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Abstract. In this paper we introduce a tableau calculus for a nonmonotonic ex-
tension of the low complexity Description Logic DL-Litecore of the DL-Lite fam-
ily. The extension, called DL-LitecTmin, can be used to reason about typical-
ity and defeasible properties. The calculus performs a two-phase computation to
check whether a query is minimally entailed from the initial knowledge base. It
is sound, complete and terminating. Furthermore, it is a decision procedure for
DL-LitecTmin knowledge bases, whose complexity matches the known results
for the logic, namely that entailment is in Πp

2 .

1 Introduction

The interest for efficient reasoning in Description Logics (DLs) has greatly increased
in the last years. This is motivated by the fact that several applications are supposed
to handle ontologies comprising thousands of elements, as it happens for instance in
the Semantic Web, where ontologies are used to formalize concepts of very large Web
repositories. For these applications, it is crucial to dispose of efficient reasoning algo-
rithms. The current reasoning systems (capable of handling sometimes very expressive
DLs) are inadequate, as they offer good performances in practice only for relatively
small ontologies, but they cannot handle very large data sets. This has led to the study
of low complexity DLs, such as the logics of the EL family and the ones of the DL-
Lite family. The logics of the EL family [1] are relevant in the bio-medical domain:
for instance, medical terminologies, such as the GALEN Medical Knowledge Base, the
Systemized Nomenclature of Medicine (SNOMED), and the Gene Ontology used in
bioinformatics, can be formalized in small extensions of EL. The logics of the DL-Lite
family [7] are specifically tailored for effective query answering over DL knowledge
bases containing a large amount of data.

Since DLs are used to represent classes and their properties, a nonmonotonic mech-
anism is wished to express defeasible inheritance of prototypical properties. Nonmono-
tonic extensions of DLs have been actively investigated since the early 90s, [15, 5,
2, 3, 9, 13, 10, 8]. A simple but powerful nonmonotonic extension of DL is proposed
in [13, 12, 10]: in this approach “typical” or “normal” properties can be directly speci-
fied by means of a “typicality” operator T enriching the underlying DL.
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In DL-LitecTmin [12], one can consistently express defeasible inclusions and ex-
ceptions such as: typically elephants live in the Savannah, but elephants with a teacher
normally do not live in the Savannah. In DL-LitecTmin the previous inclusions can be
formalized as follows: T(Elephant ) � LiveInTheSavannah , TrainedElephant �
Elephant , TrainedElephant � ∃HasTeacher .�, T(TrainedElephant ) �
¬LiveInTheSavannah . The operator T is nonmonotonic, in the sense that from
TrainedElephant � Elephant it does not follow that T(TrainedElephant ) �
T(Elephant ), and indeed T(TrainedElephant ) and T(Elephant ) can have differ-
ent properties. Notice that without the T operator we would not be able to say that
Elephant � LiveInTheSavannah and TrainedElephant � ¬LiveInTheSavannah
without saying that TrainedElephant is empty.

The typicality operator T is characterised by the core properties of nonmonotonic
reasoning axiomatized by preferential logic [14]. T allows to consistently express in-
clusions as the ones above, but it is not sufficient to perform nonmonotonic inferences.
This is why, DL-LitecTmin comprises a nonmonotonic mechanism based on a minimal
model semantics. In the absence of information to the contrary, this mechanism allows
to infer that a given individual is a typical instance of the most specific concept it be-
longs to. For instance, from the KB above, if we only know that dumbo is an elephant,
then we would conclude that it is a typical elephant and lives in the Savannah, whereas
if we knew that it is a trained elephant, then we would conclude that he is a typical
trained elephant, and it does not live in the Savannah. Notice that we would not be able
to do these inferences without the nonmonotonic mechanism that has been added.

While it has been shown that adding the typicality operator with its minimal-model
semantics to other standard DLs, such as ALC and EL⊥, leads to a very high complex-
ity (in particular, query entailment in EL⊥Tmin is EXPTIME hard [12]), it has been
recently shown that query entailment in DL-LitecTmin is in Πp

2 [12]. This result is
analogous to the one for circumscribed DL-Litecore KBs [3].

Proof methods for nonomonotonic extensions of ALC and EL⊥, called ALC+Tmin

and EL⊥Tmin, have been introduced in [10] and [11], respectively, whereas no proof
methods for the logic DL-LitecTmin have been proposed. In order to fill this gap, in this
paper we present a tableau calculus for deciding minimal entailment in DL-LitecTmin.
Similarly to ALC +Tmin and EL⊥Tmin, we present a two-phase calculus: in the first
phase, candidate models (complete open branches) falsifying the given query are gen-
erated, in the second phase the minimality of candidate models is checked by means
of an auxiliary tableau construction. The latter tries to build a model which is “more
preferred” than the candidate one: if it fails (being closed) the candidate model is min-
imal, otherwise it is not. As we will discuss in Section 3, there are several differences
between the calculus for DL-LitecTmin and the ones for ALC+Tmin and EL⊥Tmin.
As a result, the calculus that we propose here is very simple and does not require any
blocking machinery in order to achieve termination. Furthermore, our calculus provides
a constructive proof of the upper bound for minimal entailment in DL-LitecTmin.

2 The Typicality Operator T and the Logic DL-LitecTmin

The language of DL-LitecTmin is obtained by adding to DL-Litecore the typicality op-
erator T. The intuitive idea is that T(C) selects the typical instances of a concept C.
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In DL-LitecTmin we can therefore distinguish between the properties that hold for all
instances of concept C (C � D), and those that only hold for the normal or typical in-
stances of C (T(C) � D). Formally, the DL-LitecTmin language is defined as follows.

Definition 1. We consider an alphabet of concept names C, of role names R, and of
individuals O. Given A ∈ C and r ∈ R, we define

CL := A | ∃R.� | T(A) CR := A | ¬A | ∃R.� | ¬∃R.� R := r | r−

A DL-LitecTmin KB is a pair (TBox, ABox). TBox contains a finite set of concept
inclusions of the form CL � CR. ABox contains assertions of the form C(a) and r(a, b),
where C is a CL or CR concept, r ∈ R, and a, b ∈ O.

The semantics of DL-LitecTmin is defined by enriching ordinary models of DL-Litecore
by a preference relation < on the domain, whose intuitive meaning is to compare the
“typicality” of individuals: x < y, means that x is more typical than y. Typical members
of a concept C, i.e., members of T(C), are the members x of C that are minimal with
respect to this preference relation.

Definition 2 (Semantics of T). A model M is any structure 〈Δ, <, I〉 where Δ is the
domain; < is an irreflexive and transitive relation over Δ that satisfies the following
Smoothness Condition: for all S ⊆ Δ, for all x ∈ S, either x ∈ Min<(S) or ∃y ∈
Min<(S) such that y < x, where Min<(S) = {u : u ∈ S and �z ∈ S s.t. z < u}.
Furthermore, < is multilinear: if u < z and v < z, then either u = v or u < v or
v < u. I is the extension function that maps each concept C to CI ⊆ Δ, and each role
r to rI ⊆ ΔI × ΔI . For concepts of DL-Litecore , CI is defined in the usual way. For
the T operator: (T(C))I = Min<(CI).

Definition 3 (Model satisfying a Knowledge Base). Given a model M, I can be ex-
tended so that it assigns to each individual a of O a distinct element aI of the domain
Δ. M satisfies a KB (TBox,ABox), if it satisfies both its TBox and its ABox, where:

– M satisfies TBox if M satisifes all its inclusions. An inclusion C � D is satisifed
in M if CI ⊆ DI .

– M satisfies ABox if M satisifes all its formulas C(a) and r(a, b). M satisifes C(a)
if aI ∈ CI . M satisfies r(a, b) if (aI , bI) ∈ rI .

We assume the unique name assumption.

The operator T [13] is characterized by a set of postulates that are essentially a refor-
mulation of KLM [14] axioms of preferential logic P. T has therefore all the “core”
properties of nonmonotonic reasoning as it is axiomatised by P.

The semantics of the typicality operator can be specified by modal logic. The inter-
pretation of T can be split into two parts: for any x of the domain Δ, x ∈ (T(C))I

just in case (i) x ∈ CI , and (ii) there is no y ∈ CI such that y < x. Condition (ii)
can be represented by means of an additional modality �, whose semantics is given by
the preference relation < interpreted as an accessibility relation. Observe that by the
Smoothness Condition, � has the properties of Gödel-Löb modal logic of provability
G. The interpretation of � in M is as follows:

(�C)I = {x ∈ Δ | for every y ∈ Δ, if y < x then y ∈ CI}
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We immediately get that x ∈ (T(C))I iff x ∈ (C 	�¬C)I . From now on, we consider
T(C) as an abbreviation for C 	 �¬C.

In order to perform nonmonotonic inferences, the semantics of DL-LitecTmin is
strenghtened by restricting entailment to a class of minimal (or preferred) models. Intu-
itively, the idea is to restrict our consideration to models that minimize the non typical
instances of a concept.

Given a KB, we consider a finite set LT of concepts: these are the concepts whose
non typical instances we want to minimize. We assume that the set LT contains at least
all concepts C such that T(C) occurs in the KB or in the query F , where a query F
is either an assertion C(a), where C is a CL or CR, or an inclusion relation C � D,
where C is a CL and D is a CR. As we have just said, x ∈ CI is typical if x ∈ (�¬C)I .
Minimizing the non typical instances of C therefore means to minimize the objects not
satisfying �¬C for C ∈ LT. Hence, for a given model M = 〈Δ, <, I〉, we define:

M�−
LT

= {(x,¬�¬C) | x 
∈ (�¬C)I , with x ∈ Δ, C ∈ LT}.

Definition 4 (Preferred and minimal models). Given a model M = 〈Δ <, I〉 of a
knowledge base KB, and a model M′ = 〈Δ′, <′, I ′〉 of KB, we say that M is preferred
to M′ with respect to LT, and we write M <LT M′, if (i) Δ = Δ′, (ii) aI = aI′

for all a ∈ O, and (iii) M�−
LT

⊂ M′�−
LT

. A model M is a minimal model for KB (with
respect to LT) if it is a model of KB and there is no other model M′ of KB such that
M′ <LT M.

Definition 5 (Minimal Entailment in DL-LitecTmin). A query F is minimally en-
tailed in DL-LitecTmin by KB with respect to LT if all models of KB, that are minimal
with respect to LT, satisfy F . We write KB |=DL-LitecTmin

F .

In [12], a small model construction allowed us to prove the following complexity result:

Theorem 1 (Complexity of entailment in DL-LitecTmin, Theorem 4.6 in [12]). The
problem of deciding whether KB |=DL-LitecTmin

F is in Πp
2 .

3 A Tableau Calculus for DL-LitecTmin

In this section we present a tableau calculus TABLitecT
min for deciding whether a query

F is minimally entailed from a KB in the logic DL-LitecTmin. As mentioned in the
Introduction, the calculus is inspired to the calculi for ALC + Tmin and EL⊥Tmin

introduced in [10] and [11] but it contains a few significant differences in order to
obtain a calculus whose complexity matches the result of Theorem 1 above.

The calculus TABLitecT
min performs a two-phase computation. In the first phase, a

tableau calculus, called TABLitecT
PH1 , simply verifies whether KB∪ {¬F} is satisfiable in

a model, building candidate models. In the second phase another tableau calculus, called

TABLitecT
PH2 , checks whether the candidate models found in the first phase are minimal

models of KB, i.e. for each open saturated branch of the first phase, TABLitecT
PH2 tries to

build a model of KB which is preferred to the candidate model w.r.t. Definition 4. The

whole procedure TABLitecT
min is formally defined in Definition 8.
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Before examining the calculi in detail, we provide some additional formal defini-
tions. First, the negation of a query ¬F is defined as follows: (i) if F ≡ C(a), then
¬F ≡ (¬C)(a); (ii) if F ≡ C � D, then ¬F ≡ C(x), (¬D)(x), where x does not
occur in KB.

TABLitecT
min makes use of labels, which are denoted with x, y, z, . . .. Labels represent

either a variable or an individual of the ABox. These labels occur in constraints. A
constraint (or labelled formula) is a syntactic entity of the form either x

r−→ y or x : C,
where x, y are labels, r is a role and C is either a concept or the negation of a concept of
DL-LitecTmin or it has the form �¬D or ¬�¬D, where D is a concept. Finally, given
a set of constraints S and a role r ∈ R, we define r(S) = {x r−→ y | x

r−→ y ∈ S}.

3.1 First Phase: The Tableaux Calculus TABLitecT
PH1

Let us first define the basic notions of a tableau system in TABLitecT
PH1 . A tableau of

TABLitecT
PH1 is a tree whose nodes are pairs 〈S | U〉. S is a set of constraints, whereas U

contains formulas of the form C � DL, representing inclusions C � D of the TBox.
L is a list of labels, used in order to ensure the termination of the tableau calculus. A
branch is a sequence of nodes 〈S1 | U1〉, 〈S2 | U2〉, . . . , 〈Sn | Un〉 . . ., where each
node 〈Si | Ui〉 is obtained from its immediate predecessor 〈Si−1 | Ui−1〉 by applying

a rule of TABLitecT
PH1 , having 〈Si−1 | Ui−1〉 as the premise and 〈Si | Ui〉 as one of its

conclusions. A branch is closed if one of its nodes is an instance of a (Clash) axiom,
otherwise it is open. A tableau is closed if all its branches are closed.

In order to check the satisfiability of a KB, we build its corresponding constraint
system 〈S | U〉, and we check its satisfiability.

Definition 6 (Corresponding constraint system). Given a knowledge base
KB=(TBox,ABox), we define its corresponding constraint system 〈S | U〉 as
follows:

– S = {a : C | C(a) ∈ ABox} ∪ {a r−→ b | r(a, b) ∈ ABox}
– U = {C � D∅ | C � D ∈ TBox}

Definition 7 (Model satisfying a constraint system). Let M = 〈Δ, I, <〉 be a model
as defined in Definition 2. We define a function α which assigns to each variable of
V an element of Δ, and assigns every individual a ∈ O to aI ∈ Δ. M satisfies a
constraint F under α, written M |=α F , as follows: (i) M |=α x : C iff α(x) ∈ CI ;
(ii) M |=α x

r−→ y iff (α(x), α(y)) ∈ rI . A constraint system 〈S | U〉 is satisfiable if
there is a model M and a function α such that M satisfies every constraint in S under
α and that, for all C � DL ∈ U , we have that CI ⊆ DI .

Proposition 1. Given a KB=(TBox,ABox), it is satisfiable if and only if its correspond-
ing constraint system 〈S | U〉 is satisfiable.

To verify the satisfiability of KB ∪ {¬F}, we use TABLitecT
PH1 to check the satisfiability

of the constraint system 〈S | U〉 obtained by adding the constraint corresponding to ¬F
to S′, where 〈S′ | U〉 is the corresponding constraint system of KB. To this purpose,
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the rules of the calculus TABLitecT
PH1 are applied until either a contradiction is generated

(Clash) or no other rule is applicable. Given a node 〈S | U〉, for each inclusion C �
DL ∈ U and for each label x occurring in the tableau, we add to S the constraint
x : ¬C � D: we refer to this mechanism as unfolding. As mentioned, each inclusion
C � D is equipped with a list L of labels in which it has been unfolded in the current
branch. This is needed to avoid multiple unfolding of the same inclusion by using the
same label, generating infinite branches.

The calculus TABLitecT
PH1 is significantly different in four respects from the calculi

for ALC +Tmin and EL⊥Tmin. We try to explain such differences in detail.
1. The rule (∃+) is split in the following two rules:

y new

〈S, x : ∃r.� | U〉
〈S, x r−→ y | U〉

(∃+)r1
〈S, x : ∃r.� | U〉

(∃+)r2〈S, x r−→ y1 | U〉 〈S, x r−→ ym | U〉. . . 〈S, x r−→ y1 | U〉 〈S, x r−→ ym | U〉. . .

if y1, . . . , ym are all the labels occurring in S if y1, . . . , ym are all the labels occurring in S
if r(S) �= ∅if r(S) = ∅

The split of the (∃+) in the two rules above reflects the main idea of the construction of
a small model at the base of Theorem 1. Such small model theorem essentially shows
that DL-LitecTmin KBs can have small models in which all existentials ∃r.� occurring
in KB are satisfied in the model by a single witness y. In the calculus we use the same
idea: when the rule (∃+)r1 is applied to a formula x : ∃r.�, it introduces a new label y

and the constraint x
r−→ y only when there is no other previous constraint u

r−→ v in
S. Otherwise, rule (∃+)r2 is applied and it introduces x

r−→ y, with y already occurring
in the branch. As a consequence, (∃+)r2 does not introduce any new label in the branch
whereas (∃+)r1 only introduces a new label y for each role r occurring in the initial KB
in some ∃r.� or ∃r−.�, and no blocking machinery is needed to ensure termination.

2. In order to keep into account inverse roles, two further rules for existential formu-
las are introduced:

(∃+)r−1
〈S, x : ∃r−.� | U〉〈S, x : ∃r−.� | U〉

〈S, y r−→ x | U〉 〈S, y1 r−→ x | U〉 〈S, ym r−→ x | U〉

y new

. . . 〈S, y1 r−→ x | U〉 〈S, ym r−→ x | U〉. . .
(∃+)r−2

if y1, . . . , ym are all the labels occurring in S
if y1, . . . , ym are all the labels occurring in S

if r(S) = ∅ if r(S) �= ∅

These rules work similarly to (∃+)r1 and (∃+)r2 in order to build a branch representing
a small model: when the rule (∃+)r−

1 is applied to a formula x : ∃r−.�, it introduces a
new label y and the constraint y

r−→ x only when there is no other constraint u
r−→ v

in S. Otherwise, since a constraint y
r−→ u has been already introduced in that branch,

y
r−→ x is added to the conclusion of the rule.

3. The calculus TABLitecT
PH1 does not need the rule (∃−) of TABALC+T

min . Indeed, the
only negated existential formulas that can occur in a branch have the form (i) x : ¬∃r.�
or (ii) x : ¬∃r−.�. (i) means that x has no relationships with other individuals via the
role r, i.e. we need to detect a contradiction if both (i) and, for some y, x

r−→ y belong
to the same branch, in order to mark the branch as closed. The clash condition (Clash)r
is added to the calculus TABLitecT

PH1 in order to detect such a situation. Analogously,
(ii) means that there is no y such that y is related to x by means of r, then (Clash)r− is
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introduced in order to close a branch containing both (ii) and, for some y, a constraint
y

r−→ x. The clash conditions (Clash)r and (Clash)r− are as follows:

(Clash)r (Clash)r−〈S, x r−→ y, x : ¬∃r.� | U〉 〈S, y r−→ x, x : ¬∃r−.� | U〉

4. In order to build multilinear models of Definition 2, the calculus adopts a strength-
ened version of the rule (�−) used in TABALC+T

min [10]. We write S as an abbreviation
for S, x : ¬�¬C1, . . . , x : ¬�¬Cn. Moreover, we define SM

x→y = {y : ¬D, y : �¬D |
x : �¬D ∈ S} and, for k = 1, 2, . . . , n, we define S

�−k

x→y = {y : ¬�¬Cj � Cj | x :
¬�¬Cj ∈ S ∧ j 
= k}. The strengthened rule (�−) is also adopted in the calculus for
EL⊥Tmin in [11] and is as follows:

(�−)

k = 1, 2, . . . , n

〈S, y : Ck, y : �¬Ck, S
M
x→y, S

�−k

x→y | U〉
〈S, x : ¬�¬C1, . . . ,¬�¬Cn | U〉

y new
〈S, y1 : Ck, y1 : �¬Ck, S

M
x→y1

, S
�−k

x→y1
| U〉 〈S, ym : Ck, ym : �¬Ck, S

M
x→ym

, S
�−k

x→ym
| U〉. . .

∀
if y1, . . . , ym are all the labels occurring in S, y1 �= x, . . . , ym �= x

Rule (�−) contains: - n branches, one for each x : ¬�¬Ck in S; in each branch a
new typical Ck individual y is introduced (i.e. y : Ck and y : �¬Ck are added), and
for all other x : ¬�¬Cj , either y : Cj holds or the formula y : ¬�¬Cj is recorded;
- other n × m branches, where m is the number of labels occurring in S, one for each
label yi and for each x : ¬�¬Ck in S; in these branches, a given yi is chosen as a
typical instance of Ck, that is to say yi : Ck and yi : �¬Ck are added, and for all
other x : ¬�¬Cj , either yi : Cj holds or the formula yi : ¬�¬Cj is recorded. This
rule is sound with respect to multilinear models. The advantage of this rule over the
(�−) rule in the calculus TABALC+T

min for ALC + Tmin is that all the negated box
formulas labelled by x are treated in one step, introducing at most one new label y in

(Clash)〈S, x : C, x : ¬C | U〉

〈S, x : C, x : �¬C | U〉

〈S, x : ¬�¬C | U〉〈S, x : ¬C | U〉
(Unfold)

〈S | U,C 
 DL〉

(T+)
〈S, x : T(C) | U〉

(T−)〈S, x : ¬T(C) | U〉

if x occurs in S and x �∈ L

(Clash)r (Clash)r−〈S, x r−→ y, x : ¬∃r.� | U〉 〈S, y r−→ x, x : ¬∃r−.� | U〉

〈S, x : ¬�¬C | U〉〈S, x : �¬C | U〉
〈S | U〉

(cut)

x occurs in S

if x : ¬�¬C �∈ S and x : �¬C �∈ S
C ∈ LT

y new

〈S, x : ∃r.� | U〉
〈S, x r−→ y | U〉

(∃+)r1
〈S, x r−→ y1 | U〉 〈S, x r−→ ym | U〉. . .

〈S, x : ∃r.� | U〉
(∃+)r2

〈S, x r−→ y1 | U〉 〈S, x r−→ ym | U〉. . .

y new

(∃+)r−1〈S, x : ∃r−.� | U〉
〈S, y r−→ x | U〉 〈S, y1 r−→ x | U〉 〈S, ym r−→ x | U〉. . .

〈S, x : ∃r−.� | U〉
〈S, y1 r−→ x | U〉 〈S, ym r−→ x | U〉. . .

(∃+)r−2

(�−)

k = 1, 2, . . . , n

〈S, y : Ck, y : �¬Ck, S
M
x→y, S

�−k

x→y | U〉
〈S, x : ¬�¬C1, . . . ,¬�¬Cn | U〉

y new
〈S, y1 : Ck, y1 : �¬Ck, S

M
x→y1

, S
�−k

x→y1
| U〉 〈S, ym : Ck, ym : �¬Ck, S

M
x→ym

, S
�−k

x→ym
| U〉. . .

∀

if y1, . . . , ym are all the labels occurring in S if y1, . . . , ym are all the labels occurring in S

if y1, . . . , ym are all the labels occurring in S
if y1, . . . , ym are all the labels occurring in S

if y1, . . . , ym are all the labels occurring in S, y1 �= x, . . . , ym �= x

〈S, x : ¬C �D | U,C 
 DL,x〉

〈S, x : C �D | U〉
〈S, x : C | U〉 〈S, x : D | U〉(�

+)

if r(S) = ∅ if r(S) �= ∅

if r(S) = ∅ if r(S) �= ∅

Fig. 1. The calculus TABLitecT
PH1
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the conclusions. Notice that in order to keep S readable, we have used �. This is the
reason why our calculi contain the rule (�+), even if this constructor does not belong
to DL-LitecTmin.

The rules of TABLitecT
PH1 are presented in Figure 1. Rules (∃+)r1, (∃+)r−

1 and (�−)
are called dynamic since they can introduce a new variable in their conclusions. The
other rules are called static. We do not need any extra rule for the positive occurrences of
the � operator, since these are taken into account by the computation of SM

x→y of (�−).
The (cut) rule ensures that, given any concept C ∈ LT, an open saturated branch built

by TABLitecT
PH1 contains either x : �¬C or x : ¬�¬C for each label x: this is needed

in order to allow TABLitecT
PH2 to check the minimality of the model corresponding to the

open branch.

The rules of TABLitecT
PH1 are applied with the following standard strategy that takes

into account the order ≺ of insertion of the labels in the branch: as in [6], if y is intro-
duced in the tableau, then x ≺ y for all labels x that are already in the tableau.

Standard strategy: 1. apply a rule to a label x only if no rule is applicable to a label
y such that y ≺ x; 2. apply dynamic rules only if no static rule is applicable.

The above strategy imposes that the static rule (cut) is applied to a label x before
(�−) is applied to the same x. This has two benefits. First, it guarantees that (�−) can
be applied only once to each x. As it will become clear from the proof of Theorem 5, this
has an impact on the overall complexity of the calculus. Indeed, no other x : ¬�¬C
can be introduced after the application of (�−) to x, and no further application of
(�−) is needed to take into account the newly introduced negated box formula. This is
a consequence of the fact that each x : ¬�¬C that will ever occur on the branch has
been introduced by (cut) (indeed if x : ¬�¬C has not been introduced by (cut), then
x : �¬C has been introduced, which prevents x : ¬�¬C to be introduced at a later
stage). Second, since (cut) introduces all possible positive boxed x : �¬C that will
ever appear on the branch, the strategy guarantees that for all these formulas y : ¬C
and y : �¬C hold for each y introduced by an application of (�−) to x. In this way,
we do not need an extra rule (�+).

The calculus TABLitecT
PH1 is sound and complete.

Theorem 2 (Soundness of TABLitecT
PH1 ). If KB 
|=DL-LitecTmin

F , then the tableau
for the constraint system corresponding to KB ∪ {¬F} contains an open saturated
branch, which is satisfiable (via an injective assignment from labels to domain ele-
ments) in a minimal model of KB.
Theorem 3 (Completeness of TABLitecT

PH1 ). Given a constraint system 〈S | U〉, if it is

unsatisfiable, then it has a closed tableau in TABLitecT
PH1 .

Let us now analyze termination of TABLitecT
PH1 .

Theorem 4 (Termination of TABLitecT
PH1 ). Let 〈S | U〉 be the corresponding con-

straint system of a KB. Any tableau generated by TABLitecT
PH1 for 〈S | U〉 is finite.

Proof. (Sketch) The following facts allow us to prove termination:
– Rules cannot be reapplied over the same formula without any control. Indeed, the

only rule copying its principal formula in its conclusion is (Unfold), but this rule
can be applied to 〈S | U, C � DL〉 by using the label x only if it has not yet been
applied to x in the current branch (i.e., x does not belong to L).
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– Only finitely-many labels can be introduced on a branch. Roughly speaking, the
(∃+)r1 rule introduces at most one new label y for each role r belonging to the
initial KB. The same holds for the rule (∃+)r−

1 . Moreover, thanks to the properties
of �, it can be shown that the interplay between rules (T−) and (�−) does not
generate branches containing infinitely-many labels. Intuitively, the application of
(�−) to x : ¬�¬C, x : ¬�¬C1, . . . , x : ¬�¬Ck adds y : �¬C to the conclusion,
so that (T−) can no longer consistently introduce y : ¬�¬C.

– The (cut) rule does not affect termination, since it is applied only to the finitely
many formulas belonging to LT. �

Let us conclude this section by estimating the complexity of TABLitecT
PH1 . Let n be the

size of the initial KB, i.e. the length of the string representing KB, and let 〈S | U〉 its
corresponding constraint system. We assume that the size of F and LT is O(n).

Theorem 5 (Complexity of Phase 1). Given a KB and a query F , the problem of
checking whether KB ∪ {¬F} is satisfiable is in NP.

Proof. (Sketch) The calculus builds a tableau for 〈S | U〉 whose branches’s size is
O(n). This immediately follows from the fact that dynamic rules generate at most O(n)
labels in a branch. This is obvious for rules (∃+)r1 and (∃+)r−

1 . Concerning (�−), con-
sider a branch generated by its application to a constraint system 〈S, x : ¬�¬C1 . . . , x :
¬�¬Cn | U〉. In the worst case, a new label y1 is introduced. Suppose also that the
branch under consideration is the one containing y1 : C1 and y1 : �¬C1. The (�−)
rule can then be applied to formulas y1 : ¬�¬Ck , introducing also a further new label
y2. However, by the presence of y1 : �¬C1, the rule (�−) can no longer consistently
introduce y2 : ¬�¬C1, since y2 : �¬C1 ∈ SM

y1→y2
. Therefore, once (�−) is ap-

plied to ¬�¬C1 . . .¬�¬Cn in x, this application generates (at most) one new world
y1 that labels (at most) n− 1 negated boxed formulas. A further application of (�−) to
¬�¬C1 . . .¬�¬Cn−1 in y1 generates (at most) one new world y2 that labels (at most)
n − 2 negated boxed formulas, and so on. Overall, at most O(n) new labels are intro-
duced by (�−) in each branch. For each of these labels, static rules apply at most O(n)
times. Therefore, the length of the tableau branch built by the strategy is O(n2). Last, to
test that a node is an instance of a (Clash) axiom has at most complexity polynomial in
n. The same for detecting (Clash)r and (Clash)r− . Indeed, a node contains a polynomial
number of labels, O(n) roles, (hence) a polynomial number of formulas x : ¬∃r.� (or
x : ¬∃r−.�), as well as a polynomial number of formulas x

r−→ y. �

3.2 The Tableaux Calculus TABLitecT
PH2

Let us now introduce the calculus TABLitecT
PH2 which, for each open saturated branch B

built by TABLitecT
PH1 , verifies whether it represents a minimal model of the KB. First,

given an open saturated branch B of a tableau built from TABLitecT
PH1 , we define D(B)

as the set of labels occurring on B and B�−
as the set of formulas x : ¬�¬C occurring

in B, i.e. B�−
= {x : ¬�¬C | x : ¬�¬C occurs in B}.
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A tableau of TABLitecT
PH2 is a tree whose nodes are tuples of the form 〈S | U | K〉,

where S and U are defined as in TABLitecT
PH1 , whereas K contains formulas of the

form x : ¬�¬C, with C ∈ LT. The basic idea of TABLitecT
PH2 is as follows. Given

an open saturated branch B built by TABLitecT
PH1 and corresponding to a model MB of

KB ∪ {¬F}, TABLitecT
PH2 checks whether MB is a minimal model of KB by trying to

build a model of KB which is preferred to MB. To this purpose, it keeps track (in K)
of the negated box used in B (B�−

) in order to check whether it is possible to build a

model of KB containing less negated box formulas. The tableau built by TABLitecT
PH2

closes if it is not possible to build a model smaller than MB , it remains open otherwise.
Since by Definition 4 two models can be compared only if they have the same domain,

TABLitecT
PH2 tries to build an open saturated branch containing all the labels appearing

on B, i.e. those in D(B). To this aim, the dynamic rules use labels in D(B) instead of
introducing new ones in their conclusions.

The rules of TABLitecT
PH2 are shown in Figure 2. The rules (∃+)r and (∃+)r−

intro-
duce x

r−→ y and y
r−→ x, respectively, where y ∈ D(B), instead of y being a new

label. The choice of the label y introduces a branching in the tableau construction. The
rule (Unfold) is applied to all the labels of D(B) (and not only to those appearing in the
branch). The rule (�−) is applied to a node 〈S, x : ¬�¬C1, . . . , x : ¬�¬Cn | U | K〉,
when {x : ¬�¬C1, . . . , x : ¬�¬Cn} ⊆ K , i.e. when the negated box formulas
x : ¬�¬Ci also belong to the open branch B. Even in this case, the rule introduces
a branch on the choice of the individual yi ∈ D(B) to be used in the conclusion. In
case a tableau node has the form 〈S, x : ¬�¬C | U | K〉, and x : ¬�¬C 
∈ K , then

(Unfold)

(Clash)〈S, x : C, x : ¬C | U | K〉

(Clash)∅ (Clash)�−〈S | U | ∅〉 〈S, x : ¬�¬C | U | K〉
if x : ¬�¬C �∈ K

〈S | U,C 
 DL | K〉

x ∈ D(B) and x �∈ L

(T+) (T−)

(cut)

if x : ¬�¬C �∈ S and x : �¬C �∈ S
C ∈ LT

〈S, x : �¬C | U | K〉 〈S, x : ¬�¬C | U | K〉
〈S | U | K〉

〈S, x : ¬T(C) | U | K〉
〈S, x : ¬C | U | K〉 〈S, x : ¬�¬C | U | K〉

〈S, x : T(C) | U | K〉
〈S, x : C, x : �¬C | U | K〉

(�−)

x ∈ D(B)

(Clash)r (Clash)r−〈S, y r−→ x, x : ¬∃r−.� | U | K〉〈S, x r−→ y, x : ¬∃r.� | U | K〉

〈S, x : ¬�¬C1, . . . , x : ¬�¬Cn | U | K,x : ¬�¬C1, . . . , x : ¬�¬Cn〉

〈S, x : ∃r.� | U | K〉
〈S, x r−→ y1 | U | K〉 . . . 〈S, x r−→ yn | U | K〉 〈S, y1 r−→ x | U | K〉 . . . 〈S, yn r−→ x | U | K〉

〈S, x : ∃r−.� | U | K〉
(∃+)r−(∃+)r

〈S, ym : Ck, ym : �¬Ck, S
M
x→ym

, S
�−k

x→ym
| U | K〉〈S, y1 : Ck, y1 : �¬Ck, S

M
x→y1

, S
�−k

x→y1
| U | K〉 . . .

k = 1, 2, . . . , n∀

〈S, ym r−→ x | U | K〉〈S, x r−→ ym | U | K〉
if D(B) = {y1, . . . , ym}if D(B) = {y1, . . . , ym}

if D(B) = {y1, . . . , ym} and y1 �= x, . . . , ym �= x

〈S, x : C | U | K〉 〈S, x : D | U | K〉
〈S, x : C �D | U | K〉

〈S, x : ¬C �D | U,C 
 DL,x | K〉 (�+)

Fig. 2. The calculus TABLitecT
PH2



174 L. Giordano et al.

TABLitecT
PH2 detects a clash, called (Clash)�− : this corresponds to the situation in which

x : ¬�¬C does not belong to B, while the model corresponding to the branch being
built contains x : ¬�¬C, and hence is not preferred to the model represented by B.

The calculus TABLitecT
PH2 contains also the clash condition (Clash)∅. Since each ap-

plication of (�−) removes the negated box formulas x : ¬�¬Ci from the set K , when
K is empty all the negated boxed formulas occurring in B also belong to the current

branch. In this case, the model built by TABLitecT
PH2 satisfies the same set of x : ¬�¬Ci

(for all individuals) as B and, thus, it is not preferred to the one represented by B.

TABLitecT
PH2 is sound and complete:

Theorem 6 (Soundness and completeness of TABLitecT
PH2 ). Given a KB and a query

F , let 〈S′ | U〉 be the corresponding constraint system of KB, and 〈S | U〉 the cor-
responding constraint system of KB ∪ {¬F}. An open saturated branch B built by

TABLitecT
PH1 for 〈S | U〉 is satisfiable by an injective mapping in a minimal model of

KB iff the tableau in TABLitecT
PH2 for 〈S′ | U | B�−〉 is closed.

TABLitecT
PH2 always terminates. Termination is ensured by the fact that dynamic rules

make use of labels belonging to D(B), which is finite, rather than introducing “new”
labels in the tableau.

Theorem 7 (Termination of TABLitecT
PH2 ). Let 〈S′ | U | B�−〉 be a constraint sys-

tem starting from an open saturated branch B built by TABLitecT
PH1 , then any tableau

generated by TABLitecT
PH2 is finite.

It is possible to show that the problem of verifying that a branch B represents a minimal

model for KB in TABLitecT
PH2 is in NP in the size of B.

The overall procedure TABLitecT
min is defined as follows:

Definition 8. Let KB be a knowledge base whose corresponding constraint system is
〈S | U〉. Let F be a query and let S′ be the set of constraints obtained by adding

to S the constraint corresponding to ¬F . The calculus TABLitecT
min says that KB

|=DL-LitecTmin
F iff for each branch B built by TABLitecT

PH1 , either (i) B is closed

or (ii) the tableau built in (phase 2) by the calculus TABLitecT
PH2 for 〈S | U | B�−〉 is

open.

Theorem 8 (Soundness and completeness of TABLitecT
min ). TABLitecT

min is a sound
and complete decision procedure for verifying whether KB |=DL-LitecTmin

F .

Proof. (Soundness) If for all branches B (i) holds, then by Theorem 2, KB
|=DL-LitecTmin

F . Consider an open saturated branch B for which (ii) holds, by The-
orem 6, B is not satisfiable via an injective mapping in a minimal model of KB, hence
also in this case by Theorem 2, KB |=DL-LitecTmin

F .
(Completeness) Let KB |=DL-LitecTmin

F . For contraposition, let B be an open

saturated branch (if any) generated by TABLitecT
PH1 . If this branch was satisfiable by an
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injective mapping in a minimal model of KB, then by Proposition 1, also KB ∪ {¬F}
would be, against the hypothesis that KB |=DL-LitecTmin

F . Hence, B is not satisfiable
by an injective mapping in a minimal model of KB, and by Theorem 6 the tableau in

TABLitecT
PH2 for 〈S | U | B�−〉 is open. Hence (i) or (ii) hold. �

We can also prove that the complexity of TABLitecT
min matches the known results for

minimal entailment in DL-LitecTmin of Theorem 1:

Theorem 9 (Complexity of TABLitecT
min ). The problem of deciding whether

KB |=DL-LitecTmin
F by means of TABLitecT

min is in Πp
2 .

Proof. We first consider the complementary problem: KB 
|=LT

min F . This problem can
be solved according to the procedure in Definition 8: by nondeterministically generating

an open saturated branch of polynomial length in the size of KB in TABLitecT
PH1 (a model

MB of KB ∪ {¬F}), and then by calling an NP oracle which verifies that MB is a
minimal model of KB. In fact, the verification that MB is not a minimal model of the
KB can be done by an NP algorithm which nondeterministically generates a branch in

TABLitecT
PH2 of polynomial size in the size of MB (and of KB), representing a model

MB′
of KB preferred to MB. Hence, the problem of verifying that KB 
|=LT

min F is in

NPNP, that is to say in Σp
2 , and the problem of deciding whether KB |=DL-LitecTmin

F is in CO-NPNP, that is to say in Πp
2 . �

4 Related Works and Conclusions

Several nonmonotonic extensions of DLs have been proposed in the literature [15, 5, 2,
3, 9, 13, 10, 8]. Recently, much attention has been devoted to nonmonotonic extensions
of low complexity DLs. The complexity of circumscribed fragments of the EL⊥ and
DL-lite families have been studied in [3]. A fragment of EL⊥ for which the complexity
of circumscribed KBs is polynomial has been identified in [4].

In this work we have provided a two-phase tableau calculus TABLitecT
min for checking

minimal entailment in a nonmonotonic extension of the Description Logic DL-Litecore ,
described in [12]. This fills the gap due to the lack of a calculus for this logic. The
proposed calculus matches the known complexity results for DL-LitecTmin, namely
that entailment is in Πp

2 [12].
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