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1 Introduction

A paradigm shift: autonomous adaptation to a changing world. There
has been rapid progress over the past fifty years in modeling how brains control
behavior; that is, in developing increasingly sophisticated and comprehensive
computational solutions of the classical mind/body problem. Not surprisingly,
such progress embodies a major paradigm shift, but one that is taking a long
time to fully take hold because it requires a synthesis of knowledge from multi-
ple disciplines, including psychology, neuroscience, mathematics, and computer
science.

Linking brain to mind clarifies both brain mechanisms and behavioral func-
tions. Such a linkage is needed to develop applications to computer science,
engineering, and technology, since mechanisms tell us how things work, whereas
functions tell us what they are for. Knowing how things work and what they
are for are both essential in any application. Such models represent a paradigm
shift because the brain is unrivaled in its ability to autonomously adapt in real
time to complex and changing environments. Models that embody adaptive au-
tonomous intelligent responses to unexpected contingencies are just the sorts of
models that can fully realize the dream of artificial intelligence.

A method to link brain to mind. By what method can such models be
discovered? A successful method has been elaborated over the past fifty years.
The key is to begin with behavioral data, typically scores or even hundreds of
parametrically structured behavioral experiments in a particular problem do-
main. One begins with behavioral data because brain evolution needs to achieve
behavioral success. Any theory that hopes to link brain to behavior thus must
discover the computational level on which brain dynamics control behavioral
success. This level has proved to be the network and system level. That is why
the name neural networks is appropriate for these models.

Behavioral data provide a theorist with invaluable clues about the functional
problems that the brain is trying to solve. One starts with large amounts of data
because otherwise too many seemingly plausible hypotheses cannot be ruled out.
A crucial meta-theoretical constraint is to insist upon understanding the behav-
ioral datawhich comes to us as static numbers or curves on a pageas the emergent
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properties of a dynamical process which is taking place moment-by-moment in
an individual mind. One also needs to respect the fact that our minds can adapt
on their own to changing environmental conditions without being told that these
conditions have changed. One thus needs to frontally attack the problem of how
an intelligent being can autonomously adapt to a changing world. Knowing how
to do this, as with many other theoretical endeavors in science, is presently an
art form. There are no known algorithms with which to point the way.

Whenever I have applied this method in the past, I have never used homun-
culi, or else the crucial constraint on autonomous adaptation would be violated.
The result has regularly been the discovery of new organizational principles and
mechanisms, which are then realized as a minimal model operating according to
only locally defined laws that are capable of operating on their own in real time.
The remarkable fact is that, when such a behaviorally-derived model has been
written down, it has always been interpretable as a neural network. These neural
networks have always included known brain mechanisms. The functional inter-
pretation of these mechanisms has, however, often been novel because of their
derivation from a behavioral analysis. The networks have also often predicted
the existence of unknown neural mechanisms, and many of these predictions
have been supported by subsequent neurophysiological, anatomical, and even
biochemical experiments over the years.

Once this neural connection has been established by a top-down analysis from
behavior, one can work both top-down from behavior and bottom-up from brain
to exert a tremendous amount of conceptual pressure with which to better un-
derstand the current model and to discover design principles that have not yet
been satisfied in it. Then the new design principles help to derive the next model
stage. This Method of Minimal Anatomies acknowledges that one cannot derive
“the brain” in one theoretical step. But one can do it incrementally in stages by
carrying out a form of conceptual evolution. Applying this method, a sequence of
self-consistent but evolving models can be derived, with each subsequent model
capable of explaining and predicting more data than its ancestors.

A fundamental empirical conclusion can be drawn from many experiences of
this type; namely, the brain as we know it can be successfully understood as an
organ that is designed to achieve autonomous adaptation to a changing world.
Although I am known as one of the founders of the field of neural networks, I
have never tried to derive a neural network. Neural networks arise from a real-
time behavioral analysis because they provide natural computational realizations
with which to control autonomous behavioral adaptation to a changing world.

New paradigms: Complementary computing, laminar computing,
and nano chips. How does the brain carry out autonomous adaptation to
a changing world? What new computational paradigms are needed to accom-
plish this goal?

Complementary Computing clarifies the nature of brain specialization. It pro-
vides an alternative to the previous computer-inspired paradigm of independent
modules. If there were independent modules in the brain, properties such as vi-
sual lightness, depth, and motion would be computed independently, which is
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not the case. Complementary Computing explains why the brain is specialized
into parallel processing streams, and how these streams interact in specific ways
to overcome their complementary deficiencies [8].

Laminar Computing clarifies how the ubiquitous organization of cerebral cor-
tex into layered circuits can support, through variations of the same laminar
architecture, such different aspects of biological intelligence as vision, speech,
and cognition [1] [9] [11] [12].

These new computational paradigms promise to have a major impact on the
design of future computers that increasingly embody aspects of human intelli-
gence. For example, it is widely acknowledged that Moores Law will break down
within ten years. Current Von Neumann chip designs cannot continue to become
increasingly dense without becoming highly noisy and generating too much heat.
The DARPA SyNAPSE program, among others, has responded to this challenge
by supporting research to design new nano-scale VLSI chips that better embody
properties of biological intelligence. The idea is for future computers to contain
the fastest traditional chips, which can carry out many functions that human
brains cannot, as well as brain-inspired chips whose successive generations can
carry out increasingly complex types of characteristically human intelligence,
notably autonomous adaptation to a changing world.

Nano-scale chips tend to be noisy chips, unlike the perfect chips in Von Neu-
mann computers on which current AI builds. In order to generate less heat, the
new nano-scale chips need to use discrete spikes in time to communicate between
processing elements. In order to pack in the necessary processing, they may also
need to be organized in processing layers. DARPA turned to the brain for de-
sign inspiration because the cerebral cortex, which supports all higher aspects
of biological intelligence, provides a paradigmatic example of a noisy, layered,
spiking intelligent device. That is why Laminar Computing is starting to change
the way in which future chips are being designed. [2] have described, using the
example of the 3D LAMINART model of 3D vision, a general method for con-
verting fifty years of neural networks based on continuous rate-based signals into
spiking neural networks that are amenable to being embodied in SyNAPSE-style
chips.

Research progress: towards autonomous adaptive agents.Using this
method, my colleagues and I have developed increasingly detailed and compre-
hensive neural models of vision and visual object recognition; audition, speech,
and language; development; attentive learning and memory; cognitive informa-
tion processing; reinforcement learning and motivation; cognitive-emotional in-
teractions; navigation; sensory-motor control and robotics; and mental disorders.
These models involve many parts of the brain, ranging from perception to ac-
tion, and multiple levels of brain organization, ranging from individual spikes and
their synchronization to cognition. My web page http://cns.bu.edu/~steve
contains many downloadable articles that illustrate this progress. In my talk
at AI*IA, I will summarize some recent theoretical progress towards designing
autonomous mobile adaptive agents. One of these developments is summarized
below.

http://cns.bu.edu/~steve
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2 What Is an Object? Learning Object Categories under
Free Viewing Conditions

ARTSCAN model: What-Where stream coordination supports invari-
ant object learning. What is an object? How can we learn what an object
is without any external supervision? In particular, how does the brain learn to
recognize a complex object from multiple viewpoints, and when it is seen at
multiple positions and distances? Such a competence is essential in any mobile
autonomous adaptive agent. Consider what happens when we first look at an
object that is not instantly recognizable. We make scanning eye movements, di-
recting our foveas to a variety of points of interest, or views, on the object. The
objects retinal representations of these views are greatly distorted by cortical
magnification in cortical area V1. The brain somehow combines several such dis-
torted views into an object recognition category that is invariant to where we
happen to be gazing at the moment. Future encounters with the same object
can therefore lead to fast recognition no matter what view we happen to see.

How does the brain know that the views that are foveated on successive sac-
cades belong to the same object? How does the brain avoid the problem of
erroneously learning to classify parts of different objects together? Only views
of the same object should be linked through learning to the same view-invariant
object category. How does the brain know which views belong to the same ob-
ject, even before it has learned a view-invariant category that can represent the
object as a whole? How does the brain do this without an external teacher; that
is, under the unsupervised learning conditions that are the norm during many
object learning experiences in vivo?

My colleagues and I [3] [6] [10] have been developing a neural model to ex-
plain how spatial and object attention to coordinate the brains ability to learn
representations of object categories that are seen at multiple positions, sizes,
and viewpoints. Such invariant object category learning and recognition can be
achieved using interactions between a hierarchy of processing stages in the vi-
sual brain. These stages include retina, lateral geniculate nucleus, and cortical
areas V1, V2, V4, and IT in the brain’s What cortical stream, as they interact
with spatial attention processes within the parietal cortex of the Where cortical
stream.

The model first was developed to explain view-invariant object category learn-
ing and recognition [6] [7] [10]. This version of the model is called ARTSCAN.
ARTSCAN has been generalized to the positional ARTSCAN, or pARTSCAN,
model which explains how view-, position-, and size-invariant object categories
may be learned [3].

I predict that view-invariant object learning and recognition is achieved by
the brain under free viewing conditions through the coordinated use of spa-
tial and object attention. Many studies of spatial attention have focused on its
spatial distribution and how it influences visual perception. I predict that spa-
tial attention plays a crucial role in controlling view-invariant object category
learning. In particular, several authors have reported that the distribution of
spatial attention can configure itself to fit an objects form. Form-fitting spatial
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attention is sometimes called an attentional shroud [13]. ARTSCAN predicts
how an objects pre-attentively formed surface representation can induce such a
form-fitting attentional shroud. Moreover, while this attentional shroud remains
active, I predict that it accomplishes two things.

First, it ensures that eye movements tend to end at locations on the objects
surface, thereby enabling views of the same object to be sequentially explored.
Second, it keeps the emerging view-invariant object category active while dif-
ferent views of the object are learned and associated with it. Thus, the brain
avoids what would otherwise seem to be an intractable infinite regress: If the
brain does not already know what the object is, then how can it, without ex-
ternal guidance, prevent views from several objects from being associated? My
proposal is that the pre-attentively formed surface representation of the object
provides the object-sensitive substrate that prevents this from happening, even
before the brain has learned knowledge about the object. This hypothesis is con-
sistent with a burgeoning psychophysical literature showing that 3D boundaries
and surfaces are the units of pre-attentive visual perception, and that attention
selects these units for recognition.

This proposed solution can be stated more formally as a temporally-coordina-
ted cooperation between the brains What and Where cortical processing streams:
The Where stream maintains an attentional shroud whose spatial coordinates
mark the surface locations of a current “object of interest”, whose identity has
yet to be determined in the What stream. As each view-specific category is
learned by the What stream, it focuses object attention via a learned top-down
expectation on the critical features that will be used to recognize that view and
its variations in the future. When the first such view-specific category is learned,
it also activates a cell population at a higher cortical level that will become the
view-invariant object category.

Suppose that the eyes or the object move sufficiently to expose a new view
whose critical features are significantly different from the critical features that
are used to recognize the first view. Then the first view category is reset, or in-
hibited. This happens due to the mismatch of its learned top-down expectation,
or prototype of attended critical features, with the newly incoming view infor-
mation [4] [5]. This top-down prototype focuses object attention on the incoming
visual information. Object attention hereby helps to control which view-specific
categories are learned by determining when the currently active view-specific
category should be reset, and a new view-specific category should be activated.
However, the view-invariant object category should not be reset every time a
view-specific category is reset, or else it can never become view-invariant. This
is what the attentional shroud accomplishes: It inhibits a tonically-active reset
signal that would otherwise shut off the view-invariant category when each view-
based category is reset. As the eyes foveate a sequence of object views through
time, they trigger learning of a sequence of view-specific categories, and each of
them is associatively linked through learning with the still-active view-invariant
category.
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When the eyes move off an object, its attentional shroud collapses in the
Where stream, thereby disinhibiting the reset mechanism that shuts off the view-
invariant category in the What stream. When the eyes look at a different object,
its shroud can form in the Where stream and a new view category can be learned
that can, in turn, activate the cells that will become the view-invariant category
in the What stream.

The original archival articles show how these concepts can explain many
psychological and neurobiological data about object category learning and recog-
nition. In particular, the model mechanistically clarifies basic properties of atten-
tion shifts (engage, move, disengage) and inhibition of return. It simulates human
reaction time data about object-based spatial attention shifts, and learns with
98.1% accuracy and a compression of 430 on a letter database whose letters vary
in size, position, and orientation.
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