
Plugging Numeric Similarity in First-Order

Logic Horn Clauses Comparison

S. Ferilli1,2, T.M.A. Basile1, N. Di Mauro1,2, and F. Esposito1,2

1 Dipartimento di Informatica, Università di Bari
{ferilli,basile,ndm,esposito}@di.uniba.it

2 Centro Interdipartimentale per la Logica e sue Applicazioni, Università di Bari

Abstract. Horn clause Logic is a powerful representation language ex-
ploited in Logic Programming as a computer programming framework
and in Inductive Logic Programming as a formalism for expressing ex-
amples and learned theories in domains where relations among objects
must be expressed to fully capture the relevant information. While the
predicates that make up the description language are defined by the
knowledge engineer and handled only syntactically by the interpreters,
they sometimes express information that can be properly exploited only
with reference to a suitable background knowledge in order to capture
unexpressed and underlying relationships among the concepts described.
This is typical when the representation includes numerical information,
such as single values or intervals, for which simple syntactic matching is
not sufficient.

This work proposes an extension of an existing framework for similar-
ity assessment between First-Order Logic Horn clauses, that is able to
handle numeric information in the descriptions.

The viability of the solution is demonstrated on sample problems.

1 Introduction

First-Order Logic (FOL for short) is a powerful representation language that
allows to express relationships among objects, which is often an unnegligible
requirement in real-world and complex domains. Logic Programming [7] is a
computer programming framework based on a FOL sub-language, which allows
to perform reasoning on knowledge expressed in the form of Horn clauses. Induc-
tive Logic Programming (ILP) [8] aims at learning automatically logic programs
from known examples of behaviour, and has proven to be a successful Machine
Learning approach in domains where relations among objects must be expressed
to fully capture the relevant information. Many AI tasks can take advantage
from techniques for descriptions comparison: subsumption procedures (to con-
verge more quickly), flexible matching, instance-based classification techniques
or clustering, generalization procedures (to focus on the components that are
more likely to correspond to each other). In FOL, this is a particularly complex
task due to the problem of indeterminacy in mapping portions of one formula
onto portions of another.

R. Pirrone and F. Sorbello (Eds.): AI*IA 2011, LNAI 6934, pp. 33–44, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

34 S. Ferilli et al.

Usually, predicates that make up the description language used to tackle a
specific problem are defined by the knowledge engineer that is in charge of set-
ting up the reasoning or learning task, and are handled as purely syntactic
entities by the systems. However, the use of uninterpreted predicates and terms
(meaning by ‘interpretation’ their mapping onto meaningful objects, concepts
and relationships) is often too limiting for an effective application of this kind
of techniques to real-world problems. Indeed, in the real world there are a huge
number of implicit connections and inter-relationships between items that would
be ignored by the system. For limited and simple domains, only a few of these
relationships are actually significant, and must be expressed not to prevent find-
ing a solution. In these cases, they can be provided in the form of a background
knowledge. However, if the amount of relevant information to be expressed as
background knowledge grows, this becomes infeasible manually and requires the
support of readily available resources in the form of explicit knowledge items or
computational procedures.

This work builds on previous results concerning a framework for similarity as-
sessment between FOL Horn clauses, where the overall similarity depends on the
similarity of the pairs of literals associated by the least general generalization,
the similarity of two literals in turn depends on the similarity of their corre-
sponding arguments (i.e., terms), and the similarity between two terms is com-
puted according to the predicates and positions in which they appear. Following
a previous paper in which the framework was extended to handle taxonomic
knowledge, here, a novel and general approach to the assessment of similarity
between numeric values and intervals is proposed, and its integration as a cor-
responding further extension of the similarity framework for clauses including
numeric information is described.

The rest of this paper is organized as follows. Section 3 introduces the basic
formula and framework for the overall assessment of similarity between Horn
clauses. Section 4 proposes an application of the same formula to compute the
numeric similarity between values and/or intervals, and introduces it in the
previous framework. Section 5 shows experiments that suggest the effectiveness
of the proposed approach. Lastly, Section 6 concludes the paper and outlines
future work directions.

2 Background

Let us preliminary recall some basic notions involved in Logic Programming.
The arity of a predicate is the number of arguments it takes. A literal is an
n-ary predicate, applied to n terms, possibly negated. Horn clauses are logical
formulæ usually represented in Prolog style as l0 :- l1, . . . , ln where the
li’s are literals. It corresponds to an implication l1 ∧ · · · ∧ ln ⇒ l0 to be
interpreted as “l0 (called head of the clause) is true, provided that l1 and ... and
ln (called body of the clause) are all true”. Datalog [2] is, at least syntactically, a
restriction of Prolog in which, without loss of generality [9], only variables and
constants (i.e., no functions) are allowed as terms. A set of literals is linked if

Plugging Numeric Similarity in First-Order Logic Horn Clauses Comparison 35

and only if each literal in the set has at least one term in common with another
literal in the set. We will deal with the case of linked Datalog clauses. In the
following, we will call compatible two sets or sequences of literals that can be
mapped onto each other without yielding inconsistent term associations (i.e., a
term in one formula cannot correspond to different terms in the other formula).

Real-world problems, and the corresponding descriptions, often involve nu-
meric features, that are to be expressed in the problem formalization and han-
dled by the inferential procedures. For instance, when describing a bicycle we
would like to say that the front wheel diameter is 28 inches, or when defining
the title block in a scientific paper we would like to say that it must be placed in
a range going from 5% to 20% of the page height from the top. Let us call this
kind of features (such as size, height in the above examples) numeric attributes.
Clearly, to be properly handled such a kind of information needs to be suitably
interpreted according to a background knowledge consisting of the mathematical
models of numbers and their ordering relationships. Unfortunately, the purely
logical setting ignores such a background knowledge, and considers each single
value as completely unrelated to all other values. This problem has been tackled
in two different ways.

Keeping the purely logical setting ensures general applicability of the logical
representation and inference techniques: a classical solution in this case has been
discretization of the range of numeric values allowed for a given attribute into
pre-defined intervals, each of which can be associated to a symbolic descriptor
(e.g., size small, size large, . . . ; position top, position middle, . . .). Thus, the
original descriptions are to be pre-processed to turn all instances of numeric at-
tributes into the corresponding discretized descriptors. What is a useful number
of intervals in which splitting the range of values allowed for a numeric attribute?
How to choose the cut points between intervals? Both choices are crucial, since
once it is determined even points that are very close to each other (e.g., 4.999 and
5.001 for a cut point placed at 5) will be considered as two completely different
entities. Techniques for (semi-)automatic definition of the intervals given sam-
ples of values for the attribute have been proposed (e.g., [1]), based on statistics
on the values occurrence and distribution, although a (partial) manual interven-
tion is often required to provide and/or fix their outcome. In any case, if the
intervals are not to be considered as completely distinct entities, the problem
is simplified but not completely solved, since additional background knowledge
must be provided to express the ordering relationships between intervals (requir-
ing a number of items that is quadratic in the number of intervals, to express
which one precedes which other for all possible pairs) or progressive levels of
aggregations of groups of adjacent intervals into wider ones (requiring, for all
possible combinations, a number of items that is exponential in the number of
intervals).

As another option, plugging the ability to handle numeric information directly
in the inference engine somehow ‘spoils’ its behavior and adds complexity (re-
ducing efficiency). A problem (in both cases) is the fact that the specific way in
which numeric information is to be handled is strictly domain-dependent: Are

36 S. Ferilli et al.

values 15 and 300 close or distant (and how much are they)? This question can-
not be answered in general (a difference of, say, 215 meters might be meaningful
when comparing two fields, but completely insignificant when comparing planets
according to their size.

3 Similarity Framework

In this section, a short description of the similarity framework in its current sta-
tus, borrowed from [5], will be provided. The original framework for computing
the similarity between two Datalog Horn clauses has been provided in [4]. Intu-
itively, the evaluation of similarity between two items i′ and i′′ might be based
both on parameters expressing the amounts of common features, which should
concur in a positive way to the similarity evaluation, and of the features of each
item that are not owned by the other (defined as the residual of the former with
respect to the latter), which should concur negatively to the whole similarity
value assigned to them [6]:

n , the number of features owned by i′ but not by i′′ (residual of i′ wrt i′′);
l , the number of features owned both by i′ and by i′′;
m , the number of features owned by i′′ but not by i′ (residual of i′′ wrt i′).

A similarity function that expresses the degree of similarity between i′ and
i′′ based on the above parameters, and that has a better behaviour than other
formulæ in the literature in cases in which any of the parameters is 0, is [4]:

sf (i′, i′′) = sf(n, l, m) = 0.5
l + 1

l + n + 2
+ 0.5

l + 1
l + m + 2

(1)

It takes values in]0, 1[, which resembles the theory of probability and hence can
help human interpretation of the resulting value. When n = m = 0 it tends
to the limit of 1 as long as the number of common features grows. The full-
similarity value 1 is never reached, being reserved to two items that are exactly
the same (i′ = i′′), which can be checked in advance. Consistently with the
intuition that there is no limit to the number of different features owned by the
two descriptions, which contribute to make them ever different, it is also always
strictly greater than 0, and will tend to such a value as long as the number of non-
shared features grows. Moreover, for n = l = m = 0 the function evaluates to 0.5,
which can be considered intuitively correct for a case of maximum uncertainty.
Note that each of the two terms refers specifically to one of the two items under
comparison, and hence they could be weighted to reflect their importance.

In FOL representations, usually terms denote objects, unary predicates
represent object properties and n-ary predicates express relationships between
objects; hence, the overall similarity must consider and properly mix all such
components. The similarity between two clauses C′ and C′′ is guided by the
similarity between their structural parts, expressed by the n-ary literals in their
bodies, and is a function of the number of common and different objects and
relationships between them, as provided by their least general generalization

Plugging Numeric Similarity in First-Order Logic Horn Clauses Comparison 37

C = l0 :- l1, . . . , lk. Specifically, we refer to the θOI generalization model [3]. The
resulting formula is the following:

fs(C′, C′′) = sf(k′ − k, k, k′′ − k) · sf(o′ − o, o, o′′ − o) + avg({sfs(l′i, l′′i)}i=1,...,k)

where k′ is the number of literals and o′ the number of terms in C′, k′′ is the
number of literals and o′′ the number of terms in C′′, o is the number of terms in
C and l′i ∈ C′ and l′′i ∈ C′′ are generalized by li for i = 1, . . . , k. The similarity
of the literals is smoothed by adding the overall similarity in the number of
overlapping and different literals and terms.

The similarity between two compatible n-ary literals l′ and l′′, in turn, depends
on the multisets of n-ary predicates corresponding to the literals directly linked
to them (a predicate can appear in multiple instantiations among these literals),
called star, and on the similarity of their arguments:

sfs(l′, l′′) = sf(ns, ls, ms) + avg{sfo(t′, t′′)}t′/t′′∈θ

where θ is the set of term associations that map l′ onto l′′ and S′ and S′′ are
the stars of l′ and l′′, respectively:

ns = |S′ \ S′′| ls = |S′ ∩ S′′| ms = |S′′ \ S′|
Lastly, the similarity between two terms t′ and t′′ is computed as follows:

sfo(t′, t′′) = sf(nc, lc, mc) + sf(nr, lr, mr)

where the former component takes into account the sets of properties (unary
predicates) P ′ and P ′′ referred to t′ and t′′, respectively:

nc = |P ′ \ P ′′| lc = |P ′ ∩ P ′′| mc = |P ′′ \ P ′|
and the latter component takes into account how many times the two objects play
the same or different roles in the n-ary predicates; in this case, since an object
might play the same role in many instances of the same relation, the multisets
R′ and R′′ of roles played by t′ and t′′, respectively, are to be considered:

nr = |R′ \ R′′| lr = |R′ ∩ R′′| mr = |R′′ \ R′|
This general (uninterpreted) framework was extended [5] to consider taxonomic
information (assuming that there is some way to distinguish taxonomic predi-
cates from ordinary ones). Using the same similarity function, the parameters
for taxonomic similarity between two concepts are determined according to their
associated sets of ancestors (say I1 and I2) in a given heterarchy of concepts:
their intersection (i.e., the number of common ancestors) is considered as com-
mon information (yielding lt = |I1 ∩ I2|), and the two symmetric differences as
residuals (yielding nt = |I ′′1 − I ′1| and mt = |I ′′2 − I ′2|). Since the taxonomic pred-
icates represent further information about the objects involved in a description,
in addition to their properties and roles, term similarity is the component where
the corresponding similarity can be introduced in the overall framework:

sfo(t′, t′′) = sf(nc, lc, mc) + sf(nr, lr, mr) + sf(nt, lt, mt)

where the additional component refers to the number of common and different
ancestors of the two concepts associated to the two terms, as specified above.

38 S. Ferilli et al.

4 Numeric Similarity

Given the above considerations, it is clear that, in an extended framework con-
sidering interpreted predicates and constants in addition to simple syntactic
entities, the ability to handle numeric information is at least as fundamental
as considering conceptual ones. Hence, the motivation for this work on the ex-
tension of the similarity-related technique. While observations usually described
specific cases using single constants, models typically refer to allowed ranges of
values: thus, we are interested in handling all the following cases:

– comparison between two intervals
– comparison between an interval and a value
– comparison between two values

To ensure a smooth integration of the new components, a first requirement is
preserving the same basic similarity function, whence the need to specify how
to extract parameters l, n and m from numeric comparisons. In this respect, let
us start our discussion from the case of comparison between two intervals, say
[i′1, i

′
2] and [i′′1 , i′′2]. Two intuitive approaches are available (assume, without loss

of generality, that i′1 ≤ i′2):

– basing the comparison on the distance between the interval extremes: then,
we take n = |i′′1 − i′1|, m = |i′′2 − i′2| and l = min(i′2, i

′′
2) − max(i′1, i

′′
1) if non-

negative (or 0 otherwise). Note that this solution does not take into account
the actual distance between the two intervals when they are disjoint, but
modifying the function to take into account this distance as a negative value
would spoil uniformity of the approach and make the function definition
more complex.

– considering the intervals as sets, and exploiting set operators and interpre-
tation: l would be the width (expressed as || · ||) of the overlapping part
(l = ||[i′1, i′2] ∩ [i′′1 , i′′2]||), and n, m their symmetric differences, respectively
(n = ||[i′1, i′2] \ [i′′1 , i′′2]||, m = ||[i′′1 , i′′2] \ [i′1, i

′
2]||).

Both strategies can be straightforwardly applied also to the comparison of an
interval to a single value, considered as an interval in which both extremes are
equal. However, the l parameter would always be zero in this case.

Let us now check and evaluate the behavior of the two candidate approaches
by applying them on a set of sample intervals, as shown in Table 1. Overall, both
approaches seem reasonable. As expected, their outcome is the same for partially
overlapping intervals, so that case is not a discriminant to prefer either over the
other. Different behavior emerges in the cases of disjoint intervals or of inclusion
of intervals (which is always the case of an interval compared to a single value). In
the former, the extreme-based approach ensures more distinction power, because
the distance between the intervals is taken into account. While this behavior
seems reasonable (according to the intuition that the farther two intervals, the
more different they are), on the other hand, in the case of an interval being a sub-
interval of the other it is not. Indeed, the set-based approach charges the whole

Plugging Numeric Similarity in First-Order Logic Horn Clauses Comparison 39

Table 1. Similarity values between sample intervals

Intervals Extreme-based Set-based

I1 I2 n l m similarity similarity n l m

[10, 15] [11, 16] 1 4 1 0.714285 0.714285 1 4 1
[10, 15] [10, 15] 0 5 0 0.857142 0.857142 0 5 0
[21, 25] [1, 5] 20 0 20 0.045 0.16 4 0 4
[1, 5] [21, 25] 20 0 20 0.045 0.16 4 0 4
[1, 5] [6, 10] 5 0 5 0.142857 0.16 4 0 4
[1, 5] [0, 6] 1 4 1 0.714285 0.72916 0 4 2

Table 2. Similarity values between sample interval-value pairs

Intervals Extreme-based Set-based

I v n l m similarity similarity n l m

[1, 5] 1 ≡ [1, 1] 0 0 4 0.3 0.3 4 0 0
[1, 5] 2 1 0 3 0.26 0.3 4 0 0
[1, 5] 3 2 0 2 0.25 0.3 4 0 0
[1, 5] 4 3 0 1 0.26 0.3 4 0 0
[1, 5] 5 4 0 0 0.3 0.3 4 0 0

[1, 5] 6 ≡ [6, 6] 5 0 1 0.238095 0.3 0 0 4
[1, 5] 21 20 0 16 0.05 0.3 4 0 0
[7, 10] 11 4 0 1 0.25 0.35 3 0 0
[7, 10] 14 7 0 4 0.138 0.35 3 0 0
[7, 10] 3 4 0 7 0.138 0.35 3 0 0

6 ≡ [6, 6] 10 ≡ [10, 10] 4 0 4 0.16 0.5 0 0 0
10 ≡ [10, 10] 10 ≡ [10, 10] 0 0 0 0.5 0.5 0 0 0

difference to the residual of the larger interval, which complies with the intuition
that it has more ‘different stuff’ that the other does not have; conversely, the
extreme-based approach splits such a difference on both parameters n and m,
resulting in a smaller similarity value.

This is even more evident looking at the behavior of the two approaches in
the case of an interval and a single value, as shown in Table 2. Only the case
where the first item is an interval and the second one is a value is reported,
due to the similarity function being symmetric providing the same result also
in the opposite case. Here, given a value included in an interval, their similarity
according to the set-based approach is constant, while in the extreme-based
approach it is affected by the position of the former within the latter: the closer
the value to the middle of the interval, the smaller their similarity; conversely,
as long as the value approaches the interval extremes, their similarity grows up
to the same similarity as the set-based approach. If we assume that the interval
just specifies an allowed range, with no reason to prefer particular regions within
that range, the set-based approach is clearly more intuitive. Again, in the case
of a value outside the interval (corresponding to disjoint intervals) an opposite
evaluation holds: the actual distance of the value from the interval is considered
by the extreme-based approach, affecting its evaluation, but not by the set-based

40 S. Ferilli et al.

Table 3. Similarity values between sample pairs of values

Values Extreme-based Specific

v1 v2 n l m similarity similarity

1 1 0 0 0 0.5 1
1 2 1 0 1 0.3 0.5
1 3 2 0 2 0.25 0.3
1 4 3 0 3 0.2 0.25
1 5 4 0 4 0.16 0.2
1 10000 9999 0 9999 0.00009999 0.0001
6 4 2 0 2 0.25 0.3

approach, where the absurd that a value outside a range has a larger similarity
than a value falling in the range happens. In both approaches, the larger the
interval, the smaller the similarity (which is consistent with the intuition that a
value is more likely to fall in a wider range than in a narrower one).

When comparing two values, in particular, the set-based approach returns
maximum uncertainty about their similarity (0.5) due to all parameters be-
ing zero, and hence it is not applicable. The extreme-based approach evaluates
their similarity according to how close to each other they are on the real-valued
axis, but loses expressive power (because any pair of values yields n = m),
and has the additional drawback that when comparing a value to itself it yields
n = l = m = 0 and hence similarity 0.5 (whereas we would expect to get 1 as a
perfect matching). Thus, a different approach is needed. The similarity assess-
ment should be independent of the different ranges of values used in the specific
domain (e.g., the range for describing the length of a pen is incomparable to
that for describing the width of a building). We propose the following formula:

sfn(v1, v2) =
1

|v1 − v2| + 1

Let us briefly examine the behavior of such a function. It is clearly symmetric.
When the difference between the two values approaches zero it approaches 1,
and becomes actually 1 for v1 = v2, as expected (differently from the previous
cases in the logical setting, one is sure that two equal values denote exactly
the same entity). As long as the difference increases, the function monotonically
approaches 0, but never reaches that value (according to the intuition that a
larger difference can be always thought of, requiring a smaller similarity value).
The rate at which 0 is approached decreases as long as the difference takes larger
and larger values, consistently with the intuition that for very large distances one
does not care small variations. Of course, if the descriptions are consistent, only
values referred to the same kind of entities/attributes will be compared to each
other, and hence the corresponding ranges of similarities should be consistent
and comparable to each other.

As to the similarity between values, some sample comparisons are reported in
Table 3 (both the specific strategy and the extreme-based one are symmetric).

Plugging Numeric Similarity in First-Order Logic Horn Clauses Comparison 41

As desired, identity of values yields similarity 1, and wider distances among the
two values result in smaller similarity values (independently of the actual values).

Summing up, a specific strategy is needed when comparing two values. When
at least an interval is involved, both the set-based and the extreme-based strate-
gies are equivalent in the case of partially overlapping intervals. Otherwise, the
former is better in the case of an interval or value being included in another
interval, because it better fits the concept on which the similarity function pa-
rameters are based. Conversely, the extreme-based strategy is able to consider
the actual distance from the interval and/or value extremes in the case of dis-
joint intervals, which affects the residual parameters. Overall, a cooperation of
the three strategies is desirable to fully match the spirit of the similarity function
parameters. In this case, a deeper empirical study is adviceable, and is planned
as future work, to establish if and how a smooth combination thereof can be
obtained, ensuring meaningful overall results and comparable similarity assess-
ments even when determined by different approaches (e.g., the similarity for two
distinct values should not be larger than the similarity between a value and an
interval it belongs to).

A final issue is where to embed the new similarity component in the over-
all First-Order Logic similarity framework. Without loss of generality, we can
assume that numeric attributes (those associating a numeric value to a given
entity) apply to single terms in the overall description, and thus are represented
by binary predicates a(t, v) meaning that “object t has (numeric) value v for
attribute a”. Indeed, the case of relationships associated with numeric infor-
mation (e.g., the weight of arcs in a graph), can be easily handled by reifying
the relationship in a term and then associating the value to the new term: e.g.,
arc weight(n1, n2, v) would become arc(n1, n2, a), weight(a, v). In this setting,
the numeric predicates represent further information about the objects involved
in a description, in addition to their properties and roles (and taxonomic posi-
tion, in case), and hence term similarity is the component where the correspond-
ing similarity can be introduced in the overall framework.

Of course, we assume that there is some way to distinguish numeric predicates
from ordinary ones, so that they can be handled separately by the procedures
(the numeric values themselves should be sufficient for this). The overall simi-
larity between two terms becomes:

sfo(t′, t′′) = sf(nc, lc, mc) + sf(nr, lr, mr)[+sf(nt, lt, mt)] + sfn(N1, N2)

where the components can be weighted differently if needed, and the additional
component refers to the numeric similarity between intervals and/or single val-
ues, as applicable, specified above.

5 Evaluation

To fully evaluate the effectiveness of the proposed approach to numeric similarity
embedded in the wider First-Order Logic Horn-clause similarity framework, a
dataset involving numeric attributes and including both intervals and specific

42 S. Ferilli et al.

values should be exploited. Unfortunately, the available datasets typically fill
each numeric attribute with a single number expressing its value for the object
being described, while intervals are usually exploited in general models rather
than in observations. Thus, in this work we will evaluate only the comparison
of specific values embedded in the overall structural similarity. We are currently
working at building datasets including both intervals and specific values, and an
extended evaluation of the full-fledged numeric similarity strategy is planned as
future work. Specifically, we focus on the classical problem of Mutagenesis [10],
as a most famous success in ILP and as a dataset involving both relational and
numeric descriptors. It should be noted that this is a very stressing dataset for
our technique, because it is known for being a problem where the key to success is
in the relational part, rather than in the attribute/value (numeric) one. Indeed,
it was exploited to demonstrate that ILP can learn predictive theories from a
dataset on which classical attribute-value techniques based on regression failed.
Thus, the numeric values are more likely to act as noise in the proper similarity
assessment, rather than as useful information to be leveraged (in other word, one
might expect that ignoring numeric information would improve effectiveness). It
aims at learning when a chemical compound is active, and when it is not, with
respect to mutagenicity. Molecules in this dataset are represented according to
the atoms that make them up, and to the bonds linking those atoms, so that
the 3D structure of the molecule is completely described. Atom substances are
represented by symbolic predicates, while numeric features are used for atom
weights and bond charges. The dataset includes 188 examples, of which 63 are
positive (class active) and 125 are negative (class not active).

The clustering procedure was stopped as soon as a loop was detected: after a
few steps, the k-means algorithm started oscillating between two sets of clusters
such that applying a further distribution on the former yields the latter, and
vice versa. Thus, both can be considered as candidate solutions, there being no
reason to prefer either over the other. The purity for the two candidate clusters
was, however, so close that either choice might be adopted: 76.59% and 76.06%,
respectively.

Another experiment, more suitable for evaluation of the correctness of the pro-
posed approach, concerns the problem of classification of documents according
to their layout description. In this case, the same dataset as in [3] was exploited,
made up of 353 examples of scientific papers from 4 different series: Elsevier jour-
nals, Springer-Verlag Lecture Notes (SVLN), Machine Learning Journal (MLJ),
Journal of Machine Learning Research (JMLR). The descriptions involve both re-
lational descriptors (for the mutual position and alignment among layout blocks)
and attribute-value descriptors for each layout block. In particular, 4 numeric
attributes are present: horizontal/vertical position in the page of the block, and
width/height thereof. Thus, differently from the Mutagenesis dataset, the ex-
pectation is that these descriptors are very significant to class discrimination.
Previous applications on this dataset [3] were carried out by discretizing the al-
lowed values for these descriptors into (manually-defined) intervals, and assigning
a symbolic descriptor to each such interval. Here, the aim is checking whether

Plugging Numeric Similarity in First-Order Logic Horn Clauses Comparison 43

Table 4. Dispersion matrix for the Document Clustering problem

Elsevier MLJ JMLR SVLN Total Errors Accuracy

Cluster 1 50 1 0 1 52 2 96.15
Cluster 2 7 84 1 0 92 8 91.30
Cluster 3 0 30 99 0 129 30 76.74
Cluster 4 4 7 0 69 80 11 86.25

Total 61 122 100 70 353 51 85.55

Missed 11 38 1 1 – – –

the introduction of the numeric similarity component, able to handle directly
the original observations (and hence avoiding the need for human intervention
to provide a discretization knowledge), can provide effective results. Again, a
k-means algorithm is run, asked to find 4 groups in the observations obtained by
hiding the class information from the above examples. After 100656.767 seconds
needed to compute the similarity matrix among all pairs of observations, the
resulting clusters are shown in Table 4.

It clearly emerges which clusters represent which classes, due to a predomi-
nance of the corresponding elements: Cluster 1 corresponds to Elsevier, includ-
ing 50 out of its 61 correct elements (plus 2 wrong elements from other classes),
Cluster 2 corresponds to MLJ, Cluster 3 corresponds to JMLR and Cluster 4 to
SVLN. Given this correspondence, the purity of each cluster with respect to the
associated class can be computed, as the ratio of elements from that class over
the total elements in the cluster. There are 51 errors overall, yielding an overall
85.55% accuracy, that increases to 87.61% taking the average accuracy of the
various classes/clusters. Compared to the 92.35% purity reported in [4] it can
be considered a satisfactory result, considering that here no help is provided to
the system, while there a manual discretization carried out by experts was pro-
vided to turn numeric values into symbolic ones (the reference value of supervised
learning on the same dataset, using the experts’ discretization, is 98% accuracy,
that can be considered as the counterpart of purity). The worst performing class
is MLJ, that is also the largest one however. It has the largest number of missed
items (most of which fall in the JMLR class/cluster, and all clusters include at
least one element from this class. Indeed, by observing its layout, it turns out
that it is in some way at the crossing of the other classes, and in particular the 30
documents in JMLR are actually very similar to real JMLR ones (the Authors
blocks are in the same place, under the title, both have a heading at the top of
the page — although it is narrower in JMLR). This suggests that these kinds of
blocks are the most significant to discriminate different classes in this dataset.

6 Conclusions

Horn clause Logic is a powerful representation language for automated learning
and reasoning in domains where relations among objects must be expressed to
fully capture the relevant information. While the predicates in the description

44 S. Ferilli et al.

language are defined by the knowledge engineer and handled only syntactically
by the interpreters, they sometimes express information that can be properly
exploited only with reference to a background knowledge in order to capture
unexpressed and underlying relationships among the concepts described. After a
previous work aimed at extending a general similarity framework for First-Order
Logic Horn clauses with the ability to deal with taxonomic information, in this
paper we presented another extension concerning numeric descriptors involving
intervals and/or numeric values. A composite approach to the numeric similarity
assessment, compliant with the general framework, has been proposed, discussed
and evaluated. Clustering experiments on a typical dataset mixing relational and
numeric information show that the proposal is effective.

Future work will concern deeper empirical evaluation of the behavior of the
proposed approaches to numeric computation in the case of intervals, and of its
integration in the general similarity framework (e.g., to determine what weight it
should have with respect to the other similarity parameters). Then, experiments
aimed at application of the framework to other real-world problems are planned.
Finally, another research direction concerns the exploitation of the proposed
technique as a support to refinement operators for incremental ILP systems.

References

[1] Biba, M., Esposito, F., Ferilli, S., Di Mauro, N., Basile, T.M.A.: Unsupervised
discretization using kernel density estimation. In: IJCAI 2007, pp. 696–701 (2007)

[2] Ceri, S., Gottlöb, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990)

[3] Esposito, F., Fanizzi, N., Ferilli, S., Semeraro, G.: A generalization model based
on oi-implication for ideal theory refinement. Fundamenta Informaticæ 47(1-2),
15–33 (2001)

[4] Ferilli, S., Basile, T.M.A., Biba, M., Di Mauro, N., Esposito, F.: A general sim-
ilarity framework for horn clause logic. Fundamenta Informaticæ 90(1-2), 43–46
(2009)

[5] Ferilli, S., Biba, M., Mauro, N., Basile, T.M., Esposito, F.: Plugging taxonomic
similarity in first-order logic horn clauses comparison. In: Serra, R., Cucchiara,
R. (eds.) AI*IA 2009. LNCS, vol. 5883, pp. 131–140. Springer, Heidelberg (2009)

[6] Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th Interna-
tional Conf. on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco
(1998)

[7] Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

[8] Muggleton, S.: Inductive logic programming. New Generation Computing 8(4),
295–318 (1991)

[9] Rouveirol, C.: Extensions of inversion of resolution applied to theory completion.
In: Inductive Logic Programming, pp. 64–90. Academic Press, London (1992)

[10] Srinivasan, A., Muggleton, S., King, R., Sternberg, M.: Mutagenesis: ILP experi-
ments in a non-determinate biological domain. In: Wrobel, S. (ed.) Proceedings of
the 4th International Workshop on Inductive Logic Programming. GMD-Studien,
vol. 237, pp. 217–232 (1994)

	Plugging Numeric Similarity in First-Order Logic Horn Clauses Comparison
	Introduction
	Background
	Similarity Framework
	Numeric Similarity
	Evaluation
	Conclusions
	References

