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Abstract. In this paper, we investigate the feasibility of applying algo-
rithms based on the Uniform Confidence bounds applied to Trees [12] to
the satisfiability of CNF formulas. We develop a new family of algorithms
based on the idea of balancing exploitation (depth-first search) and ex-
ploration (breadth-first search), that can be combined with two different
techniques to generate random playouts or with a heuristics-based evalu-
ation function. We compare our algorithms with a DPLL-based algorithm
and with WalkSAT, using the size of the tree and the number of flips
as the performance measure. While our algorithms perform on par with
DPLL on instances with little structure, they do quite well on structured
instances where they can effectively reuse information gathered from one
iteration on the next. We also discuss the pros and cons of our different
algorithms and we conclude with a discussion of a number of avenues for
future work.

1 Introduction

The Upper Confidence bounds applied to Trees (from now on UCT) algorithm,
introduced by Kocsis and Szepesvári in [12], is an (increasingly popular and suc-
cesful) adaptation of the work on Upper Confidence Bounds (UCB) by Auer,
Cesa-Bianchi and others [2,3,4] on the multi-armed bandit problem to tree
search. It has been successfully used in many game playing programs, the most
notable being MoGo which is one of the strongest computer Go players [10,16].
In this paper we perform a preliminary investigation into the application of
UCT-style search algorithms to satisfiability testing of propositional formulas in
Conjunctive Normal Form (CNF).

Rather than explore the search space in a depth-first fashion, in the style of
DPLL [9,8], UCT repeatedly starts from the root node and incrementally builds
a tree based on estimates of node utilities and node visit frequencies computed
from previous iterations. In most implementations of UCT, the estimated util-
ity of a new node is computed using Monte-Carlo methods, i.e., by generating
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random completions of the search (termed “playouts”) and averaging their out-
comes. This utility is revised each time the search revisits the node using the
estimated values of the children. This technique is especially effective when no
adequate heuristics is available to perform this value estimation task.

Here we present in detail a family of algorithms called UCTSAT that employ
the UCT search control mechanism but use different mechanisms to estimate
the utility of a node. In the first version, called UCTSATh, a heuristic is used
to estimate the initial utility of a node, more precisely, the heuristic used is the
fraction of the total set of clauses that are satisfied by the partial assignment
associated with the node. While the results have been promising, especially when
applied to structured instances, we also experiment with two more variants,
called UCTSATcp and UCTSATsbs, that use search strategies that are closer to
the more traditional usage of UCT algorithms, that is using random tryouts in
a MonteCarlo style. A very short description of the UCTSATh algorithm has
been described, but not presented, in [14].

While we do not expect UCTSAT to outperform the state of the art SAT
solvers (especially with respect to CPU time), we believe that the development
of an algorithm based on a radically different search technique is important for
at least two reasons: (a) the hardness of SAT instances is related to the algo-
rithm used [1,7], and hence UCTSAT, which uses different search strategies, can
provide useful and new insights into the complexity of SAT instances; and (b) be-
cause such algorithms can be useful when included in a portfolio of algorithms
(see, for example, [17]) where very different solution techniques can help expand
the range of applicability of the portfolio.

The remainder of this paper is organized as follows. In Section 2 we briefly de-
scribe the UCT algorithm. Section 3 presents all three versions of the UCTSAT
algorithm for satisfiability testing. In Section 4 we present preliminary exper-
imental results from applying UCTSAT to a variety of benchmark problems,
and compare it to our own DPLL implementation and to WalkSAT. Section 5
concludes with a discussion of our results, and outlines a few topics that deserve
further investigation.

2 Upper Confidence Bounds Applied to Trees (UCT)

Monte-Carlo tree search algorithms such as UCT [12] have recently received a
great deal of attention from the planning and game-playing community, in partic-
ular due to their success in the domain of Go [10,16]. UCT builds on the UCB1
algorithm for multi-armed bandits [2], which is used to guide the search tree
construction process. Exploration of under-sampled actions is balanced against
exploitation of known good actions to generate asymmetric trees that are deeper
in more promising regions of the search space and shallower elsewhere.

Algorithm 1 describes the recursive procedure UCT uses to build the search
tree. T (s, a) is the domain transition function that returns the state s′ reached
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from taking action a in state s. The algorithm maintains two lookup tables —
n(s) tracks the number of times state s has been visited and Q(s) tracks the
current estimated utility of the state s. The action selection operator π(s) is
repeatedly applied to descend down the tree until a previously unvisited (or
terminal) node k is reached. k is added to the tree and an estimate of its utility
is computed which is used to update Q(s) and n(s) for all nodes s on the path
from the root node to k, according to lines 11 and 12. Under this scheme, the
size of the tree grows by one node on every iteration.

We describe π(s) and the utility estimation step in greater detail below:

– Action Selection: Given a state s, the action selection operator π(s) re-
turns the action a that maximizes an upper confidence bound on the utility
of the resulting state s′ = T (s, a):

π(s) = argmax
a

(
Q(T (s, a)) + c ·

√
log n(s)

n(T (s, a))

)

If n(T (s, a)) = 0 for an action a, then it is selected first, before any actions are
re-sampled. Ties are broken randomly. The constant c is tuned empirically
and controls the extent to which exploration or exploitation is favored.

– Value Estimation: For terminal nodes, the true utility of the state is re-
turned. For non-terminal nodes, an estimate of the true utility is returned.
This estimate can be computed using a domain-independent approach, such
as a random playout (which is also the traditional solution), or using a
domain-specific heuristic. Notice that the function can return either a defi-
nite answer (SAT/UNSAT) or a reward r for the node. To be more precise,
both SAT and UNSAT are represented as integer constants in all of the
algorithms.

A UCT search consists of repeatedly calling the function given in Algorithm 1 on
the root node for as long as time allows. At that point, the action that leads to

Algorithm 1. The UCT Algorithm
1: int Function UCTRecurse(s : state)
2: if s is a terminal state then
3: Add s to the search tree if n(s) = 0
4: r ← true utility of s
5: else if n(s) = 0 then
6: Add s to the search tree
7: r ← estimated utility of s
8: else
9: r ← UCTRecurse(T (s,π(s)))

10: end if
11: n(s) ← n(s) + 1
12: Q(s) ← Q(s) + (r − Q(s))/n(s)
13: return r
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the state with the highest average utility is returned. Alternate schemes include
returning the action with the most number of visits and returning the action
with the highest lower confidence bound. In practice, there is little difference
between these approaches.

3 UCTSAT

Typical UCT implementations estimate the utility of a node n on the first visit
by sampling the search space subsumed by n, via random or pseudo-random
playouts. This idea is very appealing when no good heuristics are available for
a domain. The pseudo-code for the recursive tree-building component of our
procedure (which we call UCTSAT) is given by Algorithm 2.

Algorithm 2. The UCTSAT Algorithm
1: int Function UCTSATRecurse(s : state)
2: if n(s) = 0 then
3: Add s to the search tree
4: r ← estimate(s)
5: if r = SAT then
6: print “Formula is satisfiable”
7: exit
8: else if r = UNSAT then
9: Mark s as closed

10: else
11: var(s) ← chooseV ariable()
12: end if
13: else
14: r ← UCTSATRecurse(T (s,π(s)))
15: if r = UNSAT then
16: if all the children of s are closed then
17: Mark s as closed
18: return UNSAT
19: else
20: r ← 0
21: end if
22: end if
23: n(s) ← n(s) + 1
24: Q(s) ← Q(s) + (r − Q(S))/n(s)
25: end if
26: return r

Analogously to UCT, a UCTSAT search comprises repeated invocations of Al-
gorithm 1 on the root node. UCTSAT behaves like a cross between a backtracking
(DPLL-style) and a randomized algorithm (for example, WalkSAT [15]). It is a
complete procedure that explores the search space in a very different fashion
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to that of DPLL. While DPLL only backtracks when it has finished completely
evaluating a branch, UCTSAT repeatedly starts from the root node and only
goes one level deeper on each iteration. As in UCT, the UCB1 formula is used
to control the descent down the tree, where each step involves making a variable
assignment and simplifying the original formula. In the flavor of local search
methods, the most promising branch is typically chosen at each step, but occa-
sional deviations to sub-optimal branches (that may still lead to solutions) also
occur. The search terminates when either:

1. a satisfying assignment is found (line 5)
2. the formula is determined to be unsatisfiable (line 17, when s is the root)
3. or the specified number of iterations is exceeded

We highlight the key differences between Algorithm 2 and Algorithm 1 below:

– Variable Assignment Look-up Table: In addition to the look-up tables
n(s) and Q(s) employed by UCT, we use an additional look-up table var(s)
that stores the variable that will be assigned at state s. This table is updated
when the node s is first created (line 11). The function chooseV ariable() we
used in line 11 of Algorithm 2 returns the variable with the highest number
of occurrences in the simplified formula.

– Action Selection: In game-tree search, an action corresponds to a move in
the game. Here, an “action” is the process of assigning a value to a variable.
As in UCT, an upper confidence bound is used to choose among the possible
assignments.

– Handling Terminal Nodes: In UCT, the information from terminal and
non-terminal nodes is propagated up the tree in an identical fashion. UCT-
SAT, on the other hand, handles terminal nodes as a special case. When
a satisfying assignment is found, the search promptly terminates. When a
contradiction is encountered at a node s, it is marked as “closed” and s is
never revisited by the search. A negative signal (value of 0) is propagated up
to penalize this branch of the tree. When all the children of a node s have
been closed (line 17), then s is closed as well — this mechanism propagates
information unsatisfiable assignments up the tree.

– Value Estimation: We will experiment with various estimation functions,
from simple heuristics to different forms of playouts. A more detailed analysis
of the comparison between UCT and UCTSAT on this issue will be presented
after the definition of the UCTSAT variants.

In the first version of UCTSAT, called UCTSATh, we replace the playouts with
a simple heuristic while retaining the multi-armed bandit approach of balancing
exploitation (i.e., DPLL-style depth-first expansion of the search tree) and ex-
ploration (i.e., breadth-first expansion). In fact, line 4 is replaced by r ← h(s),
where h(s) is the fraction of clauses that have been satisfied having reached it.

While UCTSATh seems a very promising alternative to DPLL-like algorithms,
at least on structured instances, here we also want to experiment with two dif-
ferent mechanism to generate playouts. The first such algorithm we developed,
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called UCTSATcp (UCTSAT with complete playouts), uses n (complete) ran-
dom playouts to estimate r. More precisely, we generate n random playouts, each
generating a complete assignment to all of the (unassigned) variables of s. For
each playout, if it satisfies the formula we are done, otherwise we compute its
heuristic value h(s, s′) and then compute the average over all the playouts. The
pseudo-code for the function is:

Algorithm 3. Complete playout
1: int Function estimate(s : state)
2: value ← 0
3: for i = 1 to n do
4: for all p ∈ unassignedLiterals(s) do
5: p ← choose a Random value
6: s′ = update(s, p)
7: end for
8: r ← h(s, s′)
9: if r = SAT then

10: print “Formula is satisfiable”
11: exit
12: end if
13: value ← value + r
14: end for
15: return value/n

To fully specify the behavior of UCTSATcp we still need to clearly define the
functions h(s, s′), used in line 8 of Algorithm 3. We experimented with various
choices, however here we report the results obtained using

h(s, s′) = Σc∈clauses(s)SatV ars(c, s′)/sizeof(c, s)

where, for each clause of the simplified formula associated to state (partial as-
signment) s, we compute the number of literals satisfied by s′ (SatV ars(c, s′))
and divide it by the size of the clause in s. This metric tries to capture the prob-
ability that a solution exists in the close proximity of the current (falsifying)
assignment.

While UCTSATcp performs quite well it can be improved if we allow for a
step-by-step choice of the variables in the playouts. More precisely, we define
UCTSATsbs where we choose one (unassigned) variable at the time, assign to
it a random variable and then check whether the formula is already falsified
in order avoid generating useless complete assignments. Moreover, after each
assignment we can perform unit propagation so that forced assignments are im-
mediately performed and we do not choose random values for forced variables.
The idea of generating either complete assignments or step-by-step ones is not
novel and has already been used in the literature, see, for example, the work of
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Lombardi et. al. [13]. These changes are incorporated into this new version of
the function estimate (Algorithm 4), where update(s, p) not only assigns a value
to the variable p but also performs unit-propagation.

Algorithm 4. Step by step playout
1: int Function estimate(s : state)
2: value ← 0
3: for i = 1 to n do
4: while ¬contradictory(s) do
5: p ← random variable in unassignedLiterals(s)
6: p ← choose a Random value
7: s′ = s
8: s = update(s, p)
9: if satisfied(s) then

10: return SAT
11: end if
12: end while
13: r ← h(s, s′)
14: value ← value + r
15: end for
16: return value/n

We can now summarize the main differences between the 3 variants of UCT-
SAT presented in the paper and compare them with the UCT basic algorithm:

– Value Estimation: In the style of UCT, both UCTSATcp and UCTSATsbs

employ a number of random playouts to estimate the utility of a node. Each
playout will either find a satisfying assignment or will return a heuristic
assessment of the solution found h(s, s′) (lines 13 and 8). On the other hand,
UCTSATh uses a heuristics that computes, for each state s, the fraction
of clauses satisfied in s with respect to the total number of clauses. This
heuristics makes this variant of UCTSAT more similar to the methodologies
used in most variants of DPLL, where the maximization of the number of
satisfied clauses is used as a heuristics to choose the branching literal.

– Using playouts: In UCT, each playout will report the value of the terminal
position reached, these values usually are one of +1 (win), 0 (draw), -1(loss).
In our case, if a playout reports 1 (SAT) we are done, so in general, all
playouts will report 0 (UNSAT) and, thus, it makes little sense to average
these values. To overcome this problem, we assign to each playout a heuristic
value h(s, s′) that should amount to how far away the playout is from a
solution. Since there is clearly no metrics that can exactly compute this value,
we tried several such functions. The main difference between UCTSATcp

and UCTSATsbs is the playouts-generation mechanism, since in UCTSATcp

the playouts are fully generated at the beginning, while in UCTSATsbs the
playouts are generated one literal at the time, thus avoiding to generate too
many inconsistencies early in the creation process.
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We can now briefly compare the properties of all three variants of UCTSAT
with both DPLL-like and WALKSAT-like algorithms. An experimental compar-
ison is discussed at length in Section 4.

The advantages and disadvantages of UCTSAT with respect to DPLL-like
algorithms can be summarized as follows:

+ Once UCTSAT has visited all the children of a node, their estimated util-
ities and visit counts can help it make an informed decision about which
assignment to focus on at a node.

+ UCTSAT can exit a dead-end branch without the need to completely explore
the branch.

+ The above two properties mean that UCTSAT can, in most cases, create
more compact trees.

− UCTSAT needs to keep in memory (almost) all of the visited tree, making
it a memory-intensive procedure.

− UCTSAT needs to visit each node multiple times.

We summarize the pros and cons of UCTSAT with respect to local search meth-
ods such as WALKSAT below:

+ UCTSAT uses the information obtained from each previous iteration to guide
the next one, while (standard) WalkSAT restarts each try from scratch.
While more advanced versions of WalkSAT use adaptive strategies to guide
the restart, we conjecture that UCT makes a more informed decision.

+ UCTSAT is a complete algorithm that can prove the unsatisfiability of a
formula by closing all the nodes.

− UCTSAT needs to retain all of the visited tree and the associated utility
estimates and visit counts, making it more memory-intensive than WalkSAT.

4 Experimental Analysis

This work is a preliminary assessment of the feasibility of applying UCT-style
methods to solve SAT problems. As such, we have focused our efforts on under-
standing whether the various variants of UCTSAT are capable of solving SAT
instances using smaller search trees than DPLL. To simplify the comparisons, we
contrast our algorithms against an in-house, no-frills implementation of DPLL,
and against WalkSAT (where the number of flips is used as the comparison
benchmark). Our DPLL implementation uses the same heuristic for picking the
next variable for assignment as UCTSAT, i.e., the variable with the maximum
number of occurrences in the simplified formula. The choice of which branch to
explore first is made non-deterministically.

Empirical tuning of the exploration bias constant c revealed that on most
instances, a value of c very close to 0 yielded the best performance on average;
we therefore fix c to 0 in all our experiments. Our WalkSAT runs use the novelty
heuristic with a maximum of 200, 000 flips allowed per try. To keep the com-
parison fair and run-times reasonable, DPLL and UCTSAT also time-out once
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the size of the search tree exceeds 200, 000 nodes. Since the three algorithms are
all non-deterministic, we perform 100 independent runs of each algorithm per
instance, and report the average tree size over all successful runs.

Our experiments use instances from the SATLIB repository [11]. We focus our
attention only on satisfiable instances; for unsatisfiable instances, UCTSATh and
DPLL construct identical trees since they use the same variable choosing heuris-
tic. Having fixed the variable ordering, proving unsatisfiability requires both
algorithms to visit the same set of nodes. It is meaningless to measure Walk-
SAT’s performance on unsatisfiable instances since it is an incomplete method.
Our first experiment uses uniform random 3-SAT instances of various sizes from
the phase-transition region. Figure 1 presents a plot of the size of the trees ex-
plored by the various algorithms, as a function of the number of variables in the
formula. Each data point corresponds to the average number of visited nodes of
the algorithm over 100 instances. Notice that we use a logarithmic scale in all of
our plots.

Fig. 1. Average tree sizes for uniform random 3-SAT instances

We observe that the rate of growth is similar for all the algorithms (with the
exception of WalkSAT). Moreover, the size of the trees constructed by UCT-
SAT and DPLL is generally close, with UCTSATsbs and UCTSATh marginally
outperforming DPLL. We believe that this similarity in tree sizes is due to the
unstructured nature of these instances. UCTSAT works well when each explo-
ration of the tree yields information that can be successfully used in subsequent
ones. Little such information can be gained from unstructured instances and in
such settings, UCTSAT only adds overhead to the DPLL machinery.
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Our second experiment uses instances from the SAT encoding of graph col-
oring problems (“flat graph coloring”). These instances are randomly generated
but have some underlying structure due to the encoding. These results are pre-
sented in Figure 2, and are qualitatively similar to those presented in Figure 1
— UCTSATsbs slightly outperforms DPLL, while UCTSATcp has worse perfor-
mances. UCTSATh is comparable with DPLL.

Fig. 2. Average tree sizes for flat graph coloring instances

Finally, we present some results on structured instances drawn from real-world
problems, namely instances from circuit fault analysis (single-stuck-at-fault, or
SSA).Figure 3 presents the average size of the search tree constructed by DPLL,
UCTSAT and WALKSAT on 4 SSA instances. These results show that, when
there is an underlying structure in the instances, both the UCTSATsbs and
UCTSATh variants of UCTSAT can exploit it very effectively, by building a
much smaller tree. It is not very clear why UCTSATcp performs so poorly on
these instances.

5 Discussion and Conclusions

In this paper, we have presented the UCTSAT family of algorithms based
on UCT to solve CNF satisfiability problems. This family includes algorithms
(UCTSATcp and UCTSATsbs) using playouts to estimate the utility of nodes as
well as an algorithm (UCTSATh) using a simple heuristic based on the fraction of
satisfied clauses. Our initial experimental results show that UCTSAT does not
perform well when instances have no underlying structure, but performs very
well when it can successfully apply the information it gathers on one iteration
on successive visits to the same node in the tree.
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Fig. 3. Average tree sizes for SSA circuit fault analysis instances

UCT-based algorithms have already been successfully used in many applica-
tions, mostly in games such as GO [10,16]. All of these applications adopted a
playout-based version of UCT, where the estimate is computed by generating
random completions of the game. However, our experiments suggest that, at least
in settings where a good heuristics to estimate the value of a node is available,
using such a heuristics can be competitive (and even outperform) playouts-based
algorithms.

There are many interesting avenues for future work. These include:

– Performing a systematic analysis of problem classes to gain insights into the
classes of formulas that are better suited to UCTSAT.

– Experimenting with different heuristics to assess the quality of the playouts
in both UCTSATcp and UCTSATsbs.

– Gaining a better understanding of the advantages and disadvantages of using
a heuristics to estimate the value of a node w. r. t. the use of playouts.

– Extending UCTSAT to solve Quantified Boolean Formulas (QBF), by ex-
tending the algorithms presented in [5,6]. We believe that UCT-style search
can be effective in solving QBF instances that have a game-playing structure
and is, therefore, closer to algorithms for Go and other games.
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