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Abstract. The extension of kernel-based binary classifiers to multi-
class problems has been approached with different strategies in the last
decades. Nevertheless, the most frequently used schemes simply rely
on different criteria to combine the decisions of a set of independently
trained binary classifiers. In this paper we propose an approach that aims
at establishing a connection in the training stage of the classifiers using
an innovative criterion. Motivated by the increasing interest in the semi-
supervised learning framework, we describe a soft-constraining scheme
that allows us to include probabilistic constraints on the outputs of the
classifiers, using the unlabeled training data. Embedding this knowledge
in the learning process can improve the generalization capabilities of the
multiclass classifier, and it leads to a more accurate approximation of a
probabilistic output without an explicit post-processing. We investigate
our intuition on a face identification problem with 295 classes.

Keywords: Multiclass Support Vector Machines, Probabilistic
Constraints, Semi-Supervised Learning.

1 Introduction

In multiclass classification problems we have a set of k > 2 classes, and the goal
is to construct a classifier which correctly predicts the class to which an input
point belongs. Although many real-world classification problems are multiclass,
many of the most efficient classifiers are specifically designed for binary problems
(k = 2), such as Support Vector Machines (SVMs) [16].

The simplest strategy to allow them to handle a larger number of classes is
commonly referred to as “one-versus-all” (OVA), and it consists in independently
training k classifiers to discriminate each class from the k − 1 remaining ones.
Given an input instance, the class label corresponding to the classifier which
outputs the maximum value is selected [14]. Even if some more sophisticated
schemes have been proposed (based on directed acyclic graphs, on error correct-
ing coding theory, or on combination of different strategies [13,5,4], for example)
the OVA strategy is still one of the most popular approaches, since it has been
shown to be as accurate as the most of the other techniques [14].
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In this paper we propose to tackle the OVA multiclass problem for regularized
kernel machines in an innovative fashion, enforcing the k outputs of the classifi-
cation functions to fulfill a probabilistic relationship. In detail, the probabilistic
constraints represent a domain information on the multiclass problem that we
enforce on the available unlabeled training data, in a Semi-Supervised setting.
As a matter of fact, the constraints introduce a dependency among the training
stages of the k classifiers, encouraging an inductive transfer that may improve
the generalization capabilities of the multiclass classifier.

For this reason our work is related to Multi-Task learning [3] and it shares
some principles with approaches that post-process the output of an SVM to ap-
proximate posterior estimates [12,17]. It is substantially different from logistic
regression models [15,7] that yield probabilistic outcomes based on a maximum
likelihood argument. In particular, we focus on the improvements in terms of
generalization performance that the proposed constraining can introduce, and
not on the strict definition of a model that is guaranteed to produce a proba-
bilistic output. Nevertheless, we show that it is satisfactorily approximated by
our soft-constraining procedure.

We investigate our approach on a face identification problem with 295 classes,
using the publicly available XM2VTS multimodal dataset. A detailed experi-
mental analysis shows improvements in the quality of the classifier, successfully
exploiting the interaction that is established by the probabilistic constraints.

This paper is organized as follows. In Section 2 the Semi-Supervised binary
classifiers on which we focus are introduced. In Section 3 the probabilistic con-
straints are presented. Section 4 collects our experimental results, and, finally,
in Section 5 some conclusions are drawn.

2 Multiclass Learning with Constraints

Given a set of objects in X , let us suppose that each object xi ∈ X ⊂ IRd is
described by a d-dimensional vector of features. In a generic k-class classification
problem, we want to infer the function c : X → Y, where Y is a set of labels.
We indicate with yi ∈ Y the label associated to xi. Suppose that there is a
probability distribution P on X × Y, according to which data are generated.

In a Supervised classification problem, we have a labeled training set L of l
pairs,

L = {(xi, yi)|i = 1, . . . , l, xi ∈ X , yi ∈ Y},
and the classifier is trained to estimate c(·) using the information in L. A labeled
validation set V , if available, is used to tune the classifier parameters, whereas
the generalization capabilities are evaluated on an out-of-sample test set T , in
a typical inductive setting.

In the Semi-Supervised learning framework, we have also a set U of u unlabeled
training instances,

U = {xi|i = 1, . . . , u, xi ∈ X},
that is exploited to improve the quality of the classifier. In a practical context,
unlabeled data can be acquired relatively easily, whereas labeling requires the
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expensive work of one or more supervisors, so that frequently we have u >>
l. Unlabeled samples are drawn accordingly to the marginal distribution PX
of P , and the Semi-Supervised framework attempts to incorporate them into
the learning process in different ways. Popular Semi-Supervised classifiers make
specific assumptions on the geometry of PX , such as, for example, having the
structure of a Riemannian manifold [9]. We indicate with n the total number of
labeled and unlabeled training points collected in the set S = L∪U , L∩U = ∅,
where the union and intersection are intended to consider only the first element
of each pair in L (n = l in the supervised setting).

SVM-like kernel machines are specifically designed as binary classifiers. Their
extension to multiclass classification in a “one-versus-all” (OVA) scheme, consists
in the independent training of k binary classifiers that discriminate each class
from the other k − 1 ones. We indicate with fj the function learnt by the j-
th classifier, j = 1, . . . , k, and with yij the target of the sample xi in the j-th
binary problem. Following the Multi-Task learning framework [3], each function
represents a specific “task”, collected in the vector f = [f1, . . . , fk]T . In the
classical multiclass scenario, all the tasks are defined on the same set of points,
and the decision function c(·) that determines the overall output of the classifier
is

c(x) = arg max
j

fj(x). (1)

When some prior knowledge on the correlation among the tasks is available, we
propose to model it with a set of q constraints on {f1(x), . . . , fk(x)}, represented
by the functions φh : IRk → IR:

φh(f1(x), . . . , fk(x)) h = 1, . . . , q (2)

that hold ∀x ∈ X .
Given a positive definite Kernel function K : IRd×IRd → IR, we indicate with

H the Reproducing Kernel Hilbert Space (RKHS) corresponding to it, and with
‖ · ‖H the norm of H. Each fj belongs to H1, and we formulate the learning
problem in the risk minimization scheme, leading to

min
f

⎛
⎝

k∑
j=1

l∑
i=1

V (fj(xi), yi,j) +
k∑

j=1

λj · ‖fj‖2H + C(f )

⎞
⎠ (3)

where

C(f ) =
q∑

h=1

γh ·
n=l+u∑

i=1

Lh(φh(f1(xi), . . . , fk(xi))).

In detail, the loss function V (fj(xi), yi,j) measures the fitting quality of each
fj with respect to the targets yij , and ‖fj‖2H is a smoothing factor weighted

1 More generally, we can define each fj in its own RKHS. We consider the case of a
shared RKHS among the functions just to simplify the description of our idea.
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by λj , that makes the learning problem well-posed2. Unlike the previous terms,
C(·) is a penalty function that models a correlation among the tasks during the
learning process, expressed by the constraints φh, h = 1, . . . , q. The parameters
{γh}q

h=1 allow us to weight the contribution of each constraint, and the penalty
loss function Lh(φh) is positive when the constraint is violated, otherwise it is
zero. To simplify the notation we avoided additional scaling factors on the terms
of the summation in Eq. 3.

In this soft-constraining scheme, there are no guarantees of ending up in a
classifier that perfectly fulfills the relationships of φh, h = 1, . . . , q, whereas
some violations are tolerated. As a matter of fact, the solution of Eq. 3 is a
trade-off among label fitting, smoothness on the entire input space, and problem
specific constraints. Note that if V (fj(xi), yi,j) is a linear hinge loss, and we
remove the C(·) term (i.e. γh = 0, h = 1, . . . , q) we get SVM classifiers.

If the loss function V and the term C(·) are convex, the problem of Eq. 3
admits a unique minimizer. The optimal solution of Eq. 3 can be expressed as a
kernel expansion, as stated in the following Representer Theorem.

Theorem 1. Let us consider the minimization problem of Eq. 3, where the func-
tion f1, . . . , fk belong to a RKHS H. Then the optimal solution f∗

j , j = 1, . . . , k
is expressed as

f∗
j (x) =

n=l+u∑
i=1

αijK(x,xi), j = 1, . . . , k

where K(·, ·) is the reproducing kernel associated to H, xi ∈ S, and αij are n
scalar values.

Proof: Using a simple orthogonality argument, the proof is a straightforward
extension of the representer theorem for plain kernel machines [16]. Is is only
sufficient to notice that V is measured on the l labeled training points only,
whereas the penalty term C(·) involves a set of constraints evaluated on all the
n = l + u samples belonging to S, so that the optimal solution lyes in the span
of the n training points (both labeled and unlabeled), as in [1]. �
In the next section we will describe the probabilistic constraints using an instance
of the described learning framework. Nevertheless this Semi-Supervised scheme
is generic and it can be applied to model any kind of interaction among tasks
that comes from a problem-dependent prior knowledge.

3 Probabilistic Constraints

For the j-th task, we select yij ∈ {0, 1}, where yij = 1 means that xi belongs to
class j while 0 indicates that it belongs to the other classes, and we penalize the
2 We are assuming that the kernel function is not yielding to interaction among the

different tasks, but the essence of what is proposed could be directly extended to
the general case of multitask kernel functions [2].



Semi-Supervised Multiclass Kernel Machines with Probabilistic Constraints 25

label fitting with a squared loss V (fj(xi), yij) = (fj(xi)− yij)2. Note that using
a hinge loss leads to the same classification accuracies, as investigated in [14],
and it would not make any substantial differences with respect to the selected
V due to the nature of the constraints that we will introduce in the following
(that will enforce fj in [0, 1]).

In its unconstrained and fully Supervised formulation, the OVA scheme does
not guarantee that the output values f1(x), . . . , fk(x), ∀x ∈ IRd have the prop-
erties of a probability (i.e. that they are in [0, 1] and they sum to one). In other
words, the classifier do not fulfill what we refer to as the probabilistic constraints,
that can be modeled with the following linear system,

⎧⎨
⎩

∑k
j=1 fj(x) = 1

fj(x) ≥ 0 j = 1, . . . , k.
(4)

Clearly, for xi ∈ L, this information is implicitly embedded on the targets yij ,
j = 1, . . . , k. As a consequence, a hypothetic perfect fitting of labeled points
would fulfill Eq. 4 ∀x ∈ L. On the other hand, each fj is requested to be smooth
in the RKHS, and a perfect fitting is generally not achieved.

Interestingly, Eq. 4 gives us a basic domain information on the problem that
is supposed to hold in the entire input space. We exploit this information on the
relationship among the functions fj , j = 1, . . . , k, to introduce an interaction
among the tasks within their training stage. As a matter of fact Eq. 4 must hold
also for points x /∈ L, so that we can cast the problem in the Semi-Supervised
setting described in Section 2, enforcing the probabilistic constraints also on
the (largely available) unlabeled training data. Differently from approaches that
estimate probabilities in a post-processing stage [12,17] or from kernel logistic
regression [15,7], we do not aim at obtaining a perfectly fulfilled probabilistic
output, but at improving the quality of the classifier by task interaction.

We can formulate the probabilistic constraints as a set of q = k + 1 linear
functions that become zero when they are fulfilled,

⎧⎨
⎩

φsum
1 (f1(x), . . . , fk(x))) =

∑k
j=1 fj(x) − 1

φpos
h (fh−1(x)) = max(−fh−1(x), 0) h = 2, . . . , k + 1.

(5)

In particular, in this specific problem only φsum
1 involves all the k tasks, whereas

φpos
h , h = 2, . . . , k+1 model a prior knowledge on the single binary functions. The

paired interaction of φsum
1 and φpos

h is introduced in the optimization problem
of Eq. 3 by the following C(·) term,

C(f ) =
∑n

i=1

(
γ1L1(φsum

1 (f1(xi), . . . , fk(xi)))

+
∑k+1

h=2 γhLh(φpos
h (fh−1(xi))

)
.

(6)

In order to keep intact the squared nature of the problem, we select Lh, h =
1, . . . , q to be squared loss functions. A constraint violation is then quadratically
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penalized. Moreover, the γh, h = 2, . . . , k + 1 are set to the same value, that
we will indicate with γ (without any subscripts), to equivalently weight the φpos

h

constraint in each task, whereas γ1 is set to k · γ. As a matter of fact we want to
emphasize the effect of φsum

1 in the minimization procedure, since it encourages
the interaction among the binary classifiers. The λj , j = 1, . . . , k, coefficients of
Eq. 3 are set to λ.

Enforcing the probabilistic constraints with non-linear kernel functions K(·, ·)
appears the most natural choice. Following the Representer Theorem (Theorem
1), their combination can model highly non-linear fj , j = 1, . . . , k, allowing
the classifier to efficiently alter the shape of each of them accordingly to the
interaction with the other ones, to the labeled data fitting and to the smoothness
constraint. Popularly used kernels, such as the Gaussian kernel or the polynomial
kernel of degree ≥ 2, are well suited for this approach. Modeling the constraints
with linear kernels yields to fj solutions that can easily degenerate towards a
constant value, as we experienced, in particular if the dimension of the input
space is small. As a matter of fact, enforcing the probabilistic relationship tends
to “over constrain” the linear fj , j = 1, . . . , k. More generally, our approach
is well suited for problems with a large number of classes, that emphasize the
importance of the task interaction.

3.1 Training the Multiclass Classifier

In order to devise a compact formulation of the minimization problem of Eq. 3,
we assume that the n training points of S are ordered so that the first l are the
labeled ones and the remaining u are the unlabeled samples. We overload the
notation of K, so that it also indicates the Gram matrix associated to the selected
kernel function K(·, ·) evaluated on the training data, K = [K(xi,xj)]i,j=1,...,n.
Let A ∈ IRn,k be the matrix where the j-th column collects the n coefficients
αij of the kernel expansion of the j-th task (from Theorem 1). As a result, each
column of KA ∈ IRn,k collects the outputs of a fj function evaluated on the
training points. The subscript is used to refer to a column of a given matrix,
so that, for example, Aj indicates the j-th column of A. In Y ∈ {0, 1}l,k we
collect the task-specific targets for labeled points, i.e. the entry in position (i, j)
is yij .1 ∈ IRn is the vector of n elements equal to 1 while J = [I, O] ∈ IRl,n is
a rectangular matrix composed by the identity matrix I ∈ IRl,l and by a matrix
O ∈ IRl,u of zeros. Finally, the notation (v)+ indicates that all the negative
elements of the vector v are set to zero.

The instance of the problem of Eq. 3 that we want to minimize is then

A∗ = arg minA

( ∑k
j=1(JKAj − Yj)T (JKAj − Yj) + λ

∑k
j=1 AT

j KAj

+kγ(
∑k

j=1 KAj − 1)T (
∑k

j=1 KAj − 1) +γ
∑k

j=1 −AT
j K(−KAj)+

)
.

(7)
The objective function is continuous, piecewise quadratic (due to the piece-
wise linear φpos

h , h = 2, . . . , k + 1 and the quadratic loss functions V and Lh,
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h = 1, . . . , k + 1), and strictly convex. As recently investigated for the case of
Laplacian SVMs [9], we can efficiently optimize it in its primal formulation using
Preconditioned Conjugate Gradient (PCG). In our specific problem, the gradi-
ent ∇j ∈ IRn of Eq. 7 with respect to the Aj coefficients of the j-th function fj

is

∇j = 2K
(

JT (JKAj − Yj) + λAj + kγ(
∑k

j=1 KAj − 1) − γ(−KAj)+
)

(8)

and preconditioning by the matrix K comes at no additional cost, as discussed
in [9].

In order to optimize the multiclass problem, all the ∇j , j = 1, . . . , k must
be computed. The computational cost of each PCG iteration is O(kn2), due
to the KA product, and the complexity is reduced if K is sparse. Moreover,
selecting αij = 0, i = 1, . . . , n, j = 1, . . . , k, as initial point for the optimization
procedure, each gradient iteration can be easily parallelized by computing in a
separate process each ∇j , and sharing the KAj vectors (j = 1, . . . , k) among
the parallel processes at the end of the iteration.

4 Experimental Results

Face recognition involves a large number of classes, corresponding to the num-
ber of subject to be recognized. We evaluate the performances of the proposed
approach in the traditional face identification scenario, where the identity of a
given input face must be retrieved among a set of known subjects. If each input
face is known to belong to such set, the problem is casted in a winner-take-all
scenario, where the identity predicted with the highest confidence is selected
as overall decision of the classifier, as in the described OVA scheme. SVM-like
regularized classifiers have been widely applied to face recognition, focusing on
different aspects of the problem [11,6].

We selected the XM2VTS multimodal database to test our system. It is a
publicly available collection of face pictures, video sequences, speech recordings
taken of 295 subjects, and distributed by the University of Surrey [10]. In par-
ticular, it collects 8 frontal view face pictures for each subject, acquired in four
separate sessions uniformly distributed over a period of four months. Face im-
ages were acquired in controlled conditions (constant face-camera distance and
lighting, uniform background) at the resolution of 720x576.

Data was preprocessed as in many popular eigenface-based face recognition
approaches [18]. We cropped each image so that only the face region from eye-
brows to the chin was kept; images were converted to gray scale and (uniformly)
rescaled to 56x64, using the image height as a reference to compute the scaling
factor; pixel values were rescaled to [0, 1]; Principal Component Analysis (PCA)
was performed, and we kept the first 184 eigenfaces, describing 85% of the total
variance. In Fig. 1 some examples of the cropped/scaled images are reported.

Following the data partitioning suggested in the second configuration of the
so called “Lausanne” protocol (defined for face verification competitions on the
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Fig. 1. Some examples of the cropped/scaled XM2VTS faces from two of the four
sessions (top and bottom row)

XM2VTS data [8]) we split the available data as described in Table 1, where
the details on the XM2VTS data are resumed. Moreover, the training set S
was divided in the sets L and U of labeled and unlabeled points, respectively,
simulating a Semi-Supervised scenario.

Table 1. The XM2VTS face dataset. For each subject there are 8 images (identified
by the numbers 1, . . . , 8). The selected data splits follow the Lausanne protocol.

Dataset Subjects Total Images
XM2VTS 295 2360

Data Split Image IDs (per subject) Total Images
Training S = L ∪ U 1, 2, 3, 4 1180
Validation V 5,6 590
Test T 7,8 590

We compared the proposed Multiclass Classifier with Probabilistic Constraints
(MC-PC) with an unconstrained OVA Multiclass Support Vector Machines
(MSVM) that it is one of the most popular approaches and it has been shown to
be as accurate as the most of the other existing techniques [14]. Experiments have
also been performed using a K-Nearest Neighbors (KNN) classifier with Euclidean
distance, since it is frequently used in face recognition experiments.

For each experiment, and for all the compared algorithms, parameters were
tuned by computing the error rate on the validation set V and selecting the best
configuration. In the case of MC-PC, the optimal λ and γ were selected from
the set {10−6, 10−4, 10−2, 10−1, 1, 10, 100}. The same range of values was used
for the weight λ of the regularization term in MSVM. The number of neighbors
in KNN was changed from 1 to 10.

Our analysis is aimed at showing the behavior of the proposed constrain-
ing scheme in variable conditions, using different kernel functions and different
configurations of the available supervision. Hence, we selected Gaussian and
polynomial kernels, due to their popularity in many classification problems. A
Gaussian kernel k(a, b) = exp −‖a−b‖2

2σ2 was tested with σ ∈ {5, 10, 20} to assess
the behavior of larger and tighter Gaussian functions (rbf). The polynomial ker-
nel k(a, b) = (aTb + 1)p was tested with a degree p = 2 and with p = 3 (poly).
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We iteratively increased the fraction of labeled training points to evaluate the
behavior of our Semi-Supervised approach as the size of L increases, and, con-
sequently the amount of unlabeled training points in the set U decreases. We
have k = 295 subjects, and for each of them the number of labeled images in L
has been incrementally changed from 1 to 3 whereas U is reduced from 3 to 1
unlabeled points. The corresponding results are collected in Table 2, where the
transductive and inductive configurations are evaluated.

Table 2. The error rates on the set U (transductive) and on the test set T (inductive).
A one-vs-all Multiclass SVM (MSVM) and a Multiclass Classifier with the Probabilistic
Constraints (MC-PC) are compared. Two kernel functions and a different numbers of
labeled (|L|) and unlabeled (|U|) training points are used (k = 295). The variation of
correctly identified faces between MSVM and MC-PC is reported in brackets.

Transductive Setting

Kernel Classifier |L| = 1 · k
|U| = 3 · k

|L| = 2 · k
|U| = 2 · k

|L| = 3 · k
|U| = 1 · k

rbf (σ = 5)
MSVM 34.35 28.47 8.81
MC-PC 31.53 (+25) 27.97 (+3) 8.14 (+2)

rbf (σ = 10)
MSVM 31.98 26.10 7.46
MC-PC 31.30 (+6) 25.08 (+6) 7.46

rbf (σ = 20)
MSVM 32.09 25.59 9.15
MC-PC 31.98 (+1) 25.41 (+1) 8.47 (+2)

poly (p = 2)
MSVM 36.95 30 13.9
MC-PC 34.92 (+18) 30.17 (-1) 9.83 (+12)

poly (p = 3)
MSVM 39.77 36.27 14.92
MC-PC 39.66 (+1) 35.93 (+2) 14.24 (+2)

KNN 40.68 39.83 18.64

Inductive Setting

Kernel Classifier |L| = 1 · k
|U| = 3 · k

|L| = 2 · k
|U| = 2 · k

|L| = 3 · k
|U| = 1 · k

rbf (σ = 5)
MSVM 41.36 30.17 19.32
MC-PC 39.32 (+12) 29.49 (+4) 18.98 (+2)

rbf (σ = 10)
MSVM 36.93 24.92 15.25
MC-PC 36.44 (+3) 24.41 (+3) 15.25

rbf (σ = 20)
MSVM 37.29 25.93 15.59
MC-PC 36.95 (+2) 25.93 15.25 (+2)

poly (p = 2)
MSVM 43.56 31.19 20.34
MC-PC 42.37 (+7) 30.51 (+4) 19.15 (+7)

poly (p = 3)
MSVM 48.81 39.83 28.64
MC-PC 47.12 (+10) 37.46 (+14) 26.78 (+11)

KNN 50.64 42.03 32.71
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Fig. 2. The Mean Squared Error (MSE) of the unitary sum constraint (φsum
1 ) and

of the non-negativity constraints (φpos
h , h = 2, . . . , k + 1, where the reported MSE

is averaged over the k measurements) on training and test data, in function of the
number of labeled examples per subject. In the latter, the percentage of points for
which f(x) < 0 is also displayed. The two plots in each graph describe the behavior
of a classifier in which such constraints were or were not enforced during the training
stage. In the group of graphs on top, a radial basis function kernel (RBF) with σ = 10
is used, whereas the group on bottom refers to a polynomial kernel (Poly) of degree 3.
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The experimental setup of Table 2 with |L| = 1 · k and |U| = 3 · k is the
one that is closer to a truly Semi-Supervised setting, where a large amount of
unlabeled points are available and just a few labels can be fed to the classifier.
In roughly all the experiments (and with all the described kernel functions) the
introduction of the probabilistic constraints improves the quality of the classifier,
both in a transductive framework (on the set U) and in the inductive one (on
the set T ), showing an increment of the generalization capabilities.

As the number of labeled data increases, we move towards a fully Supervised
setting and we reasonably expect a weaken impact of the probabilistic con-
straints, since the information that they carry is already included on training
labels.

In particular, in the case of Gaussian kernel, the error rate on test data is
improved mainly when the kernel width is small. As a matter of fact, due to the
very local support of the kernel, the information on labeled points is not enough
to fulfill the probabilistic constraints on the set U , and the classifier can benefit
from its explicit enforcement, even in this close-to-fully Supervised setup. When
a polynomial kernel is used, the interaction among the 295 binary classifiers
introduced by the probabilistic constraints keeps increasing the quality of the
classifier, since they are far from being fulfilled in the whole space, and the action
of our soft-constraining can be appreciated.

Those intuitions are confirmed by the graphs in Fig. 2, where we investigate
“how strongly” the output values fj , j = 1, . . . , k fulfill the probabilistic con-
straints in our Semi-Supervised scheme, with respect to the unconstrained case.
The Mean Squared Error (MSE) of the unitary sum (φsum

1 ) and non-negativity
(φpos

h , h = 2, . . . , k+1) constraints on training and test data is reported. Thanks
to our soft constraining procedure, the output values fj , j = 1, . . . , k are very
close to a probability. When only 1 labeled example per subject is used to train
the classifier, the effect can be significantly appreciated, whereas as such number
increases, the output of the unconstrained classifier becomes more similar to the
constrained one, since labeled training data is the majority portion of S.

The percentage of points for which f(x) < 0 (reported over the plots) does
not have significant changes when the constraints are introduced, due to the
selected squared penalty approach that do not favor sparsity, whereas the ful-
fillment of such constraints is improved. Finally, we can see that in the case of
Gaussian kernel the outputs fj , j = 1, . . . , k, of the unconstrained classifier are
more similar to a probability than in the case of a polynomial kernel, where the
importance of the explicit constraining is evident.

5 Conclusions

In this paper we presented an innovative approach to multiclass classification for
popular kernel-based binary classifiers. We casted the “one-versus-all” k-class
problem in the Semi-Supervised learning framework, where a set of probabilis-
tic constraints is introduced among the outputs of the k classifiers, establishing
an interaction in their training stages that biases an inductive transfer of in-
formation. The experiments on a face identification problem with 295 classes
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showed improvements in the generalization capabilities of the multiclass clas-
sifier, together with a more accurate approximation of a probabilistic output.
Interestingly, the proposed constraining scheme is general, and it also applies to
different categories of classifiers.
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