td is set above which the objects
to classify are rejected. Intuitively, given an instance to classify a1..an, the value
of Π(ci∧a1..an) can be interpreted as a distance of the item a1..an from the class
ci. Hence, the distance of a1..an from the existing classes can be estimated by

distance(a1..an) = 1−Π(c∗ ∧ a1..an). (8)

It is clear that according to Equation 8, a distance close to 1 reveals an instance
to classify which is impossible in any of the existing class instances. Such a case
reveals a contradiction between the beliefs encoded by the classifier and the item
to classify. This situation may occur when a system has not been revised for a
long time or in case there were problems when collecting the inputs (presence
of outliers, etc.) or due to problems when eliciting the beliefs. Now, in order to
implement the distance option, one can simply set a threshold td to implement
the distance reject as follows:

c∗ =

{
argmaxck∈DC (Π(ci ∧ a1..an)) if distance(a1..an) ≤ td,
∅d otherwise

(9)
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The value ∅d denotes a distance reject decision. The threshold td can be set em-
pirically or according to the encoded beliefs. The value of the distance threshold
td must be as follows:

td ≥ min
cia1a2..an

(Π(ci ∧ a1..an)). (10)

It is clear that the distance reject threshold td should be greater than the plausi-
bility of the least plausible configuration. Now, given a naive possibilistic network
classifier PNC and a distance threshold td then we have the following result:

Proposition 1. Let PNC be a naive possibilistic classifier PNC and let td be
the distance reject threshold then:
if ∃ai∈DAi such that maxci∈DC (πPNC(ai|ck))<1-td then every attribute con-
figuration a1..ai..an where the value of variable Ai is ai will be rejected.

Proposition 1 provides an immediate result in naive classifiers stating that if an
attribute value ai is less plausible than td in all the class instances of the classifier
PNC, then all the attribute configurations involving ai will be rejected.

3.3 Ambiguity Reject

Ambiguity reject is generally implemented by detecting data items that are
simultaneously close to several classes. In [6], the author proposed to use the
a posteriori probability of the instance to be classified in the different classes.
Intuitively, there is ambiguity if

1. distance(a1..an)≤td.
2. There exists a class instance c∗∗ �=c∗ such that Π(c∗∧a1..an)-Π(c∗∗∧a1..an)<ta.

The first condition checks if there is distance reject while the second condition
states that there exists a second class instance c∗∗ that is ”as plausible as” c∗ for
the item to classify (the difference is less than the ambiguity threshold ta). It is
easy to show that if the two conditions above are satisfied then the a posteriori
necessity degree N(c∗|a1..an) equals 0 and we are in presence of ambiguity reject.
We can estimate the ambiguity relative to a1..an denoted as ambiguity(a1..an)
by

ambiguity(a1..an) = 1− (Π(c∗ ∧ a1..an)−Π(c∗∗ ∧ a1..an)). (11)

This measure is used in [20] where the authors study classifiers’ confidence evalu-
ation in a probabilistic framework. It estimates the gap between the plausibility
of the two most plausible class instances. Hence, a user wanting to reject every
item where the classifier’s confidence is not very high will use a decision rule tak-
ing into account the required confidence level ta. The a posteriori classification
rule of Equation 6 is reformulated as follows:

c∗ =

{
argmaxck∈DC (Π(ci ∧ a1..an)) if ambiguity(a1..an) ≤ ta

∅a otherwise
(12)
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The value ∅a denotes the ambiguity reject decision. Let us now see the possible
values for ta with respect to the plausibility of c∗ and c∗∗, the two most plausible
class instances for the attribute configuration a1a2..an:

max
a1a2..an

((Π(c∗∧a1..an)−Π(c∗∗∧a1..an)) ≥ ta ≥ min
a1a2..an

((Π(c∗∧a1..an)−Π(c∗∗∧a1..an)).

(13)

It is clear that a threshold ta greater (resp. smaller) than the maximum (resp.
minimum) of Equation 13 will reject all (resp. none) of the items to classify.

3.4 Inputs’ Incompleteness Reject

One of the main advantages of belief networks in general and possibilistic network
classifiers in particular is the ability to reason and perform classification even if
some input observations are incomplete or uncertain. By incomplete inputs, we
mean that the values of some attributes of the item to classify are not available.
The need to know whether a reject decision is due to inputs incompleteness is
important since one can ask for more inputs in order to make a more confident
decision. The treatment is different if the reject decision is caused by distance or
ambiguity reject what ever are the missing inputs. Let ai..aj be an instance of the
attribute subset Ai..Aj representing the item to classify where some attributes
are missing. Hence, there is input incompleteness reject if

– There is ambiguity or distance reject, namely ambiguity(ai..aj)≥ta or
distance(ai..aj)≥td.

– There exists an instance of the missing attributes such that there is no reject,
namely ∃A′⊆A/{Ai..Aj} and ∃ a′∈DA′ such that ambiguity(ai..aj ∧ a′)<ta
and distance(ai..aj ∧ a′)<td.

The two conditions above identify an input incompleteness reject. The first one
allows to detect the incompleteness reject as ambiguity or distance reject while
the second allows to identify an instance a′ of a subset A′ of the missing attributes
that can prevent the reject decision. Hence, one can require the missing attributes
A′. In the next section, we propose an efficient solution for revising a possibilistic
network classifier to efficiently solve the concept drift problem.

4 Concept Drift as a Belief Revision Process

In classification problems, the concept drift [23][24] is the phenomenon denoting
the fact that the properties and beliefs of some variables change over time. For
example, the plausibility of an event in a given class had decreased. Hence, it
becomes important after some time to revise the encoded beliefs in order to
meet such changes. Two questions need to be answered regarding this issue. The
first question is how to detect that the model suffers from concept drift and
needs revision while the second one is how to revise the current model. The first
question is out of the scope of this paper2. The issue we deal with in this section
2 One way to do this is to gather new labelled data and classify it using the classifier.

If this latter provokes a high reject rate, than this can be due to concept drift.
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Fig. 2. Our belief revision framework

is how to revise an existing possibilistic network classifier? Namely, given an
initial naive possibilistic classifier PNC and given some new beliefs about what
should be the classifier, then how to revise PNC in order to accept the new
beliefs. There remains to find how to encode the new beliefs and how to perform
the revision transformation. The belief revision framework we adopt in this work
is the one based on Jeffrey’s rule of conditioning [17]. As shown in Figure 2, the
old beliefs are compactly encoded by a naive possibilistic classifier PNC. The
joint possibility distribution πPNC encoded by PNC can be obtained using the
chain rule. In order to revise the beliefs encoded by PNC by the new inputs, one
can first compute the joint distribution πPNC then directly use Jeffrey’s rule for
performing the revision. However, computing a joint distribution and revising it
in that way is exponential in the number of variables composing the network.
Our contribution consists in a solution allowing to directly revise the initial
network PNC with the new beliefs while ensuring that the joint distribution
πPNC′ encoded by the revised network PNC′ equals π′

PNC obtained by revising
the joint distribution πPNC by the new beliefs using Jeffrey’s rule. Without loss
of generality, we deal in this work only with product-based naive classifiers.

4.1 Jeffrey’s Revision Rule

Jeffrey’s rule [17] extends the probabilistic conditioning to the case where the
evidence is uncertain. In a possibilistic setting, it allows revising the beliefs
encoded by a possibility distribution π into a posterior distribution π′ given the
uncertainty bearing on a set of mutually exclusive and exhaustive events λi. In
this method, the uncertainty is encoded in the form (λi, αi) with αi=Π ′(λi).
Jeffrey’s rule aims to minimize belief change while fully accepting the new inputs.
The revised distribution is the solution satisfying the following conditions:



Possibilistic Network-Based Classifiers 469

Condition 1: ∀λi⊆Ω, Π ′(λi)=αi.
Condition 2: ∀λi⊆Ω, ∀φ⊆Ω, Π ′(φ|λi)=Π(φ|λi).

The first condition guarantees that the new inputs are fully accepted while the
second condition guarantees that although there is disagreements about the plau-
sibility of the events λi in the distributions π and π′, the conditional possibility
degree of any event φ⊆Ω given any uncertain event λi should remain the same in
the original and the revised distributions. As in the probabilistic setting, in the
product-based possibilistic one, there always exists a unique solution while in
the min-based setting, there exist situations where there is no solution satisfying
Condition 1 and Condition 2 at the same time [3]. In the product-based possi-
bilistic setting, the solution satisfying Condition 1 and Condition 2 is computed
as follows [10]:

∀φ ⊆ Ω, Π ′(φ) = max
λi

(αi ∗ Π(φ ∧ λi)

Π(λi)
). (14)

5 Concept Drift and Revising a Naive Possibilistic
Classifier

This section presents our solution for revising a naive possibilistic classifier.

Step1: Encoding the inputs (new beliefs) for the revision operation
The aim of our procedure is to revise the beliefs encoded by a possibilistic net-
work PNC with some new beliefs. These latter can be of two main kinds:

– Marginal beliefs: Here the new beliefs are about single variables (class or
attribute variables). For example, a class instance ci becomes totally possible
(namely π′(ci)=1).

– Conditional beliefs: The new beliefs are on attributes in the context of
the class variable. For instance, the possibility degree of ai in the class cj

becomes equal to 1 (namely π′(ai|cj)=1).

We focus in this work only on the beliefs bearing on single variables as they
represent the most common revision situations for naive classifiers in practice
(the other situations can be easily reformulated and expressed as new beliefs
on single variables). Recall that in naive network classifiers (see Figure 1) the
only existing relationships are from the class variable C to each attribute Ai.
Recall also that in order to use Jeffrey’s rule, the new beliefs should bear on an
exhaustive and mutually exclusive set of events. In case where the new beliefs
are relative to a non exhaustive and mutually exclusive set of events λ1 .. λi then
we complete them with the old beliefs of the missing events λi+1 .. λn. Namely,
the uncertainty is encoded as follows:

– For j=1 to i, (λj , αj) such that Π ′(λj)=αj (new beliefs)
– For j=i + 1 to n, (λj , αj) such that Π(λj)=αj . (old beliefs)
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The underlying assumption here is that if the new beliefs do not bear a given
event, then there is no reason to alter the old belief regarding this event.

Example. Assume that the class variable C is associated with the domain
DC={c1, c2, c3} and with a prior possibility distribution πC={1, .4, .2}. Assume
now that we want to revise the old beliefs such that π′

C(c2)=.8. Then the com-
plete inputs will be π′

C={1, .8, .2}.
Note that there may exist situations where the new beliefs can be incomplete and
lead to sub-normalized distributions. For example, assume that πC={1, .4, .2}
and we want to revise πC such that π′

C(c1)=.6. According to our assumption,
the complete inputs would be πC={.6, .4, .2}. In order to be guarantee that the
revised beliefs are normalized then the inputs must be normalized3. The inputs
(λi, αi) for the revision operation here are of the form (ci, Π ′(ci)) or (ai, Π ′(ai))
and they are relative to an exhaustive and mutually exclusive set of events. Let
us now give an example about conditional beliefs.
Example. Let C be the class variable and Ai be an attribute respectively
associated with the domains DC={c1, c2, c3} and DAi={ai1 , ai2}. Assume that
πAi|c1={1, .4} (a short for the possibility distribution of attribute Ai in case
where C takes the value c1, namely πAi|C(ai1 |c1)=1 and πAi|C(ai2 |c1)=.4). If we
have new beliefs stating that π′

Ai|C(ai2 |c1)=.8 then the complete new inputs are
π′

Ai|c1
={1, .8} and the remaining beliefs of Ai in the class c2 and c3, namely the

conditional distributions πAi|c2 and πAi|c3 .

Note that in this case, the inputs (λi, αi) are of the form (aij |ck, Π ′(aij |ck))
and they are exhaustive and mutually exclusive as they cover each instance of
Ai in each class instance.

Step2: Revising the classifier with the new beliefs We present now our
solution for revising the beliefs encoded by a naive possibilistic network PNC
with new beliefs in the form of (λi, αi) where the events λi are exhaustive and
mutually exclusive and there is at least one event λi associated with αi=1. Note
also that by revising a naive possibilistic network, we mean revising only the
necessary local distributions since revising the structure of the network does not
make sense here. In order to revise PNC, we distinguish the following cases:

The input is a marginal distribution relative to a single variable
In this case, the new beliefs α1..αn are relative either to the class variable C or
on an attribute variable Ai. The revision of PNC is done as follows:

Case 1: The new beliefs are relative to the class variable C (namely αi=Π ′(ci)
where ci∈Dc): In this case, the revision of PNC is done by replacing the dis-
tribution πC encoding the old beliefs about C by the distribution π′

C where
∀ci∈DC , Π ′(ci)=αi. Hence we have the following proposition:
3 In case where the new beliefs regarding an attribute Ai are not normalized, then we

can easily normalize them by altering the conditional distribution πAi|C and πC (see
for instance [2] for more details). However, if the sub-normalized beliefs bear on the
class variable then there is no way to normalize it.
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Proposition 2. Let PNC be the naive possibilistic classifier and πPNC be the
joint possibility distribution encoded by PNC. Let PNC′ be the possibilistic
network obtained as follows:

– PNC and PNC′ have the same naive structure.
– The new possibility distribution of C is such that ∀ci∈DC , π′

C(ci)=αi.
– For each value aij of attribute Ai in the context of each class ck of C, π′

Ai|C(aij |ck)
= πAi|C(aij |ck).

Then for every instance cia1..an of CA1..An we have
π′

PNC(cia1..an)=αi*
πPNC(cia1..an)

ΠP NC(ci)
=πPNC′(cia1..an).

Proposition 2 states that the revised possibility degree of any variable configu-
ration computed from the revised network PNC′ or from the revised joint dis-
tribution π′

PNC are exactly equal. The proof is straightforward from the chain
rule and Jeffrey’s rule of Equation 14.

Case 2: The new beliefs are relative to an attribute Ai (namely αj=Π ′(aij )
where aij∈DAi): Here we have marginal beliefs about Ai but the network con-
tains a conditional distribution πAi|C associated with Ai in the context of the
class variable C. The following proposition formalizes how to revise PNC:

Proposition 3. Let PNC be the initial naive possibilistic classifier and πPNC

be the joint possibility distribution encoded by PNC. Let PNC′ be the
possibilistic network obtained as follows:

– PNC and PNC′ have the same structure.
– The distribution of C remains unchanged, namely ∀ck∈DC , π′

C(ck)=πC(ck).
– For each attribute Al�=i in the context of the class ck, π′

Al|C(alj |ck)=πAl|C(alj |ck).
– For the attribute Ai in the context of each class ck,

π′
Ai|C(aij |ck)=αij ∗

πAi|C (aij
|ck)

maxcm∈DC
(π(aij

|cm)∗π(cm))
.

Then for every instance cka1..an of CA1..An we have
π′

PNC(cka1..an)=αij *
πPNC(cka1..an)

ΠP NC(ck) =πPNC′(cka1..an).

Proposition 3 revises the initial beliefs encoded by the network PNC given new
marginal beliefs about the attribute Ai by revising the conditional distribution
πAi|C of Ai in the context of C. With ΠPNC(ai)=maxck∈DC (πAi|C(ai|ck)∗π(ck))
one can easily show that the revised possibilistic network PNC′ encodes exactly
the same joint distribution as the one obtained by revising the initial joint dis-
tribution πPNC using Jeffrey’s rule with the same inputs.

The input is a conditional distribution relative to a single variable. In
this case, the new beliefs are relative to an attribute variable Ai in the context
of the class variable (namely αijk=Π ′(aij |ck) where aij∈DAi and ck∈DC). The
revision of the initial network is achieved by simply altering the old conditional
distribution πAi|C as formalized in the following proposition:

Proposition 4. Let PNC be the initial naive possibilistic classifier encoding
the joint possibility distribution πPNC . Let PNC′ be as follows:



472 K. Tabia

– PNC and PNC′ have the same structure.

– The possibility distribution of C remains unchanged, namely ∀ck∈DC , π′
C(ck)=πC(ck).

– The new conditional possibility distribution of Ai in the context of C is such that
π′

Ai|C(aij |ck)=αijk.

– For each attribute Al�=i in the context of C, π′
Al|C(alj |ck)=πAi|C(alj |ck).

Then for every instance cka1..an of CA1..An we have
π′

PNC(cka1..an)=αijk*πPNC(cka1..an)
πAi|C(aij

|ck) =πPNC′(cka1..an).

In Proposition 4, we state that the revised network PNC′ encodes exactly the
same possibility distribution as πPNC revised with the new beliefs using Jeffrey’s
rule. The proof is straightforward by applying the chain rule on PNC′.

6 Summary and Conclusions

This paper addressed two important issues regarding possibilistic network-based
classifiers. After analyzing simple threshold-based reject rules for the ambiguity
and distance reject and the underlying interpretations, we introduced a new kind
of reject due to missing inputs. The ambiguity reject provokes ignorance in the
decision phase while distance reject reveals contradictions between the data in
hand and the classification model. Finally, the incompleteness reject occurs as
ambiguity or distance reject because of lack of evidence. As for complexity issues,
it is clear that the computational complexity of the ambiguity and distance reject
option rules is exactly the same as the one of classification without the reject
option. However, for the incompleteness reject option, finding the instance a′

is exponential in the number of missing attributes. The second important issue
addressed in this work is the one of revising a possibilistic network for concept
drift purposes. Our solution for revising a possibilistic network is simple and
intuitive and guarantees the same a posteriori beliefs as Jeffrey’s rule.

This paper provided preliminary results on some issues that have not been
dealt with before in possibilistic network classifiers. For instance, the solution
consisting in dealing with the concept drift problem as a belief revision problem
is original. In [8], the authors deal with case-based prediction using possibilistic
rules but did not deal with reject option. The authors in [18] only deal with
ambiguity and distance reject using the notions of typicality and fuzzy implica-
tions. As for revising a belief network, there exist some preliminary works [13]
for Markov networks but the problem of revising a possibilistic network to im-
plement the concept drift has never been conducted as far as we know. Some
related issues remain open for future works. More specifically, min-based possi-
bilistic counterparts of our contributions as well as generalizing them for general
network structures are quite straightforward. There remains also to deal with
the commutativity issue of our approach for revising a possibilistic network given
that Jeffrey’s rule is well-known to be not commutative. The issue of solution
existence and uniqueness also represents an interesting problem especially in the
min-based possibilistic setting.
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Abstract. Possibilistic answer set programming (PASP) unites answer
set programming (ASP) and possibilistic logic (PL) by associating cer-
tainty values with rules. The resulting framework allows to combine both
non-monotonic reasoning and reasoning under uncertainty in a single
framework. While PASP has been well-studied for possibilistic definite
and possibilistic normal programs, we argue that the current semantics
of possibilistic disjunctive programs are not entirely satisfactory. The
problem is twofold. First, the treatment of negation-as-failure in existing
approaches follows an all-or-nothing scheme that is hard to match with
the graded notion of proof underlying PASP. Second, we advocate that
the notion of disjunction can be interpreted in several ways. In particu-
lar, in addition to the view of ordinary ASP where disjunctions are used
to induce a non-deterministic choice, the possibilistic setting naturally
leads to a more epistemic view of disjunction. In this paper, we propose
a semantics for possibilistic disjunctive programs, discussing both views
on disjunction. Extending our earlier work, we interpret such programs
as sets of constraints on possibility distributions, whose least specific
solutions correspond to answer sets.

1 Introduction

Answer Set Programming (ASP) is a form of declarative programming based
on the stable model semantics [11] that allows to succinctly formulate and eas-
ily solve complex combinatorial problems. Possibilistic logic (PL) [7], which is
based on possibility theory [17], allows us to reason about (partial) ignorance
or uncertainty in a non-probabilistic way. Possibilistic ASP (PASP) [13,3] unites
ASP and PL and provides a single framework for declarative programming under
uncertainty. The certainty of a conclusion is then given by the lowest certainty
of the rules that were used to establish the conclusion (i.e. the strength of the
conclusion is determined by the weakest piece of information involved).
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The semantics of both ordinary and possibilistic ASP can be characterized as
constraints on possibility distributions [3]. Under this characterization we treat
a rule of the form ‘c ← a, not b’ intuitively as follows: we can conclude that ‘c’
is certain when we know that ‘a’ is certain and when it is consistent to assume
that ‘b’ is false. This characterization of ASP clearly highlights the intuition that
underlies ASP and the epistemic flavor of such rules. Indeed, when we know that
‘a’ is true and we do not know that ‘b’ is true then we conclude that ‘c’ should
be accepted as true. In the possibilistic case, when we attach certainty degrees
to the atoms and rules, we have that the certainty of the conclusion can be no
stronger than the certainty of the different pieces of information that were used
to deduce the conclusion.

When we consider disjunctions in the head of rules, then reasoning under this
epistemic view suggests that when we are certain of the body, we should accept
the head of the rule. For example, given the rules

a ∨ b←
c← a

c← b

the epistemic reading of the program is that we know that ‘a ∨ b’ is true and
that as soon as we know explicitly whether it is ‘a’ or ‘b’ that is true we can
conclude c. Hence, without any further information, we cannot conclude ‘c’ since
we only have the underspecified information that ‘a ∨ b’ is true. We would be
able to conclude ‘c’, however, if we had a rule c ← a ∨ b. This particular view
of disjunction does not correspond with the intuition in ordinary ASP. Indeed,
the semantics of disjunctive rules in ASP say that whenever the body of a rule
is satisfied, we should make a non-deterministic choice as to which atom in the
head of our rule is chosen to be true (alongside with a minimality requirement
on the resulting answer sets). Regardless, as we will see it is often the case that
when reasoning under uncertainty we are driven towards this epistemic view of
disjunction.

In this paper we examine the differences between these two treatments of
disjunction in the head using the framework of possibilistic logic. As we will see, if
we treat ASP rules as constraints on possibility distributions we naturally obtain
two ways in which we can interpret a disjunctive rule. In one case we retrieve the
semantics of ordinary disjunctive ASP (this interpretation of disjunction will be
called strong disjunction) and in the other case we retrieve the epistemic view of
disjunction (this interpretation of disjunction will be called weak disjunction).
The resulting characterizations of disjunctive ASP programs can then naturally
be generalized to possibilistic programs, where each rule is labelled with a degree
of certainty.

The remainder of this paper is organized as follows. In Section 2 we start by
introducing some background on ASP, PL and PASP. In Section 3 we present the
strong semantics for possibilistic disjunctive ASP. Then in Section 4 we present
the weak semantics for possibilistic disjunctive ASP. We discuss related work in
Section 5 and we conclude with Section 6 in which we provide our conclusions.
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2 Preliminaries

2.1 Answer Set Programming

To define ASP programs, we start from a finite set of atoms A. A naf-atom is
either an atom ‘a’ or an atom ‘a’ preceded by ‘not’ which we call the negation-
as-failure operator. Intuitively, ‘not a’ is true when we cannot prove ‘a’.

An expression of the form a0; ...; ak ← ak+1, ..., am, not am+1, ..., not an with
ai an atom with 0 ≤ i ≤ n is called a disjunctive rule. We call a0; ...; ak the head
of the rule (interpreted as a disjunction) and ak+1, ..., am, not am+1, ..., not an

the body of the rule (interpreted as a conjunction).
A positive disjunctive rule is a disjunctive rule without negation-as-failure,

i.e. n = m. A rule of the form a0; ...; ak ← is called a fact and is used as a
shorthand for a0; ...; ak ← � with � a special language construct that denotes
tautology.

A disjunctive program P is a finite set of disjunctive rules. The Herbrand base
BP of a disjunctive program P is the set of atoms appearing in P . An interpre-
tation I of a disjunctive program P is any set of atoms I ⊆ BP . A normal rule is
a disjunctive rule with exactly one atom in the head, i.e. k = 0. A definite rule
is a normal rule with no negation-as-failure, i.e. k = 0 and n = m. A normal
( resp. definite) program P is a finite set of normal (resp. definite) rules.

An interpretation I is a model of a positive disjunctive rule r = a0; ...; ak ←
ak+1, ..., am, denoted I |= r, if {a0, ..., ak} ∩ I �= ∅ or {ak+1, ..., am} �⊆ I, i.e. the
body is false or at least one of the atoms in the head is true. An interpretation
I of a positive disjunctive program P is a model of P iff ∀r ∈ P · I |= r.

The reduct [11,10] P I of a disjunctive program P w.r.t. an interpretation I is
defined as

P I ={a0; ...; ak ← ak+1, ..., am | ({am+1, ..., an} ∩ I = ∅)
∧ (a0; ...; ak ← ak+1, ..., am, not am+1, ..., not an) ∈ P}.

We say that I is an answer set of the disjunctive program P when I is a minimal
model w.r.t. set inclusion of P I .

The answer set of a definite program P can also be defined using the immediate
consequence operator TP , which is defined w.r.t. an interpretation I as:

TP (I) = {a0 | (a0 ← a1, ..., am) ∈ P ∧ {a1, ..., am} ⊆ I} .

We use P � to denote the fixpoint which is obtained by repeatedly applying TP

starting from the empty interpretation, i.e. the least fixpoint of TP w.r.t. set
inclusion, which is guaranteed to exist [16]. An interpretation I is an answer set
of a definite program P iff I = P �.

2.2 Possibilistic Logic

At the semantic level, possibilistic logic [7] is defined in terms of a possibility
distribution π on the universe of interpretations. For Ω = 2BP the set of all
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interpretations of a program P , we have that the possibility distribution is an
Ω → [0, 1] mapping which encodes for each interpretation (or world) I to what
extent it is plausible that I is the actual world. Rather than using certainty
degrees from [0, 1], we could use any linearly ordered set, together with an invo-
lutive order-reversing mapping. Intuitively, π(I) represents the compatibility of
the interpretation I with available information. By convention, π(I) = 0 means
that I is impossible and π(I) = 1 means that no available information prevents I
from being the actual world. Note that possibility degrees are mainly interpreted
qualitatively: when π(I) > π(I ′), I is considered more plausible than I ′. For two
possibility distributions π1 and π2 with the same domain Ω we write π1 > π2

when ∀I ∈ Ω ·π1(I) ≥ π2(I) and ∃I ∈ Ω ·π1(I) > π2(I). The satisfaction relation
|= is defined for a set of atoms A as A |= a iff a = � or a ∈ A, otherwise A �|= a.
Furthermore, A |= ¬a iff A �|= a.

A possibility distribution π induces two uncertainty measures that allow us
to rank propositions. The possibility measure Π is defined by [7]:

Π(p) = max {π(I) | I |= p}

and evaluates the extent to which a proposition p is consistent with the beliefs
expressed by π. The dual necessity measure N is defined by:

N(p) = 1−Π(¬p)

and evaluates to which extent a proposition p is entailed by available beliefs [7].
An important property that necessity measures have is min-decomposability

w.r.t. conjunction: N(p ∧ q) = min(N(p), N(q)) for all propositions p and q.
However, for disjunction only the inequality N(p∨ q) ≥ max(N(p), N(q)) holds.
As possibility measures are dual to necessity measures, they have the important
property of max-decomposability w.r.t. disjunction, whereas for conjunction only
the inequality Π(p ∧ q) ≤ min(Π(p), Π(q)) holds.

At the syntactic level, a possibilistic knowledge base Σ corresponds to a set of
constraints N(p) ≥ c where p is a propositional formula and c ∈ [0, 1] expresses
the certainty that p is the case. Typically, there will be many possibility distribu-
tions that satisfy these constraints. In practice, we are usually only interested in
the least specific possibility distribution of these possibility distributions, which
is the possibility distribution that makes minimal commitments, i.e. the largest
possibility distribution w.r.t. the ordering > defined above.

2.3 Possibilistic Normal ASP

Possibilistic ASP combines ASP and possibilistic logic [7] by associating a cer-
tainty value with atoms and rules. A possibilistic normal (resp. definite) rule is
a pair (r, λ) where r is a normal (resp. definite) rule and where λ ∈ [0, 1] is a cer-
tainty attached to r. We also write a pair (r, λ) as ‘λ: r’. A possibilistic normal
(resp. definite) program is a set of possibilistic normal (resp. definite) rules.

As we recalled in Section 2.1, in ASP, an answer set of a program P is an
interpretation that satisfies some additional requirements. Note that an interpre-
tation I of P can be thought of as a BP → {0, 1} mapping. As a generalization
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of this, in possibilistic ASP, an answer set of a program is a valuation V , which
is a BP → [0, 1] mapping, that satisfies the requirements formally defined in Def-
inition 1. This is the mechanism used to associate certainty values with atoms
appearing in a program. The intuition is that for an atom a ∈ BP , V (a) = c
means that we can derive with certainty c that a is true. For notational conve-
nience, we also use the set notation V = {ac , . . .}. In accordance with this set
notation, we write V = ∅ to denote the valuation in which each atom is mapped
to 0. We generally omit atoms and rules with an associated certainty of 0 due
to their triviality.

Possibilistic normal programs (and therefore also ordinary normal programs)
are interpreted in terms of constraints on possibility distributions. Intuitively,
an ordinary rule of the form ‘rule = (head ← body)’ says that we are able
to conclude that ‘head’ is true when we know that ‘body’ is true. When we
associate necessities with the information in ‘body’ and with ‘rule’ itself, then
we can only deduce ‘head’ with a certainty min {N(body), N(rule)}. Indeed,
the contribution of a single rule to the necessity with which its head is true
cannot be stronger than the necessity of the weakest information used to derive
the body of the rule. However, a stronger conclusion could be derived using
another set of rules, hence the ‘rule = (head ← body)’ induces the constraint
N(head) ≥ min {N(body), N(rule)}.

In the ordinary case, we tackle negation-as-failure by making certain assump-
tions about which atoms we will be able to derive (we guess an I) and then
checking whether our assumptions are stable (we verify that I = (P I)�). When
dealing with uncertain information, the assumptions we need to make are not
whether an atom is true or not, but rather with what certainty we will be
able to derive an atom. We make these assumptions by guessing a valuation V ,
i.e. an association of a necessity with each atom. At the end we verify whether
V (a) = N(a), i.e. whether our guess is stable. This is the possibilistic counter-
part of the ordinary reduct.

Definition 1. [3] Let P be a possibilistic normal program. Let V : BP → [0, 1]
be a valuation. For every p ∈ P , the constraint γV (p) induced by p = (r, λ)
with r = (a0 ← a1, ..., am, not am+1, ..., not an) and V is given by

N(a0) ≥ min {N(a1), ..., N(am), 1− V (am+1), ..., 1 − V (an), λ} .

We write C(P,V ) = {γV (p) | p ∈ P} to denote the set of constraints imposed by
program P . A possibility distribution that satisfies the constraints in C(P,V ) is
called a possibilistic model of C(P,V ). We write S(P,V ) for the set of all least
specific possibilistic models of C(P,V ). V is called a possibilistic answer set of P
iff there exists a π ∈ S(P,V ) such that ∀a ∈ BP · V (a) = N(a).

The ordinary case can be retrieved if we also require ∀a ∈ BP · N(a) ∈ {0, 1},
i.e. if for every atom we are entirely sure whether or not the atom is necessary.
The above definitions can then be used to characterize the semantics of ordinary
normal programs.



480 K. Bauters et al.

Proposition 1. [3] Let P ′ be a normal program, let P be a possibilistic normal
program such that P = {(r′, 1) | r′ ∈ P ′} and let V : BP → [0, 1] be a valuation.
If V is a possibilistic answer set of P and ∀a ∈ BP · V (a) ∈ {0, 1}, then M =
{a | V (a) = 1, a ∈ BP } is an answer set of P ′.

Before we extend the semantics to cover the case of disjunction in Section 3 and
4, we first provide an example of the possibilistic semantics applied to a PASP
program in order to further clarify the approach.

Example 1. Two common symptoms associated with fibromyalgia (a medical
disorder consisting of pain in muscle and joint tissue) are a feeling of weak-
ness and joint pain, where feeling weak without other causes is a telltale sign
of fibromyalgia. Our patient tells us that she is experiencing both symptoms.
However, the patient is known as a hypochondriac and is not entirely trustwor-
thy. In the past she sometimes complained about weakness without any grounds,
though she hardly ever complains about pain without an actual physical or men-
tal cause. Her sagging eyes hint at an iron deficiency (which might explain the
weakness in itself), though it is highly unlikely that sagging eyes by themselves
correctly identify an iron deficiency. We have the program P with the rules:

0.2: fibro ← pain
0.6: fibro ← weak ,not deficiency
0.9: pain ←
0.8: weak ←
0.1: deficiency ←

which induces the set C(P,V ) of constraints

{N(fibro) ≥ min {N(pain), 0.2} ,
N(fibro) ≥ min {N(weak ), 1− V (deficiency), 0.6} ,
N(pain) ≥ 0.9 , N(weak ) ≥ 0.8 , N(deficiency) ≥ 0.1}.

The set of least specific possibility models S(P,V ) is a singleton and π ∈ S(P,V ) is
defined as π(I) = 0.1 when I |= {¬p}, π(I) = 0.2 when I |= {p,¬w}, π(I) = 0.4
when I |= {¬f, p, w}, π(I) = 0.9 when I |= {f, p, w,¬d} and π(I) = 1 when
I |= {f, p, w, d}, where we use the first letter of the atom as abbreviation to save
space. The possibilistic answer set of this program is unique and is given by

V =
{
pain0 .9 ,weak0 .8 , deficiency0 .1 ,fibro0 .6

}
which can readily be verified.

We would also like to point out that, unlike the approach above, the approaches
from [13,14] do not take the extent of certainty of information into account when
determining the reduct of a PASP program. In these other semantics, any proof
of ‘a’, no matter how uncertain it is, suffices to eliminate the expression ‘not a’.
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Hence, in the example above, rule 2 would be eliminated based on rule 5, and we
would only be able to derive fibro0 .2 . This clearly is not the intended meaning
of the program as the limited certainty of an actual deficiency should not be
sufficient to dismiss the certainty we have in diagnosing fibromyalgia.

3 Strong Possibilistic Semantics

In this section we extend the semantics of possibilistic normal ASP [3] to disjunc-
tive programs, in a way which remains faithful both to ordinary disjunctive ASP
(see Section 2.1) and to the semantics from [6]. As necessity measures do not
have the max-decomposability property, we have a choice of how to interpret the
disjunction in the head. This is similar to the choice one has for the semantics
of disjunction when characterizing ASP using autoepistemic logic [12] or using
meta-rules in possibilistic logic [9]. A possibilistic disjunctive rule p = (r, λ) with
r = a0; ...; ak ← ak+1, ..., am, not am+1, ..., not an can either be interpreted as
the constraint

max {N(a0), ..., N(ak)} ≥ min{N(ak+1), ..., N(am),
1− V (am+1), ..., 1 − V (an), λ} (1)

which we will call strong disjunction or as the constraint

N(a0 ∨ ... ∨ ak) ≥ min {N(ak+1), ..., N(am), 1− V (am+1), ..., 1− V (an), λ} (2)

which we will call weak disjunction. This is a choice that does not arise for the
conjunction in the body since min-decomposability dictates that N(a∧ . . .∧z) =
min {N(a), . . . , N(z)}. However, for the disjunction, we only have N(a∨. . .∨z) ≥
max {N(a), . . . , N(z)}.

The choice of how to treat disjunction is an important one that profoundly
impacts the nature of the resulting answer sets. The main distinction between
strong and weak disjunction has to do with the way that we regard an answer
set. If we see an answer set as a solution to a problem, then the non-deterministic
nature of strong disjunction provides a useful way to generate different (candi-
date) solutions. If we take an answer set as a representation of an epistemic
state, then weak disjunction models the current state of belief.

In the remainder of this section we consider the characterization of disjunction
as (1). In Section 4 we consider the characterization of disjunction as (2).

As it turns out, the characterization of disjunction as (1) makes the disjunc-
tion behave as in ordinary ASP (see Section 2.1). Indeed, the interplay between
the strong possibilistic semantics of disjunction together with the requirement
that we are looking for the least specific possibility distribution ensures that dis-
junction induces a choice. Similar as in the ordinary case, the constraint (1) will
generate a number of possible outcomes. The requirement that we are looking
for the least specific possibility distribution behaves similarly as the requirement
of trying to find the minimal model. We will first give the general definition and
then we will illustrate the semantics using an ordinary disjunctive ASP program.
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Definition 2. Let P be a possibilistic disjunctive program and let V : BP →
[0, 1] be a valuation. For every p ∈ P with p = (r, λ), the constraint γs

V induced
by r = (a0; ...; ak ← ak+1, ..., am, not am+1, ..., not an) and V under the strong
possibilistic semantics of disjunction is given by

max {N(a0), ..., N(ak)} ≥ min{N(ak+1), ..., N(am),
1− V (am+1), ..., 1− V (an), λ}.

Cs
(P,V ) = {γs

V (r) | r ∈ P} is the set of constraints imposed by program P and
V . A possibility distribution that satisfies the constraints in Cs

(P,V ) is called a
possibilistic model of Cs

(P,V ). We write Ss
(P,V ) to denote the set of all least specific

possibilistic models of Cs
(P,V ). V is called a possibilistic answer set of P iff there

exists a π ∈ Ss
(P,V ) such that ∀a ∈ BP · V (a) = N(a).

Whenever P is a positive disjunctive program we have no need for a specific val-
uation V to pin down the constraints (since there is no negation-as-failure), and
we simplify the notation to γs, Cs

P and Ss
P . As before we retrieve the semantics

for the ordinary case if we require ∀a ∈ BP ·N(a) ∈ {0, 1}.

Example 2. Consider the program P with the single rule

0.7: a; b ← .

The set of constraints Cs
P is given by {max {N(a), N(b)} ≥ 0.7}. This constraint

induces a choice, i.e. we either need to pick N(a) = 0.7 or N(b) = 0.7 to conform
to the principle of least specificity. We can conclude that the two possibilistic
answer sets of P are given by

{
a0 .7

}
and

{
b0 .7
}
. This corresponds with the

non-deterministic intuition of the problem; we choose either ‘a’ or ‘b’ and assign
a certainty of 0.7 to the atom we choose.

Example 3. We cannot simply simulate disjunction using negation-as-failure, as
would be possible in the ordinary case. Indeed, the possibilistic normal program
that simulates program P from Example 2 would have the rules

0.7: a ← not b 0.7: b ← not a.

This program has an infinite set of possibilistic answer sets, with certainty de-
grees ranging from 0.3 to 0.7 for a and 1−N(a) for b. When trying to simulate
the rule from Example 2 we clearly do not want a possibilistic answer set such as{
a0 .4 , b0 .6

}
as this does not correspond with our intuition. This again highlights

the importance of satisfactory semantics for possibilistic disjunctive ASP.

As before, when we impose the additional constraint ∀a ∈ BP ·N(a) ∈ {0, 1} we
retrieve the ordinary semantics for disjunctive ASP.

Proposition 2. Let P ′ be a disjunctive program, let P be a possibilistic dis-
junctive program such that P = {(r′, 1) | r′ ∈ P ′}. Let V : BP → [0, 1] be a
valuation. If V is a possibilistic answer set of P and ∀a ∈ BP · V (a) ∈ 0, 1, then
M = {a | V (a) = 1, a ∈ BP} is an answer set of the disjunctive program P ′.
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Example 4. Consider the possibilistic disjunctive program P with the rules

1: a; b ← 1: a ← b.

which induces the constraints

max {N(a), N(b)} ≥ N(�) = 1 N(a) ≥ N(b).

Intuitively, the first constraint induces a choice. To satisfy the constraint, we
need to take either N(a) = 1 or N(b) = 1. Since N(a) = 1 = 1 − Π(¬a) tells
us that Π(¬a) = 0 = max {π(I) | I |= ¬a}, we have for every I with a /∈ I
that π(I) = 0 (and obviously when N(b) = 1 then π(I) = 0 whenever b /∈ I).
Depending on our choice of whether we take N(a) = 1 or N(b) = 1 (and since
N(a) = N(b) whenever N(b) = 1 due to the last constraint), we obtain two
possibility distributions π1 and π2 defined by:

π1({a, b}) = 1 π1({b}) = 0 π1({a}) = 1 π1({}) = 0

and

π2({a, b}) = 1 π2({b}) = 0 π2({a}) = 0 π2({}) = 0.

It is clear that π2 cannot be least specific since π1 > π2. We then have that
Ss

P only contains a single element, namely π1. With N the necessity measure
induced by π1 we obtain N(a) = 1 and N(b) = 0. The unique answer set of
P is thus

{
a1
}
, which indeed corresponds with the answer set of the ordinary

disjunctive program P ′ = {a; b←, a← b}.

4 Weak Possibilistic Semantics

The semantics we discussed thus far have a clear non-deterministic flavor: if
the antecedent is known, a rule declares that we should choose one or more
consequents to accept (and at the same time choose as few as possible). Under
this non-deterministic view the rule ‘a; b←’ means that a is believed to be true
or b is believed to be true. However, there are cases in which we do not want to
or cannot make a commitment. In other words, we want a rule ‘a∨b←’ to mean
that a or b is true, without clarifying whether it is a, b or both that are true.
In this sense we regard answer sets more as epistemic states than as possible
solutions to a problem.

In this section we first define an alternative semantics for disjunctive ASP
(different from the one in Section 2.1) and then extend it to possibilistic ASP.
Before we give an example of the semantics, we first note that when we use weak
disjunction it matters whether we model a sentence like “when it is raining or
snowing, you will get wet” as either wet ← rain ∨ snow or as the set of rules
{wet← rain, wet← snow}. Indeed, the latter implies that we can only derive
‘wet ’ after we have made the choice between ‘rain’ or ‘snow ’. To accommodate
for this we need to slightly alter the syntax of ASP.
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Definition 3. A clause e is a disjunction of one or more atoms. A clausal
rule is an expression of the form e0 ← e1, ..., em, not em+1, ..., not en with ei

a clause for every 0 ≤ i ≤ n. The clause e0 is called the head of the rule and
e1, ..., em, not em+1, ..., not en the body of the rule. A clausal program is a finite
set of clausal rules. A positive clausal program is a finite set of positive clausal
rules which are expressions of the form e0 ← e1, ..., em. The Herbrand base BP

of a clausal program P is redefined as being the set of clauses appearing in P .

It is easy to see that disjunctive programs are a special case of clausal programs.
We can now take a look at an example.

Example 5. We live in Ohio and we want to book a holiday trip. Either we go to
Venice, Rome or Florida (USA). After we have selected our destination, we can
book our trip. Also, as soon as we know that we go to either Venice or Rome we
need to arrange our visa so that we have it well before our departure date. We
have program P with the rules:

venice ∨ rome ∨ florida ←
book transportation ← venice

book transportation ← rome
book transportation ← florida

arrange visa ← venice ∨ rome

Definition 4. For a positive clausal program P we define the immediate conse-
quence operator T w

P w.r.t. a set of clauses E as:

T w
P (E) = {e0 | e0 ← e1, ..., em ∈ P ∧ ∀i ∈ {1, ..., m} · ∃e ∈ E · e ⊆ ei}

where we identify a clause with its set of atoms. We use P �
w to denote the fixpoint

which is obtained by repeatedly applying T w
P starting from the empty interpreta-

tion, i.e. this is the least fixpoint of T w
P w.r.t. set inclusion. An interpretation E

is called an answer set of a positive clausal program P iff it is a minimal set of
clauses for which E |= P �

w.

Proposition 3. The operator T w
P is monotonic.

Note that this definition of the immediate consequence operator is a general-
ization of the immediate consequence operator for a definite program from Sec-
tion 2.1. Indeed, for a positive clausal program where all clauses contain only a
single atom, i.e. a definite program, we have that P � = P �

w. Also note that a
positive clausal program always has a unique answer set.

Example 6. We again consider Example 5. It is easy to see that the unique an-
swer set of program P is {venice ∨ rome ∨ florida}. Indeed, without any further
information we cannot derive anything but the disjunction itself.

Proposition 4. Let P be a positive clausal program. We can compute the unique
answer set of P in polynomial time.
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Thus we find that weak disjunction has a lower complexity than strong dis-
junction (which is in NP when we only have rules without negation-as-failure
and otherwise in ΣP

2 [1]). This is clearly due to the fact that there is no non-
determinism and that the unique answer set can be found using an iterative
procedure. This does, however, imply that we can reason with certain forms of
disjunction in an intuitive way without requiring additional complexity. This is
an advantage of weak disjunction since many situations that involve disjunc-
tion and have uncertainty tend to lead to an epistemic view, for which weak
disjunction offers a lower complexity than strong disjunction.

To define the concept of an answer set of an arbitrary (not necessarily positive)
clausal program we also need to redefine the reduct for clausal programs. As in
the ordinary case, we want that ‘not e’ is removed whenever the clause ‘e’ is
satisfied, i.e. ‘not e’ is true when there does not exist an e′ ∈ E such that e′ ⊆ e.
In other words, the guess E reflects what we think that we are capable of deriving
from the program and we need to verify that this is indeed the case.

Definition 5. Given a clausal program P and a set of clauses E, the reduct PE

of P w.r.t. E is defined as

PE ={e0 ← e1, ..., em | ∀i ∈ {m + 1, ..., n} · ∀e ∈ E · e �⊆ ei

∧ (e0 ← e1, ..., em, not em+1, ..., not en) ∈ P}.

We say that E is an answer set of the clausal program P iff (PE)�

w = E, i.e. if
E is the answer set of the reduct PE .

Example 7. Consider the following clausal program P :

a ∨ b← c← d← not (a ∨ b ∨ d) e← not c.

The reduct PE with E = {a ∨ b, c, e} is then:

a ∨ b← c←

since {a, b} ⊆ {a, b, d} and {c} ⊆ {c}. The answer set of the reduct PE is given
by (PE)�

w = {a ∨ b, c}, hence E is not an answer set of P since (PE)�

w �= E.

We now extend the semantics to the case of possibilistic clausal programs which
are finite sets of possibilistic clausal rules p = (r, λ) with r a clausal rule.

Definition 6. Let P be a possibilistic clausal program. Let V : BP → [0, 1] be
a valuation. For every p ∈ P where we have that p = (r, λ) and r = (e0 ←
e1, ..., em, not em+1, ..., not en) the constraint γw

V induced by r under the weak
possibilistic semantics is given by

N(e0) ≥ min {N(e1), ..., N(em), 1 − V (em+1), ..., 1− V (en), λ} . (3)

Cw
(P,V ) = {γw

V (r) | r ∈ P} is the set of constraints imposed by program P and
V . A possibility distribution that satisfies the constraints in Cw

(P,V ) is called a
possibilistic model of Cw

(P,V ). We write Sw
(P,g) to denote the set of all least specific

possibilistic models of Cw
(P,V ). V is called a possibilistic answer set of P iff there

exists a π ∈ Ss
(P,V ) such that ∀e ∈ BP · V (e) = N(e).
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Example 8. Let us consider the program P from Example 2, yet this time using
the weak semantics for disjunction. We have the program Q with the single rule

0.7: a ∨ b ← .

The set of constraints Cw
Q is this time around given by {N(a ∨ b) ≥ 0.7}. The

unique possibilistic answer set of Q is given by
{
(a ∨ b)0 .7

}
, which is also an

intuitively satisfactory result.

We now direct our attention to the discussion of how one should treat a con-
straint, which are rules of the form ‘← ak+1, ..., am, not am+1, ..., not an’, in a
(disjunctive) possibilistic ASP program.1 If we look at the intuition that under-
lies constraints in ordinary ASP, then it seems natural to treat a constraint such
as ‘← a, b’ as N(a∧ b) = 0, i.e. it is not possible that both atoms are true at the
same time. The next definition extends Definition 6 by formalizing possibilistic
constraints.

Definition 7. Let P be a possibilistic clausal program. Let V : BP → [0, 1]
be a valuation. For every possibilistic constraint p with p ∈ P , p = (r, λ) and
r = (← e1, ..., em, not em+1, ..., not en) we define the associated constraint γw

g

induced by r by

N(e1 ∧ ... ∧ em) ≤ 1−min {λ, 1− V (em+1), ..., 1− V (en)} . (4)

Example 9. If we once again consider Example 5 we can extend the program
P with the rule ‘← florida ’. The unique answer set of the program is then
{rome ∨ venice, arrange visa}. Indeed, with the additional knowledge that we
will not be traveling to Florida we can readily conclude that we should arrange
our visa. However, as desired, we still cannot conclude that we should book our
transportation, which we can only do as soon as we pick either Venice or Rome
as the actual destination.

It is important to note, however, that adding constraints to a positive clausal
program affects its complexity. Indeed, finding whether an atom belongs to an
answer set of a positive clausal program which, in addition, has possibilistic
constraints, is NP-complete.

Proposition 5. Let P be a possibilistic positive clausal program with possibilis-
tic constraints. Finding whether P has a possibilistic answer set is NP-complete.

Proof. (sketch) We can readily simulate 3SAT using positive clausal programs
and possibilistic constraints. Let φ = (l11 ∨ ... ∨ l13) ∧ . . . ∧ (ln1 ∨ ... ∨ ln3) be an
expression in conjunctive normal form where all clauses have 3 literals (i.e. either

1 Note that one way to treat such constraints in ordinary ASP is to simulate these
constraints as θ ← not θ, ak+1, ..., am, not am+1, ..., not an with θ a fresh atom.
However, similar as to Example 3 we would end up with many possibilistic answer
sets, i.e. the simulation does not succeed in eliminating undesired solutions.
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an atom or the negation of an atom). Let P be a positive clausal program with
a rule p = (r, 1) and r = (l′i1 ∨ ... ∨ l′i3 ←) for every clause in φ and where l′ is
l when l = a is an atom and l′ is a fresh atom l when l = ¬a. For every literal
l in φ we also add the possibilistic constraint p = (r, 1) with r = (← l, l). It is
then easy to see that φ has a model if and only if P has an answer set. ��

The same complexity result hold for clausal programs without certainty weights.

5 Related Work

A large body of research has been devoted to combining uncertainty with ASP.
Different approaches are proposed in the literature depending on whether the
uncertainty is treated in a qualitative or quantitative way. When uncertainty
is treated in a quantitative way, probability theory seems to be the most often
used. For example, in [2] uncertain information is encoded as a probabilistic
atom which, intuitively, describes the probability that the atom will take on a
certain value in some random selection given some other known evidence.

The most popular approach for dealing with uncertainty in a qualitative way is
possibility theory. Combining possibility theory with logic programming was an
idea first proposed in [7]. The work in [13] was one of the first papers to explore
the idea of combining possibility theory with ASP. This work was later extended
to also cover the case of disjunctive ASP in [14]. It was, however, noted in [3]
that the semantics from [13,14] offer unintuitive results in certain cases since
neither approach takes the certainty into account when dealing with negation-
as-failure. This problem was discussed in [3] and a new characterization of normal
ASP programs was established based on constraints on possibility distributions,
which can naturally be generalized to cover possibilistic normal ASP programs.

Alternative semantics for PASP exist in the form of pstable models [15,4].
Yet these models are closer to the intuition of classical models than they are
to the intuition of stable models as used in ASP. Hence the intuition that is
captured by pstable models is different, where the focus is more on finding rea-
sonable results in programs faced with uncertainty and which are inconsistent.
There is a formal connection between the approach from [3] and the work on
residuated logic programs [5] under the Gödel semantics. Both approaches are
different in spirit, however, in the same way that possibilistic logic (which deals
with uncertainty or priority) is different from Gödel logic (which deals with
graded truth). The formal connection is due to the fact that necessity measures
are min-decomposable. The work in this paper clearly differs from the work on
residuated logic programs since necessity measure are not max-decomposable,
which highlights that possibilistic logic is not truth-functional in general [8].

6 Conclusion

In this paper we have introduced the semantics of possibilistic disjunctive ASP
in terms of constraints on possibility distributions. This provides us with natural
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semantics for dealing with possibilistic disjunctive ASP pervaded by uncertainty.
We explored two different views of disjunction, the non-deterministic view as
found in ordinary disjunctive ASP as well as a more epistemic view of disjunction.
These two views are unearthed by the two distinct ways in which we can interpret
a disjunctive rule as a constraint on possibility distributions. Due to the epistemic
nature of possibilistic logic we find that the epistemic view of disjunction is
oftentimes the one that offers the most intuitive understanding of the problem.
Finally, we also examined the complexity of weak disjunction.
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t-DeLP: A Temporal Extension of the Defeasible Logic
Programming Argumentative Framework
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Abstract. The aim of this paper is to offer an argumentation-based defeasi-
ble logic that enables temporal forward reasoning. We extend the DeLP logical
framework by associating temporal parameters to literals. A temporal logic pro-
gram is a set of temporal literals and durative rules. These temporal facts and
rules combine into durative arguments representing temporal processes, that per-
mit us to reason defeasibly about future states. The corresponding notion of logi-
cal consequence, or warrant, is defined slightly different from that of DeLP, due
to the temporal aspects. As usual, this notion takes care of inconsistencies, and
in particular we prove the consistency of any logical program whose strict part
is consistent. Finally, we define and study a sub-class of arguments that seem
appropriate to reason with natural processes, and suggest a modification to the
framework that is equivalent to restricting the logic to this class of arguments.

1 Introduction

In this contribution, we present an argumentation-based temporal defeasible logic,
t-DeLP, with temporal literals (for facts) and durative strict or defeasible rules defin-
ing temporal logical programs. The main motivation is to reason about interacting pro-
cesses modeling them as arguments (combinations of facts and rules). An argument
expresses some delay between each premise (cause) and the conclusion (effect), thus
suggesting how a process might evolve. Since different arguments (process descrip-
tions) might conflict, a dialectical procedure is proposed that decides which arguments
are undefeated, thereby defining the set of logical consequences of a logical program.

An important feature of defeasible logics is the logical parsimony one obtains both at
the level of representing knowledge bases (like for the family of non-monotonic logics),
as well as regarding the associated logical machinery. This parsimony is in accordance
with everyday causal reasoning, where it is standard practice to list only those causes
that are uncommon or specific to the process (e.g. a spark, rather than oxygen-in-air is
listed among the causes of fire). Other causes are only mentioned if their actual absence
explains the non-occurrence of the effect (in absence of oxygen, a spark does not cause
a fire).

Among non-monotonic logics, those based on an argumentation process present sev-
eral advantages. First, logical consequence relations built upon arguments are based on
a preference relation (between conflicting arguments) which is more expressive than the
priority relation of purely rule-based approaches. Another advantage of argumentation-
based logics is that these mirror the inference mechanisms of a deliberating human
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agent (or set of agents), thus producing logical formalisms that appear more natural and
conceptually transparent.

An important contribution along these lines is Garcı́a and Simari’s [7]. The authors
present an argumentation-based defeasible logic, called DeLP, and discuss several is-
sues related to application domains. For instance, the question of which criteria the pref-
erence relation should be based upon is discussed at length. These criteria play a central
role in argumentation-based logics, since they determine which relation of defeasible
logical consequence, or warrant, one obtains. Among other alternatives, a formal crite-
ria based on a preference for more (or more specific) information is suggested in [7]: the
more premises criterion and the more direct rules criterion. But since the latter criterion
conflicts with durative rules, it will not be considered here.1 Other genuinely temporal
or causal features cannot be modeled as in DeLP either, and must be adapted from [7].
These are mainly due to the temporal asymmetry (past vs. future) of causation. Thus,
persistence, the attack relation and the formal criteria for preference are among the el-
ements deserving special attention for the temporal case. As a consequence, the notion
of warrant for (temporal) literals is slightly different than that studied in [7].

Another reason to use defeasible logic, more to the point of the present contribution,
is its ability to reason with interactions between different processes or between differ-
ent aspects of a given process. In t-DeLP, the value of a parameter in a process evolves
according to the conclusions of the sequence of undefeated arguments representing this
process at increasing time-points. If an internal cause or influence is just part of the
support of an argument, an external influence can be seen, from a logical point of view,
as a contradiction obtaining between two arguments. These interactions between pro-
cesses reflect the fact that causal laws occurring in their description are conceived in
idealized or isolated conditions, so in practice instances of laws may contradict each
other. The temporal argumentation framework t-DeLP permits to naturally address the
problem posed by these contradictions in a compact way. This system does detect and
remove all the contradictions that exist in a given logical program. Moreover this logic
can compute the positive facts resulting from these interactions, if the logical program
is supplied with sufficient knowledge.

The paper is structured as follows: after some preliminaries, we present t-DeLP logic
and study some of its logical properties. In particular we prove that any temporal logical
program outputs a consistent set of warranted literals. As a consequence, when logical
programs restrict its strict information to facts (i.e. all rules are defeasible), the resulting
notion of warrant is a consequence operator. Finally, we focus on the study of a particu-
larly interesting sub-class of arguments that presumably capture natural processes. We
produce a counter-example showing that if we do not restrict temporal arguments to this
class some unintuitive consequences may occur. Then we revise some of the definitions
to prune these counterexamples, and show that this revised notion of warrant coincides
with warrant restricted to arguments in the class. We also discuss if these problematic
cases can be prevented by faithful representations.

1 This criterion captures the preference for {penguins do not fly} over {penguins are birds, birds
fly}. It might still apply between non-durative arguments in t-DeLP, though evidence-based
reasoning lies out of the scope of this paper.
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Notation. We will use the following conventions: strong negation is denoted ∼p, for
a propositional variable p ∈ Var. Given two sets X, Y we denote the size of X as
|X |, set-theoretic difference as X � Y , the power set of X as P(X), and the Cartesian
product of X and Y as X ×Y , or X2 for X ×X ; X<ω is the set of finite sequences of
elements of X . If f is a function f : X → Y and X ′ ⊆ X , we define f [X ′] = {f(a) ∈
Y | a ∈ X ′}. Given a family of sets M, its union is denoted

⋃
M.

2 Knowledge Representation

Our language builds upon a set of temporal literals, consisting of a pair 〈literal, time〉.
Literals are expressions of the form p,∼p from a given set of variables p ∈ Var. Strong
negation∼ cannot be nested, so we will use the following notation over literals: if � = p
then ∼� will denote ∼p, and if � = ∼p then ∼� will denote p. These literals, though,
might rather be seen as ground predicates, of the form literal = (object, property) or
also literal = (object, parameter, value).

Time is relevant to determine whether a pair of temporal literals contradict each
other: for this contradiction to exist, the literals expressed must be the negation of each
other and they must be claimed to hold at the same time. A temporal or causal state-
ment (possibly an instance of some general law) is represented as a rule: a set of tuples
〈(object, parameter, value), time〉 imply a tuple 〈(object, parameter, value), time〉; rules
with no duration (delay) stand for static or structural constraints.

In any case, literals of the form 〈(object, parameter, value), time〉 tacitly require
some constraints to be satisfied: an object cannot have different values of a given
parameter at a given time. These absolute constraints, represented by strict rules,
can be seen as induced by a family of sets of pairwise incompatible literals X =
{(o, p, v), (o, p, v′), . . .}, for fixed p and o (these literals are also called mutex in the
literature, for mutual exclusion). Similarly, defeasible rules may represent contingent
constraints.

Example 1. Let O and L be the sets of objects o and locations l; and let @(o, l) ∈ Var
denote: o is at l;

– the at most one location per object policy is defined by a set {o} × L for each
o ∈ O; this set induces rules of the form 〈∼@(o, l), t〉 ← 〈@(o, l′), t〉, if l �= l′.

– the at most one object per location policy is defined by a setO×{l} for each l ∈ L;
this set induces rules 〈∼@(o, l), t〉 ← 〈@(o′, l), t〉, if o �= o′.

The orientation↗ (o, y) of an object o can be used to constrain the location of bound
parts o0, o1 w.r.t. each other and reason with the motion of rigid objects2:

〈@(o0, x0), t〉 −� 〈@(o1, x1), t〉, 〈↗ (o1, y1), t〉, 〈bound(o0, o1), t〉.

3 t-DeLP: Defeasible Logic with (discrete) Time

We take the set of natural numbers N as our working set of discrete time points. The
logic t-DeLP is based on temporal literals 〈�, t〉, where � is a literal and t ∈ N, denoting

2 For reasons of space, though, the examples presented below to illustrate t-DeLP rather involve
qualitative reasoning.
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� holds at t. In order to solve conflicts between arguments the preference (or defeat)
relation between arguments is based on: a preference for arguments with more premises
and for longer arguments over its parts (so an argument can defeat the persistence of
its subarguments’ conclusions, if inconsistent with them). Arguments that make only
use of strict information are also preferred to arguments conflicting with them. A final
criterion, less durative rules, is not considered here.3

Definition 1. Given a finite set of propositional variables Var, we define Lit = Var ∪
{∼p | p ∈ Var}. The define set of temporal literals TLit = {〈�, t〉 | � ∈ Lit, t ∈ N}.
If Γ ⊆ Lit, we say that Γ is consistent if there is no p ∈ Var such that p,∼p ∈ Γ . If
Γ ∗ ⊆ TLit, we say that Γ ∗ is consistent if each Γ ∗

t := {� | 〈�, t〉 ∈ Γ ∗} is consistent.

Definition 2. A temporal defeasible (resp. strict rule) is an expression δ of the form
〈�, t〉 −� 〈�0, t0〉, . . . , 〈�n, tn〉 (resp. 〈�, t〉 ← 〈�0, t0〉, . . . , 〈�n, tn〉), where t ≥
max{t0, . . . tn}. We write head(δ) = 〈�, t〉, body(δ) = {〈�0, t0〉, . . . , 〈�n, tn〉} and
literals(δ) = {head(δ)} ∪ body(δ).

A strict rule with an empty body, e.g. 〈�, t〉 ←, also denoted 〈�, t〉, represents a basic
fact that holds at time t. (As usual in DeLP -see [7], [4]- basic defeasible facts, or
presumptions, 〈�, t〉 −� are not considered). A strict rule δ ∈ Π preserves the truth
from body(δ) to head(δ) (plus it preserves its being strictly derived). A defeasible rule
δ ∈ Δ states a weaker claim: if the premises are true, this is in principle a reason for
believing that the conclusion is also true (though this conclusion may be withdrawn
for other reasons). A special subset of rules is that of persistence rules, of the form
〈�, t+1〉 ← 〈�, t〉 or 〈�, t+1〉−�〈�, t〉, stating that � is preserved from t to t+1 (if true
at t) and, resp., that ceteris paribus it will persist at t + 1. The set of defeasible (strict)
persistence rules will be denoted Δp (resp. Πp).

Example 2. 〈∼tuesday, t+24〉 ← 〈tuesday, t〉 and 〈wednesday, t+24〉 ← 〈tuesday, t〉,
where time units are hours, are examples of strict rules with a temporal delay. 4

Definition 3. A temporal DeLP program, or t-de.l.p., is a pair (Π, Δ), where Π is a
set of temporal strict rules, Δ a set of temporal defeasible rules and the set of derivable
literals from Π is consistent.

Temporal rules as above can be seen as instances of general rules of the form δ∗ =
� ← (�0, d0), . . . , (�n, dn) -and similarly for defeasible rules with −� -, where each di

expresses how much time in advance must �i hold for the rule to apply and produce a
derivation of �. Such a general rule is to be understood as a shorthand for the set of rules
{〈�, t〉 ← 〈�0, t− d0〉, . . . , 〈�n, t − dn〉 | t ∈ N, t ≥ max{d0, . . . , dn}}. For example,
the rule 〈p, 4〉 −�〈q, 3〉 would be an instance of the general rule p−�(q, 1). Persistence
rules can therefore be expressed as general rules of the form �← (�, 1) or �−�(�, 1); the
latter defeasible general persistence rule for � will be denoted δ�. The formal definitions
do make use only of instances of general rules, i.e. temporal rules only.

3 This is important, since rules with long duration might fail to detect conflicts, (so, e.g. the
program might fail to predict that two balls running into each will collide). Instead, we will
assume rules are precise enough.

4 Note the condition that body(δ) occurs no later than head(δ) in Def. 2 prevents strict rules
with positive delay (like in this example) to be closed under transposition, cf. [3].
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Example 3. Consider the next example (with arguments). Lars, a tourist visiting the
Snake Forest, has been bitten by a venomous snake. The poison of this type of snake
does kill a person in 3 hours (A). But since our subject, Lars, is experienced (it has been
bitten and cured a few times before), he may resist up to 5 hours (B0,B1). We decide
to take him to the nearest hospital, which in normal conditions this would take 2 hours
(C), but since today is sunday, the traffic jam makes it impossible to reach the hospital
in less than 4 hours (D0,D1). The antidote takes less than an hour to become effective
(δ�). This scenario is modeled by the following temporal facts and general rules:

Π = { 〈@forest(Lars), 0〉, 〈bitten(Lars), 0〉, 〈exp(Lars), 0〉,
〈∼dead(Lars), 0〉, 〈sunday, 0〉}

Δ = { dead(Lars) −� (bitten(Lars), 3) A
∼dead(Lars) −� (bitten(Lars), 3), (exp(Lars), 3), (∼dead(Lars), 3) B0

dead(Lars) −� (bitten(Lars), 5), (exp(Lars), 5), (∼dead(Lars), 5) B1

@hospital(Lars) −� (bitten(Lars), 2), (@forest(Lars), 2), (∼dead(Lars), 2) C

∼@hospital(Lars) −�
{

(traffic.jam, 2), (bitten(Lars), 2), (exp(Lars), 2),
(∼dead(Lars), 2), (∼@hospital(Lars), 2)

}
D0

@hospital(Lars) −�
{

(traffic.jam, 4), (bitten(Lars), 4), (exp(Lars), 4),
(∼dead(Lars), 4), (∼@hospital(Lars), 4)

}
D1

traffic.jam −� (sunday, 0) Dx

∼dead(Lars) −� (@hospital(Lars), 1), (bitten(Lars), 1), (∼dead(Lars), 1) } δ�

For this example, Δp contains persistence rules for all literals except those of the form
∼@location(Lars). We prove below in t-DeLP that Lars survives the snake attack.

Derivability in t-DeLP, denoted by �, is defined (as in DeLP) by closure under the
modus ponens rule: (Π, Δ) � 〈�, t〉 if 〈�, t〉 ∈ Π ; and (Π, Δ) � head(δ) if (Π, Δ) �
〈�′, t′〉 for each 〈�′, t′〉 ∈ body(δ) and some δ ∈ Π ∪Δ. As it happens in DeLP, the set
of derivable literals in (Π, Δ) will not in general be consistent.

Definition 4. Given a t-de.l.p. (Π, Δ), an argument for 〈�, t〉 is a setA ⊆ Π ∪Δ, such
that

(1) A � 〈�, t〉,
(2) the set of derivable literals from Π ∪ A is consistent,
(3) A is ⊆-minimal satisfying (1) and (2).

Thus, arguments are consistent minimal derivations (i.e. without redundant informa-
tion). In Example 3, each argument (e.g. D0) is made of the rules in Δ labeled by this
argument (D0,Dx in this case). Observe that, although Π and Δ may be infinite (due
to the coding of general rules as an infinite set of temporal rules), an argument for a
t-de.l.p. (Π, Δ) will be always a finite subset of Π ∪Δ. We also define for an argument
A for 〈�, t〉:

concl(A) = 〈�, t〉 base(A) = {δ ∈ A | body(δ) = ∅}
literals(A) = (

⋃
body[A]) ∪ head[A] ‖A‖ = t− t(A)

where t(A) = min{t′ ∈ N | 〈�′, t′〉 ∈ base(A)}.
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In contrast to DeLP, we make explicit in argumentA which is the strict information
used, to facilitate the detection of inconsistencies with an intermediate step of A in its
strict part. The reason is that there exist many possible ways to complete defeasible
rules in A into a derivation for concl(A). And these different ways may be attacked
by different arguments. For example, the sets {〈p, 4〉 ← 〈q, 2〉, 〈q, 2〉 ← 〈r, 1〉, 〈r′, 0〉}
and {〈p, 4〉 ← 〈s, 3〉, 〈s, 3〉 ← 〈r, 1〉, 〈r′, 0〉} may both complete the set of defeasible
rules {〈p′, 5〉 −� 〈p, 4〉, 〈r, 1〉 −� 〈r′, 0〉} ⊆ Δ into an argument (derivation) for 〈p′, 5〉,
but only the latter is attacked by an argument concluding 〈∼s, 3〉.

Fig. 1. Facts (rectangles) and rules (triangles) in grey define the delay ‖A‖ of argument A

Now we define a sub-argument of A. A sub-argument will be the actual target of an
attack by another argument.

Definition 5. Let (Π, Δ) be a t-de.l.p. and let A be an argument for 〈�, t〉 in (Π, Δ).
Given some 〈�0, t0〉 ∈ literals(A), a sub-argument for 〈�0, t0〉 is a subset B ⊆ A such
that B is an argument for 〈�0, t0〉.

Notice that each literal 〈�0, t0〉 in an argument A uniquely determines its corre-
sponding subargument, that we will denote by A(〈�0, t0〉). For example, in Figure 1,
A(head(δ2)) = {δ2, δ3, δ4, 〈�′, t′〉, . . .}.

Definition 6. Given a t-de.l.p. (Π, Δ), let A0 an argument for 〈�0, t0〉 and let A1 an
argument for 〈�1, t1〉. We say A1 attacks A0 if there exists a subargument B of A0 for
〈∼�, t1〉 and Δ ∩ B �= ∅. In this case we say that A1 attacksA0 at B.

Notice that if A1 attacksA0 at B, B cannot only consist of strict information, in partic-
ular of a strict fact: B �= {〈�, t′〉}.
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Fig. 2. The Snake Bites Lars scenario

Example 4. (Cont’d) See Figure 2 for an illustration of Example 3. The arguments re-
lated by an arrow attack each other: C1, B0 attack A and viceversa. But there are asym-
metries in the quantity of information supporting each argument. Intuitively, we have (1)
argumentB0 should prevail overA since it is based on more information (premises); (2)
the argument D1 for 〈@hospital(Lars), 4〉 should be preferred over the argument E for
〈@forest(Lars), 4〉 that merely uses persistence, from of 〈@forest(Lars), 0〉; the idea is
thatD1 contains more recent information: E is just asub-argument of D1 extended with
defeasible persistence rules. Finally, rephrase Example 3 with these rules: black-spotted
snakes are generally poisonous, while green snakes are generally harmless. (3) If Lars
was bitten by a green black-spotted snake, we would not be able to decide whether he
has been poisoned or not, since reasons for and against would not dominate each other.

As in DeLP, one refines the relation of attack relation into a defeat relation to decide
which argument prevails in case of an attack. This relation can be in principle specified
by the user, but in this paper we adopt the following definition in order to meet the
above intuitive preferences in Example 4 above.

Definition 7. Let A1 attack A0 at B, where concl(B) = 〈�, t〉. We say:

- A1 is a proper defeater for A0 iff A1 ⊆ Π , or base(A1) � base(B), or

for some t′ < t, A0 = A1(〈�, t′〉) ∪ {〈�, t′′ + 1〉 −� 〈�, t′′〉 | t′ ≤ t′′ < t}.
Otherwise,
- A1 is a blocking defeater for A0 iff base(A1) � base(B) or base(A1) = base(B)

Blocking and proper defeat relations are denoted, resp., A1 ≺, A0, andA1 , A0.

Thus, a strict set of rules is a proper defeater for any argument attacked by it. In the
other cases, a properly defeated argument A0 either has less premises than (case (1)
of Example 4) or is a sub-argument of its defeater A1, extended with a sequence of
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‖A1‖− ‖B‖ instances of persistence rule δconcl(B) (case (2) of Example 4). In the latter
case we say thatA1 is a longer argument thanA0. (ObserveA1 does not defeat its sub-
argument, only the δ�-extension of it. See Figure 3 (top left) for an illustration.) Finally,
note that since Π is assumed to produce a consistent set of derivable literals and the
other two conditions for being a proper defeater are asymmetric relations, no pair of
arguments can be a proper defeater for each other. Blocking defeaters are defined to
satisfy case (3) of Example 4. In Figure 2, arguments defeated by some argument are
depicted as grey.

An argument B defeating A can at its turn have its own defeaters C, . . . and so on.
These give rise to argumentation lines where each argument defeats its predecessor. In-
tuitively, the notion of defeat in an argumentation line [. . . ,A,B, C, . . .] should exclude
a blocking defeater C for B as a defeater, provided that B is already blocking defeater
forA. (The reason is that otherwise, we could have cycles [. . . ,A,B,A,B, . . .].) Other
forms of cyclic defeats are also excluded in the definition.

Definition 8. (Adapted from [7]) Let A1 be an argument in (Π, Δ). An argumentation
line for A1 is a sequence Λ = [A1,A2, . . .] where

(i) supporting arguments, i.e. in odd positions A2i+1 ∈ Λ are jointly M-consistent,
and similarly for interfering argumentsA2i ∈ Λ

(ii) a sub-argument ofAi can occur later in Λ, i.e. as Ai+2j only if ‖Ai+2j‖ < ‖Ai‖
(i.e. its duration is stricly less than that of Ai) 5

(iii) Ai+1 is a proper defeater forAi if Ai is a blocking defeater forAi−1

The union of maximal argumentation lines Λ forA1 is the dialectical tree for A1:
T(Π,Δ)(A1) =

⋃
{Λ ∈ (Π ∪Δ)<ω | Λ is a maximal argumentation line forA1}

Example 5. (Cont’d) Define E+ = E ∪{〈∼@hospital(Lars), 4〉 ← 〈@forest(Lars), 4〉};
andD+

1 = D1∪{〈∼@forest(Lars), 4〉 ← 〈@hospital(Lars), 4〉}. Note thatD+
1 properly

defeats E+ at E . Both [E ,D1, E+,D+
1 ] and [D1, E+,D+

1 ] are maximal arg. lines.

The next bottom-up marking procedure on the tree T(Π,Δ)(A1) decides whether A1 is
undefeated in (Π, Δ).

Definition 9. (From [7]) Let T = T(Π,Δ)(A1) be the dialectical tree for A1. Then,

(1) mark all terminal nodes of T with a U (for undefeated);
(2) mark a node B with a D (for defeated) if it has a children node marked U ;
(3) mark B with U if all its children nodes are marked D .

See Figure 3 (right) for an example of a dialectical tree with rootA1. Arguments marked
U are represented white, and those marked D are represented black.

Definition 10. Given a t-de.l.p. (Π, Δ), we say 〈�, t〉 is warranted in (Π, Δ) iff there
exists an argument A1 for 〈�, t〉 in (Π, Δ) such that A1 is undefeated in T(Π,Δ)(A1).
We will denote by warr(Π, Δ) the set of warranted literals in (Π, Δ).

5 This is a weaker condition that in DeLP, where no sub-argument at all can occur later than an
argument in Λ. In our temporal case, a sub-argument (ofA) talking about a previous time may
offer legitimate reasons to the defense of A.
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Fig. 3. (Top Left)A1 is a proper defeater of A0, a sub-argument of A1 extended with δ∼�.
(Bottom Left) An argumentation line. (Right) The dialectical tree T(Π,Δ)(A1).

Example 6. (Cont’d) In Example 4, the argument E is defeated, whileD1 is undefeated.
Hence, 〈@hospital(Lars), 4〉 is warranted, and so is 〈∼dead(Lars), 5〉; i.e. Lars survives.

Example 7. (Yale Shooting Scenario) Even if able to prove that a turkey dies if shot just
after loading a gun, early logical formalisms failed to prove the same if some waiting oc-
curred between load and shoot. To prove this in t-DeLP, represent the action shoot (at t)
by rules: δ0(t) = 〈∼loaded, t+1〉−�〈loaded, t〉 and δ1(t) = 〈∼alive, t+1〉−�〈loaded, t〉;
and action load (at t) by δ(t) = 〈loaded, t + 1〉 −� 〈∼loaded, t〉. Instead of a wait ac-
tion we use persistence rules. In the t-de.l.p. ({〈∼loaded, 0〉} , {δ(3), δ0(8), δ1(8)}),
the literal 〈∼alive, 9〉 is warranted.

The next results show t-DeLP ensures the consistency of a t-de.l.p. (Π, Δ), provided
that its strict part Π outputs a consistent set of derivable literals.

Lemma 1. Given some (Π, Δ), let A be an argument in (Π, Δ) for 〈�, t〉. Also, let B
be an argument for 〈∼�, t〉, withA a defeater for B at B. IfA is defeated in T(Π,Δ)(B),
then A is defeated in T(Π,Δ)(A).

Proof. First, let Λ = [D1, . . . ,Dn] be a maximal argumentation line, with Di ∈ Λ
defeated. Define a witness for the defeat of Di as some argumentation line Λ′ =
[Di, . . . ,Dm] of even length m− i. Such a witness exists: set e.g. Λ′ = Λ for i = 1; or
Λ′ a terminal segment [Di, . . . ,Dn] of Λ).

Let then A a defeater for B at B. This implies the existence of some Λ =
[B,A, . . .] ⊆ T(Π,Δ)(B). Assuming A is defeated in T(Π,Δ)(B), we have in partic-
ular some Λ∗ = [B,A,B3, . . . ,B2m+1] witnessing the defeat of A (i.e. with B2i+1

undefeated in T(Π,Δ)(B), for each 1 ≤ i ≤ m).
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We show first that any arg. line [B,A,B3, . . .] in T(Π,Δ)(B) contains a sequence
[A,B3, . . .] that is an arg. line in T(Π,Δ)(A). Let then [B,A,B3, . . .] ⊆ T(Π,Δ)(B).
Clearly Λ = [A,B3, . . .] satisfies the 3 conditions for an arg. line for A: (1) its first
element is A; (2) the set of even (odd) members is jointly consistent (since, otherwise,
the set of odd (resp. even) members of [B,A,B3, . . .] would also be inconsistent). (3)
a sub-argument of some argument Bi (with the same duration than Bi) does not occur
after argument Bi in the line (otherwise, the same would be true of [B,A,B3, . . .] in
T(Π,Δ)(B)). Finally, (4) for no three consecutive elements [. . . ,Di,Di+1,Di+2, . . .] we
have Di+2 is a blocking defeater for Di+1 and Di+1 a blocking defeater for Di (since
otherwise the same would occur in arg. line [B,A,B3, . . .]).

Now, assume, towards a contradiction, thatA is undefeated in T(Π,Δ)(A). We show
the previous inclusion, namely that any [B,A, . . .] ⊆ T(Π,Δ)(B) is such that [A, . . .] ⊆
T(Π,Δ)(A), plus both assumptions (A is defeated in T(Π,Δ)(B) and A is undefeated
in T(Π,Δ)(A)) imply the existence of an increasing sequence of argumentation lines of
arbitrarily finite length, which is impossible.

The previous inclusion shows in particular that witness Λ∗-minus-B is an arg. line
in T(Π,Δ)(A). Since A is undefeated in T(Π,Δ)(A), some B3 must be defeated in
T(Π,Δ)(A). Let Λ0 = [A,B3, C0

1 , . . . , C0
2n0+1] witness the defeat of B3 in T(Π,Δ)(A);

i.e. C0
2n′

0+1 is undefeated in this tree, for any n′
0 ≤ n0. By assumption on the origi-

nal witness Λ∗ in T(Π,Δ)(B), if C0
1 occurs in T(Π,Δ)(B), then C0

1 must be defeated in
T(Π,Δ)(B). To see this C0

1 will effectively occur in T(Π,Δ)(B) it suffices to prove C0
1

is not a sub-argument of B with ‖C0
1‖ = ‖B‖. For this, assume the contrary. Then, by

Def. of arg. line, we have ‖B‖ = ‖A‖ = ‖B3‖ = ‖C0
1‖. But then, C0

1 = B(concl(C0
1)),

‖C0
1‖ = ‖B‖ and C0

1 a defeater for B3 (hence inconsistent with it) jointly imply that B
and B3 are not consistent (contradiction). Moreover, this C0

1 satisfies in the tree forB the
restriction against two consecutive blocking defeaters, since it satisfies this restriction
in the tree forA (this preservation is automatic since C0

1 is not the 2nd element in Λ0).
Let then Λ1 = [B,A,B3, C0

1 , C1
1 , . . . , C1

2n1+1] be a witness to the defeat of C0
1 . By the

former inclusion, this latter witness Λ1-minus-B is in the tree forA. By the assumption
that A is undefeated in T(Π,Δ)(A), the element C1

1 of this witness must be defeated in
T(Π,Δ)(A), since C0

1 is undefeated in it. Let Λ2 = [B,A,B3, C0
1 , C1

1 , C2
1 . . . , C2

2n2+1] be
a witness to the defeat of C1

1 .
This procedure can be continued ad infinitum with analogous reasonings from

T(Π,Δ)(B) to T(Π,Δ)(A) and viceversa. Thus, there exists an infinite sequence of
arg. lines (witnesses) Λn of the form [B,A,B3, C0

1 , C1
1 , . . . , Cn

1 , . . .] (for n odd) or of
the form [A,B3, C0

1 , C1
1 , . . . , Cn

1 , . . .] (for n even). Thus, arg. lines of arbitrarily fi-
nite length must exist, and elements of the form Cn

1 form an infinite sequence Λω =
[A,B3, C0

1 , C1
1 , . . . , Cn

1 , Cn+1
1 , . . .] satisfying: any initial segment of Λω is an arg. line.

We show such an infinite sequence Λω cannot exist. Since t(A) + ‖A‖ is finite,
and arguments C in Λω must satisfy t(C) + ‖C‖ ≤ t(A) + ‖A‖, we have that rules
in these C are finite sequences of literals in the finite set Lit × {0, . . . , t(A) + ‖A‖}.
Hence, the number of these rules is finite. Hence, there are only finitely many different
arguments which can occur in Λω. But since Λω is infinite, we will have some repetition
Cj
1 = Cj+i

1 . Then, the sequence [A,B3, . . . , Cj
1, . . . , C

j+i
1 ] will violate the corresponding
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condition of Definition 8. Thus, such an infinite sequence Λω cannot exist (contradic-
tion). Then,A must be defeated in T(Π,Δ)(A), if it is defeated in T(Π,Δ)(B). �

Theorem 1. Given a t-de.l.p. (Π, Δ), the set of literals warr(Π, Δ) is consistent. 6

Proof. Let 〈�, t〉 ∈ warr(Π, Δ). Thus, some argumentA for 〈�, t〉 in (Π, Δ) exists that
is undefeated in T(Π,Δ)(A). It suffices to show that 〈∼�, t〉 /∈ warr(Π, Δ). The reason
is that if, instead, an attack occurred at a previous time, i.e. A was attacked at some
A(〈�0, t0〉), and defeated by some B, the same reasoning given next would apply for
A(〈�0, t0〉) and the corresponding defeater B (i.e. that 〈∼�0, t0〉 /∈ warr(Π, Δ).

Thus, assume -towards a contradiction- that 〈∼�, t〉 ∈ warr(Π, Δ). Then some ar-
gument B for 〈∼�, t〉 exists in (Π, Δ), undefeated in T(Π,Δ)(B). Observe first that if
A ⊆ Π , then either each such argument B contains some rule in Δ, in which case A
will attack and defeat any such B (contradicting that 〈∼�0, t0〉 ∈ warr(Π, Δ)); or, also
some such B for 〈∼�0, t0〉 is a subset of Π , contradicting the assumption that the set of
derivable literals from Π alone is consistent. Thus, we may assume that A ∩ Δ �= ∅.
Now, consider again the possibility that some such argumentB for 〈∼�0, t0〉 is a subset
of Π . Then,A is defeated by an undefeated argument, contradicting the initial assump-
tion: 〈�, t〉 ∈ warr(Π, Δ). Thus, we may also assume that B ∩Δ �= ∅.

This implies that A attacks B at B, and B attacks A at A. Consider next the fol-
lowing cases. (Case) A is not a defeater for B. Then, since the only possibilities are
base(A) � base(B) and base(A) �= base(B) we conclude that base(B) � base(A),
so B is a (proper) defeater for A. Thus, [A,B, . . .] is in T(Π,Δ)(A). From this and the
assumption that B is undefeated in T(Π,Δ)(B), we can apply Lemma 1 to show that B
is undefeated in T(Π,Δ)(A). Hence,A is defeated in T(Π,Δ)(A) (contradiction). (Case)
If A is a defeater for B, then [B,A, . . .] is in T(Π,Δ)(B), so by assumption on B, A is
defeated in T(Π,Δ)(B). Then, by Lemma 1, we obtain that A is defeated in T(Π,Δ)(A)
(contradiction). Hence 〈∼�, t〉 /∈ warr(Π, Δ). Thus, warr(Π, Δ) is consistent. �

Next we consider the restriction of strict information in t-de.l.p.s to strict facts. This is
called ODeLP in [4] in the case of DeLP programs. Under the proposed restriction, the
t-DeLP programming framework can be proved to be a logic in the sense of Tarski, and
to satisfy the Rationality Postulates for argumentation frameworks stated by Caminada
and Amgoud in [3], that may fail if we have strict rules.

Corollary 1. For any t-de.l.p. (Π, Δ), with Π ⊆ TLit, we have C(Π, Δ) =
(warr(Π, Δ) ∪ Π, Δ) is a logical consequence operator: i.e. it satisfies inclusion
Π ⊆ warr(Π, Δ)∪Π, Δ ⊆ Δ; idempotence C(Π, Δ) = C(C(Π, Δ)); and coherence
C(∅, ∅) = (∅, ∅) is consistent.

4 Nature Does Not Wait: Eager Arguments

We study in this section a sub-class of t-DeLP arguments, called eager, for reason-
ing with natural processes. In law-governed processes as soon as all conditions hold,

6 Recall that, according to Defintion 1, warr(Π,Δ) is consistent iff there is no p such that both p
and ∼p belong to warr(Π,Δ). This differs from stronger notions of consistency [3] requiring
that warr(Π,Δ)∪Π does not derive any pair of contradictory literals (see Corollary 1 below).
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the process can do nothing else than start. This would exclude from the class of argu-
ments that model some natural process those constructible arguments that unnecessarily
postpone the (start of an) application of a rule after its body holds (i.e. arguments that
introduce some unnecessary delay after the rule becomes applicable). No natural pro-
cess corresponds to these t-DeLP arguments, so they should be excluded from reasoning
about natural processes.

Interestingly, any argument A can be transformed into an eager argument A∗ by
following an iterative procedure. The idea is that A∗ orders non-persistence (resp. per-
sistence) rules in A to occur as early (resp. late) as possible while keeping the same
base. To obtain A∗, let initially n = 0 andA0 = A, and apply iteratively the following
transformationAn %→ An+1 until it cannot be applied any longer:

1. Select a rule δ∗ ∈ An satisfying the condition: for each 〈�i, ti〉 ∈ body(δ∗), there
exists (at least) an instance of the persistence rule δ�i supporting this 〈�i, ti〉. If
there is no such a rule let A∗ = An and STOP. Otherwise follow to the next step.

2. Let {〈�i, ti〉 −� 〈�i, ti − 1〉, . . . , 〈�i, ti − ki + 1〉 −� 〈�i, ti − ki〉} ⊆ An be the
set of persistence rules for each 〈�i, ti〉 ∈ body(δ∗), i.e. such that 〈�i, ti − ki〉 ∈
literals(An) is supported by some non-persistence rule. Let kj be minimal among
those 〈�i, ti − ki〉 supported by non-persistence rules.

3. Define a new rule, denoted δ∗ − kj , as the rule where the temporal parameter of
each literal 〈�, t〉 ∈ literals(δ∗) is subtracted kj . Then, we

4. In An replace δ∗ by δ∗ − kj

5. For each 〈�i, ·〉 ∈ body(δ∗), delete from An the kj instances of persistence rules
δ�i of the form: 〈�i, ti〉 −� 〈�i, ti − 1〉, . . . , 〈�i, ti − kj + 1〉 −� 〈�i, ti − kj〉

6. If head(δ∗) = 〈�, t〉, add to An the kj instances of persistence rule δ� of the form:
〈�, t〉 −�〈�, t− 1〉, . . . , 〈�, t− kj + 1〉 −� 〈�, t− kj〉.

7. LetAn+1 be the resulting argument. Set n← n + 1 and START again at step 1.

The ouput of the above procedure,A∗, is an argument sharing many properties withA:
base(A∗) = base(A), concl(A∗) = concl(A), hence ‖A∗‖ = ‖A‖ and t(A∗) = t(A).
It can be observed that these transformations define an equivalence relation ≡p on the
set of arguments in (Π, Δ): B, C are ≡p-equivalent iff B∗ = C∗.

Example 8. For a counterexample to the defeat relation in Definition 7, see Figure 4.
Read ru = the agent runs and ti = the agent is tired. Consider the rules: if the agent
starts running when untired, after 2 hours she is tired (this is sub-argumentA(〈ti, 2〉));
and in this case she also stops running, i.e. 〈∼ru, 2〉. Then, after 3 hours the agent is
fresh again 〈∼ti, 5〉. This is argumentA at the center of Fig. 4. A problem occurs with
argument B, obtained by applying persistence to base(A) so as to postpone A’s sub-
argument for an hour, denotedA(〈ti, 2〉)+1. But thenA is only a blocking defeater for
B (and viceversa), according to Def. 7. Thus, we cannot conclude 〈∼ru, 2〉 or 〈∼ti, 5〉.

Counterexamples like these of Example 8 can be pruned either by

(a) restricting to the set of eager arguments of a given t-de.l.p., given by the previ-
ous procedure Args(Π, Δ) %→ Args∗(Π, Δ). This move redefines T ∗

(Π,Δ)(A) and
warr∗(Π, Δ) when only eager arguments are considered. Or,
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Fig. 4. The argument A should be a proper defeater for B, as it is for B∗

(b) by redefining the notion of longer argument so that A is a longer argument than B
iffA is longer than B∗ (in the old sense of Definition 7), whereB∗ ∈ [B]≡p is eager.
This modification to Def. 7 propagates to new notions T •

(Π,Δ)(A), warr•(Π, Δ).

In the following we prove the two options are equivalent. With the new definition of
defeater given by (b), we have the next result.

Proposition 1. Let (Π, Δ) be a t-de.l.p. and let A∗ be an eager argument in (Π, Δ).
Then, for any other argumentsA ∈ [A∗]≡p and B in (Π, Δ) we have:

(1) if B is a proper (blocking) defeater for A∗ then so is B for A.
(2) if A is a proper (blocking) defeater for B, so is A∗.

Claim (1) shows eager arguments are the safest among their ≡p equivalence class in
(Π, Δ). Define � ∈ warr∗(Π, Δ) iff there exists an eager argumentA∗ in (Π, Δ) unde-
feated in T ∗

(Π,Δ)(A∗); and similarly define T •
(Π,Δ)(A∗), warr•(Π, Δ) as in (b).

Corollary 2. Fix a t-de.l.p. (Π, Δ). Let A0 be an eager argument. Then A0 is
undefeated in T ∗

(Π,Δ)(A0) iff it is undefeated in T •
(Π,Δ)(A0). As a consequence,

warr∗(Π, Δ) = warr•(Π, Δ).

A final remark: in Example 3-6, we forbid persistence rules δ� ∈ Δp when � is
of the form ∼@location(Lars). This prevents to derive, say, the intermediate step
〈@highway(Lars), 1〉, then 〈∼@hospital(Lars), 1〉, and then apply persistence on the
latter up to t = 4. Because of the strict rule used 〈∼@hospital(Lars), 1〉 ←
〈highway(Lars), 1〉, argument D1 is not longer than this argument (according to the
modified Def. 7), and moreover it is eager. Thus, the restriction to eager arguments
does not suffice. Restricting Δp seems to work as well for Example 8: if we forbid per-
sistence of activities ru, argumentB does not occur. We wonder whether the restrictions
upon Δp or with eager arguments suffice to prevent unintuitive results in t-DeLP.
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5 Conclusions and Future Work

We have presented t-DeLP a temporal extension of DeLP with temporal literals and
rules with duration. Indeed one can think of the DeLP framework to correspond to
t-DeLP (with strict rules made explicit in arguments and with only one time-point, e.g.
when all temporal literals are of form 〈�, 0〉). We proved the (weak) consistency of any
program and that the restriction to strict facts makes the logic programming framework
a consequence operator in the sense of Tarski. Then, we studied particular questions
arising in temporal reasoning with persistence.

In the literature, other rule-based defeasible logics [2], [10] exist as well, but they
lack the reasoning power and conceptual transparency of argumentation-based logics.
The same goes for defeasible logics extended with temporal parameters associated to
literals [8]. On the other hand, argumentation-based logical approaches (inspired by the
work of [6]) do not in general take the particularities involved in temporal reasoning into
account. Among works that do consider argumentation and time, we find some propos-
als associating time intervals to arguments [1], [5] and [9]. Our approach differs from
these works in that the interval where an event or argument holds, rather than being
a primitive notion, derives from the argumentation process on temporal literals . Thus,
our time-point based approach accommodates features from [8], [1] (expiring literals,
persistence), though in the present paper these features are subject to argumentation
processes, rather than having them fixed from start.

For future work, we would like to expand temporal reasoning with evidence-based
(backward) reasoning, among other improvements on the generality of our language or
the results we obtained.
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Abstract. We present a probabilistic logic programming framework to
reinforcement learning, by integrating reinforcement learning, in POMDP
environments, with normal hybrid probabilistic logic programs with prob-
abilistic answer set semantics, that is capable of representing domain-
specific knowledge. We formally prove the correctness of our approach.
We show that the complexity of finding a policy for a reinforcement learn-
ing problem in our approach is NP-complete. In addition, we show that
any reinforcement learning problem can be encoded as a classical logic
program with answer set semantics. We also show that a reinforcement
learning problem can be encoded as a SAT problem. We present a new
high level action description language that allows the factored represen-
tation of POMDP. Moreover, we modify the original model of POMDP
so that it be able to distinguish between knowledge producing actions
and actions that change the environment.

1 Introduction

Reinforcement learning is the problem of learning to act by trial and error in-
teraction in dynamic environments. Reinforcement learning problems can be
represented as Markov Decision Processes (MDP), under the assumption that
accurate and complete model of the environment is known. This assumption
requires the agent to have perfect sensing and observation abilities.

However, complete and perfect observability is unrealistic for many real-world
reinforcement learning applications, although necessary for learning optimal poli-
cies in MDP environments. Therefore, different model is needed to represent and
solve reinforcement learning problems with partial observability. This model is
Partially Observable Markov Decision Processes (POMDP). Similar to MDP,
POMDP requires the model of the environment to be known, however states of
the world are not completely known. Consequently, the agent perform actions
to make observations about the states of the worlds. These observations can be
noisy due to imperfect agent’s sensors. Similar to MDP, dynamic programming
methods, by value iteration, have been used to learn the optimal policy for a
reinforcement learning problem in POMDP environment.
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A logical framework to reinforcement learning in MDP environment has been
developed in [23], which relies on techniques from probabilistic reasoning and
knowledge representation by normal hybrid probabilistic logic programs [26].
The normal hybrid probabilistic logic programs framework of [23] has been pro-
posed upon observing that dynamic programming methods to reinforcement
learning in general and value iteration in particular are incapable of exploit-
ing domain-specific knowledge of the reinforcement learning problem domains
to improve the efficiency of finding the optimal policy. In addition, these dy-
namic programming methods use primitive representation of states and actions
as this representation does not capture the relationship between states [18] and
makes it difficult to represent domain-specific knowledge. However, using richer
knowledge representation frameworks for MDP and POMDP allow efficiently
finding optimal policies in more complex stochastic domains and lead to develop
methods to find optimal policies with larger domains sizes [18].

The choice of normal hybrid probabilistic logic programs (NHPLP) to solve re-
inforcement learning problems in MDP environment is based on that; NHPLP is
nonmonotonic, therefore more suitable for knowledge representation and reason-
ing under uncertainty; NHPLP subsumes classical normal logic programs with
classical answer set semantics [7], a rich knowledge representation and reasoning
framework, and inherits its knowledge representation and reasoning capabilities
including the ability to represent and reason about domain-specific knowledge;
NHPLP has been shown applicable to a variety of fundamental probabilistic
reasoning problems including probabilistic planning [25], contingent probabilis-
tic planning [22], the most probable explanation in belief networks, the most
likely trajectory in probabilistic planning, and Bayesian reasoning [24].

In this view, we integrate reinforcement learning in POMDP environment with
NHPLP, providing a logical framework that overcomes the representational lim-
itations of dynamic programming method to reinforcement learning in POMDP
and is capable of representing its domain-specific knowledge. In addition, the
proposed framework extends the logical framework of reinforcement learning in
MDP of [23] with partial observability. We show that any reinforcement learn-
ing problem in POMDP environment can be encoded as a SAT problem. The
importance of that is reinforcement learning problems in POMDP environment
can be now solved as SAT problems.

2 Syntax and Semantics of NHPLP

We introduce a class of NHPLP [26], namely NHPLPPO, that is sufficient to
represent and reason about POMDP.

2.1 The Language of NHPLPPO

Let L be a first-order language with finitely many predicate symbols, constants,
and infinitely many variables. The Herbrand base of L is denoted by BL. Prob-
abilities are assigned to atoms in BL as values from [0, 1]. An annotation, μ, is
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either a constant in [0, 1], a variable (annotation variable) ranging over [0, 1],
or f(μ1, . . . , μn) (called annotation function) where f is a representation of a
computable total function f : ([0, 1])n → [0, 1] and μ1, . . . , μn are annotations.
Let a1, a2 ∈ [0, 1]. Then we say that a1 ≤t a2 iff a1 ≤ a2. A probabilistic logic
program (p-program) in NHPLPPO is a pair P = 〈R, τ〉, where R is a finite set
of normal probabilistic rules (p-rules) and τ is a mapping τ : BL → Sdisj , where
Sdisj is a set of disjunctive probabilistic strategies (p-strategies) whose composi-
tion functions, c, are mappings c : [0, 1]× [0, 1]→ [0, 1]. A composition function
of a disjunctive p-strategy returns the probability of a disjunction of two events
given the probability values of its components. A p-rule is an expression of the
form

A : μ← A1 : μ1, . . . , An : μn, not (B1 : μn+1), . . . , not (Bm : μn+m)

where A, A1, . . . , An, B1, . . . , Bm are atoms and μ, μi (1 ≤ i ≤ m + n) are
annotations. Intuitively, the meaning of a p-rule is that if for each Ai : μi, the
probability value of Ai is at least μi (w.r.t. ≤t) and for each not (Bj : μj), it is
not believable that the probability values of Bj is at least μj , then the probability
of A is μ. The mapping τ associates to each atom A a disjunctive p-strategy that
will be employed to combine the probability values obtained from different p-
rules having A in their heads. A p-program is ground if no variables appear in
any of its p-rules.

2.2 Probabilistic Answer Set Semantics of NHPLPPO

A probabilistic interpretation (p-interpretation) is a mapping h : BL → [0, 1].
Let P = 〈R, τ〉 be a ground p-program, h be a p-interpretation, and r be

A : μ← A1 : μ1, . . . , An : μn, not (B1 : β1), . . . , not (Bm : βm) ∈ R.

Then, we say
• h satisfies Ai : μi (denoted by h |= Ai : μi) iff μi ≤t h(Ai).
• h satisfies not (Bj : βj) (denoted by h |= not (Bj : βj)) iff βj �≤t h(Bj).
• h satisfies Body ≡ A1 : μ1, . . . , An : μn, not (B1 : β1), . . . , not (Bm : βm)

(denoted by h |= Body) iff ∀(1 ≤ i ≤ n), h |= Ai : μi and ∀(1 ≤ j ≤ m), h |=
not (Bj : βj).
• h satisfies A : μ← Body iff h |= A : μ or h does not satisfy Body.
• h satisfies P iff h satisfies every p-rule in R and for every atom A ∈ BL, we

have

cτ(A){{μ|A : μ← Body ∈ R such that h |= Body}} ≤t h(A).

The probabilistic reduct P h of P w.r.t. h is a p-program P h = 〈Rh, τ〉 where:

Rh =

⎧⎪⎨⎪⎩ A : μ ← A1 : μ1, . . . , An : μn

A : μ ← A1 : μ1, . . . , An : μn,

not (B1 : β1), . . . , not (Bm : βm) ∈ R and

∀(1 ≤ j ≤ m), βj �t h(Bj)

⎫⎪⎬⎪⎭
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A probabilistic model (p-model) of a p-program P is a p-interpretation of P that
satisfies P . A p-interpretation h of a p-program P is said to be a probabilistic
answer set of P if h is the minimal p-model of the probabilistic reduct of P w.r.t.
h.

3 Partially Observable Markov Decision Processes

In this section we review finite-horizon POMDP [11] with stationary transi-
tion functions, stationary bounded reward functions, and stationary policies.
POMDP is a tuple of the form M = 〈S, S0, A, T, λ,R, Ω, O〉 where: S is a finite
set of states; S0 is the initial state distribution; A is a finite set of stochastic
actions; T is stationary transition function T : S × A × S → [0, 1], where for
any s ∈ S and a ∈ A,

∑
s′∈S T (s, a, s′) = 1; λ ∈ [0, 1) is the discount factor;

R : S × A × S → R is a stationary bounded reward function; Ω is a finite set
of observations that the agent observes in the environment; and O is observa-
tion function O : S × A × Ω → [0, 1], where for any s ∈ S and a ∈ A where∑

o∈Ω O(s, a, o) = 1. A stationary policy is a mapping from states to actions of
the form π : S → A. The value function of a policy π with respect to an initial
state s0 ∈ So, with finite horizon of n steps remaining, V π

n (s0), is calculated by

V π
n (s0) =

∑
s1∈S

T (s0, π(s0), s1)
∑

oi∈Ω

O(s1, π(s0), oi)
[R(s0, π(s0), s1) + λ V π

i,n−1(s1)

]
which determines the expected sum of discounted rewards resulting from exe-
cuting the policy π starting from s0.

Discussion
The original model of POMDP does not distinguish between knowledge pro-
ducing (sensing) actions and actions that affects and change the environment
(non-sensing actions). This means that it treats sensing and non-sensing actions
equally in the sense that, like non-sensing actions, a sensing action affects and
change the environment as well as producing knowledge resulting from observing
the environment. However, [27] proved that sensing actions produce knowledge
(make observations) and does not change the state of the world. Therefore,
actions that change the state of the world are different from the knowledge pro-
ducing actions. In addition, the value function described above makes the agent
observing the environment at every step of its life with each action it takes. How-
ever, this is not necessary to be always the case, since it is possible for the agent
to start with observing the environment then performing a sequence of actions,
or the agent could start with performing a sequence of actions then observing
the environment. To overcome these limitations, we define the value function of
n-step finite horizon POMDP with respect to an initial state s0 ∈ So as:
• if π(s0) is a non-sensing action then

V π
n (s0) =

∑
s1∈S

T (s0, π(s0), s1)[R(s0, π(s0), s1) + λ V π
n−1(s1)]
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• if π(s0) is sensing action then

V π
n (s0) =

∑
s1∈S

O(s0, π(s0), s1)[R(s0, π(s0), s1) + λ V π
n−1(s1)]

where O(s0, π(s0), s1) is the probability of observing the state s1, where for
some o ∈ Ω, o is observed in s1. Notice that O is treated as a mapping O :
S×A×S → [0, 1], where A is the set of sensing actions. For any s ∈ S and a ∈ A,
O(s, a, .) is the probability distribution over states resulting from executing a in
s, such that

∑
s′∈S O(s, a, s′) = 1. As in the original model of POMDP, T is

a mapping T : S × A × S → [0, 1], where A is the set of non-sensing actions.
Extension to infinite horizon POMDP can be achieved in a similar manner. This
definition of POMDP distinguishes between knowledge producing actions and
actions that change the environment. In this view, the optimal policy V ∗

n is
given by: V ∗

n (s0) = maxπ V π
n (s0).

4 APO an Action Language for POMDP

We introduce an action language for POMDP, namely APO, that extends both
the action languages, AMD [23] and P [22] for representing and reasoning about
MDPs and imperfect sensing actions respectively.

4.1 Syntax of AP O

A fluent is a predicate, which may contain variables. Given that F is a set
of fluents and A is a set of actions that can contain variables, a fluent literal
is either a fluent f ∈ F or ¬ f . A conjunction of fluent literals of the form
l1 ∧ . . . ∧ ln is conjunctive fluent formula, where l1, . . . , ln are fluent literals.
Sometimes we abuse the notation and refer to a conjunctive fluent formula as
a set of fluent literals (∅ denotes true). An action theory, PT, in APO is a
tuple PT = 〈S0,D, λ〉, where S0 is a proposition of the form (1), D is a set of
propositions from (2-4), and 0 ≤ λ < 1 is a discount factor as follows:

initially { ψi : pi, 1 ≤ i ≤ n (1)
executable a if ψ (2)

a causes { φi : pi : ri if ψi, 1 ≤ i ≤ n (3)
a observes { oi : pi : ri sensing ψi, 1 ≤ i ≤ n (4)

where ψ, ψi, φi, oi, (1 ≤ i ≤ n) are conjunctive fluent formulas, a ∈ A, and
pi ∈ [0, 1]. The set of all ground ψi and oi must be exhaustive and mutually
exclusive.

The initial agent’s belief state—a probability distribution over the possible
initial states, is represented by (1), that says that each possible initial state ψi

holds with probability pi. Executability condition is represented by (2). A non-
sensing action, a, is represented by (3), which says that for each 1 ≤ i ≤ n, a
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causes φi to hold with probability pi and reward ri is received in a successor state
to a state in which a is executed and ψi holds. A sensing action, a, is represented
by (4), which says that for each 1 ≤ i ≤ n, whenever a correlated ψi is known
to be true, a causes any of oi to be known true with probability pi and reward
ri is received in a successor state to a state in which a is executed, where the
literals in ψi determine what the agent is observing and literals in oi determine
what the sensor reports on. Similar to [5], when a property of the world cannot
be directly sensed by the sensor, another correlated property of the world, that
can be sensed by the sensor, can be used instead. An action theory is ground if
it does not contain any variables.

In the sequel, we represent an action a in (3) as a set of the form a =
{a1, . . . , an}, where each ai corresponds to φi, pi, ri, and ψi. For each 1 ≤ i ≤ n,
(3) can be represented as ai causes φi : pi : ri if ψi. Similarly, (4) can be
represented as ai observes oi : pi : ri sensing ψi.

Example 1. Consider the tiger domain from [17]. A tiger is behind left (tl) or
right (¬tl) door with equal probability 0.5. If left door is opened and tl, pun-
ishment of −100 is received, but a reward of 10 is received if ¬tl and the other
way around. The sensing action listen used for hearing the tiger behind left door
(htl), a correlated property to tl. But, the agent’s hearing is not perfect and
costs −1. If the agent listens for htl, then it reports tl with 0.85 and erroneously
reports ¬tl with 0.15. Similarly for listening to the right door. This is repre-
sented by the action theory PT = 〈S0,D, λ〉, where executable AC if ∅, where
AC ∈ {openL, openR, listen} and

S0 = initially

{
{tl, htl} : 0.5

{¬tl,¬htl} : 0.5

}
listen observes

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{tl} : 0.85 : −1 sensing {htl}
{¬tl} : 0.15 : −1 sensing {htl}
{¬tl} : 0.85 : −1 sensing {¬htl}
{tl} : 0.15 : −1 sensing {¬htl}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
openL causes

{
{¬tl} : 1 : −100 if {¬tl}
{tl} : 1 : 10 if {tl}

}
openR causes

{
{¬tl} : 1 : −100 if {¬tl}
{tl} : 1 : 10 if {tl}

}

4.2 Semantics of AP O

A set of ground literals φ is consistent if it does not contain a pair of comple-
mentary literals. If a literal l belongs to φ, then we say l is true in φ, and l is
false in φ if ¬ l is in φ. A set of literals σ is true in φ if σ is contained in φ. A
state s is a complete and consistent set of literals that describes the world at a
certain time point.

Definition 1. Let PT = 〈S0,D, λ〉 be a ground action theory in APO, s be a
state, ai causes φi : pi : ri if ψi (1 ≤ i ≤ n) be in D, and a = {a1, . . . , an} be
an action, where each ai corresponds to φi, pi, ri, and ψi for 1 ≤ i ≤ n (similarly
for ai observes φi : pi : ri sensing ψi). Then, the state resulting from
executing a in s, denoted by Φ(ai, s), is given by:
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• l ∈ Φ(ai, s) and ¬ l /∈ Φ(ai, s) iff l ∈ φi and ψi ⊆ s.
• ¬ l ∈ Φ(ai, s) and l /∈ Φ(ai, s) iff ¬ l ∈ φi and ψi ⊆ s.
• Otherwise, l ∈ Φ(ai, s) iff l ∈ s and ¬ l ∈ Φ(ai, s) iff ¬ l ∈ s.

Definition 2. Let s be a state, and ai causes φi : pi : ri if ψi (similarly
a′

i observes oi : p′i : r′i sensing ψi) (1 ≤ i ≤ n). Then, the transition
probability distribution after executing a (a′) in s is given by:

T (s, a, s′) =
{

pi ifs′ = Φ(ai, s)
0 otherwise

O(s, a′, s′) =
{

p′i ifs′ = Φ(a′
i, s)

0 otherwise

The reward received in a state s′ after executing a (a′) in s is R(s, a, s′) =
ri if s′ = Φ(ai, s), R(s, a′, s′) = r′i if s′ = Φ(a′

i, s), otherwise R(s, a, s′) =
R(s, a′, s′) = 0.

Definition 3. Let s0 be an initial state, s, s′ be states, and π be a policy in PT.
Then, the value function of n-step remaining, V π

n , of π is given by:

• if π(s0) is a non-sensing action and then
V π

n (s0) =
∑

s1∈S T (s0, π(s0), s1)
[
R(s0, π(s0), s1) + λ V π

n−1(s1)
]

• if π(s0) is sensing action then
V π

n (s0) =
∑

s1∈S O(s0, π(s0), s1)
[
R(s0, π(s0), s1) + λ V π

n−1(s1)
]

where after n steps, V π
0 (sn) = R(sn−1, π(sn−1), sn).

Executing sensing or non-sensing action, π(s), in s causes a transition to a set of
states, σ = {s′1, s′2, . . . , s′m}. Let π(σ) denotes the set of actions π(s′1), π(s′2), . . . ,
π(s′m) executed in the states s′1, s′2, . . . , s′m respectively. Notice that if π(σ) is a
singleton, i.e., the same action is executed in every state in σ, then this corre-
sponds to executing an action in a belief state σ = {s′1, s′2, . . . , s′m}. Since exe-
cuting π(σ) in σ produces another set of states σ′, then executing π(σ) causes a
transition from a belief state to another belief state.

For finite horizon POMDP, a policy π : S → A can be represented as a
set of ordered pairs, starting from the initial belief state σ0 (the set of initial
states in S0), as π = {(σ0, π(σ0)), (σ1, π(σ1)), . . . , (σn−1, π(σn−1))}, where for
1 ≤ i ≤ n, σi represents a belief state (a set of states) resulting from executing
π(σi−1) in σi−1. This set representation of finite horizon policies in POMDP
leads to view a policy as a set of trajectories, where each trajectory takes the
form j(n) ≡ s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn where s0 is an initial state
in S0 and for all 1 ≤ i ≤ n, si ∈ σi and π(si) ∈ π(σi), such that for any 1 ≤ i ≤ n,
si = Φ(si−1, π(si−1)). Let π be a policy for a finite horizon POMDP and Tπ be
the set of trajectories representation of π, given the trajectory view of π, the
value function of π can be now described as:

V π
n (s0) =

∑
j(n)∈Tπ

[
n−1∑
t=0

λt

[
t∏

i=0

X(si, π(si), si+1)

]
R(st, π(st), st+1)

]
(5)
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where
X(si, π(si), si+1) =

{
T (si, π(si), si+1), π(si) is nonsensing
O(si, π(si), si+1), π(si) is sensing

Thus, the optimal policy V ∗
n , the maximum value function among all policies, is

given by V ∗
n (s0) = maxπ V π

n (s0)

5 Reinforcement Learning in NHPLPPO

The p-program encoding of an action theory in APO follows related encoding
described in [23,22,28]. We assume that the length of the optimal policy that we
are looking for is known and finite. We use the following predicates: holds(L, T )
for literal L holds at time moment T , occ(A, T ) for action A executes at time T ,
state(T ) for a state of the world at time T , reward(T, r) for the reward received
at time T is r, value(T, V ) for the value function of a state at time T is V , and
factor(λ) for the discount factor λ. If an atom appears in a p-rule in R with no
annotation it is assumed to be associated with the annotation 1. We use p(ψ) to
denote p(l1), . . . , p(ln) for p is a predicate and ψ = {l1, . . . , ln}.

Let ΠPT = 〈R, τ〉 be the p-program encoding PT = 〈S0,D, λ〉, where R is
the set of the following p-rules.
• Each action a = {a1, . . . , an} ∈ A, is encoded as

action(ai)← (6)

for all 1 ≤ i ≤ n. Each fluent f ∈ F is encoded as a fact of the form
fluent(f). Fluent literals are encoded as

literal(F )← fluent(F ) (7)
literal(¬F )← fluent(F ) (8)

To specify that fluents F and ¬F are contrary literals, we use the following
p-rules.

contrary(F,¬F )← fluent(F ) (9)
contrary(¬F, F )← fluent(F ) (10)

• The initial belief state initially {ψi : pi, 1 ≤ i ≤ n is represented in R
as follows. Let s1, s2, . . . , sn be the set of possible initial states, where for
each 1 ≤ i ≤ n, si = {li1, . . . , lim}, and the initial probability distribution be
Pr(si) = pi. Moreover, let s = s1∪s2∪. . .∪sn, s′ = s1∩s2∩. . .∩sn, ŝ = s−s′.
Let sreport = { l |l ∈ si and l is a sensor report literal } be the set of all sensor
report literals in all si. We denote s′′ = {l|l ∈ (ŝ−sreport)∨¬l ∈ (ŝ−sreport)}.
Let ssense be the set of all pairs (δi, γi), where δi and γi are sets of literals
contained in si, such that δi is the set of sensor reading literals and γi is
the set of sensor report literals appearing in si. The set of all possible initial
states are generated as follows: for each l ∈ s′, we include in R

holds(l, 0)← (11)
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which says that l holds at time 0. For each l ∈ s′′,

holds(l, 0)← not holds(¬l, 0) (12)
holds(¬l, 0)← not holds(l, 0) (13)

These p-rules say l (similarly ¬l) holds at time moment 0, if ¬l (similarly
l) does not hold at the time moment 0. For each (δ, γ) ∈ ψsense, let γ =
{l1, . . . , lm}, then for each 1 ≤ i ≤ m, R includes

holds(li, 0)← holds(δ, 0) (14)

The initial probability distribution over the initial states is encoded as fol-
lows, which says that the probability of a state at time 0 is pi, if li1, . . . , l

i
m

hold at the time 0.

state(0) : pi ← holds(li1, 0), . . . , holds(lim, 0) (15)

• Each executability condition of an action of the form (2) is encoded for each
1 ≤ i ≤ n as

exec(ai, T )← holds(ψ, T ) (16)

• For each non-sensing action proposition ai causes φi : pi : ri if ψi, 1 ≤
i ≤ n, in D, let φi = {l1i , . . . , lmi }. Then, ∀(1 ≤ j ≤ m), R includes

holds(lji , T + 1)← occ(ai, T ), exec(ai, T ), holds(ψi, T ) (17)

If a occurs at time T and ψi holds at the same time moment, then the lji
holds at the time T + 1. Then, we have

state(T + 1) : pi × U ← state(T ) : U, occ(ai, T ), exec(ai, T ),
holds(ψi, T ), holds(φi, T + 1) (18)

where U is an annotation variable ranging over [0, 1] acts as a place holder.
This p-rule states that if ψi holds in a state at time T , whose probability is
U , and in which a is executable, then the probability of a successor state at
time T + 1 is pi × U , in which φi holds.
• For each sensing action proposition ai observes oi : pi : ri sensing ψi, 1 ≤

i ≤ n, in D, let oi = {l1i , . . . , lmi } and ψi = {l′1i , . . . , l
′m
i }. Then, ∀(1 ≤ j ≤

m), R includes

observed(l
′j
i , T )← occ(ai, T ), exec(ai, T ), holds(ψi, T ) (19)

holds(lji , T + 1)← occ(ai, T ), exec(ai, T ), observed(ψi, T ) (20)

where (19) says that executing the sensing action a at time T in which ψi

holds causes ψi to be observed to be known true at the same moment T , and
(20) states that if a occurs at time T and the literals in ψi are observed to



Learning to Act Optimally in Partially Observable MDP 513

be known true at the same moment, then the literals lji ∈ oi are known to
hold at the time moment T + 1.

state(T + 1) : pi × U ← state(T ) : U, occ(ai, T ), exec(ai, T ),
observed(ψi, T ), holds(oi, T + 1) (21)

The above p-rule says that the probability of a state at time T + 1 is pi×U
if oi become known true at the same moment, after executing a in a state at
time T , whose probability is U , in which the literals in ψi are observed true.
• The reward ri received at time T + 1 after executing a in a state at T is

encoded as

reward(ri , T + 1)← occ(ai, T ), exec(ai, T ) (22)

• The value function T + 1 steps away from the initial state given the value
function T steps away from the initial state is encoded as
– if a is a non-sensing action

value(V + λT ∗ U ∗ ri, T + 1)← value(V, T ), factor(λ), state(T + 1) : U,

reward(ri, T + 1), occ(ai, T ), exec(ai, T ), holds(ψi, T ), holds(φi, T + 1) (23)

– if a is a sensing action

value(V + λT ∗ U ∗ ri, T + 1)← value(V, T ), factor(λ), state(T + 1) : U,

reward(ri , T + 1), occ(ai, T ), exec(ai, T ), observed(ψi, T ), holds(oi, T + 1) (24)

where the variables V ∈ R, λ ∈ [0, 1), U ∈ [0, 1], and factor(λ) is a fact in
R. These p-rules state that the value function at time T + 1 is equal to the
value function at time T added to the product of the reward ri received in
a state at T + 1 and the probability of a state at time T + 1 discounted by
λT .
• The following p-rule asserts that a literal L holds at T + 1 if it holds at T

and its contrary does not hold at T + 1.

holds(L, T + 1)← holds(L, T ), not holds(L′, T + 1), contrary(L, L′) (25)

• The literal, A, and its negation, ¬A, cannot hold at the same time, where
inconsistent is a literal that does not appear in PT.

inconsistent← not inconsistent, holds(A, T ), holds(¬A, T ) (26)

• Actions are generated once at a time by the p-rules:

occ(ACi, T )← action(ACi), not abocc(ACi, T )(27)
abocc(ACi, T )← action(ACi), action(ACj), occ(ACj , T ), ACi �= ACj(28)

• The goal expression G = g1 ∧ . . . ∧ gm is encoded as

goal← holds(g1, T ), . . . , holds(gm, T ) (29)
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Example 2. The p-program encoding of the tiger domain presented in Example
1 is given by Π = 〈R, τ〉, where τ is arbitrary and R consists of the following
p-rules, in addition to the p-rules (7), (8), (9), (10), (25), (26), (27), (28):

action(openLi)← action(openRi)← action(listenj)←

for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4. Properties of the world are described by the fluents
tl and htl which are encoded in R by the p-rules

fluent(tl)← fluent(htl)←

The set of possible initial states are encoded by the p-rules:

holds(tl, 0) ← not holds(¬tl, 0)
holds(¬tl, 0)← not holds(tl, 0)
holds(tl, 0) ← holds(htl, 0)
holds(¬tl, 0)← holds(¬htl, 0)

The initial probability distribution over the possible initial states is encoded by
the p-rules

state(0) : 0.5← holds(tl, 0), holds(htl, 0)
state(0) : 0.5← holds(¬tl, 0), holds(¬htl, 0)

The executability conditions of actions are encoded by the following p-rules

exec(openLi)← exec(openRi)← exec(listenj)←

for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4. Effects of the openL action are encoded by the
p-rules

holds(tl, T + 1) ← occ(openL1, T ), exec(openL1, T ), holds(tl, T )
holds(¬tl, T + 1)← occ(openL2, T ), exec(openL2, T ), holds(¬tl, T )

Effects of the openR action are encoded by the p-rules

holds(¬tl, T + 1)← occ(openR1, T ), exec(openR1, T ), holds(¬tl, T )
holds(tl, T + 1) ← occ(openR2, T ), exec(openR2, T ), holds(tl, T )

Effects of the listen action are encoded by the p-rules

observed(htl, T ) ← occ(listen1, T ), exec(listen1, T ), holds(htl, T )
observed(htl, T ) ← occ(listen2, T ), exec(listen2, T ), holds(htl, T )
observed(¬htl, T )← occ(listen3, T ), exec(listen3, T ), holds(¬htl, T )
observed(¬htl, T )← occ(listen4, T ), exec(listen4, T ), holds(¬htl, T )
holds(tl, T + 1) ← occ(listen1, T ), exec(listen1, T ), observed(htl, T )
holds(¬tl, T + 1) ← occ(listen2, T ), exec(listen2, T ), observed(htl, T )
holds(¬tl, T + 1) ← occ(listen3, T ), exec(listen3, T ), observed(¬htl, T )
holds(tl, T + 1) ← occ(listen4, T ), exec(listen4, T ), observed(¬htl, T )
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The probability distribution resulting from executing the listen action is given
by

state(T + 1) : 0.85× V ← occ(listen1, T ), exec(listen1, T ), state(T ) : V,
observed(htl, T ), holds(tl, T + 1)

state(T + 1) : 0.15× V ← occ(listen2, T ), exec(listen2, T ), state(T ) : V,
observed(htl, T ), holds(¬tl, T + 1)

state(T + 1) : 0.85× V ← occ(listen3, T ), exec(listen3, T ), state(T ) : V,
observed(¬htl, T ), holds(¬tl, T + 1)

state(T + 1) : 0.15× V ← occ(listen4, T ), exec(listen4, T ), state(T ) : V,
observed(¬htl, T ), holds(tl, T + 1)

The rewards received from executing the actions are encoded by

reward(−100, T + 1)← occ(openL1), exec(openL1)
reward(10, T + 1) ← occ(openL2), exec(openL2)
reward(−100, T + 1)← occ(openR1), exec(openR1)
reward(10, T + 1) ← occ(openR2), exec(openR2)
reward(−1, T + 1) ← occ(listen1), exec(listen1)
reward(−1, T + 1) ← occ(listen2), exec(listen2)
reward(−1, T + 1) ← occ(listen3), exec(listen3)
reward(−1, T + 1) ← occ(listen4), exec(listen4)

The value function is encoded in R by the p-rules:

value(V + λT ∗ U ∗ −100, T + 1)← value(V, T ), factor(λ), state(T + 1) : U,
reward(−100, T + 1), occ(openL1, T ), exec(openL1, T ), holds(tl, T ),

holds(tl, T + 1)
value(V + λT ∗ U ∗ 10, T + 1)← value(V, T ), factor(λ), state(T + 1) : U,

reward(10, , T + 1), occ(openL2, T ), exec(openL2, T ), holds(¬tl, T ),
holds(¬tl, T + 1)

value(V + λT ∗ U ∗ −100, T + 1)← value(V, T ), factor(λ), state(T + 1) : U,
reward(−100, T + 1), occ(openR1, T ), exec(openR1, T ), holds(¬tl, T ),

holds(¬tl, T + 1)
value(V + λT ∗ U ∗ 10, T + 1)← value(V, T ), factor(λ), state(T + 1) : U,

reward(10, T + 1), occ(openR2, T ), exec(openR2, T ), holds(tl, T ),
holds(tl, T + 1)

value(V + λT ∗ U ∗ −1, T + 1)← value(V, T ), factor(λ), state(T + 1) : U,
reward(−1, T + 1), occ(listen1, T ), exec(listen1, T ),

observed(htl, T ), holds(tl, T + 1)
value(V + λT ∗ U ∗ −1, T + 1)← value(V, T ), factor(λ), state(T + 1) : U,

reward(−1, T + 1), occ(listen2, T ), exec(listen2, T ), observed(htl, T ),
holds(¬tl, T + 1)

value(V + λT ∗ U ∗ −1, T + 1)← value(V, T ), factor(λ), state(T + 1) : U,
reward(−1, T + 1), occ(listen3, T ), exec(listen3, T ), observed(¬htl, T ),

holds(¬tl, T + 1)
value(V + λT ∗ U ∗ −1, T + 1)← value(V, T ), factor(λ), state(T + 1) : U,

reward(−1, T + 1), occ(listen4, T ), exec(listen4, T ), observed(¬htl, T ),
holds(tl, T + 1)
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6 Correctness

Let the domain of T be {0, . . . , n}. Let Φ be a transition function associated
with PT, s0 be a possible initial state, and a0, . . . , an−1 be a set of actions in
APO. Recall, any action ai can be represented as ai = {a1i , . . . , ami}. Therefore,
a trajectory s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn in PT can be also repre-
sented as s0 aj0 s1 . . . ajn−1 sn for (1 ≤ j ≤ m) and (0 ≤ i ≤ n), such that
∀(0 ≤ i ≤ n), si is a state, ai is an action, aji ∈ ai = {a1i , . . . , ami}, aji = π(si),
and si = Φ(aji−1 , si−1).

Theorem 1. Let PT be an action theory in APO, π be a policy in PT, and Tπ

be the set of trajectories in π. Then, s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn is a
trajectory in Tπ iff occ(π(s0), 0), . . . , occ(π(sn−1), n−1) is true in a probabilistic
answer set of ΠPT.

Intuitively, an action theory, PT in APO, can be encoded to a p-program, ΠPT,
whose probabilistic answer sets correspond to trajectories in PT.

Theorem 2. Let h be a probabilistic answer set of ΠPT, π be a policy in PT,
and Tπ be the set of trajectories in π. Let OCC be a set that contains h |= τ =
occ(π(s0), 0),
. . . , occ(π(sn−1), n− 1) iff s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn ∈ Tπ. Then,∑

h|=value(n,v) and h|=τ∈OCC v = V π
n (s0)

The p-program encoding of the reinforcement learning problems, in finite-horizon
POMDP, finds optimal policies using the flat representation of the problem do-
mains [19]. Hence, Theorem 4 follows directly from Theorem 3.

Theorem 3 ([19]). The stationary policy existence problem for finite-horizon
POMDP in the flat representation is NP-complete.

Theorem 4. The policy existence problem for a reinforcement learning problem
in POMDP environment using NHPLPPO with probabilistic answer set seman-
tics is NP-complete.

7 Reinforcement Learning Using Answer Set
Programming

Excluding the p-rules (15), (18), (21) – (24) from the p-program encoding, ΠPT,
of PT, results p-program, denoted by Πnormal

PT , with only annotations of the
form 1. As shown in [26], the syntax and semantics of this class of p-programs is
equivalent to classical normal logic programs with classical answer set semantics.

Theorem 5. Let Πnormal
PT be the normal logic program resulting after deleting

the p-rules (15), (18), (21) – (24) from ΠPT and π be a policy in PT. Then,
s0, π(s0), s1, π(s1)
, . . . , sn−1, π(sn−1), sn is a trajectory in π iff occ(π(s0), 0), . . . , occ(π(sn−1), n−1)
is true in an answer set of Πnormal

PT .
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Any reinforcement learning problem in POMDP can be encoded as a SAT prob-
lem. Any normal logic program, Π , can be translated into a SAT formula, S,
where the models of S are equivalent to the answer sets of Π [16].

Theorem 6. Let PT be an action theory and Πnormal
PT be the normal logic pro-

gram encoding of PT. Then, the models of the SAT encoding of Πnormal
PT are

equivalent to valid trajectories in PT.

Corollary 1. Let PT be an action theory. Then, PT can be directly encoded as
a SAT formula S where the models of S are equivalent to valid trajectories in
PT.

However, encoding reinforcement learning problems in NHPLPPO has advan-
tages over normal logic program and SAT encoding. These include, the explicit
representation of probabilities, the explicit assignment of probabilities to states,
and the direct propagation of probabilities through states, which are naturally
present in NHPLPPO with probabilistic answer set semantics.

8 Conclusions and Related Work

The difference between APO and the action languages [1], [3], [6], [10], and [15]
is that APO is a high level language and allows the factored specification of
POMDP.

The approaches for solving POMDP to find the optimal policies can be cat-
egorized into two main approaches; dynamic programming approaches and the
search-based approaches (a detailed survey on these approaches can be found
in [3]). However, dynamic programming approaches use primitive domain knowl-
edge representation. Moreover, the search-based approaches mainly rely on search
heuristics which have limited knowledge representation capabilities to repre-
sent and use domain-specific knowledge. In [18], a logical approach for solv-
ing POMDP, for probabilistic contingent planning, has been presented which
converts a POMDP specification of a probabilistic contingent planing prob-
lem into a stochastic satisfiability problem and solving the stochastic satisfi-
ability problem instead. Our approach is similar in spirit to [18] in the sense
that both approaches are logic based approaches. However, it has been shown
in [24] that NHPLP is more expressive than stochastic satisfiability from the
knowledge representation point of view. In [14], based on first-order logic pro-
grams without nonmonotonic negation, a first-order logic representation of MDP
has been described. Similar to the first-order representation of MDP in [14],
AMD allows objects and relations. However, unlike APO, [14] finds policies in
the abstract level. But, NHPLP allows objects and relations. [4] presented a
more expressive first-order representation of MDP than [14] that is a proba-
bilistic extension to Reiter’s situation calculus. However, it is more complex
than [14].
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Abstract. Consistency problems arise in many fundamental database
applications as data exchange, data integration, data warehouse and
many others. The chase algorithm is a fundamental and useful tool fix-
ing inconsistencies of database instances with respect to a set of data
dependencies. It is well known that the chase algorithm may be non-
terminating and several techniques and criteria for checking chase ter-
mination have been recently proposed. This paper presents ChaseT , a
tool that allows users to design data dependencies and combine different
criteria and rewriting algorithms for checking chase termination.

1 Introduction

In the design of databases an important role is played by the definition of data
dependencies. Data dependencies (also called integrity constraints) are used to
define data properties which must be satisfied by data. Databases not satisfying
constraints are said to be in an inconsistent state and they need to be repaired
through the application of update operations [1,2]. An alternative solution is
to leave databases in an inconsistent state and to answer queries distinguishing
tuples (in the answers) which are true from those which are undefined (miss-
ing tuples are false). This alternative solution considers all possible repaired
databases: true (resp. undefined) answers are those derived from all (resp. a
proper subset of) repaired databases. The presence of inconsistent data arise
in several practical contexts including the database integration, data exchange,
data warehouses, querying federated databases, and many others [3,8].

To repair databases several contexts, based on different sets of update oper-
ations, have been considered. In the case of correct, but incomplete databases
(i.e. only tuple insertion is taking into account to restore the consistency), the
algorithm which is often used to make databases consistent is the the well-
known chase fixpoint, consisting in the insertion of tuples in order to fulfill an
unsatisfied tuple generating dependency (TGD), and the modification of nulls,
to satisfy an equality generating dependency (EGD) which is violated by the
current database instance. The chase algorithm could i) terminate successfully,
if a consistent state is reached in a finite number of steps, ii) terminate unsuc-
cessfully, if an EGD cannot be satisfied by the current database instance iii) be
non-terminating, as shown by the following example.

S. Benferhat and J. Grant (Eds.): SUM 2011, LNAI 6929, pp. 520–524, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



ChaseT : A Tool for Checking Chase Termination 521

Example 1. Consider the set of constraints Σ1:

∀x Employee(x)→ ∃ y WorksFor(x, y)
∀x∀y WorksFor(x, y)→ ∃ z Managed(y, z)
∀x∀y Department(x),Managed(x, y)→ Employee(y)

and the database instance D = {Employee(john), WorksFor(john, cs), Depart-
ment(cs)}. Since the database does not satisfy the second constraint, a tuple
Managed(cs, n1) should be inserted, where n1 is a new labeled null value. At this
point the third constraint is not satisfied and the tuple Employee(n1) should be
added to the database. The chase ends by inserting the tuples WorksFor(n1, n2)
and Managed(n2, n3) to satisfy the first two constraints, because of the presence
of Employee(n1) in the database. Moreover, observe that, by removing the atom
Department(x) in the second constraint, the chase algorithm does not terminate
and an infinite number of tuples are inserted. �

Thus, it is important to design data dependencies where the chase terminates,
independently from the database instance.

This paper presents ChaseT , a tool for testing whether, given a set of data de-
pendencies Σ, the application of the chase terminates, for all database instances.
ChaseT checks chase termination for twodifferent types of chase algorithms known
as standard and oblivious chase [10,9]. Since the problem of checking whether the
chase terminates is undecidable [4], several criteria, defining sufficient conditions
have been recently proposed. The first and simplest criterium proposed is Weak
Acyclicity (WA) [5] checking whether the set of constraints does not present cyclic
conditions for which a new null value forces (directly or indirectly) the introduc-
tion of another null in the same position. For instance, in Example 1 we have that
Employee1 (denoting position 1 in relation Employee) forces the introduction of
a new null value in position WorkFor2 and WorkFor2 forces the introduction of
a new null value in position Managed2 (denoted as Employee1 →∗ WorkFor2 and
WorkFor2 →∗ Managed2 respectively); this value is then propagated in position
Employee1 (denoted as Managed2 → Employee1) owing to the third constraint.
The cycle going through the special edge, i.e. edge marked with “∗”, means that an
infinite number of nulls could be introduced. The WA criterium has been general-
ized in several ways: Safety (SC) [10] and Super-weakAcyclicity (SwA) [9] analyze
the propagation of nulls trough positions and their check requires a polynomial
time complexity, whereas C-Stratification (CStr) and its extensions analyze how
constraints may activate each other and their check is in co-NP [4,10,7]. SwA ex-
tends SC, but is not comparable with CStr.

In order to enlarge the class of terminating constraints, rewriting techniques,
denoted by Adn and Adn+, have been proposed in [6]. The idea consists in
rewriting the original set of constraints Σ into an ‘equivalent’ set Σα, where
predicate symbols are adorned, and verifying the structural properties for chase
termination on Σα. In particular, if Σ satisfies a chase termination criterium C,
then the rewritten set Σα satisfies C as well, but the vice versa is not true, that
is there are significant classes of constraints for which Σα satisfies C and Σ does
not. More specifically, in the Adn technique, an adorned predicate is of the form
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Fig. 1. ChaseT architecture

pα1...αm(x1, ..., xm) where αi = b means that the variable xi is bounded, i.e. can
take values from a finite domain, otherwise (αi = f) we say that xi is free. The
Adn+ technique performs more precise analysis: instead of simply using f to
denote that a position may contain null values, it uses adornments of the form
fi, where i is a fresh subscript. This allows to recognize that different nulls are
generated. The rewriting of constraints allows us to recognize larger classes of
constraints for which chase termination is guaranteed, although in some case the
number of adorned constraints could be exponential.

Example 2. Consider the set of constraints Σ1. (For the sake of space limita-
tion, we will use abbreviations instead of the full predicate names.) The Adn
technique starts by rewriting constraints, associating to body predicates strings
of b symbols and to the head predicates the same body adornments for uni-
versally quantified variables and f symbols for existentially quantified variables
(dependencies on the left column):

∀x Eb(x)→WF bf (x, y)
∀x∀y WF bb(x, y)→Mbf (y, z)

∀x∀y Db(x),Mbb(x, y)→ Eb(y)

∀x∀y WF bf (x, y)→Mff (y, z)

∀x∀y Db(x),Mbf (x, y)→ Ef (y)

∀x Ef (x)→WF ff (x, y)
∀x∀y WF ff (x, y)→Mff (y, z)

Subsequently, due to the new predicates WorksForbf (x, y) and Managedbf(x, y)
the rewriting continues by producing the constraints on the right column.

At this point, the rewriting terminates, since the predicate Departmentb(x)
cannot be joined with Managedff(x, y), to produce a new adorned constraints,
because the adornment of the variable x is not coherent. The rewritten set of
constraints is weakly acyclic, whereas the original set Σ1 is not recognized by
SwA and CStr criteria. �

2 System Description

ChaseT implements the above criteria and techniques for checking chase termi-
nation. Its architecture is depicted in Fig. 1 and consists of five main modules
which allow users to define data dependencies, check chase termination prop-
erties and visualize explanations. The Graphical User Interface (GUI) allows
the user to provide the set Σ of data dependencies and three parameters: i) γ,
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denoting the type of chase she/he is interested in (standard, skolem oblivious,
naive oblivious), ii) τ , denoting the selected termination criterium (WA, SC,
SwA or CStr), and iii) ρ, denoting the possible rewriting technique she/he
would apply (Adn, Adn+ or none). If the user wants to check the termination of
the selected chase algorithm by applying a rewriting technique, the input set of
dependencies Σ is rewritten (by the module Rewriter) into a set of adorned de-
pendencies Σα. Since the rewriting output also depends on the particular chase
procedure the user wants to check, the Rewriter module receives in input Σ and
the parameters ρ and γ and gives in output the rewritten set of constraints Σα.
The system also allows users to check termination conditions without indicating
any specific criterium. In such a case all techniques are applied and the system
returns the properties of the input dependencies (see the bottom right window
in Fig. 2). Fig. 2 shows how the user interacts with the system through the GUI.
The left window shows the dependencies input set while the rewritten set of
dependencies is showed in the right window; parameters are introduced through
check boxes.

It is worth noting that the data dependencies defined by the user are first
parsed (by the module Parser) to check syntactic errors and inconsistencies
(e.g. the use of predicates having the same name and different arity).

For the analysis of the structural properties of a set of dependencies Σ, the
Checker builds two specific graphs for the selected criterium: the constraints
graph shows how constraints may activate each other, while the position graph
shows how nulls may propagate through positions. The construction of the
graphs is performed by the module Graph Builder which receives in input the
set of dependencies Σ, the criterium τ and the type of chase γ. The graphs can
be visualized using a graph visualization tool for a better understanding of data
dependency properties (see Fig. 3). It is important to observe that the system
allows user to select a specific termination criterium for a better understanding
of the source of possible cycles generating tuples with nulls.

The system has been developed in Java using Eclipse IDE and is downloadable
from wwwinfo.deis.unical.it/chaset. The GUI has been written using the Swing
Java libraries and the open source library JGraphX for the visualization of
graphs. The interactions among the different modules are carried out through
interfaces so that each module can be easily modified without any inference on
the other modules.

3 Application Scenario

In the following, a typical use-case scenario of ChaseT is shown. Suppose, for
instance, that the user wants to check the termination of the standard chase
procedure for the set of constraints of Example 1. As shown in Fig. 2, the user
introduces the set of constraints Σ in the “Input data dependency” window,
selects “standard” as chase type and tries to test the known termination con-
ditions (Run test button) by taking into account that more general techniques
require greater computational effort and the explanation is more complex. For
the example shown in Fig. 2 the application of all termination conditions to the
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Fig. 2. ChaseT User Interface Fig. 3. Graph Visualizer

original set of dependencies produces a negative result. However, the application
of the simplest rewriting generates the equivalent set Adn(Σ), which is weakly
acyclic. The rewritten set of constraints can be visualized in the “Adorned data
dependency” window (using the Adorning button). The user can also visualize
on the screen the graphs generated by the Graph Builder in order to analyze
graphs and understand the behaviors of the different termination criteria. As
shown in Fig 3, the dependency graph of Σ contains a cycle going through a
special edge (“Dependency graph” window) instead the dependency graph of
Adn(Σ) is acyclic (“Adorned dependency graph” window).

4 Conclusion

This paper has presented a tool for testing whether, given a set of data de-
pendencies, the chase terminates, for all database instances. We described the
architecture of the system and the use-case scenarios. As future work, we plan
to extend the set of chase termination criteria with new ones proposed in [7].
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Abstract. In this paper, we propose to better estimate high-dimensional
distributions by exploiting conditional independences within the Particle
Filter (PF) framework. We first exploit Dynamic Bayesian Networks to
determine conditionally independent subspaces of the state space, which
allows us to independently perform propagations and corrections over
smaller spaces. Second, we propose a swapping process to transform the
weighted particle set provided by the update step of PF into a “new
particle set” better focusing on high peaks of the posterior distribution.
This new methodology, called Swapping-Based Partitioned Sampling, is
successfully tested and validated for articulated object tracking.

1 Introduction

Dealing with high-dimensional state and observation spaces is a major concern
for many research communities. There exist essentially two ways to tackle high-
dimensional problems: either reduce the dimension of the state space/search
space by approximation or exploit conditional independences naturally arising
in the state space to partition the latter into low-dimensional spaces. In this
paper, we chose the latter and focus on articulated object tracking. Actually, it
is an important computer vision task for a wide variety of applications includ-
ing gesture recognition, human tracking and event detection. However, tracking
articulated structures with accuracy and within a reasonable time is challenging
due to the high dimensionality of the state and observation spaces. In the optimal
filtering context, the goal of tracking is to estimate a state sequence {xt}t=1,...,T

whose evolution is specified by a dynamic equation xt = ft(xt−1,nx
t ) given a

set of observations. These observations {yt}t=1,...,T , are related to the states by
yt = ht(xt,n

y
t ). Usually, ft and ht are vector-valued and time-varying transi-

tion functions, and nx
t and ny

t are noise sequences, independent and identically
distributed. All these equations are usually considered in a probabilistic way
and their computation is decomposed in two main steps. First the prediction
of the density function p(xt|y1:t−1) =

∫
xt−1

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 with
p(xt|xt−1) the prior density related to transition function ft, and then a correc-
tion step p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) with p(yt|xt) the likelihood density
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related to the measurement function ht. When functions ft and ht are linear, or
linearizable, and when distributions are Gaussian or mixtures of Gaussians, se-
quence {xt}t=1,...,T can be computed analytically by Kalman, Extended Kalman
or Unscented Kalman Filters [4]. Unfortunately, most vision tracking problems
involve nonlinear functions and non-Gaussian distributions. In such cases, track-
ing methods based on Particle Filters (PF) [4,6], also called Sequential Monte
Carlo Methods (SMC), can be applied under very weak hypotheses: their prin-
ciple is not to compute the parameters of the distributions, but to approxi-
mate these distributions by a set of N weighted samples {x(i)

t , w
(i)
t }, also called

particles, corresponding to hypothetical state realizations. As optimal filtering
approaches do, PF consists of two main steps: (i) a prediction of the object
state in the scene (using previous observations), that consists of propagating
the set of particles {x(i)

t , w
(i)
t } according to a proposal function q(xt|x(i)

0:t−1,yt),
followed by (ii) a correction of this prediction (using a new available observa-
tion), that consists of weighting the particles w.r.t. a likelihood function, so that

w
(i)
t ∝ w

(i)
t−1p(yt|x(i)

t )
p(x

(i)
t |x(i)

t−1)

q(xt|x(i)
0:t−1,yt)

, with
∑N

i=1 w
(i)
t = 1. Particles can then be re-

sampled, so that those with highest weights are duplicated, and those with lowest
weights are removed. The estimation of the posterior distribution is then given
by
∑N

i=1 w
(i)
t δ

x
(i)
t

(xt), where δ
x

(i)
t

are Dirac masses centered on particles x(i)
t .

There exist many models of PF, each having its own advantages. Unfortunately,
the computational cost of PF highly depends on the number of dimensions of
the state space and, for large state and observation spaces, it may be unreal-
istically high due to the large number of particles needed to approximate the
distributions and to the costs of computing weights w

(i)
t .

In this paper, we propose to exploit conditional independences in the state
space to transform by swapping processes the weighted particle set provided
by the correction step of PF into a “new particle set” better focusing on high
peaks of the posterior distribution. This enables to deal with high-dimensional
state spaces by reducing the needed number of particles while increasing the
accuracy of the estimation of the probability distribution of the tracked ob-
ject’s state. This paper is organized as follows. Section 2 gives a short overview
of the existing approaches that try to solve the high-dimensionality problem
by exploiting conditional independences to decompose probabilistic computa-
tions. Section 3 recalls the Partitioned Sampling approach and, then, details our
approach. Section 4 gives experimental results on challenging synthetic video
sequences. Finally, concluding remarks and perspectives are given in Section 5.

2 Exploiting Conditional Independences for Tracking

It has been shown in [12] that the number of particles needed to track an ob-
ject grows exponentially with the dimension of the state space of this object.
For problems of articulated object or multiple object tracking, the state space
may have very high dimensions, which makes PF unusable for real-time tracking.
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Several methods aim at reducing the number of necessary particles by exploiting
conditional independences in the state space to divide it into small parts.

Partitioned Sampling (PS) [11] is one of the most popular among these meth-
ods. It exploits the fact that, in many problems, both the system dynamics and
the likelihood function are decomposable over small subspaces. The key idea,
that will be described in Section 3, is then to substitute the application of one
PF over the whole state space by a sequence of applications of PF over these
small subspaces, thus significantly speeding-up the process. However, for the ar-
ticulated object tracking purpose, PS suffers from numerous resampling steps
that increase noise and decrease the tracking accuracy over time.

The same kind of decomposition is exploited in [9] in the context of a general
PF for Dynamic Bayesian Networks (DBN). Here, the proposal distributions of
the prediction step is decomposed as the product of the conditional distributions
of all nodes of the current time slice in the network. The prediction step then
follows the topological order of the nodes of the current time slice of the DBN
and uses for each node its conditional probability as the proposal distribution.
This allows to integrate the current observations into the proposal distribution.

In [15], the sampling idea of [9] is combined with that of resampling proposed
in [11] to create a PF algorithm fitted for DBNs. This algorithm can be seen as
a generalization of PS. By following a DBN topological order for sampling and
by resampling the particles each time an observed node is processed, particles
with low likelihood for one subspace are discarded just after the instantiation of
this subspace due to the resampling step, whereas particles with high likelihood
are multiplied. This has the same effect as weighted resampling in PS.

One of the most recent and promising approach that uses a decomposition
technique is the nonparametric Belief Propagation algorithm [17,8]. It combines
the PF framework with the well-known Loopy Belief Propagation algorithm [14]
for speeding-up computations (but at the expense of approximations). It has
been successfully applied on many problems of high dimensions [16,2,7]

Another popular approach is the Rao-Blackwellized Particle Filter for DBN
(RBPF) [5]. By using a natural decomposition of the conditional probability,
RBPF decomposes the state space into two parts that fulfill the following con-
dition: the conditional distribution of the second part given the first part can be
estimated using classical techniques such as Kalman filter. The distribution of
the first part is then estimated using PF and the conditional distribution of the
second part given the first one is estimated using Kalman filter. As the dimen-
sion of the first part is smaller than that of the whole state space, the sampling
step of particle filter for the first part needs fewer particles and the variance of
the estimation can be reduced. Though RBPF is very efficient for reducing the
high dimension of the problem, it can not be applied on all DBNs because the
state space cannot always be decomposed into two parts fulfilling the condition.

The framework introduced in [3] is somewhat related to ours. This is a par-
allel PF for DBNs that uses the same decomposition of the joint probability as
a Bayesian Network (BN) to reduce the number of particles required for track-
ing. The state space is divided into several subspaces that are in some respect
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relatively independent. The particles for these subspaces can then be generated
independently using different proposal densities. This approach offers a very flex-
ible way of choosing the proposal density for sampling each subspace. However
the definition of different subspaces requires the DBN to have a particular inde-
pendence structure, limiting the generalization of this algorithm. In our paper,
we address more general problems where no such independences hold. We fo-
cus on PS [11,12] for its simplicity and generalization potential. In [1], PS was
proved to be one of the best algorithm for tracking problems of high dimension.
We believe that PS can be improved by better exploiting the independences in
DBNs. This idea will be presented in the next section.

3 Proposed Approach

3.1 Partitioned Sampling (PS)

PS is an effective Particle Filter (PF) designed for tracking complex objects with
large state space dimensions using only a reduced number of particles. Its key
idea is to divide the state space into an appropriate set of partitions and to apply
sequentially a PF on each partition, followed by a specific “weighted resampling”
ensuring that the sets of particles represent the joint distribution of the whole
state space and are focused on its peaks.

Let g : X %→ R be any strictly positive continuous function, with X the state
space. Given a set of particles Pt = {x(i)

t , w
(i)
t }Ni=1 with weights w

(i)
t , weighted

resampling proceeds as follows: let ρt be defined as ρt(i) = g(x(i)
t )/

∑N
j=1 g(x(j)

t )
for i = 1, . . . , N . Select independently indices k1, . . . , kN according to probability
ρt. Finally, construct a new set of particles P ′

t = {x′(i)
t , w′(i)

t }Ni=1 defined by
x′(i)

t = x(ki)
t and w′(i)

t = w
(ki)
t /ρt(ki). MacCormick [10] shows that P ′

t represents
the same probability distribution as Pt while focusing on the peaks of g.

PS’s key idea is to exploit some decomposition of the system dynamics w.r.t.
subspaces of the state space in order to apply PF only on those subspaces. This
leads to a significant reduction in the number of particles needed for tracking.
So, assume that state space X can be partitioned as X = X 1×· · ·×XP as well as
observation space Y = Y1×· · ·×YP . For instance, a system representing a hand
could be defined as X hand = X palm×X thumb×X index×Xmiddle×X ring×X little.
Assume in addition that the dynamics of the system follows this decomposition,
i.e., that:

ft(xt−1, n
x
t ) = fP

t ◦ fP−1
t ◦ · · · ◦ f2

t ◦ f1
t (xt−1), (1)

where ◦ is the usual function composition operator and where each function
f i

t : X %→ X modifies the particles’ states only on subspace X i 1.
The PF scheme consists of resampling particles, of propagating them using

proposal function ft and, finally, of updating their weights using the observations
at hand. Here, the same result is achieved by substituting the ft propagation
1 Note that, in [10], functions f i

t are more general since they can modify states on
X i×· · ·×X p. However, in practice, particles are often propagated one X j at a time.
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step by the sequence of applications of the f i
t as given in Eq. (1), each one

followed by a weighted resampling that produces new particles sets focused on
the peaks of a function g. To be effective, PS thus needs g to be peaked with the
same region as the posterior distribution restricted to X i. When the likelihood
function decomposes as well on subsets X i, i.e., when:

p(yt|xt) =
P∏

i=1

pi(yi
t|xi

t), (2)

where yi
t and xi

t are the projections of yt and xt on Yi and X i, weighted resam-
pling focusing on the peaks of the posterior distribution on X i can be achieved
by first multiplying the particles’ weights by pi(yi

t|xi
t) and, then, by performing

a usual resampling. Note that Eq. (2) naturally arises when tracking articulated
objects. This leads to the condensation diagram given in Fig. 1, where opera-
tions “∗f i

t” refer to propagations of particles using proposal function f i
t as defined

above, “×pi
t” refer to the correction steps where particle weights are multiplied

by pi(yi
t|xi

t) (see Eq. (2)), and “∼” refer to usual resamplings. MacCormick and
Isard show that this diagram produces mathematically correct results [12].

3.2 Swapping-Based Partition Sampling (SBPS)

The hypotheses used by PS can best be explained on a dynamic Bayesian network
(DBN) representing the conditional independences between random variables of
states and observations [13]. Assume for instance that an object to be tracked
is composed of 3 parts: a torso, a left arm and a right arm. Let x1

t ,x
2
t ,x

3
t repre-

sent these parts respectively. Then, the probabilistic dependences between these
variables and their observations y1

t ,y
2
t ,y

3
t , can be represented by the DBN of

Fig. 2. In this figure, Eq. (2) implicitly holds because, conditionally to states
xi

t, observations yi
t are independent of the other random variables. In addition,

the probabilistic dependences between substates x1
t ,x

2
t ,x

3
t suggest that the dy-

namics of the system is decomposable on X 1 ×X 2 ×X 3. As a consequence, the
condensation diagram of Fig. 1 can be exploited to track the object.

Through the d-separation criterion [14], DBNs offer a strong framework for
analyzing probabilistic dependences among sets of random variables. By this
criterion, it can be remarked that, on Fig. 2, x2

t and x3
t are independent con-

ditionally to (x1
t ,x

2
t−1) and (x1

t ,x
3
t−1) respectively. As a consequence, for each

particle, PS’s propagations/corrections over subspaces X 2 and X 3 can be per-
formed independently since, in this case, x1

t and xt−1 are known and fixed. This
suggests the new condensation diagram of Fig. 3.

∗f1
t ×p1

t

∗fP
t ×pP

t p(xt|y1:t)

∗f2
t ×p2

t

p(xt−1|y1:t−1)

· · ·

∼
∼

Fig. 1. Partitioned Sampling condensation diagram
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time slice t− 1 time slice t time slice t + 1

Fig. 2. A Dynamic Bayesian network for body tracking

∗f1
t ×p1

t ∼
∗f2

t ×p2
t

∗f3
t ×p3

t

∼ p(xt|y1:t)

p(xt−1|y1:t−1)

Fig. 3. Condensation diagram exploiting conditional independences

Proposition 1. The set of particles resulting from the Particle Filter of Fig. 3
represents probability distribution p(xt|y1:t).

Proof. Propagations performed in parallel concern subspaces that are probabilis-
tically independent. So, they produce the same result as if they were performed
sequentially. Hence, the only difference between PS and the PF of Fig. 3 is that
fewer resamplings are performed. But resamplings do not change the probability
distributions represented by the particle sets. Hence the result. �

There are two major differences between PS and the PF of Fig. 3: the latter
performs fewer resamplings, thus introducing less noise in the particle set and,
more importantly, it enables to produce better fitted particles by swapping their
subparts. Actually, consider again our body tracking example and assume that
we generated the 3 particles x(i)

t of Fig. 4.a where X 1 is the middle part of the
object and X 2 and X 3 are its left and right parts respectively, and where the
shaded areas represent the object’s true state. According to the DBN of Fig. 2,
for fixed values of x1

1:t, the sets of left and right parts of the particles repre-
sent p(x2

t , y
2
1:t|x1

1:t) and p(x3
t , y

3
1:t|x1

1:t) respectively (summing out variables x2
j ,x

3
j

from the DBN). Hence, after permuting the values of the particles on X 2 (resp.
X 3) for a fixed value of x1

1:t, distribution p(x2
t , y

2
1:t|x1

1:t) (resp. p(x3
t , y

3
1:t|x1

1:t))
remains unchanged. A fortiori, this does not affect the representation of the
joint posterior distribution

∫
p(x1

1:t, y
1
1:t)p(x2

t , y
2
1:t|x1

1:t)p(x3
t , y

3
1:t|x1

1:t)dx
1
1:t−1 =

p(xt,y1:t). On Fig. 4.a, particles x(1)
t and x(3)

t have the same state on X 1. Thus
their right parts can be permuted, resulting in the new particle set of Fig. 4.b.
Remark that we substituted 2 particles, x(1)

t and x(3)
t , which had low weights due

to their bad estimation of the object’s right or left part states, by one particle
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x(2)
t x(3)

tx(1)
t

x′
t
(1) x′

t
(2) x′

t
(3)

a)

b)

Fig. 4. The particle swapping scheme: a) before swapping; b) after swapping

x′
t
(1) with a high weight and another one x′

t
(3) with a very low weight. After

resampling, the later will most probably be discarded and, therefore, swapping
will have focused particles on the peaks of the posterior distribution. Note how-
ever that not all permutations are allowed: for instance, none can involve particle
x(2)

t because its center part differs from that of the other particles.
Let us now formulate SBPS. Assume again that state space X is decomposed

as X = X 1×· · ·×XP and that the probabilistic dependences between all random
variables xi

t and yi
t, i = 1, . . . , P , are represented by a DBN G. Let {P1, . . . , PK}

be a partition of {1, . . . , P} such that, for all i, {xj
t}j∈Pi are mutually indepen-

dent conditionally to (∪i−1
h=1 ∪k∈Ph

xk
t ) ∪ xt−1. Such sets are easily identified by

d-separation on DBN G [14]. By definition, after processing P1, . . . , Pi−1, all the
variables of each set Pi can be processed independently. Denote the elements of
Pi by {i1Pi

, . . . , iki

Pi
}. Then, the SBPS algorithm can be described by the conden-

sation diagram of Fig. 5, where operations “�Pi” refer to the particle subpart
swappings briefly described previously. Remark that, after the resampling op-
eration of part Pi, the high weighted particles will be duplicated, which will
enable swapping when processing next part Pi+1. Swappings need however to be
further formalized. Let pa(X i

t) denote the parents of node X i
t in G in time slice

t and let Link(X i
t) be the set of nodes in all time slices such that there exists

an undirected path in G linking them to X i
t while not passing through any node

in (pa(X i
t))1:t. Assume now that SBPS was executed up to (but not including)

operation �Pk . Let r ∈ Pk be some part of the object. Then, for each value of
(pa(xr

t ))1:t, substates xr
t of the particles represent p(xr

t ,y
r
1:t|pa(xr

t )1:t). Thus,
permuting substates xr

t among particles with the same value of (pa(xr
t ))1:t does

not change this distribution. However, if xs
t is a child of xr

t , then not permuting
similarly substates xs

t of these particles changes p(xs
t ,y

s
1:t|pa(xs

t )1:t), hence re-
sulting in incorrect computations. More generally, it is easily shown that all the
values of the substates in Link(xr

t ) (and only those values) need be permuted
to ensure that no conditional probability is affected by the swapping. By condi-
tional independences w.r.t. pa(xr

t )1:t, the product of all these distributions is the
joint probability. So, operation �Pk refers to permuting some values of Link(xr

t )
for some r ∈ Pk and among particles having the same substate pa(xr

t )1:t. In
practice, whenever pa(xr

t )t is identical for two particles, the continuous nature
of the state space make it highly probable that one particle is a copy of the
other due to resampling. Hence, their pa(xr

t )1:t values should also be identical.
So, our implementation approximates the posterior distributions by performing
swapping for fixed values of pa(xr

t )t instead of pa(xr
t )1:t.
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Fig. 5. Swapping-based Partitioned Sampling condensation diagram

Proposition 2. The set of particles resulting from SBPS represents p(xt|y1:t).

Proof. If we do not swap particles, the proof follows from Proposition 1. If some
swapping occurs, say on substate xr

t , then, as mentioned previously, distribution
p(xr

t ,y
r
1:t|pa(xr

t )1:t) remains unchanged. By definition, swapping also occurs on
the neighbors xs

t of xr
t and their neighbors, so that the conditional distribution

of xs
t remains unchanged. By induction on neighborhoods in G, no conditional

distribution is ever affected by swapping and the result follows. �

Finally, let us show how �Pk can determine attractive swappings, i.e., how high-
peaked regions can be discovered. For simplicity, we will only describe swapping
on the example of Fig. 6, but the principle can easily be generalized. Assume
that X = X 1 × X 2 × X 3 × X 4, where parts are defined from left to right. In
addition, assume that P1 = {2}, P2 = {3} and P3 = {1, 4}, i.e., P3 corresponds
to the extremal sides of the object. Let us describe operation �P3 . Just before
propagating part P3, SBPS has constructed particles with equal weights (due to
its resamplings). In the rectangles of parts X 2 and X 3, identical letters indicate
identical substate values (e.g., particles 1 and 2 have the same value on X 2). Just
before executing �P3 , particles have been propagated on the extremal sides of
the object (resulting in Fig. 6.a) and operations ×p1

t and ×p4
t have updated their

weights. These weights (unormalized for clarity reasons) are displayed inside the
rectangles corresponding to X 1 and X 4 and the total weights of the particles
are shown on their right side (According to the DBN, these weights are equal
to p1(yt|x1,(i)

t )× p4(yt|x4,(i)
t )). To find the best swappings, we exploit the data

structure given in Fig. 6.b: the circle nodes correspond to the values of the
particles on pa(x1

t )t and pa(x4
t )t. The values within rectangles correspond to

the set of values and weights of the particles on x1
t and x4

t for each value of their
parents pa(x1

t )t and pa(x4
t )t. Finally, there exists an edge between two circles if

and only if there exists at least one particle with the values of both circles. For
instance, edge (A, D) is induced by particle 2. By definition, all the rectangle
values that are attached to a given circle (e.g., 5 and 2) can be swapped since
they have the same parent values in the DBN. As there exists an edge between
two circles if and only if there exists a particle with both circle values, we can
conclude that any value attached to one such circle can be combined by swapping
with any value attached to the other circle. For instance, 5, which is attached
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a) before swapping

x
(1)
t

x
(3)
t

x
(2)
t

c) after swapping

x
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t
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t

b) swapping data structure
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Fig. 6. Details on the swapping process

to A, can be combined with 1 (attached to C) or 4 or 2 (attached to D). To get
the best particle, we shall only consider combinations with the highest rectangle
values, hence, for the pair (A, D), we shall only consider combining 5 with 4.
The same shall be done for nodes attached to B and the first new particle
constructed is the one with the highest product (here 5 × 4 from pair (A, D)).
Once this combination has been used, remove values 5 and 4 from the graph
and iterate. When no more rectangle is attached to a circle, this one is removed
from the graph. This process is fast and very effective to produce high-weight
particles.

4 Experimental Results

We have tested our method and compared it to PS on synthetic video sequences
because we wanted to highlight its interest in terms of dimensionality reduction
and tracking accuracy without having to take into account specific properties
of images (noise, etc.). Moreover, it is possible to simulate specific motions and
then to test and compare with accuracy our method with PS. For that, we have
generated our own synthetic video sequences, each one containing 300 frames,
showing two different kinds of articulated objects: chains or squids. A chain is
the concatenation of P colored rectangles (P is also called the length of the
object), and a squid is made of two chains crossing in their middle part: in a
sense, a chain can be defined by a central rectangle, and two tentacles starting
from this central part, while a squid has four tentacles starting from its central
part. Chains and squids are translating and distorting over time, see examples
of squids in Fig. 10 and 11, and of a chain in Fig. 8. The goal, here, is to observe
the capacity of PS and SBPS to deal with articulated objects composed of a
varying number of parts and subject to weak or strong motions.

The tracked articulated object is modeled by a set of P rectangles whose
corners are labeled C1, . . . , C4. The state space contains parameters describing
each rectangle, and is defined by xt = {x1

t ,x
2
t , . . . ,x

P
t }, with xi

t = {xi
t, y

i
t, θ

i
t},

where (xi
t, y

i
t) denotes the coordinates of the center of the ith rectangle, and

θi
t is its orientation, i = 1, . . . , P . A particle x(j)

t = {x1,(j)
t ,x2,(j)

t , . . . ,xP,(j)
t },

j = 1, . . . , N , is thus a possible configuration of an articulated object. In the
first frame, particles are uniformly generated around the object. During the pre-
diction step, particles are propagated following a random walk whose variance
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Fig. 7. Tracking errors for PS and SBPS approaches for a chain object of length P = 11
with, from left to right and from top to bottom, N = 5, 10, 20, 30, 40, 50 particles.
Motions in frames [50, 100] and [150, 200] are stronger than in the other frames.

has been manually chosen. The weights of the particles are then computed using
the current observation (i.e. the current frame). Finally, the particle’s weights
are given by w

(j)
t = w

(j)
t−1p(yt|x(j)

t ) ∝ w
(j)
t−1e

−λd2
, with d the Bhattacharyya dis-

tance between the histograms of the target (prior) and the reference (previously
estimated) regions. Parameter λ was set to 50 in all our tests.

In both approaches, the articulated object’s joint distribution is estimated by
starting from its center part. PS then propagates and corrects particles part af-
ter part to derive a global estimation of the object. SBPS considers tentacles of
objects as totally independent, and thus propagates, swaps and corrects simul-
taneously in all tentacles. PS and SBPS are compared by measuring the tracking
error as the distance between the ground truth and the estimated articulated
object at each instant. This distance is given by the sum of the Euclidean dis-
tances between each corner Ci of each estimated rectangle and its corresponding
corner Ci of the same rectangle in the ground truth. All the results presented in
this paper correspond to a mean over 100 runs.

Our first test concerns the tracking of a chain object of length P = 11. To
test the stability of our approach, we have generated video sequences in which
motions during two specific temporal intervals (frames [50, 100] and [150, 200])
are strong. Comparative results of tracking errors of PS and SBPS are reported
in Fig. 7, for different numbers N of particles. We can see on these graphs
that SBPS always outperforms PS, which shows its stability especially when the
motion becomes strong: the tracking error drastically increases for PS whereas
that of SBPS is relatively stable. Visual results of tracking are shown on Fig. 8
with N = 30 particles for this object: the estimation of the articulated object is
represented by the concatenated white rectangles. Over 100 runs, the tracking
error resulting from our approach was reduced by 19% as compared to PS.
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Fig. 8. Zooms on tracking results obtained for PS (top line) and SBPS (bottom line)
on frames 100, 150 and 200, for a chain object of length P = 11 with N = 30 particles.
White articulated objects represent the mean estimations of the articulated object.
Mean tracking error: 1670 pixels for PS, and 1286 pixels for SBPS.

Table 1. Comparison of tracking mean errors (in pixels) over all the sequences obtained
by PS and SBPS depending on the object (chain or squid), its length P , and the number
N of particles. ↘ %=

(
1− SBPS

PS

)×100 is the error reduction percentage using SBPS.

Chain Squid

P = 3 P = 5 P = 7 P = 9 P = 11 P = 5 P = 9 P = 13 P = 17 P = 21

N = 5

PS 514 1565 3440 8546 12666 1999 18473 37710 66659 77864

SBPS 469 1480 1706 6638 7374 812 6408 9125 12397 13075

↘ % -9% -6% -50% -33% -42% -60% -76% -76% -82% -84%

N = 10

PS 187 315 1302 1528 3199 289 894 1862 2339 7786

SBPS 167 293 1044 1215 2161 193 627 746 1407 2225

↘ % -11% -7% -20% -21% -33% -34% -30% -60% -40% -72%

N = 20

PS 136 193 949 1529 1944 153 596 519 1046 2610

SBPS 125 185 813 1192 1495 114 428 405 696 1374

↘ % -9% -5% -15% -23% -24% -26% -29% -22% -34% -48%

N = 30

PS 123 164 819 1313 1606 120 510 404 772 1919

SBPS 112 160 706 1069 1309 97 377 327 527 1127

↘ % -9% -3% -14% -19% -19% -20% -27% -20% -32% -42%

N = 40

PS 115 159 768 1199 1440 108 467 349 666 1615

SBPS 108 147 671 997 1211 91 351 287 460 1016

↘ % -7% -8% -13% -17% -16% -16% -25% -18% -31% -38%

N = 50

PS 112 141 735 1109 1306 102 426 317 592 1534

SBPS 105 138 648 956 1151 88 337 265 428 943

↘ % -7% -3% -12% -14% -12% -14% -21% -17% -28% -39%

Table 1 summarizes all the tests performed on different video sequences show-
ing chains of length P = 3, 5, 7, 9, 11 or squid of length P = 5, 9, 13, 17, 21, for
values N = 5, 10, 20, 30, 40, 50. Tracking errors (in pixels) over all the sequences
are reported for both approaches, and the percentage of reduction of tracking error
obtained with our approach, denoted by↘ %, is computed as

(
1− SBPS

PS

)
× 100.

As another example, we also reported the tracking errors for a squid object of size
P = 17 in Fig. 9. We can see that our approach always decreases the tracking
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Fig. 9. Tracking errors for PS and SBPS approaches for a squid object of length P = 17
with, from left to right and from top to bottom, N = 5, 10, 20, 30, 40, 50 particles

Fig. 10. Zooms on tracking results obtained for PS (top line) and SBPS (bottom line)
on frames 50, 100, 200 and 250, for a squid of length P = 5 with N = 5 particles.
White articulated objects represent the mean estimations of the articulated object.
Mean tracking error: 1454 pixels for PS, and 403 pixels for SBPS.

error. This is especially noticeable for high values of P . Even for small objects
(P = 3) and a large number of particle (N = 50), which should be highly suffi-
cient to provide good tracking results, SBPS outperforms PS, decreasing the error
by 7%. The visual tracking results for a squid object of size P = 5 using N = 5
particles are given in Fig. 10: mean tracking error is 1454 pixels for PS , and 503
pixels for SBPS. All these results show why exploiting both independence between
the different object’s parts and subpart swapping is highly efficient: “much bet-
ter” particles are constructed which, in turn, allows to better estimate the joint
probability of the articulated object. This advantage is illustrated by Fig. 11 for a
squid object of length P = 13 (frames 50, 100, 150 and 200): we have voluntarily
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Fig. 11. Zooms on the best particles (i.e. with the highest weight) of PS (top line) and
SBPS (bottom line) approaches, drawn in white for a squid object of length P = 13,
with N = 5. From left to right, frames 50, 100, 150 and 200

Table 2. Computation times (in sec.) of PS and SBPS for the tracking of a chain and
of a squid of lengths P = 9 and P = 17 respectively, for different values of N

N = 5 N = 10 N = 20 N = 30 N = 40 N = 50

Chain: P = 9
PS 0.70 1.21 2.18 3.22 4.2 5.15

SBPS 0.72 1.30 2.31 3.45 4.43 5.41

Squid: P = 17
PS 1.18 2.12 4.01 6.02 8.16 10.28

SBPS 1.20 2.15 4.11 6.21 8.37 10.69

used a small number of particle for tracking (N = 5) and have drawn into the
frames the “best” particle, i.e. the one with the highest weight. If we compare PS
(top line) and SBPS (bottom line), we can see the benefit of swapping: unlike the
best particle of SBPS, that of PS totally misses the articulated object.

Finally, Table 2 reports the mean computation times (in seconds), over 100
runs, for tracking two different objects: a chain of length P = 9 and a squid of
length P = 17, depending on the number N of particles. Of course, we can see
that PS is faster than SBPS, but previous tests show that SBPS requires fewer
particles to provide a tracking as good as PS. For instance, for a chain of length
P = 9, using SBPS and N = 20, in 2.31 seconds, we get similar tracking results
than those with PS using N = 30 (in 3.22 seconds). Similarly, for a squid of
length P = 17, using SBPS and N = 20, in 4.11 seconds, we get similar tracking
results than those with PS using N = 40 (in 8.16 seconds).

5 Conclusion

We have introduced a new framework, Swapping-Based Partitioned Sampling,
exploiting conditional independences to simultaneously propagate, correct and
swap particles in independent subspaces. As a result, the particle sets produced
are more concentrated on high peaks of the posterior distribution than in the
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classical Partition Sampling. Thus, our estimations of the probability densities
of the tracked object are more accurate. Empirical tests have shown that SBPS
always outperforms PS, especially in cases where the object motion is strong
and when the dimension of the state space is high (i.e., the number of parts is
large). There still remains to validate our approach on real video sequences.

References

1. Bandouch, J., Engstler, F., Beetz, M.: Evaluation of Hierarchical Sampling Strate-
gies in 3D Human Pose Estimation. In: BMVC, pp. 925–934 (2008)

2. Bernier, O., Cheung-Mon-Chan, P., Bouguet, A.: Fast nonparametric belief propa-
gation for real-time stereo articulated body tracking. Computer Vision and Image
Understanding 113, 29–47 (2009)

3. Besada-Portas, E., Plis, S.M., Cruz, J.M., Lane, T.: Parallel subspace sampling for
particle filtering in dynamic Bayesian networks. In: ECML PKDD, pp. 131–146
(2009)

4. Chen, Z.: Bayesian filtering: from Kalman filters to particle filters, and beyond
(2003)

5. Doucet, A., de Freitas, N., Murphy, K.P., Russell, S.J.: Rao-Blackwellised particle
filtering for dynamic Bayesian networks. In: UAI, pp. 176–183 (2000)

6. Gordon, N., Salmond, D.J., Smith, A.: Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEE Proceedings of Radar and Signal Processing 140(2),
107–113 (1993)

7. Ihler, A., Fisher, J., Iii, J.W.F., Willsky, A., Moses, R.: Nonparametric belief prop-
agation for self-calibration in sensor networks. In: ISIPSN, pp. 225–233 (2004)

8. Isard, M.: PAMPAS: real-valued graphical models for computer vision. In: CVPR,
pp. 613–620 (2003)

9. Kanazawa, K., Koller, D., Russell, S.: Stochastic simulation algorithms for dynamic
probabilistic networks. In: UAI, pp. 346–351 (1995)

10. MacCormick, J.: Probabilistic modelling and stochastic algorithms for visual lo-
calisation and tracking. Ph.D. thesis. Oxford University (2000)

11. MacCormick, J., Blake, A.: A probabilistic exclusion principle for tracking multiple
objects. In: ICCV, pp. 572–587 (1999)

12. MacCormick, J., Isard, M.: Partitioned sampling, articulated objects, and interface-
quality hand tracking. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 3–19.
Springer, Heidelberg (2000)

13. Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning.
Ph.D. thesis, UC Berkeley, Computer Science Division (2002)

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufman Publishers, San Francisco (1988)

15. Rose, C., Saboune, J., Charpillet, F.: Reducing particle filtering complexity for 3D
motion capture using dynamic Bayesian networks. In: AAAI, pp.1396–1401 (2008)

16. Sigal, L., Isard, M., Sigelman, B.H., Black, M.J.: Attractive people: Assembling
loose-limbed models using non-parametric belief propagation. In: NIPS, pp. 1539–
1546 (2003)

17. Sudderth, E.B., Ihler, A.T., Isard, M., Freeman, W.T., Willsky, A.S.: Nonparamet-
ric belief propagation. Commununications of ACM 53, 95–103 (2010)



 

S. Benferhat and J. Grant (Eds.): SUM 2011, LNAI 6929, pp. 539–546, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

A Fuzzy-Based Approach to the Value of Information in 
Complex Military Environments 

Timothy Hanratty1, Robert J. Hammell II2, and Eric Heilman3 

1 Computational Information, Science Directorate, US Army Research Laboratory 
timothy.hanratty@us.army.mil 

2 Department of Computer & Information Sciences, Towson University 
rhammell@towson.edu 

3 Computational Information Science Directorate US Army Research Laboratory 
Eric.g.heilman@us.army.mil 

Abstract. The last several decades have seen an unprecedented increase in the 
types and amount of information pertaining to the military environment.  For the 
military commander and his staff, separating the important information from the 
routine has become a primary challenge in calculating the Value of Information 
(VOI). Wrought with uncertainty and contradiction, new methodologies are 
required to confront this significant issue. This paper presents an approach for 
calculating the VOI in complex military environments using fuzzy logic as a 
method for managing uncertain and imprecise information.  

1   Introduction 

In a broad sense, the last several decades have seen an unprecedented increase in the 
types and amount of information pertinent to the military environment.  From 
sophisticated unmanned ground acoustic sensors to open-source RSS news feeds, the 
military commander and his staff are challenged not only by the established 
information overload dilemma, but more importantly with separating the important 
information from the routine. Calculating information importance, termed the value of 
information (VOI) metric, is a daunting task that is highly dependent upon its 
application to dynamic situations [1]. Solution flexibility is paramount since VOI 
understanding must be readily applicable across a disparate range of information 
types and situational states of affairs.   

Towards this end, this paper presents an approach for tackling the calculation of 
VOI in complex military environments.  Specifically, outlined is the use of fuzzy 
logic as method for managing uncertainty and contradictory information with respect 
to calculating VOI in complex military environments. The paper will address an 
understanding of the complexity of the military information domain with emphasis on 
VOI (section 2); examples of addressing VOI challenges (section 3); an outline of the 
fuzzy approach along with an associated use case example (section 4); and concluding 
remarks and future directions (section 5). 
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2   Understanding the Domain Challenge 

On today’s battlefield, information drives action. Personnel must know details about 
important persons, places and events within their area of operations to address issues 
ranging from kinetic fights to adjudicating legal disputes to revitalizing a depleted 
economy.  Soldiers at the edge of conflict gather data to support their mission. As 
Major General Michael Flynn points out: 

 

“At the battalion level and below, intelligence officers know a great deal about their local 
Afghan districts but are generally too understaffed to gather, store, disseminate, and digest 
the substantial body of crucial information that exists outside traditional intelligence 
channels.” [2] 
 

Several factors contribute to the challenge of analyzing VOI within military 
environments.  As depicted in Table 1, bottom-most echelons containing fewer assets 
and executing more immediate tactical missions require an increasing timeliness of 
the information.   

Table 1. Military Echelons with typical Operational Times and Areas [3] 

Echelon Planning Execution Reports / Hr Area of Operation 

Division Weeks Week/ days  Province 

Brigade Days Days 170K Province/ district 

Battalion Day/hours Day 56K District 

Company Hours Hours 18K Village 
Platoon Hour/Min Hour/ Min 6K Village/ hamlet 

 

 
At the company level, for example, the decision making cycle is measured in 

hours.  Information quickly becomes irrelevant at this level.  On the other hand, as the 
echelon increases, the scope of military operations and number of information reports 
grows tremendously.  The ability to manage information effectively at higher echelon 
levels becomes exceedingly difficult.   

Today, each of these echelons can supplement human information collection by 
using a host of automated data gathering devices.  For example, the addition of a 
single unmanned aerial vehicle into the reconnaissance effort with sensors such as full 
motion video cameras or light detection and ranging (LIDAR) equipment will 
generate voluminous data feeds measured in terabytes per hour of operation. While 
this does not impose much of an increase in number of collection entities, the volume 
of generated data increases rapidly and the ability to merge automated and manually 
collected data is not yet fully developed.  Since “the value of information is largely 
subjective” [4] [5], estimation of data usefulness remains with the analyst who may 
not be able to sufficiently fathom the large volume of varied data.  Providing 
commanders and analysts with VOI tools to filter an increasing number of data feeds 
holds the potential of quickly generating useful intelligence at all echelons. 
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US Army Field Manual (FM) 3-0, Operations, defines the "instruments of national 
power" in terms of diplomatic, informational, military, and economic activities, 
normally referred to as the DIME [6]. Consequently, missions within a counter 
insurgency operation concentrate on actions supportive of DIME concepts. These 
activities are a part of reestablishing civil authority within a country by positively 
increasing its civil government’s Political, Military, Economic, Social, Infrastructure, 
and Information (PMESII) capabilities. Tactical requirements to support these varied 
operations further increases the volume of collected information and expands the 
nature of intelligence analysis.  

Finding a method of accurately determining the value of information generated 
from gathered data will take some of the burden from human analysts. Yet the nature 
of intelligence requires flexible methods and tools that incorporate measurements 
covering many topics.  Attempting to qualify and quantify VOI measures within these 
varying military situations is an open topic for exploration. 

3   Related VOI Challenges 

As a concept, VOI is the subject of investigations within many different fields and for 
many differing purposes. For instance, placing a monetary VOI on intellectual 
property is part of legal inquiries while assigning VOI to medical data can save lives. 
Within almost every instance of science, determining the VOI for gathered data is a 
significant part of new technology development. Within the military context, much 
like the medical, VOI can save lives and optimize the conduct of field operations.  As 
an illustration, two examples will follow of challenges in the field of military VOI 
estimation.  
 

Example 1. In a project to determine the flow of valued, but classified, information 
within the spectra of military operations, researchers are “developing a scientific basis 
for valuing information for use at the tactical level and … [demonstrating] 
technologies for flowing information among network nodes to increase the value of 
information available for command decisions [3].” A value assignment for a piece of 
classified information will relate directly to its congruence with commander’s intent 
statements for mission execution. Tactical situation dynamics, a sufficient trust 
measurement for the receiving unit, and, collectively, a “chain of trust” in 
interconnecting network communication nodes, will combine to enable release of 
classified information, thus increasing the VOI available to a unit’s commander. 
 

Example 2. The prevalence of information gathering and reporting technologies is 
causing an overload situation for personnel responsible for monitoring, filtering, and 
analyzing incoming data. In fact, Wilkins, et al., found that “algorithms that alert on 
constraint violations and threats in a straight forward manner inundate users in 
dynamic domains [7].” In their development of a value of alerts (VOA) measurement, 
these researchers found several contributing VOI criteria. Included are: the plan, 
polices, user’s awareness of the situation, system’s view of current situation, user’s 
cognitive load, resources (particularly time) available for analysis and response, 
information about adversarial agents, characterization of uncertainty, age of 
information and age of user’s awareness, and source of information [7]. While these 
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criteria form a good set of VOI modifiers, further research may reveal additional 
criteria. However, this set is useful as a point of departure for the development of 
fuzzy descriptive measures in the determination of VOI. 

 

From these and other efforts, three points become clear: namely, 1) VOI of military 
data is an important determiner of tactical action; 2) one or more analysts subjectively 
determine VOI for most military applications; and 3) short timeframes for usefulness, 
high information density, and the amount of analytical experience available all 
influence the quality of VOI determination. The authors propose that the application 
of fuzzy parameters, based on the assignment of significant VOI factors, to capture 
efficient analytical practice will result in improved military information utilization 
within all echelon levels. 

4   Approach 

A fuzzy-based methodology will be used to develop a system for assisting with the 
problem of determining VOI.  This section first provides a very brief description of 
fuzzy logic, then describes the rationale for choosing to use a fuzzy system, and 
finally discusses the general approach that will be followed. 

 

Fuzzy Logic Background. In 1965, Lotfi Zadeh wrote his famous paper formally 
defining multivalued, or “fuzzy” set theory [8]. He extended the two-valued indicator 
function of traditional set theory to a multivalued membership function.  The 
membership function is used to assign a grade of membership, ranging from 0 to 1, to 
each object in the fuzzy set.  Zadeh formally defined fuzzy sets, their properties, and 
various mathematical operations on fuzzy sets.  In a later paper [9] he introduced the 
concept of linguistic variables which have values that are linguistic in nature (i.e. 
speed = {slow, medium, fast}).   

Fuzzy logic extends conventional Boolean (two-valued) logic so that it can handle 
truth values other than 0 (completely false) and 1 (completely true).  That is, fuzzy 
logic can work with values that indicate partial truth.  Fuzzy logic is built upon fuzzy 
sets and the basic concept is easy to grasp.  In reality, we input, process, and output 
vague and imprecise information every day.  Suppose you are teaching your child to 
drive and are discussing rules for how to handle the approach to an intersection.  
Would you tell the child “If the light has been green for 30 seconds, release the 
accelerator 75 feet from the intersection”?  Or would it be better to say “If the light 
has been green for a long time, let off the gas pedal as you get near the intersection”?  
The precision in the first rule makes it impossible to follow; the more vague, or fuzzy, 
second rule can be easily understood and applied.  

One use of fuzzy logic is to develop fuzzy inference systems; these systems 
provide the ability to perform approximate, or fuzzy, reasoning.  Zadeh [10] defines 
approximate reasoning as “the process or processes by which a possibly imprecise 
conclusion is deduced from a collection of imprecise statements.”  His idea of 
approximate reasoning uses fuzzy logic which contains linguistic truth values (true, 
somewhat true, false, etc.) and approximate rules of inference.  Linguistic variables 
are an important concept in fuzzy inference.  A linguistic variable is used to 
approximately characterize relationships and values. For example, numbers can be 
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used to characterize a person’s height, but using words instead might provide 
categories such as tall, quite tall, more or less tall, not very tall, more or less small, 
and so on. The imprecision introduced by using words may or may not be by choice.  
That is, the imprecision may be intentional based on not needing to be more precise.  
More often, however, the imprecision is dictated by the lack of a means to 
quantitatively specify the attributes of an object. [11] 

Fuzzy rules of inference encapsulate the approximate relationships between the 
input and output, or in the terminology of rules, the antecedent and consequent, 
domains.  A fuzzy rule with two antecedents has the form “If X is A and Y is B then Z 
is C” where A and B are fuzzy sets over the input domains U and V, respectively and 
C is a fuzzy set over the output domain W.  When using fuzzy sets in fuzzy inference, 
a domain is typically decomposed into overlapping fuzzy sets; each fuzzy set 
represents a classification.  An element in the domain has some grade of membership, 
from 0 to 1 inclusive, in each fuzzy set in the domain.  The membership function 
determines the grade of membership; the shape of the fuzzy sets determines the 
membership function.   

 

Rationale for Choosing Fuzzy Logic. The literature reveals that significant work has 
been done with respect to “imperfect” data, especially in the context of data and 
knowledge bases [12, 13, 14, 15, 16]. Several types of imperfection have been noted; 
while the exact classification categories, and their definitions, vary somewhat from 
author to author it seems that a reasonable categorization might include:  
 

• Uncertainty: cannot determine for sure if some statement is true or not  (“The 
enemy will attack tomorrow”) 

• Incompleteness: lack of relevant information (“The attacking force is 
comprised of several key combat elements”, without saying what the elements 
are) 

• Imprecision: granularity problem (“The enemy will attack tomorrow” is 
imprecise if we need to know the exact hour the attack will occur) 

• Vagueness: fuzzy imprecision (“The size of the attacking force is small”) 
• Inconsistency: conflicting values (“The enemy will attack at 0200 hours” and 

“The enemy will attack after dawn”)  [16]  
 

Most of this work has been done from the viewpoint of the “quality” of information; 
our focus is on the “value” of information which is perhaps a subtle, but distinct, 
difference.  A generally accepted definition for information quality seems to be as a 
“fitness for use” measure of the information [17].  In contrast, the value of 
information hinges more on how important a piece of information should be in a 
given decision-making context. 

A fuzzy logic-based approach to solving the VOI problem was chosen for several 
reasons.  First, fuzzy systems are known to be good at approximate reasoning where 
information is uncertain, incomplete, imprecise, and/or vague (four of the five data 
imperfections presented above) [18, 19]. Additionally, a fuzzy knowledge-based 
system was developed in [19] to model situation and threat assessment in a littoral 
environment; preliminary testing demonstrated good performance.  The author states 
that before deciding to use a fuzzy approach several other methods for handling 
uncertainty were studied “in depth”, including Bayesian methods, Dempster-Shafer 
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Theory, probability, artificial neural networks, and others.  A fuzzy logic approach 
was also proven effective in detecting temporal aspects of data in data mining 
activities [20], which seems to relate quite well to the “timeliness” characteristic of 
information.  Further, we presume that the successful development of the proposed 
system will rely heavily on integrating knowledge from subject matter experts 
(SMEs).  Numerous works have discussed the efficacy and potential of using fuzzy 
logic in knowledge acquisition efforts [21, 22, 23]. 

 
General Approach. As a proof-of-concept effort, a fuzzy system will be developed 
to consider a simplified scenario in which VOI will be computed based on two 
factors: the timeliness of the information and the pedigree of the source.  As such, the 
system will have two inputs 
(timeliness and pedigree), and 
one output (VOI).  Timeliness is 
related to the availability of the 
information with respect to the 
organizational decision cycle.  If 
the information arrives during the 
planning and execution phase, 
then it will have the highest 
timeliness rating; information 
arriving before or after this period 
will have a decreasing timeliness 
aspect.  The pedigree of the data 
is a function of the believability 
associated with the data, and is 
directly related to the source’s 
history of being trustworthy [24].     

Figure 1 depicts a possible 
decomposition of the input and 
output domains for the system.  
The timeliness domain is broken 
into three fuzzy sets, while the 
pedigree and VOI domains are 
each decomposed into five fuzzy 
sets.  The x-axis for each domain 
would comprise the universe of 
the domain; that is, the set of all 
values within the domain.  The y-
axis is the membership function 
value in the range [0,1].  Note 
that the shape of the fuzzy sets 
can take on many forms 
(triangles, trapezoids, or even 
beta, Gaussian, or other curves) 
and they all do not have to be the same (the uniformity of the pedigree and VOI 
domain decompositions was simply done for convenience).  Also, the fuzzy sets 

Fig. 1. Example Membership Functions 
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decomposing a domain do not have to overlap in a regular pattern as shown in Figure 
1, nor does the sum have to be 1 for the membership values for all sets in which an 
element belongs (which would be the case in all three of the decompositions in Figure 
1). 

The membership functions depicted in Figure 1 are only shown to demonstrate an 
example potential decomposition structure.  We anticipate that the “rules” for 
determining VOI will have to come from subject matter experts (SMEs).  As such, the 
number of fuzzy sets in each domain will be driven by the granularity of the rules 
derived from the SMEs.  An example rule that could be captured by the membership 
functions in Figure 1 might be “If the timeliness is within the decision cycle and the 
pedigree is neutral, then the VOI is somewhat valuable.”  However, the number of 
fuzzy sets needed in a domain will be determined by how finely or coarsely (the 
granularity) an SME chooses to divide it.  After the system is constructed, it will be 
tested by devising multiple scenarios which will be submitted to a SME and the 
system.  The answer from the system will be compared with that from the SME to 
judge the system’s performance. 

5   Conclusion 

Information within complex military environments is often of uncertain pedigree, 
imprecise, and time sensitive. Within this context, fuzzy logic methodology may offer 
a superior metric for forming a VOI solution.  Contributions of this research will 
include a proof-of-concept system as well as initial research in obtaining SMEs 
quantification of their judgments with respect to context-dependent VOI 
determination.  Logical extension of this effort includes working with SMEs to 
decompose the information space into finer characterization and exploring methods 
for tuning the membership functions depending on the operational tempo of a given 
scenario.  As the program matures, the capability to accommodate inconsistent or 
contradictory information will be investigated.   For the military, the ability to 
efficiently and effectively calculate VOI and separate the wheat from the chaff is 
paramount.   This program is an important step towards that goal.  
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Abstract. Demand for intelligent surveillance in public transport systems is grow-
ing due to the increased threats of terrorist attack, vandalism and litigation. The
aim of intelligent surveillance is in-time reaction to information received from
various monitoring devices, especially CCTV systems. However, video analytic
algorithms can only provide static assertions, whilst in reality, many related events
happen in sequence and hence should be modeled sequentially. Moreover, an-
alytic algorithms are error-prone, hence how to correct the sequential analytic
results based on new evidence (external information or later sensing discovery)
becomes an interesting issue. In this paper, we introduce a high-level sequential
observation modeling framework which can support revision and update on new
evidence. This framework adapts the situation calculus to deal with uncertainty
from analytic results. The output of the framework can serve as a foundation for
event composition. We demonstrate the significance and usefulness of our frame-
work with a case study of a bus surveillance project.

Keywords: Intelligent Surveillance, Active System, Situation Calculus, Belief
Change, Sequential Observation.

1 Introduction

Recently, more and more attention has been paid by governments and transport op-
erators to protect vehicles and passengers with surveillance cameras, e.g., the Florida
School Bus Surveillance project [2], the First Glasgow Bus Surveillance [22], Federal
Intelligent Transportation System Program in the US [18], Washington rail corridor
surveillance [17], Airport Corridor Surveillance in the UK [16], etc. These applica-
tions require deployment of large-scale CCTV systems giving rise to unique problems.
For example, in a reasonable sized provincial city there may be several hundred buses,
each of which has 12-14 cameras, giving a total of several thousand cameras. The large
amount of cameras for monitoring passengers/vehicles makes it almost impossible to
detect possible incidents manually without delay. For this reason, video analytics and
event reasoning are being introduced to CCTV systems in order to ensure in-time reac-
tion.

The aim of video analytics is single-event recognition. Recently, however, developers
have realized that it is necessary to manage the events generated by video analysis
software. For instance, to prevent anti-social behaviors on public transport systems, one
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has to make a decision based on a sequence of detected events. Ideally, this would be
straightforward if the recognized events are correct and certain. Unfortunately, in reality,
imperfection and mistakes frequently occur in practical applications. For example, in
the case of a person entering the bus doorway, the person may be classified as male
with a certainty of 85% by the classification analytics, rather than with 100% certainty.
Even worse, the analytic algorithm may classify a person as female at one time instant
and male at a later time. In addition to inaccurate analytics, a large amount of mistakes
are caused by the unreliability of the data sources. For example, in the classification
example above, the camera may have been tampered with, illumination could be poor,
or the classifier training set may be unrepresentative. Any, or all of these, can result in
imperfection and errors.

In this paper, we introduce a sequential observation modeling framework which is
able to deal with uncertainty, and can support revision and update when new evidence is
received, thereby removing the influence of past errors. This framework, which operates
at a higher level than analytic algorithms, deploys a situation calculus foundation with
the ability to deal with uncertainty in analytic results. It is also able to handle belief
revision and update properly. We demonstrate the significance and usefulness of our
framework with a case study of a bus surveillance project [12,7,10,15]. Our approach
provides a sound framework for surveillance applications, such as CCTV for buses,
airports, etc. The output of the framework, i.e., primitive events, can be used as a starting
point of event composition.

Usually in situation calculus, there are sensing and non-sensing actions, or epis-
temic and ontic actions [4]. A sensing/epistemic action senses a property of the domain
and does not change the environment. A non-sensing/ontic action is an action done by
the agent which changes the environment. A major difference between real-world sit-
uations, such as those encountered in surveillance applications, and situation calculus
approaches is that in the former, even the result of an ontic action, e.g., a passenger
changes their position from standing to seated, is observed by cameras and analyzed by
video analytic algorithms (and hence sometimes we call the agent of interest an observ-
able). Therefore, situation calculus should be significantly adapted to make it suitable
for intelligent surveillance purposes.

In intelligent surveillance applications the results of both epistemic and ontic actions
are provided by video analytics, therefore, we must differentiate between both kinds of
actions, since they respond differently upon new evidence being obtained. The proper-
ties sensed by epistemic actions are generally invariable, e.g., the gender of a person,
etc., whilst properties related to ontic actions are those that can be changed at will, e.g.,
the position of a person, etc. We also allow external information to be handled in this
framework. External information, when received and used, can be seen as a kind of epis-
temic or ontic action, according to the information properties. For instance, if a piece
of information tells us a person is a male, then it can be seen as an epistemic action; if
it tells us a person is standing, it can be seen as an ontic action. In addition, a property
related to an epistemic action will be called an epistemic or an invariable property, and
similarly, a property related to an ontic action is called an ontic or a variable property.
In summary, if a property indicates an intrinsic character of an observable of interest,
and hence is invariable, then it is an epistemic property. But we also need to point out
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that this property could be mis-classified or even intentionally disguised, which seem-
ingly makes it variable. For example, although a person is a male, he could be wrongly
classified as a female. He could even disguise himself as a female if he wants to. How-
ever, this superficial variability should not cause any confusion. Instead, ontic properties
are usually external properties between an observable of interest and the environment,
and hence are variable, e.g., a passenger can move from the drivers cabin area to the
saloon area on a bus. This differentiation between epistemic and ontic properties also
applies to properties obtained by video analytics. For instance, if the gender of a person
is in fact estimated from the captured video, it is still called an epistemic property since
gender is an intrinsic character of a person.

The rest of the paper is organized as follows. Section 2 provides the preliminaries
on the situation calculus. In Section 3, formal approaches to deal with uncertain ob-
servations are presented, including the ways in which to handle epistemic and ontic
actions. Section 4 shows how belief revision is adequately handled in our framework.
We then provide a case study, which is a simplified bus surveillance scenario, in Section
5. Finally, we conclude the paper in Section 6.

2 Preliminaries

Situation calculus, introduced by John McCarthy [13,14], has been applied widely to
model and reason about actions and changes in dynamic systems. It was reinterpreted
in [19] as basic action theories which are comprised of a set of foundational axioms
defining the space of situations, unique-name axioms for actions, action preconditions
and effects axioms, and the initial situation axioms [5]. The well known frame problem
is solved by a set of special action effects axioms called successor state axioms.

Since actions carried out by agents cause constant changes of the agents’ beliefs,
developing strategies of managing belief changes triggered by actions is an important
issue. The problem of iterated belief change within the framework of situation calculus
has been investigated widely, e.g., [20,21,24,11]. In [24], a new framework extending
previous approaches was proposed, in which a plausibility value is attached to every sit-
uation. This way, the framework is able to deal with nested beliefs, belief introspection,
mistaken beliefs, and it can also handle belief revision and update together in a seamless
way. The framework in [24] is based on an extension of action theory [19] stemming
from situation calculus [13,14]. Here we introduce the notion of situation calculus from
[24] which includes a belief operator [20,21].

According to [24], the situation calculus is a predicate calculus language for repre-
senting dynamically changing domains. A situation represents a snapshot of the domain.
There is a set of initial situations corresponding to what the agents believe the domain
might be initially. The actual initial state of the domain is represented by a distinguished
initial situation constant, S0, which may or may not be among the set of initial situa-
tions believed by an agent. The term do(a, s) denotes the unique situation that results
from the agent performing action a in situation s.

Predicates and functions whose values may change from situation to situation (and
whose last argument is a situation) are called fluents. For instance, we use the fluent
InR1(s) to represent that the agent is in room R1 in situation s. The effects of actions
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on fluents are defined using successor state axioms [19], which provide a succinct rep-
resentation for both effect axioms and frame axioms [13,14]. For instance, if there are
two rooms (R1, R2) and an action Leave takes the agent from the current room to the
other room. Then, the successor state axiom for InR1 is [24]:

InR1
(
do(a, s)

)
≡
((
¬InR1(s) ∧ a = Leave

)
∨
(
InR1(s) ∧ a �= Leave

))
.

This axiom says that the agent will be in Room 1 after doing action a in s iff either it is
in Room 2 and leaves for Room 1 or is currently in Room 1 and does not leave.

Levesque [6] introduced a predicate, SF(a, s), to describe the result of performing
the binary-valued epistemic action a. SF(a, s) holds (returns true) iff the sensor asso-
ciated with a returns the sensing value 1 in situation s. Each epistemic action senses
some property of the domain. The property sensed by an action is associated with the
action using a guarded sensed fluent axiom [3]. For example, the following two axioms

InR1(s)→
(
SF(SenseLight, s) ≡ Light1(s)

)
¬InR1(s)→

(
SF(SenseLight, s) ≡ Light2(s)

)
can be used to specify that SenseLight senses whether the light is on in the room the
agent is currently located.

In this paper, we adopt the following conventions about guarded action theories Σ
consisting of: (A) successor state axioms for each fluent, and guarded sensed fluent
axioms for each action; (B) unique names axioms for actions, and domain-independent
foundational axioms; and (C) initial state axioms which describe the initial state of the
domain and the initial beliefs of agents. A domain-dependent fluent means a fluent other
than the probability fluent p, and a domain-dependent formula is one that only mentions
domain-dependent fluents. However, since this is a paper focusing on applications, we
will not introduce the axioms here. Interested readers can refer to [24,11]. We further
assume that there is only one agent acting in a chosen domain, although the framework
is capable of accommodating multiple agents.

3 The Revised Situation Calculus Framework

In this section, we extend the situation calculus to include a probability operator to
account for iterated belief changes and deal with uncertainty.

Usually in situation calculus, the result of all actions are accurate. In recent work,
e.g., [1,23,24,11], noisy epistemic actions have been proposed and studied. However, in
intelligent surveillance applications, not only can epistemic actions be noisy, but ontic
actions can also be subject to noise (recall an epistemic action senses some property of
the domain, but leaves the environment unchanged, while an ontic action changes the
actual environment). That is, in these applications, the results of ontic actions are also
reported by video analytic algorithms, which may (and in fact usually, if not always)
present uncertain results. For example, if a passenger takes a seat, then from a normal
situation calculus point of view, its status certainly changes from “standing” to “seated”.
However, if the scenario is analyzed by an algorithm, due to the imperfection of the
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algorithm, it can only give 90% degree of certainty that the passenger is seated, leaving
the remaining 10% still standing. That is, ontic actions can also bring uncertainty, or
noise. In fact, in a few scenarios (e.g., light changes suddenly outside the window),
the analytic results could be very inaccurate. It may conclude that with 60% degree of
certainty the passenger is seated and 40% degree of certainty the passenger is standing.
These cases cannot be handled in classical situation calculus. Hence, we need to adapt
the situation calculus to deal with such cases.

For convenience, we denote SA the set of all epistemic actions and hence for each
action a, a ∈ SA means that a is an epistemic action while a �∈ SA means that a is a
ontic action. Since an ontic action a can bring up more than one possible result (e.g.,
“seated” or ”standing”), the corresponding do(a, s) may also give rise to more than one
successive situation. An epistemic action a can also bring up more than one possible
result if it is not accurate.

Example 1. Let a situation s = M ∧ S (the passenger is male and standing), then
a noisy (inaccurate) epistemic action presents a result as the passenger is male with
probability 0.4 and female with probability 0.6, then two successive situations s1 =
M ∧ S with probability value 0.4 and s2 = ¬M ∧ S with probability 0.6 should be
expected.

Hence, subsequently in this paper, we assume do(a, s) is a set of situations instead
of a single situation. Moreover, in this paper, we assume SF(a, s) (different from the
definition in [6] where SF(a, s) returns a boolean value) gives the tuple-valued sensing
result (x1, · · · , xk) where each xi stands for the probability that the epistemic action
returns result Xi. For instance, in the above example, SF(a, s) = (0.4, 0.6) means that
the passenger is male with probability 0.4 and female with probability 0.6 when a is
an epistemic action returning the gender of the passenger. For convenience, we also
write SF(X, a, s) to denote the probability that the epistemic action a returns X , e.g.,
SF(M, a, s) = 0.4, SF(¬M, a, s) = 0.6. Similarly, we write NSF(a, s) (NS is short for
Non-Sensing) to present the tuple-valued ontic action result (x1, · · · , xt) where each xi

stands for the probability that the ontic action returns result Xi. For instance, if a is an
ontic action changing the behavior of a passenger, then NSF(a, s) = (0.2, 0.8) means
that there is a probability 0.2 such that a passenger is standing and a probability 0.8
such that it is seated (¬S). Similarly, we also denote NSF(X, a, s) the probability that
the ontic action a returns X .

In this paper, for simplicity, we assume that all actions, regardless of whether they
are epistemic or ontic, can only provide two possible results. In fact, if they could return
more than two possible results, no essential changes are needed for the framework, but
a more cumbersome description of the scenarios, e.g., SF(a, s) will be a n-tuple value
where n > 2 and the number of successive situations will become greater, etc..

In this paper, we use ordinals as time points to indicate the sequence of situations.
More precisely, all the initial situations will have a subscript 0, denoted as si

0 (where
i indicates the i-th possible situation), and the successive situation of a situation sn

will be sn+1. Let Sn denote the set of all situations with subscript n, i.e., the set of
situations in the n-th run. Note that if s and s′ are both in Sn, then we should have
SF(a, s) = SF(a, s′) (resp. NSF(a, s) = NSF(a, s′)) since the action is taken in the
real world, it should return only one result, no matter what we think the real-world
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situation might be (e.g., s or s′). From this sense, we can write SFn(a) or NSFn(a)
to denote the action result for situations in the n-th run. Furthermore, we use s/X to
denote a situation that the property corresponding to X in s is changed to X , e.g., for
s = M ∧ S, we have s/M = s and s/¬M = ¬M ∧ S.

The belief set of Sn is defined as follows. Let φ[s] denote that φ is assessed in s. For
example M (the passenger is a male) is assessed in s = M ∧ S, hence M [s] holds. Let
pn(φ) =

∑
s:s∈Sn∧φ[s] p(s) indicate the total probability of φ in Sn.

Definition 1. Beln(φ)
def
= pn(φ) > pn(¬φ).

That is, φ is believed in the n-th run if it is more probable than its negation. Since
this definition is not closed under deduction, i.e., Beln(φ) ∧ Beln(ψ) � Beln(φ ∧
ψ), we usually only consider probabilities (and hence beliefs) on atoms (e.g., Male,
Stand, etc.), while probabilities (and hence beliefs) of other formulae are computed
from probabilities of atoms (with independence assumptions) [9].

Based on the above notations and definitions, we can define a probability function
p for each situation s to measure how possible an agent considers s is. The p func-
tions for initial situations are provided with a normalization condition that the sum of
probabilities of all initial situations is 1. This is expressed as follows:

Axiom 1. (Initial State Axiom)
∑

s:Init(s) p(s) = 1.

Probabilities of successor situations are defined as follows.
If a is an epistemic action and SF(a, sn) = (t, 1 − t), or SF(X, a, sn) = t and

SF(¬X, a, sn) = 1 − t, then in general it induces two successive situations for sn,
i.e., sn+1 = sn/X and s′n+1 = sn/¬X with probability p(sn)t and p(sn)(1 − t)
respectively. Note that if t = 0 or t = 1, it in fact only induces one successive situation
(situations with probability 0 will be ignored).

However, it is not always reasonable to simply change the current situation to the
successive situations as stated above. In some scenarios, we must keep the probabil-
ities of the beliefs induced by the current situations. For instance, assume that at Sk,
a passenger is classified as a male with probability 0.8, and at Sk+1, this passenger is
classified as a male with probability 0.6, then do we need to change the probability to
0.6? The answer is no. In real-world applications such as intelligent surveillance, we
observe that if a video analytic algorithm is used to continuously check the gender of a
person based on a video, then the probability of that person being a male will fluctuate.
Hence in practice, if at some time point, it is classified as a male with probability 0.9,
and later with probability 0.85, we can just keep the probability 0.9. A more persuasive
scenario is that at some time point we have external information (e.g., an analyst views
the person on a monitor) which indicates that the passenger is 100% a male, but later
the algorithm still classifies it as a male with probability 0.85, then it is obvious that we
do not need to change the probability from 1 to 0.85.

An exception to the above statement, is that the change of probability leads to a
change of beliefs. For example, if at Sk, a passenger is classified as male with probabil-
ity 0.8 (hence Belk(M) holds), but at Sk+1, it is classified as female with probability
0.75 (hence Belk+1(¬M) holds), then this major change should not be ignored. It may
indicate that an interesting event has happened. In real systems, such belief changes
with respect to an invariable property, may, by themselves, justify alerting an analyst.
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In short, the probabilities of the current belief are only changed when the sensing
result overwhelms the current belief. Here by overwhelm we mean either the belief in-
duced by the sensing result is the same as the current belief but with a greater probability
or the belief becomes different.

More precisely, let a be an epistemic action and SF(a, sn) = (t, 1− t). Without loss
of generality, we assume that t > 0.51 and hence Beln+1(X) holds. For each situation
sn ∈ Sn, it induces two successive situations, i.e., sn+1 = sn/X and s′n+1 = sn/¬X .
The probabilities of these two situations are defined as follows:

– if Beln(¬X) holds, then sn+1 = sn/X and s′n+1 = sn/¬X are assigned with
probability p(sn)t and p(sn)(1 − t) respectively,

– if Beln(X) holds, then sn+1 = sn/X and s′n+1 = sn/¬X are assigned with
probability p(sn)max(pn(X), t) and p(sn)(1−max(pn(X), t)) respectively.

For this we have the following result which shows that the assignment of probabilities
satisfy the statements we argued before.

Proposition 1. For any epistemic property X and n > 0, if both Beln(X) and Beln+1

(X) hold, then pn+1(X) = max(pn(X), SF(X, a, sn)). If both Beln(¬X) and Beln+1

(X) hold, then pn+1(X) = SF(X, a, sn).

There might be some equivalent situations in Sn+1 (in terms of all fluents). For conve-
nience, they can be merged together.

Example 2. Assume that a video analyzer detects a passenger on board but it does not
know whether the passenger is male or female. So it considers two possible situations
S1

0 and S2
0 at the beginning where

S1
0 = Male ∧ Stand, S2

0 = Female ∧ Stand

The video analytic algorithm gives S1
0 with probability 0.8 and S2

0 with probability 0.2.
The bottom-half of Fig. 1 illustrates these two situations.

After some seconds, the camera does a second detection from which the video ana-
lytic algorithm asserts that the passenger is male with probability 0.9 and female with
probability 0.1. In Fig. 1, Sensing Gender is abbreviated as SG. Hence each situation
induces two successive situations (in Fig. 1, 0.18=0.2*0.9, etc.) and then equivalent
situations are merged together, which finally forms two situations S1

1 and S2
1 in Fig. 1.

It seems that we can let each initial situation in Fig. 1 only induce one successive
situation and simply change the probabilities of the successive situations to 0.9 and 0.1,
respectively. The reason why we do not follow this way is that the latter approach is not
applicable on some occasions. For instance, if there is only one initial situation S1

0 , then
from the second detection, probability 0.1 should be assigned to a successive situation
that the passenger is a female but no initial situations can induce such a successive
situation.

1 In practice, we can always change (0.5, 0.5) to (0.5 + ε, 0.5− ε) for a small positive real ε. It
does not make much difference.
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Fig. 1. Situations after Sensing the Gender of a Passenger

If a is an ontic action and NSF(a, s) = (t, 1 − t), then for each situation sn ∈ Sn,
it induces two successive situations sn+1 = sn/X and s′n+1 = sn/Y with proba-
bility p(sn)t and p(sn)(1 − t) respectively. Similarly, if there are equivalent induced
situations, then we can merge them.

We have the following result.

Proposition 2. For any ontic property X and n > 0, pn+1(X) = NSF(X, a, sn).

Example 3. Assume we have two possible initial situations S1
0 and S2

0 at the beginning
where

S1
0 = Male ∧ Stand, S2

0 = Male ∧ ¬Stand

The video analytic algorithm gives S1
0 with probability 0.8 and S2

0 with probability 0.2.
The bottom-half of Fig. 2 illustrates these two situations (Note that this figure is similar
to Fig. 1 except that the action is an ontic action).

After some seconds, the camera does a second detection from which the video an-
alytic algorithm asserts that the passenger takes a seat with probability 0.9 and it is
standing with probability 0.1. In Fig. 2, Sensing Position is abbreviated as SP. Using
the above method, finally we get two situations S1

1 and S2
1 in Fig. 2.

For any epistemic or ontic actions, the revised probabilities always sum up to 1.

Proposition 3. For any n > 0,
∑

s∈Sn
p(s) = 1.
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Fig. 2. Situations after Sensing the Position of a Passenger

4 Belief Revision

Belief revision studies how an agent’s beliefs can be changed based on some new in-
formation if the new information must be believed. Any property of interest (no matter
epistemic properties or ontic properties) could be revised when obtaining certain new
information on that property of the observable. Studying belief revision in situation
calculus is a natural course for managing an agent’s beliefs. In the following, we as-
sume that for each formula φ to be revised, there is a corresponding action that obtains
information on that property.

Definition 2. (Uniform formula, adapted from [24,11]) A formula is uniform if it con-
tains no unbound variables.

Definition 3. A uniform formula φ is called obtainable from an action A with regard
to a situation s, denoted: (A, s)→ φ, if{

SF (φ, A, s) > SF (¬φ, A, s), A is an epistemic action,
NSF (φ, A, s) > NSF (¬φ, A, s), otherwise.

A is called a revision action for φ w.r.t. Σ, if for any s, (A, s)→ φ.
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Note that here the meaning of revision is in fact extended to updating as it also handles
changes of ontic properties as ontic actions changes the environment2.

Now by abuse of notation, we use Bel(φ, s) to denote Beln(φ) where s is a situation
in the n-th run.

Theorem 1. Let φ be a domain-dependent, uniform formula, and A be a revision action
for φ w.r.t. Σ, then we have:
Σ |=

[
∀s, φ[s]→ Bel

(
φ, do(A, s)

)]
∧
[
∀s,¬φ[s]→ Bel

(
¬φ, do(A, s)

)]
.

This theorem proves that revision (as well as updating) in our framework is handled
adequately. That is, if new information indicates that φ holds, then the agent will believe
that φ holds after performing A. Conversely, if new information shows that φ does not
hold, then the agent will believe ¬φ after performing A. This theorem is also consistent
with the framework in [20,21,24,11].

Theorem 2. Let A be a revision action for domain-dependent, uniform formula φ w.r.t.
Σ, then the following sentence is satisfiable:
Σ ∪ {Bel(¬φ, S0), Bel(φ, do(A, S0)),¬Bel(FALSE, do(A, S0))}.
This theorem shows that even if the agent believes ¬φ in S0, it will believe φ after per-
forming A when action A provides that φ is true, and still maintains consistent beliefs
(¬Bel(FALSE, do(A, S0))).

5 Example

The advantage of the methods proposed in this paper is that it can tolerate the existence
of errors and correct errors, hence keeps a well established track of video analytics.
Error correction can be done by either internal inspections or external inferences. In
this section, we use a surveillance example to illustrate this advantage.

Example 4. Now we are going to model a simplified scenario that a passenger boards
a bus. We use Fig. 3 to illustrate the situation pedigree. Multiple passengers can be
modeled by multiple situation pedigrees.

Similar to the previous examples, we use SP to denote Sensing Position and SG to
denote Sensing Gender. In addition to the internal actions SP and SG, we also allow
external instructions as external actions into the system, e.g., P (M) = 1 (resp. P (F ) =
1) in Fig. 3 which means that the external instructions suggesting the passenger is
definitely a male (resp. a female).

Now we give the explanations of the process depicted by Figure 3.
The two initial situations are:

S1
0 = Male ∧ Stand, S2

0 = Female ∧ Stand

That is, initially the video analytics tell us that the passenger is standing but it does not
know accurately whether it is male or female, only providing probability values 0.8 for
male and 0.2 for female.

2 Revision receives (and accepts) information about a static world while updating means that the
world itself has been changed [8].
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Fig. 3. Surveillance Example
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After a while, the sensor re-examines the position of the passenger (SP in the bottom
of Fig. 3) and tells us it is now standing with probability 0.9 and seated with probability
0.1. Hence our method gives four possible successive situations S1

1 , S2
1 , S3

1 , and S4
1 as

shown in Fig. 3.
Now the monitor in the control room provides a piece of information that this pas-

senger is definitely a male (p(M) = 1 in Fig. 3). Hence we get two successive situations
S1

2 and S2
2 . We can see that the possibility of the passenger being a female is eliminated.

Then the sensor re-examines the gender of the passenger (SG in the middle of Fig. 3),
and tells us it is a male with probability 0.85 and female with probability 0.15. However,
since it does not change the belief that this person is a male and the probability of this
person being a male (0.85) is less than the one in the current situation (where the
probability of the person being a male is 1), according to our procedure, we do not
need to change the probability, hence the two successive situations S1

3 and S2
3 are just

the same to their predecessors. Note that here new information from SG shows the
passenger is male, and after performing SG, the proposition the passenger is male is
believed. It verifies Theorem 1.

After that the sensor checks the position of the passenger (SP in the top half of Fig. 3).
This time the passenger might have taken a seat, hence the video analytics tell us that
the passenger is standing with probability 0.3 and seated (¬Stand) with probability
0.7. Then two successive situations are induced as S1

4 and S2
4 in Fig. 3.

Finally, the passenger accidentally removes some of her disguise and the video ana-
lytics tell us that it is a female with probability 0.65 and a male with probability 0.35.
Then we obtain four successive situations S1

5 , S2
5 , S3

5 and S4
5 . Since there is a big change

in epistemic properties (Male → Female), an alert is triggered and reported to the
control room. Also note that here Theorem 1 is verified.

This example clearly shows how the beliefs are smoothly maintained or changed with
uncertain internal (video analytics) and external information, whilst video analytics just
tell what is what at each time point, without continuity.

6 Conclusion

In this paper, we have proposed a framework to deal with uncertain observations. This
framework is based on a revised version of situation calculus. It allows external instruc-
tions as well as internal actions. It is able to tackle with uncertain epistemic actions and
uncertain ontic actions. Early errors can be corrected in this framework by revision and
updating.

In the literature, probabilistic methods (e.g. dynamic bayesian networks, [26], etc.)
and other AI techniques (e.g. Bilattice reasoning, [25], etc.) have been applied in com-
puter vision/video surveillance. Comparing to these approaches, our framework con-
siders and easily handles external information. In addition, the ability of belief revision
and updating makes it easy to correct past mistakes.

For future work, we are implementing this framework as a part of an on-going intel-
ligent surveillance project (CSIT) to enhance the power of event reasoning, especially
for error correction. The full implementation includes a thorough set of ontic actions,
epistemic actions for a set of properties of interest. It also can be naturally extended to
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allow for multiple agents (passengers). In addition, the situations can serve as a foun-
dation for event inference proposed in [12]. Another interesting issue is to study the
properties that the framework satisfy.
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