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Abstract. Aim of this work is to introduce a methodology, based on the
combination of multiple temporal hierarchical agglomerations, for model
comparisons in a multi-model ensemble context. We take advantage of
a mechanism in which hierarchical agglomerations can easily combined
by using a transitive consensus matrix. The hierarchical agglomerations
make use of fuzzy similarity relations based on a generalized �Lukasiewicz
structure. The methodology is adopted to analyze data from a multi-
model air quality ensemble system. The models are operational long-
range transport and dispersion models used for the real-time simulation
of pollutant dispersion or the accidental release of radioactive nuclides in
the atmosphere. We apply the described methodology to agglomerate and
to individuate the models that characterize the predicted atmospheric
pollutants from the ETEX-1 experiment.

Keywords: Fuzzy Similarity, Hierarchical Agglomeration, Ensemble
Models, Air Pollutant Dispersion.

1 Introduction

Clustering is an exploratory tool in data analysis that arises in many different
fields such as data mining, image processing, machine learning, and bioinformat-
ics. One of the most popular and interesting clustering approaches is the hierar-
chical agglomerative clustering. In this work we introduce a novel methodology
based on fuzzy similarity relations that permits to combine multiple temporal
hierarchical agglomerations.

This methodology has been applied to data concerning the real-time forecast-
ing of atmospheric compounds from the ENSEMBLE system [5,6,7]. ENSEM-
BLE is a web-based system aiming at assisting the analysis of multi-model data
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provided by many national meteorological services and environmental protection
agencies worldwide for the real-time forecasting of deliberate/accidental releases
of harmful radionuclides (e.g. Fukushima, Chernobyl).

In previous works [15,12] an approach for the statistical analysis of multi-
model ensemble results has been presented. The authors used a well-known sta-
tistical approach to multimodel data analysis, i.e., Bayesian Model Averaging,
which is a standard method for combining predictive distributions from different
sources. Moreover, similarities and differences between models were explored by
means of correlation analysis. In [13] the authors investigate some basic prop-
erties of multi-model ensemble systems, which can be deduced from general
characteristics of statistical distributions of the ensemble membership. Cluster-
based approaches [1,2,3] have also been developed and applied. These approaches
discriminate between data that are less dependent (in the statistical sense), so
that “redundant” information can be more easily discarded and equivalent per-
formance can be achieved with a considerable lower number of models.

In this paper we generalize these clustering approaches, by introducing a new
methodology based on fuzzy similarity relations that allows to combine multiple
hierarchical agglomerations, each for a different forecasting leading time.

We conjecture that this framework is amenable to easily incorporate observa-
tions that may become available during the course of the event, so as to improve
the forecast by “projecting” observations onto the hierarchical combination of
clusters.

The paper is organized as follows. In Sections 2 and 3 some fundamental con-
cepts on t-norms and fuzzy similarity relations are given. The proposed method-
ology is detailed in Section 3.3. Finally, in Section 4 some experimental results
obtained by applying this methodology on an ensemble of prediction models are
described. Conclusions and future remarks are given in Section 5.

2 Norms and Residuum

In this Section we introduce some basic terminologies and successively we out-
line the minimum requirements a fuzzy relation should satisfies in order to cor-
respond to a dendrogram and in what cases dendrograms can be aggregated into
a consensus matrix.

The popularity of fuzzy logic comes mainly from many applications, where lin-
guistic variables are suitably transformed in fuzzy sets, combined via the conjunc-
tion and disjunction operations by using continuous triangle norms or co-norms,
respectively. Moreover, it offers the possibility of soft clustering, in contrast with
algorithms that output hard (crisp or non-fuzzy) clustering of data.

A fundamental concept in fuzzy logic is that of norm [9]. A triangular norm
(t-norm for short) is a binary operation t on the unit interval [0, 1], i.e., a function
t : [0, 1]2 → [0, 1], such that for all x, y, z ∈ [0, 1] the following four axioms are
satisfied:



Comparison of Dispersion Models by Using Fuzzy Similarity Relations 59

t(x, y) = t(y, x) (commutativity)
t(x, t(y, z)) = t(t(x, y), z) (associativity)
t(x, y) ≤ t(x, z) whenever y ≤ z (monotonicity)
t(x, 1) = x (boundary condition)

(1)

Several parametric and non-parametric t-norms have been introduced [9] and
recently a their generalized version has been studied [4]. The four basic t-norms
are tM, tP, tL and tD given by, respectively:

tM(x, y) = min(x, y) (minimum)
tP(x, y) = x · y (product)
tL(x, y) = max(x + y − 1, 0) (�Lukasiewicz t-norm)

tD(x, y) =

⎧
⎨

⎩

0 if (x, y) ∈ [0, 1]2

min(x, y) otherwise
(drastic product)

(2)

In the following, we concentrate on the tL norm.
The union and intersection of two unit interval valued fuzzy sets are essentially

lattice operations. In many applications, however, lattice structure alone is not
rich enough to model fuzzy phenomena. An important concept is the residuated
lattice and its structure appears, in one form or in another, in practically all
fuzzy inference systems, in the theory of fuzzy relations and fuzzy logic. One
important operator here is the residuum →t defined as

x →t y =
∨

{z|t(z, x) ≤ y} (3)

where
∨

is the union operator and for the left-continuous basic t-norm tL is
given by

x →L y = min(1 − x + y, 1) (�Lukasiewicz implication) (4)

Moreover, let p a fixed natural number in a generalized �Lukasiewicz structure,
we have

tL(x, y) = p
√

max(xp + yp − 1, 0)

x →L y = min( p
√

1 − xp + yp, 1)
(5)

Finally, we define as bi-residuum on a residuated lattice the operation

x ↔t y = (x →t y) ∧ (y →t x) (6)

where ∧ is the meet.
For the left-continuous basic t-norm tL we have

x ↔L y = 1 − max(x, y) + min(x, y) (7)
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3 Fuzzy Similarity

A binary fuzzy relation R on U × V is a fuzzy set on U × V (R ⊆ U × V ).
Similarity is a fuzzy relation S ⊆ U × U such that, for each u, v, w ∈ U

S〈u, u〉 = 1 (everthing is similar to itself)

S〈u, v〉 = S〈v, u〉 (symmetric)

t(S〈u, v〉, S〈v, w〉) ≤ S〈u,w〉 (weakly transitive)

(8)

It is also well known that a fuzzy set with membership function µ : X → [0, 1]
generate a fuzzy similarity S defined as S〈a, b〉 = µ(a) ↔t µ(b) for all a, b ∈ X .
We also note that, let tL be the �Lukasiewicz product, we have that S is a fuzzy
equivalence relation on X with respect to tL iif 1 − S is a pseudo-metric on X .
Further, a main result is the following [17,16]:

Proposition 1. Consider n �Lukasiewicz valued fuzzy similarities Si, i = 1, . . . , n
on a set X. Then

S〈x, y〉 =
1
n

n∑

i=1

Si〈x, y〉 (9)

is a �Lukasiewicz valued fuzzy similarity on X.

3.1 Min-transitive Closure

If a similarity relation is min-transitive (t = min in (8)), it is called a fuzzy-
equivalence relation. Each fuzzy-equivalence relation can be graphically described
by a dendrogram [10]. Therefore, the requirement for the existence of the den-
drogram, for a similarity matrix, is the transitivity.

The methodology introduced in this paper uses a min-transitive closure [11].
The transitive closure is obtained by computing a sufficiently high power of the
given similarity matrix. Let n the dimension of a relation matrix, the transitive
closure RT of R is calculated by

RT =
n−1⋃

i=1

Ri (10)

where Ri+1 is defined as
Ri+1 = Ri ◦R (11)

The composition R ◦ S of fuzzy relations R and S is a fuzzy relation defined by

R ◦ S〈x, y〉 = Supz∈X{R〈x, z〉 ∧ S〈z, y〉} (12)

∀x, y ∈ X and where ∧ stands for a t-norm (e.g., min operator) [11]. Using this
methodology the min-transitive closure RT can be computed by the algorithm
described in Algorithm 1.
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Algorithm 1. Min-transitive closure
1: Input R the input relation
2: Output RT the output transitive relation
3: 1. Calculate R∗ = R ∪ (R ◦R)

2. if R∗ �= R replace R with R∗ and go to step 1
else RT = R∗ and the algorithm terminates.

The transitive property of binary relations is closely related to the theory
of the graphs. In other words, if a relation is represented as a directed graph,
then computation of transitive closure of this relation is equivalent to finding the
tightest path between each pair of vertices. The strength of a path is determined
by the minimum of the weights on that path.

3.2 Dendrogram Description Matrices

As previously described, any dendrogram could be associated with a fuzzy
equivalence relation and, equivalently, with its matrix representation if the min-
transitive closure property is satisfied. The elements of a fuzzy equivalence ma-
trix describe the similarity between objects. Moreover we have that [11]

Lemma 1. Letting R be a similarity relation with the elements R〈x, y〉 ∈ [0, 1]
and letting D be a dissimilarity relation, which is obtained from R by

D(x, y) = 1 −R〈x, y〉 (13)

then D is ultrametric iif R is min-transitive.

There is a one-to-one correspondence between min-transitive similarity matrices
and dendrogram. The correspondence between ultrametric dissimilarity matri-
ces and dendrograms is also on-to-one. In other words, a dendrogram could be
generated corresponding to a dissimilarity matrix if it is ultrametric.

3.3 Agglomerative Methodology

We remark that the aim is to agglomerate, by an unsupervised methodology, the
distributions obtained by the ensemble models at different times. Substantially a
hierarchical tree (dendrogram), that permits to cluster models that have similar
behavior, must be obtained. We calculate the similarity (or dissimilarity) matrix
between the distributions of the models by using the fuzzy similarity described
in equation 9. Successively the algorithm described in Algorithm 1 is applied to
obtain the min-transitive closure.

We also may express the information by fuzzy set. A simple way is to describe
the membership functions by the following equation [17]

µ(xi) =
xi − min(xi)

max(xi) − min(xi)
(14)
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Algorithm 2. Combination of dendrograms
1: Input S(i), 1 ≤ i ≤ L L input similarity matrices (dendrograms)
2: Output S the resulted similarity matrix (dendrogram)

1. Aggregate the similarity matrices to a final similarity matrix S =
Aggregate(S(1), S(2), . . . , S(L))
a. Let S∗ be the identity matrix
b. For each S(i) calculate e S∗ = S∗ ∪ (S∗ ◦ S(i))
c. c. If S∗ is not changed S = S∗ and goto step 3 else goto step 1.b

3: Create the final dendrogram from the S
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Fig. 1. Combination algorithm: a-b-c) input dendrograms; d) combined hierarchy

where xi = [xi
1, x

i
2, . . . , x

i
L] is the i-th observation vector of the L models.

Successively, we apply the agglomerative hierarchical clustering approach to
obtain the dendrogram. A consensus matrix that it is representative of all den-
drograms is obtained by combining the transitive closure and equation 12 (i.e.,
max-min) [11]. The algorithm to obtain the final dendrogram is described in
Algorithm 2.

In Figure 1 we show a realistic agglomeration result. In Figures 1a-b-c three
input hierarchies to be combined are plotted. Four models are considered, namely
ma, mb, mc and md, respectively. In Figure 1d we show the final result obtained
calculating the dendrogram on the similarity matrix. The result seems to be
rational, because the output hierarchy contains the clusters (ma,mb,mc) and
(ma,mb,mc,md) at different levels, and each of these clusters are repeated at
least in two out of the three input dendrograms [11].
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Fig. 2. ETEX-1 integrated (in time) observations

4 Experimental Results

In this Section we propose the results obtained applying the described method-
ology to compare mathematical operational long-range transport and dispersion
models used for the real-time simulation of pollutant dispersion.

In [7,15] the authors analyzed the output of multi-model ensemble results
for the ETEX-1 experiment. They already showed that the “Median Model”
provided a more accurate reproduction of the concentration trend and estimate
of the cloud persistence at sampling locations.

The ETEX-1 [8] experiment concerned the release of pseudo-radioactive ma-
terial on 23 October 1994 at 16:00 UTC from Monterfil, southeast of Rennes
(France). Briefly, a steady westerly flow of unstable air masses was present over
central Europe. Such conditions persisted for the 90 h that followed the release
with frequent precipitation events over the advection area and a slow movement
toward the North Sea region. In Figure 2 we show the integrated concentra-
tion after 78 hours from release. Several independent groups worldwide tried to
forecast these observations. The ensemble is composed by 25 members. Each
simulation, and therefore each ensemble member, is produced with different at-
mospheric dispersion models and is based on weather fields generated by (most
of the time) different Global Circulation Models (GCM). All the simulations re-
late to the same release conditions. For details on the groups involved in the
exercise and the model characteristics, refer to [7] and [8].

Now we describe the phases needed to analyze this dataset. The first step is
the fuzzification. Namely, equation 14 is used on the estimated model concen-
trations at each time level. Successively, a similarity matrix (dendrogram) is ob-
tained for the concentrations at different times (by using equation 9, �Lukasiwicz
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Fig. 3. Combined fuzzy similarity dendrogram

with p = 1). Finally the representative similarity matrix is estimated making
use of Algorithm 2. A particular of the dendrogram obtained on the integrated
concentrations after 78 hours is plotted in Figure 3. In this figure the information
on the abscissa are related to the models and those on the ordinate are related to
the model data similarities obtained by using the fuzzy similarity. As an exam-
ple, in Figure 4 we show some distributions of the models. The distributions in
Figures 4a-b are very close and this is confirmed by the dendrogram. Instead the
model in Figure 4c has a diffusive distribution far from the other distributions
and also confirmed by the dendrogram.

The hierarchical mechanism permits to clusterize the observations in a fixed
number of clusters. A Mean Square Error (MSE) between each model and the
median value of the cluster where it belongs is determined. For each cluster
the model with the minimum MSE is considered. Finally the median model of
these selected models is calculated and it is compared with the real observation
by using the RMSE. Moreover, varying the number of clusters the models that
have the best approximation of the real observation can be defined (see [15] and
[3] for more details). In Figure 5 we show the Root Mean Square Error (RMSE)
obtained varying the number of clusters. In this case the best approximation is
obtained by using 6 clusters.

As can be inferred from the analysis of this figure, a lower RMSE does not
necessarily corresponds to the use of a large number of models; similar (or even
better) performance can be achieved with a few models; even more interest-
ingly, since the selection framework is not based on the prior knowledge of ex-
perimental values, the satisfactory comparison of selected subset of models with
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Fig. 4. Model distributions: a) model 22; b) model 24; model 21
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experimental values suggest promising perspectives for the systematic reduction
of ensemble data complexity. Furthermore, comparing this new methodology
with the previous one, by using the consensus matrix we add temporal informa-
tion that permits to obtain a more robust and realistic analysis.

5 Conclusions

In this work we introduced a methodology, based on the combination of multiple
temporal hierarchical agglomerations, for model comparison in a multi-model en-
semble context. Here we suggest to use fuzzy similarity relations in a �Lukasiewicz
structure. We remark that further studies can be made by using also different
fuzzy similarities (e.g., [14]). Moreover, we take advantage of a mechanism in
which hierarchical agglomerations can be easily combined by using a transitive
consensus matrix. The proposed methodology is able to combine multiple tempo-
ral hierarchical agglomerations of dispersion models used for the real-time sim-
ulation of pollutant dispersions. The results show that this methodology is able
to discard redundant temporal information and equivalent performance can be
achieved considering a lower number of models reducing, the data complexity. In
the next future, further studies could be conducted on real pollutant dispersions
(e.g., Fukushima) and on the structure utilized in the fuzzy similarity relations.
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