
Intelligent Supervision for

Robust Plan Execution

Roberto Micalizio, Enrico Scala, and Pietro Torasso

Università di Torino corso Svizzera 185, 10149 Torino
{micalizio,scala,torasso}@di.unito.it

Abstract. The paper addresses the problem of supervising the execu-
tion of a plan with durative actions in a just partially known world,
where discrepancies between the expected conditions and the ones actu-
ally found may arise. The paper advocates a control architecture which
exploits additional knowledge to prevent (when possible) action failures
by changing the execution modality of actions while these are still in
progress. Preliminary experimental results, obtained in a simulated space
exploration scenario, are reported.

Keywords: Plan Execution, Intelligent Supervision, Robotic Agents,
Control Architecture.

1 Introduction

In the last years a significant amount of interest has been devoted to the area
currently known as “planning in the real world”, in order to weaken some of
the assumptions made in classical planning. While relevant results have been
obtained for innovative planning techniques such as conditional and contingent
planning, it is worth noting that these forms of planning may be quite expensive
from a computational point of view and in many cases it is very hard to anticipate
all possible contingencies, since the execution of an action can be perturbed by
unexpected events which may cause the failure of the action itself. To handle
these issues, some methodologies [1,2,3] propose to monitor the execution of a
plan and to invoke a repair strategy, typically based on a re-planning step, as
soon as action failures are detected. These methodologies, however, are unable
to intervene during the execution of an action, as the repair is invoked just
after the occurrence of an action failure, that is, when the plan execution has
been interrupted. In principle, this problem could be mitigated by anticipating
which actions in the plan will not be executable in the future (i.e., threatened
actions, see for example [4]), so that the repair strategy can be invoked earlier.
Unfortunately, it is not always possible to anticipate the set of threatened actions
as the plan executor (i.e., the agent) may have just a partial knowledge of the
world where it is operating.

In this paper we propose a control architecture for robust plan execution
whose aim is to avoid (at least in some cases) the occurrence of action failures.
To reach this goal, the proposed architecture exploits a temporal interpretation

R. Pirrone and F. Sorbello (Eds.): AI*IA 2011, LNAI 6934, pp. 151–163, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

152 R. Micalizio, E. Scala, and P. Torasso

Capital letters A, B, C, D denote the

sites the rover has to visit. Each site

is tagged with the actions to be per-

formed when the site has been reached:

DRILL refers to the drill action, TP to

take picture, and COM to data trans-

mission. More actions can be done at

the same site, see for instance target C.

The black line connecting two targets

is the route, predicted during a path

planning phase, the rover should follow

during a navigate action.

Fig. 1. An example of daily mission plan

module for detecting agent’s behavioral patterns which, over a temporal window,
describe deviations from the nominal expected behavior. When such potentially
hazardous situations are detected, another module, the Active Controller, can
decide to change the modality of execution of the current action by taking into
account the capability of alternative modalities in alleviating the discrepancy
between the actual behavior and the nominal one.

The paper is organized as follows: section 2 describes a space exploration
scenario used to exemplify the proposed approach; section 3 presents a basic
control architecture which just reacts to action failures, an improved architecture
which tries to prevent failures is discussed in section 4; section 5 reports some
preliminary experimental results; finally, in section 6, the conclusions.

2 A Motivating Example

This section introduces a space exploration scenario, where a mobile robot (i.e.,
a planetary rover) is in charge of accomplishing explorative tasks. This scenario
presents some interesting and challenging characteristics which made it partic-
ularly interesting for the plan execution problem. The rover, in fact, has to
operate in a hazardous and not fully observable environment where a number of
unpredictable events may occur.

In our discussion, we assume that the rover has been provided with a mission
plan covering a number of scientifically interesting sites: the plan includes navi-
gation actions as well as exploratory actions that the rover has to complete once
a target has been reached; for instance the rover can:
- drill the surface of rocks;
- collect soil samples and complete experiments in search for organic traces;
- take pictures of the environment.
All these actions produce a certain amount of data which are stored in an on-
board memory of the rover until a communication window towards Earth be-
comes available. In that moment the data can be uploaded; see [5] for a possible

Intelligent Supervision for a Robust Plan Execution 153

solution tackling the communication problem in a space scenario. For example, a
possible daily plan involves: navigate(Start,A); drill(A); navigate(A,B);
tp(B); navigate(B,C); drill(C); tp(C); navigate(C,D); com(D). This plan
is graphically represented in Figure 1 where a map of a portion of the Martian
soil is showed.1

It is easy to see that some of these actions can be considered atomic (e.g.,
take picture), some others, instead, will take time to be completed. For instance,
a navigate action will take several minutes (or hours), and during its execution
the rover moves over a rough terrain with holes, rocks, slopes. The safeness of
the rover could be threatened by too deep holes or too steep slopes since some
physical limits of the rover cannot be exceeded. In case such a situation occurs,
the rover is unable to complete the action. Of course, the rover’s physical lim-
its are taken into account during the synthesis of the mission plan, and regions
presenting potential threats are excluded a priori.

However, the safeness of the rover could also be threatened by terrain charac-
teristics which can hardly be anticipated. For instance, a terrain full of shallow
holes may cause high-frequency vibrations on the rover, and if these vibrations
last for a while they may endanger some of the rover’s devices. This kind of threat
is difficult to anticipate from Earth both because satellite maps cannot capture
all terrain details, and because this threat depends on the rover’s contextual
conditions, such as its speed.

In the following of the paper we propose a control architecture which recog-
nizes potential threats while actions are still under way, and reacts to them by
tuning the execution modality. For instance, the navigation action can be associ-
ated with two execution modalities: high-speed and reduced-speed; slowing down
the rover’s speed can mitigate the harmful effects of disconnected terrains. As
we will see, the solution we propose is sufficiently flexible to change the execu-
tion modality not only when threats have been detected, but also when threats
terminate and nominal execution modalities can be restored.

3 Basic Control Architecture

As said above, plan execution monitoring becomes a critical activity when a given
plan is executed in the real world; differences between the (abstract) world as-
sumed during the planning phase and the actual world may lead, in some cases,
to a failure in plan execution. Monitoring the plan execution is hence necessary
but it is just the first step (detecting plan failures): a plan repair mechanism
should be subsequently activated in order to restore (if possible) nominal condi-
tions. Many plan repair techniques rely on a (re)planning phase to overcome the
failure of an action. In some cases, however, this technique may be difficult to
apply and too costly, so it should be limited as far as possible. For this reason, in
the following we propose a control architecture which tries to limit the necessity
of replanning by preventing, as far as possible, the occurrence of plan failures.
1 In the picture, different altitudes are represented in a grey scale where white corre-

sponds to the highest altitude, and black to the lowest.

154 R. Micalizio, E. Scala, and P. Torasso

F U N C T I O N A L L A Y E R

E N V I R O N M E N T

S U P E R V I S O R

i s s u e d

a c t i o n

r a w

d a t a

s e n s o r s a c t u a t o r s

a b o r t o u t o f s c o p e

P L A N N I N G T O O L S

a s k f o r

r e p l a n n i n g

P

S T A T U S
E S T I M A T O R

P L A N
E X E C U T O R

c u r r e n t s t a t u s

Fig. 2. A basic control architecture

(:durative-action navigate
parameters : (?r - rover ?y - site ?z - site)
duration : (= ?duration navigation-time ?z ?p)
condition : (and(at start(at ?r ?y)

(over all (and(≤ (pitch-derivative ?r) 5)
(≤ (roll-derivative ?r) 5)
(≤ (pitch ?r) 30)
(≤ (roll ?r) 30))))

effect :(and(at start(not (at ?r ?y)))
(at end(at ?r ?z)))

Fig. 3. An example of durative action

||
||
||
||
||
|
||
||
||

01while there are actions in P to be performed
02 rdatat ← getRawDataFromFL(t)
03 statet ← StateEstimator(rdatat)
04 if (checkInvariants(inva, statet) = violation

∨ actualDuration(a) > duration(a))
05 send abort to FL
06 ask for replanning
07 if checkOutcome(effa, statet) = succeeded
08 a ←getNextAction(P)
09 if checkPreconditions(prea, statet) =

not satisfied
10 ask for replanning
11 else submit a to FL
12 t ← t + 1

Fig. 4. The basic control strategy

For the sake of exposition, before presenting the complete control architecture,
we introduce a basic version which just detects failures and reacts to them by
aborting the current execution (see Figure 2).

We assume that the given mission plan P is a totally ordered sequence of
action instances, which are modeled in PDDL 2.1 [6] (this formalism, in fact,
allows to deal with atomic as well as durative actions). Note that, besides pre-
conditions and effects, PDDL 2.1 allows the definition of invariant conditions
which the planner must guarantee to maintain during the synthesis of the mis-
sion plan. These invariant conditions are exploited in our approach not only in
the planning phase, but also to check whether the rover’s safeness conditions are
maintained during the plan execution. For instance, the “over-all” construct of
the navigate action shown in Figure 3 specifies which conditions on the rover’s
attitude (i.e., the combination of pitch and roll) are to be considered safe, and
hence must hold during the whole execution of the action.

The basic architecture of Figure 2, includes two main levels: the Supervisor
and the Functional Level (FL). The Supervisor is in charge of managing the
execution of the plan P and its control strategy is reported in Figure 4. At
each time instant t, the State Estimator gets the raw data provided by the FL
and produces an internal representation of the current rover’s state possibly by

Intelligent Supervision for a Robust Plan Execution 155

making qualitative abstractions on the raw data. The Plan Executor matches the
estimated state statet against the invariant conditions of the action a currently in
execution: in case such conditions are not satisfied or the execution of the action
a lasts over the duration indicated in the plan, the action is considered failed.
In this case, the Plan Executor aborts the execution (by sending an appropriate
abort command to the FL) and asks for a new repair plan P ′. In case statet is
consistent with the action model, the Plan Executor establishes whether a has
been completed with success (of course, the outcome of a is success when the
expected effects effa hold in statet); in the positive case, the next action in P
becomes the new current action to be performed. The new action is actually
submitted for execution only after the validation of its preconditions against the
current state; in case the action is not executable, the Plan Executor asks for a
recovery plan.

The second level of the architecture is the FL, which, from our point of view,
is an abstraction of the rover’s hardware able to match the actions issued by
the Supervisor into lower level commands for the rover’s actuators. In doing so,
the FL may exploit services such as localization, obstacle avoidance, short range
path planning, path following (see [7,8]).

4 Improving the Control

To be more effective, the Supervisor must be able to anticipate plan failures
and actively intervene during the execution, not only for aborting the current
action, but also for changing the way in which that action is going to be per-
formed. Unfortunately, the pieces of information contained in the mission plan
are not sufficient for this purpose and the Supervisor needs additional sources
of information complementing the ones in the plan.

4.1 Knowledge for the Active Control

Execution Trajectories. The first extension we introduce is closely related
to the actual execution of an action. In the PDDL2.1 model, in fact, one just
specifies (propositional) preconditions and effects, but there may be different
ways to achieve the expected effects from the given preconditions. For instance,
the action navigate(A, B) just specifies that: 1) the rover must be initially lo-
cated in A and 2) the rover, after the completion of the navigate action, will be
eventually located in B; but nothing is specified about the intermediate rover
positions between A and B. This lack of knowledge is an issue when we con-
sider the problem of plan execution monitoring. For the monitoring purpose, in
fact, it becomes important to detect erroneous behaviors while the action is still
under execution. For this reason, we associate each durative action instance a
with a parameter trja, that specifies a trajectory of nominal rover states. More
formally, trja={s0, . . . , sn}, where si (i : 0..n) are, possibly partial, rover states
at different steps of execution of a. We just require that both s0 � prea and
sn � effa must hold. Therefore, trja represents how the rover state should

156 R. Micalizio, E. Scala, and P. Torasso

evolve over time while it is performing a. For example, let a be navigation(A,B),
trja maintains a sequence of waypoints which sketches the route the rover has
to follow. Of course, the actual execution of the navigation action may deviate
from the given trajectory for a number of reasons (e.g., unexpected obstacles
may be encountered along the way). In principle, a deviation from the nominal
trajectory does not necessarily represent an issue; in our extended approach, the
Supervisor takes the responsibility for tracking these deviations and deciding
when they signal anomalies to be faced.

Temporal Patterns. The trajectory associated with an action instance traces
a preferable execution path, but it is not sufficiently informative to detect po-
tentially dangerous situations. For example, even though the robot is accurately
following the trajectory associated with a navigation action, the safeness of the
rover could be endangered by a terrain that can be rougher than expected. Tak-
ing into account just the invariant conditions associated with the navigation may
not prevent action failures; these conditions, in fact, represent the physical lim-
its the rover should never violate, and when they are violated any reaction may
arrive too late. To avoid this situation, the Supervisor must be able to anticipate
anomalous conditions before they become so dangerous to trigger an abort. In
our approach we associate each action type with a set temporal patterns that
describe how the rover should, or should not, behave while it is performing a
specific action. Differently from a trajectory, the temporal patterns are defined
on sequences of events which abstract relevant changes in the rover state. In the
paper we propose the adoption of the chronicles formalism [9] for encoding these
temporal patterns. Intuitively, a chronicle is a set of events, linked together by
time constraints modeling possible behaviors of a dynamic system over time. The
occurrence of events may depend both on the activities carried on by the system
itself and on the contextual conditions of the environment where the system is
operating.

Execution Modalities. The last extension we introduce consists in associat-
ing each action type with a set of execution modalities. An execution modality
does not interfere with the expected effects of the action; it just represents an
alternative way for reaching the same effects. The basic idea is that, while the
temporal patterns can be used to anticipate dangerous conditions, the execu-
tion modalities could be used to reduce the risk of falling in one of them. For
example, a navigate action is associated with the set of execution modalities
mods(navigate)={nominal-speed, reduced-speed}. It is easy to see that in both
cases the rover reaches the expected position, but the two modalities affect the
navigation in different ways.

4.2 Improved Control Architecture

Relying on the additional pieces of knowledge discussed above, we propose the
improved control architecture depicted in Figure 5; three new modules have been
added: the State Interpreter (SI), the Temporal Reasoner (TR), and the Active

Intelligent Supervision for a Robust Plan Execution 157

A PP L A N
E X E C U T O R

S T A T U S
I N T E R P R E T E R

T E M P O R A L
R E A S O N E R

A C T I V E
C O N T R O L L E R

S U P E R V I S O R

i s s u e d a c t i o n t y p e

i n t e r n a l

e v e n t s

c u r r e n t

s t a t u s

i s s u e d

a c t i o n

e x e c u t i o n

m o d a l i t y

r a w

d a t a

r e c o g .

c h r o n i c l e s

a b o r t

a s k f o r

r e p l a n n i n g

K N O W L E D G E B A S E

r u l e s c h r o n s m o d s

S T A T U S
E S T I M A T O R

Fig. 5. The improved control architecture

Controller (AC); moreover, a Knowledge Base (KB) is also added to provide the
modules with the knowledge associated with a specific action type.

The Supervisor receives in input a plan AP (i.e., an augmented plan where
each action is provided with the trja parameter discussed above). The actual
execution of AP is under the control of the Plan Executor (PE), as in the basic
architecture (see Figure 4). The first improvement to the PE strategy is the
check that the current statet is consistent with the constraints imposed by the
trajectory trja. This improvement is implemented by changing the line 04 in
Figure 4 as follows:
if (checkInvariants(inva, statet) = violation) ∨ (actualDuration(a) > duration(a)) ∨

(trajectoryDeviations(trja, statet)=relevant)

In this way, the PE emits an abort also when the execution of a deviates signif-
icantly from the expected trajectory trja.2

A second and more relevant improvement is about the exploitation of the
temporal patterns associated with action a. Since the evaluation of the current
execution w.r.t. relevant temporal patterns is a complex activity which requires
the coordination of different modules and the decision to changing execution
modality (when required), we summarize this process in the macro function Ac-
tiveMonitoring (depicted in Figure 6). The PE, responsible for the coordination
of the internal modules of the Supervisor, invokes ActiveMonitoring just before
the assessment of an action outcome (see the algorithm in Figure 4, line 07). In
the following, we first describe the idea at the basis of the ActiveMonitoring and
then we sketch how each involved module actually operates.

As said above, ActiveMonitoring is aimed at emitting an execution modality
relying on the set of chronicles that have been recognized at a given time instant.
Since chronicles capture events, it is up to the StateInterpreter module to look
at the history of the rover state for generating internal events which highlight

2 Since in this paper we are more interested in the problem of correcting the execution
by means of the selection of an appropriate execution modality, we do not provide
further details about trajectoryDeviations.

158 R. Micalizio, E. Scala, and P. Torasso

ActiveMonitoring(a, t, statet)
H ← append(H , statet)
rulesa ← get-interpretative-rules(KB, acttype(a))
eventst ← StateInterpreter(H , rulesa)
RC ← ∅
chroniclesa ← get-chronicles(KB, acttype(a))
for each event et ∈ eventst

chra ← get-relevant-chronicle(et, chroniclesa)
if TemporalReasoner(chra, et) emits recognized

RC ← RC ∪ {chra}
if RC �= ∅

modsa ← get-execution-modalities(KB, acttype(a), RC)
ActiveControl(RC, modsa) emits mod to FL

Fig. 6. The strategy for the active monitoring

relevant changes in the rover state. This process is performed in the first three
lines of ActiveMonitoring: StateInterpreter module generates at each time t the
set of internal events eventst. Each event et ∈ eventst is subsequently sent to
the TemporalReasoner (i.e., a CRS), which consumes the event and possibly
recognizes a chronicle chra. All the chronicles recognized at time t are collected
into the set RC, which becomes the input for the ActiveController. This last
module has the responsibility for selecting, among a set of possible execution
modalities modsa, a specific modality to be sent to the FL.

The State Interpreter generates the internal events by exploiting a set of
interpretative rules in rules(atype) (where atype=acttype(a)). These interpre-
tative rules have the form Boolean condition → internal event. The Boolean
condition is build upon three basic types of atoms: state variables xi, state vari-
able derivates δ(xi), and abstraction operators qAbs(xi, [tl, tu]) → qV als which
map the array of values assumed by xi over the time interval [tl, tu] into a set
of qualitative values qV als = {qval1, . . . , qvalm}. For example, the following in-
terpretative rules:
(δ(roll) > limitsroll ∨ δ(pitch) > limitspitch) → severe-hazard(roll, pitch)
is used to generate a severe-hazard event whenever the derivate value of either
roll or pitch exceeds predefined thresholds in the current rover state.
Another example is the rule:

attitude(roll, [tcurrent − Δ, tcurrent]) =nominal ∧
attitude(pitch, [tcurrent − Δ, tcurrent]) =nominal → safe(roll, pitch)
Where attitude is an operator which abstracts the last Δ values of either roll

or pitch (the only two variables for which this operator is defined) over the set
{nominal, border, non-nominal}.

Note that set of internal events can be partitioned according to the apparatus
they refer to; for instance, the attitude and severe-hazard refer to the rover’s
mobility; low-power instead refers to the rover’s battery. We assume that at each
time t, eventst can maintain at most one event referring to a specific device.

Intelligent Supervision for a Robust Plan Execution 159

chronicle plain-terrain {
occurs((N, +oo), plain-conditions[pitch,

roll], (t, t+W))
when recognized {
emit event(plain-terrain[pitch,roll],t);

}
}

chronicle hazardous-terrain {
event(medium-hazard[pitch, roll], t1)

event(medium-hazard[pitch, roll], t2)

event(severe-hazard[pitch, roll], t3)

t1<t2<t3 ; t2-t1<W1 ; t3-t2<W1

when recognized { emit

event(hazardous-terrain[pitch,roll],t)} }

Fig. 7. Two chronicle examples in the space exploration scenario

The Temporal Reasoner is essentially a Chronicle Recognition System (CRS)
similar to the one proposed by Dusson in [9]. For simplicity, in our approach we
assume that each event et can be consumed by exactly one active chronicle
chr; the function get-relevant-chronicle in Figure 6 selects such a chronicle from
chroniclesa so that the TR receives in input just the event et which can be
analyzed by the appropriate chronicle.

A chronicle example associated with the navigation action is given in Figure 7;
it allows the Supervisor to indentify a potentially hazardous terrain. This chroni-
cle is recognized when at least N severe-hazard events (regarding the parameters
pitch and roll) have been detected within an interval of W time instant. The ba-
sic idea is that the safeness of the rover may be endangered when it moves at a high
speed along a too rough terrain; this kind of threat can be captured by detecting
hazardous variation of the roll and pitch parameters in a short time window. In-
deed, the event hazard, resulting from an interpretation process over the rover’s
state variables, denotes that, although the rover’s state has not violated the physi-
cal constraints (and hence it is still nominal), it may become anomalous in the near
future.

The Active Controller accomplishes two important activities. First, it selects
an execution modality to be issued towards the FL. In principle, such a selection
should correct the current robot’s behavior smoothly; that is, on one side, the
AC’s strategy should not be too reactive in order to avoid abrupt changes in the
robot’s behavior which may be as dangerous as the threat to face; and on the
other side, the AC should be able to restore the nominal execution modalities
when it is reasonable to presume that no menace is expected in the near future.
In our current and preliminary solution, however, the AC is still purely reac-
tive matching a recognized chronicle with a specific execution modality. Second,
the AC updates some parameters of the current action according the execution
modalities it emits. For instance, when a navigation action is slowed down, it
will take more time to be completed, this extra time must be taken into account
by the PE during its job. Due to lack of space, we cannot provide further details
on this point.

Running example Let us consider the action navigate(A,B), and let us as-
sume that the actual terrain is rougher than expected and causes repeated vi-
brations while the rover is moving from A to B . The basic architecture would
handle this situation by aborting the navigate action, this would have a dramatic

160 R. Micalizio, E. Scala, and P. Torasso

effect on the mission plan as the following actions could not be performed. On
the contrary, the improved architecture is able to anticipate the threat and to
intervene by slowing down the rover, this change of modality reduce the abrupt
changes in pitch and roll, so that the action can be completed with success. It is
worth noting that the execution modality is changed again (returning to nom-
inal) when the pitch and roll parameters are nominal for a while (see chronicle
plain-terrain which takes care of this temporal pattern).

5 Experimental Results

The experimental scenario. The approach described in the paper has un-
dergone to a first validation by using as test bed the space exploration scenario
previously introduced. The planetary environment has been represented as a Dig-
ital Elevation Model (DEM); we assumed that an initial DEM Dinit, presumably
computed from satellites images, is available, and we used it for synthesizing a
set of rover’s missions. In particular, by taking into account the terrain’s char-
acteristics, we have subdivided the rover’s missions into two classes: easy and
difficult. Note that the planning phase verifies the feasibility of each navigate
action by invoking a path planner that, relying on Dinit, assesses the validity
of the invariant conditions associated with this action type (see Figure 3) and
provides also a trajectory in terms of way points.

Obviously, Dinit is just an approximation of the real terrain, therefore the
actual execution of a mission plan may be affected by unexpected environmental
conditions. For simulating the discrepancies between Dinit and the real terrain,
we have altered the original DEM by adding a random noise on the altitude of
each cell. In our experiments, we have considered 6 noise degrees: from 10 cm to
15 cm, and for each of them we have generated 320 cases: 160 for the easy class
and 160 for the difficult one.

Altogether, in our experiments we have considered up to 1920 navigate actions
differing with one another for their starting and ending points, and their length.

To prove the effectiveness of our control architecture, we have simulated the
execution of both easy and difficult cases in each noisy DEM comparing the
responses of the two architectures, the basic and the improved, presented above.

Fig. 8. Experimental results

Intelligent Supervision for a Robust Plan Execution 161

A simplified simulator of the FL has been implemented in order to generate with
a frequency of 1Hz the set of raw data the Supervisor (either basic or improved)
has to interpret. For measuring the robustness of the plan execution and for
providing some insights in the ability of the Supervsior in tolerating variations
in the DEM, we are reporting data about three main parameters concerning the
execution of the navigate actions:

1) the percentage of navigate actions that were completed successfully.
2) the percentage of progress actually done by the rover with respect to the
whole trajectory, computed taking into account both the navigations that were
actually completed and the aborted ones.
3) The percentage of steps the navigation has been performed in the slowdown
modality w.r.t. the whole trajectory. Of course this datum is relevant just for
the improved architecture.

Figure 8 summarizes the results of the tests. The graphs show the average values
for the class of difficult cases (solid line), and for the class of the easy ones (dashed
line). Each bullet corresponds to the average value of 160 navigations; squares
denote the responses of the basic architecture, triangles denote the responses the
improved architecture. It is easy to see that the improved architecture always
provides better results than the basic one as concerns both the percentage of
success and the progress. As expected, in the difficult cases, the gains are signifi-
cant even for small DEM deviations, whereas in the easy ones, the gain becomes
relevant for larger deviations. The results also show that the mechanism of active
control is quite powerful but cannot avoid failures when the noise degree grows
too much. A final remark concerns the cost of the intelligent monitoring: while
the computational cost is negligible, there is an impact on the actual execution
that we estimate as the percentage of steps performed in reduced-speed modal-
ity, showed in Figure 8.c. It is easy to see that this percentage is proportional to
the noise degree and to hardness of the navigation.

6 Discussion and Conclusions

This paper addresses the problem of robust plan execution, when the environ-
ment may (slightly) differ from the one known (or assumed) during the planning
phase and unexpected contingencies may arise. Previous works in literature have
faced this problem by endowing the plan executor (e.g., a mobile robot) with
some form of autonomous behavior. For instance, the control architectures dis-
cussed in [7,8,10] support the robot’s autonomy by means of three layers of
control: the highest one is devoted to the decisional aspects and it is typically
based on one (or even more) (re)planning module(s).

Recent works on planning have faced the problem of recovering from an ac-
tion failure by synthesizing a repairing plan on the fly (e.g., see [3,2,1]). These
approaches, however, have been designed to intervene only after a failure has
occurred (and therefore when the plan execution has been interrupted). In this

162 R. Micalizio, E. Scala, and P. Torasso

paper we propose a control architecture aimed at reducing the necessity of invok-
ing a replanner by preventing, when possible, the occurrence of an action failure.
In particular, we have shown how the formalism of chronicles [9] can be used to
model patterns of the robot’s behavior over a temporal window, and how these
patterns are subsequently exploited for anticipating threats. The chronicles for-
malism represents a viable and efficient solution to the problem of interpreting
online the raw data coming from the environment, and hence reasoning about
the environment in more abstract terms.

In order to keep potential threats under control, we propose to correct the
current robot’s behavior through the selection of execution modalities, whose
effect is to change the way in which the current action is actually carried on
while an action is still in execution. The proposed methodology is therefore a
way to enhance the robot’s autonomy as it can flexibly switch among modalities
according to its contextual conditions. This idea is not completely new, also in
[8] the authors suggest a methodology for adjusting the way in which an action
is carried on depending on the rover’s context. For instance, their navigation has
three modalities related to the rover’s speed: low, medium, and high. However,
their context is just a snapshot (i.e., a set of variables) of the current conditions;
conversely, we propose to maintain a “temporal” context by means of chronicles.
This allows us to predict how the context will evolve, and hence to anticipate
a change of modality. With regard to this point, a central role is played by the
Active Controller; in its current preliminary implementation, the AC selects just
one execution modality at each time instant. As future work we intend to extend
the functionality of this module by allowing the selection of multiple modalities;
to reach this result, however, the AC needs to know the dependencies existing
between different modalities in order to estimate how their effects could interfere
with each other. We are currently investigating the adoption of (probabilistic)
causal networks as a possible way to face this challenge.

References

1. Bouguerra, A., Karlsson, L., Saffiotti, A.: Monitoring the execution of robot plans
using semantic knowledge. Robotics and Autonomous Systems 56, 942–954 (2008)

2. Bozzano, M., Cimatti, A., Roveri, M., Tchaltsev, A.: A comprehensive approach
to on-board autonomy verification and validation. In: ICAPS 2009 Workshop on
Verification and Validation of Planning and Scheduling Systems (2009)

3. Micalizio, R.: A distributed control loop for autonomous recovery in a multi-agent
plan. In: Proc. IJCAI 2009, pp. 1760–1765 (2009)

4. Micalizio, R., Torasso, P.: Monitoring the execution of a multi-agent plan: Dealing
with partial observability. In: Proc. ECAI 2008, pp. 408–412 (2008)

5. Musso, I., Micalizio, R., Scala, E., et al.: Communication scheduling and plans
revision for planetary rovers. In: Proc. of i-SAIRAS 2010 (2010)

6. Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning
domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

7. Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for
autonomy. International Journal of Robotics Research 17(4), 315–337 (1998)

Intelligent Supervision for a Robust Plan Execution 163

8. Calisi, D., Iocchi, L., Nardi, D., Scalzo, C., Ziparo, V.A.: Context-based design
of robotic systems. Robotics and Autonomous Systems (RAS) - Special Issue on
Semantic Knowledge in Robotics 56(11), 992–1003 (2008)

9. Dousson, C., Le Maigat, P.: Chronicle recognition improvement using temporal
focusing and hierarchization. In: IJCAI 2007, pp. 324–329 (2007)

10. Nesnas, I.A.: Claraty: A collaborative software for advancing robotic technologies.
In: Proc. of NASA Science and Technology Conference (2007)

	Intelligent Supervision for Robust Plan Execution
	Introduction
	A Motivating Example
	Basic Control Architecture
	Improving the Control
	Knowledge for the Active Control
	Improved Control Architecture

	Experimental Results
	Discussion and Conclusions
	References

