

Lecture Notes in Computer Science 6917
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Bart Preneel Tsuyoshi Takagi (Eds.)

Cryptographic Hardware
and Embedded Systems –
CHES 2011

13th International Workshop
Nara, Japan, September 28 – October 1, 2011
Proceedings

13

Volume Editors

Bart Preneel
Katholieke Universiteit Leuven
3001 Leuven, Belgium
E-mail: bart.preneel@esat.kuleuven.be

Tsuyoshi Takagi
Kyushu University
Institute of Mathematics for Industry
Fukuoka, 819-0395, Japan
E-mail: takagi@imi.kyushu-u.ac.jp

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23950-2 e-ISBN 978-3-642-23951-9
DOI 10.1007/978-3-642-23951-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011935857

CR Subject Classification (1998): E.3, D.4.6, K.6.5, E.4, C.2, G.2.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© International Association for Cryptologic Research 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 13th International Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2011) was held at Todai-ji Cultural Center, Nara, Japan, from
September 28 to October 1, 2011. The workshop was sponsored by the Interna-
tional Association for Cryptologic Research.

CHES 2011 received 119 submissions from 26 countries all over the world.
Each paper was reviewed by at least 4 committee members, for a total of 517
reviews; papers with a committee member as co-author received at least 5 re-
views. More than 150 external subreviewers contributed to the review process
in their particular areas of expertise. One article was identified as an irregular
submission. The Program Committee selected 32 papers for publication in the
proceedings. Two of these papers are the result of merging two pairs of closely
related submissions. The program was completed with two excellent invited talks
given by Ernie Brickell (Intel) and Tetsuya Tominaga (NTT Laboratories). Nom-
inations for the best paper award were solicited among the Program Committee;
an ad hoc committee with no conflicts with the shortlisted papers made the final
selection. They decided to award the best paper award of CHES 2011 to Michael
Hutter and Erich Wenger for their work “Fast Multi-Precision Multiplication for
Public-Key Cryptography on Embedded Microprocessors.” The runners-up were
the papers “To Infinity and Beyond: Combined Attack on ECC Using Points of
Low Order” by Junfeng Fan, Benedikt Gierlichs and Frederik Vercauteren, and
“Breaking Mifare DESFire MF3ICD40: Power Analysis and Templates in the
Real World” by David Oswald and Christof Paar. The authors of these articles
were invited to submit an extended version to the Journal of Cryptology.

Many people contributed to the success of CHES 2011. First we would like
to thank all the authors who submitted their research results. The selection of
32 papers from 119 submissions was a challenging task and we sincerely thank
the 42 Program Committee members, as well as the external reviewers, who
volunteered to read and discuss the papers over several months. We are greatly
indebted to the General Chair, Akashi Satoh, for his relentless efforts that in-
clude relocating the conference within short notice because of the earthquake and
tsunami in March 2011. We would also like to thank the local Organizing Com-
mittee from the Japanese cryptologic community for their continuous support.
The submission and review process as well as the editing of the final proceed-
ings were facilitated by the software written by Shai Halevi. The CHES 2011
website was maintained by Jens-Peter Kaps. We would like to thank Shai and
Jens-Peter for their excellent support. Finally we want to express our gratitude
to our generous sponsors: Cryptographic Research, SASEBO project, Nara Visi-
tors Bureau, NTT, IPA, Mitsubishi Elecric, Morita Tech, NICT, Riscure, ETRI,
Tokyo Electron Device, Kayamori Foundation, Technicolor, Telecom ParisTech,

VI Preface

Intrinsic-ID, Hitachi, Oberthur Technologies, IIJ, Toshiba, SPACES project, LG
CNS, and Fujitsu.

As embedded systems become ever more pervasive, there is a growing need to
develop efficient and secure implementations that help to safeguard our security
and privacy. We hope that the papers in this volume prove valuable for your
research and professional activities in this area.

September 2011 Bart Preneel
Tsuyoshi Takagi

CHES 2011

Workshop on Cryptographic Hardware and Embedded Systems
Nara, Japan, September 28 – October 1, 2011.

Sponsored by the International Association for Cryptologic Research.

General Chair

Akashi Satoh National Institute of Advanced Industrial Science
and Technology, Japan

Program Co-chairs

Bart Preneel Katholieke Universiteit Leuven, Belgium
Tsuyoshi Takagi Kyushu University, Japan

Program Committee

Toru Akishita Sony Corporation, Japan
Paulo Barreto University of São Paulo, Brazil
Lejla Batina Radboud University Nijmegen, The Netherlands

and Katholieke Universiteit Leuven, Belgium
Daniel J. Bernstein University of Illinois at Chicago, USA
Guido Bertoni STMicroelectronics, Italy
Swarup Bhunia Case Western Reserve University, USA
Chen-Mou Cheng National Taiwan University, Taiwan
Jean-Sebastien Coron University of Luxembourg, Luxembourg
Emmanuelle Dottax Oberthur Technologies, France
Hermann Drexler Giesecke & Devrient, Germany
Martin Feldhofer Graz University of Technology, Austria
Pierre-Alain Fouque ENS, France
Kris Gaj George Mason University, USA
Benedikt Gierlichs Katholieke Universiteit Leuven, Belgium
Louis Goubin Université de Versailles, France
Jorge Guajardo Robert Bosch LLC, Research and Technology

Center, USA
Dong-Guk Han Kookmin University, Korea
Helena Handschuh Intrinsic-ID, USA and Katholieke Universiteit

Leuven, Belgium
Anwar Hasan University of Waterloo, Canada
Naofumi Homma Tohoku University, Japan

VIII CHES 2011

Marc Joye Technicolor, France
Pascal Junod HEIG-VD, Switzerland
Shinichi Kawamura AIST, Japan
Paris Kitsos Hellenic Open University, Greece
Markus Kuhn Cambridge University, UK
Kerstin Lemke-Rust University of Applied Sciences Bonn-Rhein-Sieg,

Germany
Stefan Mangard Infineon Technologies, Germany
Mitsuru Matsui Mitsubishi Electric, Japan
David Naccache ENS, France
Heike Neumann NXP, Germany
Elisabeth Oswald University of Bristol, UK
Christof Paar Ruhr University of Bochum, Germany
Matt Robshaw Orange Labs, France
Pankaj Rohatgi Cryptography Research, USA
Ahmad-Reza Sadeghi TU Darmstadt and Fraunhofer SIT, Germany
Kazuo Sakiyama University of Electro Communications, Japan
Erkay Savas Sabancı University, Turkey
Patrick Schaumont Virginia Tech, USA
Nigel P. Smart University of Bristol, UK
Masahiko Takenaka Fujitsu Laboratories, Japan
Colin Walter Royal Holloway, University of London, UK

External Reviewers

Diego F. Aranha
Frederik Armknecht
Jean-Philippe Aumasson
Selcuk Baktir
Josep Balasch
Alessandro Barenghi
Claude Barral
Timo Bartkewitz
Georg T. Becker
Thomas Behling
Alexandre Berzati
Markus Bockes
Arnaud Boscher
Murat Cenk
Zhimin Chen
Tung Chou
Christophe Clavier
Jeremy Cooper
Joan Daemen
Elke De Mulder

Fabrizio De Santis
Benedikt Driessen
Orr Dunkelman
Paul Duplys
Ilze Eichhorn
Wieland Fischer
Nicolas Gama
Berndt Gammel
Christophe Giraud
Robert Granger
Johann Großschädl
Eric Guo
Anwar Hasan
Yuichi Hayashi
Olaf Heemskerk
Francisco R. Henriquez
Christoph Herbst
Clemens Heuberger
Stefan Heyse
Markus Hinkelmann

Harunaga Hiwatari
Michael Hutter
Sebastiaan Indesteege
Mawa N. Ismail
Takanori Isobe
Kouichi Itoh
Tetsuya Izu
Josh Jaffe
Dipti Kapadia
Markus Kasper
Michael Kasper
Timo Kasper
Jonathan Katz
Hee Seok Kim
Inyoung Kim
Mario Kirschbaum
Aswin Kishna
Miroslav Knežević
Kazuyuki Kobayashi
Ünal Kocabas

CHES 2011 IX

Masanobu Koike
Yuichi Komano
Daniel Krenn
Po-Chun Kuo
Masafumi Kusakawa
Soonhak Kwon
Tanja Lange
Mun-Kyu Lee
Yang Li
Raimondo Luzzi
Gilles Macariot-Rat
Marco Macchetti
Abhranil Maiti
Mark Marson
Ange Martinelli
Pedro Maat C. Massolino
Nicolas Meloni
Filippo Melzani
Atsushi Mitsuda
Hideyuki Miyake
Atsushi Miyamoto
Amir Moradi
Carlos Moreno
Andrew Moss
Bruce Murray
Daisuke Nakatsu
Seetharam Narasimhan
Phong Nguyen
Ruben Niederhagen
Ventzi Nikov
Hanae Nozaki
Katsuyuki Okeya
David Oswald

Dan Page
Jing Pan
Jacques Patarin
Gerardo Pelosi
Geovandro Pereira
Gilles Piret
Thomas Plos
Jerome Plut
Axel Poschmann
Emmanuel Prouff
Jürgen Pulkus
Michaël Quisquater
Francesco Regazzoni
Christof Rempel
Matthieu Rivain
Thomas Roche
Marcin Rogawski
Carsten Rudolph
Koichi Sakumoto
Gokay Saldamli
Jörn-Marc Schmidt
Geert-Jan Schrijen
Steffen Schulz
Peter Schwabe
Michael Scott
Rabia Shahid
Umar Sharif
Kyoji Shibutani
Kouichi Shimizu
Hideo Shimizu
Taizo Shirai
Herve Sibert
Yannick Sierra

Peter Simons
Marcos A. Simplicio Jr.
Dave Singelée
Martijn Stam
Daehyun Strobel
Takeshi Sugawara
Ruggero Susella
Daisuke Suzuki
Robert Szerwinski
Masahiko Takenaka
Shigeki Teramoto
Gilles Van Assche
Vincent van der Leest
Erik van der Sluis
Marten van Hulst
Jasper van Woudenberg
Marc Vauclair
Ingrid Verbauwhede
Frederik Vercauteren
Marion Videau
Christian Wachsmann
Lei Wang
Xinmu Wang
Erich Wenger
Carolyn Whitnall
Jun Yajima
Tolga Yalcin
Panasayya Yalla
Dai Yamamoto
Ralf Zimmermann

Table of Contents

FPGA Implementation

An Exploration of Mechanisms for Dynamic Cryptographic Instruction
Set Extension . 1

Philipp Grabher, Johann Großschädl, Simon Hoerder,
Kimmo Järvinen, Dan Page, Stefan Tillich, and Marcin Wójcik

FPGA-Based True Random Number Generation Using Circuit
Metastability with Adaptive Feedback Control . 17

Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas

Generic Side-Channel Countermeasures for Reconfigurable Devices 33
Tim Güneysu and Amir Moradi

AES

Improved Collision-Correlation Power Analysis on First Order
Protected AES . 49

Christophe Clavier, Benoit Feix, Georges Gagnerot,
Mylène Roussellet, and Vincent Verneuil

Higher-Order Glitches Free Implementation of the AES Using Secure
Multi-party Computation Protocols . 63

Emmanuel Prouff and Thomas Roche

Protecting AES with Shamir’s Secret Sharing Scheme 79
Louis Goubin and Ange Martinelli

A Fast and Provably Secure Higher-Order Masking of AES S-Box 95
HeeSeok Kim, Seokhie Hong, and Jongin Lim

Elliptic Curve Cryptosystems

Software Implementation of Binary Elliptic Curves: Impact of the
Carry-Less Multiplier on Scalar Multiplication . 108

Jonathan Taverne, Armando Faz-Hernández, Diego F. Aranha,
Francisco Rodŕıguez-Henŕıquez, Darrel Hankerson, and Julio López

High-Speed High-Security Signatures . 124
Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and
Bo-Yin Yang

XII Table of Contents

To Infinity and Beyond: Combined Attack on ECC Using Points of
Low Order . 143

Junfeng Fan, Benedikt Gierlichs, and Frederik Vercauteren

Lattices

Random Sampling for Short Lattice Vectors on Graphics Cards 160
Michael Schneider and Norman Göttert

Extreme Enumeration on GPU and in Clouds: How Many Dollars You
Need to Break SVP Challenges . 176

Po-Chun Kuo, Michael Schneider, Özgür Dagdelen, Jan Reichelt,
Johannes Buchmann, Chen-Mou Cheng, and Bo-Yin Yang

Modulus Fault Attacks against RSA-CRT Signatures 192
Éric Brier, David Naccache, Phong Q. Nguyen, and Mehdi Tibouchi

Side Channel Attacks

Breaking Mifare DESFire MF3ICD40: Power Analysis and Templates
in the Real World . 207

David Oswald and Christof Paar

Information Theoretic and Security Analysis of a 65-Nanometer DDSLL
AES S-Box . 223

Mathieu Renauld, Dina Kamel, François-Xavier Standaert, and
Denis Flandre

Thwarting Higher-Order Side Channel Analysis with Additive and
Multiplicative Maskings . 240

Laurie Genelle, Emmanuel Prouff, and Michaël Quisquater

Extractors against Side-Channel Attacks: Weak or Strong? 256
Marcel Medwed and François-Xavier Standaert

Invited Talk

Standardization Works for Security Regarding the Electromagnetic
Environment . 273

Tetsuya Tominaga

Fault Attacks

Meet-in-the-Middle and Impossible Differential Fault Analysis
on AES . 274

Patrick Derbez, Pierre-Alain Fouque, and Delphine Leresteux

Table of Contents XIII

On the Power of Fault Sensitivity Analysis and Collision Side-Channel
Attacks in a Combined Setting . 292

Amir Moradi, Oliver Mischke, Christof Paar, Yang Li,
Kazuo Ohta, and Kazuo Sakiyama

Lightweight Symmetric Algorithms

spongent: A Lightweight Hash Function . 312
Andrey Bogdanov, Miroslav Knežević, Gregor Leander, Deniz Toz,
Kerem Varıcı, and Ingrid Verbauwhede

The LED Block Cipher . 326
Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw

Piccolo: An Ultra-Lightweight Blockcipher . 342
Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari,
Atsushi Mitsuda, Toru Akishita, and Taizo Shirai

PUFs

Lightweight and Secure PUF Key Storage Using Limits of Machine
Learning . 358

Meng-Day (Mandel) Yu, David M’Raihi, Richard Sowell, and
Srinivas Devadas

Recyclable PUFs: Logically Reconfigurable PUFs . 374
Stefan Katzenbeisser, Ünal Koçabas, Vincent van der Leest,
Ahmad-Reza Sadeghi, Geert-Jan Schrijen, Heike Schröder, and
Christian Wachsmann

Uniqueness Enhancement of PUF Responses Based on the Locations of
Random Outputting RS Latches . 390

Dai Yamamoto, Kazuo Sakiyama, Mitsugu Iwamoto, Kazuo Ohta,
Takao Ochiai, Masahiko Takenaka, and Kouichi Itoh

MECCA: A Robust Low-Overhead PUF Using Embedded Memory
Array . 407

Aswin Raghav Krishna, Seetharam Narasimhan, Xinmu Wang, and
Swarup Bhunia

Public-Key Cryptosystems

FPGA Implementation of Pairings Using Residue Number System and
Lazy Reduction . 421

Ray C.C. Cheung, Sylvain Duquesne, Junfeng Fan,
Nicolas Guillermin, Ingrid Verbauwhede, and
Gavin Xiaoxu Yao

XIV Table of Contents

High Speed Cryptoprocessor for ηT Pairing on 128-bit Secure
Supersingular Elliptic Curves over Characteristic Two Fields 442

Santosh Ghosh, Dipanwita Roy Chowdhury, and Abhijit Das

Fast Multi-precision Multiplication for Public-Key Cryptography on
Embedded Microprocessors . 459

Michael Hutter and Erich Wenger

Small Public Keys and Fast Verification for Multivariate Quadratic
Public Key Systems . 475

Albrecht Petzoldt, Enrico Thomae, Stanislav Bulygin, and
Christopher Wolf

Hash Functions

Throughput vs. Area Trade-offs in High-Speed Architectures of Five
Round 3 SHA-3 Candidates Implemented Using Xilinx and Altera
FPGAs . 491

Ekawat Homsirikamol, Marcin Rogawski, and Kris Gaj

Efficient Hashing Using the AES Instruction Set . 507
Joppe W. Bos, Onur Özen, and Martijn Stam

Author Index . 523

An Exploration of Mechanisms for Dynamic

Cryptographic Instruction Set Extension

Philipp Grabher1, Johann Großschädl2, Simon Hoerder1, Kimmo Järvinen3,
Dan Page1, Stefan Tillich1, and Marcin Wójcik1

1 University of Bristol, Department of Computer Science,
Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK

{grabher,hoerder,page,tillich,wojcik}@cs.bris.ac.uk
2 University of Luxembourg, FSTC, CSC Research Unit, LACS,

6, rue Richard Coudenhove-Kalergi, L–1359 Luxembourg, Luxembourg
johann.groszschaedl@uni.lu

3 Aalto University, Department of Information and Computer Science,
P.O. Box 15400, FI–00076 Aalto, Finland

kimmo.jarvinen@aalto.fi

Abstract. Instruction Set Extensions (ISEs) supplement a host proces-
sor with special-purpose, typically fixed-function hardware components
and instructions to utilize them. For cryptographic use-cases, this can be
very effective due to the demand for non-standard or niche operations
that are not supported by general-purpose architectures. However, one
disadvantage of fixed-function ISEs is inflexibility, contradicting a need
for “algorithm agility.” This paper explores a new approach, namely the
provision of re-configurable mechanisms to support dynamic (run-time
changeable) ISEs. Our results, obtained using an FPGA-based LEON3
prototype, show that this approach provides a flexible general-purpose
platform for cryptographic ISEs with all known advantages of previous
work, but relies on careful analysis of the associated security issues.

Keywords: FPGA, embedded processor, instruction set extension.

1 Introduction

Cryptographic kernels could be described as the archetype target for Instruction
Set Extensions (ISEs) [31]. Starting with a general-purpose host processor, the
idea is to specify an ideally minimal set of (more) special-purpose instructions
[25]. By carefully integrating instructions, plus any tightly coupled hardware to
support their execution, the goal is more effective implementation of the kernel
in question (e.g., with respect to efficiency, memory footprint, or security). This
approach can be ideal for cryptography where performance bottlenecks often
relate to non-standard or niche operations, and can easily be resolved using a
targeted ISE. There exists a wealth of related work to support this premise, see
e.g., [10,17,31]. Even when focused on one kernel such as AES, said work spans
academic results and evaluation on platforms such as the LEON3, through to
commercialisation in workstation-class Intel processors via AES-NI [34].

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 1–16, 2011.
c© International Association for Cryptologic Research 2011

2 P. Grabher et al.

However, at least two valid counterarguments can be considered. First, even
though ISEs are often presented theoretically as “non-invasive,” their concrete
realisation may still be problematic. For example, one can imagine the difficul-
ty of altering incumbent processor designs contributed to the fact that Intel’s
AES-NI appeared long after suggested by initial work in this area [31]; issues
of re-design, re-verification, and re-deployment are scientifically non-trivial and
potentially very costly. Second, one has to consider the problems of utilisation
and flexibility. One aspect is ensuring the cost of design and implementation is
worthwhile, another is ensuring ISEs are useful to as many kernels as possible
(i.e., making an ISE flexible enough to cater for the future). Cryptography, in
particular, has a vested interest in the latter: if an (inflexible) special-purpose
ISE for a kernel is deployed and the kernel is then broken, the ISE, associated
hardware and sunk design cost subsequently represent useless overhead.

With all these counterarguments in mind, it is interesting to consider how an
ISE-based approach, in the most general sense, might be accommodated by next-
generation processors. In particular, how might next-generation general-purpose
processor designs support dynamic (i.e., changeable at run-time under control
of the program) instruction set extension and execution. In both embedded and
non-embedded contexts, we already have some answers: focusing on functional
units for example, both the Stretch S6000 and ARM-based Triscend A7 include
similar concepts which can be dynamically re-configured at run-time, and the
new Intel Atom E600C (or “Stellarton”) series includes an coarsely integrated
(i.e., coprocessor-like) Altera FPGA.

While re-configurable devices such as FPGAs have redefined the traditional
roles of hardware and software, re-configurable general-purpose processors are
now also a reality; the question is, how does this direction match cryptographic
use-cases? This is far from a new topic, but we make progress via four main
contributions; we stress that our focus is at the level of micro-architecture and
instruction sets, rather than the device level. First we survey strands of related
work that support dynamic instruction set extension and execution; second we
present PREON (short for Partially Reconfigurable LEON), a novel LEON3-
based prototype which includes two such mechanisms; third we evaluate a range
of cryptographic primitives on said prototype, demonstrating that it provides
a general-purpose platform capable of supporting many existing ISE proposals
and specifying some novel additions (e.g., for the two hash functions Skein and
JH); and finally, we extend previous security analysis to highlight several issues
that require resolution in order to support cryptographic workloads.

2 Background and Analysis

In this section, we present a limited survey of mechanisms that support the con-
cept of dynamic instruction set extension and execution in different ways. Each
mechanism has a rich lineage within the field of computer architecture, and is
sufficiently mature to exist in production (and in some cases embedded) proces-
sor designs [1]. Our overview spans implicit (i.e., invisible to the program) and

Mechanisms for Dynamic Cryptographic Instruction Set Extension 3

explicit (i.e., under control of the program) mechanisms; in the latter case we
expect that, in addition to the hardware components, there will be generic need
for inclusion of management and invocation instruction sets.

Re-Configurable Computation Fabric. The idea is to extend the computational
logic (e.g., the ALU) such that, instead of only computing operations which are
fixed at design-time, it can be re-configured at run-time. A fairly current and
comprehensive overview of the design space is given by Dales [6, Sect. 2.3] and
Amano [1], the latter including examples of commercialisation. A more limited
list of instances includes

– partly re-configurable functional units, for example CryptoManiac [37] and
PipeRench [29],

– tightly integrated run-time re-configurable logic, for example the Triscend
A7, Stretch S6000, and Infineon CARMEL, and

– coarsely integrated run-time re-configurable logic, for example Intel’s Atom
E600C with integrated Altera FPGA.

The choice of fabric can imply extra design constraints whose relevance depends
on the context. For example, an FPGA-based fabric could limit the maximum
clock frequency, but in an embedded context this may not be of primary concern
unless the cost of a mixed technology approach is prohibitive.

Advanced Mechanisms for Instruction Delivery. The idea is to extend the fetch
unit so that the mechanism for instruction delivery is (partly) controlled by the
program being executed. There is a huge range of related concepts and concrete
implementations; a non-exhaustive list includes mechanisms for

– instruction fusion [22], for example load-modify operations in Intel’s Core2
micro-architecture and multiply-accumulate in DSP-like (or embedded) pro-
cessors, allowing composite micro-operations [8] to be specified by a single
ISA-level instruction,

– macro-like [32] translation, for example the “sequencer unit” within the IBM
RISC Single Chip (RSC) and PowerPC [24] processor, and the ARM Jazelle
framework for acceleration of Java programs,

– processor-controlled cache-like structures, for example the trace cache and
loop buffer designs within the Core2 and NetBurst micro-architectures, and

– user-controller memory structures such as the register-based buffer of Hines
et al. [13], and the now well-studied ideas of scratch-pad memories [2] and
non-transparent caches [23].

3 PREON: A LEON3-Based Experimental Prototype

In this section, we introduce PREON, a prototype implementation of selected
mechanisms surveyed in Section 2. As a starting point we used the LEON3, an
open-source implementation of a 32-bit SPARC V8 compliant processor core
developed by Gaisler Research AB. We altered the 7-stage LEON3 pipeline as

4 P. Grabher et al.

described in detail below, and equipped it with Harvard-style instruction and
data caches (or I-cache and D-cache), each 4 kB in size.

The PREON prototype was synthesised to the SASEBO-GII evaluation plat-
form, which we used to produce the experimental results given in Section 4; the
processor core itself required 2338 slices of the Xilinx Virtex-5 FPGA (model
XC5VLX50-1FF324). The PREON core is clocked at 24 MHz, although we stress
that this is a limit imposed by the SASEBO on-board clock.

3.1 Re-configurable Fabric

The first addition is a re-configurable fabric, tightly integrated with the execu-
tion unit. We view the fabric essentially as an FPGA, but clearly less general
alternatives are viable and potentially preferable in certain contexts. Inclusion
of this mechanism is mainly motivated by the goal of improved computational
throughput per-instruction (rather than, say, instruction throughput), without
compromising flexibility; the fabric can be re-configured to efficiently compute
what the general-purpose processor cannot. At least two further benefits result:
first, the mechanism reduces communication latency versus a coarsely integrated
alternative (e.g., co-processor), and second, it permits the sharing of resources
between the processor and fabric (e.g., storage such as registers).
Design and Programming Interface. Use of the fabric by a program executing
on PREON is achieved through a single extra instruction named fabric. When
executed, the instruction has the semantics

GPR[dst] = f(GPR[src1], GPR[src2], imm)

where f denotes a single-cycle functionality provided by the resident configura-
tion: the 32-bit content of the registers src1 and src2 (with an 8-bit immediate
value imm) is presented to the fabric as input, and the output (according to the
current configuration) is stored in register dst. Essentially, the fabric acts as a
replacement for the ALU. One can imagine a few alternative models, but this
approach allows the fabric to use imm as a means of first specifying any sub-
operation (e.g., to house more than one operation on the re-configurable fabric
and select between them), and second supplying any immediate data.

PREON allows a configuration resident in the fabric to maintain short term
state, e.g., house a register. On one hand, this is arguably outside the traditio-
nal remit of ISEs. On the other hand, it allows a high degree of flexibility since
for example, multi-input and/or multi-output operations can be supported. In
the former case, the fabric is configured to include an “operand fetch” operation
which takes the two operands and stores them internally; the stored operands
can then be combined with two more operands in a “normal” operation. This
feature could be used to overcome the restrictions of the SPARC V8 3-address
instruction format without invasive alteration of the micro- or instruction set ar-
chitecture. Likewise, multi-cycle operations are possible: the fabric is configured
to include a “bubble” or NOP-style operation that can be used to absorb cycles
while computing the required output. Some other approaches to increasing the
input or output bandwidth are possible, e.g., those proposed by Kluter et al. in
[19], but our aim is to limit the amount of extra bespoke hardware required.

Mechanisms for Dynamic Cryptographic Instruction Set Extension 5

Implementation. In practice, one would expect the re-configurable fabric to be
implemented using a different technology than the processor core. However, the
PREON prototype demands partial re-configuration of a host FPGA represent-
ing both components. Per [38], this requires partitioning at the top-level: we had
to divide our design into a static part (the LEON3 processor) and a dynamic
part (the re-configurable fabric). In addition, the SASEBO-GII includes 2 Mbit
of on-board SRAM memory which we use to store partial bit-streams. A Xilinx
XPS HWICAP core, altered with a wrapper for the LEON3 AMBA bus, is used
to interface with the FPGA’s Internal Configuration Access Port (ICAP). The
size of the SRAM, plus the 700 slices reserved on the FPGA for the dynamic
part, set an artificial upper limit on the length of the bit-stream, and hence also
limit the complexity of configurations used by PREON.

Integration with the LEON3 core is relatively easy: we simply use the fabric
rather than the ALU for fabric instructions, abusing the 8-bit Address Space
Identifier (ASI) register to supply imm. Re-configuration of the fabric is done
in software by the processor core; essentially, this boils down to a memcpy-style
transfer of content from the SRAM into the fabric via the ICAP interface. In
theory, it is possible to partition the fabric and allow multiple configurations to
be resident at the same time; Dales [6, Section 5] outlines various techniques to
manage this, but for simplicity we consider a single configuration only.

3.2 Instruction Register File

Since the LEON3 can already be extended with a scratch-pad for instructions
(the so-called ILRAM), it is reasonable to question the novelty of our second
addition. Crucially however, the concept of an Instruction Register File (IRF), as
described for example by Hines et al. [13], captures program fragments whose
form relates to basic blocks rather than functions. In short, we suggest that an
appropriate IRF design can provide macro-like cryptographic ISEs: the idea is
to record short instruction sequences on-chip, then later replay them from the
IRF rather than main memory. Rather than “extended” computational ability
during execution, the IS“E” here is an “expansion” from a single instruction to
a semantically richer straight-line instruction sequence.

Inclusion of the mechanism is motivated by two main goals: it should reduce
off-chip memory access (which implies lower power consumption), and provide
low-latency and deterministic fetch behaviour (both without the physical over-
head of an instruction cache). Our premise is that cryptographic use-cases are
ideally suited to take advantage of these features, and also benefit from them as
a result, for example, of a need to avoid cache-based attacks.

Design and Programming Interface. Our realisation of the IRF concept uses a
few small buffers into which instructions are placed and retrieved. Let B[i][j]
denote the j-th entry in the i-th buffer where 0 ≤ j < n and 0 ≤ i < m, i.e.,
there are m buffers, each of n elements. Let C[i] denote the number of valid
instructions currently held in the i-th buffer, meaning that 0 ≤ C[i] < n for all
i. Three additional instructions are used to control these structures:

6 P. Grabher et al.

1 ! AES T-table block #1
2 ! input : packed AES state in %o0 to %o3
3 ! packed AES round key in %o4 to %o7
4 ! T-table base addresses in %i3 to %i6
5 ! output : equivalent of %l4 = T-table0[(%o0 >> 0)& 0xFF] ^
6 ! T-table1[(%o1 >> 8)& 0xFF] ^
7 ! T-table2[(%o2 >> 16)& 0xFF] ^
8 ! T-table3[(%o3 >> 24)& 0xFF] ^ %o4;
9 record %g0, 0, %g0

10 srl %o0 , 22, %l4 ; and %l4 , 1020, %l4 ; ld [%l4 + %i3], %l4
11 srl %o1 , 14, %l5 ; and %l5 , 1020, %l5 ; ld [%l5 + %i4], %l5
12 srl %o2 , 6, %l6 ; and %l6 , 1020, %l6 ; ld [%l6 + %i5], %l6
13 sll %o3 , 2, %l7 ; and %l7 , 1020, %l7 ; ld [%l7 + %i6], %l7
14 xor %l4 , %l5, %l4 ; xor %l4 , %l6 , %l4
15 xor %l4 , %l7, %l4 ; xor %l4 , %o4 , %l4
16 stop %g0, 0, %g0
17 ! AES T-table block #2
18 ...
19 ! AES T-table block #3
20 ...
21 ! AES T-table block #4
22 ...
23 ! AES round
24 play %g0, 0, %g0 ! playback T-table block #1 once
25 play %g0, 32, %g0 ! playback T-table block #2 once
26 play %g0, 64, %g0 ! playback T-table block #3 once
27 play %g0, 96, %g0 ! playback T-table block #4 once
28 ...

Fig. 1. A sketched example of IRF use: each “block” of a T-table based AES imple-
mentation (including key addition) is recorded as a macro into an IRF buffer, then
later played back and expanded to form a (non-final) AES round

– record takes an immediate operand i (which specifies a buffer number) and
places the fetch unit into recording mode. This acts to redirect instructions
into the i-th buffer rather than the pipeline:
1. initially set C[i] = 0,
2. for each instruction received from the fetch unit, if the instruction is

stop then act appropriately, otherwise store it to B[i][C[i]], and update
C[i] ← C[i] + 1 (mod n).

– stop returns the fetch unit to normal mode, redirecting the instruction
stream into the pipeline again.

– play takes two immediate operands i and c (specifying a buffer number and
playback count) and places the fetch unit into playback mode. This acts
to inject instructions into the pipeline from the i-th buffer, rather than the
fetch unit, c times

1. freeze the program counter,
2. inject each j-th instruction from B[i][j], for 0 ≤ j < C[i], into the

pipeline, repeating the process c times then
3. put the fetch unit back into normal mode, and resume execution from

the frozen program counter.

We note that it may be of value to store pre-decoded content in the buffer (like
in a trace cache), but defer this topic for further work.

Mechanisms for Dynamic Cryptographic Instruction Set Extension 7

Implementation. Implementation of the IRF in PREON is relatively simple: we
follow a conventional (data oriented) register file design, using flip-flops to store
content. This structure is controlled by a state machine in the existing LEON3
fetch unit, which applies appropriate operating rules according to the descrip-
tion above. The result contrasts with the more heavy-weight, general-purpose
memory approach of an ILRAM in both form and function. More precisely, an
ILRAM-based approach implies a larger storage capacity and more involved
interface (i.e., memory transaction). Additionally, executing an instruction se-
quence in an ILRAM demands a branch into and back from said sequence; even
if each instruction is retrieved with low latency, the additional branches cause
a significant overhead for short sequences. The same is not true of IRF use as
there is just a single cycle overhead relating to each playback.

Although the description allows general parametrisation (perhaps restricting
m and n to powers-of-two), concrete parameters must be selected before use. In
theory, the parameters could be selected at run-time using special configuration
instructions; this would allow for a high degree of flexibility at relatively marginal
cost. However, for simplicity, our PREON prototype currently caters for cases
where m ·n = 64, e.g., m = 4, n = 16, fixed at design-time after analysis of the
associated trade-off. Although larger m or n may improve our results below in
theory, our choice tries to balance this against practicality; for example, a total
on-chip storage of 64 · 4 = 256 B matches the capacity of the SSE register file in
x86-64 processors.

4 Evaluation of Cryptographic Workloads

4.1 Re-configurable Fabric

Limited evaluations of cryptographic kernels, executed via a similar mechanism
with respect to the re-configurable fabric, exist; for example, Dales [6, Section
4.3.2.3] details some experiments with Twofish. In the following, we extend this
to include a broader set of modern kernels. Table 1 shows a range of empirical
results produced using our prototype PREON implementation. Each result com-
pares a C implementation to a fabric-supported1 alternative, both with inline
assembly statements where appropriate (e.g., to invoke the fabric, or to access
SPARC-specific functionality).

Each configuration is designed to match the critical path of the processor; no
configuration extends the existing critical path, except the F3m multiplier. The
execution times (i.e., cycle counts) are averaged over a number of randomised
inputs. Although few kernels have data dependent control-flow, this approach
takes into account the behaviour of both data and instruction cache. Also note
that techniques for automatic identification of configurations, as in [25], seem
applicable, but we defer investigation of this topic to future work.

We use the subsections below to discuss each implementation, and conclude
with a summary of the results.
1 To satisfy space restrictions we omit the formal description of each ISE, opting to

include a complete description in a full version of this paper.

8 P. Grabher et al.

Table 1. Experimental results comparing the performance of various cryptographic
kernels without and with support of ISEs provided by the re-configurable fabric. Note
that the static footprint includes instructions and any major static data (e.g., T-tables
and expanded key schedule), and that initialisation of the fabric is not included in the
total number of cycles, rather as a column in the table.

Without ISE With ISE

Performance Static Performance Static ISE ISE
footprint footprint area re-config.

(cycles) (bytes) (cycles) (bytes) (slices) (µs)

AES

AES-128 encryption 1281 6068 463 412 115 177

SHA2/SHA3

SHA-256, 4096-bit message 45241 3304 30528 2492 48 118
JH-256, 4096-bit message 6584962 2052 976372 2116 26 59
Skein-512-256, 4096-bit message 332739 8152 117123 6340 319 470
Grøstl-256, 4096-bit message 258389 16248 152169 1980 112 177

Multiplication in Z
∗
N

1024-bit multiplication 86460 768 25148 428 321 590
Multiplication in F2233

School-book 30864 548 2290 428 170 295
Width-4 comb 14900 908 12908 724 44 118

Multiplication in F3337

School-book, bit-sliced 163340 1504 6985 828 690 1062
School-book, bit-serial 445670 1616 11898 420 343 590
Width-4 comb, bit-sliced 82940 4100 56380 3596 70 118
Width-4 comb, bit-serial 247281 8484 40213 2930 54 118

AES. Tillich et al. [31] proposed a set of ISEs that permit efficient implemen-
tation of AES on 32-bit architectures, focusing on SPARC V8-based LEON2 in
particular. We adopt two ISE classes [31, pp. 275–276], namely sbox4s (plus
sbox4r) and mixcol4s (and inverses), and compare them with a T-tables based
implementation in software. We note that acceleration of bit-sliced implementa-
tions of AES following [10] is viable, but do not investigate this further.

SHA-2/SHA-3. In terms of ISE, SHA-2, focusing on SHA-256 in particular, has
been paid relatively little attention. Juliato et al. offer in [17] an exception and
explore different hardware/software approaches that include ISEs for rotation
and the Ch and Maj functions; we follow their approach fairly directly.

Regarding SHA-3, we stress that we do not aim to compare the five finalists
directly, but rather evaluate PREON. The finalists can be split into two rough
categories: Blake, Keccak and Skein are AXR-based, while Grøstl and JH are
AES-based. For the cases of Blake and Keccak, Hoerder et al. [15] highlighted
the difficulty of finding appropriate ISEs: their design is already RISC-friendly
and potential ISEs therefore fit a more coprocessor-like approach that captures
and operates on (most of) the state in each step.

JH-256. We pack eight 4-bit state words into a 32-bit register and utilize three
ISEs: one for the S-box and linear transform layer, and two more for the
permutation layer; the design of JH means the same ISEs can be used for all
parametrisations. To maintain comparability with the reference implemen-
tation, we use the ISEs to compute the round constants at run-time. This

Mechanisms for Dynamic Cryptographic Instruction Set Extension 9

requires re-packing the round constants at various points, and explains the
marginal increase in code footprint.

Skein-512-256. We focus on acceleration of the internal Threefish cipher. In
order to match the 32-bit datapath of the LEON3, we specify a four-step
ISE to support the MIX function; for comparison, we use the 32-bit oriented
reference implementation. To avoid the need for a general-purpose rotation
unit, we specify (and supply immediate inputs to select) ISEs for each of 27
rotation distances. The disadvantage of this approach is that the same ISEs
can not support a different parametrisation.

Grøstl-256. We pack four 8-bit state words into a 32-bit register and use three
ISEs: one for the SubBytes step, and two more for the MixBytes step. The
T-tables based reference implementation is used for comparison.

Multiplication in Z∗
N (supporting RSA, ECC). Großschädl et al. [11] propose an

ISE for RSA, or more specifically for Montgomery multiplication; their design
is implemented on a SPARC V8-based LEON2. The ISE focuses on Multiply-
ACcumulate (MAC) operations (e.g., S ← S + a × b), and uses three dedicated
32-bit accumulator registers. We replicate this approach fairly directly, housing
the accumulators within the fabric configuration itself, and compare our results
with a C implementation provided by the authors of [11].

Multiplication in F2n and F3m (supporting ECC, Pairing-Based Crypto). Con-
sidering the cases n = 233 and m = 337, arithmetic in F2233 [X]/X233 + X73 + 1
and F3337 [Y]/Y 337 + Y 30 − 1 underpin specific parametrisations in elliptic curve
and pairing-based cryptography, e.g. the former is specified in NIST-B-233. In
the characteristic-two case, coefficients of some x ∈ F2n have a natural repre-
sentation; various published ISEs, including those for SPARC V8-based LEON2
[30] and the Intel CLMUL extension to x86, provide an associated polynomial
(or “carry-less”) multiplication instruction. A similar concept is possible in the
characteristic-three case, but the issue of representation is more complex.

Our implementations accelerate school-book multiplication mainly via a ded-
icated polynomial multiplication ISE; the width-4 comb based multiplication is
accelerated using a “shift with carry” ISE, which is missing in the SPARC V8
instruction set. Particularly for characteristic three, the flexibility of PREON is
beneficial: it allows a range of subtle implementation options without changes to
the architecture, and resolves some problems with previous work. For example
Grabher et al. [10] support bit-slicing, but only using unconventional 6-address
instructions; the “operand fetch” idiom in PREON can cope with multi-operand
instructions, and still provide significant performance improvements.

Summary and Discussion. It is unsurprising that ISE-based implementations
improve either latency (overall cycles) and/or size (memory footprint). For the
kernels studied, the latter case implies a hidden side-benefit of reducing memory
traffic (primarily loads) and hence reduced reliance on a cache to achieve quoted
performance; in a rough sense, one can view the cost of including the fabric as
counterbalancing the need for large, efficient layers of memory hierarchy.

10 P. Grabher et al.

Focusing on AES, one can contrast results for dynamic ISE provided by the
PREON re-configurable fabric with static ISE (taking AES-NI as an example)
and coarsely-integrated FPGA-based coprocessors. As stated in [34], AES-NI
achieves a throughput of 3.589 cycles per byte (in CBC mode), i.e., 57.4 cycles
per block. However, AES-NI operates on 128-bit SSE registers, which increases
the throughput by a factor of 4 in relation to a 32-bit bit datapath. Hence, one
can estimate that a 32-bit analogue of AES-NI would require about 230 cycles
per block, roughly half that of the PREON-supported implementation. Compar-
ison with an FPGA-based cryptographic coprocessor must consider the interface
through which coprocessor and host are connected. For example, Hodjat et al
[14] and Schaumont et al. [27] attached an AES coprocessor to the LEON core
and achieved a throughput of 704 cycles (via the LEON coprocessor interface)
and 1492 cycles (via memory-mapped I/O) per block, even though the AES core
itself performs an encryption in only 11 cycles. Using a dedicated high-speed
interconnect, such as Xilinx’s Fast Simplex Link (FSL), allows improvement to
about 202 cycles per block [9]. In summary, even accepting the limited scope
and accuracy of this comparison, the PREON prototype offers a very attractive
compromise: it is competitive to both static AES extensions and coprocessors
using metrics of performance and flexibility.

This flexibility is highlighted by the possibility for combination of configura-
tions to support multi-kernel ISEs. Trivial merging of configurations is possible
where size permits, but more specific approaches also exist. For example, one
may consider multi-field multipliers and, hence, multi-kernel ISEs as described
by Vejda et al. [33]. As a more concrete example, AES and Grøstl compute the
S-box function in the same way, and therefore it is possible to design a single
configuration that supports both kernels. While the performance figures remain
the same as above, the total size required is 152 slices, roughly 30% less than a
separate implementation.

A less positive issue is that of re-configuration speed. Ideally, one might aim
for per-instruction change in an ISE (i.e., the configuration) to maximise the
emphasis on flexibility. However, without the facility for multiple resident con-
figurations, the re-configuration speed of our Xilinx Virtex-5 FPGA (100 Mbit/s
at 25 MHz, meaning latencies of upto 1000 µs for our more complex cases) is a
limiting factor. In a sense this is a property of the technology used to realise the
fabric, but even so the re-configuration speed limits “ISE dynamism,” which one
might reasonably argue is disadvantageous.

4.2 Instruction Register File

Hines et al. [13, Table 2] include a set of security-related benchmarks (e.g., AES
and SHA-2), adopting a domain-neutral (and compiler supported) approach to
implementation. Since our design differs, we do not offer a direct comparison
with these results. Rather, we aim to explore how careful use of our IRF design
compares with the natural alternative of cached instruction access.

Again, we use the sub-sections below to discuss each implementation, and
conclude with a summary of the results.

Mechanisms for Dynamic Cryptographic Instruction Set Extension 11

Table 2. Experimental results comparing the performance of various cryptographic
workloads without and with support from ISEs provided by the IRF (and without and
with support from the I-cache in each case). Note that initialisation of the IRF buffers
are not included in the total number of cycles.

AES

Without ISE With ISE

Performance Fetches (from Performance Fetches (from
(cycles) main memory) (cycles) main memory)

Without I-cache 4751 823 2644 309
With I-cache 1281 823 1302 309

Multiplication in Z
∗
N

Without ISE With ISE

Performance Fetches (from Performance Fetches (from
(cycles) main memory) (cycles) main memory)

Without I-cache 189069 34765 67366 4046
With I-cache 51708 34765 48640 4046

AES. Parametrising the IRF with m = 4, n = 16, we record each “block” of a
T-tables based AES implementation into a buffer; these are then replayed (as
roughly illustrated in Figure 1) to form each round.

Multiplication in Z∗
N (supporting RSA, ECC). Parametrising the IRF with m =

4, n = 16, we refer directly to the CIOS algorithm in [4, Section 5]. The idea is
to record the body of each inner loop into a buffer; we include a final instruction
which increments j. Then, by using one playback instruction, the buffer can be
replayed s times (having set C = 0 and j = 0 initially); the resulting, expanded
instruction sequence implements the entire unrolled loop.

Summary and Discussion. Table 2 outlines our results. Broadly speaking, the
conclusion is that use of the IRF can significantly reduce the number of fetches
from memory (roughly 2- and 8-fold improvement) without significant negative
impact (indeed, in some cases with positive impact) on the performance. The
latter result is, naturally, magnified when we switch off the I-cache and (e.g., in
the case of Montgomery multiplication) realise benefits of loop unrolling with-
out the associated disadvantage in terms of static footprint.

In an attempt to quantify this in terms of power consumption, we refer to
the widely cited figures provided by Segars [28, Slides 34 and 42]. He quotes an
ARM9TDMI register file as representing 13% of the datapath power consump-
tion, and ARM920T I- and D-caches as 25% and 19%, respectively, of the total
power consumption. Therefore, one can estimate that an ARM920T register file
represents about 13% of the quoted 25% total power consumption. As such, one
might roughly reason that replacing the I-cache with an IRF reduces the total
power consumption by around 20% (per fetch from IRF-resident content).

4.3 Combined Utilisation

A key motivations for our specific selection of mechanisms above is the potential
for composing their use: since use of the fabric is via a normal instruction, such
instructions can be captured in the IRF like any other. As a final, one-off case
study, we produced such a combined implementation of AES. Encryption of a

12 P. Grabher et al.

128-bit block using the T-tables based reference implementation performs 823
instruction fetches from main memory, 208 loads and 4 stores; it takes a total
of 1281 cycles and relies on a 6068 B static memory footprint. In contrast, an
ISE-based implementation (combining the previous fabric configuration and the
IRF parametrised with m = 1, n = 64) performs 45 instruction fetches from
main memory, 48 loads and 4 stores; it takes a total of 434 cycles and relies on
a 340 B static memory footprint.

In summary, considered use of the two mechanisms yields a 3-fold improve-
ment in performance, a 10-fold improvement in main memory access (combined
fetches, loads and stores), and a 17-fold improvement in memory footprint; this
is achieved in a manner which permits similar benefit to other kernels without
alteration of the PREON architecture, and largely without the I- and D-caches
which underpin the T-tables based approach.

5 Issues Relating to Practical Deployment

Section 4 highlights some practical advantages of the two mechanisms consid-
ered. However, these advantages rely on the re-configurable fabric and IRF in
PREON housing state: their configuration in both cases, and internal registers
in the case of the fabric. As such, one must also consider related disadvantages
(i.e., the issue of security). In this section, we discuss some (fairly speculative)
examples within the context of both PREON and other existing proposals.

Trusted Configuration and Use. Design verification and policy enforcement are
well-researched areas in embedded security, and form a key requirement within
high-assurance contexts. A review of related techniques is, for example, given
by Huffmire et al. [16, Sect. 4.4.1]; they point out that partial re-configuration
is rarely used within said contexts due to the increased complexity of design
verification. However, the approach of coupling a general-purpose processor to
a re-configurable fabric offers a potential solution to this dilemma. Since access
control to the re-configurable fabric must be integrated into the security model
of the processor, this will not cause the same problem as the more general case
considered by Huffmire et al. In particular, it is no more difficult to design access
policies for the fabric than for the processor itself.

As an example, access to the re-configurable fabric might be limited to the
OS kernel via a privilege mode within the processor; this offers a similar protec-
tion to that for conventional process state. Likewise, the processor may enforce
policies on the configuration bit-stream; a possible approach is to accept only
authenticated bit-streams. An effective implementation of such mechanisms is
fundamental to mitigation of several problems outlined below.

State “Read Out”. Focusing on the fabric, it is obvious that internal registers
maintained by one process should not be readable by any other process. More
subtle issues are raised by the fabric configuration itself. For example, pushed
to an extreme, it is tempting to consider aggressive compile-time or run-time
specialisation techniques (cf. Warp processors [21]), e.g., a fabric configuration

Mechanisms for Dynamic Cryptographic Instruction Set Extension 13

specialised per key. In this case, it is also vital that the configuration can not be
read by another process (or by an external attacker): Kerckhoffs’ principle does
not apply if secret key material is embedded in the configuration rather than
simply used by it. This issue relates vaguely to attacks described in [39].

Information Leakage. When unmanaged, the state of the re-configurable fabric
acts as a shared resource between processes. Said resource (or conversely, the
lack of appropriate process isolation) represents the potential for various forms
of micro-architectural attack; for example, see Wang and Lee [35, Section 4].

A concrete example can be applied to the ProteanARM [6], which requires a
process to register the fabric configurations with the OS. When an instruction
references a configuration (via an identifier), it is either

1. executed by the fabric (if the configuration is resident),
2. transformed into a call to an equivalent software implementation (where the

registration dictates this mode), or
3. causes an exception (whereby the OS can load the configuration if it is not

resident).

In a rough sense, this implies that the content of the re-configurable fabric can
be “queried” by timing how long a use of the fabric takes to complete. Hence, a
heavy-weight version of the so-called “prime+probe” approach to cache-based
side-channel attacks seems to apply.

Of course, it is possible to construct mitigating solutions. For example, one
can (at least in theory) demand a full context switch of all such resources. In
practise, however, it is often very tempting to take short-cuts since the overall
cost of switching the context of the re-configurable fabric is extremely high (as
illustrated by Section 4). We note that Chan et al. [5] examine a similar issue
of processor isolation albeit in a more coprocessor-like context.

Fault Injection. Although one can question whether the statement is still true
today, in 2003 Wollinger and Paar [36] mention that “there appears to be no
published attempt to perform this kind of [fault] attack against FPGAs.” A cur-
sory literature search shows there is (at least) not as much work in this area
as one might expect, a notable exception being [3], with more attention paid to
ASICs. Some related work includes that of Desmedt et al. [7] and Hadžic et al
[12], who introduce the idea of an FPGA “virus.” If one accepts mechanisms to
support some type of re-configurable fabrics as a viable direction, the examples
above suggest issues in terms of security. In particular, does the re-configurable
nature of an FPGA mean that “traditional” fault attacks on computation are
easier (e.g., by altering logic cells in the same way as RAM)?

Hardware Trojans. In order to reduce the cost of a context switch, the Protean-
ARM processor [6, Sect. 4] allows a configuration associated with one process
to be resident in the fabric while another process is being executed. Imagine the
re-configurable fabric is not gated, i.e., that operands are fed to it and compu-
tation occurs even if the output is not used. Since the fabric is not forcibly re-
configured for each process, a process may unintentionally provoke computation

14 P. Grabher et al.

within the fabric whose configuration is dictated by another process. Or, imagine
two (partial) configurations coexisting on a fabric: one might speculate that the
behaviour of one (e.g., with respect to thermal properties) could influence the
other in some way. These simple examples suggest the potential for a hardware
Trojan: the attacker configures the fabric with a high-leakage function which is
able to capture (or export) information leaked by some target process.

As above, the issue of isolation is important. We note that the “moats and
drawbridges” design concept of Kastner et al. [18] is of special interest in this
context: the goal is physical in-fabric isolation of partial configurations, i.e., the
separation of Trojan hardware from benign targets.

6 Conclusions

Our results in Section 4 highlight advantages with respect to support for and
use of dynamic ISEs in cryptography. Both conceptually simple, relatively non-
invasive additions to the LEON3 generalise many existing ISE proposals for this
platform and permit high-performance, “algorithm-agile” implementations. In
short, such an approach can support ISEs like AES-NI without a need for fixed
AES-related functionality. However, to realise said advantages, and following a
similar line of reasoning as [20,26], we show in Section 5 that careful analysis
and consideration of security is a strict prerequisite.

At least two well-founded criticisms exist. First, one might view speculative
attacks against prototype processor designs as moot. Second, and focusing on
the re-configurable fabric, one may argue that other design constraints prevent
integration of an FPGA into the processor data-path. Recalling Section 2, we
again stress that processors of this sort already exist; in a sense, commercialised
examples offer an interesting vehicle for future work on some questions raised
in Section 5. Along similar lines, we stress that it is perfectly viable to instead
find a compromise between general- and special-purpose fabric: again, this is
an interesting challenge for future work. Partly re-configurable functional units
(e.g., those in PipeRench [29] and CryptoManiac [37]) give some direction.

Even though there are some unresolved challenges, our experimental results
suggest that the general concept of providing tightly integrated re-configurable
components represents an interesting approach for (embedded) processors. We
further conclude that provision of exposed, programmer-controlled components
rather than automated (cf. the transparent operation of caches) alternatives is
an attractive direction for cryptography since they allow at least the potential
to avoid classes of existing micro-architectural (e.g., cache-based) attack.

Acknowledgements. The work described in this paper has been supported in
part by EPSRC grant EP/H001689/1. The authors would like to thank Atukem
Nabina for his general input on FPGA partial re-configuration.

Mechanisms for Dynamic Cryptographic Instruction Set Extension 15

References

1. Amano, H.: A survey on dynamically reconfigurable processors. IEICE Tran.
Comm. E89-B(12), 3179–3187 (2006)

2. Banakar, R., Steinke, S., Lee, B.-S., Balakrishnan, M., Marwedel, P.: Scratchpad
memory: design alternative for cache on-chip memory in embedded systems. In:
CODES, pp. 73–78 (2002)

3. Canivet, G., Maistri, P., Leveugle, R., Clédière, J., Valette, F., Renaudin, M.:
Glitch and laser fault attacks onto a secure AES implementation on a SRAM-
based FPGA. J. Cryptology 24(2), 247–268 (2011)

4. Koç, Ç.K., Acar, T., Kaliski, B.S.: Analyzing and comparing Montgomery multi-
plication algorithms. IEEE Micro 16(3), 26–33 (1996)

5. Chan, H., Schaumont, P., Verbauwhede, I.: Process isolation for reconfigurable
hardware. In: ERSA, pp. 164–170 (2006)

6. Dales, M.W.: Managing a reconfigurable processor in a general purpose workstation
environment. PhD thesis, University of Glasgow (2003)

7. Desmedt, Y.G., Quisquater, J.-J.: Public-key systems based on the difficulty of
tampering. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 111–117.
Springer, Heidelberg (1987)

8. Flynn, M.J., McLaren, M.D.: Microprogramming revisited. In: Proc. of the 22nd
ACM National Conference, pp. 457–464 (1967)

9. Gonzalez, I., Gómez-Arribas, F.: Ciphering algorithms in MicroBlaze-based em-
bedded systems. Computers and Digital Techniques 153(2), 87–92 (2006)

10. Grabher, P., Großschädl, J., Page, D.: Light-weight instruction set extensions for
bit-sliced cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS,
vol. 5154, pp. 331–345. Springer, Heidelberg (2008)

11. Großschädl, J., Tillich, S., Szekely, A.: Performance evaluation of instruction set
extensions for long integer modular arithmetic on a SPARC V8 processor. In: DSD,
pp. 680–689 (2007)

12. Hadžić, I., Udani, S., Smith, J.M.: FPGA viruses. In: Lysaght, P., Irvine, J., Harten-
stein, R.W. (eds.) FPL 1999. LNCS, vol. 1673, pp. 291–300. Springer, Heidelberg
(1999)

13. Hines, S.R., Green, J., Tyson, G., Whalley, D.: Improving program efficiency by
packing instructions into registers. In: ISCA, pp. 260–271 (2005)

14. Hodjat, A., Verbauwhede, I.: Interfacing a high speed crypto accelerator to an
embedded CPU. In: Asilomar Conference on Signals, Systems, and Computers,
vol. 1, pp. 488–492 (2004)

15. Hoerder, S., Wójcik, M., Tillich, S., Page, D.: An evaluation of hash functions on
a power analysis resistant processor architecture. In: Ardagna, C. (ed.) WISTP
2011. LNCS, vol. 6633, pp. 160–174. Springer, Heidelberg (2011)

16. Huffmire, T., Irvine, C., Nguyen, T.D., Levin, T., Kastner, R., Sherwood, T.: Hand-
book of FPGA Design Security. Springer, Heidelberg (2010)

17. Juliato, M., Gebotys, C.: Tailoring a reconfigurable platform to SHA-256 and
HMAC through custom instructions and peripherals. In: ReConFig, pp. 195–200
(2009)

18. Kastner, R., Levin, T., Nguyen, T., Irvine, C., Brotherton, B., Wang, G., Sherwood,
T., Huffmire, T.: Moats and drawbridges: An isolation primitive for reconfigurable
hardware based systems. In: IEEE Security and Privacy, pp. 281–295 (2007)

19. Kluter, T., Brisk, P., Ienne, P., Charbon, E.: Way stealing: cache-assisted automatic
instruction set extensions. In: DAC, pp. 31–36 (2009)

16 P. Grabher et al.

20. Kocher, P.C., Lee, R.B., McGraw, G., Raghunathan, A.: Security as a new dimen-
sion in embedded system design. In: DAC, pp. 753–760 (2004)

21. Lysecky, R., Stitt, G., Vahid, F.: Warp processors. TODAES 11(3), 659–681 (2006)
22. Malik, N., Eickemeyer, R.J., Vassiliadis, S.: Interlock collapsing ALU for increased

instruction-level parallelism. SIGMICRO Newsletter 23(1-2), 149–157 (1992)
23. Miller, J.E., Agarwal, A.: Software-based instruction caching for embedded pro-

cessors. In: ASPLOS, pp. 293–302 (2006)
24. Moore, C.R., Balser, D.M., Muhich, J.S., East, R.E.: IBM single chip RISC pro-

cessor (RSC). In: ICCD, pp. 200–204 (1991)
25. Pothineni, N., Brisk, P., Ienne, P., Kumar, A., Paul, K.: A high-level synthesis

flow for custom instruction set extensions for application-specific processors. In:
ASP-DAC, pp. 707–712 (2010)

26. Ravi, S., Raghunathan, A., Kocher, P.C., Hattangady, S.: Security in embedded
systems: Design challenges. TECS 3(3), 461–491 (2004)

27. Schaumont, P., Sakiyama, K., Hodjat, A., Verbauwhede, I.: Embedded software
integration for coarse-grain reconfigurable systems. In: IPDPS, pp. 137–142 (2004)

28. Segars, S.: Low power design techniques for microprocessors (tutorial session). In:
ISSCC (2001)

29. Taylor, R.R., Goldstein, S.C.: A high-performance flexible architecture for cryp-
tography. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 231–245.
Springer, Heidelberg (1999)

30. Tillich, S., Großschädl, J.: A simple architectural enhancement for fast and flexible
elliptic curve cryptography over binary finite fields GF(2m). In: Yew, P.-C., Xue,
J. (eds.) ACSAC 2004. LNCS, vol. 3189, pp. 282–295. Springer, Heidelberg (2004)

31. Tillich, S., Großschädl, J.: Instruction set extensions for efficient AES implemen-
tation on 32-bit processors. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 270–284. Springer, Heidelberg (2006)

32. Tucker, A.B., Flynn, M.J.: Dynamic microprogramming: processor organization
and programming. CACM 14(4), 240–250 (1971)

33. Vejda, T., Page, D., Großschädl, J.: Instruction set extensions for pairing-based
cryptography. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.)
Pairing 2007. LNCS, vol. 4575, pp. 208–224. Springer, Heidelberg (2007)

34. VeriSign.: An evaluation of new processor instructions for accelerating selected
cryptographic algorithms (2010)

35. Wang, Z., Lee, R.B.: Covert and side channels due to processor architecture. In:
ACSAC, pp. 473–482 (2006)

36. Wollinger, T., Paar, C.: How secure are FPGAs in cryptographic applications? In
FPL. In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778,
pp. 91–100. Springer, Heidelberg (2003)

37. Wu, L., Weaver, C., Austin, T.: CryptoManiac: a fast flexible architecture for secure
communication. In: ISCA, pp. 110–119 (2001)

38. Xilinx. Partial reconfiguration user guide (UG702) v12.1 (2010), http://www.

xilinx.com/support/documentation/sw_manuals/xilinx12_1/ug702.pdf

39. Yang, B., Wu, K., Karri, R.: Scan based side channel attack on dedicated hardware
implementations of data encryption standard. In: ITC, pp. 339–344 (2004)

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/ug702.pdf

FPGA-Based True Random Number Generation Using
Circuit Metastability with Adaptive Feedback Control

Mehrdad Majzoobi1, Farinaz Koushanfar1, and Srinivas Devadas2

1 Rice University, ECE
Houston, TX 77005

{mehrdad.majzoobi,farinaz}@rice.edu
2 Massachusetts Institute of Technology, CSAIL

Cambridge, MA 02139
devadas@mit.edu

Abstract. The paper presents a novel and efficient method to generate true ran-
dom numbers on FPGAs by inducing metastability in bi-stable circuit elements,
e.g. flip-flops. Metastability is achieved by using precise programmable delay
lines (PDL) that accurately equalize the signal arrival times to flip-flops. The
PDLs are capable of adjusting signal propagation delays with resolutions higher
than fractions of a pico second. In addition, a real time monitoring system is uti-
lized to assure a high degree of randomness in the generated output bits, resilience
against fluctuations in environmental conditions, as well as robustness against
active adversarial attacks. The monitoring system employs a feedback loop that
actively monitors the probability of output bits; as soon as any bias is observed
in probabilities, it adjusts the delay through PDLs to return to the metastable op-
eration region. Implementation on Xilinx Virtex 5 FPGAs and results of NIST
randomness tests show the effectiveness of our approach.

1 Introduction

True Random Number Generators (TRNG) are important security primitives that can
be used to generate random numbers for various essential tasks including the genera-
tion of (i) secret or public keys, (ii) initialization vectors and seeds for cryptographic
primitives and pseudo-random number generators, (iii) padding bits, and (iv) nonces
(numbers used once). Since modern cryptographic algorithms often require large key
sizes, generating the keys from a smaller sized seed will significantly reduce the en-
tropy of the long keys. In other words, by performing a brute-force attack only on the
seed that generated the key, one could break the crypto system. In addition, for ap-
plications that demand a constant high-speed and high-quality generation of keys, e.g.
secure web servers, algorithmic approaches to pseudo-random number generation are
typically inefficient, and hardware accelerated mechanisms are highly desired. True
random numbers also find applications in gaming, gambling and lottery drawings.

To date, numerous TRNG designs have been proposed and implemented. Each de-
sign uses a different mechanism to extract randomness from some underlying physical
phenomena that exhibit uncertainty or unpredictability. Examples of sources of ran-
domness include thermal and shot noise in circuits, secondary effects such as clock

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 17–32, 2011.
© International Association for Cryptologic Research 2011

18 M. Majzoobi, F. Koushanfar, and S. Devadas

jitter and metastability in circuits, Brownian motion, atmospheric noise, nuclear decay,
and random photon behavior.

Because of its flexibility and fast time to market, FPGA has become a popular plat-
form for implementing many cryptographic systems that include TRNGs as an es-
sential block. It is important to develop new FPGA TRNG solutions because: (i) not
all hardware TRNG methods available for ASICs or other platforms are amenable to
FPGA implementation; (ii) the existing FPGA TRNGs have limitations in terms of
the throughput-per-unit-area and could be improved; and (iii) active adversarial attacks
as well as variations in operational conditions such as fluctuations in temperature and
voltage supply may bias and disturb the randomness of TRNGs output bitstream. Since
most of the state-of-the-art TRNGs operate in an open-loop fashion, it is important to
incorporate a mechanism to constantly provide a feedback signal to adaptively adjust
the TRNG system parameters to increase its output bit randomness.

In this work, we propose a novel technique to generate true random numbers on
FPGA using the flip-flop metastability as a source of randomness. The introduced
TRNG core operates within a closed-loop feedback system that actively monitors the
output bit probabilities over windows of bit sequences and generates a proportional
feedback signal based on any observed bias in the bit probabilities. The feedback mech-
anism is made possible by performing fine delay tuning using high precision PDLs with
picosecond resolution. The delay tuning ensures that the signals arrive simultaneously
at the flip-flop to drive it into a metastable state. Our contributions are as follows.

– We introduce an FPGA-based TRNG system that utilizes flip-flop metastability as
the source of randomness.

– A novel feedback mechanism is introduced that performs auto-adjustment on de-
lays in order to make the metastability condition more likely to happen.

– We demonstrate the use of a PDL to perform fine tuning with a precision of higher
than a fraction of a pico-second.

– Highly accurate delay measurement results for PDL are demonstrated.
– The proposed TRNG system is implemented on Xilinx Virtex 5 FPGA; the hard-

ware evaluation results demonstrate the high throughput-per-area and the high qual-
ity (i.e., true randomness) of the produced output bits.

2 Related Work

The work in [15] uses sampling of phase jitter in oscillator rings to generate a sequence
of random bits. The output of a group of identical ring oscillators are fed to a parity
generator function (i.e., a multi-input XOR). The output is constantly sampled by a
D-flipflop driven using the system clock. In absence of noise and identical phases, the
XOR output would be constant (and deterministic). However, in presence of a phase
jitter, glitches with varying non-deterministic lengths appear at the output. An imple-
mentation of this method on Xilinx Virtex II FPGAs was demonstrated in [12].

Another type of TRNG is introduced in [11] that exploits the arbiter-based Physical
Unclonable Function (PUF) structure. PUF provides a mapping from a set of input chal-
lenges to a set of output responses based on unique chip-dependent manufacturing pro-
cess variability. The arbiter-based PUF structure introduced in [3], compares the analog

FPGA-Based True Random Number Generation Using Circuit Metastability 19

...

...

...

...

D

Flipflop

Q

C

Clock

Fig. 1. TRNG based on sampling the ring oscillator phase jitter

delay difference between two parallel timing paths. The paths are built identically, but
the physical device imperfections make their timing different. A working implementa-
tion of the arbiter-based PUF was demonstrated on both ASICs [5] and FPGA [8,13].
Unlike PUFs where reliable response generation is desired, the PUF-based TRNG goal
is to generate unstable responses by driving the arbiter into the metastable state. This
is essentially accomplished through violating the arbiter setup/hold time requirements.
The PUF-based TRNG in [11] searches for challenges that result in small delay differ-
ences at the arbiter input which then cause unreliable response bits.

To improve the quality of the output TRNG bitsteam and increase its randomness,
various post-processing techniques are often performed. The work in [15] introduces
resilient functions to filter out deterministic bits. The resilient function is implemented
by a linear transformation through a generator matrix commonly used in linear codes.
The hardware implementation of resilient function is demonstrated in [12] on Xilinx
Virtex II FPGAs. The TRNG after post processing achieves a throughput of 2Mbps us-
ing 110 ring oscillators with 3 inverters in each. A post-processing may be as simple as
von Neumann corrector [10] or may be more complicated such as an extractor function
[1] or even a one-way hash function such as SHA-1 [4].

Besides improving the statistical properties of the output bit sequence and remov-
ing biases in probabilities, post-processing techniques increase the TRNG resilience
against adversarial manipulation and variations in environmental conditions. An active
adversary may attempt to bias the output bit probabilities to reduce their entropy. Post-
processing techniques typically govern a trade-off between the quality (randomness)
of the generated bit versus the throughput. Other online monitoring techniques may be
used to assure a higher quality for the generated random bits. For instance, in [11],
the generated bit probabilities are constantly monitored; as soon as a bias in the bit se-
quence is observed, the search for a new challenge vector producing unreliable response
bits is initiated. A comprehensive review of hardware TRNGs can be found in [14]. The
TRNG system proposed in this paper simultaneously provides randomness, robustness,
low area overhead, and high throughput.

3 Programmable Delay Lines

Programmable delay lines (PDLs) alter the signal propagation delay in a controlled
fashion. The common mechanisms used to change the delay includes (i) varying

20 M. Majzoobi, F. Koushanfar, and S. Devadas

the effective load capacitance, (ii) modifying the device current drive (by increas-
ing/decreasing the effective threshold voltage by body biasing), or (iii) incrementally
altering the length of the signal propagation path. The first two methods are often em-
ployed in either analog fashion and/or in application specific integrated circuits (ASICs)
and are not amenable to FPGA implementation.

On reconfigurable digital platforms such as FPGAs, PDLs can be implemented by
only changing the signal propagation path length or by altering the circuit fanout that
modifies the effective load capacitance. The latter is only feasible if dynamic reconfigu-
ration is available. In other words, changing circuit fanout requires topological changes
to the circuit which in turn needs a new configuration. In [2], a technique is proposed
to alter the propagation path length by letting the signal bounce a few times inside the
switch matrices of FPGA instead of a direct and straight connection. The concept is
illustrated in Figure 2. In the switch matrix on the left side, the signal bounces three
times off the switch edges before it exits the switch. In the right switch, the signal only
bounces once and as a result a shorter propagation path length and a smaller delay is
achieved. However, changing the switch connections points and routings require a new
configuration, and doing so during the circuit operation is only possible by dynamic
reconfigurability.

Fig. 2. A PDL implemented by altering the signal routing inside FPGA switch matrix

In this paper, we use a novel technique to vary the signal propagation path length
in minute increments/decrements by only using a single lookup table (LUT). The tech-
nique changes the propagation path inside the LUT. We use an example to illustrate
the concept. Figure 3 shows a 3-input lookup table. The LUT consists of a set of
SRAM cells that store the intended functionality and a tree-like structure of multiplex-
ers (MUXs) that enables selection of each individual SRAM cell content. The inputs to
the MUXs serve as an address that points to the SRAM cell whose content is selected
to appear at the output of LUT. The LUT in Figure 3 is programmed to implement an
inverter, where the LUT output is always an inversion of its first input (A1). The other
inputs of LUT, namely A2 and A3 are functionally “don’t-cares”, but their value affect
the signal proposition path from A1 to the output. For instance, as shown in Figure
3, for A2A3 = 00 and A2A3 = 11 the signal propagation path length (and thus the
propagation delay) from A1 to O are the shortest and the longest respectively. Xilinx
Virtex 5, Virtex 6, and Spartan 6 devices utilize 6-input LUTs. Therefore, by using one
single LUT, a programmable delay inverter/buffer with five control inputs can be imple-
mented. The five inputs provide 25 = 32 discrete levels for controlling the delay. The

FPGA-Based True Random Number Generation Using Circuit Metastability 21

Fig. 3. Precision PDL using a single LUT

measurement data presented in Section 6 obtained from Xilinx Virtex 5 FPGAs suggest
that the maximum delay difference from each LUT is approximately 10 pico seconds.

4 Metastability

The proposed TRNG induces metastable conditions in bi-stable logic circuit elements,
i.e., flip-flops and latches. The metastable state eventually resolves to a stable state, but
the resolution process is extremely sensitive to operational conditions and circuit noise,
rendering the result highly unpredictable.

A ‘D’ flip-flop samples its input at the rising edge of the clock. If sampling takes
place within a narrow time window before or after the input signal transitions, a
race condition occurs. The race condition takes the flip-flop into a metastable oscil-
lating state. The time window around the sampling moment is typically referred to as
setup/hold time. The oscillation eventually settles onto a stable final state of either one
or zero. This phenomenon is demonstrated in Figure 4. Note that the probability of set-
tling onto ‘1’ is a monotonic function of the time difference (Δ) between the moment
sampling happens and the moment transition occurs at the input. In fact, as shown in
[16,9,7], the probability can be accurately modeled by a Gaussian CDF. If the delay
difference of the arriving signals is represented by Δ and σ is proportional to the width
of the setup/hold time window, then the probability of the output being equal to one can
be written as:

Prob{Out = 1} = Q(
Δ

σ
), (1)

where Q(x) = 1√
2π

∫∞
x exp(−u2

2)du. This model can be explained by Central Limit
Theorem. Figure 4 demonstrates four scenarios for different signal arrival times. The
corresponding probabilities for the scenarios are marked by the scenario number on
the probability plot. For instance, in scenarios 1 and 4, since the delay difference is
larger than the setup/hold time of the flip-flop, the output is completely deterministic.

22 M. Majzoobi, F. Koushanfar, and S. Devadas

Fig. 4. (a) Flip-flop operation under four sampling scenarios, (b) probability of output being equal
to ‘1’ as a function of the input signals delay difference (Δ). The numbers on the probability plot
correspond to each signal arrival scenario.

In order to obtain completely non-deterministic and unpredictable output bits with equal
probabilities (Prob{Output=1} = Prob{Output=0} = 0.5), our method forces the flip-
flop into metastability by tuning sampling and signal arrival times so they occur as
simultaneously as possible (driving Δ → 0) using the PDLs.

5 TRNG System Design

To drive the flip-flop into its metastable state, we use an at-speed monitor-and-control
mechanism that establishes a closed loop feedback system. The monitor module keeps
track of the output bit probabilities over repeated time intervals. It then passes on the
information to the control unit. The control unit based on the received probability infor-
mation decides to add/subtract the delay to/from top/bottom paths to calibrate the delay
difference so that it gets closer to zero. For instance, if the output bits are highly skewed
towards 1, then the delay difference (Δ) must be decreased by increasing the top path
delay to balance the probabilities. Figure 5 (a) demonstrates this concept.

A straightforward implementation of the monitoring unit can be realized by using
a counter. The counter value is incremented every time the flip-flop outputs ‘1’ and is
decremented whenever the flip-flop generates a ‘0’. This is analogous to performing
a running sum over the sequence of output bits where zeros are replaced by ‘−1’. If
zeros and ones are equally likely, the value of the counter will stay almost constant.

(a) (b)

Fig. 5. The TRNG system model

FPGA-Based True Random Number Generation Using Circuit Metastability 23

A feedback signal is generated proportional to any deviation from this constant steady
state value. The generated error signal is fed back to the signal-to-delay transducer, i.e.,
the PDL. The delay difference (Δ) is updated/corrected based on the feedback signal.

The described system is in effect a proportional-integral (PI) controller. The system
is depicted in Figure 5 (b). In this figure, Δb is the constant bias/skew in delays caused
by the routing asymmetries. Δp is the delay difference induced by changes in environ-
mental and operational conditions such as temperature and supply voltage, and/or delay
difference imposed by active adversarial attacks. Δf is the correction feedback delay
difference injected by the PDL based on the counter value. Equation 2 expresses the
total delay difference at the input of the flip-flop. G represents transformation carried
out by the PDL from the counter binary value to an analog delay difference. The arbiter
and integrator refer to the flip-flop and counter respectively. Therefore, the following
relationship holds;

Δ = Δp + Δb − Δf . (2)

An example PDL-based implementation of the TRNG system is shown in Figure 6.

D

C

Q...

...
Binary

Counter

inc/dec

MSBLSB
...

......

DFF

C1C2Ck

±20δ±21δ±2kδ

...

p1 p2 p2k p1 p2 p1

...

output

Fig. 6. The TRNG system implementation with a PI controller on FPGA

The PDLs are depicted as gray triangles which provide the finest and most granular
level of control over the delays. If the resulting delay difference from one PDL is equal
to δ, the effective input/output delay of a PDL, D(i), for the binary input i would be:

D(i) = i × dc + (1 − i) × (dc + δ). (3)

where dc is a constant delay value. Each programmable delay block consists of two
PDLs. The control input of top PDL inside each block is the complement of the bottom
PDL control input in order to make a differential programmable delay structure. Based
on Equation 4, the differential delay is:

Ddiff (i) = (1 − 2i) × δ = (−1)iδ, i = 0 or 1. (4)

In this example, the programmable delay blocks are packed in groups with sizes of
multiples of two to efficiently generate any desirable delay difference using a binary
control input. In other words, the first programmable delay block consists of two PDLs,
the second one contains 4 PDLs, and so on. With this arrangement, the total incurred
delay difference can be written as:

Δf = G(C) =
K∑

i=0

(−1)Ci2iδ, (5)

24 M. Majzoobi, F. Koushanfar, and S. Devadas

Counter It Ib w
111 1111 0000 +4
110 0111 0000 +3
101 0011 0000 +2
100 0001 0000 +1
000 0000 0001 −1
001 0000 0011 −2
010 0000 0111 −3
011 0000 1111 −4

Fig. 7. Decoding operation

where Ci ∈ C is the ith counter bit with i = 0 being
the least significant bit (LSB) and i = K being the most
significant bit (MSB), and C represents the counter value.
δ is the smallest possible delay difference produced by one
PDL.

Let us assume that in the beginning the counter is re-
set to zero. The resulting feedback delay difference is
Δf = (2(K+1) − 1) × δ according to Equation 5. This
large delay difference skews the output of flip-flop toward
‘1’. This keeps raising the counter value, lowering the de-
lay difference (Δ). As Δ approaches zero, the flip-flop be-
gins to output ‘0’s more frequently and lowers the rate at
which the counter value was previously increasing. At the steady state, the counter value
will settle around a constant value with a slight oscillatory behavior. Any outside per-
turbation on delays will cause transient fluctuations in bit probabilities; however, the
automatic adjustment mechanism brings the system back to the equilibrium state.

Although the performance of the system in Figure 6 seems ideally flawless, a
straightforward hardware implementation was not successful. This is because the design
is based on the assumption that δs from PDLs are equal. However, due to manufacturing
process variability, the δs slightly vary from one PDL to another. As a result, it is not
feasible to generate any desirable delay difference, because the intended weights are not
exactly multiples of two anymore. In particular, the input to the largest programmable
delay block dominates the system’s output behavior.

Instead, we took an alternative approach and used two sets of fine and coarse delay
tuning blocks as shown in Figure 8. With n fine tuning delay lines with a resolution of
δfn, and m coarse tuning delay line with resolution of δcs, any delay difference in the
range of R = [nδfn + mδcs,−nδfn −mδcs] that satisfies Equation 6 can be produced.

Δf = wfnδfn + wcsδcs (6)

where wfn and wcs are integer weights (or levels) such that −n < wfn < n and
−m < wcs < m. By carefully selecting n,m, δfn, and δcs, any delay difference with a
resolution of δfn can be produced within the range R.

The system in Figure 8 is designed such that the weights (or tuning levels) in Equa-
tion 6 are a function of the difference in the total number of ‘1’s at PDL inputs on the
top and bottom paths;

wfn =
n∑

i=1

It[i] −
n∑

i=1

Ib[i], wcs =
m∑

i=1

It[i] −
m∑

i=1

Ib[i] (7)

where It[i] ∈ {0, 1} and Ib[i] ∈ {0, 1} are the input signals to PDLs as demonstrated in
Figure 8. Thus, decoder block in Figure 8 needs to perform a mapping from the counter
value to the number of ‘1’s at PDL inputs. For example, if n = 4, the counter value of
‘111’ corresponds to -4 and ‘000’ corresponds to +4. Table 7 shows an example of de-
coding operation and corresponding tuning weights for a 3-bit counter. The conversion
from the counter value to the effective tuning weight is expressed by Equation 8.

FPGA-Based True Random Number Generation Using Circuit Metastability 25

D

C

Q

Binary
Counter

inc/dec

MSB

LSB

DFF

Cfn

...

p1

...

p2pnp1p2pm

...

...

Decoder

Decoder

Prob.
Analyzer

&
Filter

Post
Processing

output
Course Tuning Blocks Fine Tuning Blocks

It1Ib1It2Ib2ItnIbnIt1Ib1It2Ib2ItmIbm

Ccs

Fig. 8. The complete TRNG system

wfn = (−1)CK ×
(

1 +
K−1∑
i=0

Ci2i

)
, K = �log2n�. (8)

The fundamentals of the system’s operation shown in Figure 8 are the same as the
system in Figure 6 with the only difference lying in how the feedback signal is generated
based on the counter states.

Notice that the controller type determines the response time to changes in delays as
well as the error in the steady state response. Proportional integral (PI) controllers as
opposed to proportional integral derivative (PID) controller due to the lack of derivative
function can make the system more stable in the steady state in the case of noisy data.
This is because derivative action is more sensitive to higher-frequency terms in the
inputs. Additionally, a PI-controlled system is less responsive to inputs (including noise)
and so the system will be slower to respond to quick perturbations on the delays than a
well-tuned PID system.

The following two observations are important from a security standpoint. First, in
the steady state, the counter value oscillates around a constant center value (Ccenter).
Let us define the oscillation amplitude as the peak-to-peak range of the oscillations, i.e.
the maximum counter value minus the minimum counter value (Cmax − Cmin). The
oscillation is not as periodic as one might think. It is rather a random walk around the
center value. Each step in the random walk involves going from one counter value to a
one lower or higher value:

Step : Ccurrent → Ccurrent ± 1

The probability of each step (move) is a function of the current location. Intuitively the
probability of going outside the range is almost zero:

Prob{Cmax → Cmax + 1} � 0
Prob{Cmin → Cmin − 1} � 0 (9)

Also assuming a smooth monotonically increasing probability curve as shown in Figure
4 for the flip-flop, the farther the current counter value is from the center (Ccenter), the

26 M. Majzoobi, F. Koushanfar, and S. Devadas

lower the probability of moving farther away from the center:

Prob{Ci → Ci + 1} < Prob{Cj → Cj + 1} for Cj < Ci

Prob{Ci → Ci − 1} < Prob{Cj → Cj − 1} for Cj < Ci (10)

Each generated output bit corresponds to a counter value. The probability of the output
being to ‘1’ is a function of the feedback counter value. The maximum counter value
almost always results in a ‘0’ output, since a ‘0’ value decrements the counter value.
Based on Equation 9, transition Cmax → Cmax + 1 is unlikely, thus r(Cmax) can
almost never be ‘1’. The following deductions can be explained similarly:

Prob{r(Ccenter) = 1} � 0.5
Prob{r(Cmin) = 1} � 1
Prob{r(Cmax) = 1} � 0 (11)

In other words, during the random walk only those steps that pass close at the center
point will result in high entropy and non-deterministic responses. A smaller error in
the steady state response means oscillations happen closer to center of the probability
transition curve which in turn leads to higher randomness in generated output bits.

In addition, it is desired that the system responds as quickly as possible to external
perturbations since the during the recovery time the TRNG generates output bits with
highly skewed probabilities.

6 Experimental Results

In this section, we present the LUT-based PDL delay measurement evaluations and
TRNG hardware implementation results obtained from Xilinx Virtex 5 LX50T FPGA.

Before moving onto the TRNG system performance evaluation, we shall first discuss
the results of our investigation on the maximum achievable resolution of the PDLs. We
set up a highly accurate delay measurement system similar to the delay characterization
systems presented in [9,7,6].

The circuit under test consists of four PDLs each implemented by a single 6-input
LUT. The delay measurement circuit as shown in Figure 9 consists of three flip-flops:
launch, sample, and capture flip-flops. At each rising edge of the clock, the launch flip-
flop successively sends a low-to-high and high-to-low signal through the PDLs. At the
falling edge of the clock, the output from the last PDL is sampled by the sample flip-
flop. At the last PDL’s output, the sampled signal is compared with the steady state
signal. If the signal has already arrived at the sample flip-flop when the sampling takes
place, then these two values will be the same; Otherwise they take on different values. In
case of inconsistency in sampled and actual values, XOR output becomes high, which
indicates a timing error. The capture flip-flop holds the XOR output for one clock cycle.

To measure the absolute delays, the clock frequency is swept from a low frequency
to a high target frequency and the rate at which timing errors occur are monitored and
recorded. Timing errors start to emerge when the clock half period (T/2) approaches the
delay of the circuit under test. Around this point, the timing error rate begins to increase

FPGA-Based True Random Number Generation Using Circuit Metastability 27

A2-6=11111
A2-6=00000A2-6=11111A2-6=11111A2-6=11111

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6D Q

clk

D QD Q

clk clk

Launch
Flip-flop Sample

Flip-flop Capture
Flip-flop

L
U

T
-6

L
U

T
-6

L
U

T
-6

LU
T

-6

Fig. 9. The delay measurement circuit. The circuit under test consists of four LUTs each
implementing a PDL.

x

y

5 10 15 20 25 30

5

10

15

20

25

30 1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

(a) Delay for A2−6 = 00000

x

y

5 10 15 20 25 30

5

10

15

20

25

30
1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

(b) Delay for A2−6 = 11111

x
y

5 10 15 20 25 30

5

10

15

20

25

30 −0.005

0

0.005

0.01

0.015

0.02

0.025

(c) Delay difference

Fig. 10. The measured delay of 32×32 circuit under tests containing a PDL with PDL control
inputs being set to (a) A2−6 = 00000 and (b) A2−6 = 11111 respectively. The difference
between the delays in these two cases is shown in (c).

from 0% and reaches 100%. The center of this transition curve marks the point where
the clock half period (T/2) is equal to the effective delay of the circuit under test.

To measure the delay difference incurred by the LUT-based PDL, the measurement
is performed twice using different inputs. In the first round of measurement, the inputs
to the four PDLs are fixed to A2−6 = 11111. In the second measurement the inputs to
the last PDL are changed to A2−6 = 00000. In our setup, a 32×32 array of the circuit
shown on Figure 9 is implemented on a Xilinx Virtex 5 LX110 FPGA, and the delay
from our setup is measured under the two input settings. The clock frequency is swept
linearly from 8MHz to 20MHz using a desktop function generator and this frequency
is shifted up by 34 times inside the FPGA using the built-in PLL.

The results of the measurement are shown on Figure 10. Each pixel in the image
corresponds to one measured delay value across the array. The scale next to the color-
map is in nano-seconds. Figure 10 (c) depicts the difference between the measured
delays in (a) and (b). As can be seen, the delay values in (b) are on average about 10
pico-seconds larger than the corresponding pixel values in (a). This is in fact equal to the
amount of delay difference caused by the coarse PDLs, i.e., δcs. The delay difference
induced by the fine PDL of Figure 11 (a), δfn is approximately equal to 1/16 of δcs.

To evaluate the performance of the TRNG system, we implement the system shown
in Figure 8 using 32 coarse and fine programmable delay lines (n = m = 32). A 12-
bit counter performs the running sum operation on the output generated bits. The first
six (LSB) bits control the finely tunable PDLs, and the next six (MSB) bits control the

28 M. Majzoobi, F. Koushanfar, and S. Devadas

1
2
3
4
5
6 L

U
T

-6

1
2
3
4
5
6 L

U
T

-6

0

o

i
c

i

c

o

i

c

o i

c

o

(a) Fine PDL (b) Coarse PDL

Fig. 11. Coarse and fine PDLs implemented by a single 6-input LUT

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Fine tune level

 P
ro

b
{O

u
tp

u
t=

1}

 Course tune level = 7

 Course tune level = 8

 Course tune level = 9

Fig. 12. The probability of flip-flip generating a ‘1’ output as a function of the fine and coarse
tuning levels

coarsely tunable PDLs. Both fine and coarse PDLs are implemented by using one LUT
as shown in Figure 11. As illustrated in Figure 11, to implement the fine PDL, the LUT
inputs A3 to A6 are fixed to zero and the only input that controls the delay is A2. For
the coarse PDL, all of the LUT inputs are tied and controlled together.

In the first experiment, we only examine the forward system, which consists of the
PDLs, the flip-flop, and the decoders. The tuning weights/levels are swept from the
minimum to maximum, and the probability of the flip-flop producing a ‘1’ output is
measured at each level. This probability is measured by repeating each experiment over
100 times and counting the number of times the flip-flop outputs a ‘1’. Since n =
m = 32, both the fine and coarse tuning levels can go from −32 to 32. Recall that the
tuning level represents the difference in the total number of ones at PDL inputs on the
top path minus those on the bottom path (see Equation 7). As can be observed from
Figure 12, increasing both the coarse and fine tuning levels increase the probability
of output being equal to ‘1’. The non-smoothness of the probability curve is due to
variability in the manufacturing process which creates local non-monotonicity. With
these observations, we expect the feedback system behavior to stabilize somewhere
close to the center of the transition point. Next, we close the feedback loop and initialize
the operation. At the beginning, the counter is loaded with all ‘1’s (which results in a
decimal value of 212-1 = 4095). Figure 13 shows the counter value as the operation
progresses. The x-axis is the number of clock cycles. Once the operation starts, the

FPGA-Based True Random Number Generation Using Circuit Metastability 29

0 0.5 1 1.5 2 2.5 3

x 10
4

0

1000

2000

3000

4000

5000

 Clock Cycle

 C
o

u
n

te
r

V
al

u
e

(D
ec

im
al

)

2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3

x 10
4

559

560

561

562

563

564

 Clock Cycle

 C
o

u
n

te
r

V
al

u
e

(D
ec

im
al

)

Fig. 13. The transient counter value (decimal) versus the clock cycles

559 560 561 562 563 564
0

0.2

0.4

0.6

0.8

1
 (a)

 Counter Value (decimal)

 P
ro

b
{o

u
tp

u
t=

1}

559 560 561 562 563 564
0

0.1

0.2

0.3

0.4

0.5
 (b)

 Counter Value (decimal)

 P
ro

p
o

rt
io

n
 o

f
o

cc
u

ra
n

ce

559 560 561 562 563 564
0

0.1

0.2

0.3

0.4
 (c)

 Counter Value (decimal)

 W
ei

g
h

te
d

 P
ro

b
{o

u
tp

u
t=

1}

Fig. 14. Distribution of the steady state counter values and associated bit probabilities

counter value keeps decreasing until it reaches the value of approximately 700 after
about 3,400 clock cycles. From this point further, the counter value reaches a steady
state with a slight oscillatory behavior around a constant value. A close-up of the steady
state behavior is depicted in the lower plot of Figure 13. The close-up zooms into the
segment between 25,000 to 30,000 clock cycles. As can be observed in the steady state,
the counter value oscillates between 559 and 564.

30 M. Majzoobi, F. Koushanfar, and S. Devadas

Table 1. NIST Statistical Test Suite results

Statistical Test Block/Template length Lowest success ratio
Frequency - 100%

Frequency within blocks 128 100%
Cumulative sums - 100%

Runs - 100%
Longest run within blocks - 100%

Binary rank - 100%
FFT - 100%

Non-overlapping templates 9 90%
Overlapping templates 9 100%
Maurer’s universal test 7 100%
Approximate entropy 10 100%
Random excursions - 100%

Serial 16 100%
Linear complexity 500 90%

Next, we investigate the frequencies at which counter values appear in the steady
state. In this experiment, we collect 1,000,000 counter values in the steady state
and plot the histogram of the observed values as shown in the middle plot (b) in
Figure 14. The normalized histogram suggests that the counter holds the value of 561
more than 40% of the time. Next, it is critical to investigate the probabilities associated
with each courter value. In other words, we would like to know for the given counter
values − which produce a feedback input to the TRNG core − the probability of the
flip-flop output being equal to ‘1’. The top plot (a) in Figure 14 presents this result. It is
interesting to see that most of the counter values produce highly skewed probabilities.
Among these counter values, 561 leads to a ‘1’ output slightly more than 40% of the
time. We define a metric which is the multiplication of the counter values’ frequency
of occurrence with the probability of output being equal to one for each counter value.
This metric represents the contribution of each counter value to the total number of ‘1’
in the output sequence. The metric values are shown in bottom plot (c) in Figure 14.

To remove the bias in the output sequence in a systematic way as well as to elim-
inate predictable patterns, we propose a filtering mechanism based on the steady state
counter values. The filter unit analyzes the output bit probabilities for each counter value
within a window of specific size and flags the counter values that lead to outputs bits
with skewed probabilities. Next, it filters out the output bits associated with the flagged
counter values. For example, in our implementation, the filter only allows output bits
associated with the counter value of 561 to pass through. As a result, the bit-rate is
lowered to almost half of the original bit-rate. However, the output bits may still suffer
from bias in the bit probabilities. Therefore, a post-processing unit after the filter unit
is used to remove any localized biases from the bitstream. In our implementation, we
use a von Neumann corrector to perform the post-processing task. The results of the
NIST randomness test from running on megabytes of data is shown in Table 1. The
comprehensive test results are available online at http://www.ruf.rice.edu/ mm7/trng/.

FPGA-Based True Random Number Generation Using Circuit Metastability 31

Table 1 includes the results of the NIST statistical test suite on megabytes of col-
lected data after counter-based filtering and von Neumann correction are performed on
the TRNG output bitstream. Due to the large bias in the probabilities, most of the ran-
domness failed when the test was run on the output bitstream before the filtering and
correction were carried out.

Finally, according to the ISE Synthesis report, the propagation delay through the
TRNG core is equal to 61.06ns which achieves a bit-rate of 16Mbit/sec. The bit-rate
drops to 1/8 of the original bit-rate (to 2Mbit/sec) after filtering and von Neumann
correction. The TRNG core consumes 128 LUTs that are packed into 16 Virtex 5 CLBs.
Note that in practice multiple TRNG cores can run in parallel to offer a higher bit-rate.

7 Conclusion

A novel FPGA-based technique to generate true random numbers through flip-flop
metastability was introduced. The presented method took advantage of highly precise
programmable delay lines (PDL) to accurately equalize the signal arriving times to
flip-flops, thus enforcing a metastable behavior. PDLs as demonstrated in the paper are
capable of adjusting signal propagation delays with sub pico-second resolution. With
the help of a closed-loop proportional integral (PI) control system, the output bit proba-
bilities are constantly monitored and as soon as any skews in probabilities are observed,
feedback signal instantly adjusts the delay taps to revert to the metastable condition.
The feedback systems provides resilience against fluctuations in environmental condi-
tions, as well as robustness against active adversarial attacks. Implementation on Xilinx
Virtex 5 FPGAs and results of NIST randomness tests show the effectiveness of our true
random number generator. The proposed TRNG is capable of producing a throughput of
2 Mbit/sec after post-processing and filtering with a low overhead, using only 5 CLBs.

References

1. Barak, B., Shaltiel, R., Tromer, E.: True random number generators secure in a changing
environment. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp.
166–180. Springer, Heidelberg (2003)

2. Bergeron, E., Feeley, M., Daigneault, M.A., David, J.: Using dynamic reconfiguration to
implement high-resolution programmable delays on an FPGA. In: NEWCAS-TAISA, pp.
265–268 (2008)

3. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In:
CCS, pp. 148–160 (2002)

4. Jun, B., Kocher, P.: The Intel random number generator. In: Cryptography Research, Inc.
(1999)

5. Lee, J., Lim, D., Gassend, B., Suh, G., van Dijk, M., Devadas, S.: A technique to build a secret
key in integrated circuits for identification and authentication applications. In: Symposium
on VLSI Circuits, pp. 176–179 (2004)

6. Majzoobi, M., Dyer, E., Elnably, A., Koushanfar, F.: Rapid FPGA characterization using
clock synthesis and signal sparsity. In: International Test Conference, ITC (2010)

7. Majzoobi, M., Koushanfar, F.: FPGA time-bounded authentication. IEEE Transactions on
Information Forensics and Security PP(99), 1 (2011)

32 M. Majzoobi, F. Koushanfar, and S. Devadas

8. Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA PUF using programmable delay lines. In:
IEEE Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2010)

9. Majzoobi, M., Elnably, A., Koushanfar, F.: FPGA time-bounded unclonable authentication.
In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 1–16.
Springer, Heidelberg (2010)

10. von Neumann, J.: Various techniques used in connection with random digits. von Neumann
Collected Works 5, 768–770 (1963)

11. O’Donnell, C.W., Suh, G.E., Devadas, S.: PUF-based random number generation. In: MIT
CSAIL CSG Technical Memo 481, p. 2004 (2004)

12. Schellekens, D., Preneel, B., Verbauwhede, I.: FPGA vendor agnostic true random number
generator. In: Field Programmable Logic and Applications (FPL), pp. 1–6 (2006)

13. Suh, G., Devadas, S.: Physical unclonable functions for device authentication and secret key
generation. In: Design Automation Conference (DAC), p. 914 (2007)

14. Sunar, B.: True Random Number Generators for Cryptography. In: Cryptographic Engineer-
ing. Springer, Heidelberg (2009)

15. Sunar, B., Martin, W.J., Stinson, D.R.: A provably secure true random number generator with
built-in tolerance to active attacks. IEEE Transactions on Computers 58, 109–119 (2007)

16. Wong, J.S.J., Sedcole, P., Cheung, P.Y.K.: Self-Measurement of Combinatorial Circuit De-
lays in FPGAs. ACM Transactions on Reconfigurable Technology and Systems 2(2), 1–22
(2009)

Generic Side-Channel Countermeasures for

Reconfigurable Devices�

Tim Güneysu and Amir Moradi

Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{gueneysu,moradi}@crypto.rub.de

Abstract. In this work, we propose and evaluate generic hardware coun-
termeasures against DPA attacks for recent FPGA devices. The proposed
set of FPGA-specific countermeasures can be combined to resist a large
variety of first-order DPA attacks, even with 100 million recorded power
traces. This set includes generic and resource-efficient countermeasures
for on-chip noise generation, random-data processing delays and S-box
scrambling using dual-ported block memories. In particular, it is pos-
sible to build many of these countermeasures into a single IP-core or
hard macro that then provides basic protection for any cryptographic
implementation just by its inclusion in the design process – what is par-
ticularly useful for engineers with no or little background on security and
side-channel attacks.

1 Introduction

Since the last fifteen years, side-channel analysis (SCA) [12] attacks have been
(publicly) known as a major threat to any unprotected cryptographic imple-
mentation in software and hardware. Lots of efforts have already been dedicated
towards the development of corresponding countermeasures, in particular against
differential power analysis (DPA) [13], such as [5,11,14,15,18,19,20,21,23,24] with
this list far from being complete. A particular subject of study has been on al-
gorithmic countermeasures that mask or shuffle security-critical processes of a
specific cryptographic system as well as on generic hardware countermeasures,
such as noise generators, non-deterministic processors or side-channel resistant
logic styles. Based on all these observations it has widely been accepted that a
single (and efficient) countermeasure cannot provide complete protection against
a large variety of SCA attacks. Hence, a mix of several countermeasures is typi-
cally required to provide the security as demanded by the protection profile for a
given application (e.g., dictated by an untrusted operation environment and the
attacker model). Despite the information theoretic metrics defined by [22], the
resistance for such a protection profile, such as against DPA attacks, is typically
specified by a number of samples that need to be recorded for a successful attack,
as typically done in common criteria evaluations. In other words, if all (known)

� The work described in this paper has been supported by the European Commission
through the ICT program under contract ICT-2007-216676 ECRYPT II.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 33–48, 2011.
c© International Association for Cryptologic Research 2011

34 T. Güneysu and A. Moradi

SCA attacks with a given number of recorded samples fail, the device is supposed
to be sufficiently resistant according to the specified protection profile [16].

In this context, it is primarily the decision of the system designer which com-
bination of countermeasures should be implemented in a device. Unfortunately,
choosing a suitable combination of countermeasures is a rather challenging and
tedious task in practice. In particular, each device that uses a different technol-
ogy, architecture or combination of several countermeasures may behave differ-
ently. In this context, a hardware developer (in particular one with no or little
background on cryptography and/or SCA) would be pleased to have a set of
generic, cheap and pre-evaluated hardware-countermeasure implementations at
hand that can be easily integrated and combined to achieve a product-specific
protection profile.

In this work, we propose and evaluate generic hardware countermeasures
against DPA attacks which are suitable for a large variety of recent FPGA
devices and cryptographic systems (in particular, devices from Xilinx/Altera).
Recently, FPGAs are commonly used for many cryptographic implementations
and provide a multitude of different pre-fabricated hardware resources. We will
evaluate the most promising reconfigurable resources concerning their usabil-
ity for generic DPA countermeasures. We finally present resource efficient and
generic design approaches for DPA countermeasures that can be combined to
resist a large variety of first-order DPA attacks. This includes countermeasures
for on-chip noise generation, the insertion of random data processing delays and
memory scrambling. In particular, it is possible to combine many of these eval-
uated countermeasures into a single hard macro to achieve basic protection for
any cryptographic implementation – just by its inclusion into the synthesis pro-
cess. Such an available IP core can be especially valuable for engineers with no
or little background on side-channel analysis and/or cryptography.

This work is structured as follows. Section 2 introduces different novel and
generic countermeasures which are built from the available resources of recent
FPGA devices. In Section 3 we briefly introduce an unprotected AES design as
reference implementation for our evaluation. Our measurement setup and the
evaluation method used to analyze the impact of each proposed countermeasure
are also provided as part of this section. Our results are presented in Section 4
before we conclude in Section 5.

2 Generic Countermeasures for FPGAs

It is well known that generic hardware countermeasures against DPA attacks
primarily need to decrease the relation between data processed by a relevant
part of the cryptographic implementation and the actual power consumption of
the device. There are several options to achieve this goal:

– Reducing the Signal-to-Noise Ratio: An attacker attempts to exploit a spe-
cific part Dt of a power trace Pt that processes key-dependent data within a
(known) cryptographic implementation at a given point in time t. A straight-
forward countermeasure is thus to bury Dt with lots of additive (Gaussian)

Generic Side-Channel Countermeasures for Reconfigurable Devices 35

noise Nt so that the overall power trace can be modeled as Pt = Dt + Nt.
It is evident that the addition of noise is not capable to hide the attackable
part Dt completely but it can complicate a practical DPA attack, especially
when combined with further countermeasures.

– Timing Disarrangement : DPA attacks operate on a high number of (key-
dependent) data points that are assumed to be sampled at exactly the same
point in time. The attacker usually runs a series of alignment filters to over-
come any intrinsic misalignment within the data processing, e.g., due to
clock jitter or other operational variations. An effective countermeasure is
to further randomize or shuffle the points in time when such attackable op-
erations are processed. Of course, this method can also be overcome [3,5],
requiring the attacker to use advanced filtering functions beyond simple peak
alignment, such as complex integration and windowing methods.

– Signal Masking and Scrambling: An extensive protection against DPA can
only be obtained when the attackable part of the signal Dt completely disap-
pears in the power trace. This can be done by applying random masks to Dt.
Unfortunately, this strategy is usually very specific, requires expert knowl-
edge and involves significant changes of the cryptographic algorithm at the
additional cost of reduced performance and increased resource consumption
(see, e.g., for rather costly proposals [7,8]).

In the next subsections we investigate implementation strategies for generic
FPGA countermeasures that are widely available for a large number of (symmet-
ric) cryptographic systems. In particular, a primary design goal for this analysis
will be to utilize only the (limited amount of) prefabricated resources that are
available on recent (Xilinx/Altera) FPGAs.

2.1 Generating Gaussian Noise

Generating white (Gaussian) noise on FPGA devices seems to be simple on
the first glance. First, place and route the logic for the main application (that
includes particularly a cryptographic component) on the FPGA device. Then,
connect all yet unused (but still routable) resources of the device to some ran-
dom data source and clock them accordingly to the chip enable signal of the
cryptographic component. This can even be done automatically, i.e., is certainly
possible to create a tool that detects and configures yet unused logic for noise
generation in a subsequent development step.

However, our goal in this section is much more specific: we intend to investigate
how to configure the available FPGA resources in a way that we achieve a
maximum noise level. More precisely, we now analyze three power-consuming
strategies that are based on cascading and misusing FPGA resources.

Shift Register LUTs (SRL). Toggling the level of an input signal is known
to have the highest impact on a gate’s power consumption in CMOS devices –
what also holds for SRAM-based FPGA devices. Thus, to generate high noise,
we need to toggle as many signals as possible. Taking a closer glance at modern
FPGA architectures, these devices consist of large amounts of combined logic

36 T. Güneysu and A. Moradi

SRLi

CLKCE

A

OI
SRLsSRL1 SRL2 ...

SRLsSRL1 SRL2 ...

R
N
G

CE1

CEr

CLK

Fig. 1. Noise generation based on shift-register LUT (SRL)

functions made up from flip-flops and lookup tables (LUT). LUTs with n inputs
and m outputs can be configured as an n-to-m logic function generator (typically,
n = 4 or n = 6 and m = 1). A straightforward approach would then cascade
a large number of such LUT/flip-flop pairs (with the LUT being configured as
logical NOT) and clock these elements according to a connected random source.
However, we certainly could do better. Looking more into the details, a LUT
itself consists of 2n storage bits representing the truth table of its logic function.
As a secondary function, the truth table of these LUTs can often be configured
as 2n-bit shift-register LUT (SRL) providing significant savings with respect to
conventional shift registers made up from cascades of flip-flops. For an effective
noise source, we now configure r cyclic rings of s SRL elements initialized with
an alternating (toggle) bit pattern and connect the chip enable signal for each
ring to r output bits of a random number generator1. The two parameters r
and s control the amount of noise variance and noise amplitude, respectively.
Figure 1 sketches the noise generating circuit using r × s SRL elements. Please
note that this noise generator does not have an output, hence synthesis tools
usually trim such unconnected components. Therefore, the KEEP attribute needs
to be applied in the HDL description for such constructions to override an un-
desired optimization/removal by the tools.

BRAM Write Collisions (BWC). Another general observation for hardware
devices is that irregular behavior often leads to increased power consumption.
A write collision, for example, can occur in the dual-ported block memories
(BRAM) of FPGAs when different data is written at the same memory address
of a BRAM. For Xilinx FPGAs, for example, the result of such an incident is
just undefined [26]. Indeed, it was shown in [9] that the different driving direc-
tions lead to data contention on the internal bus lines resulting in metastabilities
within the inverter pair of a storage cell. We therefore assume the opposite and
conflicting driving directions of the two memory ports to lead to an increased
power consumption. We investigated and evaluated this effect using a construc-
tion with r BRAMs and s-bit port width as shown in Figure 2. Note that BRAMs
are typically a scarce resource in most FPGA applications. But since we only
need a single/few empty memory lines to create a write collision, we can also

1 For test implementations in this work, we used simple PRNGs, however the ideas
can easily be combined with available TRNG constructions for FPGAs, e.g., see [25].

Generic Side-Channel Countermeasures for Reconfigurable Devices 37

PORT B PORT A

36
IN

B

IN
A

A
D

D
R

A

A
D

D
R

B

W
E

B

W
E

A

36

Vcc

CE

BN

r1 2

CE1 CEr

CLK

9

RNG

CE2

Fig. 2. Noise generator based on memory write collisions

reuse (inactive) BRAMs for noise generation that are actually used otherwise in
the main application and whose memory is not entirely used.

Short Circuits in Switch Boxes (SC). Producing a short circuit in a hard-
ware circuit is certainly another strategy to significantly increase the power con-
sumption of a device. Hence, we now try to generate a controlled short circuit
(SC) on an FPGA for a very limited amount of time. Note that creating SCs
in such a controlled way is not easy with FPGAs, since the design tools run
sophisticated design rule checkers that inhibit any misconfiguration. Thus, the
development of SC elements need to be done manually and cannot be simplified
using HDL tools.

Moreover, we need to consider that SCs have the potential to damage a device.
However, FPGA vendors are faced with this issue already by design. Recall that
the vendors need to make sure that a configuration file cannot damage a device
even if it is corrupted. In case such an illegal configuration is loaded into the
FPGA in serial manner, many SCs can happen before the integrity check is
finally able to detect the invalid device state. This takes place, in particular,
on Xilinx Virtex devices with enabled bitstream encryption when an encrypted
configuration is loaded for which no or an incorrect key is present (in this case,
the FPGA is getting noticeably hot). Hence, FPGA vendors typically limit the
strength of all conflicting drivers to less than 100 μA. Therefore, we can conclude
that intentionally constructing short circuits should not have severe consequences
on an FPGA’s constitution or lifetime.

In order to create an SC in an FPGA configuration based on our Xilinx FPGA
setup (cf. Section 3), we refer to the work by Beckhoff et al. [2] which lately
demonstrated that LUT input multiplexers of the switch boxes are the most
promising source to generate high-power SCs. We used Xilinx low-level tools to
create three interconnected LUTs (i.e., two first-level LUTs sourcing a second-
level LUT with two input multiplexers). Since it is not possible to directly define
the state of routing input multiplexers, we employed Xilinx Design Language
(XDL) to convert our placed design into a textual representation that then
allows to modify all programmable interconnect points (PIP) freely. We manually
reconnected the outgoing PIPs of the first-level LUTs to the identical pinwire of
the second-level LUT. This structure (see Figure 3) is then converted into a hard

38 T. Güneysu and A. Moradi

SCrSC1 SC2

IA,1

CLK

SCi
CLKSLICE1

IB,1 IA,2 IB,2 IA,r IB,r

SWITCH
BOX

SLICE2 SLICE3

IA IB

RNG

Fig. 3. Short circuits at the input multiplexer to a logic slice (denoted by red wires)

macro that can then be placed multiple times by black-box instantiation inside
the FPGA configuration, providing a large number of controllable SC elements.
Note that modern FPGAs contain several thousands of LUTs and corresponding
input multiplexers. Hence we can easily insert r instances with nearly no resource
overhead to scale the amount of noise accordingly to our needs. Note, however,
that SC elements should always be spread among the entire chip to distribute
the SC load to different power regions to avoid unintended side-effects.

2.2 Clock Randomization (CR)

DPA attacks need to exactly identify the point in time of a power trace when
cryptographic data is processed. In order to complicate data alignment, ran-
domized delays or dummy cycles are inserted into the cryptographic operation
either by special state machines or non-deterministic processors [3,10]. In this
work, we present a novel and very efficient way to randomize data processing by
using irregular clock cycle delays and multi-phase shifting obtained from digital
clock managers (DCM) in FPGAs. Note that modern FPGAs usually contain a
large number of DCMs (often ≥4) and clock buffers (≥16) of which many remain
unused in typical applications. Hence, the following proposal is very appealing
to use this type of resource which would be wasted otherwise.

The integrated clock-management functions of many FPGA devices allow
jitter correction, clock scaling and phase shifted clock signals. Clock buffers are
placed on strategic places of the FPGA to optimize clock distribution. They
also enable clock multiplexing (e.g., to drive the design temporarily at reduced
clock frequency to implement processor sleep modes) that intrinsically provides
a minimum cycle preservation. More precisely, assume we have two different
clocks that are multiplexed via a clock buffer to drive a component of the FPGA
design. When the clock input is requested to change from one to the other, the
clock buffer will wait until the currently selected first clock is low/goes low and
remains low until the second input clock has made a transition from high to low.
After that, the second clock starts driving the output. In addition, the behavior
can be interrupted (resulting in a wait state of undefined length) in case the clock
multiplexer is requested to switch clocks again before the first clock change has
been completely finished [26].

Generic Side-Channel Countermeasures for Reconfigurable Devices 39

RNG
PSD
C
M
A

PS
+4
5°

D
C
M
B

0°
90°

180°
270°

45°
135°
225°
315°

CLKCiph.

CLKI

S2

S0 S1

B

C

A

CLKI

A
B
C

CLKCiph.

Clock Output WaveformCLKFSM

CLKFSM

Fig. 4. Clock randomization using DCMs and a tree of clock buffers

Fig. 5. Circuit to detect external clock manipulations

DCMs in Xilinx FPGAs directly provide outputs for clocks with fixed phase
shifts of 0◦, 90◦, 180◦and 270◦. Furthermore, the phase of the output clock can
also be set to a custom value (which can also be changed dynamically during
runtime what is not considered in this work). Our clock randomization coun-
termeasure makes use of a set of l DCMs providing n different output clocks,
each phase-shifted by a fixed amount of 360/n degrees. A tree of n − 1 clock
multiplexers combines the different clocks to a single clock output that drives
the cryptographic core. In addition to that, we need two further clock buffers
to sample the input clock and to generate a system clock that is used for the
remaining non-cryptographic part of the application (and for noise generating
countermeasures). A sample design of this countermeasure with n = 8 different
phase-shifted clocks is shown in Figure 4.

2.3 Preventing Clock Frequency Manipulations (PCM)

DPA attacks are usually performed at rather low frequencies to easily allow
visual peak inspection of the power traces. However, DPA attacks are also at
higher clock frequencies possible (e.g., at more than 100 MHz, see [17]), but
become more complex due to low-filtering effects of the chip. Hence, to achieve
a simple attack setup, an attacker usually desires to reduce the external clock
frequency driving the FPGA. This can be prevented as follows. First, a DCM
always requires a specific minimum input frequency (specified by the FPGA
vendor), otherwise it may not lock (and the main application will not start).
Second, a system designer can easily include a detector that triggers an alarm
as soon as the clock falls below a specified minimum clock frequency. Figure 5
shows a suitable clock measurement circuit that uses a fixed path delay to shift
the phase of a target clock by a fixed amount of d = 180+a where a > 0 denotes
an additional phase margin to overcome clock jitter of the input clock. When an

40 T. Güneysu and A. Moradi

attacker attempts to reduce the external input clock frequency (or manipulate
the duty cycle) beyond this margin, either one of the flip-flops will sample the
alternate part of the clock period, causing finally the alarm to be triggered.

2.4 Block Memory Content Scrambling (BMS)

In this section we present a novel hardware countermeasure for FPGAs based
on BRAM-based S-box/T-box scrambling. In many symmetric ciphers, S-boxes
are used to introduce a non-linear component in the encryption process and
are usually implemented as simple lookup tables. Depending on their size and
construction, S-boxes can be realized either using (large amounts of) LUTs or
block memories on an FPGA. DPA attacks typically focus on the input and/or
outputs of the (known) S-boxes, hence a well-studied countermeasure attempts
to mask the S-box data with readily changing, random values. However, it turned
out that such a system either significantly reduces the encryption performance
and/or requires costly additional operations to pass a random mask through the
non-linear S-box [7,8]. Similar to the concept of random permutation tables by
Coron [4], we now build a freely running S-box masking scheme specifically for
FPGA device. We first assume that we can rewrite the round function y = R(x)
of an arbitrary symmetric cipher as composition of a linear part L(x) (including
a linear key addition function) and a non-linear part N(x) (implemented as
a-on-b-bit S-box), resulting in y = L(N(x)) as round function.2 Assume now
N is realized as a lookup table using one port of a dual-ported BRAM of an
FPGA device. We further assume that N occupies less than half of the memory
available in the BRAM (i.e., 18KBit/36KBit for Xilinx devices). Now we define
two memory segments or contexts in the BRAM: an active context which contains
a recent version of the (masked) S-box currently used for encryption and an
inactive context containing a copy which is currently scrambled and remasked by
an encryption-independent process. The scrambling itself is a sequential process
on the second port of that BRAM that applies a b-bit mask m to each S-box
entry at address i of the active context and stores the result at address i ⊕
π(L(m)) of the inactive context (here, π(x) represents a selection function for
the corresponding S-box input bits if a �= b). In other words, it applies an
additive mask to the S-box output that is also pushed through the linear part
L of the round function to determine the new (permuted) input address index
where each updated masked S-box value is finally stored. Note that we refer to
this process (that adds a random b-bit mask m iteratively to all S-box entries
and writes each entry back to a permuted address) as scrambling rather than
masking. After all S-box entries have been processed by this scrambling process,
the context can be switched (i.e., the inactive context becomes active and vice

2 Note that this generalization actually holds for a large number of ciphers, though
symmetric round constructions often contain several linear operations L1, L2, L3, . . .
involving constructions such as y = L1(L2(N(L3(. . . (x)))). But assuming that only a
single non-linear component N is used in the round function, we can always combine
and rearrange subsequent rounds in a way that the linear subcomponents aggregate
into a single L as shown above and as could be seen in [4].

Generic Side-Channel Countermeasures for Reconfigurable Devices 41

Context B
S-box under
scrambling

Context A
Active
S-box

OUTA

ADDRA

Active Context

OUTB

ADDRB

WEB

RNG

FSM

INB

Mask m

L(x)

Fig. 6. Construction scrambling S-box entries with random masks

versa) and scrambling restarts on the recently deactivated context. Note that the
cipher and scrambler operate concurrently, however, the context switch is never
done within a running encryption to avoid data inconsistency issues. This implies
that multiple sequential rounds and encryptions are performed using the same
scrambled S-box and mask m (what could be exploited from a theoretical point of
view using higher-order attacks). We like to stress at this point that we designed
this countermeasure for performance and efficiency, since the concurrent data
scrambling process and the instant context switch does not reduce the encryption
speed. Note further, that in combination with previous countermeasures such as
clock randomization and noise generation, higher-order attacks will also become
extremely complex. Figure 6 shows finally the generic construction of the BRAM
scrambling circuitry.

3 Case Study

We now investigate how the countermeasures presented above can harden an
AES implementation against DPA attacks. We start with an unprotected AES
instance which we subsequently augment with our countermeasures to evaluate
their effectiveness.

3.1 Reference Architecture

For our experiments we used an unprotected, round-based T-table implementa-
tion of the standardized AES block cipher with a 128-bit data path. The round
function for such an implementation uses four 8-to-32-bit T-tables Ti to compute
a 32-bit share Sj of the 128-bit AES state S according to the following formula:

Sj = kj ⊕ T0[π0,j(S)] ⊕ T1[π1,j(S)] ⊕ T2[π2,j(S)] ⊕ T3[π3,j(S)], (1)

where πi,j represents a static input byte selection function. Note that we can
rewrite Equation (1) to

Rj(S) = L(N0(π0,j(S)), N1(π1,j(S)), N2(π2,j(S)), N3(π3,j(S)), kj) (2)

42 T. Güneysu and A. Moradi

B
R

A
M

8 8 8 32

T0 T1 T2 T3

IN0

ki

8

128

8 8 88

128

Column 3

T0 T1 T2 T3k0

ki+3

k3

32

Column 0

IN3

S3
S0

32 32

Fig. 7. T-table AES implementation used for this case study

with Ni = Ti and L(a, b, c, d, e) = a ⊕ b ⊕ c ⊕ d ⊕ e to comply with the generic
round function specification discussed in Section 2.4. Further information about
the AES T-table implementations can be found in [6]. Our unprotected AES
implementation as shown in Figure 7 requires 21 clock cycles (1 initial clock
cycle and 2 for each round) to compute a full AES-128 encryption and consumes
682 slices (1182 LUTs, 397 FF) and 8 BRAMs storing the 16 T-tables on a Xilinx
Virtex-II Pro FPGA.

3.2 Measurement Setup and Attack Model

The AES design explained above was implemented on the Xilinx Virtex-II Pro
FPGA (xc3vp7) of a SASEBO circuit board which is particularly designed for
side-channel attack evaluations [1]. The instantaneous power consumption traces
are collected using a LeCroy WP715Zi 1.5GHz oscilloscope at a sampling rate of
2.5GS/s and by means of a differential probe capturing the voltage drop across
a 1Ω resistor placed in the VCCINT (1.6V) path of the target FPGA.

In order to examine the leakage of the implementation and find a suitable
power model for the correlation power analysis (CPA) attacks, we started the
practical experiments when the target core is clocked at 24MHz which is selected
as the reference implementation for further comparisons. Figure 8(a) shows a
superposition of 1000 traces of this case indicating the well alignment of the
measurements. Since the I/O ports of the BRAMs of the target FPGA have a
considerably higher capacitance compared to the other low amount of logic cells
of our target design, data transfered through the BRAM buses caused by reading
the memory cells while computing the T-table outputs should have noticeable
impact on the power consumption. Therefore, we have used the Hamming weight
(HW) of the 32-bit T-table output as the hypothetical power model in a CPA
attack. The result of such an attack predicting the T-table outputs of the first
encryption round using 10 000 traces is shown in Figure 8(b). It shows that
– using a rule of thumb [17] – around 3000 traces are the minimum number
of required measurements. We have examined a couple of other hypothetical
models, and the best result was achieved using the aforementioned model.

Generic Side-Channel Countermeasures for Reconfigurable Devices 43

(a) (b)

Fig. 8. The AES core in 24MHz (a) superimposition of 1000 traces, (b) CPA attack
result using 10 000 traces

4 Evaluation and Results

The results of the attacks evaluating the effect of each method introduced in
Section 2 are presented in the following. Since the leakage model of the target
device is well known and can be appropriately estimated by a HW model, we
limited our evaluations to CPA attacks and considered the number of required
measurements as metric for comparisons. The result of each scheme is compared
to the results shown above in the reference implementation.

4.1 Noise Generators

Adding each of the noise generation schemes individually as explained in Sec-
tion 2.1 leads to an increased amount of switching noise and has an effect on
the number of required measurements for a successful attack. In order to practi-
cally examine their effectiveness, we added the noise generators based on shift-
register LUTs (SRL), BRAM write collisions (BWC) and short circuits (SC)
individually into the reference implementation and repeated the measurements
and corresponding attacks. We used uniform parameters for the individual noise
generators, namely r = 16 and s = 36, taking an additional resource consump-
tion of 576 LUTs (SRL), 16 BRAMs (BWC) and 48 LUTs (SC), respectively.
Figure 9 shows the result of the attacks when each of the noise sources is sep-
arately enabled in addition to the case when all of them exist in the design.
It can be concluded that adding noise sources with quite moderate parameters
already increases the number of required measurements slightly, i.e., to around
8000. In this context, the SC noise generator is obviously the most efficient one
with respect to the number of consumed resources. However, using solely noise
addition (even with much larger parameters for r and s) can certainly not be
considered as an optimum way to make any attacks infeasible.

4.2 Clock Randomizing

In Section 2.2 we presented the CR method to randomize the clock source by
randomly changing the clock phase to introduce a variable misalignment of the
power traces. For our attack, we used a setup based on l = 2 DCMs with
n = 8 phase-shifted clock outputs which are processed and multiplexed by 9

44 T. Güneysu and A. Moradi

(a) (b)

(c) (d)

Fig. 9. CPA attack results using 50 000 traces of the AES core in 24MHz including
(a) shift-register LUTs, (b) BRAM write collisions, (c) short circuits, and (d) all three
noise sources

clock buffers. An encryption clocked by this irregular output takes on average
3.77 times longer than our reference implementation. Embedding this unit into
the reference implementation – as expected – led to a variable amount of time
required for an encryption. Figure 10(a) shows a superimposition of 1000 traces,
already indicating a strong misalignment. Therefore, we performed the attacks
using considerably more measurements, i.e., 10 000 000. The results shown in Fig-
ure 10(b) signifies the need for around 3 000 000 traces to determine the correct
key hypothesis. We like to emphasize that the randomization of processing times
is not aligned with the primary clock any longer (unlike in shuffling schemes),
rendering a combing technique [24] useless in our case. Since combing is done
by adding up the leakage points of consecutive clock cycles of a trace while
– as shown in Figure 10(a) – it is here not possible to clearly distinguish the
clock cycles. Reducing the input clock frequency to facilitate the attack can be
prevented by using a detector for clock manipulations as shown in Section 2.3.
However, a windowing approach [3], summing up all points within a defined win-
dow, proved to be effective since the operating clock frequency of 24MHz let the
power peaks of consecutive clock cycles overlap with each other (i.e., this intrin-
sic low pass filter has the same effect as windowing). Indeed, we even repeated
this type of attack with different window sizes, but with no significant difference
to Figure 10(b).

4.3 Block Memory Content Scrambling

In order to integrate the BRAM scrambling technique (BMS) introduced in
Section 2.4 into our reference implementation, we need to duplicate the number
of BRAMs to provide a separate memory port and space for the scrambling

Generic Side-Channel Countermeasures for Reconfigurable Devices 45

(a) (b)

Fig. 10. The AES core in 24MHz equipped with the clock phase shift unit (a) super-
imposition of 1000 traces, (b) CPA attack result using 10 000 000 traces

(a) (b)

Fig. 11. The AES core in 24MHz equipped with BRAM scrambling (a) superimposition
of 1000 traces, (b) CPA attack result using 100 000 000 traces

process. For the scrambling, we used 16×32 bit masks mi to mask the output
of all 16 T-tables requiring a total of 512 random bits per scrambling cycle.
According to Equation (2), we can apply the linear transformation L of the 32-bit
AES round function to the masks by computing L(mi,mi+1,mi+2, mi+3, 0) =
Mi for i = 0 . . . 3. From each aggregated 32-bit mask Mi the corresponding
input byte mask is finally selected by π(Mi) and determines the corresponding
permutation mask to the next round’s T-table input.

Since this scheme does not affect the timing behavior of the design, the variety
of power traces should be similar to that of the reference implementation. One
difference that may have an influence on the power consumption is the additional
scrambler circuit that concurrently modifies the BRAM contents. Therefore, as
shown in Figure 11(a) the DC level of the power traces is increased compared
to Figure 8(a).

The input and output of the T-tables are now masked by random values which
are not shared inside a single round computation, and we expect this design to
avoid univariate power analysis attacks. In order to examine this claim, we have
measured 100 000 000 traces and have performed the same attack as before. The
result is shown in Figure 11(b).

However, a critical point is the reuse of the masks between the subsequent
rounds. This means, the 512-bit mask used in the first round is reused in the
later rounds since the BRAM sections used during an encryption process stay
unaltered. Therefore, a second-order attack is possible combining the leakages,
for example, of two consecutive rounds. To do this, the adversary needs to predict

46 T. Güneysu and A. Moradi

Table 1. Time and resource overhead for each proposed countermeasure for parameters
r = 16, s = 36 and l = 2, excluding RNG and output combining function. The plain
AES implementation consumes 8 BRAM, 1182 LUT and 397 FF on a Xilinx Virtex-II
Pro. Figures with asterisk (*) are not quantified due to implementation-specific char-
acteristics. Abbreviations: LUT=Look-Up-Table, FF=Flip-Flop, DCM=Digital Clock
Manager, BRAM=Block Memory, CB=Clock Buffer.

Section/ Generic Implementation AES T-Table Case Study
Method Logic Time Logic Time

2.1.1/SRL r · s LUT none 576 LUT none
2.1.2/BWC r BRAM, r · s LUT none 16 BRAM, 576 LUT none
2.1.3/SC 3 · r LUT none 48 LUT none

2.2/CR l − 1 DCM, 4l − 1 CB n/a* 1 DCM, 7 CB 3.77×
2.3/PCM 1 LUT, 2 FF, Delay Path none 3 LUT, 2 FF none

2.4/BMS n/a* none 8 BRAM, 1706 LUT, 1169 FF none

at least 240 bits of the key, i.e., 232 for 4 bytes of the first round key which are
at the same column after ShiftRows, and 28 for one byte of the second round
key. One may also think about combining the leakages of the scrambler module
with that of the first encryption round, but this requires to know exactly the
instance in time when the scrambler processes the T-table content used in the
next encryption. Note further that the scrambler unit operates independently
with a separate clock, hence its computations are not synchronized with the
encryption process.

4.4 Combining Countermeasures

Although we were already unable to defeat the latter countermeasure with first-
order attacks and 100 million traces, we like to stress that we still can strengthen
this design by adding the clock randomization and noise generation countermea-
sures. We have omitted to provide it as a separate result since it is similar to the
one depicted in Figure 11(b). The combination of all proposed countermeasures
are likely to harden our design against a large number of multivariate attacks
which are out of scope of this work. The designer thus can mix and match the
proposed countermeasures according to the security requirements of the appli-
cation and the remaining logic available on the FPGA device. Table 1 shows
the overhead of the countermeasures for the generic and specific case consid-
ering their impact on the logic resource consumption and execution time of a
cryptographic process. Comparing our results with other work, we noticed that
countermeasures specifically built for (comparable) FPGA devices are quite rare.
We thus only refer to the work [18] implementing an SCA countermeasure based
dynamic partial reconfiguration on a Virtex-II Pro. Their countermeasure re-
quires an overhead of 2566 slices (i.e., up to 5132 LUT/FF pairs) and reduces
the throughput of a plain AES implementation by a factor of 6.6. Except for
BWC, combining all our countermeasures of this work results in a more efficient

Generic Side-Channel Countermeasures for Reconfigurable Devices 47

solution (i.e., a combination of all methods, excluding BWC, consumes 2337
LUT, 1171 FF, 1 DCM, 7 CB and reduces the throughput by a factor of 3.77).

5 Conclusion

In this work we presented several generic hardware countermeasures against DPA
attacks that can be efficiently implemented on recent FPGA devices. We could
practically demonstrate that a combination of the presented countermeasures
(noise generation, clock randomization and memory scrambling) rendered first-
order DPA attacks with up to 100 million traces unsuccessful. For independent
verification of our results and future work (e.g., second-order SCA), the PROM
files with the AES implementation and all countermeasures for the SASEBO are
publicly available at http://www.emsec.rub.de/research/publications.

References

1. Side-channel Attack Standard Evaluation Board (SASEBO). Further information
are available via, http://www.rcis.aist.go.jp/special/SASEBO/index-en.html

2. Beckhoff, C., Koch, D., Torresen, J.: Short-Circuits on FPGAs Caused by Par-
tial Runtime Reconfiguration. In: FPL, pp. 596–601. IEEE Computer Society, Los
Alamitos (2010)

3. Clavier, C., Coron, J.-S., Dabbous, N.: Differential Power Analysis in the Presence
of Hardware Countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

4. Coron, J.-S.: A New DPA Countermeasure Based on Permutation Tables. In: Os-
trovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp.
278–292. Springer, Heidelberg (2008)

5. Coron, J.-S., Kizhvatov, I.: Analysis and Improvement of the Random Delay Coun-
termeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010)

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

7. Golic, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2003)

8. Goubin, L., Patarin, J.: DES and Differential Power Analysis (the “duplication”
method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

9. Güneysu, T.: Using Data Contention in Dual-ported Memories for Security Appli-
cations. Journal of Signal Processing Systems, 1–15 (2010)

10. Irwin, J., Page, D., Smart, N.P.: Instruction Stream Mutation for Non-
Deterministic Processors. In: ASAP, pp. 286–295. IEEE Computer Society, Los
Alamitos (2002)

11. Itoh, K., Yajima, J., Takenaka, M., Torii, N.: DPA Countermeasures by Improving
the Window Method. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002.
LNCS, vol. 2523, pp. 303–317. Springer, Heidelberg (2003)

http://www.emsec.rub.de/research/publications
http://www.rcis.aist.go.jp/special/SASEBO/index-en.html

48 T. Güneysu and A. Moradi

12. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

13. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

14. Macé, F., Standaert, F.-X., Quisquater, J.-J.: Information Theoretic Evaluation of
Side-Channel Resistant Logic Styles. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 427–442. Springer, Heidelberg (2007)

15. Mamiya, H., Miyaji, A., Morimoto, H.: Efficient Countermeasures Against RPA,
DPA, and SPA. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 343–356. Springer, Heidelberg (2004)

16. Mangard, S.: Hardware Countermeasures Against DPA – A Statistical Analysis
of their Effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222–235. Springer, Heidelberg (2004)

17. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

18. Mentens, N., Gierlichs, B., Verbauwhede, I.: Power and Fault Analysis Resistance
in Hardware Through Dynamic Reconfiguration. In: Oswald, E., Rohatgi, P. (eds.)
CHES 2008. LNCS, vol. 5154, pp. 346–362. Springer, Heidelberg (2008)

19. Moradi, A., Poschmann, A.: Lightweight Cryptography and DPA Countermea-
sures: A survey. In: Sion, R., Curtmola, R., Dietrich, S., Kiayias, A., Miret, J.M.,
Sako, K., Sebé, F. (eds.) RLCPS, WECSR, and WLC 2010. LNCS, vol. 6054, pp.
68–79. Springer, Heidelberg (2010)

20. Okeya, K., Takagi, T.: A More Flexible Countermeasure Against Side Channel
Attacks using Window Method. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES
2003. LNCS, vol. 2779, pp. 397–410. Springer, Heidelberg (2003)

21. Prouff, E., McEvoy, R.: First-order Side-Channel Attacks on the Permutation Ta-
bles Countermeasure. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747,
pp. 81–96. Springer, Heidelberg (2009)

22. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

23. Standaert, F.-X., Örs, S.B., Preneel, B.: Power Analysis of an FPGA: Implemen-
tation of Rijndael: Is Pipelining a DPA Countermeasure? In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 30–44. Springer, Heidelberg (2004)

24. Tillich, S., Herbst, C.: Attacking State-of-the-art Software Countermeasures—
A Case Study for AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS,
vol. 5154, pp. 228–243. Springer, Heidelberg (2008)

25. Varchola, M.: FPGA Based True Random Number Generators for Embedded Cryp-
tographic Applications. PhD thesis, Technical University of Kosice (2008)

26. Xilinx Inc. User Guides for Xilinx FPGA devices (April 2011),
http://www.xilinx.com

http://www.xilinx.com

Improved Collision-Correlation Power Analysis

on First Order Protected AES

Christophe Clavier1, Benoit Feix1,2, Georges Gagnerot1,2, Mylène Roussellet2,
and Vincent Verneuil2,3

1 XLIM-CNRS, Université de Limoges, France
firstname.familyname@unilim.fr

2 INSIDE Secure, Aix-en-Provence, France
firstname-first-letterfamilyname@insidefr.com
3 Institut de Mathématiques de Bordeaux, France

Abstract. The recent results presented by Moradi et al. on AES at
CHES 2010 and Witteman et al. on square-and-multiply always RSA
exponentiation at CT-RSA 2011 have shown that collision-correlation
power analysis is able to recover the secret keys on embedded imple-
mentations. However, we noticed that the attack published last year by
Moradi et al. is not efficient on correctly first-order protected implemen-
tations. We propose in this paper improvements on collision-correlation
attacks which require less power traces than classical second-order power
analysis techniques. We present here two new methods and show in prac-
tice their real efficiency on two first-order protected AES implementa-
tions. We also mention that other symmetric embedded algorithms can
be targeted by our new techniques.

Keywords: Advanced Encryption Standard, Side Channel Analysis,
Collision, Correlation, DPA, Masking.

1 Introduction

Side-channel analysis was introduced by Kocher et al. in 1998 [9] and marks the
outbreak of this new research field in the applied cryptography area. Meanwhile,
many side-channel techniques have been published. For example Brier et al.
proposed the Correlation Power Analysis (CPA) [4] which has shown to be very
efficient as it significantly reduces the number of curves needed for recovering a
secret key, and more recently the Mutual Information Analysis from Gierlichs et
al. [7] has generated a lot of interest.

Since side-channel attacks potentially concern any kind of embedded imple-
mentations of symmetric or asymmetric algorithms, it is recommended to apply
various masking countermeasures (among others) in sensitive products [1,14].
Second-order or higher-order side-channel analysis can however defeat such coun-
termeasures by combining leakages from different instants of the execution of an
algorithm and canceling the effect of a mask [12,13]. Such attacks are considered
very difficult to implement and generally require an important number of power
curves.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 49–62, 2011.
c© International Association for Cryptologic Research 2011

50 C. Clavier et al.

A specific approach for side-channel analysis is using information leakages to
detect collisions between data manipulated in algorithms. Side-channel collision
attacks against a block cipher were first proposed by Schramm et al. in 2003 [19].
Their attack uses differential analysis to exploit collisions in adjacent S-Boxes
of the DES algorithm. In [18] an attack against the AES is proposed to de-
tect collisions in the output of the first round MixColumns. Later, Bogdanov [2]
improved this attack by looking for equal S-Boxes inputs in several AES execu-
tions. He then studied in [3] statistical techniques to detect collisions between
power curves. Two recent papers have updated the state-of-the-art by introduc-
ing correlation based collision detection: Moradi et al. [15] proposed a collision
attack to defeat an AES implementation using masked S-Boxes, while Witteman
et al. [22] applied a cross-correlation analysis to an RSA implementation using
message blinding.

In this paper, we present two collision-correlation attacks on software AES im-
plementations protected against first-order power analysis using masked S-Boxes
and practical results on both simulated and real power curves. Our attacks are
much more efficient and generic compared to the one presented in [15]. Moreover
we believe our techniques to be applicable to other embedded implementations
of symmetric block ciphers.

The remainder of the paper is organized as follows: Section 2 presents the
two AES first-order protected implementations targeted by our study. Then in
Section 3 we present our attacks and practical results on simulated power curves
and on a physical integrated circuit. In Section 4 we compare our technique with
second-order power analysis. Section 5 deals with the possible countermeasures
and finally we conclude this paper in Section 6.

2 Targeted Implementations

The AES Algorithm. For the sake of simplicity in this paper we focus on the
AES-128 which includes 10 rounds, each one decomposed into four functions:
AddRoundKey, SubBytes, ShiftRows and MixColumns. It encrypts a 128-bit mes-
sage M = (m0, . . . , m15) using a 128-bit secret key K = (k0, . . . , k15) and pro-
duces a 128-bit ciphertext C = (c0, . . . , c15). Note however that the techniques
presented in this paper are easily applicable to AES-192 and AES-256.

The only non-linear function of the AES is SubBytes (also referred to as
the S-Boxes S in the following) which is a substitution function defined by the
pseudo-inversion I in GF(28) and an affine transformation. In this paper, we
consider the two following solutions that have been proposed to protect this
function against first-order attacks.

2.1 Blinded Lookup Table

The first targeted implementation uses a masked substitution table as proposed
by Kocher et al. [10] and Akkar et al. [1]. This masked table S′ is defined by
S′(xi ⊕ ui) = S(xi) ⊕ vi, with ui (resp. vi) the mask of the i-th input byte xi

(resp. output byte) of function SubBytes, xi, yi, ui, vi ∈ GF(28), 0 ≤ i ≤ 15.

Improved Collision-Correlation Power Analysis 51

This table is usually computed before the AES execution and stored in volatile
memory.

We further consider that the same masks u and v are applied on all S-Boxes
during one execution (or a round at least) of the algorithm, i.e. ui = u and
vi = v for 0 ≤ i ≤ 15. We believe that this hypothesis is realistic for embedded
security products considering that an expensive recomputation of the 256-byte
substitution table S′ is necessary for each new pair (u, v) and that the storage
of many masked tables is not conceivable in memory constrained devices.

2.2 Blinded Inversion Calculation

An alternative solution has been proposed by Oswald et al. [16] and improved
on by Canright et al. [5]. It consists in computing the inversion in GF(28) using
a multiplicative mask. To do this efficiently it is proposed to decompose the
computation using inversions in the subfield GF(24) (and possibly in GF(22)).
Such masking method is well suited for hardware implementations.

We recall some properties of the masked inversion. Let I ′ denote the masked
pseudo-inversion such that I ′(xi⊕ui) = I(xi)⊕ui. The element xi⊕ui in GF(28)
is mapped to a couple (xi,h ⊕ ui,h, xi,l ⊕ ui,l) of GF(24) such that xi ⊕ ui

∼=
(xi,h ⊕ui,h)X +(xi,l ⊕ui,l). As detailed in [16] many calculations occur on these
subfield elements to compute the masked inversion of xi ⊕ ui. The exact details
of these computations can be found in [16]. Note that in these formulas neither
xi,h nor xi,l is directly inversed in GF(24) but the following value:

di ⊕ ui,h = x2
i,h × 14 ⊕ (xi,h × xi,l) ⊕ x2

i,l ⊕ ui,h .

Then the masked inversion in GF(24) of di ⊕ ui,h gives d−1
i ⊕ ui,h and is used to

compute I ′(xi ⊕ ui).
The 16 input bytes of SubBytes are blinded using different masks ui, but

one can notice that input and output masks of the inversion stage are identical.
Therefore another threat to take into consideration is the zero value power analy-
sis. This technique has been introduced in [8] and [11], and recently implemented
on the masked inversion in [15]. Finally, note that the technique presented in
this paper also applies to the improved version of Canright et al. [5] when input
and output of the inversion are masked with the same value.

2.3 Measurements and Validation of Implementations

Curve Acquisition. We have developed software implementations on a contact
smart card using a 16-bit RISC CPU with low power consumption. Two different
methods were used to validate our attacks.

First, we used simulated curves: a proprietary tool was used to simulate power
curves based on the chip architecture and the code executed. This tool generates
ideal power consumption curves without any noise which enables to validate in
practice the resistance of an implementation to a set of side-channel attacks
leaving aside the acquisition and signal processing problems.

Second, we used real curves : we made physical measurements on the chip itself
using a MicroPross MP100 reader and a Lecroy WavePro numerical oscilloscope.

52 C. Clavier et al.

First-Order Resistance Validation. Since our aim was to present techniques
able to defeat first-order protected devices, we performed the classical first-order
differential and correlation analysis on the two implementations presented above,
before testing our collision attacks.

To do so, we applied DPA and CPA on the AddRoundKey, SubBytes and
MixColumns functions at the first and the last rounds of our implementations.
We also performed detailed SPA for each input byte value using many average
curves to detect any noticeable (biased) power traces that would reveal a poten-
tial leakage. In any case no leakage were observed. We also verified that both
implementations were immune to zero value power analysis and to the attack
presented by Moradi et al.

We have thus verified that to the best of our knowledge both considered
AES implementations are resistant to known first-order attacks. Nevertheless
we present in the next section two new collision-correlation techniques which
jeopardize these implementations.

3 Description of Our Attacks

In this section, we present the general principle of collision-correlation attacks
and then detail how it can be applied on the two considered AES implementa-
tions.

3.1 The Collision-Correlation Method

The principle of the attacks presented in this paper is to detect internal colli-
sions between data processed in blinded S-Boxes on the first round of an AES
execution. We demonstrate in the following that if i) we are able to detect that
the same data is processed at instants t0 and t1, and ii) the S-Boxes are blinded
such that either the same mask is applied to all message bytes or the mask is
identical at the input and the output of each S-Box, then it is possible to infer
information on the secret key with very few curves.

In the following, we will denote (T n)0≤n≤N−1 a set of N power traces cap-
tured from a device processing N encryptions of the same message M . Then
we consider two instructions1 whose processing starts at times t0 and t1 and
denote l the number of points acquired per instruction processing. As depicted
in Fig. 1 we finally consider Θ0 = (T n

t0)n and Θ1 = (T n
t1)n the two series of power

consumptions segments at instants t0 and t1.
Note that in practice the N power curves should start at the same instant

of the encryption and be perfectly aligned. Such conditions generally require
signal processing to be performed first. Note also that as the sampling rate is
usually such that l > 1 points are acquired per instruction, we can generalize
the definition of Θ0 and Θ1 as being series of l-sample curve segments instead
of series of single power consumption samples.
1 In our attacks we only consider the correlation between two identical instructions,

but it may even be possible to detect that two different instructions manipulate
identical data, e.g. by spotting a data bus using EMA.

Improved Collision-Correlation Power Analysis 53

T 0

t0 t0 + l t1 t1 + l

T 1

t0 t0 + l t1 t1 + l...

T N−1

t0 t0 + l t1 t1 + l

Θ0 Θ1

Fig. 1. General description of the collision-correlation attack

The final stage of the attack consists in applying a statistical treatment to
(Θ0, Θ1) in order to identify if the same data was involved in T n

t0 and T n
t1 for

0 ≤ n ≤ N − 1. Let Collision(Θ0, Θ1) denote a decision function returning
true or false depending on whether this property is presumed to be fulfilled
or not. Such a decision function would usually compare the value of a synthetic
criterion with a practically determined threshold. Possible examples of such a
criterion include the mean2 squared difference, the least squared difference with
binary or ternary voting [3], and the maximum Pearson correlation factor. As
we used this latter criterion in our study, we recall that an estimation of the
Pearson correlation factor between series of curve segments Θ0 and Θ1 at time
offset t (0 ≤ t ≤ l − 1) expressed as

ρ̂Θ0,Θ1(t) =
Cov(Θ0(t), Θ1(t))

σΘ0(t)σΘ1(t)

=
N
∑

(T n
t0+tT

n
t1+t) −

∑
T n

t0+t

∑
T n

t1+t√
N
∑

(T n
t0+t)2 − (

∑
T n

t0+t)2
√

N
∑

(T n
t1+t)2 − (

∑
T n

t1+t)2

where summations are taken over 0 ≤ n ≤ N − 1, and Θi(t) = (T n
ti+t)n for

i ∈ {0, 1}.
Collision(Θ0, Θ1) thus consists in comparing max0≤t≤l−1(ρ̂Θ0,Θ1(t)) to a

given threshold. In our experiments a preliminary characterization of the tar-
geted device enabled us to find proper values for l and the threshold.

Note that in this collision-correlation technique we compute the correlation
factor between a set of real power consumptions Θ0 with another set of real power
consumptions Θ1, rather than with model dependent estimations. As Bogdanov
already described in [3] about binary and ternary voting techniques, an inter-
esting property of this method is that, unlike Hamming weight based CPA, our
2 The mean being taken over the N traces as well as over the l samples.

54 C. Clavier et al.

criterion does not rely on a particular leakage model. The consequences of this
are that i) the attack is more generic and requires much less knowledge of the
targeted device, and ii) the secret S-Boxes may be attacked as well as known
ones.

As said above, correlating two instants (curve segments) on different traces
has already been applied by Moradi et al. [15] on a particular AES implementa-
tion. However they collect many traces obtained by encrypting random messages
and average them according to the value of an S-Box input byte. This results
in 28 averaged curves for each byte position, from which they try to detect
collisions between two bytes. They successfully carried out this attack on their
implementation of the Canright et al. [5] first-order protected implementation.
However as indicated by the authors their implementation presented a remain-
ing first-order leakage based on zero-value attack. We applied Moradi’s attack
to the first-order protected implementations considered in this study without
success. We thus consider that this attack is not applicable to most first-order
protected implementations. Indeed averaging different traces implies the use of
new random mask values which should spoil the influence of the unmasked data
and make the collision of intermediate values undetectable. The technique we
develop in this paper improves on Moradi’s attack in order to detect data col-
lisions by comparing two instants on a same trace and repeating it on many
executions without the destructive averaging process. In the following we detail
two applications of our attack on two different implementations.

Remark. Collision based analyses are also known as cross-correlation attacks in
[22] and multiple-differential collision attacks in [3]. We prefer the term collision-
correlation attacks since cross-correlation may be ambiguous depending on the
context, and multiple-differential collision attacks seems us too generic for our
method.

3.2 Attack on the Blinded Lookup Table Implementation

First, we present an application using principle presented above on the imple-
mentation described in Section 2.1. This attack targets the execution of the first
round SubBytes function. Each 16 masked input byte x′

i = xi ⊕u is substituted
by a masked output byte y′

i = yi ⊕ v where y′
i = S′(x′

i). We try to detect when
two SubBytes inputs (and outputs) are equal within the first AES round as
depicted on Fig. 2.

Detecting a collision in the first AES round between bytes i1 and i2 yields
that xi1 ⊕u = xi2 ⊕u and considering that xi = mi⊕ki⊕u implies the following
relation of the two involved key bytes:

ki1 ⊕ ki2 = mi1 ⊕ mi2 . (1)

Description. Practically, we encrypted N times the same message M and col-
lected the N traces corresponding to the first AES round. For each of the N

Improved Collision-Correlation Power Analysis 55

m4 ⊕ k4 ⊕ u m9 ⊕ k9 ⊕ u=

x′
0 x′

1 x′
2 x′

3 x′
4 x′

5 x′
6 x′

7 x′
8 x′

9 x′
10 x′

11 x′
12 x′

13 x′
14 x′

15

S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′

y′
0 y′

1 y′
2 y′

3 y′
4 y′

5 y′
6 y′

7 y′
8 y′

9 y′
10 y′

11 y′
12 y′

13 y′
14 y′

15

Fig. 2. Collision between the computation of two S-Boxes on bytes 4 and 9 on the
blinded lookup table implementation

traces we identified the 16 instants ti corresponding to the beginning of the com-
putation S′(xi ⊕ u). This allowed us to extract 16 segments from each trace and
construct the series Θi used for collision-correlation as explained in Section 3.1.

Performing Collision(Θi1 , Θi2) for all the 120 possible pairs (i1, i2) yields a
set of relations (i1, i2, mi1 ⊕mi2) given by Eq. (1). By repeating this process for
several random messages M one can accumulate enough relations so that the
secret key is recovered up to a guess on one key byte.

Based on 10 000 simulations we observed that on average 59 random messages
(each one being encrypted N times) provide enough relations to retrieve the key
up to an unknown byte.

Practical Results. We present hereafter our results on both simulated and
real curves.

On simulated curves. The threshold of Collision was fixed to having at least
one point among the l points correlation curve equal to 1. Under this condition
our attack was successful for N = 16. Since a mean of 59 different messages are
required, then 16 × 59 = 944 traces are sufficient on the average for the attack
to succeed on simulated curves.

Figures 3 and 4 show the correlation curves obtained for two different mes-
sages. Both figures present the 120 outputs of ρ̂Θi1 ,Θi2

(t), i1 < i2 for each mes-
sage. The black curve on Fig. 3 corresponds to a collision found for the first
message, whereas the second message yields no collision.

On real curves. The attack was successful using N = 25 so that less than 1 500
traces allow to recover the key. Notice how few traces are needed to detect a
collision by correlation. This confirms that the collision-correlation technique is
much more efficient than classical model-based CPA which would not obtain high
correlation levels with only 25 traces. Figure 5 shows an example of a correlation
peak when an equality between two S-Box outputs occurs, while Fig. 6 shows
the correlation curve when all S-Box outputs are different.

Note that in the case of real curves the threshold is slightly different. To
identify a clear relation between two S-Box outputs the correlation curve must

56 C. Clavier et al.

Fig. 3. Correlation curves obtained for a
message giving one collision (black curve)

Fig. 4. Correlation curves obtained for a
message giving no collision

Fig. 5. Correlation peak on real curves
when a collision occurs (black curve)

Fig. 6. No correlation peak occurs on real
curves when intermediate data differ

be greater than 0.8 in the interval [130, 160]. So only these l = 30 points must
be considered when computing Collision(Θ0, Θ1).

Attack Improvement. The method for obtaining information about the key as
described above basically exploits collision events where a pair (i1, i2) of indices
gives a high correlation between Θi1 and Θi2 revealing the value of ki1 ⊕ ki2 .
While very informative, such collision events occur much less frequently than
non-collision ones, that is when Θi1 and Θi2 show no significant correlation
between each other. Non-collision events individually bring quite few information
– namely that ki1 ⊕ ki2 is different from mi1 ⊕ mi2 – but they are so numerous
that it appears worth trying to exploit them also.

As was already noted in [6,2], the problem of solving a set of equations in-
volving sub-parts of the key can be formulated in terms of a labelled undirected
graph. Each vertex i represents a key byte index and the knowledge of the XOR
between two key bytes is represented by an edge (i1, i2) labelled with ki1⊕ki2 . At
the beginning the graph does not include any edges. Each time a collision occurs
between two unrelated key bytes a new edge is put on the graph and results in
the merge of two connected components into a single larger one. All key byte
values belonging to the same connected component can be derived from each
other, and the goal of the attacker is to end up with a fully connected graph.

For a given message, only 0, 1, or 2 from the 120 pairs (i1, i2) lead to collisions
in most cases. All other pairs reveal some impossible value for each ki1 ⊕ ki2 .

Improved Collision-Correlation Power Analysis 57

Gathering all the information provided by these non-collisions, for each (i1, i2)
we maintain a blacklist of impossible values for the XOR of the two key bytes3.

Given the information provided by previous messages to the current graph
and blacklists, we adaptively choose the next message in order to maximize its
usefulness which we define as the number of pairs (i1, i2) where one can expect
new information (either positive or negative) to be obtained. As a first idea we
could define the penalty of a candidate message as the number of pairs (i1, i2)
for which mi1 ⊕mi2 is already blacklisted. Obviously the chosen message should
minimize the penalty. Actually this is slightly more complex and the definition
of the penalty of a message should be refined. Indeed we must also consider cases
where the message is useful for (i1, i2) and (i1, i′2) – that neither mi1 ⊕ mi2 nor
mi1 ⊕ mi′2 are blacklisted – but the value of ki2 ⊕ ki′2 is known to be precisely
equal to mi2 ⊕ mi′2 . In such a case the two usefulness opportunities brought by
the message on pairs (i1, i2) and (i1, i′2) would bring the same information so
that they should count for a single one and the penalty of that message must be
increased by one.

In order to find a message with minimal penalty we devised a heuristic which
works in two steps. In the first step we consider some random messages (say a
few hundred) and select the one with the lowest penalty. This first step ends
with a somewhat good candidate. Then in a second step we repeatedly attempt
to decrease further the penalty by trying small modifications on this candidate
until no more improvements occur by small modifications.

We simulated our method for adaptively choosing the messages. In these sim-
ulations we assumed that the attacker is always able to correctly distinguish
between collision and non-collision events. Based on 1 000 simulations with ran-
dom keys, we show that the key is fully recovered (up to the knowledge of one
of its bytes) with as few as 27.5 messages instead of 59 messages with the basic
method. As distinguishing between a collision and a non-collision necessitates
only 25 traces per message, a mere 700 executions would suffice to recover the
key by analysing real curves.

3.3 Attack on the Blinded Inversion Implementation

The previous attack cannot be applied to the blinded inversion implementation
described in Section 2.2 since the different S-Box input and output bytes are
masked with different values ui. However there may exist a possible leakage
leading to what we may call a Zero & One value attack.

One can notice that values 0 and 1 produce a collision between the input and
the output of the masked pseudo-inversion stage I ′ as depicted on Fig. 7. This
is due to the following properties of the pseudo-inversion:

I(0) = 0 ⇒ I ′(0 ⊕ ui) = 0 ⊕ ui

I(1) = 1 ⇒ I ′(1 ⊕ ui) = 1 ⊕ ui

3 Some of these blacklists must also be updated when two connected components are
merged.

58 C. Clavier et al.

0 ⊕ u3

x′
0 x′

1 x′
2 x′

3 x′
4 x′

15
. . .

I′ I′ I′ I′ I′ I′. . .

y′
0 y′

1 y′
2 y′

3 y′
4 y′

15
. . .

0 ⊕ u3

or

1 ⊕ u3

x′
0 x′

1 x′
2 x′

3 x′
4 x′

15
. . .

I′ I′ I′ I′ I′ I′. . .

y′
0 y′

1 y′
2 y′

3 y′
4 y′

15
. . .

1 ⊕ u3

Fig. 7. Collision between the input and the output on byte 3 of the blinded inversion
I ′ (values 0 and 1 lead to a collision)

The two cases leading to a collision are indistinguishable from one another.
Detecting a collision between the input and the output of a blinded inversion
gives either x′

i = 0 ⊕ ui or x′
i = 1 ⊕ ui which reveals a key byte except one bit:

ki = mi or ki = mi ⊕ 1 .

Description. Assume we want to recover the 7 most significant bits of k0. For
every even byte value g we encrypt N times a single message M with m0 = g and
collect the corresponding power consumption traces T n,g, 0 ≤ n ≤ N − 1. Note
that in this attack we only need to guess the 7 most significant bits because the
least significant one is indistinguishable. Let’s denote t0 and t1 the instants when
x0 ⊕ u0 is loaded before the pseudo-inversion I, and when the result is stored
respectively. For each of the N traces we extract the two segments T n,g

[t0,t0+l−1] and
T n,g

[t1,t1+l−1] and construct the series Θg
0 = (T n,g

[t0,t0+l−1])n and Θg
1 = (T n,g

[t1,t1+l−1])n.
For this step of our attack it is helpful to have some experience on the targeted
implementation identify exactly where these two segments are located.

Applying the decision function Collision(Θg
0 , Θg

1) for all the 128 possible
values g will reveal two possibilities for k0. Repeating this step for all key bytes
allows the key space to be reduced to 216 values only. Note that a trick which
allows to considerably reduce the number of traces is to encrypt the messages
Mg = (g, g, . . . , g) with all bytes equal.

Results on Simulated Curves. As for previous attack on simulated curves,
a relation is established when at least one point among the l points correlation
curve is equal to 1. The attack is successful using N = 16 curves for each key
guess. Figure 8 shows the 128 correlation curves for all possible guesses on k0.
The black curve corresponds to the correct guess for k0.

The attack on this second implementation has thus been validated on simu-
lated curves. We did not acquire real curves for this implementation. Based on

Improved Collision-Correlation Power Analysis 59

Fig. 8. Collision-correlation curves in the pseudo-inversion of the first byte in GF(28)

what has been observed on the previous attack (successful results obtained using
simulations have led to successful results on the chip in practice), we believe that
the attack would be successful on the real chip too, using a value for N of the
same order to what was necessary for the first attack.

4 Comparison with Second Order Analysis

In this section, we present a brief comparison between the collision-correlation
method and some known second-order attacks. Our analysis was inspired from
the recent framework introduced by Standaert et al. in [20] and refined later
in [21]. This comparison gives an overview on the efficiency of these different
second-order techniques, and highlights how much the collision-correlation anal-
ysis improves on second-order attacks.

Our analysis targets the first implementation only. We compared the collision-
correlation analysis with the second-order analysis involving the absolute differ-
ence combining function f1, the squared absolute difference combining function
f2 and the normalized product combining function f3, when using as distin-
guisher the Pearson linear correlation factor ρ̂. Note that we did not used Mutual
Information Analysis, whose results remain less efficient than the classical CPA
in practice.

For sake of simplicity, we consider that the power consumption at instant
t is the Hamming weight of the intermediate data involved in the computation
plus a centered Gaussian noise ωσ with standard deviation σ. Therefore HWn(z)
corresponds to the handling of the value z for the n-th encryption. We now define
θ0 and θ1 as:

θ0 = (HWn(S(mi ⊕ ki ⊕ u) ⊕ v) + ωσ)0≤n≤N−1

θ1 = (HWn(S(mj ⊕ kj ⊕ u) ⊕ v) + ωσ)0≤n≤N−1

Let gi (resp. gj) denote a guess on ki (resp. kj). We compute the estimated values
wgi,gj = HW(S(mi ⊕ gi) ⊕ S(mj ⊕ gj)). Considering the N messages we obtain

60 C. Clavier et al.

Fig. 9. Success rates of different simulated second-order attacks

the series Wgi,gj = (wn
gi,gj

)0≤n≤N−1. Using the combining function fj , the right
key bytes are obtained for the highest correlation value ρ̂(fj(θ0, θ1), Wgi,gj).

Then as in [21] we execute many times the attack with the different com-
bining functions and calculate the success rate of each one. Figure 9 shows two
comparison graphs, one for σ = 0.75 and the other for σ = 2. Both graphs plot
the success rates on 50 runs with respect to the number of curves used.

We emphasise that in this comparison the second-order attacks are shown in
a very favorable light. Indeed the correlation model used here is exactly the one
applied to simulate the curves. In practice an attacker would not have such good
properties.

5 Countermeasures

The attacks presented in this paper defeat first-order protected implementations.
Therefore, an obvious countermeasure would be to apply second-order masking.
To the best of our knowledge, the best solution should be the countermeasure
presented by Rivain et al. [17]. It allows the implementation of proven d-order
DPA resistant AES for any d ≥ 1.

Another countermeasure against our first attack may simply consist in ex-
ecuting the SubBytes function in a random order. Even if this method is not
theoretically perfect, it may be sufficient to practically resist to second-order at-
tacks. Considering the second implementation, we think that its main weakness
is the use of a same mask before and after each byte pseudo-inversion. If the
result is masked with a different value then the collision-correlation attack is no
longer feasible.

It is also necessary to consider that depending on the quality of the hardware
countermeasures provided by the device, these attacks can become much more
complicated in practice.

6 Conclusion

We have presented a new collision-correlation analysis method on first-order se-
cured AES implementations. We highlighted the fact that this kind of attack is

Improved Collision-Correlation Power Analysis 61

more powerful and practicable than previous second-order power analyses, and
increases the risk of these implementations being broken in practice. This con-
firms the necessity for developers to take into account how collisions of masked
data may be unsafe in cryptographic implementations. A possible countermea-
sure could be the use of second (or higher) order resistant schemes.

Though we presented practical results on software implementations, we believe
that this technique may also be a threat for hardware coprocessors. Therefore
the collision-correlation threat should be taken into consideration by developers
and designers during their embedded cryptographic design.

Acknowledgments. The authors would like to thank Sean Commercial for his
valuable comments and advice on this manuscript. We would also like to thank
the anonymous reviewers of this paper for their fruitful comments and advice.

References

1. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

2. Bogdanov, A.: Improved side-channel collision attacks on AES. In: Adams, C., Miri,
A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Heidelberg
(2007)

3. Bogdanov, A.: Multiple-differential side-channel collision attacks on AES. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer,
Heidelberg (2008)

4. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. Canright, D., Batina, L.: A Very Compact “Perfectly Masked” S-Box for AES. In:
Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 446–459. Springer, Heidelberg (2008)

6. Clavier, C.: An improved SCARE cryptanalysis against a secret A3/A8 GSM al-
gorithm. In: McDaniel, P., Gupta, S.K. (eds.) ICISS 2007. LNCS, vol. 4812, pp.
143–155. Springer, Heidelberg (2007)

7. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

8. Di Golic, J., Tymen, C.: Multiplicative masking and power analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2003)

9. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Kocher, P.C., Jaffe, J.M., June, B.C.: DES and Other Cryptographic Processes
with Leak Minimization for Smartcards and other CryptoSystems, Journal = US
Patent 6,278,783 (1998)

11. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

62 C. Clavier et al.

12. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

13. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

14. Messerges, T.S.: Securing the AES Finalists Against Power Analysis Attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

15. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 125–139. Springer, Heidelberg (2010)

16. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

17. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Man-
gard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427.
Springer, Heidelberg (2010)

18. Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES: Com-
bining Side Channel- and Differential-Attack. In: Joye, M., Quisquater, J.-J. (eds.)
CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)

19. Schramm, K., Wollinger, T., Paar, C.: A New Class of Collision Attacks and Its
Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–
222. Springer, Heidelberg (2003)

20. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

21. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The World Is Not Enough: Another Look on Second-
Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129.
Springer, Heidelberg (2010)

22. Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA multiply-
always and message blinding countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011)

Higher-Order Glitches Free Implementation of

the AES Using Secure Multi-party Computation
Protocols

Emmanuel Prouff1 and Thomas Roche2,�

1 Oberthur Technologies, 71-73, rue des Hautes Pâtures 92726 Nanterre, France
e.prouff@oberthur.com

2 ANSSI, 51 boulevard de La Tour-Maubourg 75700 Paris 07 SP, France
thomas.roche@ssi.gouv.fr

Abstract. Higher-order side channel attacks (HO-SCA) is a powerful
technique against cryptographic implementations and the design of ap-
propriate countermeasures is nowadays an important topic. In parallel,
another class of attacks, called glitches attacks, have been investigated
which exploit the hardware glitches phenomena occurring during the
physical execution of algorithms. We introduce in this paper a circuit
model that encompasses sufficient conditions to resist glitches effects.
This allows us to construct the first countermeasure thwarting both
glitches and HO-SCA attacks. Our new construction requires Secure
Multi-Party Computation protocols and we propose to apply the one
introduced by Ben’Or et al. at STOC in 1988. The adaptation of the
latter protocol to the context of side channel analysis results in a com-
pletely new higher-order masking scheme, particularly interesting when
addressing resistance in the presence of glitches. An application of our
scheme to the AES block cipher is detailed.

1 Introduction

Higher-0rder Side-Channel Analysis (HO-SCA for short) is a class of physical
cryptanalyses against cryptosystems. They generalize the seminal side-channel
attacks introduced in the late nineties by Kocher et al. [11]. Contrary to the
latter attacks that only exploit instantaneous leakages, HO-SCA attacks mix
observations of several leakages to recover information about the secret parame-
ters of the targeted algorithm. The number of different leakages (e.g. related to
different times during the processing or to different locations in a circuit) defines
the attack order.

A very common countermeasure to protect block cipher implementations
against HO-SCA is to randomize the key-dependent variables by masking (a.k.a.

� This work has been carried out when the author was Post-doc at the University of
Paris 8, Département de mathématiques, 2, rue de la Liberté; 93526 Saint-Denis,
France.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 63–78, 2011.
c© International Association for Cryptologic Research 2011

64 E. Prouff and T. Roche

sharing) techniques [3, 8]. The masking can be characterized by both the num-
ber n of random shares and the smallest number d + 1 of them that are re-
quired to re-construct the variable. In this case, it is called a (n, d)-sharing. A
scheme specifying how to apply (n, d)-sharing to protect an algorithm implemen-
tation, is called dth-order masking scheme. It aims at defining a modus operandi
that thwarts any SCA attack of order lower than or equal to d. Even though a
(d+1)th-order SCA exploiting the leakage of d+1 shares can always theoretically
be successfully performed, it has been shown in [3] that the complexity of such
an attack increases exponentially with the order due to noises effects. Hence a
dth-order masking scheme is a sound countermeasure against HO-SCA attacks
when d is high enough w.r.t. the noise. Some dth-order masking schemes have
been proposed with formal security proof [9, 23–25]. However in 2004 Mangard
et al. [12] pointed out a weakness in the adversary model involved to construct
these masking schemes: when an implementation is processed, so-called hardware
glitches — common in CMOS technology — occur that deteriorate the effect of
masking and leak more information than the simple value of the variables spec-
ified by the implementation. Since the seminal work of Mangard et al. , several
papers have successfully applied so-called glitches attacks against implementa-
tions that were secure in the classical HO-SCA adversary model (see e.g. [12]).
Up to now, a unique masking scheme has been presented as secure in presence
of glitches [16–19]. This masking scheme is only resistant against 1st-order SCA,
which leaves open the problem of specifying cryptographic implementations se-
cure against higher-order SCA attacks in presence of glitches.

1.1 Related Works

The problematic of specifying cryptosystem implementations thwarting dth-order
SCA attacks in presence of glitches is recent. Actually, to the best of our knowl-
edge, most of the work on this subject have been done by Nikova et al. [16–19].
In those papers, a masking scheme is proposed that is claimed to resist 1st-order
SCA in presence of glitches. Unfortunately, adapting the proposed schemes to
also counteract SCA attacks of order greater than 1 seems difficult while keeping
the efficiency and performance on acceptable level. On the other hand, two im-
plementations proven secure against dth-order SCA attacks for any d have been
proposed by Ishai et al. [9] and Rivain et al. [24]. Ishai et al. ’s solution is ded-
icated to hardware implementations. It clearly does not thwart glitches attacks
and modifying it to achieve resistance against the latter ones is an (open) issue.
Rivain et al. ’s solution is dedicated to software context. When embedded in a
physical device there is no guaranty that no glitches effects will occur during
the processing. Providing such a guaranty may be possible by ensuring that all
the elementary operations are performed sequentially on a circuit which is re-
initialized between each operation. However, such a process, if possible, would
induce a prohibitive computational overhead.

Higher-Order Glitches Free Implementation of the AES 65

1.2 Our Contribution

In this paper, we introduce a generic framework for the design of Hardware
or Software implementations that counteract HO-SCA in presence of glitches
(Sect. 2). This framework is built around the notion of multi-party circuit which
is defined as the composition of several sub-circuits whose respective side-channel
leakages are strictly independent. Secondly, we establish a parallel between the
construction of a HO-SCA resistant implementation inside our new framework
and the classical problem of building Secure Multi-Party Computation (SMC)
protocols in the context of semi-honest adversaries. As a matter of fact, starting
from the seminal work of Ben-Or et al. on non-cryptographic SMC protocols [1],
we show how to design a multi-party circuit that can implement any function
with a minimum number of sub-circuits (Sect. 3). As an example, we specify
such a circuit for the AES-128 algorithm (Sect. 4 and [21] for a description of
the scheme for the full AES-128). To the best of our knowledge, our proposal is
the first implementation that claims to thwart dth-order SCA attacks in presence
of glitches.

2 Preliminaries and Multi-party Circuits

In this section, we introduce a framework in which the resistance of a (hardware
or software) implementation against HO-SCA in presence of glitches attacks can
be stated. First, we give a formal definition of the attacks. Then, in Sect(s).
2.2 and 2.3 we exhibit sufficient conditions and general principles to thwart the
attacks.

2.1 Computation and Adversary Models

SCA attacks exploit a dependency between a subpart of the secret parameter
and the variations of a physical leakage as function of a known input. This
dependency results from the manipulation of some variables, called sensitive,
by the implementation. We say that a variable Z is sensitive if it depends on
both a known variable and a secret parameter. The physical leakage on such a
variable will be viewed as a noisy leakage function L(Z) which returns a noisy
information about it. The noisy property of L(·) is captured by assuming that
the bias introduced in the distribution of Z given the leakage L(Z) is bounded.

In this paper, we shall see the implementation targeted by a SCA attack as a
circuit, whose formal definition is given hereafter:

Definition 1 (Circuit Cf). Let f be a function and let O be a set of elementary
operations. A circuit Cf implementing f thanks to operations in O is an oriented
graph were each cell ci defines an elementary operation and each edge bears an
intermediate variable Vij which is an output of the operation ci and an input of
the operation cj.

66 E. Prouff and T. Roche

Remark 1. The above notion of circuit encompasses both hardware and software
implementations. In the hardware context, the set O may only contain the logical
binary operations XOR and AND. In the software context, the set O may only
contain field operations ⊕ and ⊗ in GF(2m), where m is the architecture size.

Several adversary models have been proposed in the literature to capture a
practical SCA attacker against a circuit Cf . Among them, the probing adversary
model is the most popular one. We give hereafter a formal definition of this
adversary in our framework.

Definition 2 (dth-order Probing Adversary Model). Let Cf be a circuit
with (Vij)(i,j)∈I as edges and let d be a positive integer. Let L be a set of noisy
leakage functions. A dth-order Probing Adversary against Cf is an adversary that
can choose a subset J of I with #J = d and can observe the random variable
(Lij(Vij))(i,j)∈J , where (Lij(·))ij is a d-tuple of functions in L.

Remark 2. In the hardware context (when the circuit Cf is defined with respect
to operations XOR and AND), the Probing Adversary Model with L reduced to
the identity function exactly fits with the definition given by Ishai et al. in [9]. In
the software context (when the circuit Cf is defined with respect to operations
on m-bit words with m being the architecture size), our definition corresponds
to the classical notion of dth-order SCA [2, 10, 14]. In this case, L is usually
defined as the set of noisy leakage functions L(·) = HW(·) + B(μ, σ), where B is
a gaussian independent noise with mean μ and standard deviation σ and where
HW denotes the Hamming weight function.

Notation. An attack performed by the adversary in Definition 2 is called dth-
order probing attack. A circuit secure against those attacks is said to be d-probing
secure.

The two works of Ishai et al. [9] and Rivain and Prouff [24] show that achieving
perfect security in the Probing Adversary Model is possible. In parallel however,
several publications have shown that schemes secure in this model can still be
broken in practice (see e.g. [12] and [13]). The reason for this is that in physical
implementations (e.g. in CMOS), a lot of unintended switching activities occur.
These unintended switching activities are usually referred to as dynamic hazards
or glitches.

The effect of glitches on the side-channel resistance of masked circuits has first
been analyzed in [12]. The same year, a technique to model the effect of glitches
on the side-channel resistance of circuits has been published in [27]. Hereafter
we model an adversary which performs glitches attacks against a circuit. For
such a purpose, and following the same approach as in [27], we transform our
static definition of a circuit into a dynamic one. Actually, this simply amounts
to assume that the random variable Vij not only depends on the pair (i, j) but
also on a third time parameter t. We denote by Vij(t) the dynamic version of
Vij and call dynamic the corresponding circuit. The main difference between the
two models is that, in the probing model, the value taken by Vij is assumed

Higher-Order Glitches Free Implementation of the AES 67

to be constant, whereas its dynamic version Vij(t) can change over the time,
even when the circuit input is fixed. The internal state transition at time t′ of a
circuit Cf with (Vij)(i,j)∈I as edges refers to all the non-zero transitions of the
value taken by the Vij(t) at time t = t′. It is denoted by Cf (t′).

Definition 3 (dth-order Glitches Adversary Model). Let Cf be a circuit
and let d be a positive integer. Let L be a set of leakage functions. A dth-
order Glitches Adversary against Cf is an adversary that can choose d times
t1, t2, ..., td and can observe the internal state transition at the d selected times
(Li(Cf (ti))i≤d, where, for each i ≤ d, Li(·) is a function in L.

Notation. An attack performed by the adversary defined in Definition 3 is called
dth-order glitches attack. A circuit secure against those attacks is said to be
d-glitches free.

Security in the glitches adversary model implies security in the probing adversary
model whereas the converse is false. In the following sections, we introduce the
notions of d-probing security and of d-glitches freeness. In both cases, we exhibit
generic constructions principles that enable to design circuits achieving them.

2.2 Security in the Probing Adversary Model

The following definition formalizes the notion of security w.r.t. dth-order probing
adversaries. Note that this definition corresponds to that involved in numerous
papers (e.g. [2, 4, 10, 14, 20]).

Definition 4 (d-probing Security). Let d be a positive integer. A circuit Cf

with family of edges V is d-probing secure iff no family of at most d elements in
V is sensitive.

To achieve d-probing security, the most widely used approach is to split each
sensitive variable appearing in the algorithmic description of the cryptosystem
into several shares and to replace operations on the sensitive data by operations
on the shares. We give hereafter a formal description of this technique called
(n, d)-sharing in the sequel.

Definition 5 ((n, d)-sharing). Let n and d be two positive integers such that
n > d. A (n, d)-sharing of a variable Z ∈ GF(2m) is a family of n variables
(Zi)1≤i≤n such that:

1. there exists F from GF(2m)n into GF(2m) s.t. F (Z1, · · · , Zn) = Z,
2. for every I ⊂ [1; n] s.t. #I ≤ d, we have Pr(Z | (Zi)i∈I) = Pr(Z).

In relation with the notion of (n, d)-sharing we will sometimes use the notion of
independent sharings. A formal definition is given hereafter.

Definition 6 (Independence of (n, d)-sharings). Let n and d be two positive
integers such that n > d. Two (n, d)-sharings (Zi)i≤n and (Z ′

i)i≤n of two (not
necessarily distinct) variables Z and Z ′ are said to be independent if for every
pair of subsets (I, I ′) in [1; n], each of cardinality lower than or equal to d, we
have Pr((Zi)i∈I | (Z ′

i)i∈I′) = Pr((Zi)i∈I).

68 E. Prouff and T. Roche

Remark 3. Two (n, d)-sharings are independent if they involve independent
masking materials (i.e. different random values). The replacement of a (n, d)-
sharing of Z by a new independent one is sometimes called re-randomization or
masks refreshing in the literature [1, 24].

In the SCA literature, the family (Zi)1≤i≤n is usually called a masked represen-
tation at order d of Z. The function F is usually simply defined as the sum of
the Zi and n is chosen equal to (d + 1). Several ways have been proposed to ap-
ply such a d-sharing to protect a circuit against probing attacks. To the best of
our knowledge, only the circuit implementations proposed by Ishai et al. [9] and
Rivain and Prouff [24] are d-probing secure for any fixed value d. Unfortunately,
those schemes are not by construction secure in the Glitches Adversary Model.
In the following, we introduce a new strategy to directly obtain circuits secure
in the Glitches Adversary Model.

2.3 Security in the Gliches Adversary Model

To achieve security in the Glitches Adversary Model, we develop hereafter a
strategy that consists in hermetically separating some parts of the computa-
tion. The idea is to split a circuit Cf implementing a function f into several
sub-circuits Cf i such that the observation of d or fewer sub-circuits gives no in-
formation on the original circuit input. The security/pertinence of this approach
is essentially based on the following simple observation: if n sub-circuits Cf i
operate each on a single element of a (n, d)-sharing and if the processings leak
independently, then the circuit composed of the n sub-circuits is d-glitches free.
Of course, this observation alone does not directly permit to design a d-glitches
free circuit implementing any function f . Indeed, the above construction implies
that each sub-circuit is input with a single share of a sharing and cannot access
the other shares. By consequence, only a certain type of function f (homomor-
phic with respect to the sharing) can be split into n independent computations,
each operating only a single share of f ’s input and returning a sharing of Cf ’s
output.

Secure Multi-Party Computation protocols, and in particular the protocol
in [1] recalled in next section, are methods that extend the above idea to any
function f (i.e. not only homomorphic function for which, as we have seen, the
solution is straightforward). This extension however requires to provide each
sub-circuit Cf i with the ability to send to the other ones information about
some of its intermediate results. To ensure that this new ability does not im-
pact on the d-glitches freeness of the circuit composed of the n sub-circuits, this
sent information must itself be shared between all the other n sub-circuits. This
implies that each sub-circuit must only be able to access a single share of a
(n, d)-sharing of the intermediate result of another sub-circuit. To ensure that a
sub-circuit cannot receive several shares of a same (n, d)-sharing or cannot access
several shares related to dependent (n, d)-sharings, we set the condition that all
the shares accessed by a sub-circuit come from distinct and independent (n, d)-
sharings. To formalize our construction, each sub-circuit Cf i is extended with a

Higher-Order Glitches Free Implementation of the AES 69

family of n−1 channels ($ij)j �=i, the channel $ij being dedicated to the commu-
nication between Cf i and Cf j and being not accessible by another sub-circuit.
Through those channels, each Cf i can access a share of any intermediate result
of another sub-circuit, each new accessed share being related to a (n, d)-sharing
independent of the previous ones. The family of extended circuits (Cf i, ($ij)i�=j)i

is called a (n, d)-multi-party circuit. We give a formal definition of it hereafter.

Definition 7. Let f be a function and let Z denote its input. Let (Zi)i be a
(n, d)-sharing of Z. A circuit Cf composed of n extended sub-circuits
(Cf 1, ($1j)j �=1), ..., (Cf n, ($nj)j �=n) is a (n, d)-multi-party circuit iff:

– every Cf i is input with a share Zi only,
– each Cf i can access, through $ij, to a share of an (n, d)-sharing of an inter-

mediate result of the sub-circuit Cf j,
– all the shares accessed by a sub-circuit Cf i relate to mutually independent

(n, d)-sharings,
– the Cf

′
is outputs form a (n, d)-sharing of f(Z).

– for i �= j, Cf i leaks independently to Cf j.

The following proposition states on the security of our construction against
glitches attacks1.

Proposition 1. A (n, d)-multi-party circuit is secure in the dth-order Glitches
Adversary Model.

In the next section we recall the basics about Secure Multi-party Computation
and, in particular, a SMC protocol introduced by Ben Or et al. in [1]. Then,
we argue that this protocol can be adapted to our context in order to design
(n, d)-multi-party circuits as long as n is greater than 2d.

3 Secure Multi-party Computation

Secure Multi-Party Computation represents a rich area of research initiated by
the seminal work of Yao in 1986 [28]. For a n-ary function f and a family of n
players (Ii)i≤n, each holding a private value Zi, a secure multi-party computation
is a joint protocol enabling the players Ii to compute f(Z1, · · · , Zn) while under
attack by an external adversary and/or by a subset of malicious players (also
called the colluding players). The purpose of the attack is to learn the private
information of the – non-colluding – honest players or to cause the computation
to be incorrect. As a result, there are two important requirements of a multi-
party computation protocol: correctness and privacy. Those two requirements
relate to two different kinds of adversaries. The first one, usually called active,
is allowed to let the malicious parties deviate from the protocol in arbitrary
ways. It is out of the scope of this paper. The second adversary kind, called
passive or semi-honest, is only allowed to create collusion of players to gain
1 A sketch of proof can be found in the extended version of this paper [21].

70 E. Prouff and T. Roche

information about the secret. The corrupted players still follow the protocol and
never forge wrong data. A security threshold parameter d ≤ n is used to indicate
the maximum number of players the adversary is allowed to corrupt. A SMC
protocol secure against a passive or active adversary with threshold d is called a
d-private protocol. We show in this section how the problem of designing SMC
protocols secure for this adversary model is related to the problem of designing
multi-party circuits secure in the Glitches Adversary Model. Before that, we
recall in the next section the main aspects of the SMC protocol introduced by
Ben Or et al. in [1] on the basis of an idea proposed by Shamir in 1988.

3.1 Shamir’s Secret Sharing Scheme and BGW’s Protocol

In a seminal paper [26], Shamir has introduced a simple and elegant way to share
a secret Z (considered here in GF(2m)) between n < 2m players such that no col-
lusion of d < n players can retrieve information about Z. In Shamir’s protocol,
an entity called the Dealer generates a degree-d polynomial PZ(X) ∈ GF(2m)[X]
with constant term Z and secret coefficients ai (i.e. PZ(X) = Z +

∑d
i=1 aiX

i).
Then, he chooses n distinct non-zero elements α1, · · · , αn in GF(2m), makes
them publicly available and distributes to each player Ii the value Zi = PZ(αi).
To re-construct the secret Z, the players publish their private values Zi, recon-
struct PZ by polynomial interpolation (always possible since n > d) and evaluate
PZ(X) in 0 (we have Z = PZ(0)). It can be easily checked that Shamir’s sharing
fits with the notion of (n, d)-sharing given in Definition 5 with reconstruction
function F defined s.t. F (Z1, · · · , Zn) =

∑n
i=1 Zi

∏n
k=1,k �=i −αk(αi −αk)−1 (due

to Lagrange’s Interpolation, F (Z1, · · · , Zn) equals PZ(0) that is Z).

Remark 4. The products
∏n

k=1,k �=i −αk(αi −αk)−1 for all i can be precomputed
once for all. They actually correspond to the first row (λ1, · · · , λn) of the inverse
of the Vandermonde (n×n)-matrix (αj

i)1≤i,j≤n. We hence have F (Z1, · · · , Zn) =∑n
i=1 λiZi.

Starting from Shamir’s secret sharing, Ben Or et al. have defined in [1] a d-private
SMC protocol in the case where the number of players n satisfies n > 2d. This
construction, called BGW’s protocol in the following, is in fact a constructive
proof of Theorem 1 (see [1]):

Theorem 1. For every (probabilistic) function f and n > 2d, there exists a
d-private protocol.

In BGW’s protocol, the input (Z1, · · · , Zn) of the function f whose computa-
tion must be made d-private is assumed to correspond to Shamir’s sharing of
a secret variable Z. Namely, they correspond to the evaluation of a degree-d
secret polynomial PZ(X) in n distinct non-zero public points α1, ..., αn. It is
moreover assumed that each player Ii has been initially provided with a share Zi

which is unknown to the others. Then, the function f is modeled as a sequence
of computations operating either an affine transformation on an intermediate
state V or additions/multiplications between two intermediate states V and V ′.

Higher-Order Glitches Free Implementation of the AES 71

Let us denote by C such a (univariate or bivariate) computation. BGW’s protocol
ensures that the intermediate states V and V ′ at input of a bivariate operation
C have been shared w.r.t. two random polynomials PV and PV ′ which are in-
dependent but evaluated in the same public points α1, ..., αn (i.e. Vi and V ′

i

satisfy Vi = PV (αi) and V ′
i = P ′

V ′(αi) respectively). Moreover, for each C to
process, BGW’s protocol is designed such that each player Ii has either a single
share Vi (if C is univariate) or a single pair of shares (Vi, V

′
i) (if C is bivariate).

Eventually, BGW’s protocol describes a d-private multi-party computation for
each kind of operation C depending on its nature. We recall them hereafter.

If C is an affine transformation applied on a shared variable V , then
the protocol simply consists in asking each player Ii to apply C on its private
share Vi. After this step, each player owns a new share C(Vi) and the family
(C(Vi))i is a (n, d)-sharing of C(V). Indeed, since C is affine, C(PV (X)) is a degree-
d polynomial such that C(PV (0)) = C(V) and each C(Vi) corresponds to the
evaluation of PV in αi (i.e. C(Vi) = C(PV (αi))).

If C is the addition operation ⊕ applied on two shared intermediate
states V and V ′, then the protocol consists in asking each player Ii to com-
pute C(Vi, V

′
i) = Vi ⊕V ′

i . After this step, each player owns a new share C(Vi, V
′
i)

and the family of shares (C(Vi, V
′
i))i is a (n, d)-sharing of C(V, V ′). Indeed, by

construction of the Vi and V ′
i , we have C(Vi, V

′
i) = PV (αi) ⊕ PV ′(αi) which im-

plies that (C(Vi, V
′
i))i corresponds to the evaluation of the polynomial (PV (X)⊕

PV ′(X)) in (αi)i. This polynomial is of degree at most d and satisfies (PV (0) ⊕
PV ′(0)) = V ⊕ V ′ = C(V, V ′).

If C is the multiplication operation ⊗ applied on two shared intermediate
states V and V ′, then the protocol is more complex than the previous ones. It
involves the first row (λ1, · · · , λn) of the inverse of the Vandermonde (n × n)-
matrix (αj

i)1≤i,j≤n and it is composed of three steps2. Each player Ii:

1. computes C(Vi, V
′
i) = Vi ⊗ V ′

i = PV (αi) ⊗ PV ′(αi).
2. randomly generates a degree-d polynomial Qi such that Qi(0) = C(Vi, V

′
i)

and for every j �= i, sends the value Qi(αj) to player Ij .
3. computes the linear combination Q(αi) =

∑n
j=1 λjQj(αi).

The shares C(Vi, V
′
i) computed by the players at Step 1 correspond to the degree-

2d polynomial PV (X)×PV ′(X). As desired, the constant term of this polynomial
is C(V, V ′). However, the family (C(Vi, V

′
i))i built by Step 1 is not a (n, d)-sharing

since the corresponding polynomial is firstly not of degree d and secondly, is not
a random polynomial (its distribution over the set of degree-2d polynomials
with constant term C(V, V) is not uniform). To overcome this issue, Steps 2
and 3 perform both a degree reduction and a re-randomization of the shares.
More precisely, Step 2 allows player Ii to compute the (n, d)-sharing (Qi(αj))j

of its share C(Vi, V
′
i) thanks to a random polynomial Qi, and to send those

shares to the other players. Then, in Step 3 each player Ii computes Q(αi) =∑n
j=1 λjQj(αi). The family (Q(αi))i corresponds to the evaluation in (αi)i of

2 The protocol described in this paper is an improved version of the protocol originally
proposed by Ben-Or et al. [1]. It has been introduced by Gennero et al. in [6].

72 E. Prouff and T. Roche

the polynomial Q(X) =
∑

j λjQj(X), which, by construction, is of degree d
and admits C(V, V ′) as constant term. It is therefore a (n, d)-sharing of C(V, V ′)
(see [6] for more details).

3.2 SMC Protocol and Multi-party Circuits

The design of a (n, d)-multi-party circuit from BGW’s protocol is merely based
on the following remark: the d-privacy for a set of n semi-honest players evalu-
ating a function f coincides with the d-probing security for a set of n circuits
implementing f . Hence, if each player Ii in BGW’s protocol is replaced by an ex-
tended sub-circuit (Cf i, ($ij)j �=i), then the previous description specifies a (n, d)-
multi-party circuit. Moreover, such a design can be specified for any function f
as long as n and d satisfy n > 2d. If f is defined over the finite field GF(2m)
with addition and multiplication laws ⊕ and ⊗, the sub-circuits Cf i are defined
with respect to the elementary operations {A(m),⊕,⊗}, where A(m) denotes
the set of affine functions over GF(2m). By construction, each extended sub-
circuit (Cf i, ($ij)j �=i) always operates on a single share of a sensitive variable
and has never access to the other shares nor a function of them. Consequently,
the observation of an extended sub-circuit cannot give more information than
a single share of a (n, d)-sharing. Hence, since the sub-circuit executions do not
overlap, and by definition of a (n, d)-sharing, a glitches adversary must observe
the behavior of at least d + 1 extended sub-circuits (Cf i, ($ij)j �=i) to recover
sensitive information.

Eventually, to fully specify how to put BGW’s protocol into practice for a
(n, d)-multi-party circuit, it just remains to clarify the following practical points:

(a) Messages Exchange between Sub-circuits (a.k.a. players) during
Step 2 of the Secure Processing of ⊗. The exchange of messages is done
thanks to the channels $ij . In software, each channel $ij between a pair of sub-
circuits (Cf i, Cf j) may simply consist in a RAM space which is not accessed by
another circuits Cf k with k �= i, j. In hardware, the designer can code a unique
communication channel for each pair of circuits running sequentially. Another
solution could be to run each sub-circuit in a different environment (e.g. different
platforms) and to implement a channel between each pair of them.

(b) The Initial Shares Distribution by a Honest Entity (the Dealer).
In our context, the role of the Dealer is played by a special procedure run before
processing the multi-party circuit. This procedure shares the sensitive variable
as usually done in the literature to counteract dth-order probing attacks. To also
achieve security in the dth-order Glitches Adversary Model, the computation is
split into elementary operations that are processed sequentially. Although ex-
pensive this strategy can always be followed to go from probing attack security
to glitches attacks security.

Because it is the most tricky part in BGW’s protocol, we develop hereafter the
algorithm processed by each sub-circuit Cf i when computing the (n, d)-sharing
of the product of two shared values over a field GF(2m).

Higher-Order Glitches Free Implementation of the AES 73

Notation. Instruction read(X, $ij) reads the content of $ij (viewed as a chan-
nel or a memory address) and update X accordingly. Instruction write(X, $ij)
writes the value X on $ij .

Algorithm1. Secure Multiplication Part Dedicated to a Sub-Circuit Cf i, ($ij)
Input: the ith element PV (αi) of a (n, d)-sharing of V , the ithelement PV ′(αi) of a
(n, d)-sharing of V ′ and a set of channels ($ij)j �=i.
Output: the ith element QV ⊗V ′(αi) of a (n, d)-sharing of V ⊗ V ′.
Public: the points αi, the first row (λ1, · · · , λn) of the inverse of the matrix (αj

i)
with i and j lower than n.

1. do Wi ← PV (αi) ⊗ PV ′(αi)
*** Randomly generate a d-tuple (aj) of coefficients in GF(2m)

2. for j = 1 to d do aj ← rand(GF(2m))
*** Compute a (n, d)-sharing (Qi(α1), · · · , Qi(αn)) of Wi.

3. for j = 1 to n do Qi(αj) ← Wi ⊕⊕d
k=1 akαk

i

*** Send the shares of Wi to the other sub-circuits Cf j through $ij .

4. for j = 1 to n, j �= i write(Qi(αj), $ij)
*** Receive a share Qj(αi) from each sub-circuit Cj through $ji.

5. for j = 1 to n, j �= i read(Qj(αi), $ij)
*** Compute the share QV ⊗V ′(αi)

6. do QV ⊗V ′(αi) ←⊕n
j=1 λjQj(αi).

Steps 2 enables to randomly generate a degree-d polynomial Qi(X) = Wi +⊕d
j=1 ajX

j. Step 3 evaluates Qi(X) in each public point αj to construct a (n, d)-
sharing (Qi(αj))j of Wi. Step 4 sends those shares to the other sub-circuits and
Step 5 enables Cf i to receive the shares Qj(αi) computed by the other sub-
circuits Cf j . Eventually, Step 6 computes a share of V ⊗ V ′ for sub-circuit Cf i.

3.3 Complexity of the Scheme and Comparison

Complexity Evaluation. Except the multiplication, the proposed scheme re-
places each operation of a given function by n similar operations. Concerning
the multiplication ⊗ over GF(2m), it is performed by asking each of the sub-
circuits to run Algorithm 1. As a consequence, the multiplication ⊗ is replaced by
n2(d+1)+n multiplications, n2(d+1)−n additions and 2(n−1) read/write op-
erations. In the following table, we develop this complexity for n = 2d+1 (which
is the smallest value n allowed in BGW’s protocol). For comparison purpose, we
also give the complexity of the secure multiplication proposed in [24]. We recall
that when applied with n = 2d + 1, the multiplication algorithm proposed in
Algorithm 1 offers the same (perfect) resistance against d-probing attacks than
the method proposed in [24].

Comparison with Other State of the Art Solutions. In [18], Nikova et
al. have already attempted to apply the multi-party computation theory in the
context of hardware implementations, with 1-glitches freeness in mind. Contrary

74 E. Prouff and T. Roche

Table 1. Complexity of the secure processing of a field multiplication

Method multiplications additions random bytes

This paper 4d3 + 8d2 + 3d 4d3 + 8d2 + 7d + 2 d(2d + 1)

[24] 2d2 + 2d d2 + d + 1 d(d + 1)/2

to our proposal where data are shared thanks to Shamir’s scheme, Nikova et
al. ’s construction relies on the classical additive sharing (namely the circuit’s
input is additively masked with several, say n− 1, random variables). To secure
the processing on the masked input and the masks, they propose to split the
computation according to a set of security rules. The obtained circuit sharing
differs from ours in the two following main points. First, the security is only
proven against first-order attacks, which implies that Nikova et al. ’s construction
can not be used to design (n, d)-multi-party circuits for d > 1. Secondly, the
sharing is not explicit and involves an exhaustive search that becomes impossible
when the size m of the circuit input is greater than 5. Moreover, there is no
guaranty that the approach works for any circuit. In particular, Moradi et al. [15]
discuss the difficulty of applying Nikova et al. ’s scheme to the AES s-box. In [19],
the scheme has been applied to Noekeon. Instead of taking the direction proposed
in the present paper where the circuit is divided into several sub-circuits leaking
independently, they take an opposite position where the different shares of a
variable are manipulated simultaneously by the same circuit. Our scheme could
also be implemented in such a way but the resulting security against dth-order
attacks would be significantly reduced.

On the opposite side, the constructions proposed in [9] (operations in GF(2))
and in its extension [24] (operations in GF(2m)) are d-probing secure but not 1-
glitches free. The cost of the secure multiplication in BGW’s protocol is greater
than that of the d-probing secure multiplication proposed in [24] (see Tab. 1).
The overhead between the two methods is essentially explained by the fact that
BGW’s multiplication is designed to achieve d-glitches freeness whereas Rivain-
Prouff’s one is not. As a matter of fact and as far as we know, the only sound
way to induce glitches freeness in Rivain-Prouff’s multiplication would be to
implement it on a multi-party circuit such that each elementary operation is
processed on a separate sub-circuit. This implies the use of O(d2) sub-circuits
when BGW’s protocol, and then our scheme, was designed to minimize the
number of players (thus the number of sub-circuits here) to 2d + 1. Hence, even
though the overall bit-complexity of our scheme is one order of magnitude more
expensive than Rivain-Prouff’s scheme, its limited cost in sub-circuits number
makes it competitive when the design of sub-circuits is prohibitive.

4 Glitches Free HO-Masking of the AES

We apply here the construction proposed in Section 3.2 to design a multi-party
circuit implementing the AES-128 nonlinear layer SubBytes which applies the
same substitution-box (s-box) to every byte of the internal state. The s-box S

Higher-Order Glitches Free Implementation of the AES 75

is defined as the left-composition of an affine transformation ΓA over GF(256)
with the power function x �→ x254 over the field GF(256). In the following,
we propose a (n, d)-multi-party circuit (Cf 1, · · · , Cf n) implementing the power
function. The secure implementation of the full AES-128 is not detailed here,
but it can be straightforwardly deduced from the algorithms presented in this
section and in the previous section.

As shown in [24], the exponentiation x �→ x254 can be processed thanks to
a chain of operations composed of raisings to powers in the form 2j (which are
linear over GF(256)) and 4 field multiplications. For any j, let us denote by ηj

the power function x �→ x2j

, the exponentiation algorithm proposed in [24] is
recalled hereafter:

Algorithm2. Exponentiation to the 254
Input: V
Output: Y = V 254

1. Z ← η1(V) [Z = V 2]

2. Y ← Z ⊗ V [Y = V 2V = V 3]

3. W ← η2(Y) [W = (V 3)4 = V 12]

4. Y ← Y ⊗ W [Y = V 3V 12 = V 15]

5. Y ← η4(Y) [Y = (V 15)16 = V 240]

6. Y ← Y ⊗ W [Y = V 240V 12 = V 252]

7. Y ← Y ⊗ Z [Y = V 252V 2 = V 254]

Starting from Algorithm 2 and applying Algorithm 1 to securely process the
multiplications ⊗, we develop hereafter the s-box computation routine processed
by each extended sub-circuit (Cf i, ($ij)j �=i).

Algorithm3 . Secure S-box Processing Routine Dedicated to an Extended Circuit
(Cf i, ($ij)j �=i)
Input: the ith element PV (αi) of a (n, d)-sharing of V and a family of channels
($ij)j �=i.
Output: the ith element PV (αi) of a (n, d)-sharing of S(V).
Public: the n distinct points αi, the first row (λ1, · · · , λn) of the inverse of the matrix
(αj

i) with i and j lower than n.

1. do PZ(αi) ← η1(PV (αi)) [Z = η1(V)]

2. do PY (αi) ← Algorithm 1(PV (αi), PZ(αi), ($ij)j �=i) [Y = V ⊗ Z]

3. do PW (αi) ← η2(PY (αi)) [W = η2(Y)]

4. do PY (αi) ← Algorithm 1(PY (αi), PW (αi), ($ij)j �=i) [Y = Y ⊗ W]

5. do PY (αi) ← η4(PY (αi)) [Y = η4(Y)]

6. do PY (αi) ← Algorithm 1(PY (αi), PW (αi), ($ij)j �=i) [Y = Y ⊗ W]

7. do PY (αi) ← Algorithm 1(PY (αi), PZ(αi), ($ij)j �=i) [Y = Y ⊗ Z]

8. do PV (αi) ← ΓA(PY (αi)) [Y = ΓA(Y)]

76 E. Prouff and T. Roche

5 Conclusion

Thanks to the notion of multi-party circuit, we have shown in this paper that
it is possible to prove, under realistic assumptions, the resistance of a dth-order
masking scheme in the presence of glitches. This new framework enables to con-
vert any classical dth-order secure scheme into an implementation immune to
glitches effects. The complexity of the new implementation greatly depends on
the number of sub-circuits in which the initial scheme has been shared and the
latter scheme must therefore be carefully chosen. Here, we have proposed to
adapt the SMC protocol proposed in [1] to define a circuit sharing that is par-
ticularly well suited to our problematic. We have applied it to build a d-glitches
free AES-128 implementation. As a side effect of basing our security on SMC
scheme, the protocol is intrinsically immune against fault injection attacks when
fewer than 1/3 of the sub-circuits are corrupted. This is a real asset of the pro-
posed scheme when both active and passive attacks must be thwarted by the
implementation. In addition, our work, together with the recent analysis [7] of
Shamir’s secret sharing scheme conducted in the context of SCA, shows that this
sharing is a valuable alternative to the classical Boolean masking. It indeed not
only enables to define glitches-free implementations, but it is also intrinsically
more resistant against higher-order SCA (see [7,21] for an argumentation of this
point). We based our study on very strong hypothesis on the attacker power.
Even if such brutal approach allows us to develop sound proofs of security, the
resulted secure implementation is costly. Future works could investigate more
realistic (weaker) adversary models in order to build lighter secure implementa-
tions, or, to the same purpose, study alternative SMC protocols, less generic than
BGW’s protocol but more efficient. Another avenue could be to study some ex-
isting optimizations of BGW’s protocol (e.g. the optimization based on Franklin
and Yung’s trick [5] that is based on efficient parallel computations.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10.
ACM, New York (1988)

2. Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

3. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

4. Coron, J.-S.: A New DPA Countermeasure Based on Permutation Tables. In:
Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp.
278–292. Springer, Heidelberg (2008)

5. Franklin, M., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). In: STOC 1992: Proceedings of the Twenty-Fourth Annual ACM
Symposium on Theory of Computing, pp. 699–710. ACM, New York (1992)

Higher-Order Glitches Free Implementation of the AES 77

6. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified vss and fact-track multiparty
computations with applications to threshold cryptography. In: PODC, pp. 101–
111 (1998)

7. Goubin, L., Martinelli, A.: Protecting AES with Shamir’s Secret Sharing Scheme.
In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 63–78. Springer,
Heidelberg (2011)

8. Goubin, L., Patarin, J.: DES and Differential Power Analysis – The Duplication
Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

9. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

10. Joye, M., Paillier, P., Schoenmakers, B.: On Second-order Differential Power Anal-
ysis. In: Rao and Sunar [22], pp. 293–308

11. Kocher, P., Jaffe, J., Jun, B.: Introduction to Differential Power Analysis and
Related Attacks. Technical report, Cryptography Research Inc. (1998)

12. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

13. Mangard, S., Schramm, K.: Pinpointing the Side-Channel Leakage of Masked AES
Hardware Implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 76–90. Springer, Heidelberg (2006)

14. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

15. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

16. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against
side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.)
ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

17. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. In: Lee, P.J., Cheon, J.H. (eds.)
ICISC 2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

18. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-linear
functions in the presence of glitches. Technical report, VAMPIRE II (2010)

19. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

20. Prouff, E., Roche, T.: Attack on a higher-order masking of the AES based on ho-
mographic functions. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 262–281. Springer, Heidelberg (2010)

21. Prouff, E., Roche, T.: Higher-Order Glitches Free Implementation of the AES using
Secure Multi-Party Computation Protocols. Cryptology ePrint Archive (to appear,
2011), http://eprint.iacr.org/

22. Rao, J.R., Sunar, B. (eds.): CHES 2005. LNCS, vol. 3659. Springer, Heidelberg
(2005)

23. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. Cryptology ePrint Archive, Report
2008/021 (2008), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

78 E. Prouff and T. Roche

24. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

25. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

26. Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)
27. Suzuki, D., Saeki, M., Ichikawa, T.: DPA Leakage Models for CMOS Logic Circuits.

In: Rao and Sunar [22], pp. 366–382
28. Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the

27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE
Computer Society, Washington, DC, USA (1986)

Protecting AES with Shamir’s Secret Sharing
Scheme

Louis Goubin1 and Ange Martinelli1,2

1 Versailles Saint-Quentin-en-Yvelines University
Louis.Goubin@prism.uvsq.fr

2 Thales Communications
jean.martinelli@fr.thalesgroup.com

Abstract. Cryptographic algorithms embedded on physical devices are
particularly vulnerable to Side Channel Analysis (SCA). The most com-
mon countermeasure for block cipher implementations is masking, which
randomizes the variables to be protected by combining them with one
or several random values. In this paper, we propose an original masking
scheme based on Shamir’s Secret Sharing scheme [22] as an alternative
to Boolean masking. We detail its implementation for the AES using
the same tool than Rivain and Prouff in CHES 2010 [16]: multi-party
computation. We then conduct a security analysis of our scheme in or-
der to compare it to Boolean masking. Our results show that for a given
amount of noise the proposed scheme - implemented to the first order -
provides the same security level as 3rd up to 4th order boolean masking,
together with a better efficiency.

Keywords: Side Channel Analysis (SCA), Masking, AES Implementa-
tion, Shamir’s Secret Sharing, Multi-party computation.

1 Introduction

Side Channel Analysis is a cryptanalytic method in which an attacker analyzes
the side channel leakage (e.g. the power consumption, . . .) produced during the
execution of a cryptographic algorithm embedded on a physical device. SCA
exploits the fact that this leakage is statistically dependent on the intermediate
variables that are involved in the computation. Some of these variables are called
sensitive in that they are related to a secret data (e.g. the key) and a known
data (e.g. the plain text), and recovering information on them therefore enables
efficient key recovery attacks [11,3,8].
The most common countermeasure to protect implementations of block ciphers
against SCA is to use masking techniques [4,9] to randomize the sensitive vari-
ables. The principle is to combine one or several random values, called masks,
with every processed sensitive variable. Masks and masked variables propagate
throughout the cipher in such a way that any intermediate variable is indepen-
dent of any sensitive variable. This method ensures that the leakage at an instant
t is independent of any sensitive variable, thus rendering SCA difficult to per-
form. The masking can be improved by increasing the number of random masks

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 79–94, 2011.
c© International Association for Cryptologic Research 2011

Louis.Goubin@prism.uvsq.fr
jean.martinelli@fr.thalesgroup.com

80 L. Goubin and A. Martinelli

that are used per sensitive variable. A masking that involves d random masks is
called a dth-order masking and can always be theoretically broken by a (d+1)th-
order SCA, namely an SCA that targets d + 1 intermediate variables at the
same time [13,21,18]. However, the noise effects imply that the complexity of a
dth-order SCA increases exponentially with d in practice [4]. The dth-order SCA
resistance (for a given d) is thus a good security criterion for implementations
of block ciphers. In [17] Rivain and Prouff give a general method to implement
a dth-order masking scheme to the AES using secure Multi-Party Computation.
Instead of looking for perfect theoretical security against dth-order SCA as done
in [17], an alternative approach consists in looking for practical resistance to
these attacks. It may for instance be observed that the efficiency of higher-order
SCA is related to the way the masks are introduced to randomize sensitive vari-
ables. The most widely studied masking schemes are based on Boolean masking
where masks are introduced by exclusive-or (XOR). First order boolean masking
enables securing implementations against first-order SCA quite efficiently[1,16].
It is however especially vulnerable to higher-order SCA [13] due to the intrinsic
physical properties of electronic devices. Other masking schemes may provide
better resistance against these attacks using various operations to randomize
sensitive variables. This approach will be further investigated in this paper.

Related work. In [25,6], the authors propose to use an affine function instead of
just XOR to mask sensitive variables, thus improving the security of the scheme
for a low complexity overhead. However, this countermeasure is developed only
to the 1th order and it is not clear how it can be extended to higher orders.
In [10,16] the authors explain how to use secure Multi-Party Computation to
process the cipher on shared variables. They use a sharing scheme based on
XOR, implementing boolean masking to any order to secure the AES block
cipher. At last, in [19], Prouff and Roche give a hardware oriented glitch free
way to implement block ciphers using Shamir’s Secret Sharing scheme and Ben-
Or et al. secure multi-party computation [2] protocol operating on 2d + 1 shares
to thwart d-th order SCA.

Our contribution. In this paper, we propose to combine both approaches in im-
plementing a masking scheme based upon Shamir’s Secret Sharing scheme [22],
called SSS masking and processed using Multi-party Computation methods.
Namely, we present an implementation of the block cipher such that every 8-bit
intermediate result z ∈ GF(256) is manipulated under the form (xi, P (xi))i=0..d,
where xi ∈ GF(256)∗ is a random value generated before each new execution of
the algorithm and P (X) ∈ GF(256)[X] is a polynomial of degree d such that
P (0) = z. Our scheme maintains the same compatibility as Boolean masking
with the linear transformations of the algorithm. Moreover, the fact that the
masks are never processed alone prevents them to be targeted by a higher-order
SCA, thus greatly improves the resistance of the scheme to such attacks.

Organization of the paper. We fist recall Shamir’s secret sharing scheme in Sect. 2.
In Sect. 3, we show how SSS masking can be applied to the AES and give
some implementation results. Sect. 4 analyzes the resistance of our method to
high-order SCA and Sect. 5 concludes the paper.

Protecting AES with Shamir’s Secret Sharing Scheme 81

2 Shamir’s Secret Sharing Scheme

In some cryptographic context ones may need to share a secret between (at
least) d users without any k < d users being able to recover the secret alone.
In [22] Shamir exposes the problematic and gives a secret sharing scheme using
polynomial interpolation as a recovery mean. Namely, every user has a pair
(xi, P (xi))xi �=0, where P is a polynomial of degree k, and the secret is given by
P (0). In this configuration, one needs at least k + 1 shares to recover P , then
P (0). We recall hereafter the sharing and reconstruction algorithms for a value of
k = d−1, operating on n-bits words. With these parameters, in order to share a
secret a0 into d shares, one needs to choose d−1 random numbers (ad−1, . . . , a1)
to construct the polynomial P (x) = ad−1 · xd−1 + ad−2 · xd−2 + · · ·+ a1 · x + a0.
Every share i is then given by (xi, yi) where yi = P (xi), and the xi’s are all
distinct and non-zero. Formally we have Algorithm 1.

Algorithm 1. Shamir’s Secret Sharing scheme

Input: A secret a0, random values (xi)i=0..d−1

Output: Shares (xi, yi)i=0..d−1

1. (ai)i=1..d−1 ← Rand(n)

2. for i = 0 to d do

3. yi ← ad−1 · xd−1
i + ad−2 · xd−2

i + · · · + a1 · xi + a0

4. return (xi, yi)i=0..d−1

The reconstruction step is directly derived from polynomial interpolation and
proceeds as follows:

a0 =
d∑
0

yi · βi (1)

where each βi is a precomputed value such that βi =
d∏

j=0,j �=i

−xj

xi − xj
.

3 Higher Order Masking of AES

The AES block cipher iterates a round transform composed of four stages:
AddRoundKey, ShiftRows, MixColumn and SubByte. In this section we will show
how to securely mask the different layers at order d using SSS masking.

3.1 Masking Field Operations

In order to secure the AES there are five field operations that must be protected:
the addition with an unmasked constant, the addition with a masked variable,
the multiplication by a scalar, the square, and the multiplication between two

82 L. Goubin and A. Martinelli

shared variables. Moreover, as the AES Sbox is the composition of the inversion
in GF(256) and an affine function modulus the polynomial X8 + 1, this affine
transform also has to be secured.

Let b be a sensitive variable shared as (xi, yi)i=0..d following Shamir’s secret
sharing scheme. Addition with an unmasked constant u can be directly computed
by XORing u to the second component of the shares, such as:

(x′
i, y

′
i) ← (xi, yi ⊕ u).

Let (xi, ui)i=0..d be the shared representation of a variable u. The shared repre-
sentation of the addition b ⊕ u is obtained as: (x′

i, y
′
i) ← (xi, yi ⊕ ui). Similarly

the multiplication by a scalar p is computed as: (x′
i, y

′
i) ← (xi, yi · p).

While working in a field of characteristic 2 squaring is GF(256)-linear:
(x′

i, y
′
i) ← (x2

i , y
2
i). Remark that the coefficient x′

i �= xi. This matter must be
taken in account in the computation as shown in Algorithm 4.

The product of two variables protected by secret sharing cannot be solved with
the linear property of the transformation, as multiplying two polynomials with
the same degree gives a polynomial with degree double of the original polynomial.
Two different approaches can be studied. The first, developed in [19], is to use
the proven secure multi-party computation scheme of [2] operating on 2d + 1
shares to process the product. However this approach has a very high complexity.
The second possibility is to exploit the context of side channel countermeasure
that allows us to compute values unknown in classical multi-party computation
in order to improve the complexity at the loss of the security proof. We give
Algorithm 2 to compute secure shared field multiplication.

Algorithm 2. Share multiplication SecMult

Input: Shared representation of b, (xi, yi)i=0..d and u, (xi, wi)i=0..d

Output: Shares (xi, y
′
i)i=0..d representing the product of b and u

1. for j = 0 to d do

2. for k = 0 to d do

3. zj,k ← yj · wk

4. for i = 0 to d do

5. (xi, y
′
i) ←

⎛
⎝xi,

⎛
⎝ d∑

j=1

∑
0≤k<j

(zj,k ⊕ zk,j) · βj,k(xi)

⎞
⎠ +

d∑
j=0

zj,j · βj,j(xi)

⎞
⎠

6. return (xi, y
′
i)i=0..d

where the βj,k(xi) are precomputed values defined as follows.

Recall that βj(x) =
d∏

l=0,l �=j

x − xl

xj − xl
. We have

Protecting AES with Shamir’s Secret Sharing Scheme 83

βj(x) · βk(x) =
d∏

l=0,l �=j

x − xl

xj − xl
·

d∏
m=0,m �=k

x − xm

xk − xm

= α2dx
2d + · · · + αdx

d + · · · + α1x + α0

(2)

We then define βj,k(x) = βk,j(x) = αdx
d + · · · + α1x + α0.

Proposition 1. Algorithm 2 holds because the polynomial

P (x) =
d∑

j=0

d∑
k=0

yj · wk · βj,k(x) is such that:

⎧⎨
⎩

degree(P) = d
P (0) = b · u
∀x ∈ {xi}i=0..d, P (xi) = y′

i

Proof. – By construction of the βk,j(x), degree(P) = d.
– Let b, u be shared respectively in (xi, yi = R(xi)) and (xi, wi = Q(xi)).

R(x) =
∑d

0 yi · βi(x) and b = R(0) and Q(x) =
∑d

0 wi · βi(x) and u = Q(0).
As the truncation does not modify the constant term of the polynomial,

P (0) = R(0) · Q(0) = b · u.

– At last, by construction ∀x ∈ {xi}i=0..d,

y′
i =

d∑
j=0

d∑
k=0

yj · wk · βj,k(xi) = P (xi)

�
Intuitivley, the security of the scheme against k-th order SCA (k ≤ d) is based
on the following points:

– according to polynomial interpolation, one needs at least d + 1 shares to
define a polynomial of degree d,

– the computation of the βj,k(xi) is independent of any secret,
– the knowledge of yj ·wk does not leak more information on b (resp. u) than

the knowledge of yj (resp. wk),

However the security proof of Algorithm 2 does not seems to be an easy matter
and is still an open work.

Finally the affine function A involved in the AES Sbox, as if non linear with
respect to the polynomial mask, can nevertheless be implemented using straight-
forwardly as : (x′

i, y
′
i) ← (xi, A(yi)). Indeed, if yi = P (xi), since A s affine A(P) is

a polynomial of degree d with A(P (0)) = A(b) and every A(yi) is the polynomial
value of A(P)(x) in xi.

3.2 Complexity of the Operations

In order to evaluate the complexity overhead of SSS masking with respect to
boolean masking, we compare the complexity of each operation involved in the
AES computation for both kind of masking. As shown in the previous section, the
multiplication between two shared variables is the most consuming operation,
but this is also the case for boolean masking (see [16]). Table 1 resumes the
complexities of both schemes.

84 L. Goubin and A. Martinelli

Table 1. Complexity of masked operations

Operation \ Scheme Boolean Masking [16] SSS Masking

XOR with a constant 1 XOR d + 1 XORs

Shared XOR d + 1 XORs d + 1 XORs

Scalar Multiplication d + 1 multiplications d + 1 multiplications

Squaring d + 1 squaring 2(d + 1) squaring

2d(d + 1) XORs d(d + 1)(d + 2) XORs

Shared Field Mult. d(d + 1)/2 random numbers

(d + 1)2 field products (d + 1)2(2 + d
2
) field products

Sbox Affine transform. 1 XOR d XORs

d ring products d ring products

3.3 Masking the Full S-Box

We have defined secure squaring and multiplication in Section 3.1, we then use
the exponentiation algorithm given in [16], and resumed afterward (Algo 3), to
implement the power function involved in the AES S-box.

Algorithm 3. Secure Exponentiation to the power 254 over GF(28)

Input: Shared representation of b, (xi, yi)i=0..d

Output: Shares (xi, y
′
i)i=0..d of the value b254

1. for i = 0 to d do(αi, ζi) ← (x2
i , y

2
i)

2. (xi, ζi)i ← RefreshMasks((αi, ζi)i, 2)

3. (xi, γi)i ← SecMult((xi, ζi), (xi, yi))

4. for i = 0 to d do(αi, δi) ← (x4
i , γ

4
i)

5. (xi, δi)i ← RefreshMasks((αi, δi)i, 4)

6. (xi, γi)i ← SecMult((xi, γi), (xi, δi))

7. for i = 0 to d do(αi, γi) ← (x16
i , γ16

i)

8. (xi, γi)i ← RefreshMasks((αi, γi)i, 16)

9. (xi, γi)i ← SecMult((xi, γi), (xi, δi))

10. (xi, y
′
i)i ← SecMult((xi, γi), (xi, ζi))

11. return (xi, y
′
i)i=0..d

Here the RefreshMasks operation is needed to ensure the conservation of
the xi’s during the computation and the independence of the coefficients of the
polynomials before SecMult operation. Formally it follows Algorithm 4.

Protecting AES with Shamir’s Secret Sharing Scheme 85

Algorithm 4. RefreshMasks

Input: Shared representation of b, (αi, yi)i=0..d, chosen (xi)i=0..d, t such that αi = x2t

i

Output: Shared representation of b, (xi, y
′
i)i=0..d

1. for i = 0 to d do

2. β′
i ← β2t

i

3. Share yi in (xj , zij) using Algo 1

4. for i = 0 to d do

5. (xi, y
′
i) ←

(
xi,

d∑
j=0

β′
j · zji

)

6. return (xi, y
′
i)i=0..d

Algorithm 4 consists in re-sharing each shares separately using a new random
polynomial, then to reconstruct the original shares to obtain d + 1 shares corre-
sponding to this new polynomial. Eventually the complexity of Algorithm 3 is
resumed in Table 2. As a matter of comparison, we recall hereafter the complex-
ity of Boolean masking as given in [16].

Table 2. Complexity of inversion algorithms

order XORs multiplications ˆ2j Rand. bytes RAM (bytes)
O1-SSS 36 54 14 6 20
O2-SSS 150 165 21 18 33
Od-SSS 7d3 + 18d2 + 11d 5d3 + 18d2 + 22d + 9 7(d + 1) 3d2 + 3d d2 + 10d + 9
O1-Bool. 20 16 6 6 7
O2-Bool. 56 36 9 16 12
O3-Bool. 108 64 12 20 18
O4-Bool. 176 100 15 48 25
Od-Bool. 7d2 + 12d 4d2 + 8d + 4 3(d + 1) 2d2 + 4d 1

2
d2 + 7

2
d + 3

As a matter of fact, the number of operations involved in SSS masking is
larger than that of boolean masking for a given order d, as the number of field
multiplications and XOR operations are cubic in the order instead of quadratic
for boolean masking. We can ask ourselves if this observation remains true for a
given security level. This question will be studied in section 4.

3.4 Masking the Whole AES

In the following, we describe how to mask an AES computation at the dth order
using SSS masking. We will assume that the secret key has been previously
masked and that its d+1 shares are provided as input to the algorithm (otherwise
a straightforward 1st-order attack would be possible). At the beginning of the
computation, the state s (holding the plaintext) is split into d+1 shares (x0, y0),
(x1, y1), . . . , (xd, yd) with respect to Shamir’s secret sharing scheme. In the next

86 L. Goubin and A. Martinelli

sections, we describe how to perform the different AES transformations on the
state shares in order to guarantee the completeness as well as the dth-order
security.

Masking AddRoundKey. The AddRoundKey stage at round r consists in
XORing the rth round key kr to the state. The masked key schedule provides
d + 1 shares (xi, kr,i)i for every round key kr. The XOR operation is then pro-
cessed as described in section 3.1: M(s⊕ kr) → (xi, yi ⊕ kr,i)i=0..d

Masking ShiftRows. As the ShiftRows layer operates on each byte separately
and does not change their value, we have: M(ShiftRows(s)) = ShiftRows(M(s))

Masking MixColumn. Since each output byte of MixColumnsc can be ex-
pressed as a linear function of the bytes of the input state over GF(256) we
have:

MixColumnsc(M(s0), M(s1), M(s2), M(s3)) = (M(s′0), M(s′1), M(s′2), M(s′3)).

This suggests to perform the following steps to securely process MixColumnsc
on the masked representation of the state columns.⎧⎪⎪⎨

⎪⎪⎩
M(s′0) = (xi, y

′
0,i) ← (xi, xtimes(y0,i ⊕ y1,i) ⊕ tmpi ⊕ y0,i)

M(s′1) = (xi, y
′
1,i) ← (xi, xtimes(y1,i ⊕ y2,i) ⊕ tmpi ⊕ y1,i)

M(s′2) = (xi, y
′
2,i) ← (xi, xtimes(y2,i ⊕ y3,i) ⊕ tmpi ⊕ y2,i)

M(s′3) = (xi, y
′
2,i) ← (xi, y′

0,i ⊕ y′
1,i ⊕ y′

2,i ⊕ tmpi).

(3)

where tmpi = y0,i⊕y1,i⊕y2,i⊕y3,i and where xtimes denotes a look-up table for
the function x �→ 02·x. The completeness holds because the single operation that
modify the random factors (ai)i=1..d is the xtimes one, and is applied similarly
to each share.

Masking SubByte. The SubBytes transformation consists in applying the AES
S-box S to each byte of the state. In order to mask this transformation, we apply
the secure S-box computation described in Section 3.3 to the (d + 1)-tuple of
every byte shares of the state.

KeySchedule. Finally, since the round key derivation is a composition of the
previous transformations, it can be protected using the exact same methods as
previously described.

Overall Complexity. In order to give an idea of the global complexity of the
scheme, and to compare it to the boolean masking, we give in Table 3 the overall
number of operations involved in the ciphering.

Table 3. Complexity of cipher implementations

Masking XORs/ANDs Table look-ups Random bits RAM (bits) ROM (bits)
1O boolean 17640 16144 16896 312 6128
2O boolean 37800 32272 46080 352 6128
3O boolean 65640 54160 87552 400 6128

1O SSS 31760 37296 16240 400 6128

Protecting AES with Shamir’s Secret Sharing Scheme 87

4 Security Analysis

In what follows, we shall consider that an intermediate variable Ui is associated
with a leakage variable Li representing the information leaking about Ui through
side channel. We will assume that the leakage can be expressed as a deterministic
leakage function ϕ of the intermediate variable Ui with an independent additive
noise Bi. Namely, we will assume that the leakage variable Li satisfies:

Li = ϕ(Ui) + Bi . (4)

In the following, we call dth-order leakage a tuple of d leakage variables Li cor-
responding to d different intermediate variables Ui that jointly depend on some
sensitive variable. As already argued in Sect. 3.4, when an implementation is
correctly protected by SSS masking, no first-order leakage of sensitive informa-
tion occurs. This directly comes from Shamir’s secret sharing scheme security.
In the following we will focus on higher orders attacks against protected imple-
mentations, secured by boolean or SSS masking.

4.1 Information Theoretic Analysis

In order to evaluate the information leaked by 1O-SSS masking and to compare
it to that of various orders Boolean masking, we compute, as suggested in [23],
the theoretical mutual information I(S|Ld) for a class discrete variable S of
the secret, and a d-order leakage Ld, with respect to increasing noise standard
deviation σ. Namely we consider the three following leakages:

– 2nd-order leakage of 1O-Boolean masking with targeted variables (Z⊕m1, m1)
– 3rd-order leakage of 2O-Boolean masking with targeted variables (Z ⊕m1 ⊕

m2, m1, m2)
– 2nd-order leakage of 1O-SSS masking with targeted variables ((x1, a · x1 ⊕

Z), (x2, a · x2 ⊕ Z))

The variables Z, m1, m2 and a are assumed uniformly distributed over GF(256)
and mutually independent, and x1, x2 are assumed uniformly distributed over
GF(256)∗ with x1 �= x2. For each kind of leakage, we compute the mutual in-
formation between Z and the tuple of leakages in the Hamming weight (HW)
model with Gaussian noise: the leakage Li related to a variable Ui is distributed
according to equation (4) with ϕ = HW and Bi ∼ N (0, σ2) (the different Bi’s
are also assumed independent). In this context, the signal-to-noise ratio (SNR)
of the leakage is defined as Var [ϕ(Ui)] /Var [Bi] = 2/σ2.

Fig. 1 shows the mutual information values obtained for each kind of leakage
with respect to an increasing noise standard deviation. These results demon-
strate the information leakage reduction implied by the use of SSS masking.
As expected, SSS masking leaks less information than first and second order
Boolean masking for the considered Signal to Noise ratios (SNRs). We will now
see to which extent this reduction also applies to the efficiency of SCA on SSS
masking.

88 L. Goubin and A. Martinelli

Fig. 1. Mutual Information values with respect to σ2 (logarithmic scale)

4.2 Higher-Order DPA Evaluation

Let us assume that Z depends on the plaintext and of a subkey k�, and let
us denote by Z(k) the hypothetic value of Z for a guess k on k�. In a higher-
order DPA (HO-DPA) [13,18], the attacker tests the guess k by estimating the
correlation coefficient ρ [ϕ̂(Z(k)), C(L)], where C is a combining function that
converts the multivariate leakage L into a univariate signal and where ϕ̂ is a
prediction function chosen such that ϕ̂(Z) is correlated as much as possible
to C(L). The guess k leading to the greatest correlation (in absolute value) is
selected as key-candidate. In [12], the authors show that the number of traces
required to mount a successful DPA attack is roughly quadratic in ρ−1 where
ρ is the correlation coefficient ρ [ϕ̂(Z), C(L)] (that is the expected correlation
for the correct key guess). The latter can therefore be used as a metric for the
efficiency of a (HO-)DPA attack.

The analysis conducted in [18] states that a good choice for C is the normalized
product combining:

C : L �→
∏

i

(Li − E [Li]). (5)

Although the effectiveness of the normalized product combining has been only
studied in [18] in the context of Boolean masking, we can argue that this
combining function stays a natural choice against any kind of masking since
ρ [ϕ̂(Z(k)), C(L)] is related to the multivariate correlation1 between ϕ̂(Z(k))

1 What we call multivariate correlation here is the straightforward generalization of
the correlation coefficient to more than two variables (see [24]).

Protecting AES with Shamir’s Secret Sharing Scheme 89

and every coordinate of L [24]. Besides, in the presence of (even little) noise in
the side-channel leakage, the HO-DPA with normalized product combining is
nowadays the most efficient unprofiled attack against Boolean masking in the
literature (see for instance [18,24,17]).

From Corollary 8 in [18], the optimal correlation ρSSS for the correct key
hypothesis can be obtained as:

ρSSS =

√
Var

[
E
[
L1 × L2|Z = z

]]
Var

[
L1 × L2

] (6)

Formally, when the leakage satisfies (4) with ϕ = HW and Bi ∼ N (0, σ2) , the
coefficient ρSSS obtained for the 2-nd order leakage of 1-st order SSS masking
satisfies:

ρSSS =

√
n3 · (2n+1 − 4n − 1)

α2 · σ4 + α1 · σ2 + α0
, (7)

where n is the bit-size of Z, and

α2 = 192 · 2n − 24n+4 − 64 − 208 · 4n + 96 · 8n

α1 = (40 · 8n − 64 · 4n − 8 · 16n + 32 · 2n)n2

+(88 · 8n + 128 · 2n − 24n+4 − 168 · 4n − 32)n
α0 = (8n − 3 · 4n + 6 · 2n − 4)n4 + (−4 · 16n + 14 · 8n − 16 · 4n + 2 · 2n + 4)n3

+(23 · 8n − 4 · 16n − 44 · 4n + 34 · 2n − 8)n2 + (10 · 4n − 3 · 8n − 9 · 2n + 2)n
(8)

Remark 1. In order to endorse our choice of targeted variables, we also computed
the correlation coefficient corresponding to another 2rd-order leakage of SSS
masking targeting the pair (a, a ·x+Z) with the corresponding pair of prediction
functions: the Dirac function δ0 (δ0(x) = 0 ⇔ x �= 0) and the Hamming weight.
We observed for several values of n and σ that the correlation coefficient was
always lower than ρSSS.

Regarding Boolean masking, it has been shown in [20] that the correlation ρbool

corresponding to HO-DPA with normalized product combining against dth-order
Boolean masking satisfies (in the Hamming weight model):

ρbool = (−1)d

√
n

(n + 4σ2)
d+1
2

. (9)

From (7) and (9), we define the ratio ν as: ν = ρSSS
ρbool

.
Let us denote by NSSS (resp. Nbool) the number of leakage measurements for

a successful attack on SSS masking (resp. Boolean masking). According to [12],
NSSS and Nbool are roughly quadratic in the values of the correlation values.
Hence the ratio NSSS

Nbool
satisfies:

NSSS

Nbool
≈ 1

ν2
. (10)

90 L. Goubin and A. Martinelli

Table 4. Ratio 1/ν2 for several Boolean masking orders with respect to 1O-order SSS
masking

Attack \ SNR +∞ 1 1/2 1/5 1/10
3O-DPA on 2O Boolean Masking 4544.83 899.99 374.33 94.17 22.70
4O-DPA on 3O Boolean Masking 568.10 56.25 15.60 1.96 0.21
5O-DPA on 4O Boolean Masking 71.01 3.52 0.65 0.04 0.002

Table 4 illustrate this relation giving the value 1/ν2 for different values of SNRs.
Values greater (resp. lower) than 1 indicate that SSS masking is more (resp. less)
secure than the considered attack.

Due to (10), SSS masking is more secure than dth-order Boolean masking if
and only if |ν| ≤ 1. Comparing the resistance of the Boolean masking and SSS
masking against HO-DPA thus amounts to study when |ν| ≤ 1 is satisfied. We
can note that |ν| is an increasing function of σ and a decreasing function of
n. Let us denote by ϑ the maximal variance of the noise such that |ν| ≤ 1 is
satisfied. For the first values of d, we have:

ϑ =

⎧⎪⎪⎨
⎪⎪⎩

+∞ if d = 1,
282.2683 if d = 2,
13.2072 if d = 3,
3.4036 if d = 4.

(11)

Eventually Fig. 2 sums up our main theoretical results. In particular, it illustrates
the fact that the coefficient ρSSS is lower than ρbool (computed for d = 3) only
when the noise variance σ2 is lower than 13.2072.

Fig. 2. Correlation values with respect to σ2 (logarithmic scale)

Protecting AES with Shamir’s Secret Sharing Scheme 91

Table 5. Number of leakage measurements for a 90% success rate

Attack \ SNR +∞ 1 1/2 1/5 1/10

Attacks against Boolean Masking

2O-DPA on 1O Boolean Masking 150 500 1500 6000 20 000

2O-MIA on 1O Boolean Masking 100 5000 15 000 50 000 160 000

3O-DPA on 2O Boolean Masking 1500 9000 35 000 280 000 > 106

3O-MIA on 2O Boolean Masking 160 160 000 650 000 > 106 > 106

Attacks against SSS Masking

2O-DPA on 1O SSS Masking > 106 > 106 > 106 > 106 > 106

2O-MIA on 1O SSS Masking 500 000 > 106 > 106 > 106 > 106

3O-DPA on 2O SSS Masking > 106 > 106 > 106 > 106 > 106

3O-MIA on 2O SSS Masking > 106 > 106 > 106 > 106 > 106

4.3 Attack Simulations

In order to confront our theoretical analyses to practical evaluation, we per-
formed several attacks simulations. We then applied several side-channel distin-
guishers to leakage measurements simulated in the Hamming weight model with
Gaussian noise. The leakage measurements have been simulated as samples of
the random variables Li defined according to equation (4) with ϕ = HW and
Bi ∼ N (0, σ2) (the different Bi’s are also assumed independent). For all the
attacks, the sensitive variable Z was chosen to be an AES S-box output of the
form S(M ⊕ k�) where M represents a varying plaintext byte and k� represents
the key byte to recover.

Side-Channel Distinguishers. We applied two kind of side-channel distin-
guishers: higher-order DPA such as described in Sect. 4.2 and higher-order MIA.
In a HO-MIA [15,7], the distinguisher is the mutual information: the guess k
is tested by estimating I(ϕ̂(Z(k));L). As mutual information is a multivariate
operator, this approach does not involve a combining function.

Targeted Variables. Each attack was applied against the leakages of SSS mask-
ing, and Boolean masking. The target variables are those listed in Sect. 4.1 for
Z being S(X ⊕ k�).

Prediction Functions. For each DPA, we choose ϕ̂ to be the optimal prediction
function :

ϕ̂ : z �→ E [C(L)|Z = z] . (12)

This leads us to select the Hamming weight function in the attacks against both
SSS and Boolean masking of any order.

For the MIA attacks, we choose ϕ̂ such that it maximizes the mutual informa-
tion I(ϕ̂(Z(k));L) for k = k� while ensuring that the mutual information is lower
for k �= k�. In our case, every HO-MIA against both SSS and Boolean masking is
performed with ϕ̂ = HW since the distribution of (HW(Z⊕m0), HW(m0)) (resp.
(HW(Z ⊕ a0 · x0, x0), HW(Z ⊕ a0 · x1, x1))) only depends on HW(Z). Therefore

I
(
Z; (HW(Z ⊕ m0), HW(m0))

)
= I
(
HW(Z); (HW(Z ⊕ m0), HW(m0))

)
.

Note that the same relation holds at every masking order.

92 L. Goubin and A. Martinelli

Pdf Estimation Method. For the (HO-)MIA attacks, we use the histogram
estimation method with rule of [8] for the bin-widths selection.

Attack Simulation Results. Each attack simulation is performed 100 times for
various SNR values (+∞, 1, 1/2, 1/5 and 1/10). Table 5 summarizes the number
of leakage measurements required to observe a success rate of 90% in retrieving k�

for the different attacks.These results shows the security improvement provided
by SSS masking with respect to boolean masking. This gain of security can be
explained by the fact that an attacker does not have direct access to the mask
a1 · xi, hence the relation between the key and the targeted variables is much
more noisy than for boolean masking.

5 Conclusion

In this paper we propose a new alternative to boolean masking to secure imple-
mentations of AES against side channel attacks using Shamir’s Secret Sharing
scheme to share sensitive variables. We give implementation results and con-
duct a security analysis that clearly show that our scheme can provide a good
complexity-security trade-off compared to boolean masking. In particular, on
smart card implementation, where SNR value is around 1/2, 1O SSS masking
provides both a better security and complexity than 3O boolean masking. On
hardware implementations where the noise can be drastically reduced, 1O SSS
masking is to be compared to 4th order boolean masking, which increase the ad-
vantage of SSS masking. These results show that the opening to secret sharing
and secure multi-party computation can provide a good alternative to boolean
masking. This may be an interesting way to thwart HO-SCA. It is an open re-
search topic to try the security and complexity of such a masking using other
kinds of secret sharing scheme.

References

1. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10. ACM, New York (1988)

3. Brier, É., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Wiener [26], pp. 398–412

5. Clavier, C., Gaj, K. (eds.): CHES 2009. LNCS, vol. 5747. Springer, Heidelberg
(2009)

Protecting AES with Shamir’s Secret Sharing Scheme 93

6. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-
order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.)
SAC 2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011)

7. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting Higher-Order
DPA Attacks: Multivariate Mutual Information Analysis. Cryptology ePrint
Archive, Report 2009/228 (2009), http://eprint.iacr.org/

8. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

9. Goubin, L., Patarin, J.: DES and Differential Power Analysis – The Duplication
Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

10. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Prob-
ing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

11. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener [26], pp.
388–397

12. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets
of Smartcards. Springer, Heidelberg (2007)

13. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

14. Pointcheval, D. (ed.): CT-RSA 2006. LNCS, vol. 3860. Springer, Heidelberg (2006)
15. Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Information

Based Side Channel Analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499–518. Springer, Heidel-
berg (2009)

16. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Man-
gard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427.
Springer, Heidelberg (2010)

17. Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Information
Based Side Channel Analysis (Extended Version). Int. Journal of Applied Cryp-
tography, IJACT 2(2) (2010)

18. Prouff, E., Rivain, M., Bévan, R.: Statistical Analysis of Second Order Differential
Power Analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

19. Prouff, E., Roche, T.: Higher-order glitches free implementation of the aes us-
ing secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 79–94. Springer, Heidelberg (2011)

20. Rivain, M., Prouff, E., Doget, J.: Higher-Order Masking and Shuffling for Software
Implementations of Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 171–188. Springer, Heidelberg (2009)

21. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

22. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613
(1979)

23. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

http://eprint.iacr.org/

94 L. Goubin and A. Martinelli

24. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: Another look on second-order
dpa. Cryptology ePrint Archive, Report 2010/180 (2010),
http://eprint.iacr.org/

25. von Willich, M.: A technique with an information-theoretic basis for protecting
secret data from differential power attacks. In: Honary, B. (ed.) Cryptography and
Coding 2001. LNCS, vol. 2260, pp. 44–62. Springer, Heidelberg (2001)

26. Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999)

http://eprint.iacr.org/

A Fast and Provably Secure Higher-Order

Masking of AES S-Box�

HeeSeok Kim, Seokhie Hong, and Jongin Lim

Center for Information Security Technologies, Korea University, Korea
{80khs,shhong,jilim}@korea.ac.kr

http://cist.korea.ac.kr

Abstract. This paper proposes an efficient and secure higher-order
masking algorithm for AES S-box that consumes the most computation
time of the higher-order masked AES. During the past few years, much
of the research has focused on finding higher-order masking schemes for
this AES S-box, but these are still slow for embedded processors use. Our
proposed higher-order masking of AES S-box is constructed based on the
inversion operation over the composite field. We replace the subfield op-
erations over the composite field into the table lookup operation, but
these precomputation tables do not require much ROM space because
these are the operations over GF (24). In the implementation results, we
show that the higher-order masking scheme using our masked S-box is
about 2.54 (second-order masking) and 3.03 (third-order masking) times
faster than the fastest method among the existing higher-order masking
schemes of AES.

Keywords: AES, side channel attack, higher-order masking, higher-
order DPA, differential power analysis.

1 Introduction

Since Kocher introduced the concept of differential power analysis (DPA) [13],
the security of block ciphers has received considerable attention, and it is now
obvious that the unprotected implementations of block ciphers in embedded pro-
cessors can be broken by DPA. During the past few years, much of the research
on DPA attacks has focused on finding secure countermeasures. Among these
countermeasures, a masking method based on algorithmic techniques is known to
be inexpensive and secure against a first-order DPA (FODPA) [3,5,9,11,15,16].

Recently, the important effort has been carried out to find a masking method
that is secure against the higher-order DPA (HODPA) [14,22] as well as FODPA
[22,17,18]. These masking schemes are called the higher-order masking schemes.
Also, the higher-order masking scheme to counteract d-th order DPA [22] is

� “This research was supported by the MKE(The Ministry of Knowledge Economy),
Korea, under the “itrc” support program supervised by the NIPA(National IT In-
dustry Promotion Agency)” (NIPA-2011-C1090-1001-0004).

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 95–107, 2011.
c© International Association for Cryptologic Research 2011

96 H. Kim, S. Hong, and J. Lim

called the d-th order masking scheme1. In this d-th order masking scheme, every
intermediate value I of an original cipher is randomly split into (d+1)-tuple (I0,
I1, ..., Id). Here, for any intermediate value I, there exists a group operation ⊥
such that ⊥(I0, I1, ..., Id) equals I. This randomly split (d+1)-tuple can block
that the combination of d or less elements in this tuple is dependent on the
intermediate value I. Thus, security against d-th order DPA can be provided.

In the higher-order masking scheme of standard block cipher AES [1], the most
important part is the S-box operation, which is the only non-linear operation
of AES. Actually, most of the cost for higher-order masked AES is required
by this non-linear part. Thus, to construct the higher-order masking scheme
of AES in all previous works, the most important consideration has been to
mask this S-box operation. To mask this operation, the initial works of [22] and
[17] carry out table re-computation before all S-box operation. However, these
methods require much computation time. M. Rivain and E. Prouff introduced
a higher-order masked S-box operation based on the exponentiation operation
to solve this problem [18]. This method can considerably reduce computation
time compared with the existing methods. However, this scheme is still about
60 (second-order masking) and 130 (third-order masking) times slower than the
straightforward AES.

In this paper, we propose a new higher-order masking of AES S-box based on
the inversion operation over the composite field [20,21]. This method uses the
precomputation tables for subfield operations such as the multiplication, square,
and scalar multiplication over GF (24). These tables can considerably reduce the
time required. Also, because these tables are used for the operations over GF (24),
our method does not require much ROM space. The security of this new algo-
rithm can be easily proved via the proofs in [18]. In the implementation results,
our method is about 2.54 (second-order masking) and 3.03 (third-order mask-
ing) times faster than the method in [18]. Also, to use the higher-order masking
scheme in embedded processors, we show the implementation results that apply
the higher-order masking scheme to the first two and the last two rounds only,
and the first-order masking to the other rounds and key-schedule. This is be-
cause HODPA generally attacks the first and last few rounds. Implementation
results for this reduced masking are just 8.6 (second-order masking) and 13.8
(third-order masking) times slower than the straightforward AES. These numer-
ical values mean that the reduced masking using our higher-order masked AES
S-box can be sufficiently used in embedded processors.

The remainder of this paper is organized as follows. Section 2 describes the
higher-order masking of AES and the inversion operation over the composite
field. In Section 3, we introduce the new higher-order masking of AES S-box.
Section 4 simply demonstrates the security of our method based on the proofs
in [18] and Section 5 shows its efficiency. Finally, in Section 6, we offer the
conclusion.

1 Since the method of [22] has been known insecure for d ≥ 3 [7], the method of [18]
is currently the only higher-order masking scheme for d ≥ 3.

A Fast and Provably Secure Higher-Order Masking of AES S-Box 97

2 Preliminaries

2.1 Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES), also known as Rijndael, is a block
cipher adopted as an encryption standard by the US government [1]. This block
cipher is composed of an SPN structure [4,6]. For an N -bit SPN-type block
cipher of r rounds, each round consists of three layers. These layers are the
key mixing layer, substitution layer, and linear transformation layer. In the key
mixing layer, the round input is bitwise exclusive-ORed with the subkey for each
round. In the substitution layer, the value resulting from the key mixing layer
is partitioned into N/n blocks of n bits and each block of n bits then outputs
other n bits through a non-linear bijective mapping π : F2n → F2n . In the case of
AES, an S-box fulfills the role of this bijective mapping π. AES S-box is defined
by a multiplicative inverse b = a−1 in GF (28) (except if a = 0 then b = 0) and
an affine transformation as in the following equations:

S : GF (28) → GF (28)
x → Mx254 ⊕ v

where the value of x254 is regarded as a GF (2)-vector of dimension 8, M is an
8×8 GF (2)-matrix, and v is an 8×1 GF (2)-vector. The resulting value of the
substitution layer becomes the N bit input (i0, i1, , iN−1) of the linear transfor-
mation layer. The linear transformation layer consists of multiplication by the
N×N matrix. That is, the resulting value of this layer is O = LI, where L is an
N×N matrix and I is (i0, i1, , iN−1)T . In AES, ShiftRows and MixColumns play
this role. The linear transformation layer is omitted from the last round since it
is easily shown that its inclusion adds no cryptographic strength.

2.2 Higher-Order Masking of AES

A d-th order masking method e′ for an encryption algorithm c ← e(m, k) is de-
fined as follows, where m, k and c are plaintext, key and ciphertext, respectively
[18]:

(c0, c1, ..., cd) ← e′((m0, m1, ..., md), (k0, k1, ..., kd))

In the equation above, d-th order masking method e′ must satisfy the equations
of c = ⊥d

i=0ci, m = ⊥d
i=0mi and k = ⊥d

i=0ki, where ⊥ is the specific group
operation. In this paper, we consider that this group operation is the exclusive-
or (XOR, ⊕).

To guarantee security against d-th order DPA which exploits the leakages
related to d intermediate values [22], the intermediate value I of the encryption
algorithm e must also be replaced into (I0, I1, ..., Id). Here, the sum of d or
less intermediate values

⊕
i∈S Ii is independent of the sensitive data value (the

intermediate value of the original cipher) I where S is a subset of {0, 1, ..., d}
and 1 ≤ size(S) ≤ d.

98 H. Kim, S. Hong, and J. Lim

M. Rivain and E. Prouff introduced the d-th order masking scheme for AES
satisfying the conditions above. In this scheme, the higher-order masking method
can be easily applied to every operation, except S-box, because these operations
are linear operations. Namely, the linear operation O ← L(I) can be replaced
into (O0, O1, ..., Od) ← L′((I0, I1, ..., Id)) where Oi = L(Ii), because the
operation L′ satisfies the equation of

⊕d
i=0 Oi = L(

⊕d
i=0 Ii).

However, it is not easy to apply the higher-order masking to the S-box op-
eration. Actually, the higher-order masking scheme spends most of the time for
computing this non-linear operation. In the initial works on the higher-order
masking method [22,17], it is general to carry out table re-computation before
S-box operation, but this operation consumes a lot of time.

To reduce the time required, M. Rivain and E. Prouff introduced the d-th order
secure SecSbox operation based on the exponentiation operation [18]. They
found the following addition chain that can minimize not the number of squares
but the number of multiplications because the square is a linear operation.

x
S−→ x2 M−→ x3 2S−→ x12 M−→ x15 4S−→ x240 M−→ x252 M−→ x254

In the chain above, S, M , 2S and 4S mean the square, multiplication, two
squares and four squares, respectively. Here, the square, two squares and four
squares are the linear operations. Thus, these operations are easily implemented
using the look-up tables (LUTs). However, the other four multiplications must
be carefully constructed because these are non-linear operations. They designed
the d-th order secure multiplication algorithm SecMult using the Ishai-Sahai-
Wagner (ISW) scheme [10]. This algorithm is described in Algorithm 1.

Algorithm 1. SecMult function [18]

Input: two (d+1)-tuples (a0, a1, ..., ad), (b0, b1, ..., bd) where
⊕d

i=0 ai = a,
⊕d

i=0 bi = b

Output: (d+1)-tuple (c0, c1, ..., cd) satisfying
⊕d

i=0 ci = ab

1. For i = 0 to d do
(a) For j = i + 1 to d do

i. ri,j ← rand(8)
ii. rj,i ← (ri,j ⊕ aibj) ⊕ ajbi

2. For i = 0 to d do
(a) ci ← aibi

(b) For j = 0 to d, j �= i do, ci ← ci ⊕ ri,j

2.3 The Inversion Operation over a Composite Field

In order to reduce the cost of AES S-box, inversion methods over a compos-
ite field have been proposed [20,21]. These methods transform an element over
GF (28) into an element over the composite field having low inversion cost by the
isomorphism function δ, and the inversion operation is actually carried out over
this composite field. Then, the inversion operation over GF (28) is completed by
carrying out the inverse mapping δ−1 into the element over GF (28).

A Fast and Provably Secure Higher-Order Masking of AES S-Box 99

In [21], the composite field is built by repeating degree-2 extensions with the
following irreducible polynomials:

GF (22) : P0(x) = x2 + x + 1, where P0(α) = 0,

GF ((22)2) : P1(x) = x2 + x + α, where P1(β) = 0,

GF (((22)2)2) : P2(x) = x2 + x + λ, where λ = (α + 1)β, P2(γ) = 0.

Two isomorphism functions δ and δ−1 according to the above irreducible poly-
nomials are as follows:

δ : GF (28) → GF (((22)2)2)
δ−1 : GF (((22)2)2) → GF (28)

δ :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 1 0
0 1 0 0 1 0 1 0
0 1 1 1 1 0 0 1
0 1 1 0 0 0 1 1
0 1 1 1 0 1 0 1
0 0 1 1 0 1 0 1
0 1 1 1 1 0 1 1
0 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ−1 :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 1 1 0
0 0 0 0 1 1 0 0
0 1 1 1 1 0 0 1
0 1 1 1 1 1 0 0
0 1 1 0 1 1 1 0
0 1 0 0 0 1 1 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The inversion operation of an input value A = ahγ + al ∈ GF (((22)2)2), where
ah and al are elements in GF ((22)2), is performed as follows in this composite
field.

First, A−1 ∈ GF (((22)2)2) is computed by C−1A16 (C = A17 ∈ GF ((22)2)).
This computation method unavoidably requires the operations of A16 and A17,
but A16 can be computed simply with only 4 bitwise XOR operations of ahγ +
(ah +al). Furthermore, A17 is computed simply by λa2

h +(ah +al)al due to γ2 +
γ = λ. After computing the inverse of A17 over GF ((22)2), the computation of
A−1 = C−1A16 can be completed. Figure 1 represents the AES S-box operation
including the inversion operation over the composite field GF (((22)2)2) where Af

is an affine transformation. For additional operations over both fields GF ((22)2)
and GF (22) refer to [21].

Fig. 1. S-box operation of AES

100 H. Kim, S. Hong, and J. Lim

In Fig. 1, an equation for computing the output value S(x) of x is performed
as follows:

Step 1. ahγ + al = δ(x) where ah and al are elements in GF ((22)2)
Step 2. d = λa2

h + al(ah + al) ∈ GF ((22)2)
Step 3. d′ = d−1 ∈ GF ((22)2)
Step 4. a′

h = d′ah ∈ GF ((22)2)
Step 5. a′

l = d′(ah + al) ∈ GF ((22)2)
Step 6. S(x) = Af (δ−1(a′

hγ + a′
l)) ∈ GF (((22)2)2)

3 A Fast and Provably Secure Higher-Order Masking of
AES S-Box

In this section, we propose a fast and provably secure higher-order masking of
AES S-box. As aforementioned, the higher-order masking scheme of AES spends
the most time computing the masked S-box operation. The main purpose of this
paper is to reduce running time of the higher-order masking algorithm. Thus, our
masked S-box uses the six precomputation tables. Most of the elements of these
tables are the 4-bit data, but we allocate one byte for each element to simplify
accessing the table elements. These precomputation tables are as follows with
the notations defined in Section 2.3:

1. Squaring table T 1 (The requirement for 16 bytes of ROM)
– Input : X ∈ GF (24)
– Output : T 1[X] = X2 ∈ GF (24)

2. Two squaring table T 2 (The requirement for 16 bytes of ROM)
– Input : X ∈ GF (24)
– Output : T 2[X] = X4 ∈ GF (24)

3. Squaring-scalar multiplication table T 3 (The requirement for 16 bytes of
ROM)
– Input : X ∈ GF (24)
– Output : T 3[X] = λX2 ∈ GF (24)

4. Multiplication table T 4 (The requirement for 256 bytes of ROM)
– Input : X, Y ∈ GF (24)
– Output : T 4[X][Y] = XY ∈ GF (24)

5. Isomorphism table T 5 (The requirement for 256 bytes of ROM)
– Input : X ∈ GF (28)
– Output : T 5[X] = δ(X) ∈ GF (((22)2)2)

6. Inverse isomorphism-Affine transformation table T 6 (The requirement for
256 bytes of ROM)
– Input : X ∈ GF (((22)2)2))
– Output : T 6[X] = Af (δ−1(X)) ∈ GF (28)

A Fast and Provably Secure Higher-Order Masking of AES S-Box 101

Fig. 2. The eight steps of the proposed masked S-box

As aforementioned, the d-th order masking scheme must compute every interme-
diate value I of the original encryption algorithm e with the form of (I0, I1, ...,
Id) where

⊕d
i=0 Ii = I. We design a new higher-order masked S-box satisfying

this condition in each step over the composite field. We first classify the S-box
operation of Fig. 1 into the nine steps of Fig. 2.

In Fig. 2, the operations of Step 1(a), 1(b), 7 and 8 are the linear operations
or affine transformation. Here, the linear operation O ← L(I) can be easily re-
placed into (O0, O1, ..., Od) ← L′((I0, I1, ..., Id)), where Oi = L(Ii), because
the operation L′ satisfies the equation of

⊕d
i=0 Oi = L(

⊕d
i=0 Ii). Affine trans-

formation O ← Af (I) can also be replaced into (O0, O1, ..., Od) ← A′
f ((I0, I1,

..., Id)), where O0 = Af (I0) ⊕ (0x63 × (d mod 2)) and Oi = Af (Ii)(i �= 0),
because the operation A′

f satisfies the equation of
⊕d

i=0 Oi = Af (
⊕d

i=0 Ii). We
show hereafter some methods to apply the d-th order masking to the remaining
non-linear operations.

– Masking XOR operation: The masked XOR operation can be easily con-
structed. This operation outputs (x0⊕y0, x1⊕y1, ..., xd⊕yd) from two input
(d+1)-tuples (x0, x1, ..., xd), (y0, y1, ..., yd). Here, two input (d+1)-tuples
must be independent of each other as mentioned in [18].

– Masking GF (24) multiplication: We construct the masked GF (24) multi-
plication using Algorithm 1 of [18]. This algorithm is described in Algorithm
2. The only difference between two algorithms is whether or not the multipli-
cation table is used. Our masked S-box computes the inversion by using the
subfield operation over GF (24). Thus, most operations, including GF (24)
multiplication, can be computed by using the precomputation tables. These
require ROM space, but the size required is very small.

– Masking GF (24) inversion: The masking method for GF (24) inversion
can be designed variously. One way is to use the composite field operation
over GF ((22)2) similarly to the masked operation over GF (((22)2)2). How-
ever, this method requires as many table lookup operations as that over
GF (((22)2)2). Therefore, we use the operation of x14 over GF (24). The
addition chain of x14 to minimize the number of multiplications can be
constructed as follows:

102 H. Kim, S. Hong, and J. Lim

x
S−→ x2 M−→ x3 2S−→ x12 M−→ x14

The masked inversion algorithm over GF (24) using this addition chain is
shown in Algorithm 3. In Algorithm 3, for RefreshMasks algorithm to
eliminate the dependence between the two input tuples of SecMult4 func-
tion refer to [18].

Algorithm 2. GF (24) SecMult4 function using the multiplication table T 4

Input: two (d+1)-tuples (a0, a1, ..., ad), (b0, b1, ..., bd) where
⊕d

i=0 ai = a,
⊕d

i=0 bi = b

Output: (d+1)-tuple (c0, c1, ..., cd) satisfying
⊕d

i=0 ci = ab ∈ GF (24)

1. For i = 0 to d do
(a) For j = i + 1 to d do

i. ri,j ← rand(4)
ii. rj,i ← (ri,j ⊕ T4[ai][bj]) ⊕ T4[aj][bi]

2. For i = 0 to d do
(a) ci ← T4[ai][bi]
(b) For j = 0 to d, j �= i do, ci ← ci ⊕ ri,j

Algorithm 3. GF (24) SecInv function

Input: (d+1)-tuple (x0, x1, ..., xd) satisfying
⊕d

i=0 xi = x ∈ GF (24)

Output: (d+1)-tuple (y0, y1, ..., yd) satisfying
⊕d

i=0 yi = x−1 = x14 ∈ GF (24)

1. For i = 0 to d do
(a) wi = T1[xi]

2. RefreshMasks((w0, w1, ..., wd))
3. (z0, z1, ..., zd)=SecMult4((w0, w1, ..., wd), (x0, x1, ..., xd))
4. For i = 0 to d do

(a) zi = T2[zi]
5. (y0, y1, ..., yd)=SecMult4((z0, z1, ..., zd), (w0, w1, ..., wd))

Algorithm 4 presents the entire operation of the proposed d-th order mask-
ing for AES S-box. The meaning of the operations carried out in each step is
described in Fig. 2.

4 Security Analysis

The security of the proposed algorithm can be easily proved by the proofs in
[18]. It is straightforward to prove the security for all operations, except the
SecMult4 algorithm because each element of the input tuple is independently
operated in these operations. Also, the security of SecMult4 algorithm can be

A Fast and Provably Secure Higher-Order Masking of AES S-Box 103

proved by Theorem 1 of [18]. The remaining consideration is the independence
between two input (d+1)-tuples of the SecMult4 algorithm. In Algorithm 4, two
input tuples of SecMult4 algorithm are independent of each other. However,
in Step 3 of Algorithm 3, the input tuples of SecMult4 function (x, x2) have
the dependency. However, RefreshMasks in Step 2 can eliminate this depen-
dency as mentioned in Section 3. Thus, the proposed algorithm provides security
against the d-th order DPA, that is, it can guarantee that every combination of
d or less intermediate values is independent of any sensitive data value.

Algorithm 4. d-th order masking of AES S-box
Input: (d+1)-tuple (x0, x1, ..., xd) satisfying

⊕d
i=0 xi = x ∈ GF (28)

Output: (d+1)-tuple (y0, y1, ..., yd) satisfying
⊕d

i=0 yi = Sbox(x) ∈ GF (28)

1. For i = 0 to d do
(a) (Hi||Li) = T5[xi] /*Hi, Li ∈ GF (24)*/
(b) wi = T3[Hi]
(c) ti = Hi ⊕ Li

2. (L0, L1, ..., Ld)=SecMult4((t0, t1, ..., td), (L0, L1, ..., Ld))
3. For i = 0 to d do

(a) wi = wi ⊕ Li

4. (w0, w1, ..., wd)=SecInv((w0, w1, ..., wd))
5. (H0, H1, ..., Hd)=SecMult4((w0, w1, ..., wd), (H0, H1, ..., Hd))
6. (L0, L1, ..., Ld)=SecMult4((w0, w1, ..., wd), (t0, t1, ..., td))
7. For i = 0 to d do

(a) yi = T6[Hi||Li]
8. If d is odd, y0 = y0 ⊕ 0x63
9. Return (y0, y1, ..., yd).

5 Performance Analysis and Implementation Results

In our d-th order masked S-box, SecMult4 function requires (d + 1)2 table
lookup operations, 2d(d + 1) XOR operations, and the generation of 2d(d + 1)
random bits. Considering 5 SecMult4 function calls and other minor opera-
tions (RefreshMasks, table lookup operations, and 4-bit shift operations2),
our masked S-box requires totally (5d2 + 13d + 8) table lookup operations,
(10d2 + 16d + 5) XOR operations, (10d2+14d

8 + 2(d + 1)) 4-bit shift operations,
(10d2+14d

8 +2(d+1)) bitwise AND operations and the generation of (10d2 +14d)
random bits3.
2 4-bit shift operation may require 4 instruction calls unless the single instruction

carrying out 4-bit shift is supported. However, some microcontrollers like 8051 and
AVR family support a single SWAP operation, which swaps high and low nibbles in
a register.

3 To get the random nibbles from (10d2 + 14d) random bits, we split 1 random byte
into two nibbles. This method requires one 4-bit shift operation and one bitwise AND

operation. Therefore, the generation of (10d2 +14d) random bits involves (10d2+14d
8

)
4-bit shift and bitwise AND operations.

104 H. Kim, S. Hong, and J. Lim

Table 1. Comparison of two d-th order masked S-box schemes in terms of the total
number of operations

Ours [18]

Table Lookup 5d2 + 13d + 8 12d2 + 31d + 19

XOR 10d2 + 16d + 5 8d2 + 12d

Random Bits 10d2 + 14d 16d2 + 32d

etc 4-bit logical shift : 5
4
d2 + 15

4
d + 2, 8-bit Addition : 8(d + 1)2,

8-bit bitwise AND : 5
4
d2 + 15

4
d + 2 8-bit logical AND : 4(d + 1)2

On the other hand, the d-th order masked S-box in [18] involves 4 SecMult
function calls, i.e., 4(d + 1)2 multiplications over GF (28). The multiplications
over GF (28) can be efficiently implemented with log/alog tables (see Appendix
A). Here, we remove the conditional branching operation because this operation
leaks some information that can be exploited by simple power analysis (SPA)
[13]. Also, we remove the reduction operation modulo 255 to improve the com-
putation speed. 4 SecMult function calls require 12(d+1)2 table lookup opera-
tions because one multiplication over GF (28) involves 3 table lookup operations.
Table 1 compares two d-th order masked S-box schemes in terms of the total
number of operations.

To compare the performance of our masked S-box with the existing counter-
measures in embedded processors, we use Algorithms 6 and 7 in [19]. Here, we
replace the masked S-box operation of these algorithms into our algorithm.

We implement AES-128 in C-language for ATmega128 8-bit architecture [2].
First, the straightforward AES requires 11,170 clock cycles. We implement the
first-order masking of AES using the method in [9], but we do not apply the
dummy operation and the shuffling method, which provide partial security against
the second-order DPA. This requires 19,525 clock cycles.

In the implementation of the second-order masking methods, we compare our
method with the methods in [17] and [18]; [18] is the most recent work on the
higher-order masking of AES. Our method requires slightly more ROM size than
the method in [18], but is 2.54 times faster and also 4.51 times faster than the
method in [17].

However, our method is still 23 times slower than the straightforward AES.
Thus, we consider the additional case for applying the second-order masking
to only the first two and the last two rounds. This is because the second-order
DPA generally attacks the first and last few rounds. Also, we apply the first-
order masking to the key-schedule and the rest of the rounds (3∼8 rounds).
After finishing the key-schedule operation, we change the first two and the last
two round keys into the form of (d+1)-tuple by using d random numbers. To
provide security against the analysis such as [8] and [12], we apply the first-order
masking to 3∼8 rounds. The implementation result is just 8.6 times slower than
the straightforward AES. These numerical values mean that this algorithm can
be used practically in the embedded processors.

A Fast and Provably Secure Higher-Order Masking of AES S-Box 105

We also implement the third-order masking, and compare it with the method
of [18]. Here, our method is 3.03 times faster than the existing countermeasure
and 41.03 times slower than the straightforward AES. Also, the reduced masking
is just 13.8 times slower than the straightforward AES.

6 Conclusion

In this paper, we proposed a new higher-order masking method for AES S-box.
Our method could considerably reduce the computation time of the higher-order
masked AES. Our method was 2.54 times faster than the most recent method
of the second-order masking, and it was 3.03 times faster than that of the third-
order masking. Also, in order to use the second-order masking algorithm in
embedded processors, we only applied the second (third) order masking to the
first two and the last two rounds in the encryption of AES. The results for these
implementations were just 8.6 (second) and 13.8 (third) times slower than the
straightforward AES. These numerical values mean that our higher-order masked
S-box can achieve practical use of the higher-order masked AES in embedded
processors.

106 H. Kim, S. Hong, and J. Lim

References

1. NIST, FIPS 197: Advanced Encryption Standard (2001)

2. Atmel Corporation: Datasheet: ATmega128(L),
http://www.atmel.com/products/avr/

3. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

4. Adams, C., Tavares, S.: The Structured Design of Cryptographically Good SBoxes.
Journal of Cryptology 3(1), 27–42 (1990)

5. Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

6. O’Connor, L.: On the Distribution of Characteristics in Bijective Mappings. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 360–370. Springer,
Heidelberg (1994)

7. Coron, J.-S., Prouff, E., Rivain, M.: Side Channel Cryptanalysis of a Higher Or-
der Masking Scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 28–44. Springer, Heidelberg (2007)

8. Handschuh, H., Preneel, B.: Blind Differential Cryptanalysis for Enhanced Power
Attacks. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 163–
173. Springer, Heidelberg (2007)

9. Herbst, C., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resis-
tant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

10. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Prob-
ing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

11. Kim, H., Kim, T., Han, D., Hong, S.: Efficient Masking Methods Appropriate for
the Block Ciphers ARIA and AES. ETRI Journal 32(3), 370–379 (2010)

12. Kim, J., Hong, S., Han, D., Lee, S.: Improved Side-Channel Attack on DES with
the First Four Rounds Masked. ETRI Journal 31(5), 625–627 (2009)

13. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

14. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

15. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

16. Oswald, E., Schramm, K.: An Efficient Masking Scheme for AES Software Im-
plementations. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS,
vol. 3786, pp. 292–305. Springer, Heidelberg (2006)

17. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. In: Nyberg, K. (ed.) FSE 2008.
LNCS, vol. 5086, pp. 127–143. Springer, Heidelberg (2008)

18. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427.
Springer, Heidelberg (2010)

 http://www.atmel.com/products/avr/

A Fast and Provably Secure Higher-Order Masking of AES S-Box 107

19. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES, Cryptology
ePrint Archive (2010), http://eprint.iacr.org/

20. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient
Rijndael Encryption Implementation with Composite Field Arithmetic. In: Koç,
Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–188.
Springer, Heidelberg (2001)

21. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

22. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

A Multiplication in GF(28) without SPA Leakage

In [18], the higher-order masked S-box computes AES multiplications over
GF (28). The most efficient way for this operation is to use log and alog ta-
bles where log[αi] = i and alog[i] = αi for a generator α of GF (256)∗ and
0 � i < 255. Multiplication using these two tables is computed according to the
following equation:

ab =

{
alog[(log[a] + log[b]) mod 255] if both a and b are not zero
0 otherwise

However, the reduction modulo 255 requires heavy computational cost and the
conditional branching operation has to be removed to eliminate the possibility of
SPA. We compute the reduction modulo 255 by using the reduction modulo 256
and remove the conditional branching operation. This algorithm is described in
Algorithm 5. To reduce the number of operations, we also use alog table as in
the following equation, which requires 1 byte more ROM size than alog table.

alog[x] =

{
alog[x] if 0 � x < 255
alog[0] if x = 255

Algorithm 5. Multiplication in GF (28) without SPA Leakage
Input: a, b ∈ GF (28), f is an irreducible polynomial over GF (28)
Output: ab mod f

1. t = log[a]
2. s = (t + log[b]) mod 28

3. r = alog[(s < t) + s] /* s < t: the carry associated with Step 2 */
4. Return (a&&b)∗r /* &&: the logical AND operation */

http://eprint.iacr.org/

Software Implementation of Binary Elliptic Curves:
Impact of the Carry-Less Multiplier on Scalar

Multiplication

Jonathan Taverne1,�, Armando Faz-Hernández2, Diego F. Aranha3,��,
Francisco Rodrı́guez-Henrı́quez2, Darrel Hankerson4, and Julio López3

1 Université de Lyon, Université Lyon1, ISFA, France
jonathan.taverne@etu.univ-lyon1.fr

2 Computer Science Department, CINVESTAV-IPN, México
armfaz@computacion.cs.cinvestav.mx, francisco@cs.cinvestav.mx

3 Institute of Computing, University of Campinas, Brazil
dfaranha@ic.unicamp.br, jlopez@ic.unicamp.br

4 Auburn University, USA
hankedr@auburn.edu

Abstract. The availability of a new carry-less multiplication instruction in the
latest Intel desktop processors significantly accelerates multiplication in binary
fields and hence presents the opportunity for reevaluating algorithms for binary
field arithmetic and scalar multiplication over elliptic curves. We describe how
to best employ this instruction in field multiplication and the effect on perfor-
mance of doubling and halving operations. Alternate strategies for implementing
inversion and half-trace are examined to restore most of their competitiveness
relative to the new multiplier. These improvements in field arithmetic are com-
plemented by a study on serial and parallel approaches for Koblitz and random
curves, where parallelization strategies are implemented and compared. The con-
tributions are illustrated with experimental results improving the state-of-the-art
performance of halving and doubling-based scalar multiplication on NIST curves
at the 112- and 192-bit security levels, and a new speed record for side-channel
resistant scalar multiplication in a random curve at the 128-bit security level.

Keywords: Elliptic curve cryptography, finite field arithmetic, parallel
algorithm, efficient software implementation.

1 Introduction

Improvements in the fabrication process of microprocessors allow the resulting higher
transistor density to be converted into architectural features such as inclusion of new
instructions or faster execution of the current instruction set. Limits on the conven-
tional ways of increasing a processor’s performance such as incrementing the clock
rate, scaling the memory hierarchy [38] or improving support for instruction-level paral-
lelism [37] have pushed manufacturers to embrace parallel processing as the

� This work was performed while the author was visiting CINVESTAV-IPN.
�� A portion of this work was performed while the author was visiting University of Waterloo.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 108–123, 2011.
c© International Association for Cryptologic Research 2011

Software Implementation of Binary Elliptic Curves 109

mainstream computing paradigm and consequently amplify support for resources
such as multiprocessing and vectorization. Examples of the latter are the recent in-
clusions of the SSE4 [22], AES [19] and AVX [14] instruction sets in the latest Intel
microarchitectures.

Since the dawn of elliptic curve cryptography in 1985, several field arithmetic as-
sumptions have been made by researchers and designers regarding its efficient imple-
mentation in software platforms. Some analysis (supported by experiments) assumed
that inversion to multiplication ratios (I/M) were sufficiently small (e.g., I/M ≈ 3)
that point operations would be done in affine coordinates, favoring certain techniques.
However, the small ratios were a mix of old hardware designs, slower multiplication
algorithms compared with [32], and composite extension degree. It seems clear that
sufficient progress was made in multiplication so there is incentive to use projective co-
ordinates. Our interest in the face of much faster multiplication is at the other end—is
I/M large enough to affect methods that commonly assumed this ratio is modest?

On the other hand, authors in [16] considered that the cost of a point halving com-
putation was roughly equivalent to 2 field multiplications. The expensive computations
in halving are a field multiplication, solving a quadratic z2 + z = c, and finding a
square root over F2m . However, quadratic solvers presented in [21] are multiplication-
free and hence, provided that a fast binary field multiplier is available, there would
be concern that the ratio of point halving to multiplication may be much larger than 2.
Having a particularly fast multiplier would also push for computing square roots in F2m

as efficiently as possible. Similarly, the common software design assumption that field
squaring is essentially free (relative to multiplication) may no longer be valid.

A prevalent assumption is that large-characteristic fields are faster than binary field
counterparts for software implementations of elliptic curve cryptography.1 In spite of
simpler arithmetic, binary field realizations could not be faster than large-characteristic
analogues mostly due to the absence of a native carry-less multiplier in contemporary
high-performance processors. However, using a bit-slicing technique, Bernstein [6] was
able to compute a batch of 251-bit scalar multiplications on a binary Edwards curve,
employing 314,323 clock cycles per scalar multiplication, which, before the results
presented in this work and to the best of our knowledge, was the fastest reported time
for a software implementation of binary elliptic point multiplication.

In this work, we evaluate the impact of the recently introduced carry-less multiplica-
tion instruction [20] in the performance of binary field arithmetic and scalar multipli-
cation over elliptic curves. We also consider parallel strategies in order to speed scalar
multiplication when working on multi-core architectures. In contrast to parallelization
applied to a batch of operations, the approach considered here applies to a single point
multiplication. These approaches target different environments: batching makes sense
when throughput is the measurement of interest, while the lower level parallelization is
of interest when latency matters and the device is perhaps weak but has multiple pro-
cessing units. Furthermore, throughout this paper we will assume that we are working
in the unknown point scenario, i.e., where the elliptic curve point to be processed is not
known in advance, thus precluding off-line precomputation. We will assume that there

1 In hardware realizations, the opposite thesis is widely accepted: elliptic curve scalar point
multiplication can be computed (much) faster using binary extension fields.

110 J. Taverne et al.

is sufficient memory space for storing a few multiples of the point to be processed and
look-up tables for accelerating the computation of the underlying field arithmetic.

As the experimental results will show, our implementation of multiplication via this
native support was significantly faster than previous timings reported in the literature.
This motivated a study on alternative implementations of binary field arithmetic in hope
of restoring the performance ratios among different operations in which the literature is
traditionally based [21]. A direct consequence of this study is that performance analysis
based on these conventional ratios [5] will remain valid in the new platform. Our main
contributions are:

– A strategy to efficiently employ the native carry-less multiplier in binary field mul-
tiplication.

– Branchless and/or vectorized approaches for implementing half-trace computation,
integer recoding and inversion. These approaches allow the halving operation to
become again competitive with doubling in the face of a significantly faster multi-
plier, and help to reduce the impact of integer recoding and inversion in the overall
speed of scalar multiplication, even when projective coordinates are used.

– Parallelization strategies for dual core execution of scalar multiplication algorithms
in random and Koblitz binary elliptic curves.

We obtain a new state-of-the-art implementation of arithmetic in binary elliptic curves,
including improved performance for NIST-standardized Koblitz curves and random
curves suitable for halving and a new speed record for side-channel resistant point mul-
tiplication in a random curve at the 128-bit security level.

The remainder of the paper progresses as follows. Section 2 elaborates on exploiting
carry-less multiplication for high-performance field multiplication along with imple-
mentation strategies for half-trace and inversion. Sections 3 and 4 discuss serial and
parallel approaches for scalar multiplication. Section 5 presents extensive experimen-
tal results and comparison with related work. Section 6 concludes the paper with per-
spectives on the interplay between the proposed implementation strategies and future
enhancements in the architecture under consideration.

2 Binary Field Arithmetic

A binary extension field F2m can be constructed by means of a degree-m polynomial f
irreducible over F2 as F2m ∼= F2[z]/ (f(z)). In the case of software implementations in
modern desktop platforms, field elements a ∈ F2m can be represented as polynomials of
degree at most m−1 with binary coefficients ai packed in n64 = �m

64� 64-bit processor
words. In this context, the recently introduced carry-less multiplication instruction can
play a significant role in order to efficiently implement a multiplier in F2m . Along with
field multiplication, other relevant field arithmetic operations such as squaring, square
root, and half-trace, will be discussed in the rest of this section.

2.1 Multiplication

Field multiplication is the performance-critical operation for implementing several cryp-
tographic primitives relying on binary fields, including arithmetic over elliptic curves

Software Implementation of Binary Elliptic Curves 111

and the Galois Counter Mode of operation (GCM). For accelerating the latter when used
in combination with the AES block cipher [19], Intel introduced the carry-less multi-
plier in the Westmere microarchitecture as an instruction operating on 64-bit words
stored in 128-bit vector registers with opcode pclmulqdq [20]. The instruction latency
currently peaks at 15 cycles while reciprocal throughput ranks at 10 cycles. In other
words, when operands are not in a dependency chain, effective latency is 10 cycles [15].

The instruction certainly looks expensive when compared to the 3-cycle 64-bit in-
teger multiplier present in the same platform, which raises speculation whether Intel
aimed for an area/performance trade-off or simply balanced the latency to the point
where the carry-less multiplier did not interfere with the throughput of the hardware
AES implementation. Either way, the instruction features suggest the following empir-
ical guidelines for organizing the field multiplication code: (i) as memory access by
vector instructions continues to be expensive [6], the maximum amount of work should
be done in registers, for example through a Comba organization [12]; (ii) as the number
of registers employed in multiplication should be minimized for avoiding false depen-
dencies and maximize throughput, the multiplier should have 128-bit granularity; (iii) as
the instruction latency allows, each 128-bit multiplication should be implemented with
three carry-less multiplications in a Karatsuba fashion [25].

In fact, the overhead of Karatsuba multiplication is minimal in binary fields and the
Karatsuba formula with the smaller number of multiplications for multiplying �n64

2 �
128-bit digits proved to be optimal in all the considered field sizes. This observation
comes in direct contrast to previous vectorized implementations of the comb method
for binary field multiplication due to López and Dahab [32, Algorithm 5], where the
memory-bound precomputation step severely limits the number of Karatsuba steps
which can be employed, fixing the cutoff point to large fields [2] such as F21223 . To
summarize, multiplication was implemented as a 128-bit granular Karatsuba multiplier
with each 128-digit multiplication solved by another Karatsuba instance requiring three
carry-less multiplications, cheap additions and efficient shifts by multiples of 8 bits. A
single 128-digit level of Karatsuba was used for fields F2233 and F2251 where �n64

2 � = 2,
while two instances were used for field F2409 where �n64

2 � = 4. Particular approaches
which led to lower performance in our experiments were organizations based on op-
timal Toom-Cook [10] due to the higher overhead brought by minor operations; and
on a lower 64-bit granularity combined with alternative multiple-term Karatsuba for-
mulas [33] due to register exhaustion to store all the intermediate values, causing a
reduction in overall throughput.

2.2 Squaring, Square-Root and Multi-squaring

Squaring and square-root are considered cheap operations in a binary field,
especially when F2m is defined by a square-root friendly polynomial [3,1], because
they require only linear manipulation of individual coefficients [21]. These operations
are traditionally implemented with the help of large precomputed tables, but vector-
ized implementations are possible with simultaneous table lookups through byte shuf-
fling instructions [2]. This approach is enough to keep square and square-root efficient

112 J. Taverne et al.

relative to multiplication even with a dramatic acceleration of field multiplication. For
illustration, [2] reports multiplication-to-squaring ratios as high as 34 without a native
multiplier, far from the conventional ratios of 5 [5] or 7 [21] and with a large room for
future improvement.

Multi-squaring, or exponentiation to 2k, can be efficiently implemented with a time-
memory trade-off proposed as m-squaring in [1,11] and here referred as multi-squaring.
For a fixed k, a table T of 16�m

4 � field elements can be precomputed such that

T [j, i0 + 2i1 + 4i2 + 8i3] = (i0z4j + i1z
4j+1 + i2z

4j+2 + i3z
4j+3)2

k

and a2k

=∑
m
4 �

j=0 T [j, �a/24j� mod 24]. The threshold where multi-squaring became faster than
simple consecutive squaring observed in our implementation was around k ≥ 6 for
F2233 and k ≥ 10 for F2409 .

2.3 Inversion

Inversion modulo f(z) can be implemented via the polynomial version of the Extended
Euclidean Algorithm (EEA), but the frequent branching and recurrent shifts by arbi-
trary amounts present a performance obstacle for vectorized implementations, which
makes it difficult to write consistently fast EEA codes across different platforms. A
branchless approach can be implemented through Itoh-Tsuji inversion [23] by com-
puting a−1 = a(2m−1−1)2, as proposed in [18]. In contrast to the EEA method, the
Itoh-Tsujii approach has the additional merit of being similarly fast (relative to multi-
plication) across common processors.

The overall cost of the method is m − 1 squarings and a number of multiplications
dictated by the length of an addition chain for m − 1. The cost of squarings can be
reduced by computing each required 2i-power as a multi-squaring [11]. The choice of
an addition chain allows the implementer to control the amount of required multiplica-
tions and the precomputed storage for multi-squaring, since the number of 2i-powers
involved can be balanced.

Previous work obtained inversion-to-multiplication ratios between 22 and 41 by im-
plementing EEA in 64-bit mode [2], while the conventional ratios are between 5 and
10 [21,5]. While we cannot reach the small ratios with Itoh-Tsujii for the parameters
considered here, we can hope to do better than applying the method from [2] which will
give significantly larger ratios with the carry-less multiplier. Hence the cost of squar-
ings and multi-squarings should be minimized to the lowest possible allowed by storage
capacity.

To summarize, we use addition chains of 10, 10 and 11 steps for computing field
inversion over the fields F2233 , F2251 and F2409 , respectively.2 We extensively used the
multi-squaring approach described in the preceding section. For example, in the case
of F2233 , we selected the addition chain 1→2→3→6→7→14→28→29→58→116→232,
and used 3 pre-computed tables for computing the iterated squarings a229

, a258
and

a2116
. The rest of the field squaring operations were computed by executing consecutive

squarings. We recall that each table stores a total of 16�m
4 � field elements.

2 In the case of inversion over F2409 , the minimal length addition chain to reach m − 1 = 408
has 10 steps. However, we preferred to use an 11-step chain to save one look-up table.

Software Implementation of Binary Elliptic Curves 113

2.4 Half-Trace

Half-trace plays a central role in point halving and its performance is essential if halving
is to be competitive against doubling. For an odd integer m, the half-trace function H :
F2m → F2m is defined by H(c) =

∑(m−1)/2
i=0 c22i

and satisfies the equation λ2 + λ =
c + Tr(c) required for point halving. One efficient desktop-targeted implementation of
the half-trace is described in [3] and presented as Algorithm 1, making extensive use of
precomputations. This implementation is based on two main steps: the elimination of
even power coefficients and the accumulation of half-trace precomputed values.

Step 5 in Algorithm 1, as shown in [21], consists in reducing the number of non-zero
coefficients of c by removing the coefficients of even powers i via H(zi) = H(zi/2) +
zi/2 + Tr(zi). That will lead to memory and time savings during the last step of the
half-trace computation, the accumulation (step 6). This is done by extraction of the odd
and even bits and can benefit from vectorization in the same way as square-root in [2].
However, in the case of half-trace there is a bottleneck caused by data dependencies.
For efficiency, the bank of 128-bit registers is used as much as possible, but at one point
in the algorithm execution the number of available bits to process decreases. For 64-bit
and 32-bit digits, the use of 128-bit registers is still beneficial, but for a smaller size, the
conventional approach (not vectorized) becomes again competitive.

Unlike the direction taken in [21], the approach in [3] does not attempt to mini-
mize memory requirements but rather it greedily strives to speed the accumulation part
(step 6). Precomputation is extended so as to reduce the number of accesses to the
lookup table. The following values of the half-trace are stored: H(l0c8i+1 + l1c

8i+3 +
l2c

8i+5 + l3c
8i+7) for all i ≥ 0 such that 8i < m− 3 and lj ∈ F2. The memory size in

bytes taken by the precomputations follows the formula 16 × n64 × 8 × �m
8 �.

Algorithm 1. Solve x2 + x = c

Input: c =
∑m−1

i=0 ciz
i ∈ F2m where m is odd and Tr(c) = 0

Output: a solution s of x2 + x = c
1: compute H(l0c

8i+1+l1c
8i+3+l2c

8i+5+l3c
8i+7) for i ∈ I = {0, . . . , �m−3

8
�} and lj ∈ F2

2: s ← 0
3: for i = (m − 1)/2 downto 1 do
4: if c2i = 1 then
5: c ← c + zi, s ← s + zi

6: return s ← s+
∑

i∈I c8i+1H(z8i+1)+c8i+3H(z8i+3)+c8i+5H(z8i+5)+c8i+7H(z8i+7)

While considering different organizations of the half-trace code, we made the fol-
lowing serendipitous observation: inserting as many xor operations as the data depen-
dencies permitted from the accumulation stage (step 6) into step 5 gave a substantial
speed-up of 20% to 25% compared with code written in the order as described in Al-
gorithm 1. Plausible explanations are compiler optimization and processor pipelining
characteristics. The result is a half-trace-to-multiplication ratio near 1, and this ratio can
be reduced if memory can be consumed more aggressively.

114 J. Taverne et al.

3 Random Binary Elliptic Curves

Given a finite field Fq for q = 2m, a non-supersingular elliptic curve E(Fq) is defined
to be the set of points (x, y) ∈ Fq × Fq that satisfy the affine equation

y2 + xy = x3 + ax2 + b, (1)

where a and 0 �= b ∈ Fq , together with the point at infinity denoted by O. It is known
that E(Fq) forms an additive Abelian group with respect to the elliptic point addition
operation.

Let k be a positive integer and P a point on an elliptic curve. Then elliptic curve
scalar multiplication is the operation that computes the multiple Q = kP , defined as
the point resulting of adding P to itself k − 1 times. One of the most basic methods
for computing a scalar multiplication is based on a double-and-add variant of Horner’s
rule. As the name suggests, the two most prominent building blocks of this method
are the point doubling and point addition primitives. By using the non-adjacent form
(NAF) representation of the scalar k, the addition-subtraction method computes a scalar
multiplication in about m doubles and m/3 additions [21]. The method can be extended
to a width-ω NAF k =

∑t−1
i=0 ki2i where ki ∈ {0,±1, . . . ,±2m − 1}, kt−1 �= 0, and at

most one of any ω consecutive digits is nonzero. The length t is at most one larger than
the bitsize of k, and the density is approximately 1/(ω + 1); for ω = 2, this is the same
as NAF.

3.1 Sequential Algorithms for Random Binary Curves

The traditional left-to-right double-and-add method is illustrated in Algorithm 2 where
n = 0 (that is, the computation corresponds to the left column) and the width-ω NAF
k =

∑t−1
i=0 ki2i expression is computed from left to right, i.e., it starts processing kt−1

first, then kt−2 until it ends with the coefficient k0. Step 1 computes 2ω−2−1 multiples
of the point P . Based on the Montgomery trick, authors in [13] suggested a method
to precompute the affine points in large-characteristic fields Fp, employing only one
inversion. Exporting that approach to F2m , we obtained formulae that offer a saving of
4 multiplications and 15 squarings for ω = 4 when compared with a naive method that
would make use of the Montgomery trick in a trivial way (see Table 1 for a summary
of the computational effort associated to this phase).

For a given ω, the evaluation stage of the algorithm has approximately m/(ω + 1)
point additions, and hence increasing ω has diminishing returns. For the curves given
by NIST [34] and with on-line precomputation, ω ≤ 6 is optimal in the sense that total
point additions are minimized. In many cases, the recoding in ωNAF(k) is performed
on-line and can be considered as part of the precomputation step.

The most popular way to represent points in binary curves is López-Dahab projective
coordinates that yield an effective cost for a mixed point addition and point doubling
operation of about 8M + 5S ≈ 9M and 4M + 5S ≈ 5M , respectively (see Tables 2
and 3). Kim and Kim [26] report alternate formulas for point doubling requiring four
multiplications and five squarings, but two of the four multiplications are by the constant
b, and these have the same cost as general multiplication with the native carry-less
multiplier. For mixed addition, Kim and Kim require eight multiplications but save

Software Implementation of Binary Elliptic Curves 115

Algorithm 2. Double-and-add, halve-and-add scalar multiplication: parallel
Input: ω, scalar k, P ∈ E(F2m) of odd order r, constant n (e.g., from Table 1(b))
Output: kP
1: Compute Pi = iP for

i ∈ I = {1, 3, . . . , 2ω−1 − 1}
2: Q0 ← O

3: Recode: k′ = 2nk mod r and obtain rep
ωNAF(k′)/2n =

∑t
i=0 k′

i2
i−n

4: Initialize Qi ← O for i ∈ I

{Barrier}
5: for i = t downto n do
6: Q0 ← 2Q0

7: if k′
i > 0 then

8: Q0 ← Q0 + Pk′
i

9: else if k′
i < 0 then

10: Q0 ← Q0 − P−k′
i

11: for i = n − 1 downto 0 do
12: P ← P/2
13: if k′

i > 0 then
14: Qk′

i
← Qk′

i
+ P

15: else if k′
i < 0 then

16: Q−k′
i
← Q−k′

i
− P

{Barrier}
17: return Q ← Q0 +

∑
i∈I iQi

two field reductions when compared with López-Dahab, giving their method the edge.
Hence, in this work we use López-Dahab for point doubling and Kim and Kim for point
addition.

Right-to-Left Halve-and-Add. Scalar multiplication based on point halving replaces
point doubling by a potentially faster halving operation that produces Q from P with
P = 2Q. The method was proposed independently by Knudsen [28] and Schroeppel
[35] for curves y2 + xy = x3 + ax2 + b over F2m . The method is simpler if the trace
of a is 1, and this is the only case we consider. The expensive computations in halving
are a field multiplication, solving a quadratic z2 + z = c, and finding a square root.
On the NIST random curves studied in this work, we found that the cost of halving is
approximately 3M , where M denotes the cost of a field multiplication.

Let the base point P have odd order r, and let t be the number of bits to represent
r. For 0 < n ≤ t, let

∑t
i=0 k′

i2
i be given by the width-ω NAF of 2nk mod r. Then

k ≡ k′/2n ≡∑t
i=0 k′

i2
i−n (mod r) and the scalar multiplication can be split as

kP = (k′
t2

t−n + · · · + k′
n)P + (k′

n−12
−1 + · · · + k′

02
−n)P. (2)

When n = t, this gives the usual representation for point multiplication via halving,
illustrated in Algorithm 2 (that is, the computation is essentially the right column). The
cost for postcomputation appears in Table 1.

3.2 Parallel Scalar Multiplication on Random Binary Curves

For parallelization, choose n < t in (2) and process the first portion by a double-and-
add method and the second portion by a method based on halve-and-add. Algorithm 2
illustrates a parallel approach suitable for two processors. Recommended values for n
to balance cost between processors appear in Table 1.

116 J. Taverne et al.

Table 1. Costs and parameter recommendations for ω ∈ {3, 4, 5}

ω
Algorithm 2 [21, Alg 3.70] [21, Alg 3.70]′

Precomp Postcomp Precomp Postcomp
3 14M,11S,I 43M,26S 2M,3S,I 26M,13S
4 38M,15S,I 116M,79S 9M,9S,I 79M,45S
5 N/A N/A 23M,19S,2I 200M,117S

ω
Algorithm 2 Algorithm 3
B-233 B-409 K-233 K-409

3 128 242 131 207
4 132 240 135 210
5 N/A N/A 136 213

(a) Pre- and post-computation costs. (b) Recommended value for n.

3.3 Side-Channel Resistant Multiplication on Random Binary Curves

Another approach for scalar multiplication offering some resistance to side-channel
attacks was proposed by López and Dahab [31] based on the Montgomery laddering
technique. This approach requires 6M + 5S in F2m per iteration independently of the
bit pattern in the scalar, and one of these multiplications is by the curve coefficient b.
The curve being lately used for benchmarking purposes [7] at the 128-bit security level
is an Edwards curve (CURVE2251) corresponding to the Weierstraß curve y2 + xy =
x3+(z13+z9+z8+z7+z2+z+1). It is clear that this curve is especially tailored for this
method due to the short length of b, reducing the cost of the algorithm to approximately
5.25M +5S per iteration. At the same time, halving-based approaches are non-optimal
for this curve due to the penalties introduced by the 4-cofactor [27]. Considering this
and to partially satisfy the side-channel resistance offered by a bitsliced implementation
such as [6], we restricted the choices of scalar multiplication at this security level to the
Montgomery laddering approach.

4 Koblitz Elliptic Curves

A Koblitz curve Ea(Fq), also known as an Anomalous Binary Curve [29], is a special
case of (1) where b = 1 and a ∈ {0, 1}. In a binary field, the map taking x to x2 is an
automorphism known as the Frobenius map. Since Koblitz curves are defined over the
binary field F2, the Frobenius map and its inverse naturally extend to automorphisms
of the curve denoted τ and τ−1, respectively, where τ(x, y) = (x2, y2). Moreover,
(x4, y4) + 2(x, y) = μ(x2, y2) for every (x, y) on Ea, where μ = (−1)1−a; that is, τ

satisfies τ2 + 2 = μτ and we can associate τ with the complex number τ = μ+
√−7
2 .

Solinas [36] presents a τ -adic analogue of the usual NAF as follows. Since short
representations are desirable, an element ρ ∈ Z[τ] is found with ρ ≡ k (mod δ) of as
small norm as possible, where δ = (τm−1)/(τ −1). Then for the subgroup of interest,
kP = ρP and a width-ω τ -adic NAF (ωτNAF) for ρ is obtained in a fashion that
parallels the usual ωNAF. As in [36], define αi = i mod τω for i ∈ {1, 3, . . . , 2ω−1 −
1}. A ωτNAF of a nonzero element ρ is an expression ρ =

∑l−1
i=0 uiτ

i where each
ui ∈ {0,±α1,±α3, . . . ,±α2ω−1−1}, ul−1 �= 0, and at most one of any consecutive
ω coefficients is nonzero. Scalar multiplication kP can be performed with the ωτNAF
expansion of ρ as

ul−1τ
l−1P + · · · + u2τ

2P + u1τP + u0P (3)

with l − 1 applications of τ and approximately l/(ω + 1) additions.

Software Implementation of Binary Elliptic Curves 117

The length of the representation is at most m + a, and Solinas presents an efficient
technique to find an estimate for ρ, denoted ρ′ = k partmod δ with ρ′ ≡ ρ (mod δ),
having expansion of length at most m+a+3 [36,9]. Under reasonable assumptions, the
algorithm will usually produce an estimate giving length at most m + 1. For simplicity,
we will assume that the recodings obtained have this as an upper bound on length; small
adjustments are necessary to process longer representations. Under these assumptions
and properties of τ , scalars may be written k =

∑m
i=0 uiτ

i =
∑m

i=0 uiτ
−(m−i) since

τ−i = τm−i for all i.

4.1 Sequential Algorithms for Koblitz Curves

A traditional left-to-right τ -and-add method for (3) appears as [21, Alg 3.70], and is
essentially the left-hand portion of Algorithm 3. Precomputation consists of 2ω−2 − 1
multiples of the point P , each at a cost of approximately one point addition (see Table 1
for a summary of the computational effort associated to this phase).

Alternatively, we can process bits right-to-left and obtain a variant we shall denote as
[21, Alg 3.70]′ (an analogue of [21, Alg 3.91]). The multiple points of precomputation
Pu are exchanged for the same number of accumulators Qu along with postcomputation
of form

∑
αuQu. The cost of postcomputation is likely more than the precomputation

of the left-to-right variant; see Table 1 for a summary in the case where postcomputation
uses projective additions. However, if the accumulator in Algorithm 3 is in projective
coordinates, then the right-to-left variant has a less expensive evaluation phase since τ
is applied to points in affine coordinates.

4.2 Parallel Algorithm for Koblitz Curves

The basic strategy in our parallel algorithm is to reformulate the scalar multiplication in
terms of both the τ and the τ−1 operators as k =

∑m
i=0 uiτ

i = u0+u1τ
1+· · ·+unτn+

un+1τ
−(m−n−1) + · · · + um =

∑n
i=0 uiτ

i +
∑m

i=n+1 uiτ
−(m−i) where 0 < n < m.

Algorithm 3 illustrates a parallel approach suitable for two processors. Although similar
in structure to Algorithm 2, a significant difference is the shared precomputation rather
than the pre and postcomputation required in Algorithm 2.

The scalar representation is given by Solinas [36] and hence has an expected m/(ω+
1) point additions in the evaluation-stage, and an extra point addition at the end. There
are also approximately m applications of τ or its inverse. If the field representation is
such that these operators have similar cost or are sufficiently inexpensive relative to field
multiplication, then the evaluation stage can be a factor 2 faster than a corresponding
non-parallel algorithm.

As discussed before, unlike the ordinary width-ω NAF, the τ -adic version requires a
relatively expensive calculation to find a short ρ with ρ ≡ k (mod δ). Hence, (a por-
tion of) the precomputation is “free” in the sense that it occurs during scalar recoding.
This can encourage the use of a larger window size ω. The essential features exploited
by Algorithm 3 are that the scalar can be efficiently represented in terms of the Frobe-
nius map and that the map and its inverse can be efficiently computed, and hence the
algorithm adapts to curves defined over small fields.

Algorithm 3 is attractive in the sense that two processors are directly supported with-
out “extra” computations. However, if multiple applications of the “doubling step” are

118 J. Taverne et al.

Algorithm 3. ωτNAF scalar multiplication: parallel
Input: ω, k ∈ [1, r − 1], P ∈ Ea(F2m) of order r, constant n (e.g., from Table 1(b))
Output: kP
1: ρ ← k partmod δ
2:
∑l−1

i=0 uiτ
i ← ωτNAF(ρ)

3: Pu = αuP ,
for u ∈ {1, 3, 5, . . . , 2ω−1 − 1}

{Barrier}
4: Q0 ← O
5: for i = n downto 0 do
6: Q0 ← τQ0

7: if ui = αj then
8: Q0 ← Q0 + Pj

9: else if ui = −αj then
10: Q0 ← Q0 − Pj

11: Q1 ← O
12: for i = n + 1 to m do
13: Q1 ← τ−1Q1

14: if ui = αj then
15: Q1 ← Q1 + Pj

16: else if ui = −αj then
17: Q1 ← Q1 − Pj

{Barrier}
18: return Q ← Q0 + Q1

sufficiently inexpensive, then more processors and additional curves can be accom-
modated in a straightforward fashion without sacrificing the high-level parallelism of
Algorithm 3. As an example for Koblitz curves, a variant on Algorithm 3 discards the
applications of τ−1 (which may be more expensive than τ) and finds kP = k1(τ jP)+
k0P = τ j(k1P)+ k0P for suitable ki and j ≈ m/2 with traditional methods to calcu-
late kiP . The application of τ j is low cost if there is storage for a per-field matrix as it
was first discussed in [1].

5 Experimental Results

We consider example fields F2m for m ∈ {233, 251, 409}. These were chosen to ad-
dress 112-bit and 192-bit security levels, according to the NIST recommendation, and
the 251-bit binary Edwards elliptic curve presented in [6]. The field F2233 was also cho-
sen as more likely to expose any overhead penalty in the parallelization compared with
larger fields from NIST. Our C library coded all the algorithms using the GNU C 4.6
(GCC) and Intel 12 (ICC) compilers, and the timings were obtained on a 3.326 GHz
32nm Intel Westmere processor i5 660.

Obtaining times useful for comparison across similar systems can be problematic. In-
tel, for example, introduced “Pentium 4” processors that were fundamentally different
than earlier designs with the same name. The common method via time stamp counter
(TSC) requires care on recent processors having “turbo” modes that increase the clock
(on perhaps 1 of 2 cores) over the nominal clock implicit in TSC, giving an underesti-
mate of actual cycles consumed. Benchmarking guidelines on eBACS [7], for example,
recommend disabling such modes, and this is the method followed in this paper.

Timings for field arithmetic appear in Table 2. The López-Dahab multiplier de-
scribed in [2] was implemented as a baseline to quantify the speedup due to the native
multiplier. For the most part, timings for GCC and ICC are similar, although López-
Dahab multiplication is an exception. The difference in multiplication times between
F2233 = F2[z]/(z233+z74+1) and F2251 = F2[z]/(z251+z7+z4+z2+1) is in reduc-
tion. The relatively expensive square root in F2251 is due to the representation chosen;

Software Implementation of Binary Elliptic Curves 119

Table 2. Timings in clock cycles for field arithmetic operations. “op/M” denotes ratio to multi-
plication obtained from ICC.

Base field F2233 F2251 F2409

operation GCC ICC op/M GCC ICC op/M GCC ICC op/M

Multiplication 128 128 1.00 161 159 1.00 345 348 1.00
López-Dahab Mult. 256 367 2.87 338 429 2.70 637 761 2.19
Square root 67 60 0.47 155 144 0.91 59 56 0.16
Squaring 30 35 0.27 56 59 0.37 44 49 0.14
Half trace 167 150 1.17 219 212 1.33 322 320 0.92
Multi-Squaring 191 184 1.44 195 209 1.31 460 475 1.36
Inversion 2,951 2,914 22.77 3,710 3,878 24.39 9,241 9,350 26.87
4-τNAF 9,074 11,249 87.88 - - - 23,783 26,633 76.53
3-NAF 5,088 5,059 39.52 - - - 13,329 14,373 41.30
4-NAF 4,280 4,198 32.80 - - - 11,406 12,128 34.85
Recoding (halving) 1,543 1,509 11.79 - - - 3,382 3,087 8.87
Recoding (parallel) 999 1,043 8.15 - - - 2,272 2,188 6.29

Table 3. Timings in clock cycles for curve arithmetic operations. “op/M” denotes ratio to multi-
plication obtained from ICC.

Elliptic curve B-233 B-409
operations GCC ICC op/M GCC ICC op/M

Doubling (LD) 690 710 5.55 1,641 1,655 4.76
Addition (KIM Mixed) 1,194 1,171 9.15 2,987 3,000 8.62
Addition (LD Mixed) 1,243 1,233 9.63 3,072 3,079 8.85
Addition (LD General) 1,954 1,961 15.32 4,893 4,922 14.14
Halving 439 417 3.26 894 878 2.52

if square roots are of interest, then there are reduction polynomials giving faster square
root and similar numbers for other operations. Inversion via exponentiation (§2) gives
I/M similar to that in [2] where an Euclidean algorithm variant was used with similar
hardware but without the carry-less multiplier.

Table 4 shows timings obtained for different variants of sequential and parallel scalar
multiplication. We observe that for ωNAF recoding with ω = 3, 4, the halve-and-add
algorithm is always faster than its double-and-add counterpart. This performance is
a direct consequence of the timings reported in Table 3, where the cost of one point
doubling is roughly 5.5 and 4.8 multiplications whereas the cost of a point halving is of
only 3.3 and 2.5 multiplications in the fields F2233 and F2409 , respectively. The parallel
version that concurrently executes these algorithms in two threads computes one scalar
multiplication with a latency that is roughly 37.7% and 37.0% smaller than that of the
halve-and-add algorithm for the curves B-233 and B-409, respectively.

The bold entries for Koblitz curves identify fastest timings per category (i.e., con-
sidering the compiler, curve, and the specific value of ω used in the ωNAF recoding).
For smaller ω, [21, Alg 3.70]′ has an edge over [21, Alg 3.70] because τ is applied to
points in affine coordinates; this advantage diminishes with increasing ω due to post-
computation cost. “(τ, τ)-and-add” denotes the parallel variant described in §4.2. There

120 J. Taverne et al.

Table 4. Timings in 103 clock cycles for scalar multiplication in the unknown-point scenario

Scalar mult B-233 B-409
ω random curves GCC ICC GCC ICC

Double-and-add 240 238 984 989
3 Halve-and-add 196 192 755 756

(Dbl,Halve)-and-add 122 118 465 466

Double-and-add 231 229 941 944
4 Halve-and-add 188 182 706 705

(Dbl,Halve)-and-add 122 116 444 445

Side-channel resistant CURVE2251
scalar multiplication GCC ICC
Montgomery laddering 296 282

Scalar mult K-233 K-409
ω Koblitz curves GCC ICC GCC ICC

[21, Alg 3.70] 111 110 413 416
3 [21, Alg 3.70]′ 98 98 381 389

(τ, τ)-and-add 73 74 248 248
Alg. 3 80 78 253 248

[21, Alg 3.70] 97 95 353 355
4 [21, Alg 3.70]′ 90 89 332 339

(τ, τ)-and-add 68 65 216 214
Alg. 3 73 69 218 214

[21, Alg 3.70] 92 90 326 328
5 [21, Alg 3.70]′ 95 93 321 332

(τ, τ)-and-add 63 58 197 191
Alg. 3 68 63 197 194

is a storage penalty for a linear map, but applications of τ−1 are eliminated (of interest
when τ is significantly less expensive). Given the modest cost of the multi-squaring op-
eration (with an equivalent cost of less than 1.44 field multiplications, see Table 2), the
(τ, τ)-and-add parallel variant is usually faster than Algorithm 3. When using ω = 5,
the parallel (τ, τ)-and-add algorithm computes one scalar multiplication with a latency
that is roughly 35.5% and 40.5% smaller than that of the best sequential algorithm for
the curves K-233 and K-409, respectively.

Per-field storage and coding techniques compute half-trace at cost comparable to
field multiplication, and methods based on halving continue to be fastest for suitable
random curves. However, the hardware multiplier and squaring (via shuffle) give a
factor 2 advantage to Koblitz curves in the examples from NIST. This is larger than
in [16,21], where a 32-bit processor in the same general family as the i5 has half-trace
at approximately half the cost of a field multiplication for B-233 and a factor 1.7 ad-
vantage to K-163 over B-163 (and the factor would have been smaller for K-233 and
B-233). It is worth remarking that the parallel scalar multiplications versions shown in
Table 4 look best for bigger curves and larger ω.

6 Conclusion and Future Work

In this work we achieve the fastest timings reported in the open literature for software
computation of scalar multiplication in NIST and Edwards binary elliptic curves de-
fined at the 112-bit, 128-bit and 192-bit security levels. The fastest curve implemented,
namely NIST K-233, can compute one scalar multiplication in less than 17.5μs, a result
that is not only much faster than previous software implementations of that curve, but is
also quite competitive with the computation time achieved by state-of-the-art hardware
accelerators working on similar or smaller curves [24,1].

These fast timings were obtained through the usage of the native carry-less multiplier
available in the newest Intel processors. At the same time, we strive to use the best
algorithmic techniques, and the most efficient elliptic curve and finite field arithmetic

Software Implementation of Binary Elliptic Curves 121

formulae. Further, we proposed effective parallel formulations of scalar multiplication
algorithms suitable for deployment in multi-core platforms.

The curves over binary fields permit relatively elegant parallelization with low syn-
chronization cost, mainly due to the efficient halving or τ−1 operations. Parallelizing at
lower levels in the arithmetic would be desirable, especially for curves over prime fields.
Grabher et al. [17] apply parallelization for extension field multiplication, but times for
a base field multiplication in a 256-bit prime field are relatively slow compared with
Beuchat et al. [8]. On the other hand, a strategy that applies to all curves performs
point doubles in one thread and point additions in another. The doubling thread stores
intermediate values corresponding to nonzero digits of the NAF; the addition thread
processes these points as they become available. Experimentally, synchronization cost
is low, but so is the expected acceleration. Against the fastest times in Longa and Gebo-
tys [30] for a curve over a 256-bit prime field, the technique would offer roughly 17%
improvement, a disappointing return on processor investment.

The new native support for binary field multiplication allowed our implementation
to improve by 10% the previous speed record for side-channel resistant scalar multipli-
cation in random elliptic curves. It is hard to predict what will be the superior strategy
between a conventional non-bitsliced or a bitsliced implementation on future revisions
of the target platform: the latency of the carry-less multiplier instruction has clear room
for improvement, while the new AVX instruction set has 256-bit registers. An issue with
the current Sandy Bridge version of AVX is that xor throughput for operations with
register operands was decreased significantly from 3 operations per cycle in SSE to 1
operation per cycle in AVX. The resulting performance of a bitsliced implementation
will ultimately rely on the amount of work which can be scheduled to be done mostly
in registers.

Acknowledgments. We wish to thank the University of Waterloo and especially Pro-
fessor Alfred Menezes for useful discussions related to this work during a visit by three
of the authors, where the idea of this project was discussed, planned and a portion of the
development phase was done. Diego F. Aranha and Julio López thank CNPq, CAPES
and FAPESP for financial support.

References

1. Ahmadi, O., Hankerson, D., Rodrı́guez-Henrı́quez, F.: Parallel formulations of scalar multi-
plication on Koblitz curves. J. UCS 14(3), 481–504 (2008)

2. Aranha, D.F., López, J., Hankerson, D.: Efficient Software Implementation of Binary Field
Arithmetic Using Vector Instruction Sets. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATIN-
CRYPT 2010. LNCS, vol. 6212, pp. 144–161. Springer, Heidelberg (2010)

3. Avanzi, R.M.: Another Look at Square Roots (and Other Less Common Operations) in
Fields of Even Characteristic. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 138–154. Springer, Heidelberg (2007)

4. Bellare, M. (ed.): CRYPTO 2000. LNCS, vol. 1880. Springer, Heidelberg (2000)
5. Bernstein, D., Lange, T.: Analysis and optimization of elliptic-curve single-scalar multipli-

cation. In: Proceedings 8th International Conference on Finite Fields and Applications (Fq8),
vol. 461, pp. 1–20. AMS, Providence (2008)

122 J. Taverne et al.

6. Bernstein, D.J.: Batch Binary Edwards. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 317–336. Springer, Heidelberg (2009)

7. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of Cryptographic Sys-
tems, http://bench.cr.yp.to (accessed March 30, 2011)

8. Beuchat, J.-L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodrı́guez-Henrı́quez, F.,
Teruya, T.: High-speed software implementation of the optimal ate pairing over barreto–
naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487,
pp. 21–39. Springer, Heidelberg (2010)

9. Blake, I.F., Murty, V.K., Xu, G.: A note on window τ -NAF algorithm. Inf. Process.
Lett. 95(5), 496–502 (2005)

10. Bodrato, M.: Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate
Polynomials in Characteristic 2 and 0. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS,
vol. 4547, pp. 116–133. Springer, Heidelberg (2007)

11. Bos, J.W., Kleinjung, T., Niederhagen, R., Schwabe, P.: ECC2K-130 on Cell CPUs. In: Bern-
stein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 225–242. Springer,
Heidelberg (2010)

12. Comba, P.G.: Exponentiation Cryptosystems on the IBM PC. IBM Systems Journal 29(4),
526–538 (1990)

13. Dahmen, E., Okeya, K., Schepers, D.: Affine Precomputation with Sole Inversion in Elliptic
Curve Cryptography. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 245–258. Springer, Heidelberg (2007)

14. Firasta, N., Buxton, M., Jinbo, P., Nasri, K., Kuo, S.: Intel AVX: New frontiers in perfor-
mance improvement and energy efficiency. White paper, http://software.intel.com/

15. Fog, A.: Instruction tables: List of instruction latencies, throughputs and micro-operation
breakdowns for Intel, AMD and VIA CPUs,
http://www.agner.org/optimize/instruction tables.pdf (accessed March 01, 2011)

16. Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving revisited.
IEEE Transactions on Computers 53(8), 1047–1059 (2004)

17. Grabher, P., Großschädl, J., Page, D.: On software parallel implementation of cryptographic
pairings. Cryptology ePrint Archive, Report 2008/205 (2008), http://eprint.iacr.org/

18. Guajardo, J., Paar, C.: Itoh-Tsujii inversion in standard basis and its application in cryptog-
raphy and codes. Designs, Codes and Cryptography 25(2), 207–216 (2002)

19. Gueron, S.: Intel Advanced Encryption Standard (AES) Instructions Set. White paper,
http://software.intel.com/

20. Gueron, S., Kounavis, M. E.: Carry-less multiplication and its usage for computing the GCM
mode. White paper, http://software.intel.com/

21. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer,
Secaucus (2004)

22. Intel. Intel SSE4 Programming Reference. Technical Report, http://software.intel.com/
23. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m) using

normal bases. Inf. Comput. 78(3), 171–177 (1988)
24. Järvinen, K.: Optimized FPGA-based elliptic curve cryptography processor for high-speed

applications. Integration, the VLSI Journal (to appear)
25. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers.

Doklady Akad. Nauk SSSR 145, 293–294 (1962); Translation in Physics-Doklady 7, 595–
596 (1963)

26. Kim, K.H., Kim, S.I.: A new method for speeding up arithmetic on elliptic curves over binary
fields. Cryptology ePrint Archive, Report 2007/181 (2007), http://eprint.iacr.org/

27. King, B., Rubin, B.: Improvements to the Point Halving Algorithm. In: Wang, H., Pieprzyk,
J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 262–276. Springer, Heidelberg
(2004)

http://bench.cr.yp.to
http://software.intel.com/
http://www.agner.org/optimize/instruction_tables.pdf
http://eprint.iacr.org/
http://software.intel.com/
http://software.intel.com/
http://software.intel.com/
http://eprint.iacr.org/

Software Implementation of Binary Elliptic Curves 123

28. Knudsen, E.: Elliptic Scalar Multiplication Using Point Halving. In: Lam, K.-Y., Okamoto,
E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 135–149. Springer, Heidelberg
(1999)

29. Koblitz, N.: CM-Curves with Good Cryptographic Properties. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

30. Longa, P., Gebotys, C.H.: Efficient techniques for high-speed elliptic curve cryptography.
In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 80–94. Springer,
Heidelberg (2010)

31. López, J., Dahab, R.: Fast Multiplication on Elliptic Curves over GF(2m) without Precompu-
tation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer,
Heidelberg (1999)

32. López, J., Dahab, R.: High-Speed Software Multiplication in GF(2m). In: Roy, B., Okamoto,
E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 203–212. Springer, Heidelberg (2000)

33. Montgomery, P.L.: Five, six, and seven-term Karatsuba-like formulae. IEEE Transactions on
Computers 54(3), 362–369 (2005)

34. National Institute of Standards and Technology (NIST). Recommended Elliptic Curves for
Federal Government Use. NIST Special Publication (July 1999),
http://csrc.nist.gov/csrc/fedstandards.html

35. Schroeppel, R.: Elliptic curves: Twice as fast! Presentation at the CRYPTO 2000 [4] Rump
Session (2000)

36. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptography 19(2-
3), 195–249 (2000)

37. Wall, D.W.: Limits of instruction-level parallelism. In: 4th International Conference on Ar-
chitectural Support for Programming Languages and Operating System (ASPLOS 1991), pp.
176–188. ACM, New York (1991)

38. Wulf, W.A., McKee, S.A.: Hitting the Memory Wall: Implications of the Obvious. SIGARCH
Computer Architecture News 23(1), 20–24 (1995)

http://csrc.nist.gov/csrc/fedstandards.html

High-Speed High-Security Signatures

Daniel J. Bernstein1, Niels Duif2, Tanja Lange2,
Peter Schwabe3, and Bo-Yin Yang4

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
nielsduif@hotmail.com, tanja@hyperelliptic.org

3 Department of Electrical Engineering
National Taiwan University

1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
peter@cryptojedi.org

4 Institute of Information Science
Academia Sinica, 128 Section 2 Academia Road, Taipei 115-29, Taiwan

by@crypto.tw

Abstract. This paper shows that a $390 mass-market quad-core 2.4GHz
Intel Westmere (Xeon E5620) CPU can create 108000 signatures per
second and verify 71000 signatures per second on an elliptic curve at a
2128 security level. Public keys are 32 bytes, and signatures are 64 bytes.
These performance figures include strong defenses against software side-
channel attacks: there is no data flow from secret keys to array indices,
and there is no data flow from secret keys to branch conditions.

Keywords: Elliptic curves, Edwards curves, signatures, speed, software
side channels, foolproof session keys.

1 Introduction

This paper introduces software for public-key signatures with several attractive
features:

– Fast single-signature verification. The software takes only 280880 cycles
to verify a signature on Intel’s widely deployed Nehalem/Westmere lines of
CPUs. (This performance measurement is for short messages; for very long
messages, verification time is dominated by hashing time.) Nehalem and

This work was supported by the National Science Foundation under grant 1018836,
by the European Commission under Contract ICT-2007-216676 ECRYPT II, and
by the National Science Council, National Taiwan University and Intel Corporation
under Grant NSC99-2911-I-002-001 and 99-2218-E-001-007, and the Academia Sinica
Career Award. Part of this work was carried out when Peter Schwabe was employed
by Academia Sinica, Taiwan. Part of this work was carried out when Niels Duif was
employed by Compumatica secure networks BV, the Netherlands. Permanent ID of
this document: a1a62a2f76d23f65d622484ddd09caf8. Date: 2011.07.04.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 124–142, 2011.
c© International Association for Cryptologic Research 2011

High-Speed High-Security Signatures 125

Westmere include all Core i7, i5, and i3 CPUs released between 2008 and
2010, and most Xeon CPUs released in the same period.

– Even faster batch verification. The software performs a batch of 64
separate signature verifications (verifying 64 signatures of 64 messages under
64 public keys) in only 8.55 million cycles, i.e., under 134000 cycles per
signature. The software fits easily into L1 cache, so contention between cores
is negligible: a quad-core 2.4GHz Westmere verifies 71000 signatures per
second, while keeping the maximum verification latency below 4 milliseconds.

– Very fast signing. The software takes only 88328 cycles to sign a message.
A quad-core 2.4GHz Westmere signs 108000 messages per second.

– Fast key generation. Key generation is almost as fast as signing. There is
a slight penalty for key generation to obtain a secure random number from
the operating system; /dev/urandom under Linux costs about 6000 cycles.

– High security level. All known attacks take at least 2128 operations. This
is the security level achieved by AES-128, NIST P-256, RSA with ≈ 3000-bit
keys, etc. The same techniques would also produce speed improvements at
other security levels.

– Foolproof session keys. Signatures in this paper are generated determin-
istically; key generation consumes new randomness but new signatures do
not. This is not only a speed feature but also a security feature, directly
relevant to the recent collapse of the Sony PlayStation 3 security system.
See Section 2 for further discussion.

– Collision resilience. Hash-function collisions do not break this system.
This adds a layer of defense against the possibility of weakness in the selected
hash function.

– No secret array indices. The software never reads or writes data from
secret addresses in RAM; the pattern of addresses is completely predictable.
The software is therefore immune to cache-timing attacks, hyperthreading
attacks, and other side-channel attacks that rely on leakage of addresses
through the CPU cache.

– No secret branch conditions. The software never performs conditional
branches based on secret data; the pattern of jumps is completely pre-
dictable. The software is therefore immune to side-channel attacks that rely
on leakage of information through the branch-prediction unit.

– Small signatures. Signatures fit into 64 bytes. These signatures are actu-
ally compressed versions of longer signatures; the times for compression and
decompression are included in the cycle counts reported above.

– Small keys. Public keys consume only 32 bytes. The times for compression
and decompression are again included.

We have submitted our software to the eBATS project [9] for public benchmark-
ing, and placed the software into the public domain to maximize reusability.
The numbers 88328 and 280880 shown above are from the eBATS reports for
our software on a Westmere CPU (Intel Xeon E5620, hydra2).

Our signatures are elliptic-curve signatures, carefully engineered at several
levels of design and implementation to achieve very high speeds without com-
promising security. Section 2 specifies the signature system; Section 3 explains

126 D.J. Bernstein et al.

the techniques we use for finite-field arithmetic; Section 4 discusses fast signa-
tures; Section 5 discusses fast verification.

Comparison to Previous ECC Work. Carrying out high-security elliptic-
curve signature verification in only 134000 cycles on a single core of a typical
Intel CPU is unprecedented. The following paragraphs discuss previous work.

Readers should be aware of several difficulties in comparing ECC performance
results. First, most papers on fast ECC have been limited to ECDH (variable-
base-point single-scalar multiplication) and have not implemented ECC signa-
ture verification, although there are certainly some exceptions— for example,
[12] reported verification 1.33× slower than ECDH, and [22] reported verifica-
tion 1.36× slower than ECDH. Second, most implementations use secret array
indices and secret branch conditions and therefore must be assumed to be break-
able by side-channel attacks, as illustrated by the successful OpenSSL attack in
[14]; this is not an issue for public-key signature verification but it is an issue for
signing and for ECDH. Third, most papers report results for only a few CPUs,
so anyone without access to the same CPUs must engage in error-prone extrap-
olation from one CPU to another; this is not an issue for systems included in
the eBATS benchmarks, but we are aware of two recent ECC implementations
(discussed below) that are not included in eBATS.

Before this paper, the closest system to ours in eBATS was ecdonaldp256:
ECDSA signatures using the NIST P-256 elliptic curve. On hydra2 this sys-
tem takes 1690936 cycles for key generation, 1790936 cycles for signing, and
2087500 cycles for verification. Better speeds were reported for ECDH: third
place was curve25519, an implementation by Gaudry and Thomé [23] of Bern-
stein’s Curve25519 [6]; second place was 307180 cycles for ecfp256e, an imple-
mentation by Hisil [27] of ECDH on an Edwards curve with similar security
properties to Curve25519; and first place was 278256 cycles for gls1271, an im-
plementation by Galbraith, Lin, and Scott [22] of ECDH on an Edwards curve
with an endomorphism. The recent papers [26] and [29] point out security prob-
lems with endomorphisms in some ECC-based protocols, but as far as we can
tell those security issues are not relevant to ECDH with standard hashing of the
ECDH output, and are not relevant to ECC signatures.

Longa and Gebotys in [34] reported 281000 cycles on a Core 2 Duo E6750
for ECDH on a curve similar to ecfp256e, and 229000 cycles for ECDH on a
curve similar to gls1271. The software in [34] is not included in the eBATS
benchmarks and apparently is not publicly available, so we are unable to bench-
mark it on a Westmere. More recently Käsper in [30] reported 457813 cycles for
side-channel-protected ECDH on the NIST P-224 curve on a Core 2 Duo E8400;
this software is not in eBATS but has been integrated into OpenSSL.

To aid comparisons we also implemented ECDH, specifically curve25519,
with the same side-channel defenses as our signature software (no secret array
indices, and no secret branch conditions). We submitted our ECDH software
to eBATS, which reports that the software uses 226872 cycles on hydra2 for
variable-base-point single-scalar multiplication. This is a new speed record for
public ECDH software, a new speed record for side-channel-protected ECDH

High-Speed High-Security Signatures 127

(out of all the papers mentioned above, the only ones that report side-channel
protection are [6] and [30]), and a new speed record for ECDH without endo-
morphisms. It is even slightly better than the speed in [34] for non-side-channel-
protected ECDH with endomorphisms.

Given this ECDH speed, given the ECDH-to-verification slowdowns reported
in [12] and [22], and given the extra costs that we incur for decompressing keys
and signatures, one would expect a verification speed close to 400000 cycles. We
do better than this for several reasons, the most important reason being our use
of batching. This requires careful design of the signature system, as discussed
later in this paper: ECDSA, like DSA and most other signature systems, is
incompatible with fast batch verification.

Comparison to Other Signature Systems. The eBATS benchmarks cover
42 different signature systems, including various sizes of RSA, DSA, ECDSA,
hyperelliptic-curve signatures, and multivariate-quadratic signatures. This paper
beats almost all of the signature times and verification times (and key-generation
times, which are an issue for some applications) by more than a factor of 2. The
only exceptions are as follows:

– Multivariate-quadratic signatures are competitive in speed. For example,
sflashv2 takes 124740 cycles to sign and 165884 cycles to verify; mqqsig256
takes 4216 cycles to sign and 134920 cycles to verify; smaller mqqsig versions
are even faster. However, sflashv2 was broken by Dubois, Fouque, Shamir,
and Stern in [19]. We are not aware of any security evaluation of mqqsig,
which was introduced last year in [24], but we disregard mqqsig256 for the
simple reason that it has a 789552-byte public key.

– donald512 (512-bit DSA) takes 337084 cycles to verify. This is comparable
to our single-signature verification speed but much slower than our batch
verification speed. This is also at a far lower security level, breakable in
about 260 operations rather than 2128.

– Some RSA-type systems provide faster verification—but this advantage de-
creases as the security level increases, and for many applications the ad-
vantage is outweighed by much slower signatures and much larger keys. For
example, rwb0fuz1024 (1024-bit Rabin–Williams) uses 12304 cycles to ver-
ify but 1751284 cycles to sign and 128 bytes for a public key; ronald1024
(1024-bit RSA) uses 60628 cycles to verify but 2176212 cycles to sign and
128 bytes for a public key; ronald3072 (3072-bit RSA) uses 230260 cycles to
verify but an astonishing 31469536 cycles to sign and 384 bytes for a public
key. This paper uses 134000 cycles to verify (in batches), 89416 cycles to
sign, and 32 bytes for a public key.

The conventional wisdom is that RSA signatures are much better than ECC
signatures in applications where each signature is verified many times, since RSA
verification is much faster than ECC verification. Our ECC speed results call this
conventional wisdom into question. We do not claim that our verification speeds
cannot be beaten by RSA at the same security level, but we do claim that they
are fast enough to make ECC an attractive option even for verification-intensive
applications such as [43].

128 D.J. Bernstein et al.

2 The Signature System

This section specifies the signature system used in this paper, and a generalized
signature system EdDSA that can be used with other choices of elliptic curves.

There is an extensive literature on variants of the classic signature system
introduced by ElGamal in [21]; notable variants include Schnorr’s signature
system [44], DSA, and ECDSA. Our generalized system is another of these
variants. We do not claim novelty for any of the individual modifications that
we use, but we emphasize that selecting a good combination of modifications
is critical for top performance. The most obvious modification is that we use
twisted Edwards curves rather than Weierstrass curves; this explains our choice
of the name EdDSA (Edwards-curve Digital Signature Algorithm).

EdDSA Parameters. EdDSA has six parameters: an integer b ≥ 10; a crypto-
graphic hash function H producing 2b-bit output; a prime power q congruent to
1 modulo 4; a (b−1)-bit encoding of elements of the finite field Fq; a non-square
element d of Fq; a prime � between 2b−4 and 2b−3 satisfying an extra constraint
described below; and an element B �= (0, 1) of the set

E =
{
(x, y) ∈ Fq × Fq : −x2 + y2 = 1 + dx2y2

}
.

The condition that d is not a square implies that d �∈ {0,−1}, so this set E forms
a group with neutral element 0 = (0, 1) under the twisted Edwards addition law

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + dx1x2y1y2
,

y1y2 + x1x2

1− dx1x2y1y2

)

introduced by Bernstein, Birkner, Joye, Lange, and Peters in [7]. Completeness of
the addition law—the fact that the denominators 1± dx1x2y1y2 are nonzero—
follows as explained in [7, Section 6]: −1 is a square in Fq (since q is congruent
to 1 modulo 4), so this addition law on E is Fq-isomorphic to the Edwards
addition law on the Edwards curve x2+y2 = 1−dx2y2, which is complete by [8,
Theorem 3.3] since −d is not a square in Fq. The latter follows from d being a
non-square and −1 being a square in Fq. The extra constraint mentioned above
is that �B = 0, where nB means the nth multiple of B in this group.

We use the encoding of Fq to define some field elements as being negative:
specifically, x is negative if the (b−1)-bit encoding of x is lexicographically larger
than the (b− 1)-bit encoding of −x. If q is an odd prime and the encoding is the
little-endian representation of {0, 1, . . . , q − 1} then the negative elements of Fq

are {1, 3, 5, . . . , q − 2}.
An element (x, y) ∈ E is encoded as a b-bit string (x, y), namely the (b − 1)-

bit encoding of y followed by a sign bit; the sign bit is 1 iff x is negative.
This encoding immediately determines y, and it determines x via the equation
x = ±√(y2 − 1)/(dy2 + 1).

EdDSA Keys and Signatures. An EdDSA secret key is a b-bit string k. The
hash H(k) = (h0, h1, . . . , h2b−1) determines an integer

a = 2b−2 +
∑

3≤i≤b−3

2ihi ∈
{
2b−2, 2b−2 + 8, . . . , 2b−1 − 8

}
,

High-Speed High-Security Signatures 129

which in turn determines the multiple A = aB. The corresponding EdDSA
public key is A. Bits hb, . . . , h2b−1 of the hash are used as part of signing, as
discussed in a moment.

The signature of a message M under this secret key k is defined as follows.
Define r = H(hb, . . . , h2b−1,M) ∈ {0, 1, . . . , 22b − 1

}
; here we interpret 2b-bit

strings in little-endian form as integers in
{
0, 1, . . . , 22b − 1

}
. Define R = rB.

Define S = (r + H(R,A,M)a) mod �. The signature of M under k is then the
2b-bit string (R,S), where S is the b-bit little-endian encoding of S. Applications
wishing to pack data into every last nook and cranny should note that the last
three bits of signatures are always 0 because � fits into b− 3 bits.

Verification of an alleged signature on a message M under a public key
works as follows. The verifier parses the key as A for some A ∈ E, and parses
the alleged signature as (R,S) for some R ∈ E and S ∈ {0, 1, . . . , �− 1}.
The verifier computes H(R,A,M) and then checks the group equation 8SB =
8R+8H(R,A,M)A in E. The verifier rejects the alleged signature if the parsing
fails or if the group equation does not hold.

To see that signatures pass verification, simply multiply B by the equa-
tion S = (r + H(R,A,M)a) mod �, and use the fact that �B = 0, to see
that SB = rB + H(R,A,M)aB = R + H(R,A,M)A. The verifier is permit-
ted to check this stronger equation and to reject alleged signatures where the
stronger equation does not hold. However, this is not required ; checking that
8SB = 8R+ 8H(R,A,M)A is enough for security.

Weak Keys. Forgeries are trivial if A is a known multiple of B. For example,
an attacker who knows that A = 37B can choose r and compute S = (r +
37H(R,A,M)) mod �. As an even more extreme example, an attacker who knows
that A = 0B can choose r and compute S = r mod �, independently of M . We
could declare that 0B and 37B are “broken” by these two “attacks” and that
users must check for, and reject, these “weak keys”; but the same confused
logic would require rejecting all keys in all cryptosystems, and would have no
relevance to the standard definition of signature security.

Legitimate users choose A = aB, where a is a random secret; the derivation of
a from H(k) ensures adequate randomness. These users have negligible chance
of generating any particular multiple of B targeted by the attacker (and no
chance of generating 0B). The chance of the attacker randomly guessing a is
far smaller than the chance of the attacker computing a by known discrete-
logarithm algorithms; standard elliptic-curve security criteria are designed so
that the latter algorithms have negligible chance of succeeding in any reasonable
amount of time.

Malleability. We also see no relevance of “malleability” to the standard defini-
tion of signature security. For example, if we slightly modified the system then
replacing S by −S and replacing A by −A (a slight variant of the “attack”
of [45]) would convert one valid signature into another valid signature of the
same message under a new public key; but it would still not accomplish the
attacker’s goal, namely to forge a signature on a new message under a target

130 D.J. Bernstein et al.

public key. One such modification would be to omit A from the hashing; another
such modification would be to have A encode only |A|, rather than A.

Choice of Curve. Our recommended curve for EdDSA is a twisted Edwards
curve birationally equivalent to the curve Curve25519 from [6]. Any efficiently
computable birational equivalence preserves ECDLP difficulty, so the well-known
difficulty of computing ECDLP for Curve25519 immediately implies the difficulty
of computing ECDLP for our curve. We use the name Ed25519 for EdDSA with
this particular choice of curve.

Specifically, Ed25519 is EdDSA with the following parameters: b = 256;
H is SHA-512; q is the prime 2255 − 19; the 255-bit encoding of F2255−19 is
the usual little-endian encoding of

{
0, 1, . . . , 2255 − 20

}
; � is the prime 2252 +

27742317777372353535851937790883648493 from [6]; d = −121665/121666 ∈
Fq; and B is the unique point (x, 4/5) ∈ E for which x is positive.

Curve25519 from [6] is the Montgomery curve v2 = u3 + 486662u2 + u
over the same field Fq. Bernstein and Lange pointed out in [8, Section 2]
that Curve25519 is birationally equivalent to an Edwards curve, specifically
x2 + y2 = 1 + (121665/121666)x2y2; the equivalence is x =

√
486664u/v and

y = (u − 1)/(u+ 1). As above this Edwards curve is isomorphic to −x2 + y2 =
1− (121665/121666)x2y2 since −1 is a square in Fq. Our choice of base point B
corresponds to the choice u = 9 made in [6].

Pseudorandom Generation of r. ECDSA, like many other signature systems,
asks users to generate not merely a random long-term secret key, but also a
new random secret session key r for each message to be signed. If r becomes
public then, assuming H(R,A,M) mod � �= 0, the long-term secret key a can
be simply computed as a = (S − r)/H(R,A,M) mod �. If the same value r
is ever used for 2 different messages the secret key can be computed as well,
as ElGamal noted in [21]. It was reported in [15] that the latter failure had
occurred in Sony’s ECDSA implementation for code-signing for the PlayStation3,
immediately revealing Sony’s long-term secret key.

Furthermore, it is well known that ECDSA’s session keys are much less tol-
erant than the long-term key of slight deviations from randomness, even if the
session keys are not revealed or reused. For example, Nguyen and Shparlinski
in [40] presented an algorithm using lattice methods to compute the long-term
ECDSA key from the knowledge of as few as 3 bits of r for hundreds of sig-
natures, whether this knowledge is gained from side-channel attacks or from
non-uniformity of the distribution from which r is taken.

EdDSA avoids these issues by generating r = H(hb, . . . , h2b−1,M), so that dif-
ferent messages will lead to different, hard-to-predict values of r. No per-message
randomness is consumed. Standard PRF hypotheses imply that this session key
r is indistinguishable from a truly random string generated independently for
each M , so there is no loss of security. This idea of generating random signa-
tures in a secretly deterministic way, in particular obtaining pseudorandomness
by hashing a long-term secret key together with the input message, was pro-
posed by Barwood in [3]; independently by Wigley in [47]; a few months later
in a patent application [36] by Naccache, M’Räıhi, and Levy-dit-Vehel; later by

High-Speed High-Security Signatures 131

M’Räıhi, Naccache, Pointcheval, and Vaudenay in [35]; and much later by Katz
and Wang in [31]. The patent application was abandoned in 2003.

EdDSA samples r from the interval [0, 22b− 1], ensuring almost uniformity of
the distribution modulo �. The guideline [1, Section 4.1.1, Algorithm 2] specifies
that the interval should be of size at least [0, 2b+61 − 1], i.e., 64 bits more than
�; for Ed25519 there are 259 extra bits.

Comparison to Previous ElGamal Variants. The ElGamal signature sys-
tem works as follows: generate a random rB for each message to be signed,
and compute the signature (X,S), where X is the x-coordinate of R = rB and
S = r−1(H(M) + Xa) mod �. The verifier can compute R = S−1H(M)B +
S−1XA using the public key A = aB and can then verify that X = x(R).
(We disregard the possibility S = 0, which has negligible chance of occurring
even under adversarial input; ECDSA is defined to check for this possibility and
generate a new r, but sensible implementations will skip that check.) ElGamal’s
system actually uses the multiplicative group F∗

q with non-prime � = q − 1;
ECDSA uses an elliptic-curve group with prime �.

Schnorr in [44] replaced ElGamal’s equation S = r−1(H(M) + x(R)a) mod �
with the equation S = (r+H(R,M)a) mod �. Schnorr’s system has two attrac-
tive features:

– No inversions. This is an obvious advantage, saving time and reducing code
size both for the signer and for the verifier.

– Collision resilience. The presence of R in the hash means that the attacker
cannot break Schnorr’s system by merely finding hash collisions.

Practical use of Schnorr’s system was hampered by a patent (which expired
in 2008), but the system became well known to theoreticians: the hashing of R
allowed a proof (using the “forking lemma”) that breaking Schnorr’s system is as
difficult “in the random-oracle model” as breaking DLP. See, for example, [42],
[5], and [39]. We do not mean to exaggerate the real-world relevance of “provable
security”, but we find it obvious that Schnorr’s system is a conservative, well-
studied signature system.

Schnorr’s signatures were not exactly (R,S): Schnorr, like ElGamal, com-
pressed R to the hash H(R,M). The verifier can undo this compression by
computing R as SB − H(R,M)A. Note that this compression is public, so it
cannot affect security. Neven, Smart, and Warinschi in [39] proposed taking ad-
vantage of collision resilience by choosing H to output only b/2 bits, reducing
the size of compressed signatures by 25%; but the same proposal had actually
appeared twenty years earlier in Schnorr’s original paper. See [44, Section 2].
Compression of R to a hash had a much larger effect in ElGamal’s original sys-
tem: the system used b bits of output from H (and could not use fewer, because
it was not collision-resilient), but the system used multiplicative groups rather
than elliptic curves, so R needed many more than b bits. The same compression
also appears in ECDSA but has no benefit there: ECDSA’s hash is the same size
as R.

Our verification equation is the same as Schnorr’s verification equation with
double-size hashing instead of half-size hashing, with A inserted as an extra

132 D.J. Bernstein et al.

hash input, and without the compression described in the previous paragraph.
These modifications obviously do not compromise security. The use of double-
size hashing helps alleviate concerns regarding hash-function security; the use of
A is an inexpensive way to alleviate concerns that several public keys could be
attacked simultaneously; and the avoidance of compression allows an important
verification speedup, as discussed in Section 5. We also reuse the double-size
hash to alleviate concerns regarding nonce randomness, as discussed above.

3 Fast Arithmetic Modulo 2255 − 19

This section explains how our software represents elements of the field F2255−19,
and how our software performs efficient field arithmetic. The machine instruc-
tions used in the software are available on all 64-bit Intel and AMD CPUs, but
we target Intel’s Nehalem/Westmere CPUs.

Multipliers on Nehalem CPUs. Field multiplications (and squarings) are
the main bottlenecks in elliptic-curve performance on most CPUs. The most im-
portant tool for fast field multiplication is a fast CPU multiplication instruction.
Nehalem CPUs offer three different multiplication instructions that can be used
to implement high-speed field arithmetic:

– The mulpd instruction can perform two double-precision floating-point mul-
tiplications in SIMD fashion every cycle. Newer Sandy Bridge CPUs include
a vmulpd instruction that can perform up to 4 double-precision floating-point
multiplications per cycle, but this instruction is not available on our target
CPUs.

– The mul instruction can multiply two 64-bit unsigned integers, producing a
128-bit result, every two cycles.

– The pmuldq/pmuludq instructions can perform two multiplications of 32-
bit integers, producing 64-bit results, every cycle. The pmuldq instruction
performs signed multiplication; the pmuludq instruction performs unsigned
multiplication.

Multiplication and Edwards-curve arithmetic involve data-level parallelism that
we could exploit with mulpd and pmuldq, but this approach would incur a serious
overhead of shuffle instructions needed to arrange data in registers as described
in, e.g., [17] and [38]. This overhead is eliminated when several independent
computations are run in parallel, but two 64-bit results every cycle are not
fundamentally better than one 128-bit result every two cycles. We therefore
decompose field multiplication into multiplications of 64-bit unsigned integers.

Radix-264 Representation. The standard way to split 255-bit values into 64-
bit limbs is a 4-limb, radix-264 representation. Each element x of the field is
represented as (x0, x1, x2, x3) with x =

∑3
i=0 xi2

64i. The multiplication of two
elements x and y is decomposed into 16 multiplications of 64-bit unsigned inte-
gers; the 128-bit results are added up to produce the result in 8 limbs r0, . . . , r7.

High-Speed High-Security Signatures 133

Reduction modulo 2255 − 19 exploits the fact that 2256 ≡ 38, so 38 · r4 is added
to r0, 38 · r5 to r1 and so on.

A detail worth noting of this representation is that it uses 256 bits to represent
255-bit field elements. We use this one extra bit and do not always reduce modulo
2255−19 but modulo 2256−38. For a similar representation this has been shown
to be useful for example in [10].

Our implementation of the signature scheme based on this representation of
field elements yields high performance on many microprocessors such as AMD
K10 or 65-nm Intel Core 2 processors. However, on our target platform, the In-
tel Nehalem/Westmere CPUs, this representation triggers a serious bottleneck.
Every 128-bit result of the mul instruction is produced in two 64-bit registers.
Adding two of these results requires two addition instructions. In the field mul-
tiplication most of these additions produce carries; the carry bits need to be
handled by subsequent additions. The Intel Nehalem and Westmere CPUs can
perform three additions per cycle, but only if these additions do not have to han-
dle a carry bit from a previous addition (add instruction). An add with carry
(adc instruction) can only be done once every two cycles; i.e., carry bits decrease
addition throughput by a factor of 6. This bottleneck is triggered not only inside
field multiplication and squaring but also inside additions.

Radix-251 Representation. To reduce the number of expensive adc/subc
instructions, we instead represent an element x of F2255−19 as (x0, x1, x2, x3, x4)

with x =
∑4

i=0 xi2
51i.

The 5 limbs are unsigned integers. We can represent each element of the field
F2255−19 with each xi ∈ [0, . . . , 251 − 1]. In fact our implementation does not
enforce these bounds except for comparisons. Multiplication accepts inputs with
each limb having up to 54 bits and produces results of which each limb can be
only slightly larger than 251.

Multiplication and Squaring. Schoolbook multiplication of two field elements
x and y, each represented in 5 unsigned integers, takes 25 mul instructions. The
results are again produced in two 64-bit integer registers, but as both inputs
have only up to 54 bits, the value in the upper result register has only up
to 44 bits. Adding two multiplication results now takes only one adc and one
add instruction. Furthermore reduction can be carried out simultaneously to
multiplication. For example, we do not compute a coefficient r5. Whenever the
result of a mul instruction belongs to r5, for example in the multiplication of
x2 · y3, we multiply one of the inputs by 19 and add the result to r0. Similarly
we do not compute r6, r7, r8 and r9 but directly add into r1, . . . , r4. Multiplying
one input by 19 yields a result with less than 64 bits so we can use the faster
imul instruction for these multiplications. The 5 result coefficients require 10
64-bit registers; the AMD64 architecture has 15 such registers, so we can keep
the result coefficients inside registers throughout the computation.

After the multiplication we need to reduce (carry) the 5 coefficients to obtain
a result with coefficients that are at most slightly larger than 251. Denote the two
registers holding coefficient r0 as r00 and r01 with r0 = 264r01 + r00. Similarly
denote the two registers holding coefficient r1 as r10 and r11. We first shift r01

134 D.J. Bernstein et al.

left by 13, while shifting in the most significant bits of r00 (shld instruction)
and then compute the logical and of r00 with 251 − 1. We do the same with r10
and r11 and add r01 into r10 after the logical and with 251 − 1. We proceed this
way for coefficients r2, . . . , r4; register r41 is multiplied by 19 before adding it
to r00. Now all 5 coefficients fit into 64-bit registers but are still too large to be
used as input to another multiplication. We therefore carry from r0 to r1, from
r1 to r2, from r2 to r3, from r3 to r4, and finally from r4 to r0. Each of these
carries is done as one copy, one right shift by 51, one logical and with 251 − 1,
and one addition.

Squaring needs only 15 mul instructions. Some inputs are multiplied by 2; this
is combined with multiplication by 19 where possible. The coefficient reduction
after squaring is the same as for multiplication.

Multiplication and squaring are implemented as separate functions, but calls
to these functions are used only for inversion (see below). Edwards-curve arith-
metic uses inlined functions for point addition and doubling.

Addition, Subtraction, and Inversion. The results of additions do not have
to be reduced if they are used as input to a multiplication. Long sequences of
additions that let coefficients grow larger than 54 bits would be a problem but we
do not have such sequences of additions. Field addition is therefore nothing but 5
integer additions without carries (add instruction). Subtraction is slightly more
expensive because we use unsigned coefficients. Therefore we first add a multiple
of q and then perform subtraction. This costs 5 add and 5 sub instructions.

Inversion is implemented as exponentiation with exponent q − 2. It uses the
same sequence of 255 squarings and 11 multiplications as [6].

4 Signing Messages

Signature generation has three steps: (1) computing r = H(hb, . . . , h2b−1,M);
(2) computing R = rB; (3) computing S = (r +H(R,A,M)a) mod �.

Our primary concern is with short messages M , obviously the top concern for
a server trying to keep up with a given volume of data; longer messages take
more cycles per signature but far fewer cycles per byte. The computations of
H take negligible time for short messages. The reduction modulo � also takes
negligible time with standard branchless techniques. For the rest of this section
we focus on the main signing bottleneck, namely computing rB given r.

High-Level Strategy. We begin by computing the 253-bit integer r mod �. We
then write r mod � as r0 + 16r1 + · · ·+ 1663r63 with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}.
For each i we look up 16i|ri|B in a precomputed table, and then conditionally
negate 16i|ri|B to obtain 16iriB. Finally we compute rB as

∑
i 16

iriB.
There is nothing new in our computation at this level. Computing rB as a

sum of precomputed pieces is a special case of a standard scalar-multiplication
algorithm published by Pippenger in [41] (subsequently reinvented in [11] and

High-Speed High-Security Signatures 135

[33]); allowing negative coefficients is a standard tweak. The devil lies in the
lower-level details—choosing the optimal radix 16, and computing 16iriB and∑

i 16
iriB as efficiently as possible. These details are discussed below.

Low Level, Part 1: Table Lookups. Recall that, as a side-channel defense, we
prohibit secret array indices. In particular, we cannot use |ri| as an array index.
We instead load all table entries 0B, 16iB, 2 · 16iB, 3 · 16iB, 4 · 16iB, 5 · 16iB,
6 · 16iB, 7 · 16iB, 8 · 16iB and use arithmetic operations, without branching, to
combine the table entries into 16i|ri|B. We similarly use arithmetic operations
to compute 16iriB from 16i|ri|B and −16i|ri|B.

We actually store table entries only for i ∈ {0, 2, 4, . . . , 62}, at the expense
of 4 elliptic-curve doublings. The table then contains 8 · 32 = 256 curve points
(aside from 0B, which is not stored). Each point is represented as three integers
(see below) modulo 2255 − 19. Each integer in turn is represented as five 8-byte
words. Overall the table consumes 30 kilobytes of RAM.

We could instead use radix 32 or larger. Radix 32 would involve twice as
many table loads (since we load all table entries), and twice as much arithmetic
to combine table entries, but these costs would be outweighed by the benefit of
fewer elliptic-curve additions. A more serious concern is that the table would be
twice as large, consuming 60KB instead of 30KB. This is only a minor issue for a
typical cryptographic speed test on our target CPUs (each Nehalem/Westmere
core has its own fast 256KB L2 cache efficiently handling our sequential loads),
but 30KB is clearly more attractive inside a larger application that needs to fit
several different subroutines into L2 cache.

In the opposite direction, we could chop the table in half again at the expense
of 8 more doublings; we could also switch to radix 8, 4, or 2. These changes
would also allow reasonably fast signing on much smaller CPUs.

Low Level, Part 2: Elliptic-Curve Addition. We use extended coordinates
for the twisted Edwards curve −x2 + y2 = 1 + dx2y2, as proposed by Hisil,
Wong, Carter, and Dawson in [28]. These coordinates are (X : Y : Z : T) with
XY = ZT representing x = X/Z and y = Y/Z. The addition formulas from
[28, Section 3.1] are complete for our curve and use just 9 field multiplications
to add a table entry (x0, y0) into (X : Y : Z : T). Note that these formulas rely
on the −1 in −x2; this is why EdDSA uses the −1 twist.

One of the field multiplications is a multiplication by d = −121665/121666.
We could replace this with a small number of multiplications by 121665 and
121666, as in [7, Section 6], but our current software treats d as a generic field
element to save code size. We considered switching to a new curve using a small
integer d (such as 646, which has a near-prime group order; note that we do not
need the twist security of Curve25519), but decided that the resulting speedup
was too small to justify departing from an established curve.

A different way to save a multiplication is to use the dual addition formulas
from [28, Section 3.2]. However, those formulas are not complete; they would
require a detailed analysis of intermediate results in our computation to see
whether any of the intermediate additions could trigger any of the exceptional
cases in the formulas.

136 D.J. Bernstein et al.

Instead we represent a precomputed point (x0, y0) as (y0−x0, y0+x0, 2dx0y0).
These values depend only on x0 and y0 and are usually computed in the first
part of addition in extended coordinates; providing them as part of the pre-
computation saves the multiplication by d, the multiplication x0y0, and 2 field
additions, at the expense of increasing the storage requirements by a factor of
1.5. We comment that for hardware implementations this approach reduces the
information exposed to template attacks trying to link multiple uses of the same
precomputed point: all operations involving the precomputed point also involve
the intermediate point. For details see [20, Section 5.1.2].

Results. Overall we spend a bit less than 1000 cycles for each iteration of our
main signing loop, i.e., for one table lookup and one elliptic-curve mixed addition.
We also spend about 21000 cycles to invert Z at the end of the computation.
The complete signing procedure for a short message takes 88328 cycles.

5 Verifying Signatures

Fast signature verification seems considerably more difficult than fast signa-
ture generation, for two reasons. First, the verifier has to recover the elliptic-
curve points A and R from the compressed points A and R. Second, checking
SB = R +H(R,A,M)A seems to require not merely a fixed-base scalar multi-
plication SB but also a much more expensive variable-base scalar multiplication
H(R,A,M)A. This section explains several techniques that we use to address
these problems.

Fast Decompression. Recall that the encoding R of a point R = (x, y) contains
a straightforward encoding of y but contains only a sign bit for x. One must
therefore recover x via the equation x = ±√(y2 − 1)/(dy2 + 1); note that dy2+
1 �= 0 since −d is not a square. The division and square root here seem to involve
two exponentiations, about twice as expensive as the usual Weierstrass-curve
decompression.

Of course, we could use Montgomery’s trick to merge the two divisions in-
volved in decompressing two points, but two square roots and a division are still
more expensive than two Weierstrass-curve decompressions. We could also skip
the compression and decompression for applications willing to use 64-byte keys
and 96-byte signatures; but we think that 32-byte keys and 64-byte signatures
are considerably more attractive.

To save time we look more closely at the standard computation of square roots
in Fq. The prime q = 2255−19 is congruent to 5 modulo 8, so any square α ∈ Fq

satisfies α2 = β4 where β = α(q+3)/8, i.e., ±α = β2. The standard computation
is a single exponentiation to compute β, followed by a quick multiplication of β
by

√−1 if β2 = −α.
In the decompression context we are given α as a fraction u/v, where u = y2−1

and v = dy2+1. Instead of computing α we merge the division with the square-
root computation:

β = (u/v)(q+3)/8 = u(q+3)/8vq−1−(q+3)/8= u(q+3)/8v(7q−11)/8 = uv3(uv7)(q−5)/8.

High-Speed High-Security Signatures 137

We check whether β2 = −α by checking whether vβ2 = −u, and if so we multiply
β by

√−1. The entire computation of
√
u/v, starting from u and v, takes just a

few multiplications more than a single exponentiation. In other words, Edwards-
curve decompression is as inexpensive as Weierstrass-curve decompression.

Fast Single-Signature Verification. To verify a single signature we use stan-
dard techniques for double-scalar multiplication to compute SB−H(R,A,M)A,
and we then check whether the result is the same as R. (We actually check
whether the encoding of the result is the same as the encoding of R, so that we
can skip decompression of R.) The speed of Edwards-curve addition, especially
with the −1 twist, makes these techniques particularly efficient; using the tables
discussed in Section 4 does not seem to offer any advantage. This computation
fits in very little space.

We have also considered the verification method suggested by Antipa, Brown,
Gallant, Lambert, Struik, and Vanstone in [2], but our very efficient elliptic-
curve arithmetic makes the overheads in this method—extra decompression
and a Euclidean computation—much more troublesome. In the batch context
discussed below, the only extra overhead of the method of [2] would be the
Euclidean computation, but the benefit would also be much smaller.

Fast Batch Verification. For any system bottlenecked by signature verifica-
tion, the problem is not to verify one signature at a time, but to verify many
signatures as quickly as possible.

Naccache, M’Räıhi, Vaudenay, and Raphaeli in [37, Section 2.2] proposed
verifying a batch of linear signature equations by verifying a random linear com-
bination of the equations. This proposal is not directly applicable to ElGamal,
DSA, Schnorr, ECDSA, et al., because all of those systems require computing
linear functions (to compute R) rather than merely verifying linear functions;
but if R is transmitted instead of H(· · ·), as suggested in [37], then this problem
disappears.

Unfortunately, the verification algorithm in [37] was quite slow: [37, Table 1]
reported “29n” multiplications to verify n signatures from the same signer at
a highly questionable 220 security level. If the same technique were adapted
to ECDSA and increased to a 2128 security level then it would require nearly
200 elliptic-curve additions for each signature from the same signer— somewhat
faster than verifying each signature separately, but not much.

The followup paper [4] by Bellare, Garay, and Rabin proposed a more com-
plicated verification technique using, e.g., 3200 multiplications to verify 100 ex-
ponentiations, or 6480 multiplications to verify 100 DSA signatures, in both
cases at a substandard 260 security level. See [4, Appendix A.1]. The number
of multiplications per signature begins to drop as the batch size grows towards
1000—see [4, Figure 3]—but such large batches do not fit into cache on typical
CPUs.

The unimpressive theoretical performance of these batch-verification tech-
niques can be traced directly to the naive exponentiation algorithms used in
[37] and [4]. We do much better by using random linear combinations, as in [37],
together with state-of-the-art scalar-multiplication techniques.

138 D.J. Bernstein et al.

Specifically, we start from a batch of (Mi, Ai, Ri, Si) where (Ri, Si) is an
alleged signature of Mi under key Ai. We choose independent uniform random
128-bit integers zi, compute Hi = H(Ri, Ai,Mi), and verify the equation

(

−
∑

i

ziSi mod �

)

B +
∑

i

ziRi +
∑

i

(ziHi mod �)Ai = 0

by a multi-scalar multiplication. There are two reasonable choices of scalar-
multiplication methods here, namely Pippenger’s method in [41] and the Bos–
Coster method reported in [18, Section 4]. We use the Bos–Coster method
because it fits into less storage; see below for details. Note that zi is not
secret, so side-channel protection is not required.

The number of scalars here is 2n + 1. Half of the scalars are 253-bit and
half are 128-bit. If public keys appear repeatedly, the situation considered in
[37] and [4], then we could save some time by merging the 253-bit scalars;
this merging also explains why we do not use the similar signature equation
SB = A +H(R,A,M)R, which would allow only merging 128-bit scalars. Our
software focuses on general-purpose verification with arbitrary keys.

If verification succeeds then we are confident that 8SiB = 8Ri + 8HiAi for
each i, i.e., that each signature is valid. The logic is simple: the differences
Pi = 8Ri + 8HiAi − 8SiB are elements of a cyclic group of prime order �, and
have been verified to satisfy

∑
i ziPi = 0; but this equation cannot hold with

probability more than 2−128 unless all Pi = 0. For example, if P4 is nonzero then
the choices of z1, z2, z3, z5, z6, . . . determine exactly one choice of z4 satisfying∑

i ziPi = 0, and z4 has chance at most 2−128 of matching that choice.
If verification fails then there must be at least one invalid signature. We then

fall back to verifying each signature separately. There are several techniques to
identify a small number of invalid signatures in a batch, but all known techniques
become slower than separate verification as the number of invalid signatures
increases; separate verification provides the best defense against denial-of-service
attacks.

Fast Multi-scalar Multiplication. The Bos–Coster method mentioned above
is as follows: to compute n1P1+n2P2+ · · · , where n1 ≥ n2 ≥ · · · , we recursively
compute (n1 − n2)P1 + n2(P1 + P2) + · · · . For n1 much larger than n2, say
2k+1n2 > n1 ≥ 2kn2, we could gain speed by instead recursively computing
(n1 − 2kn2)P1 + n2(2

kP1 + P2) + · · · , but we have found this to occur so rarely
that checking for it is not worthwhile.

We keep the scalars ni in a heap so that identifying the two largest scalars is
easy. The usual method to insert a new element into a heap is top-down, starting
at the root and swapping down for a variable number of steps. We instead use
Floyd’s 1964 bottom-up algorithm discussed in [32, Exercise 5.2.3–18] (often
miscredited to [16] and [46]): start at the root, swap down to the bottom, and
then swap up for a variable number of steps. This has the advantage of somewhat
reducing the number of comparisons, and the not-so-well-known advantage of
drastically reducing the number of branches, especially for balanced heaps.

High-Speed High-Security Signatures 139

Results. The complete verification procedure takes under 134000 cycles per sig-
nature for batch size 64. Our batch-verification software is included in, although
not yet benchmarked by, the public eBATS benchmarking framework.

Doubling the batch size to 128 no longer fits into L1 cache but still improves
performance on our target CPU, taking under 125000 cycles per signature.
Larger batches take under 114000 cycles per signature while still fitting into
L2 cache. Our software spends about 44000 cycles on decompression, so verifi-
cation of uncompressed signatures (32 extra bytes) using uncompressed public
keys (another 32 extra bytes) would take only about 81000 cycles for batch size
128, even faster than signing. However, in this paper we have emphasized the
performance that we obtain without using so much space.

References

[1] — (no editor), Technical guideline TR-03111, elliptic curve cryptography (2009),
Citations in this document: §2

[2] Antipa, A., Brown, D.R.L., Gallant, R.P., Lambert, R., Struik, R., Vanstone, S.A.:
Accelerated verification of ECDSA signatures. In: Preneel, B., Tavares, S. (eds.)
SAC 2005. LNCS, vol. 3897, pp. 307–318. Springer, Heidelberg (2006), Citations
in this document: §5, §5

[3] Barwood, G.: Digital signatures using elliptic curves, message 32f519ad.

19609226@news.dial.pipex.com posted to sci.crypt (1997), http://groups.

google.com/group/sci.crypt/msg/b28aba37180dd6c6, Citations in this docu-
ment: §2

[4] Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponenti-
ation and digital signatures. In: Nyberg, K. (ed.) Eurocrypt ’98. LNCS, vol. 1403,
pp. 236–250. Springer, Heidelberg (1998), Citations in this document: §5, §5, §5,
§5, §5

[5] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a gen-
eral forking lemma. In: CCS 2006, pp. 390–399 (2006), Citations in this document:
§2

[6] Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung,
M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 207–228. Springer, Heidelberg (2006), Citations in this document: §1, §1,
§2, §2, §2, §2, §3

[7] Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Vaudenay, S. (ed.) Africacrypt 2008. LNCS, vol. 5023, pp. 389–405.
Springer, Heidelberg (2008), Citations in this document: §2, §2, §4

[8] Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) Asiacrypt 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidel-
berg (2007), Citations in this document: §2, §2

[9] Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems (2011), http://bench.cr.yp.to/ebats.html (accessed July 4,
2011), Citations in this document: §1

[10] Bos, J.W.: High-performance modular multiplication on the Cell processor. In:
Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 7–24.
Springer, Heidelberg (2010), Citations in this document: §3

http://groups.google.com/group/sci.crypt/msg/b28aba37180dd6c6
http://groups.google.com/group/sci.crypt/msg/b28aba37180dd6c6
http://bench.cr.yp.to/ebats.html

140 D.J. Bernstein et al.

[11] Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation
with precomputation (extended abstract). In: Rueppel, R.A. (ed.) Eurocrypt ’92.
LNCS, vol. 658, pp. 200–207. Springer, Heidelberg (1993), Citations in this doc-
ument: §4

[12] Brown, M., Hankerson, D., López, J., Menezes, A.: Software implementation of
the NIST elliptic curves over prime fields (2000); see also newer version [13],
http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-56.ps,
Citations in this document: §1, §1

[13] Brown, M., Hankerson, D., López, J., Menezes, A.: Software implementation of
the NIST elliptic curves over prime fields. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 250–265. Springer, Heidelberg (2001); see also older version
[12]. MR 1907102

[14] Brumley, B.B., Hakala, R.M.: Cache-timing template attacks. In: Matsui, M. (ed.)
Asiacrypt 2009. LNCS, vol. 5912, pp. 667–684. Springer, Heidelberg (2009), Cita-
tions in this document: §1

[15] “Bushing”, “marcan” Cantero, H.M., Boessenkool, S., Peter, S.: PS3 epic
fail (2010), http://events.ccc.de/congress/2010/Fahrplan/attachments/
1780 27c3 console hacking 2010.pdf, Citations in this document: §2

[16] Carlsson, S.: Average-case results on heapsort. BIT 27, 2–17 (1987), Citations in
this document: §5

[17] Costigan, N., Schwabe, P.: Fast elliptic-curve cryptography on the Cell Broadband
Engine. In: Preneel, B. (ed.) Africacrypt 2009. LNCS, vol. 5580, pp. 368–385.
Springer, Heidelberg (2009), Citations in this document: §3

[18] de Rooij, P.: Efficient exponentiation using precomputation and vector addi-
tion chains. In: De Santis, A. (ed.) Eurocrypt ’94. LNCS, vol. 950, pp. 389–399.
Springer, Heidelberg (1995), Citations in this document: §5

[19] Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanalysis of
SFLASH. In: Menezes, A. (ed.) Crypto 2007. LNCS, vol. 4622, pp. 1–12. Springer,
Heidelberg (2007), Citations in this document: §1

[20] Duif, N.: Smart card implementation of a digital signature scheme for Twisted
Edwards curves, M.A. thesis, Technische Universiteit Eindhoven (2011), Citations
in this document: §4

[21] ElGamal, T.: A public key cryptosystem and a signature scheme based on dis-
crete logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985),
Citations in this document: §2, §2

[22] Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) Eurocrypt 2009. LNCS,
vol. 5479, pp. 518–535. Springer, Heidelberg (2009), Citations in this document:
§1, §1, §1

[23] Gaudry, P., Thomé, E.: The mpFq library and implementing curve-based key
exchanges. In: SPEED 2007, pp. 49–64 (2007), Citations in this document: §1

[24] Gligoroski, D., Odegøard, R.S., Jensen, R.E., Perret, L., Faugère, J.-C., Knapskog,
S.J., Markovski, S.: The digital signature scheme MQQ-SIG (2010), Citations in
this document: §1

[25] Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
reductions to the Diffie-Hellman problems. Journal of Cryptology 20, 493–514
(2007), See [31]

[26] Granger, R.: On the static Diffie-Hellman problem on elliptic curves over extension
fields. In: Abe, M. (ed.) Asiacrypt 2010. LNCS, vol. 6477, pp. 283–302. Springer,
Heidelberg (2010), Citations in this document: §1

http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-56.ps
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf

High-Speed High-Security Signatures 141

[27] Hisil, H.: Elliptic curves, group law, and efficient computation, Ph.D. thesis,
Queensland University of Technology (2010), Citations in this document: §1

[28] Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves revis-
ited. In: Pieprzyk, J. (ed.) Asiacrypt 2008. LNCS, vol. 5350, pp. 326–343. Springer,
Heidelberg (2008), Citations in this document: §4, §4, §4

[29] Joux, A., Vitse, V.: Elliptic curve discrete logarithm problem over small degree ex-
tension fields. Application to the static Diffie-Hellman problem on E(Fq5) (2010),
Citations in this document: §1

[30] Käsper, E.: Fast elliptic curve cryptography in OpenSSL. In: RLCPS 2011 (to
appear, 2011), Citations in this document: §1, §1

[31] Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight
security reductions. In: CCS 2003, pp. 155–164 (2003); portions incorporated into
[25], Citations in this document: §2

[32] Knuth, D.E.: The art of computer programming, volume 3: sorting and searching,
2nd edn. Addison-Wesley, Reading (1998), Citations in this document: §5

[33] Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Hei-
delberg (1994), Citations in this document: §4

[34] Longa, P., Gebotys, C.: Efficient techniques for high-speed elliptic curve cryptog-
raphy. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
80–94. Springer, Heidelberg (2010), Citations in this document: §1, §1, §1

[35] M’Räıhi, D., Naccache, D., Pointcheval, D., Vaudenay, S.: Computational alter-
natives to random number generators. In: Tavares, S., Meijer, H. (eds.) SAC ’98.
LNCS, vol. 1556, pp. 72–80. Springer, Heidelberg (1999), Citations in this docu-
ment: §2

[36] Naccache, D., M’Räıhi, D., Levy-dit-Vehel, F.: Patent application
WO/1998/051038: pseudo-random generator based on a hash coding func-
tion for cryptographic systems requiring random drawing (1997), Citations in
this document: §2

[37] Naccache, D., M’Räıhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be improved?
Complexity trade-offs with the digital signature standard. In: De Santis, A.
(ed.) Eurocrypt ’94. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995),
Citations in this document: §5, §5, §5, §5, §5, §5, §5

[38] Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for cryp-
tographic pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) Latincrypt 2010.
LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010), Citations in this doc-
ument: §3

[39] Neven, G., Smart, N.P., Warinschi, B.: Hash function requirements for Schnorr
signatures. Journal of Mathematical Cryptology 3, 69–87 (2009), Citations in this
document: §2, §2

[40] Nguyen, P.Q., Shparlinski, I.: The insecurity of the elliptic curve digital signature
algorithm with partially known nonces. Designs, Codes and Cryptography 30,
201–217 (2003), Citations in this document: §2

[41] Pippenger, N.: On the evaluation of powers and related problems (preliminary
version). In: FOCS ’76, pp. 258–263 (1976), Citations in this document: §4, §5

[42] Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind
signatures. Journal of Cryptology 13, 361–396 (2000), Citations in this document:
§2

[43] Rangasamy, J., Stebila, D., Boyd, C., González Nieto, J.: An integrated approach
to cryptographic mitigation of denial-of-service attacks. In: ASIACCS 2011 (2011),
Citations in this document: §1

142 D.J. Bernstein et al.

[44] Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) Crypto ’89. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990),
Citations in this document: §2, §2, §2

[45] Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof
methodologies to signature schemes. In: Yung, M. (ed.) Crypto 2002. LNCS,
vol. 2442, pp. 93–110. Springer, Heidelberg (2002), Citations in this document: §2

[46] Wegener, I.: Bottom-up-heapsort, a new variant of heapsort, beating, on average,
quicksort (if n is not very small). Theoretical Computer Science 118, 81–98 (1993),
Citations in this document: §5

[47] Wigley, J.: Removing need for rng in signatures, message 5gov5d$pad@

wapping.ecs.soton.ac.uk posted to sci.crypt (1997), http://groups.google.
com/group/sci.crypt/msg/a6da45bcc8939a89 , Citations in this document: §2

http://groups.google.com/group/sci.crypt/msg/a6da45bcc8939a89
http://groups.google.com/group/sci.crypt/msg/a6da45bcc8939a89

To Infinity and Beyond: Combined Attack on

ECC Using Points of Low Order�

Junfeng Fan, Benedikt Gierlichs, and Frederik Vercauteren

Katholieke Universiteit Leuven, COSIC & IBBT
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be

Abstract. We present a novel combined attack against ECC implemen-
tations that exploits specially crafted, but valid input points. The core
idea is that after fault injection, these points turn into points of very low
order. Using side channel information we deduce when the point at infin-
ity occurs during the scalar multiplication, which leaks information about
the secret key. In the best case, our attack breaks a simple and differ-
ential side channel analysis resistant implementation with input/output
point validity and curve parameter checks using a single query.

Keywords: Fault attack, side channel attack, elliptic curve
cryptography.

1 Introduction

Elliptic curve cryptography (ECC) is a public-key cryptosystem that was inde-
pendently proposed by Miller [33] and Koblitz [29]. In the context of embedded
implementations, ECC is an interesting alternative to systems like RSA [37]
because it allows for more compact and more efficient implementations.

The ubiquity of embedded cryptography in applications such as smart cards,
RFID tags, access control, etc. leads to a new security threat that does not tar-
get the mathematical strength of the cryptographic algorithms but the physical
strength of concrete implementations using side channel and fault attacks. Side
channel attacks (SCAs) were first described by Kocher in [30] and use the fact
that physical devices leak information through measurable quantities such as
power consumption [31], timing behavior [30], electromagnetic radiation [24,36],
etc. Fault attacks (FAs) were introduced by Boneh et al. [10], and rely on the
fact that an adversary can actively inject faults into a device which typically
leads the device to compute an incorrect result. Ways to inject faults include
clock and power glitches [4,6], lasers [38], etc.

� This work was supported in part by the European Commission’s ECRYPT II NoE
(ICT-2007-216676), by the Belgian State’s IAP program P6/26 BCRYPT, by the
K.U. Leuven-BOF (OT/06/40) and by the Research Council K.U. Leuven: GOA
TENSE (GOA/11/007). Benedikt Gierlichs and Frederik Vercauteren are Postdoc-
toral Fellows of the Fund for Scientific Research - Flanders (FWO).

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 143–159, 2011.
c© International Association for Cryptologic Research 2011

144 J. Fan, B. Gierlichs, and F. Vercauteren

Straightforward implementations of ECC can be easily broken by a range
of well known attacks, including simple and differential side channel analysis
(SSCA, DSCA) as shown by Coron [20] and differential fault analysis as demon-
strated by Biehl et al. [9] and later generalized by Ciet and Joye [16]. We refer
to Fan et al. [23] for a comprehensive overview of the existing countermeasures
to thwart these attacks and simply focus on the main ideas.

Resistance against SSCA can be achieved by regular scalar multiplication al-
gorithms [20,28], unified addition and doubling formulae [12,19] or side channel
atomicity [14]. Basically any solution that ensures a constant sequence of opera-
tions in the scalar multiplication algorithm, identical or indistinguishable point
operations, is viable.

DSCA can be thwarted by ensuring that the scalar multiplication algorithm
processes strictly unpredictable, e.g. randomized, data. Typical randomization
techniques include base point blinding [20], randomized projective coordinates
[20], curve isomorphisms [27] and field isomorphisms [27]. Alternative approaches
include key randomization [20] and random key splitting [15] before each scalar
multiplication, but they require that an adversary cannot extract any informa-
tion from a single trace [18]. However, as shown by Goubin [25] most of these
countermeasures can be broken in the chosen message scenario when the curve
admits “special points”, i.e. where one of the coordinates is zero. Smart [40] pro-
vides several easy countermeasures preventing Goubin’s attack: for special points
of low order, cofactor multiplication is proposed and to avoid special points of
large order, all points are first mapped to an isogenous curve, before scalar mul-
tiplication is executed. Note that all NIST curves over large prime fields have
cofactor equal to one.

Due to ECC’s group structure, an elegant and efficient way to detect faults
is to check if the input to and the output of the scalar multiplication algorithm
are valid points on the curve as explained by Biehl et al. [9]. Ciet and Joye point
out that one must additionally check the curve parameters for faults [16], which
in the remainder of the paper we consider to be part of the initial validity check.

In this paper we present a novel attack that combines fault injection with
SSCA (cf. combined attack [3]) and specially crafted, but valid input points P .
The core idea is that, after a single fault injection, P turns into a point P ′ of very
low order � (e.g. � = 2, 3, . . . , 200) with practical probability. Since the point P ′

has low order, the point at infinity will appear during the computation of k ·P ′.
This event can be detected via side channels and leaks information about the
key k. Our attack cannot be prevented by most of the countermeasures men-
tioned above such as input and output validity checks, cofactor multiplication
and isogeny defence (which foil Goubin’s attack), SSCA countermeasures and it
bypasses many DSCA countermeasures.

The paper is organized as follows. In Section 2, we recall the necessary back-
ground on elliptic curves and in Section 3, we describe an effective algorithm
to compute valid points on an elliptic curve that, after a bit-flip in one of their
coordinates turn into points of a given small order. In Section 4, we exploit these
points to derive our new attack and illustrate it on a very basic implementation.

Combined Attack on ECC Using Points of Low Order 145

In Section 5, we discuss the assumptions underlying our attack and analyze its
applicability when the basic implementation is enhanced with common counter-
measures. Finally, Section 6 concludes the paper.

2 Background on Elliptic Curves

In this section we briefly review the necessary background on elliptic curves over
Fp. An elliptic curve E over Fp with p > 3 can always be given by a short
Weierstrass equation y2 = x3 + ax + b, with a, b ∈ Fp and 4a3 + 27b2 �= 0. For
every finite field K containing Fp one now considers the set of K-rational points

E(K) := {(x, y) ∈ K ×K | y2 = x3 + ax + b} ∪ {O}
where O denotes the point at infinity.

2.1 Group Law

The use of elliptic curves in cryptography stems from the fact that E(K) natu-
rally possesses the structure of an abelian group. It is common practice to denote
the group operations in an additive way (i.e. using + and − symbols), as opposed
to the multiplicative notation when dealing with groups like F∗

p. The group law
is defined by the following general rules: O is the zero element, and any three
points that lie on a line add up to zero.

Group Law Formulae. Working this out yields the following explicit rules for
adding two points P = (xP , yP) and Q = (xQ, yQ). If Q = −P , i.e. if xP = xQ

and yP = −yQ, then P + Q = O. If P �= ±Q, we obtain the following addition
formula: R = (xR, yR) = P + Q with

xR =
(

yQ − yP

xQ − xP

)2

− xP − xQ and yR =
(

yQ − yP

xQ − xP

)

(xP − xR)− yP . (1)

If P = Q, we obtain the doubling formula: R = (xR, yR) = 2 · P with

xR =
(

3x2
P + a

2yP

)2

− xP − xQ and yR =
(

3x2
P + a

2yP

)

(xP − xR)− yP . (2)

Note that the above formula for addition does not depend on the curve equation
at all and that the formula for doubling only involves the parameter a. This
simple fact has been exploited in several attacks before [9] and will also be
crucial in our attack.

Since inversions are typically much more expensive than multiplications, sev-
eral types of projective coordinate systems have been developed. Standard pro-
jective coordinates [5] represent an elliptic curve point P = (x, y) by (X, Y, Z)
where x = X/Z and y = Y/Z, whereas Jacobian projective coordinates [5] use
x = X/Z2 and y = Y/Z3. The above addition/doubling formulae can easily be
reformulated using projective coordinates, but the resulting formulae will also
depend on a only.

146 J. Fan, B. Gierlichs, and F. Vercauteren

Group Law Implementation. An implementer of an elliptic curve system is
not only faced with the choice of the elliptic curve model to use, such as short
Weierstrass, Montgomery [34], Edwards [7,8], Hessian [39], etc., and the choice
of an appropriate coordinate system like projective [5] or Jacobian [5], but also
with the handling of borderline cases. Indeed, the above addition formula (1)
can only handle the cases where P �= ±Q, P �= O and Q �= O. Similarly, the
doubling formula (2) will fail when P is a point of order two or P = O.

The way in which the implementation handles these borderline cases leads
to the following classification: full and partial domain correctness. In the full
domain correctness case, the implementation computes P +Q and 2 ·P correctly
for all P, Q. In the partial domain correctness case the implementation either
stops working (e.g. division by zero occurs), computes on invalid points or ends
in a fixed point (both cases occur when using the above formulae in projective
or Jacobian coordinates, see Table 1).

Table 1. Borderline cases for projective and Jacobian coordinates

E(Fp): y2 = x3 + ax + b

Coordinate System Operation Using a Using b Input Output

Projective
PA(P1P1P1,P2P2P2)

P1P1P1=P2P2P2 (0,0,0)
- - P1P1P1=-P2P2P2 (0,*,0)

P1P1P1=(0,*,0) (0,0,0)

PD(P1P1P1) + -
Order(P1P1P1)=2 (0,*,0)
P1P1P1=(0,*,0) (0,0,0)

Jacobian

PA(P1P1P1,P2P2P2) - -

P1P1P1=P2P2P2 (0,0,0)
P1P1P1=-P2P2P2 (*,*,0)

P1P1P1=(*,*,0) (*,*,0)
P1P1P1=(0,0,0) (0,0,0)

PD(P1P1P1) + -
Order(P1P1P1)=2 (*,*,0)
P1P1P1=(*,*,0) (*,*,0)
P1P1P1=(0,0,0) (0,0,0)

2.2 Scalar Multiplication

The basic operation in classical cryptosystems such as RSA and ECC is expo-
nentiation in the underlying group. For elliptic curves, this exponentiation is
called scalar multiplication since given a point P and a scalar k, it computes
k · P by repeatedly using the double/add operations.

The most basic scalar multiplication algorithm is the binary double-and-
add algorithm, which computes k · P according to the binary expansion of
k =

∑n−1
i=0 ki2i. Depending on the direction in which the bits of k are scanned,

we obtain a left-to-right or right-to-left variant.
The left-to-right variant is described in Algorithm 1 and will be used to illus-

trate our attack. The applicability of our attack to SSCA and DSCA resistant
scalar multiplication algorithms will be discussed in Section 5.

Combined Attack on ECC Using Points of Low Order 147

Algorithm 1. Double and Add Left-to-Right

Input: PPP , k = (kn−1, kn−2, . . . , k0)2
Output: QQQ = k ·PPP
RRR ← P ;
for i ← n − 2 down to 0 do

RRR ← 2 ·RRR ;
if (ki = 1) then RRR ← RRR + PPP ;

end
return RRR

3 Elliptic Curve Points with Low Order Neighbours

In this section, we consider the following problem, the solution of which is crucial
for our attack: given an elliptic curve E : y2 = x3 + ax + b over Fp, two integers
� and Δ, is it possible to construct a point P := (xP , yP) in E(Fp) with the
following properties:

– there exists a curve E′ : y2 = x3 + ax + b′ over Fp

– with a point P ′ = (xP ′ , yP ′) ∈ E′(Fp) of order �
– such that the Hamming distance of the bit-representations xP ||yP and xP ′ ||yP ′

equals Δ.

When Δ = 1, i.e. the coordinates differ in a single bit, we call the points P
and P ′ neighbours. We will describe an effective construction of points P with
neighbours P ′ of a given order � and with xP = xP ′ , i.e. the bit-flip occurred
in the y-coordinate only. The construction can be easily extended to encompass
bit-flips in xP , and indirect neighbours, i.e. Δ > 1.

In Section 3.1 we first show how to construct points of given order and in
Section 3.2 we adapt this method to find points with low order neighbours.

3.1 Constructing Points of Given Order

Given an elliptic curve E over Fp, we can consider the points on E of order
dividing n, i.e. points P ∈ E(Fp) with n ·P = O, where the coordinates of P can
lie in any extension field of Fp. These points can be characterized explicitly using
the so called division polynomials [5]. For n ∈ N define polynomials ψn(x, y)
recursively as follows:

ψ0 = 0, ψ1 = 1, ψ2 = 2y, ψ3 = 3x4 + 6ax2 + 12bx− a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3),

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1, m ≥ 2,

ψ2m =
ψm(ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1)

2y
, m ≥ 3 .

For any point P ∈ E(Fp) with P �= O, we then have that n ·P = O if and only if
ψn(xP , yP) = 0. Furthermore, one can show by induction on n that ψn for n odd
and ψn/2y for n even, are polynomials in x only. We denote these polynomials
by φn(x). It is easy to see that n ·P = O and 2 ·P �= O if and only if φn(xP) = 0.

148 J. Fan, B. Gierlichs, and F. Vercauteren

3.2 Constructing Points with Low Order Neighbours

Given an elliptic curve E over Fp and an integer �, we want to construct a point
P = (xP , yP) in E(Fp) with neighbour P ′ = (xP , yP ⊕ ε) with ε = 2k for some
k < log2(p) and � · P ′ = O. For � > 2, the points P and P ′ therefore have to
satisfy the following non-linear system of equations:

⎧
⎨

⎩

yyyP
2 − xxxP

3 − a · xxxP − b = 0 P ∈ E(Fp)
(yyyP ⊕ ε)2 − xxxP

3 − a · xxxP − bbb′ = 0 P ′ ∈ E′(Fp)
φa,bbb′

� (xxxP) = 0 � · P ′ = O,

where the unknown variables are printed in bold face. Since the ⊕-operation is
not very algebraic, we will consider the following two cases that lead to equivalent
results, namely we replace yp⊕ε by yp±ε and then verify afterwards if an actual
bit-flip occurred, i.e. that there was no carry.

Subtracting the first two equations expresses b′ as a function of yP , namely,
b′ = ±2εyP + ε2 + b. Substituting this expression in the last equation leads to a
bivariate polynomial in xP and yP , which we call Υ�(xP , yP). The points P for
the given � and ε therefore are solutions of E(xP , yP) = 0 and Υ�(xP , yP) = 0.
These solutions can be easily found by a Groebner basis [13] computation or by
taking the resultant

R(xp) = ResultantyP (E(xP , yP), Υ�(xP , yP)) ,

finding all possibilities for xP as roots of R over Fp and the corresponding yP

from E(xP , yP) = 0. A final check is then necessary to only retain those (xP , yP)
where the ± operation actually caused a bit-flip, in particular, in the +ε-case
(resp. −ε-case) we only retain those results where the k-th bit is zero (resp. one).

To analyze the complexity of solving the above system, we simply need to
figure out the degree of φa,b′

� in xP and b′. The degree in xP is easily seen to
be (�2 − 1)/2 since the full �-torsion contains �2 points. The degree in b′ can be
seen to be upperbounded by (�2 − 1)/6 since the same recursion holds and the
degree in b′ is three times smaller than for xP in the initializations. This leads
to a resultant of degree �2 − 1 and an overall complexity of Õ(�4) to solve the
non-linear system of equations.

The probability that a given curve admits a point with neighbour of order � and
bit-flip in positionk (note that both � and k are fixed) canbe roughly approximated
as follows. Denote by P (n, p) the probability that a random polynomial of degree n
has at least one root in Fp. Assuming we can consider the resultant R as a random
polynomial, then the probability is roughly the product of:

– the probability P (�2 − 1, p) that R has at least one root xP in Fp,
– the probability 1/2 that the corresponding yP is in Fp (and when it does,

there are two roots yP),
– the probability 3/4 that of these two roots, at least one has a bit-flip in

position k.

Note that we only analyze the case of +ε and not also −ε, since the solvability
of both systems of equations is not really independent. The overall probability

Combined Attack on ECC Using Points of Low Order 149

Table 2. Points with neighbours of low order on NIST P-192 curve

Order P bit-flip

2
xP = 0x6D9D789820A2C19237C96AD4B8D86B87FB49D4D6C728B84F
yP = 0x1

0

3
xP = 0x8E1AEBDD6009F114490C7BC2C02509F8E432ED15F10C2D33
yP = 0x7A568946EFA602B3624A61E513E57869CAF2AE854E1A17B

2

4
xP = 0xB317D7BBD023E6293F1506221F5BC4A23D4BE2E05328C5F7
yP = 0xC70D48794F409831097620C0865B7D567329728C634CA6AE

0

5
xP = 0xCC9BCC0061F64371E3C3BDE165DAD5380A7DC1919765940
yP = 0xCC8B36B37928334B8AFD7A9FCCFB4B0773E94A4178093458

8

6
xP = 0xC3F76445E6A52138E283E485092F005BE0821C3F9E96B05E
yP = 0x535DBCCB593D72E7885B66E57FD13A8FF9C57A8F8B91CE48

1

7
xP = 0x5C003567728CCBC9F4C06620B9973193837BAEC67A29E43A
yP = 0x408D0C3135006B03EFF80961394D890F0E86D9FD1BA4EEC6

3

8
xP = 0x74FD6A1AD39479C75A85305FA786E1DBDC845E03754E723E
yP = 0x6EF58ABFC0B71047BA4F425652B3EC1746EBE8FE16FEA1F5

1

therefore is roughly 3/8 ·P (�2 − 1, p). A closed expression for P (n, p) exists [32]
and this can easily be shown to satisfy P (n, p) > 1/2, which leads to a lower
bound of 3/16. Note that this high probability stands in stark contrast with the
probability that a given fixed point has a neighbour of order �, which we expect
to be in O(1/p).

The above algorithm can be easily extended to any given fixed error pattern,
such as multiple bit-flips, or setting certain bits to zero/one. Furthermore, errors
in the x-coordinate can also be dealt with.

To illustrate the effectiveness of the above procedure, in Table 2 we pro-
vide several example points with low order neighbours for the NIST P-192
curve [35], i.e. the curve over Fp with p = 2192 − 264 − 1, a = −3 and b =
0x64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1. For each small in-
teger �, the table gives a P with neighbour of order � when a specific bit of the
y-coordinate is flipped (bit 0 is the LSB). Each of these examples was generated
in less than a second using Magma [11] on a standard laptop.

4 Combined Attack Using Low Order Neighbours

In this section we introduce a new combined attack using points with low order
neighbours. The system under attack is the following: we have access to a target
implementation that on input an elliptic curve point P computes k ·P for some
unknown secret k. The goal is to recover the secret k.

The basic version of our attack requires the following two assumptions. The
realistic nature of these assumptions and the applicability of our attack will be
analyzed in Section 5.

1. It is possible, e.g. using side channel information, to determine when an
intermediate result in the computation becomes O.

150 J. Fan, B. Gierlichs, and F. Vercauteren

2. It is possible to inject a fault immediately after initial validity checks, re-
sulting in a bit-flip in a predetermined position.

The attack then proceeds as follows: we input a point P with low order neighbour
P ′ and, after the initial validity checks have passed, inject a fault that turns P
into P ′. The implementation then tries to compute k · P ′. Since P ′ has low
order, it is highly likely that an intermediate computation will result in O. This
corresponds to the fact that the part of the secret scalar k that has been processed
up to that point is divisible by the order of P ′.

If and how the implementation continues to run depends solely on how the
elliptic curve group operations are implemented, i.e. whether the implementation
is full or partial domain correct.

4.1 Full Domain Correctness

The implementation will compute the scalar multiplication k · P ′ until the final
validity checks, at which point it will abort since k · P ′ is not on the curve E.
During the computation however, we will obtain a huge amount of information of
the following form: assume the order of P ′ is �, then every time an elliptic curve
addition/doubling results in O, we know that the part of the scalar processed
up to that point is divisible by �. Note that we also obtain extra information
when O does not appear, since then the corresponding part of the scalar is not
divisible by �.

This attack is extremely powerful since in most cases one trace will suffice to
recover (almost all of) k. In Section 5.3 we will show that the attack can recover
ephemeral keys, blinded keys and randomly split keys.

Example. To illustrate the effectiveness of this attack in the full domain cor-
rectness case, we apply it to an implementation using Algorithm 1. If we choose
to input a point P with neighbour P ′ of order 2, all occurring computations
(2 ·P ′, 2 ·O,O+P ′) are borderline cases, which may not be desirable. Therefore,
we choose a point P with neighbour P ′ of order 4.

The computation of RRR ← 2 ·RRR then either consists of 2 ·P ′, 2 · (2P ′), 2 · (3P ′)
or 2 · O. Note that the cases 2 · (2P ′) and 2 · O are borderline cases, and thus
distinguishable from the cases 2 ·P ′ and 2 · (3P ′), which are ordinary doublings.
The crucial point to note is that point addition always generates odd multiples
of P ′ and thus will never result in O. Furthermore, since P ′ has order 4, the
point O will only occur after two consecutive doublings. Therefore, if O occurs
during the processing of bit ki, we know that bit ki+1 must have been zero. This
uniquely identifies the zero key bits (except for possibly the LSB), which implies
that the other key bits have to be one. As such, we easily obtain all of k with
one trace only.

Table 3 shows the intermediate results for the computation of k · P ′ where
k = 5405 and � = 4. Note that we assume that distinguishing point addition from
point doubling is not possible. As such, the adversary sees a sequence of normal
operations (additions or ordinary doublings), denoted by Op, and occurrences of

Combined Attack on ECC Using Points of Low Order 151

Table 3. Intermediate results in the computation of 5405 · P ′ with � = 4 and view of
the adversary when attacking the scalar multiplication

i 11 10 9 8 7 6 5 4 3 2 1 0

ki 0 1 0 1 0 0 0 1 1 1 0 1

RRR 2P ′ O,P ′ 2P ′ O,P ′ 2P ′ O O O,P ′ 2P ′,3P ′ 2P ′,3P ′ 2P ′ O,P ′

view Op O Op Op O Op Op O O O Op Op Op Op Op Op O Op

step 1 0 0 0 0 0 0

step 2 0 1 0 1 0 0 0 1 1 1 0 1

O as shown in the fourth row of Table 3. To recover the secret key, the adversary
proceeds as follows: in step one, he puts a 0 in each cell to the left of an O. Then
in step two, he groups the empty cells in pairs of two, from left to right, merges
them and writes a 1 in the resulting cell. If there is a single cell left in the end,
he writes a zero in it.

4.2 Partial Domain Correctness

Partial domain correctness implies that we can only gather information up to the
first occurrence of the point O. Indeed, either the implementation simply crashes
during the computation of O or it performs some nonsensical computations
thereafter. The result is that for each point submitted, we can only obtain partial
information about k. When k is fixed over several invocations, this is not a real
problem since we can submit many points with neighbours of different order and
then deduce all bits of k from this information. Note that due to the behavior of
the implementation, i.e. no further information after occurrence of O, the orders
of the neighbouring points submitted do not have to be coprime.

The type of information gathered will be of the following form: let k =∑n−1
i=0 ki2i, then for each small integer � we will obtain the index I(�) such

that the leftmost (or rightmost) I(�) bits of k form an integer divisible by �. By
definition we set I(�) = 0 when no part of k is divisible by �. As such we obtain
a list of positive information PosInfo, consisting of pairs [�, I(�)], and a list of
negative information NegInfo containing those � for which each I(�) = 0. The
list PosInfo will be sorted according to I(�).

A very simple incremental search algorithm is given in Algorithm 2. The algo-
rithm keeps a list PartialKeys containing all possibilities for the BitsScanned
leftmost bits of k. The procedure ExpandPartialKeys expands all partial keys
in the list by appending (on the right) all possible bit sequences of length
PosInfo[j][2] - BitsScanned and then only keeps those candidates divisi-
ble by PosInfo[j][1]. It furthermore updates BitsScanned to PosInfo[j][2].
The function PrunePartialKeys simply removes all elements from PartialKeys
that violate one of the non-divisibility conditions for any of the integers in
NegInfo.

We implemented this algorithm in Magma and ran several tests to evaluate
its behaviour for the NIST P-192 curve. Given a fixed secret random k, we

152 J. Fan, B. Gierlichs, and F. Vercauteren

computed for each integer � smaller than an upper bound B the value I(�) and
then tried to recover k from PosInfo and NegInfo. The tests show that even for
B � 100 we can typically recover a large part of the secret k (much more than
100 bits on average) and that for larger values of B like 192 or 384 we recover
most of k bar a few least significant bits.

5 Analysis of the Attack

In this section we discuss the assumptions made in the previous section and
analyze the attack for a wide range of implementation choices, such as coordinate
systems and curves used, scalar multiplication algorithms and finally, common
countermeasures against SSCA and DSCA attacks and validity checks against
fault attacks.

5.1 Analysis of Assumptions

Chosen Input Point. The target implementation is assumed to compute k ·P
for any given input point P , where k is supposed to be secret. This setting arises
for instance in ElGamal decryption [22], ECIES [1] and in static Diffie-Hellman
key agreement [21]. In the latter case, one of the ephemeral keys is simply the
long term public key. We note that the attack does not apply to ECDSA [41],
where the ephemeral key is computed on a fixed base point P (unless P has
neighbours of low order).

Recognizing O via Side Channels. In the case of partial domain correctness,
the implementation either crashes during the computation of O or it ends up
in O and remains there. We assume that either event can be detected through
side channels. Indeed, if the implementation crashes it can for example stall or
exit the scalar multiplication routine early, which should be clearly visible e.g.
in power traces. If the implementation continues to run it will get stuck in O,
which should be visible as a repetitive pattern.

In the case of full domain correctness, the implementation does not crash
because it correctly deals with all borderline cases. Most textbooks on ECC, e.g.
Hankerson et al. [26], use checks and conditional branches in their code examples
to ensure full domain correctness. It is well known that conditional branches can
leak through side channels [31,17] and so it is clear that the occurrence of any
borderline case can be easily detected. Even if we assume that these checks and

Algorithm 2. Recovering private key from PosInfo and NegInfo

PartialKeys ← ∅, BitsScanned ← 0
for j from 1 upto # PosInfo do

ExpandPartialKeys (& PartialKeys, PosInfo[j], & BitsScanned)

PrunePartialKeys (& PartialKeys, NegInfo)

end
return PartialKeys, BitsScanned.

Combined Attack on ECC Using Points of Low Order 153

branches are implemented with side channel resistance in mind (which is highly
unlikely) the actual occurrence of O (a point with at least one coordinate equal
to zero) in a point operation should be visible [2].

Fault Injection. The assumption that an adversary can flip a single chosen bit
in an implementation is certainly strong. We can relax this assumption greatly
using a trivial approach: by repeatedly faulting a specified byte (resulting in a
random byte), after an average of 256 trials, the fault will be precisely the fault
required. With overwhelming probability only the required fault will lead to a
point of low order, thus the good case is easily distinguished from undesired
faults. However, we still have to assume that an adversary can inject a fault
with sufficiently precise timing, in this case after initial validity checks.

The construction of points with low order neighbours is also flexible enough
to accommodate a more accurate fault model for the target implementation.
Assume we have extra information on the most likely state of a byte after fault
injection, then we can compute points specially crafted for this fault pattern.

Group Law Formulae. An implicit assumption, which is automatically sat-
isfied when using the formulae given in Eqs. (1) and (2), is that the group law
formulae do not depend on all coefficients of the curve equation. More formally,
assume the elliptic curve equation E(a1, . . . , ak) depends on k coefficients, but
that only the first m < k appear in the group law formulae. Then the implemen-
tation can also be used to compute correctly on all elliptic curves with the same
a1, . . . , am, but differing am+1, . . . , ak. Note that for all elliptic curve forms, it
is always possible to write down group law formulae with m < k. However, for
the most efficient formulae used in practice, our assumption seems only valid
for Weierstrass forms, which are most widely used, and Hessian forms. In fact,
using group law formulae involving all coefficients of the curve combined with
initial and final validity checks, is a possible combination of countermeasures to
our attack.

5.2 Scalar Multiplication

Many scalar multiplication algorithms have been proposed, either to speed up
the computation or to aid resistance against simple side channel analysis. In this
section we focus on scalar recoding [5], the Montgomery powering ladder [28],
unified formulae [12,19] and side channel atomicity [14].

Scalar Representation. Apart from the usual binary representation of the
scalar k =

∑n−1
i=0 ki2i, several other representations are frequently used. The

non-adjacent form (NAF) represents k =
∑n−1

i=0 ki2i, where ki ∈ {0,±1}. More
generally, a width w-NAF of an integer k is an expression k =

∑n−1
i=0 ki2i with

each nonzero ki odd, |ki| < 2w−1, kn−1 �= 0 and at most one of any w consec-
utive digits nonzero. In all cases, we still obtain a similar type of information
as in the basic attack: when O is encountered, we know that the part of the
scalar processed up to that point is divisible by �. However, since the number

154 J. Fan, B. Gierlichs, and F. Vercauteren

of intermediate points computed during the scalar multiplication is no longer n
but n/w, the probability of hitting O is lower.

Montgomery Powering Ladder. The Montgomery powering ladder given in
Algorithm 3 is a popular choice because it provides speed and a highly regular
structure.

Algorithm 3. Montgomery powering ladder

Input: PPP , k = (kn−1, kn−2, . . . , k0)2
Output: QQQ = k ·PPP
RRR0 ← P , RRR1 ← 2 · P ;
for i ← n − 2 down to 0 do

RRR¬ki ← RRRki + RRR¬ki , RRRki ← 2 ·RRRki ;
end

return RRR0

Attacking the Montgomery ladder is a bit more tricky because the sequence of
operations is fixed and independent of the key. Nevertheless, the attack applies
since it does not exploit the sequence of operations but the evolution of the
intermediate values. Assume we input a point P with neighbour P ′ of order 4
and inject a fault after initial validity checks. The implementation will then try
to compute k ·P ′. Note that if two consecutive bits of k are equal, then the same
point (either RRR0 or RRR1) will be doubled twice by the operation RRRki ← 2 · RRRki

resulting in O. On the other hand, if two consecutive bits differ, an ordinary
doubling 2 · P ′ or 2 · (3P ′) will be computed. Finally, note that O can never
be the result of the addition operation RRRki + RRR¬ki , since this is always an odd
multiple of P ′. As such, we obtain (almost all of) k with one trace only in the
full domain correctness case.

Unified Formulae and Side Channel Atomicity. These countermeasures
render point additions and doublings indistinguishable to prevent SSCA, and
they can be implemented together with a possibly faster, irregular scalar mul-
tiplication algorithm like double-and-add (at the cost of leaking the Hamming
weight of the exponent). It is clear that our attack is not affected by coun-
termeasures of this kind because it does not require point operations to be
distinguishable.

5.3 Common DSCA and FA Countermeasures

Random Scalar Splitting [15]. With this countermeasure, the scalar k is
randomly split into two parts: k = k1 + k2. As such, Q = k ·P can be computed
as k1 ·P + k2 ·P by two consecutive scalar multiplications and addition of their
results. In the case of full domain correctness, (almost all of) k1 and k2 can
be revealed (assuming that only the final output point is checked for validity),
which immediately results in (a small number of candidates for) k. Otherwise the

Combined Attack on ECC Using Points of Low Order 155

situation is similar to that of partial domain correctness. In the partial domain
correctness case, the attack will no longer work, since we will only be able to
recover a part of k1 or k2, but not both at the same time. Indeed, typically the
implementation will stop working the first time it hits O.

Scalar Randomization [20]. In this case, the scalar is blinded using a multiple
of the curve order, i.e. k is replaced by k′ = k + r ·#E. It is easy to see that this
countermeasure is useless in the full domain correctness case, where only a single
trace is needed. For partial domain correctness, we do get partial information on
k′, but currently have no method to exploit this. Note that the same conclusion
applies for ephemeral keys.

Coordinate Randomization [20]. This countermeasure assumes that some
form of projective coordinates are being used and that the coordinates of the
input point P are randomized before the scalar multiplication is started. For
instance, when using projective coordinates, P = (rXP , rYP , rZP) with r ran-
domly chosen is used. It is easy to see that our attack remains valid if initial
checks are performed before point randomization.

Random Elliptic Curve Isomorphisms [27]. This method first applies a
random isomorphism of the form ψ : (x, y) 	→ (r2x, r3y) and then proceeds by
computing Q = k · ψ(P) and outputting ψ−1(Q). Since an isomorphism does
not change the order of a point, it is clear that the attack still applies if initial
checks are performed before ψ is applied.

Isogeny Defence [40]. To prevent Goubin’s attack using special points of
large order, Smart proposed to use an isogeny I to map the input points to an
isogenous curve without special points. Furthermore, for each curve in the main
standards Smart provides a fixed isogeny that works for that curve. It is clear
that our attack still applies if we look for points P with low order neighbours
on the isogenous curve instead of on the original curve. The input to the target
device will then be the points I−1(P) and the fault will be injected after initial
checks and isogeny have been applied.

Point Blinding [20]. With this countermeasure, the implementation contains
a random point R and the corresponding multiple k ·R. The scalar multiplication
k ·P is computed by first computing k · (P + R) and then subtracting k ·R from
the result. Since we have no control over the point R, we cannot compute an
appropriate point P such that we can fault the point P + R into a point of low
order. As such, this countermeasure does thwart our attack, both in the full and
partial domain correctness case. Point blinding can be seen as an instance of
infective computation [42].

Cofactor Multiplication [40]. To prevent small subgroup attacks, most proto-
cols can be reformulated using cofactor multiplication. For instance, the

156 J. Fan, B. Gierlichs, and F. Vercauteren

Diffie-Hellman protocol can be adapted as follows: a user first computes Q ← h·P
and then R ← k ·Q if Q �= O. It is easy to see that our attack still applies when
we input a point with neighbour of order different from h.

Validity Checks [9,15]. To prevent fault attacks, Biehl et al. [9] and Ciet and
Joye [15] recommend input/output point validity checks and curve parameter
checks. These recommendations were part of the original motivation for our
work and do not prevent the attack.

5.4 Curves over Finite Fields of Characteristic Two

Although the attack has mainly been described for elliptic curves in Weierstrass
form over fields of large characteristic, we briefly touch on the characteristic two
case. The short Weierstrass form is given by E : y2 + xy = x3 + ax2 + b. The
applicability of our attack then depends on the coordinate system being used.
For affine and standard projective coordinates, the attack applies since only the
a-coefficient is used in the group law formulae. For Jacobian coordinates the
attack does not apply since both a and b are used in the group law formulae. For
Lopez-Dahab formulae, only b is used in the group law formulae, but changing a
only results in an isomorphic curve or its quadratic twist. As such it is impossible
to find a point of given low order, since both the curve and its twist should not
have many small subgroups.

6 Conclusions

We have described a novel attack that combines three ideas: fault injection, sim-
ple side channel analysis, and specially crafted, but valid input points that after
a single fault injection have very low order. Our attack breaks ECC implemen-
tations that are protected by many of the known countermeasures such as initial
and final point validity checks, curve parameter checks, cofactor multiplication
check, SSCA countermeasures and bypasses many DSCA countermeasures. A
secondary yet irritating result of our analysis is that proper, i.e. full domain
correct implementations are more vulnerable to the attack and can be broken
using one successful fault injection.

The attack does not apply to protocols that use a fixed point P (with no near
neighbours of low order). For other applications, the attack can be prevented
by physical fault injection sensors, concurrent point validity checks, using group
law formulae that involve all curve coefficients, using randomized coordinates
or randomized curve isomorphisms with randomization before the initial point
validity check and by point blinding.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: DHAES: An encryption scheme based on the
Diffie-Hellman problem. Submission to P1363a: Standard specifications for Public-
Key-Cryptography: Additional techniques (2000)

Combined Attack on ECC Using Points of Low Order 157

2. Akishita, T., Takagi, T.: Zero-value point attacks on elliptic curve cryptosystem.
In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218–233. Springer,
Heidelberg (2003)

3. Amiel, F., Villegas, K., Feix, B., Marcel, L.: Passive and active combined attacks:
Combining fault attacks and side channel analysis. In: FDTC 2007, pp. 92–102.
IEEE Computer Society, Los Alamitos (2007)

4. Anderson, R., Kuhn, M.: Tamper resistance - a cautionary note. In: The Second
USENIX Workshop on Electronic Commerce Proceedings, pp. 1–11. USENIX As-
sociation (1996)

5. Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of elliptic and hyperelliptic curve cryptography. In: Discrete Math-
ematics and Its Applications. Chapman & Hall/CRC (2006)

6. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proceedings of the IEEE 94(2), 370–382 (2006)

7. Bernstein, D.J., Lange, T.: Faster Addition and Doubling on Elliptic Curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

8. Bernstein, D.J., Lange, T., Farashahi, R.R.: Binary edwards curves. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 244–265. Springer, Heidelberg
(2008)

9. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000)

10. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

11. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997)

12. Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer,
Heidelberg (2002)

13. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Universität
Innsbruck (1965)

14. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: Side-channel atomicity. IEEE Trans. Computers 6(53), 760–
768 (2004)

15. Ciet, M., Joye, M.: (Virtually) free randomization techniques for elliptic curve
cryptography. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS,
vol. 2836, pp. 348–359. Springer, Heidelberg (2003)

16. Ciet, M., Joye, M.: Elliptic curve cryptosystems in the presence of permanent and
transient faults. Designs, Codes and Cryptography 36(1), 33–43 (2005)

17. Clavier, C., Coron, J.-S.: On the implementation of a fast prime generation algo-
rithm. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
443–449. Springer, Heidelberg (2007)

18. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal cor-
relation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.)
ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

158 J. Fan, B. Gierlichs, and F. Vercauteren

19. Clavier, C., Joye, M.: Universal exponentiation algorithm. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 300–308. Springer, Heidelberg
(2001)

20. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

21. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inform.
Theory 22(6), 644–654 (1976)

22. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

23. Fan, J., Guo, X., De Mulder, E., Schaumont, P., Preneel, B., Verbauwhede, I.:
State-of-the-art of secure ECC implementations: A survey on known side-channel
attacks and countermeasures. In: HOST 2010, pp. 76–87 (2010)

24. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

25. Goubin, L.: A refined power-analysis attack on elliptic curve cryptosystems. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–210. Springer, Heidelberg
(2002)

26. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Heidelberg (2004)

27. Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve
cryptography. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 377–390. Springer, Heidelberg (2001)

28. Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

29. Koblitz, N.: Elliptic curve cryptosystem. Math. Comp. 48, 203–209 (1987)
30. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

31. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

32. Leontév, V.K.: Roots of Random Polynomials over a Finite Field. Mat. Za-
metki 80(2), 313–316 (2006)

33. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

34. Montgomery, P.L.: Speeding up the Pollard and elliptic curve methods for factor-
izations. Mathematics of Computation 48, 243–264 (1987)

35. National Institute of Standards and Technology (NIST). Digital signature standard
(DSS), FIPS PUB 186-3 (2009)

36. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

37. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

38. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003)

Combined Attack on ECC Using Points of Low Order 159

39. Smart, N.P.: The Hessian Form of an Elliptic Curve. In: Koç, Ç.K., Naccache, D.,
Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 118–125. Springer, Heidelberg
(2001)

40. Smart, N.P.: An analysis of goubin’s refined power analysis attack. In: Walter, C.D.,
Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 281–290. Springer,
Heidelberg (2003)

41. Vanstone, S.: Responses to NIST’s proposal. Communications of the ACM 35,
50–52 (1992)

42. Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: RSA speedup with residue num-
ber system immune against hardware fault cryptanalysis. In: Kim, K.-c. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 397–413. Springer, Heidelberg (2002)

Random Sampling for Short Lattice Vectors

on Graphics Cards

Michael Schneider and Norman Göttert

Technische Universität Darmstadt, Germany
mischnei@cdc.informatik.tu-darmstadt.de

Abstract. We present a GPU implementation of the Simple Sampling
Reduction (SSR) algorithm that searches for short vectors in lattices.
SSR makes use of the famous BKZ algorithm. It complements an ex-
haustive search in a suitable search region to insert random, short vec-
tors to the lattice basis. The sampling of short vectors can be executed
in parallel.

Our GPU implementation increases the number of sampled vectors
per second from 5200 to more than 120, 000. With this we are the first
to present a parallel implementation of SSR and we make use of the
computing capability of modern graphics cards to enhance the search for
short vectors even more.

Keywords: Lattice reduction, random sampling, SSR, BKZ.

1 Introduction

Lattices are discrete additive groups in the Euclidean vector space. They are
known for hundreds of years in mathematics, but their use in cryptography
and other fields of computer science started in the last decades of the twenti-
eth century. Roughly speaking, lattice reduction is the search for short vectors
with special geometric structure, i.e., vectors that are nearly orthogonal to each
other. In 1982, the famous LLL algorithm was presented by Lenstra, Lenstra,
and Lovász [16]. It set a starting point for developments and improvements of
lattice reduction algorithms until today. In 1991, the BKZ algorithm (for Block-
Korkine-Zolotarev reduction) which is a generalization of LLL was presented
[27]. Today, BKZ is still the strongest and mostly used algorithm for lattice ba-
sis reduction. In 2003, the Random Sampling Reduction (RSR) algorithm was
presented [26]. It is an adaption of BKZ, and applies BKZ together with the in-
sertion of some randomly sampled vectors. In 2006, Simple Sampling Reduction
(SSR) improved RSR by removing its heuristic assumptions [7].

In cryptology, lattice reduction has applications in cryptography as well as in
cryptanalysis. The security of lattice based cryptosystems can be sustained by
hard problems in lattices. The fact that makes lattice based cryptography special
is the ability to base the security of cryptosystems on worst case problems in
lattices, whereas usually security is only based on average case problems. This

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 160–175, 2011.
c© International Association for Cryptologic Research 2011

Random Sampling for Short Lattice Vectors on Graphics Cards 161

so-called worst case to average case reduction is unique for lattices and is not
known in other fields.

For estimating the practical security of lattice based cryptosystems, it is nec-
essary to know the strength of lattice reduction algorithms such as LLL, BKZ,
and their revisions. Since there is a well-known gap between practical and the-
oretical strength of these algorithms, it is important to assess their practical
borders. Since today, even desktop computers and laptops are equipped with
multicore CPUs or graphics cards that support the CPU, this kind of special
hardware must be taken into account when talking about security of cryptosys-
tems. Due to the fact that supercomputers and new paradigms such as cloud
computing gain more and more importance, the computing capabilities of at-
tackers of cryptosystems rises as well. Therefore it is necessary to examine the
strength of lattice reduction algorithms concerning parallelization potential.

The BKZ algorithm is the lattice reduction algorithm most commonly used
in practice. It consists of two building blocks. One part is the LLL algorithm,
the other part is an enumeration subroutine that performs exhaustive search
for shortest vectors. No parallel version of BKZ is known to date. There are
approaches of parallelizing LLL in the SIMD model, e.g. [30,2] and also for
enumeration [9,15,10]. The combination of both however has not yet been tried.

It is apparent that SSR allows for distributed computing, since sampling
short vectors can be performed independently in parallel. The authors of [7]
state that most time of SSR is spent on sampling, which would allow for good
parallelization.

1.1 Previous Results

Schnorr presented the first sampling algorithm called Random Sampling Reduc-
tion (RSR) in [26]. Ludwig and Buchmann refine the algorithm and promise to
make sampling practical with their Simple Sampling Reduction (SSR) in [7].
They get rid of two RSR assumptions, namely the Randomness Assumption
(RA) and the Geometric Series Assumption (GSA), which they claim both do
not hold in practice. They replace the independent random sampling of vectors in
the search space by a deterministic exhaustive search. This makes it impossible
to sample the same vector multiple times, which was the case for RSR. Ludwig
gives a more detailed view on SSR in [17]. The implementation of Ludwig is
available upon request. Comparisons of his SSR implementation with BKZ on
cryptographic lattices can be found, e.g., in [6,5].

1.2 Our Contribution

In this paper we present CUDA-SSR, a parallel variant of simple sampling re-
duction running on graphics cards using NVIDIAs CUDA framework. Our ex-
periments are twofold. First we compare CUDA-SSR to BKZ, and second we
compare it to our CPU-SSR implementation to show the strength of the GPU.

Although it is already mentioned in [7] that SSR is a good candidate for
parallelizing, we are the first to present a distributed version of SSR. The authors
of [7] mention a sampling rate of up to 5200 samples per second (on a 2.4GHz

162 M. Schneider and N. Göttert

Intel Pentium 4). On an NVIDIA GTX295 GPU (which was released in 2009)
we get rates of more than 120, 000 samples per second.

1.3 Organization of the Paper

The remainder of this paper is organized as follows. In Section 2, we present the
required background knowledge concerning lattices, random sampling, and GPU
computations. In Section 3, we develop a parallel version of SSR and explain
how we implemented it on graphics cards. This is the main contribution of our
work. Section 4 presents experimental results that show the strength of the GPU
version of random sampling.

2 Preliminaries

Let ‖v‖ denote the Euclidean norm of the vector v. Other norms are subscripted
like ‖v‖∞.

Let n, d ∈ N, n ≤ d, and let b1, . . . ,bn ∈ Rd be linearly independent. Then
the set L(B) = {∑n

i=1 xibi : xi ∈ Z} is the lattice spanned by the basis column
matrix B = [b1, . . . ,bn] ∈ Zd×n. The lattice L(B) is called n-dimensional. Its
basis B is not unique, unimodular transformations lead to a different basis of the
same lattice. The first successive minimum λ1(L(B)) is the length of a shortest
vector of L(B). The lattice determinant det(L(B)) is defined as

√
det(BtB).

It is invariant under basis changes. For full-dimensional lattices, where n = d,
there is det(L(B)) = |det(B)| for every basis B. In the remainder of this paper
we will only be concerned with full-dimensional lattices.

Denote the Gram-Schmidt-orthogonalization (GSO) with b∗
i = πi(bi) where

πi(b) → 〈b1 . . .bi−1〉⊥ is the orthogonal projection. The GSO is calculated via
b∗

i = bi −
∑i−1

j=1 μi,jb∗
j for all 1 ≤ i ≤ n, where μi,j = bT

i b∗
j/
∥
∥b∗

j

∥
∥2 for all

1 ≤ j ≤ i ≤ n. The values μi,j are called Gram-Schmidt (GS) coefficients.
Roughly speaking, lattice reduction is the process of transforming a basis of a

lattice into a second one consisting of short vectors which are nearly orthogonal.
The LLL [16] and BKZ [27] algorithms are the most common algorithms for
lattice reduction. BKZ is controlled by a blocksize parameter β, which allows
for a trade-off between runtime and reduction quality. Higher values of β lead
to better reduced bases at the expense of an exponentially (in β) increasing
runtime. LLL is the special case of BKZ with β = 2. Both LLL and BKZ sort
the basis vectors in increasing order, so that b1 is the shortest among the basis
vectors after reduction. Applied to a basis B, LLL provably finds a vector b1 with
‖b1‖ ≤ 2(n−1)/2λ1(L(B)). When LLL or BKZ is applied to a generator system
of a lattice L it will output a basis of L, so it will remove linear dependent
vectors. The first basis vector found by BKZ with β > 2 is shorter than with
LLL, i.e., it holds that ‖b1‖ ≤ (γβ)(n−1)/(β−1)λ1(L(B)) [25], where γβ is the
β-dimensional Hermite constant. A practical comparison of LLL and BKZ can
be found in [12]. Both LLL and BKZ are equipped with a parameter δ, which
only slightly controls the reduction quality and is usually set to 0.99. For further
information concerning lattices and lattice reduction we refer to [19,20,22].

Random Sampling for Short Lattice Vectors on Graphics Cards 163

2.1 Random Sampling

The idea of random sampling was presented by Schnorr in 2003 [26]. It was
adopted and improved in [17,7]. The idea of random sampling is the following.
Iteratively, it switches between reduction of the basis (using BKZ) and sampling
a random short vector of norm < 0.99 ‖b1‖2, which is then prepended to the
reduced basis (cf. Algorithm 1).

Every basis vector v = [v1, . . . , vn] can be written in its orthogonalized form
v =

∑n
i=1 νib∗

i . We can write its squared norm as

‖v‖2 =
n∑

i=1

ν2
i ‖b∗

i ‖2
. (1)

Therefore, shortening a vector v is done either by decreasing νi or by decreasing
the ‖b∗

i ‖.
For a reduced basis B (either LLL or BKZ reduced), it is known that the norm

of the orthogonalized vectors ‖bi‖ decreases for increasing index i. This implies
that for higher indices, the influence of the coefficient νi in Equation (1) is less
noticeable than for smaller indices. This fact helps interpreting the following
definition of a search space. For a basis B ∈ Zn×n and an integer u with 1 ≤
u ≤ n we define the set Su,B as the set of all lattice vectors v =

∑n
i=1 νib∗

i with

|νi| ≤
{

0.5 for 1 ≤ i < n− u

1 for n− u ≤ i < n
, νn = 1 (2)

and call it the search space. It is Su,B ⊆ L(B), and this search space is supposed
to contain short lattice vectors. The algorithm sample (Algorithm 2, original
in [17]) uses as input a lattice basis B and an integer value x, and as output
it computes a vector v ∈ Su,B in the search space. The bit representation of
the integer x controls the sampling deterministically. If the search space Su,B

consists of 2u many points, running sample with all values x ∈ {1, . . . , 2u}
guarantees that the complete search space is sampled.

Algorithm 1. SSR
Input: Lattice basis B ∈ Zn×n, GS-coefficients R ∈ Qn×n, bound umax ∈ N,

blocksize β, norm bound A
Output: reduced basis B s.t. ‖b1‖ < A

1 B ← BKZ([b1, . . . ,bn], β)
2 while ‖b1‖ > A do
3 for x = 1 to 2umax do
4 v ← sample(B,R, x)

5 if ‖v‖2 ≤ 0.99 ‖b1‖2 then break

6 end
7 if x = 2umax then terminate(“No short vector found”)
8 B ← BKZ([v, b1, . . . ,bn], β)

9 end

164 M. Schneider and N. Göttert

Algorithm 2. sample

Input: Lattice basis B ∈ Zn×n, GS-coefficients R ∈ Qn×n, x ∈ Z
Output: vector v ∈ Su,B

1 v ← bn, ν ← rn

2 for j = n − 1 to 1 do
3 y ← �νj − 0.5�
4 if x = 1 mod 2 then
5 if νj − y ≤ 0 then y ← y − 1
6 else y ← y + 1

7 end
8 x ← 	x/2
, v ← v − ybj , ν ← ν − yrj

9 end
10 return v

Algorithm 1 shows a pseudo-code listing of SSR, Algorithm 2 shows a listing of
sample. For more details on random sampling we refer to the works of [26,17,7].

2.2 GPU Computation

Graphical Processing Units (GPUs) were developed to perform huge numbers of
graphical operations in parallel. The introduction of computing platforms such
as CUDA by NVIDIA [23] and CTM by ATI [1] opened graphics cards equipped
with GPUs for running custom user programs. The development of these com-
puting frameworks where the starting point of the breakthrough these processing
units had over the last years. The existence of standard libraries like BLAS [24]
for linear algebra made GPUs interesting for cryptographic applications as well.

In the field of cryptography, there are (among others) implementations of AES
[8,18,14] and RSA [21,29,11] available as well as implementations of the SHA3
hash competition finalists [4]. In cryptanalysis, Bernstein et al. use parallelization
techniques on graphics cards to solve integer factorization using elliptic curves
[3]. Concerning lattices and lattice reduction, there is an implementation of the
ENUM algorithm on graphics cards [15]. We are not aware of other work in the
field of lattice reduction.

Programming Model. We will be using the CUDA framework from NVIDIA
on an NVIDIA GTX 295 card. The description might be slightly different for
newer cards of the Fermi architecture. A CUDA-capable GPU is equipped with
several multiprocessors, which contain small numbers of scalar processors each.
The programmer can stick to the single instruction - multiple thread (SIMT)
programming model. The programmer writes code for single threads, which is
uploaded to the device and executed in parallel by multiple threads.

The threads altogether are organized in blocks, which again are organized in
grids. A kernel is a program running on a graphics device. When a kernel (a
grid) is executed, 32 threads are scheduled in a so-called warp. These 32 threads
should perform the same computation, since otherwise the threads are handled
in serial, not in parallel.

Random Sampling for Short Lattice Vectors on Graphics Cards 165

Memory Model. One big issue on NVIDIAs GPUs is the different types of mem-
ory available. There are registers, shared memory, global memory, texture, and
constant memory. Registers and shared memory are on chip and close to the
multiprocessor and can be accessed with low latency. The number of registers
and shared memory is limited, since the number available for one multiprocessor
must be shared among all threads in a single block. Global memory is slow, since
it is off-chip and there is no cache for it. Constant and texture memory are parts
of the global memory, but they are cached and can be used for specific types of
data or special access patterns.

3 GPU Algorithm CUDA-SSR

The CUDA-SSR approach in Algorithm 3 is a slightly changed variant of the
original SSR algorithm. In each outer while loop, up to 2umax vectors are sam-
pled in parallel, and the m shortest samples are added to the basis. The main
difference to the original SSR is the sampling of new vectors v, which is done
on the GPU and returns not only a single vector but multiple ones within a
bound of m. The calculated vectors [v1,v2, . . . ,vm] are added to the front of
the lattice B in a sorted order, before the extended lattice is reduced by the
BKZ algorithm. With the adding of multiple vectors we get a benefit of a more
stabilized reduction, as we will see in the experiments section.

The algorithm terminates if a given norm of the first vector of B is undercut
by a new vector v or if no smaller vector is found in the given search space.

The subroutine par-sample (which is now executed on GPU) is a slightly
changed variant of sample (Algorithm 2). The original sample algorithm was

Algorithm 3. CUDA-SSR
Input: Lattice basis B ∈ Zn×n, GS-coefficients R ∈ Qn×n, bound umax ∈ N,

blocksize β, norm bound A, add vector bound m
Output: BKZ-β reduced basis B s.t. ‖b1‖ ≤ A

1 B ← BKZ([b1, . . . ,bn], β)
2 foundSmaller = true
3 xOffset = 0
4 while ‖b1‖ > A and foundSmaller = true do
5 while xOffset < 2umax do
6 parallel [i = xOffset . . . xOffset + maxSamplesPerCall] do
7 [v1,v2, . . . ,vm], foundSmaller ← par-sample(B,R, xi, m)
8 end
9 if foundSmaller = true then break inner while loop

10 xOffset += maxSamplesPerCall
11 if xOffset ≥ 2umax then terminate

12 end
13 B ← BKZ([v1,v2, . . . ,vm,b1, . . . , bn], β)

14 end

166 M. Schneider and N. Göttert

parallelized, so that it computes a huge number of vectors per call. The possibility
of parallelization is based on the independence of the samples. The only difference
among two samples is the input value x, which can be interpreted as an unique
identifier or seed.

One sample is stored in the shared memory of a CUDA block. The amount
of shared memory, which is used for producing one sample, consists of memory
for the vector v (4Byte · dimension), for the vector ν (4Byte · dimension), for
y (4Byte), and for a valid-Byte (1Byte). For one CUDA block a number of

samplesPerBlock =
⌊

available shared memory

(4 + 4Byte) · dimension + 4Byte + 1Byte

⌋

vectors are produced. If we use all available CUDA blocks, the overall number
of samples is 65535 · samplesPerBlock per call. For example, at a dimension of
80 one call calculates 65535 · � 16344

8·80+5� = 1, 638, 375 samples.1

3.1 Parallel Implementation of Subroutine Sample

Here we describe how we implemented the sampling of samplesPerBlock many
vectors in Su,B on GPU. This is the main contribution of the paper.

The first step for determining samplesPerBlock samples in one CUDA block
is to copy the entries of the last vector of the matrices B and R to v and ν in
parallel. The matrices B and R resist in the texture memory, because they are
read multiple times and this memory is cached.

The second step is to compute the factor y for every sample and build new
vectors inside a for-loop. A single y is processed by one CUDA thread, therefore
all y′s of one CUDA block can be calculated in parallel. Afterwards the tempo-
rary new vectors v and ν are built, whereby all entries of a vector are assigned
in one parallel step. If an integer overflow is noticed in this step, the sample will
be indicated as invalid.

When the loop is finished, the square norms of the new samples are calculated
with the common vector reduction approach, after squaring all entries of v in
parallel. Figure 1 illustrates this procedure. Once a square norm of 2x (with
x = max{y ∈ Z : 2y ≤ dimension}) is determined, the result will be added to
the first entry of the next interval. This procedure continues, until there is no
more than one entry left.

Because the square norms of all vectors are calculated step by step, we can
register the smallest square norm of a CUDA block. Therefore a CUDA block
writes only the smallest vector back to the global memory, assumed that the
square norm is less than 99% of ‖b1‖2 and the sample is valid. With this we
save a lot of global memory. Instead of writing 65535 · samplesPerBlock many
vectors to global memory we use shared memory for samplesPerBlock many
vectors of each block and only write 65535 many vectors to the device.

1 The shared memory of 16384Byte is decreased by the parameters of the kernel call,
which are also stored in shared memory (16Byte for dimBlock and dimGrid, 24Byte
for 3 pointers). These values might change for other CUDA compute capabilities.

Random Sampling for Short Lattice Vectors on Graphics Cards 167

Fig. 1. Computation of the norm of a single vector v in parallel

For achieving higher performance we introduce a counter, which increases if
a vector with a square norm less than 99% of ‖b1‖2 is found. When m vec-
tors below this bound have been found, we break the parallel sampling. The
counter is increased with so called atomic operations, which provides an exclu-
sive read-modify-write operation for one CUDA thread. The parallel processing
of the CUDA framework is only “semi-parallel”, because only a part of all CUDA
blocks are processed parallel for real (we have 65535 blocks but only 30 multi-
processors available). Therefore we can abort further calculations, if the counter
m reached a defined value. A flow chart of our GPU algorithm of sample is
shown in Appendix A. In order to remove serialization we also tested replacing
the condition in Line 4 of sample by arithmetic computations, but recognized
no speedups. Since there is no else-block, the fact that (on average) half of the
threads are idle does not influence the total runtime.

For establishing the gain of parallel sampling we also implement a CPU version
of the SSR algorithm (called CPU-SSR), which produces new vectors step by
step. Our CPU as well as the GPU implementation are available online.2

4 Experimental Results

We are using an NVIDIA GTX 295 GPU for our experiments. The CPU that
we use is an Intel Core2 Duo E8400 CPU running at 3GHz. The lattices we use
are the SVP challenge lattices [13] with seed 0, so we use only one lattice per
dimension. For LLL and BKZ reduction we use the NTL library [28] in version
5.5.2. The parameter δ is always set to the standard value 0.99. We run LLL
with precision RR followed by BKZ with precision QP.

First we compare our results of CUDA-SSR to BKZ, and second we present
experiments comparing CUDA-SSR to CPU-SSR.

2 http://www.cdc.informatik.tu-darmstadt.de/mitarbeiter/mischnei.html

http://www.cdc.informatik.tu-darmstadt.de/mitarbeiter/mischnei.html

168 M. Schneider and N. Göttert

4.1 Comparison of CUDA-SSR and BKZ

Let B be the basis of L(B) in dimension n and c be a constant. Using BKZ with
blocksize β, Gama and Nguyen [12] predict the average norm of the first basis
vector after BKZ reduction to be

gn = cn det(L(B))1/n , (3)

where the Hermite factor constant c relies on the blocksize used. For BKZ-20,
e.g., they experimentally gain a value of c = 1.0128.

Our experiments are performed as follows. First, we reduce a lattice basis
with BKZ with increasing blocksize, until we reach a vector of desired goal
norm gn, cf., Equation (3). We use a value of c = 1.0129 to calculate our goal
norm. The resulting run times and the reached norms are shown in Figures 2
and 3. Second, we use CUDA-SSR with half the blocksize (rounded up) that
BKZ needed to reach the goal norm and run CUDA-SSR on the same lattice;
i.e., random sampling has to close the gap between BKZ with half blocksize and
BKZ with full blocksize. We stop the GPU sampling when m = 0.25 · n vectors
below 0.99 · ‖b1‖2 were found by par-sample.

Figure 4 shows the blocksize that BKZ needed to find the resulting vector. The
picture shows that the blocksize is around 20 in most of the cases, as predicted
by [12]. Figure 5 shows the speedup factor of CUDA-SSR compared to BKZ.

We notice that with both approaches, BKZ as well as CUDA-SSR, we find
vectors of comparable length (Figure 2). CUDA-SSR is always faster (up to 40%).
For comparison reason, Figure 3 includes the runtime of BKZ with blocksize
�β/2�, the pre-processing step of SSR (Line 1 of Algorithm 3). The picture
shows that it takes a huge part of the random sampling time (dashed line). This
implies that the later part of SSR (sampling - BKZ - sampling - . . .) takes a lot
less time (the time difference between the dotted and dashed curve) than the
initial BKZ. Therefore, the total SSR runtime cannot profit too much from the
parallel sampling part in this setting.

The runtime speedup factor (Figure 5) seems to increase with the dimension,
from 1.1 in dimension 80 to a maximum value of 1.6 in dimension 160. The peek
in dimension 150 is also apparent in Figure 4 and seems to result from special
structure in the lattice (SSR is working less in this lattice).

4.2 Comparison of GPU and CPU Variant of SSR

Our second block of experiments is supposed to show the strength of paralleliza-
tion on GPU of the SSR algorithm. For this, we run our CPU implementation
and our GPU implementation of SSR for the same lattices until they undercut
the goal norm. For pre-reduction, we use LLL only. We note the reached norm
(cf. Figure 6) and the runtime (cf. Figure 7). Figure 8 shows the speedup factor
gained by the GPU version. We prepend m = 0.1 ·n vectors to the basis in each
GPU iteration. Figure 9 compares a typical behaviour of SSR on GPU and CPU
over time, concerning the norm of the sampled vectors.

On CPU, the sampling rate was about 160 samples per second for a 180-
dimensional lattice. The GTX 295 GPU reached about 120, 000 samples per

Random Sampling for Short Lattice Vectors on Graphics Cards 169

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 60 80 100 120 140 160 180 200

Dimension n

CPU BKZ reached norm
CUDA-SSR reached norm

goal norm

Fig. 2. Reached norm of BKZ and CUDA-
SSR

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 60 80 100 120 140 160 180 200

Dimension n

CPU BKZ(β) time
CUDA-SSR time

BKZ(β/2) time

Fig. 3. Required time in seconds for BKZ
with blocksize β and for CUDA-SSR to
reach the same goal norm

 14

 16

 18

 20

 22

 24

 26

 60 80 100 120 140 160 180 200

Dimension n

CPU BKZ required blocksize

Fig. 4. Required blocksize of BKZ to reach
the desired goal norm

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 60 80 100 120 140 160 180 200

Dimension n

CPU BKZ-time / CUDA-SSR time

Fig. 5. Speedup factor of CUDA-SSR in
comparison to BKZ

second for a 180 dimensional lattice. In smaller dimension, sampling rates of
more than 250, 000 are possible, e.g. in dimension 60.

From Figure 7 we conclude that the runtime of SSR on GPU is very stable,
whereas on CPU (solid curve), we see two different behavior patterns. In some
dimensions, e.g. 90 or 110, SSR finds shorter vectors very early, and the runtime
is comparable to the CUDA-SSR runtime. In other cases we see huge peeks in
the runtime curve, e.g. in dimension 100 or 120, which suggest that on CPU it
takes a long time until shorter vectors are found. We conclude that sampling
multiple vectors in each iteration helps SSR to run much more stable.

The speedup factor shown in Figure 8 shows the potential of the CUDA version
compared to the CPU version. In small dimension we gain speedup factors of up
to 180. On GPU, in the first iteration a vector below the bound is already found,
whereas on CPU multiple iterations have to be performed. In bigger dimensions,
the speedup factor decreases, depending on the behaviour pattern.

170 M. Schneider and N. Göttert

 0

 5000

 10000

 15000

 20000

 25000

 60 80 100 120 140 160 180 200

Dimension n

CPU-SSR reached norm
CUDA-SSR reached norm

goal norm

Fig. 6. Reached norm of CPU-SSR and
CUDA-SSR

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 60 80 100 120 140 160 180 200

Dimension n

CPU-SSR time
CUDA-SSR time

Fig. 7. Required time in seconds of CPU-
SSR and CUDA-SSR to reach the same
goal norm

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 60 80 100 120 140 160 180 200

Dimension n

CPU-SSR time / CUDA-SSR time

Fig. 8. Speedup factor of GPU compared
to CPU variant of SSR

 1e+08

 1e+09

 1e+10

 0 2 4 6 8 10 12 14 16

Iteration

CPU-SSR
CUDA-SSR

goal norm

Fig. 9. Development of the squared norm
of SSR over time, in a 190 dimensional lat-
tice. The ordinate shows the squared norm
of the vectors found by sampling.

Figure 9 shows a typical behaviour of SSR on CPU and GPU. CUDA-SSR
starts with lower norm, which implies that the first iterations of SSR decreases
the norm much more than on CPU. We noticed that in the first iterations, there
exists a huge number of vectors below the 0.99 ‖b1‖2 bound. Therefore, on GPU
we have good chance to find a much shorter vector. On CPU only the first vector
below the bound is picked, whereas on GPU multiple vectors are prepended to
the basis, and all these vectors are potentially smaller than the CPU one.

To show the strength of our GPU version, Figure 10 shows the time needed by
CUDA-SSR and CPU-SSR to sample the same amount of vectors, namely 221

many. It is evident that on GPU, the sampling is much faster, with a maximum
factor 14.5 in dimension 190.

Random Sampling for Short Lattice Vectors on Graphics Cards 171

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 60 80 100 120 140 160 180 200

T
im

e
[s

]

Dimension n

Intel Core2 Duo E8400 3GHz
NVIDIA GTX 295

Fig. 10. Time to sample 221 many vectors using CUDA-SSR and CPU-SSR

5 Conclusion and Further Work

We have presented a parallel version of random sampling and an implementation
on GPU. Our results show the strength of parallelism for this type of algorithm.
Our proposal CUDA-SSR allows for more than 120, 000 sampled vectors per
second, which is the maximum stated in literature. Unfortunately, the speedups
compared to BKZ are not too impressive, due to the big fraction of the runtime
that BKZ takes. The percentage of BKZ of the total runtime was up to 97%.
This is not optimal, since BKZ does not apply the hardware acceleration of the
graphics card. LLL took 67% of the total runtime in dimension 100. [7] mention
that sampling takes most of the time, but we were not able to reproduce that.

The speedup in sampling rates is much higher than the speedups in runtime.
So the potential of parallelization is visible, but SSR does not take full advantage
of it.

The SVP challenge comes with a generator for lattices, to allow participants
not only to download one lattice in each dimension but to generate multiple
instances. To present smoother graphs it is necessary to run our experiments on
multiple instances in each dimension.

In order to allow for good parallelization, we did not include new search spaces
as proposed in [7]. Ludwig and Buchmann present check search space size (CSSS)
functions in order to sample from smaller sets of vectors. It would be interesting
to compare how this influences the rate of parallelism and if usage of CSSS could
speed up CUDA-SSR even more.

Acknowledgements. Michael Schneider is supported by project BU 630/23-
1 of the German Research Foundation (DFG). This work was supported by
CASED (www.cased.de). We thank the anonymous reviewers for their
comments.

www.cased.de

172 M. Schneider and N. Göttert

References

1. Advanced Micro Devices. ATI CTM Guide. Technical report, ATI (2006)
2. Backes, W., Wetzel, S.: Parallel lattice basis reduction using a multi-threaded

schnorr-euchner LLL algorithm. In: Sips, H., Epema, D., Lin, H.-X. (eds.)
Euro-Par 2009. LNCS, vol. 5704, pp. 960–973. Springer, Heidelberg (2009)

3. Bernstein, D.J., Chen, T.-R., Cheng, C.-M., Lange, T., Yang, B.-Y.: ECM on
graphics cards. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 483–
501. Springer, Heidelberg (2009)

4. Bos, J.W., Stefan, D.: Performance analysis of the SHA-3 candidates on exotic
multi-core architectures. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 279–293. Springer, Heidelberg (2010)

5. Buchmann, J., Lindner, R.: Secure parameters for SWIFFT. In: Roy, B., Sendrier,
N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 1–17. Springer, Heidelberg
(2009)

6. Buchmann, J., Lindner, R., Rückert, M.: Explicit hard instances of the shortest
vector problem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299,
pp. 79–94. Springer, Heidelberg (2008)

7. Buchmann, J., Ludwig, C.: Practical lattice basis sampling reduction. In: Hess, F.,
Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 222–237. Springer,
Heidelberg (2006)

8. Cook, D.L., Ioannidis, J., Keromytis, A.D., Luck, J.: CryptoGraphics: Secret key
cryptography using graphics cards. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 334–350. Springer, Heidelberg (2005)

9. Dagdelen, Ö., Schneider, M.: Parallel enumeration of shortest lattice vectors. In:
D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272,
pp. 211–222. Springer, Heidelberg (2010)

10. Detrey, J., Hanrot, G., Pujol, X., Stehlé, D.: Accelerating lattice reduction with
FPGAs. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS,
vol. 6212, pp. 124–143. Springer, Heidelberg (2010)

11. Fleissner, S.: GPU-accelerated montgomery exponentiation. In: Shi, Y.,
van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487,
pp. 213–220. Springer, Heidelberg (2007)

12. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

13. Gama, N., Schneider, M.: SVP Challenge (2010),
http://www.latticechallenge.org/svp-challenge

14. Harrison, O., Waldron, J.: AES encryption implementation and analysis on com-
modity graphics processing units. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 209–226. Springer, Heidelberg (2007)

15. Hermans, J., Schneider, M., Buchmann, J., Vercauteren, F., Preneel, B.: Parallel
shortest lattice vector enumeration on graphics cards. In: Bernstein, D.J., Lange,
T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 52–68. Springer, Heidelberg
(2010)

16. Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with rational coeffi-
cients. Mathematische Annalen 4, 515–534 (1982)

17. Ludwig, C.: Practical Lattice Basis Sampling Reduction. PhD thesis, Technische
Universität Darmstadt (2005), http://elib.tu-darmstadt.de/diss/000640/

18. Manavski, S.A.: CUDA compatible GPU as an efficient hardware accelerator
for AES cryptography. In: ICSPC, pp. 65–68. IEEE Computer Society Press,
Los Alamitos (2007)

http://www.latticechallenge.org/svp-challenge
http://elib.tu-darmstadt.de/diss/000640/

Random Sampling for Short Lattice Vectors on Graphics Cards 173

19. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic
perspective. Kluwer Academic Publishers, Dordrecht (2002)

20. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J.A., Dahmen, E. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 147–191.
Springer, Heidelberg (2008)

21. Moss, A., Page, D., Smart, N.P.: Toward acceleration of RSA using 3D graph-
ics hardware. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS,
vol. 4887, pp. 364–383. Springer, Heidelberg (2007)

22. Nguyen, P.Q., Vallée, B.: The LLL Algorithm - Survey and Applications. Springer,
Heidelberg (2010)

23. NVIDIA. Compute Unified Device Architecture Programming Guide. Technical
report, NVIDIA (2007)

24. NVIDIA. CUBLAS Library (2007)
25. Schnorr, C.-P.: Block reduced lattice bases and successive minima. Combinatorics,

Probability & Computing 3, 507–522 (1994)
26. Schnorr, C.-P.: Lattice reduction by random sampling and birthday methods. In:

Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 146–156. Springer,
Heidelberg (2003)

27. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical Programming 66, 181–199 (1994)

28. Shoup, V.: Number theory library (NTL) for C++, http://www.shoup.net/ntl/
29. Szerwinski, R., Güneysu, T.: Exploiting the power of gPUs for asymmetric cryp-

tography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
79–99. Springer, Heidelberg (2008)

30. Villard, G.: Parallel lattice basis reduction. In: ISSAC, pp. 269–277. ACM,
New York (1992)

http://www.shoup.net/ntl/

174 M. Schneider and N. Göttert

A Flow Chart of Parallel Sampling in CUDA-SSR

Random Sampling for Short Lattice Vectors on Graphics Cards 175

Extreme Enumeration on GPU and in Clouds
- How Many Dollars You Need to Break SVP Challenges -

Po-Chun Kuo1, Michael Schneider2, Özgür Dagdelen3, Jan Reichelt3,
Johannes Buchmann2,3, Chen-Mou Cheng1, and Bo-Yin Yang4

1 National Taiwan University, Taipei, Taiwan
2 Technische Universität Darmstadt, Germany

3 Center for Advanced Security Research Darmstadt (CASED), Germany
4 Academia Sinica, Taipei, Taiwan

Abstract. The complexity of the Shortest Vector Problem (SVP) in
lattices is directly related to the security of NTRU and the provable
level of security of many recently proposed lattice-based cryptosystems.
We integrate several recent algorithmic improvements for solving SVP
and take first place at dimension 120 in the SVP Challenge Hall of Fame.
Our implementation allows us to find a short vector at dimension 114
using 8 NVIDIA video cards in less than two days.

Specifically, our improvements to the recent Extreme Pruning in enu-
meration approach, proposed by Gama et al. in Eurocrypt 2010, include:
(1) a more flexible bounding function in polynomial form; (2) code to
take advantage of Clouds of commodity PCs (via the MapReduce frame-
work); and (3) the use of NVIDIA’s Graphics Processing Units (GPUs).
We may now reasonably estimate the cost of a wide range of SVP in-
stances in U.S. dollars, as rent paid to cloud-computing service providers,
which is arguably a simpler and more practical measure of complexity.

Keywords: Shortest Vector Problem, GPU, Cloud Computing,
Enumeration, Extreme Pruning.

1 Introduction

Lattice-based cryptography is a hot topic, with numerous submissions and pub-
lications at prestigious conferences in the last two years. The reasons that it
might have become so popular include:

– lattice-based PKCs, unlike ECC, do not immediately succumb to large quan-
tum computers (i.e., they are “post-quantum”);

– lattice-based PKCs enjoy the (so far) unique property of being protected by
a worst-case hardness assumption (i.e., they are unbreakable if any of a large
class of lattice-based problem at a lower dimension is intractable);

– lattices can be used to create fully homomorphic encryptions.

One of the main problems in lattice-based cryptography is the shortest vector
problem (SVP). As the name implies, it is a search for a non-zero vector with

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 176–191, 2011.
c© International Association for Cryptologic Research 2011

Extreme Enumeration on GPU and in Clouds 177

the smallest Euclidean norm in a lattice. The SVP is NP-hard under randomized
reductions. The approximate shortest vector problem (ASVP) is the search for a
short non-zero vector whose length is at most some given multiple of the mini-
mum. It is easy in some cases, as shown by the LLL algorithm [LLL82]. Although
LLL has polynomial running time, the approximation factor of LLL is exponential
in the lattice dimension. The complexity of SVP (and ASVP) has been studied for
decades, but practical implementations that take advantage of special hardware
are not investigated seriously until recently [HSB+10, DS10, DHPS10].

In contrast, enumeration is another way to solve SVP and ASVP, which can
be viewed as a depth-first search in a tree structure, going over all vectors in a
specified search region deterministically. Typically, a basis transformation such
as BKZ [SE94] is performed first to improve the basis to one likely to yield a
short vector via enumeration.

At Eurocrypt 2010, Gama et al. proposed the Extreme Pruning approach to
solving SVP and ASVP [GNR10] and showed that it is possible to speed up
the enumeration exponentially by randomizing the algorithm. The idea is that,
instead of spending a lot of time searching one tree, one generates many trees
and only spends a small amount of time on each of them by aggressively pruning
the subtrees unlikely to yield short vectors using a bounding function. That is,
one focuses on the parts of the trees that are more “fruitful” in terms of the
likelihood of producing short vectors per unit time spent.

In other words, one should try to maximize the success probability of finding
a short vector per unit of computing time spent by choosing an appropriate
bounding function in pruning. Therefore, which bounding function works better
depends on the particular implementation.

In this paper, we make a practical contribution on several fronts.

1. We integrate the Extreme Pruning idea of Gama et al. [GNR10] into the
GPU implementation of [HSB+10].

2. We extend the implementation by using multiple GPUs and run it on Ama-
zon’s EC2 in order to harness the immense computational power of such
cloud services.

3. We extrapolate our average-case run times to estimate the run time of our
implementation for solving ASVP instances of the SVP Challenge in higher
dimensions.

4. Consequently, we set new records for the SVP challenge in dimensions 114,
116, and 120. The previous record was for dimension 112.

As a result, the average “cost” of solving ASVP (and breaking lattice-based
cryptosystems) with our implementation can henceforth be measured directly in
U.S. dollars, taking Lenstra’s dollarday metric [Len05] to a next level1. That is,
the cost will be shown literally as an amount on your invoice, e.g., the effort in
our solving a 120-dimensional instance of the SVP Challenge translates to a 2300
1 Before the final version went to press, it is brought to our attention that, unbe-

knownst to us, Kleinjung, Lenstra, Page, and Smart had also started to adopt a
similar metric in an ePrint report [KLPS11] dated May 2011.

178 P.-C. Kuo et al.

USD bill from Amazon. Moreover, this new metric is more practical in that the
parallelizability of the algorithm or the parallelization of the implementation is
explicitly taken into account, as opposed to being assumed or unspecified in the
dollarday metric. Needless to say, such a cost should be understood as an upper
bound obtained based on our implementation, which can certainly be improved,
e.g., by using a better bounding function or better programming.

2 Preliminaries

2.1 Lattices, Algorithms, and SVP

Let m, n ∈ Z with n ≤ m, and let bi ∈ Zm for 1 ≤ i ≤ n be a set of linearly
independent vectors. The set of all integer linear combinations of the vectors bi is
called a lattice Λ: Λ = {∑n

i=1 xibi | xi ∈ Z} . The matrix B ∈ Zm×n consisting
of the column vectors bi is called a basis of Λ, we write Λ = Λ(B). Λ is an
additive group in Zm. If n = m the lattice is called full-dimensional. The basis
of a lattice is not unique. The product of a basis with an unimodular matrix
M (|det(M)| = 1) does not change the lattice. The value λ1(Λ(B)) denotes the
norm of a shortest non-zero vector in the lattice. It is called the first minimum.
The determinant of a lattice is the value det(Λ(B)) =

√
det(BtB). If Λ(B) is

full-dimensional, then the lattice determinant is equal to the absolute value of the
determinant of the basis matrix (det(Λ(B)) = |det(B)|). In the remainder of this
paper, we will only be concerned with full-dimensional lattices. The determinant
of a lattice is independent of the basis; if the basis changes, the determinant
remains the same.

The shortest vector problem in lattices is stated as follows. Given a lattice
basis B, output a vector v ∈ Λ(B) \ {0} subject to ‖v‖ = λ1(Λ(B)). The
problem that we address in the remainder of this paper is the following: given a
lattice basis B and a norm bound A, find a non-zero vector v ∈ Λ(B) subject
to ‖v‖ ≤ A.

The Gaussian heuristic assumes that the number of lattice points inside a set
S is approximately vol(S)/ det(Λ). Using this heuristic and the volume of a unit
sphere in dimension n, we can compute an approximation of the first minimum
of the lattice Λ: FM(Λ) = Γ (n/2+1)1/n

√
π

· det(Λ)1/n . Here Γ (x) is the gamma-
function. This estimate is used, among others, to predict the length of shortest
vectors in the SVP challenge [GS10]. In our experiments as well as in the SVP
challenge the heuristic shows to be a good estimate of a shortest vector length
for the lattices used. Throughout the rest of this paper, our goal will always be
to find a vector below 1.05 · FM(Λ), the same as in the SVP challenge.

The Gram-Schmidt orthogonalization (GSO) of a matrix B ∈ Zn×n is B∗ =
[b∗

1, . . . ,b
∗
n] ∈ Rn×n. It is computed via b∗

i = bi −
∑i−1

j=1 μi,jb∗
j for i = 1, . . . , n,

where μi,j = bT
i b∗

j/
∥
∥b∗

j

∥
∥2 for all 1 ≤ j ≤ i ≤ n. We have B = B∗ μT ,

where B∗ is orthogonal and μT is an upper triangular matrix. Note that B∗

is not necessarily a lattice basis. The values μ are called the Gram-Schmidt
coefficients.

Extreme Enumeration on GPU and in Clouds 179

The LLL [LLL82] and the BKZ [SE94] algorithms can be used for pre-reduction
of lattices, before running an SVP algorithm. Pre-reduction speeds up the enu-
meration, since the size of the enumeration tree is depending on the quality of
the input basis. BKZ is controlled by a blocksize parameter β, and LLL is the
special case of BKZ with parameter β = 2. Higher blocksize guarantees a better
reduction quality, in the sense that vectors in the basis are shorter and the an-
gles between basis vectors are closer to orthogonal. The gain in reduction quality
comes at the cost of increasing runtime. The runtime of BKZ increases exponen-
tially with the blocksize β. In the lattice dimension, the runtime of BKZ behaves
polynomial in practice, whereas no proof of this runtime is known. The overall
runtime of our SVP solver will include the BKZ pre-reduction run times as well
as enumeration run times. It is an important issue to find suitable blocksize
parameters for pre-reduction.

Algorithms for SVP. There are mainly three different approaches how to
solve the shortest vector problem. First, there are probabilistic sieving algorithms
[AKS01, NV08, MV10b]. They output a solution to SVP with high probability
only, but allow for single exponential runtime. The most promising sieving candi-
date in practice at this time is the GaussSieve algorithm [MV10b]. Further, there
exists an algorithm based on Voronoi cell computation [MV10a]. This is the first
deterministic SVP algorithm running in single exponential time, but experimen-
tal results lack so far. Third, there is the group of enumeration algorithms that
perform an exhaustive search over all lattice points in a suitable search region.
Based on the algorithms by Kannan [Kan83] and Fincke/Pohst [FP83], Schnorr
and Euchner presented the ENUM algorithm [SE94]. It was analyzed in more
details in [PS08]. The latest improvement called extreme pruning providing for
huge exponential speedups, was shown by Gama, Nguyen, and Regev [GNR10].
In the remainder of this paper, we will only be concerned with extreme pruned
enumeration, since this variant of enumeration is the strongest SVP solver at
this time.

Ideas for parallel enumeration for shortest vectors were presented in [HSB+10]
for GPUs, in [DS10] for multicore CPUs, and in [DHPS10] for FPGAs. Concern-
ing extreme pruning, there is no parallel version known to us to date, even no
serial implementation is publicly available.

The lattices that we use for our tests throughout this paper are those of the
SVP challenge [GS10]. They follow the ideas of the lattices from [GM03], and are
used for testing SVP and lattice reduction algorithms, e.g., in [GN08, HSB+10].

2.2 Enumeration and Extreme Pruning

Here we will present the basic idea of enumeration for shortest vectors. n de-
notes the dimension of the full-dimensional lattices. To find a shortest non-zero
vector of a lattice Λ(B) with B = [b1, . . . ,bn], ENUM takes as input the Gram-
Schmidt coefficients (μi,j)1≤j≤i≤n, the quadratic norm of the Gram-Schmidt
orthogonalization ‖b∗

1‖2 , . . . , ‖b∗
n‖2 of B, and an initial search bound A.

The search space is the set of all coefficient vectors u ∈ Zn that satisfy
‖∑n

t=1 utbt‖ ≤ A. Starting with an LLL-reduced basis, it is common to set

180 P.-C. Kuo et al.

A = ‖b∗
1‖2 in the beginning. If the norm of the shortest vector is known before-

hand, it is possible to start with a lower A, which limits the search space and
reduces the runtime of the algorithm. In the equation

∥
∥
∥
∥
∥

n∑

t=1

utbt

∥
∥
∥
∥
∥

= min
x∈Zn

∥
∥
∥
∥
∥

n∑

t=1

xtbt

∥
∥
∥
∥
∥

we replace all bt by their orthogonalization, i.e., bt = b∗
t +

∑t−1
j=1 μt,jb∗

j and get

∥
∥
∥
∥
∥

n∑

t=1

utbt

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥

n∑

t=1

(
ut(b∗

t +
t−1∑

j=1

μt,jb∗
j)
)
∥
∥
∥
∥
∥
∥

2

=
n∑

t=1

(ut +
n∑

i=t+1

μi,tui)2 ‖b∗
t ‖2 .

For index k, enumeration is supposed to check all coefficient vectors u with

n∑

t=n+1−k

(ut +
n∑

i=t+1

μi,tui)2 · ‖b∗
t ‖2 < A , 1 ≤ k ≤ n . (1)

For index t, the summand is independent of values with lower index < t. This
means that changing the coefficient u for lower indices < t does not affect the
upper part of the sum with index ≥ t. Therefore, the indices are arranged in
a tree structure, where the root node contains values for coefficient un, inter-
mediate nodes contain partly filled coefficient vectors (×, ut, . . . , un), and leaf
nodes contain full linear combinations (u1 . . . un). Here the symbol × denotes
that the first values of the coefficient vector are not set. Since the ‖b∗i ‖ are or-
thogonal, the sum can only increase when we step a layer down in the tree, the
sum will never decrease. Therefore, when an inner node of the tree has extended
the search norm A, we can cut off the whole subtree rooted at this node and
skip enumerating the subtree.

Schnorr and Hörner already presented an idea to prune some of the subtrees
that are unlikely to contain a shorter vector [SH95]. Their pruned enumeration
runs deterministically with a certain probability to miss a shortest vector. The
[SH95] pruning idea was analyzed and improved in [GNR10]2. Instead of using
the same norm bound A on every layer of the enumeration tree (Equation (1)),
Gama et al. introduce a bounding vector (R1, . . . , Rn) ∈ [0, 1]n, with R1 ≤ . . . ≤
Rn. A on the right side of the testing condition (1) is replaced by Rk ·A. It can
be shown that, assuming various heuristics [GNR10], the lattice vectors cut off
by this approach only contain a shortest vector with low probability.

With this pruning technique, an exponential speedup compared to
deterministic enumeration can be gained. In the original paper, various bound-
ing function vectors were presented in theory. For the experiments, the authors
use a numerically optimized function.

2 The authors of [GNR10] also showed some flaws in the analysis of [SH95].

Extreme Enumeration on GPU and in Clouds 181

2.3 Cloud Computing, Amazon EC2, and GPU

Cloud computing is an emerging computing paradigm that allows data centers
to provide large-scale computational and data-processing power to the users on a
“pay-as-you-go” basis. Amazon Web Services (AWS) is one of the earliest and ma-
jor cloud-computing providers, who provides, as the name suggests, web services
platforms in the cloud. The Elastic Compute Cloud (EC2) provides compute
capacity in the cloud as a foundation for the other products that AWS provides.
With EC2, the users can rent large-scale computational power on demand in
the form of “instances” of virtual machines of various sizes, which is charged on
an hourly basis. The users can also use popular parallel computing paradigms
such as the MapReduce framework [DG04], which is readily available as the
AWS product “Elastic MapReduce.” Furthermore, such a centralized approach
also frees the users from the burden of provisioning, acquiring, deploying, and
maintaining their own physical compute facilities.

Naturally, such a paradigm is economically very attractive for most users,
who only need large-scale compute capacity occasionally. For large-scale compu-
tations, it may be advisable to buy machines instead of renting them because
Amazon presumably expects to make a profit on renting out equipment, so our
extrapolation might over-estimate the cost for long-term computations. How-
ever, we believe that these cloud-computing service providers will become more
efficient in the years to come if cloud computing indeed becomes the main-
stream paradigm of computing. Moreover, trade rumors has it that Amazon’s
profit margins are around 0% (break-even) as of mid-2011, and nowhere close
to 100%, so we can say confidently that Amazon rent cannot be more than 2×
what a large-scale user would have spent if he bought and maintained his own
computers and networking. Thus, Amazon prices can still be considered a realis-
tic measure of computing cost and a good yardstick for determining the strength
of cryptographic keys.

In estimating complexity such that of solving (A)SVP or problems of the same
or similar nature, Amazon EC2 can be used to provide a common measure of
cost as a metric in comparing alternative or competing cryptanalysis algorithms
and their implementations. Moreover, when using the Amazon EC2 metric, the
parallelizability of the algorithm or the parallelization of the implementation is
explicitly taken into account, as opposed to being assumed or unspecified. In
addition to its simplicity, we argue that the EC2 metric is more practical than
the dollardays metric of [Len05], and a recent report by Kleinjung, Lenstra,
Page, and Smart [KLPS11] also agrees with us in taking a similar approach and
measure with Amazon’s EC2 cloud.

Graphics processing units (GPUs) represent another class of many-core ar-
chitectures that are cost-effective for achieving high arithmetic throughput. The
success of GPU has mainly been driven by the economy of scale in the video
game industry. Currently, the most widely used GPU development toolchain is
NVIDIA’s CUDA (Compute Unified Device Architecture) [KH10]. At the core of
CUDA are three key abstractions, namely, a hierarchy of thread groups, shared
memories, and barrier synchronization, that are exposed to the programmers as

182 P.-C. Kuo et al.

a set of extensions to the C programming language. At the system level, the
GPU is used as a coprocessor to the host processor for massively data-parallel
computations, each of which is executed by a grid of GPU threads that must
run the same program (the kernel). This is the SPMD (single program, multiple
data) programming model, similar to SIMD but with more flexibility such as
in changing of data size on a per-kernel-launch basis, as well as deviation from
SIMD to MIMD at a performance penalty.

AWS offers several different compute instances for their customers to choose
based on their computational needs. The one that interests us the most is the
largest instance called “Cluster Compute Quadruple Extra Large” (cc1.4xlarge)
which is designed for high-performance computing. Each such instance consists
of 23 GB memory provide 33.5 “EC2 Compute Units” where each unit roughly
“provides the equivalent CPU capacity of a 1.0–1.2 GHz 2007 Opteron or 2007
Xeon processor,” according to Amazon.

Starting from late 2009, AWS also adds to its inventory a set of instances
equipped with GPUs, which is called “Cluster GPU Quadruple Extra Large”
(cg1.4xlarge), which is basically a cc1.4xlarge plus two NVIDIA Tesla “Fermi”
M2050 GPUs. As of the time of writing, the prices for renting the above compute
resources are shown in Table 1. The computation time is always rounded up to
the next full hour for pricing purposes.

Table 1. Pricing information from http://aws.amazon.com/ec2/pricing/

Elastic Compute Cloud 1 Year Reserved Pricing Elastic MapReduce
cc1.4xlarge 1.60 USD/hour 4290 USD + 0.56 USD/hour 0.33 USD/hour
cg1.4xlarge 2.10 USD/hour 5630 USD + 0.74 USD/hour 0.42 USD/hour

For computations lasting less than 172 days it is cheaper to use on-demand
pricing. For longer runs, there is an option to “reserve” an instance for 1 year
(or even 3), which means that the user pays an up-front cost (see table above)
to cut the on-demand cost of these instances.

3 Implementation

For each randomized basis, we use LLL-XD followed by BKZ-FP of the NTL
Library [Sho] with δ = 0.99, different blocksizes β, and pruning parameter p =
15. As already mentioned above, the problem we address is finding a vector below
a search bound 1.05·FM that heuristically guesses the length of a shortest vector
of the input lattice. Adapting our implementations to other goal values is straight
forward. It will only change the success probability and the runtime, therefore,
we have to fix the bound for this work.

3.1 Bounding Function

As mentioned above, selecting a suitable bounding function is an important part
of extreme enumeration. It influences the runtime as well as the success proba-
bility of each enumeration tree. The bounding function we use is a polynomial

Extreme Enumeration on GPU and in Clouds 183

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

fitting polynomial
linear pruning

Fig. 1. Polynomial bounding function
p(x), scaled to lattice dimension 90. The
dashed line shows a linear bounding func-
tion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

P
ro

ba
bi

lit
y

t

Success Probability P(t)

Fig. 2. Success probability of Extreme
Enum assuming a success probability
psucc = 10% for one single tree. On av-
erage, we have to start 44 trees to finish
with success probability > 99%

p(x) of degree eight that aims to fit the best bounding function of [GNR10] in
dimension 110. We use

p(x) =
8∑

i=0

vix
i

where v = (9.1 · 10−4, 4 · 10−2,−4 · 10−3, 2.3 · 10−4,−6.9 · 10−6, 1.21 · 10−7,−1.2 ·
10−9, 6.2 · 10−12,−1.29 · 10−14) to fit the 110-dimensional bounding function.
For dimension n we use p(x · 110/n). Figure 1 shows our polynomial bounding
function p(x), scaled to dimension 90.

Using an MPI-implementation for CPU we gained a success probability of
finding a vector below 1.05 · FM(Λ) of psucc > 10%. We use 10 lattice bases
in each dimension and run BKZ and enumeration on up to 1000 randomized
instances for each basis. We stop each lattice after 5 hours of computation,
so that the total time is still manageable. In dimensions 96 we increase the
maximum time from 5 to 20 hours. In total, we have up to 1000 trees in each
dimension to compute the success probability of our bounding function. For
a comparable bounding function, the authors of [GNR10] get a much smaller
success probability. This is due to the fact that in our case we expect about 1.05n

many vectors below the larger search bound, whereas the analysis of Gama et al.
assumes that only a single vector exists below their bound.

Figure 9 in Appendix A shows the expectation values of the success of BKZ
and ENUM. More exactly, it shows the expectation value E(X) of P (X ≤ t),
which gives a success probability of p = 1/E(X). For higher dimensions m >
90 the success probability of BKZ tends to zero in every tested case. P (t) =
1 − (1 − psucc)t is the success probability to find a shortest vector below 1.05 ·
FM(Λ) when starting t enumeration trees in parallel. Figure 2 shows the success
probability P for psucc = 10%. This implies that on average we have to start 44

184 P.-C. Kuo et al.

Fig. 3. The model of our parallel SVP solver. The basis B is randomized, and each
instance is solved either on CPU or on GPU. In the end, the shortest of all found
vectors is chosen as output. Since we use pruned enumeration, not all instances will
find a vector below the given bound.

Work1Work0 Work2 Workm

xn

xn-1

xα

x2

x1

..
.

..
.

.
.
.

.
.
.

.
.
.

...

...

...

Fig. 4. Illustration of the parallel enumeration process. The top tree xn, xn−1, ..., xα is
enumerated on a single core, and the lower trees xα−1, ..., x2, x1 are explored in parallel
on many mappers.

trees to find a vector below the given bound with probability P (t) > 99% (and
not 1/psucc many trees, as one could imagine).

3.2 Parallelization of Extreme Pruning Using GPU and Clouds

Our overall parallelization strategy follows the model shown in Figure 3. For
success, it is sufficient if one randomized instance of ENUM finishes. The number
of instances we start depends on the success probability of each instance, which
itself is depending on the bounding function used. The high-level algorithm run
by each multicore-Enum or GPU-Enum instance is illustrated in Figure 4.

For the calculation of the cost, it makes no difference if we use 8 cores for
a multicore-tree or only one core. In practice, however, we can stop the whole
computation if one of the trees has found a vector below the bound. Therefore,
using multiple cores for enumeration may have some influence on the running
time.

Extreme Enumeration on GPU and in Clouds 185

Fig. 5. Illustration of our MapReduce implementation of the enumeration algorithm

GPU Implementation. We used the implementation of [HSB+10] and in-
cluded pruning according to [GNR10]. The GPU enumeration uses enumera-
tion on top of the tree, which is performed on CPU, to collect a huge num-
ber of starting points, as shown in Figure 4. These starting points are vectors
(×, . . . ,×, xn−α+1, . . . , xn), where only the last α coefficients are set. A starting
point can be seen as the root of a subtree in the enumeration tree. All starting
points are copied to the GPU and enumerated in parallel. Due to load balancing
reasons, this approach is done iteratively, until no more start points exist on top
of the tree (see [HSB+10] for more details).

Since the code of extreme pruning only changes a few lines compared to
usual enumeration, including pruning to the GPU implementation is straight
forward. The improvement mentioned in [GNR10] concerning storage of inter-
mediate sums was in parts already contained in the [HSB+10] implementation,
so only slight changes were integrated into the GPU ENUM.

The GPU implementation allows the usage of different bounding functions,
but for simplicity reasons we stick to the polynomial function specified above.
Our implementation is available online3.

MapReduce Implementation. Our MapReduce implementation is also based
on [HSB+10]. The overall search process is illustrated in Figure 5. Specifically, we
divide the search tree to top and lower trees. A top tree, which consists of levels
xn through xα, is enumerated by a single thread in a DFS fashion, outputting all
possible starting points (xα, . . . , xn) to a WorkList. When a mapper receives a
starting point (xα, . . . , xn) from the WorkList, it first populates the unspecified
coordinates x1, . . . , xα−1 and obtains the full starting point

(x1 = �−
n∑

k=2

μk,1, xk�, . . . , xα−1 = �−
n∑

k=α

μk,α−1, xk�, xα, ..., xn).

It then starts enumerating the lower tree from level 1 through α− 1.
Because we scan the coefficients in a zigzag path, the lengths of the starting

points usually show an increasing trend from the first to the last starting point.
This can result uneven work distribution among the mappers. Therefore, we
3 http://homes.esat.kuleuven.be/~jhermans/gpuenum/index.html

http://homes.esat.kuleuven.be/~jhermans/gpuenum/index.html

186 P.-C. Kuo et al.

subdivide and randomly shuffle the WorkList so that each mapper gets many
random starting points and hence have roughly equal amount of work among
themselves. The effect is evident from the fact that the load-balancing factor,
i.e., average running time divided by that of the slowest mapper, increases from
24% to 90%.

4 Experimental Results

In this section, we present the experimental results for our algorithmic improve-
ments and parallel implementations on GPU and with MapReduce.

4.1 GPU Implementation

The GPU enumeration using extreme pruning solved the 114-dimensional SVP-
challenge in about 40 hours using one single workstation with eight NVIDIA
GeForce GTX 480 cards in parallel. Each GTX 480 has one GPU with 480
cores running at 1.4 GHz. The performance decreases from 200 Msteps/s to
≈ 100 Msteps/s using polynomial bounding function compared with an instance
without pruning. With linear pruning, the decrease is less noticeable, but still
apparent. This decrease is caused by the fact that subtrees are much thinner
when pruning the tree. The number of starting points per second increases a
lot, which coincides with the fact that subtrees, even though their dimension is
much bigger now, are processed faster than without pruning.

We use 10 different lattices of the SVP challenge in each dimension 80–104
on the workstation equipped with eight GTX 480 cards to generate the timings
of Figures 6 and 7.

Workload Distribution between BKZ and ENUM. We note that in general, if we
spend more time in BKZ to produce a better basis, we would have a higher prob-
ability of finding a short vector in the subsequent ENUM phase. A natural ques-
tion is, what is the optimal breakdown of workload between BKZ and ENUM?

 10

 100

 1000

 10000

 100000

 80 85 90 95 100 105

T
im

e
[s

]

Dimension n

BKZ 30 Pruning 15
BKZ 35 Pruning 15
BKZ 45 Pruning 15
BKZ 55 Pruning 15

Fig. 6. Total running time for solving
SVP instances from dimension 80 to 104

Fig. 7. Running time for one round of
pruned ENUM, including fitting curves
t30(n) to t55(n)

Extreme Enumeration on GPU and in Clouds 187

Fig. 8. Ratio of BKZ runtime to total runtime for a single enumeration tree

We conjecture that the distribution should be roughly equal, as is supported by
empirical evidence that we obtained from our experiments (cf. Figure 8). In our
experiments, BKZ 40 performs the best in 104-dimensional instances, whereas in
Figure 8, it has a ratio that is the closest to 0.5. Similar trends can be observed
for dimensions 86–97, for which the best BKZ block size is 30.

We use the data shown in Figure 8 to assess which of the curves from Figure 7
is the fastest one, and we use the extrapolation of this curve gained from data
in dimension 80–104. This results in the cost function shown in Conjecture 1.

Conjecture 1 (GPU timing function). Running BKZ and our implementa-
tion of pruned enumeration once on an NVIDIA GTX-480 GPU takes time

timeGPU (n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t30(n) = 20.0138n2−2.2n+93.2 for n ≤ 97
t35(n) = 20.0064n2−0.92n+38.4 for 98 ≤ n ≤ 104
t45(n) = 20.001n2+0.034n−2.8 for 105 ≤ n ≤ 111
t55(n) = 20.00059n2+0.11n−5.8 for 112 ≤ n

sec .

A more theoretic way to extrapolate the runtime would be to compute BKZ
reduced bases, note the slope of the orthogonalized basis vectors, and use the
runtime function of [GNR10] to compute the runtime. This approach ignores
the runtime of BKZ (which is up to 50%) of the total runtime and relies on the
Gaussian heuristic, while we are interested in practical runtime.

From the regression results shown in Figures 6 and 7, we can see that the
run times for BKZ and ENUM are indeed polynomial and super-exponential,
respectively. However, we notice that a larger BKZ block size does have a positive
effect on the per-round running time of subsequent ENUM.

One difference is that Amazon uses M2050 GPU, not GTX480 (like in our
experiments). The M2050 has better double precision performance. Since many
operations in enumeration are performed using double precision operations, we
expected a huge speed-up for enumeration. However, tests on M2050 GPUs did
not show large speed-ups. One possible explanation is as follows. On the GPU,
many additional operations have to be performed in integer-precision in order

188 P.-C. Kuo et al.

to split the work and reach a good load balancing. Therefore, double-precision
operations are less than a fourth of the total number of operations, which makes
the speed-ups on M2050 GPUs minor.

4.2 MapReduce Implementation

Our MapReduce implementation is compiled by g++ version 4.4.4 x86_64 with
the options -O9 -ffast-math -funroll-loops -ftree-vectorize. Using the
MapReduce implementation, we are able to solve the 112-dimensional SVP-
challenge in a few days. More exactly, we were using 10 nodes, 84 physical cores
(totaling 140 virtual cores as some of the cores are hyperthreaded), which gives
a total number of 334 GHz.

We note that the bounding function used in this computation is different from
the polynomial bounding function described earlier. We were lucky in that only
after 101 hours, or 1/9 of the estimated time, a shorter vector was found. We
also noticed that the runtime scales linearly with the number of CPU cores used
in total, meaning if we increase the number of CPU cores by a factor of 10, the
runtime will decrease by factor 10.

Overall, from the test data of solving SVPs at dimension 100, 102, and 104
using the same set of seeds, we found that a GTX480 is roughly two to three
times faster than a four-core, 2.4 GHz Intel Core i7 processor for running our SVP
solvers. We conjecture that the running time for our MapReduce implementation
is also similar to that of our GPU implementation, as shown in Conjecture 1.

4.3 Final Pricing

We use Conjecture 1 to derive the final cost function for solving SVP challenges
in higher dimensions n ≥ 112. Recall that Amazon instances have to be paid
for complete hours, therefore we round the runtime in hours to the next highest
integer value. Using 44 enumeration trees leads to a success probability of at
least 99%.

Conjecture 2 (Final Pricing). Solving an SVP challenge with our implemen-
tation in dimension n ≥ 112 with a success probability of ≥ 99% on Amazon EC2
(using on demand pricing) costs

costGPU (n) = �timeGPU(n)/3600� · 44 · 2.52 USD .

Following Conjecture 2 solving the 120-dimensional instance of the challenge
costs 1, 885 USD, which is a bit less than the amount we paid for practically
solving it (due to conservative reservation of compute resources on EC2). We
actually fired up 50 cg1.4xlarge instances for a total of 946 instance-hours, and
incurred a bill of 2, 300 USD. For instance, solving the 140-dimensional challenge
would cost roughly 72, 405 USD.

5 Concluding Remarks and Further Work

Cryptographic Key Sizes. The ability of solving SVP does not directly affect
cryptographic schemes based on lattice problems. The hardness of lattice-based

Extreme Enumeration on GPU and in Clouds 189

signature schemes is mostly based on the SIS problem, whereas the hardness of
encryption schemes is mostly based on the LWE problem. Both the SIS and the
LWE problem can be proven to be as hard as the SVP in lattices of a smaller
dimension (so-called worst-case to average-case reduction). That means that a
successful attacker of a cryptographic system is able to solve SVP in all lattices
of a smaller dimension. This implies that our cost estimates for SVP can be used
to assess the hardness of the basic problem of cryptosystems only.

Real attacks on cryptosystems mostly apply approximation algorithms, like
BKZ. Since enumeration can be used as a subroutine there, speeding up enu-
meration also affects direct attacks on lattice based cryptosystems.

Further Work. For GPUs the need of finding new bounding functions seems
apparent. Since trees are very thin when our polynomial bounding is applied
the performance of the GPU decreases. Finding a new bounding function that
allows for the same success probability but guarantees better performance will
show the strength of the GPU even more. Besides that, it is an open problem
which bounding function gives the best performance in practice, be it on CPU
or GPU.

Acknowledgements. Schneider is supported by project BU 630/23-1 of the
German Research Foundation (DFG). Dagdelen was supported by CASED
(www.cased.de). Cheng, Kuo and Yang are supported by National Science Coun-
cil, National Taiwan University and Intel Corporation under Grants NSC99-
2911-I-002-201, 99R70600, and 10R70500, and Yang also by Academia Sinica
Career Award. We thank Paul Baecher and Pierre-Louis Cayrel for their com-
ments on an earlier version of this paper, Phong Nguyen and Oded Regev for
their hints regarding the success probability of the bounding function, Pierre-
Alain Fouque for his advice, and the anonymous reviewers for their helpful
comments.

References

[AKS01] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the short-
est lattice vector problem. In: STOC 2001, pp. 601–610. ACM, New York
(2001)

[DG04] Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large
clusters. In: OSDI 2004: Sixth Symposium on Operating System Design
and Implementation, San Francisco, CA, USA (December 2004)

[DHPS10] Detrey, J., Hanrot, G., Pujol, X., Stehlé, D.: Accelerating Lattice Reduction
with FPGAs. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT
2010. LNCS, vol. 6212, pp. 124–143. Springer, Heidelberg (2010)

[DS10] Dagdelen, Ö., Schneider, M.: Parallel Enumeration of Shortest Lattice Vec-
tors. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010.
LNCS, vol. 6272, pp. 211–222. Springer, Heidelberg (2010)

[FP83] Fincke, U., Pohst, M.: Michael Pohst. A procedure for determining alge-
braic integers of given norm. In: van Hulzen, J.A. (ed.) ISSAC 1983 and
EUROCAL 1983. LNCS, vol. 162, pp. 194–202. Springer, Heidelberg (1983)

www.cased.de

190 P.-C. Kuo et al.

[GM03] Goldstein, D., Mayer, A.: On the equidistribution of Hecke points. Forum
Mathematicum 15(2), 165–189 (2003)

[GN08] Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg
(2008)

[GNR10] Gama, N., Nguyen, P.Q., Regev, O.: Lattice Enumeration Using Extreme
Pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
257–278. Springer, Heidelberg (2010)

[GS10] Gama, N., Schneider, M.: SVP Challenge (2010),
http://www.latticechallenge.org/svp-challenge

[HSB+10] Hermans, J., Schneider, M., Buchmann, J., Vercauteren, F., Preneel, B.:
Parallel Shortest Lattice Vector Enumeration on Graphics Cards. In: Bern-
stein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp.
52–68. Springer, Heidelberg (2010)

[Kan83] Kannan, R.: Improved algorithms for integer programming and related
lattice problems. In: STOC 1983, pp. 193–206. ACM, New York (1983)

[KH10] Kirk, D.B., Hwu, W.-m.: Programming Massively Parallel Processors: A
Hands-on Approach, 1st edn. Morgan Kaufmann, San Francisco (2010)

[KLPS11] Kleinjung, T., Lenstra, A.K., Page, D., Smart, N.P.: Using the cloud to de-
termine key strengths. Cryptology ePrint Archive, Report 2011/254 (2011),
http://eprint.iacr.org/

[Len05] Lenstra, A.: Key lengths. In: Bidgoli, H. (ed.) Handbook of Information
Security. Wiley, Chichester (2005)

[LLL82] Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 4, 515–534 (1982)

[MV10a] Micciancio, D., Voulgaris, P.: A deterministic single exponential time al-
gorithm for most lattice problems based on voronoi cell computations. In:
STOC, pp. 351–358. ACM, New York (2010)

[MV10b] Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the
shortest vector problem. In: SODA 2010, pp. 1468–1480. ACM/SIAM
(2010)

[NV08] Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem
are practical. J. of Mathematical Cryptology 2(2) (2008)

[PS08] Pujol, X., Stehlé, D.: Rigorous and Efficient Short Lattice Vectors Enu-
meration. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
390–405. Springer, Heidelberg (2008)

[SE94] Schnorr, C.-P., Euchner, M.: Lattice basis reduction: Improved practical al-
gorithms and solving subset sum problems. Mathematical Programming 66,
181–199 (1994)

[SH95] Schnorr, C.-P., Hörner, H.H.: Attacking the chor-rivest cryptosystem by
improved lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EU-
ROCRYPT 1995. LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995)

[Sho] Shoup, V.: Number theory library (NTL) for C++, version 5.5.2,
http://www.shoup.net/ntl/

A Success Probability Using p(x)

We ran experiments using the SVP challenge lattices, in order to assess the
practical success probability (the probability of a single ENUM run to find a

http://www.latticechallenge.org/svp-challenge
http://eprint.iacr.org/
http://www.shoup.net/ntl/

Extreme Enumeration on GPU and in Clouds 191

short vector) of extreme pruning using the polynomial bounding function p(x).
Using a multicore CPU implementation we started extreme pruning on up to
10, 000 lattices in each dimension (we stopped each experiment after 20 hours
of computation). Figure 9 shows the average success rate of BKZ (with pruning
parameter 15) and ENUM in dimensions 80 to 96 for different BKZ blocksizes.
The values shown are the number of successfully reduced lattices divided by the
number of started lattices in each dimension.

With BKZ blocksize 20, the pre-reduction was not strong enough, so neither
BKZ nor ENUM could find a vector below the search bound in dimensions ≥ 96
within 20 hours. In dimension 100, the number of finished enumeration trees was
already too small to derive a meaningful success rate.

The success rate of BKZ vanishes in higher dimensions. For each BKZ block-
size, the success rate of ENUM stabilizes at a value > 10%. Since the success rate
is higher than this value in almost every case, we assume a value of psucc = 10%
for our polynomial bounding function p(x).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 80 85 90 95 100

P
ro

ba
bi

lit
y

Dimension m

BKZ/total
ENUM/total

(BKZ+ENUM)/total
ENUM/(total-BKZ)

(a) BKZ-20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 80 85 90 95 100

P
ro

ba
bi

lit
y

Dimension m

BKZ/total
ENUM/total

(BKZ+ENUM)/total
ENUM/(total-BKZ)

(b) BKZ-30

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 80 85 90 95 100

P
ro

ba
bi

lit
y

Dimension m

BKZ/total
ENUM/total

(BKZ+ENUM)/total
ENUM/(total-BKZ)

(c) BKZ-40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 80 85 90 95 100

P
ro

ba
bi

lit
y

Dimension m

BKZ/total
ENUM/total

(BKZ+ENUM)/total
ENUM/(total-BKZ)

(d) BKZ-50

Fig. 9. Average values of success of the polynomial bounding function. total = number
of samples; BKZ = number of samples solved by BKZ; ENUM = number of samples
solved by pruned enumeration.

Modulus Fault Attacks

against RSA-CRT Signatures

Éric Brier1, David Naccache2, Phong Q. Nguyen2, and Mehdi Tibouchi2

1 Ingenico
1, rue Claude Chappe, bp 346, f-07503 Guilherand-Granges, France

eric.brier@ingenico.com
2 École normale supérieure

Département d’informatique, Groupe de Cryptographie
45, rue d’Ulm, f-75230 Paris Cedex 05, France

{david.naccache,phong.nguyen,mehdi.tibouchi}@ens.fr

Abstract. RSA-CRT fault attacks have been an active research area
since their discovery by Boneh, DeMillo and Lipton in 1997. We present
alternative key-recovery attacks on RSA-CRT signatures: instead of tar-
geting one of the sub-exponentiations in RSA-CRT, we inject faults into
the public modulus before CRT interpolation, which makes a number of
countermeasures against Boneh et al.’s attack ineffective.

Our attacks are based on orthogonal lattice techniques and are very
efficient in practice: depending on the fault model, between 5 to 45 faults
suffice to recover the RSA factorization within a few seconds. Our sim-
plest attack requires that the adversary knows the faulty moduli, but
more sophisticated variants work even if the moduli are unknown, un-
der reasonable fault models. All our attacks have been fully validated
experimentally with fault-injection laser techniques.

Keywords: Fault Attacks, Digital Signatures, RSA, CRT, Lattices.

1 Introduction

1.1 RSA-CRT Signatures

RSA [23] is the most widely used signature scheme. To sign a message m, the
signer first applies an encoding function μ to m, and then computes the signature
σ = μ(m)d mod N . To verify the signature σ, the receiver checks that σe = μ(m)
mod N. The Chinese Remainder Theorem (CRT) is often used to speed up
signature generation by a factor of about 4. This is done by computing:

σp = μ(m)d mod p−1 mod p and σq = μ(m)d mod q−1 mod q

and deriving σ from (σp, σq) using the CRT.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 192–206, 2011.
c© International Association for Cryptologic Research 2011

Modulus Fault Attacks against RSA-CRT Signatures 193

1.2 Fault Attacks on RSA-CRT Signatures

Back in 1997, Boneh, DeMillo and Lipton [6] showed that RSA-CRT implemen-
tations are vulnerable to fault attacks. Assuming that the attacker can induce
a fault when σq is computed while keeping the computation of σp correct, one
gets:

σp = μ(m)d mod p−1 mod p and σq �= μ(m)d mod q−1 mod q

hence:
σe = μ(m) mod p and σe �= μ(m) mod q

which allows the attacker to factor N by computing gcd(σe−μ(m) mod N, N) =
p. This attack applies to any deterministic padding function μ, such as RSA
PKCS#1 v1.5 or Full-Domain Hash [2], or probabilistic signatures where the
randomizer used to generate the signature is sent along with the signature, such
as PFDH [13]. Only probabilistic signature schemes such that the randomness
remains unknown to the attacker may be safe, though some particular cases have
been attacked as well [12].

In 2005, Seifert [24] introduced a new type of RSA fault attacks, by inducing
faults on the RSA public modulus. The initial attack [24] only allowed to bypass
RSA verification, but key-recovery attacks were later discovered by Brier et
al. [8], and improved or extended in [17,5,3,4]. These key-recovery attacks only
apply to RSA without CRT, and they require significantly more faults than
Boneh et al.’s attack, at least on the order of 1000 faulty signatures.

1.3 Our Contribution

We present new alternative key-recovery attacks on RSA-CRT signatures: in-
stead of targeting one of the RSA-CRT sub-exponentiations, we inject faults
into the public modulus like in Seifert’s attack. This makes typical countermea-
sures against Boneh et al.’s attack ineffective against the new attacks.

Our attacks are based on the orthogonal lattice techniques introduced by
Nguyen and Stern [19] in 1997. They are very effective in practice: they disclose
the RSA factorization within a few seconds using only between 5 to 45 faulty
signatures. The exact running time and number of faulty signatures depend on
the fault model.

For instance, in our simplest attack, the running time is a fraction of a second
using only 5 faulty signatures, but the attacker is assumed to know the faulted
moduli for the 5 different messages. However, our attack can be extended to the
case where the attacker no longer knows the faulted moduli, using at most 45
faulty signatures, under the following two fault models: either the faulted moduli
only differ from the public modulus on a single byte of unknown position and
unknown value, or the faulted moduli may differ from the public modulus by
many bytes, but the differences are restricted to the least significant bits, up to
half of the modulus size.

All our attacks have been fully validated with physical experiments with laser
shots on a RISC microcontroller.

194 É. Brier et al.

1.4 Related Work

Many countermeasures have been proposed to protect against Boneh et al.’s
attack and its numerous generalizations, but they often focus on the exponenti-
ation process. The previously mentioned fault attacks [8,17,5,3,4] on RSA using
faulty moduli only apply to standard RSA without CRT, and they use non-
lattice techniques. Our attack seems to be the first attack on RSA-CRT with
faulted moduli.

It should be pointed out, however, that a number of protected RSA-CRT
implementations also protect the CRT recombination. This is for example the
case of [1,10,14,7,26,22].

More generally, as we observe in §5, using the technique known as Garner’s
formula for CRT recombination does thwart the attack introduced in this paper.
Since this formula is often used in practice, typical implementations conforming
to RSA standards like PKCS#1 and IEEE P1363 should in principle be immune
to this attack.

1.5 Roadmap

In §2, we describe the basic attack where the faulty moduli are assumed to be
known to the attacker. In §3, we extend the attack to realistic fault models in
which the faulty moduli are no longer known to the attacker. In §4, we describe
physical experiments with laser shots on a RISC microcontroller to validate the
attack. Finally, in §5, we suggest possible countermeasures against this attack.

2 The New Attack

2.1 Overview

Consider again the generation of RSA-CRT signatures. To obtain the signature
σ of a message m padded as μ(m), the signer computes the mod-p and mod-q
parts:

σp = μ(m)d mod p and σq = μ(m)d mod q

and returns the signature:

σ = σp · α + σq · β mod N (1)

where α, β are the pre-computed Chinese Remainder coefficients α = q·(q−1 mod
p) and β = p · (p−1 mod q).

Assume that an adversary can obtain the correct signature σ, and also a
signature σ′ of the same padded message μ(m) after corrupting the modulus N
before the CRT step (1). In other words, the attacker gets σ as before but also
σ′ defined as:

σ′ = σp · α + σq · β mod N ′ for some N ′ �= N

Modulus Fault Attacks against RSA-CRT Signatures 195

Suppose further, for the moment, that the adversary is able to recover the faulty
modulus N ′: we will see in §3 how this not-so-realistic hypothesis can be lifted
in a more practical setting. Then, by applying the Chinese Remainder Theorem
to σ and σ′, the adversary can compute

v = σp · α + σq · β mod N ·N ′.

But if we denote the bit length of N by n, then N ·N ′ is a 2n-bit integer, whereas
α, β are of length n and σp, σq of length n/2, so v is really a linear combination
of α and β in Z:

v = σp · α + σq · β.

That alone does not suffice to factor N , but several such pairs (σ, σ′) provide
multiple linear combinations of the (unknown) integers α, β with relatively small
coefficients. Then lattice reduction techniques allow us to recover the coefficients
σp and σq, and hence obtain the factorization of N by GCDs. The following
sections describe this process in detail.

2.2 Applying Orthogonal Lattice Techniques

We assume that the reader is familiar with cryptanalysis based on lattices
(see [18,21] for more information), particularly the orthogonal lattices intro-
duced by Nguyen and Stern [19]: if L is a lattice in Zn, we let L⊥ be the lattice
formed by all vectors in Zn which are orthogonal to all vectors of L. If an at-
tacker obtains � pairs (σ, σ′), he can compute as before a vector v = (v1, . . . , v�)
of 3n/2-bit integers satisfying an equation of the form:

v = αx + βy (2)

where x, y are unknown vectors with n/2-bit components and α, β are the (un-
known) CRT coefficients relative to p and q. Lattice reduction can exploit such
a hidden linear relationship as follows.

Using standard techniques [19,20], it is possible to compute a reduced ba-
sis {b1, . . . , b�−1} of the lattice v⊥ ⊂ Z� of vectors orthogonal to v in Z�. In
particular we get:

α〈bj , x〉+ β〈bj , y〉 = 0 for j = 1, 2, . . . , �− 1.

Now, observe that the smallest nonzero solution (u, v) ∈ Z2 of the equation
α · u + β · v = 0 is ±(β,−α)/g, where g = gcd(α, β) is heuristically expected to
be very small, which implies that |u|, |v| ≥ Ω(N) where the Ω() constant is very
small. For each j = 1, 2, . . . , �− 1, there are thus two possibilities:

Case 1: 〈bj , x〉 = 〈bj , y〉 = 0, in which case bj belongs to the lattice L =
{x, y}⊥ of vectors in Z� orthogonal to both x and y;

Case 2: 〈bj , x〉 and 〈bj , y〉 have absolute value ≥ Ω(N) with a very small Ω()
constant. Since x, y both have norm at most

√
�N , this implies ‖bj‖ ≥

Ω(
√

N/�) by Cauchy-Schwarz.

196 É. Brier et al.

Since the lattice L = {x, y}⊥ is of rank �− 2, Case 1 cannot hold for all �− 1
linearly independent vectors bj , so that the longest one b�−1 should be in Case
2, and hence ‖b�−1‖ ≥ Ω(

√
N/�). On the other hand, the other vectors form a

lattice of rank �− 2 and volume:

V = vol(Zb1 ⊕ · · · ⊕ Zb�−2) ≈ vol(v⊥)
‖b�−1‖ =

‖v‖
‖b�−1‖ ≤

√
� ·N3/2

Ω(
√

N/�)
= O(�N)

which can heuristically be expected to behave like a random lattice. In particular,
we should have:

‖bj‖ = O(
√

�− 2 ·V 1/(�−2)) = O(�1/2+1/(�−2) ·N1/(�−2)) for j = 1, 2, . . . , �− 2.

This length is much smaller than
√

N/� as soon as � ≥ 5. Assuming that this is
case, bj should thus be in Case 1 for j = 1, 2, . . . , �− 2. This means that those
vectors generate a sublattice L′ = Zb1⊕· · ·⊕Zb�−2 of full rank in L = {x, y}⊥.

Taking orthogonal lattices, we get (L′)⊥ ⊃ L⊥ = Zx⊕ Zy. Therefore, x and
y belong to the orthogonal lattice (L′)⊥ of L′. Let {x′, y′} be a reduced basis of
that lattice. We can enumerate all the lattice vectors in (L′)⊥ of length at most√

�N as linear combinations of x′ and y′. The Gaussian heuristic suggests that
there should be roughly:

π(
√

�N)2

vol((L′)⊥)
=

π�N

V
= O(1)

such vectors, so this is certainly feasible. For all those vectors z, we can compute
gcd(v − z, N). We will thus quickly find gcd(v − x, N) among them, since x is
a vector of length ≤ √

�N in (L′)⊥. But by definition of v we have:

v = x mod p and v = y mod q

so gcd(v − x, N) = p, which reveals the factorization of N .

2.3 Attack Summary

Assume that, for � ≥ 5 padded messages μ(mi), we know a correct signature σi

and a signature σ′
i computed with a faulty modulus N ′

i . Then, we can heuristi-
cally recover the factorization of N as follows.

1. For each i, compute the integer vi = CRTN,N ′
i
(σi, σ

′
i). They form a vector

v = (v1, . . . , v�) ∈ Z�.
2. Compute an LLL-reduced [15] basis {b1, . . . , b�−1} of the lattice v⊥ ⊂ Z� of

vectors in Z� orthogonal to v. This is done by applying LLL to the lattice
in Z1+� generated by the rows of the following matrix:

⎛

⎜
⎜
⎝

κv1 1 0
...

. . .

κv� 0 1

⎞

⎟
⎟
⎠

where κ is a suitably large constant, and removing the first component of
each resulting vector [19].

Modulus Fault Attacks against RSA-CRT Signatures 197

3. The first �− 2 vectors b1, . . . , b�−2 generate a lattice L′ ⊂ Z� of rank �− 2.
Compute an LLL-reduced basis {x′, y′} of the orthogonal lattice (L′)⊥ to
that lattice. Again, this is done by applying LLL to the lattice in Z�+2+�

generated by the rows of
⎛

⎜
⎜
⎝

κ′b1,1 · · · κ′b�−2,1 1 0
...

...
. . .

κ′b1,� · · · κ′b�−2,� 0 1

⎞

⎟
⎟
⎠

and keeping the last � components of each resulting vector.
4. Enumerate the vectors z = ax′ + by′ ∈ (L′)⊥ of length at most

√
�N , and

for each such vector z, compute gcd(v − z, N) using all components, and
return any nontrivial factor of N .

2.4 Simulation Results

Since the attack is heuristic, it is important to evaluate its experimental per-
formances. To do so, we have implemented a simulation of the attack in SAGE
[25]: for a given modulus N , we compute the vector v corresponding to a series
of � signatures on random messages and apply the lattice attack, attempting to
recover a factor of N .

Table 1 shows the measured success probabilities for various values of � and
modulus sizes. It confirms the heuristic prediction that 5 faulty signatures should
always suffice to factor N . It turns out that even 4 signatures are enough in
almost half the cases.

Table 1. Attack success probability as a function of the number of faulty signatures
and the size of N . Each parameter set was tested with random faults on 500 random
moduli of the given size.

Number of faulty signatures � 4 5 6

1024-bit moduli 48% 100% 100%

1536-bit moduli 45% 100% 100%

2048-bit moduli 46% 100% 100%

Table 2. Efficiency of the attack with � = 5 faulty signatures and various modulus
sizes. Each parameter set was tested with random faults on 500 random moduli of the
given size. Timings for a SAGE implementation, on a single 2.4 GHz Core2 CPU core.

Modulus size 1024 1536 2048

Average search space π�N/V 24 23 24

Average total CPU time 16 ms 26 ms 34 ms

198 É. Brier et al.

Experimental running times are given in Table 2. The whole attack takes a
few dozen milliseconds on a standard PC. The number of vectors to test as part
of the final exhaustive search step is about 20 in practice, which is done very
quickly.

3 Extending the Attack to Unknown Faulty Moduli

As mentioned in §2.1, in its basic form, the attack requires the recovery of the
faulty moduli N ′

i in addition to the corresponding faulty signatures σ′
i. This is

not a very realistic assumption, since a typical implementation does not output
the public modulus along with each signature.

To work around this limitation, we would like to reconstruct the vector v
of integer values needed to run the attack from signatures alone, without the
knowledge of the faulty moduli—possibly at the cost of requiring a few more
faulty signatures.

This can actually be achieved in various ways depending on the precise form
of the faults inflicted to the modulus. We propose solutions for the following two
realistic fault models:

1. The faulty moduli N ′
i differ from N on a single (unknown) byte. This is

known to be possible using power glitches or laser shots.
2. The differences between the faulty moduli N ′

i and N are located on the least
significant half: the errors on the least significant bits can be up to half of
the modulus size. It is easy to obtain such faults with a laser or a cold boot
attack.

3.1 Single Byte Faults

In this model, the attacker is able to obtain a certain number �′ ≥ 5 of pairs
(σi, σ

′
i) where σi = αxi +βyi mod N is a valid signature and σ′

i = αxi +βyi mod
N ′

i is the same signature computed with a faulty modulus. The faulty moduli
N ′

i are not known, but they only differ from N on a single byte whose position
and value is unknown.

This type of fault can for example occur when attacking the transfer of the
modulus to memory on a smart card with an 8-bit processor, or when using a
laser attack with a sufficiently focused beam.

For a 1024-bit modulus N , for example, there are 128 × 255 ≈ 215 possible
faulty moduli. It can thus seem like a reasonable approach to try and run the
attack with all possible faults. However, since this should be done with 5 signa-
tures, this results in a search space of size ≈ (215)5 = 275 which is prohibitive.

This kind of exhaustive search can be made practical, though, if we take into
account the fact that the CRT value vi = CRTN,N ′

i
(σi, σ

′
i) satisfies:

vi = αxi + βyi ≤ N · (p + q) = N3/2

(√
p

q
+
√

q

p

)

< (2N)3/2

Modulus Fault Attacks against RSA-CRT Signatures 199

Table 3. Exhaustive search space size for the vector v of CRT values, and expected
attack running time, depending on the number of pairs (σi, σ

′
i) available to the attacker.

Measured for a family of random single byte faults on a 1024-bit modulus. Timings are
given for the SAGE implementation as above.

Number of pairs �′ 5 7 10 15 20 25

Search space size (bits) 11.6 9.8 7.2 6.2 4.2 2.6

Total attack time (seconds) 49 14 2.4 1.2 0.29 0.10

since p/q ∈ (1/2, 2). Now, for a given value of σ′
i, there are only very few

possible target moduli N∗
i differing from N on a single byte such that v∗i =

CRTN,N∗
i
(σi, σ

′
i) < (2N)3/2: often only one or two, and almost never more than

20. We only need to run the attack with those target v∗i ’s until we find a factor.
Experimentally, for a 1024-bit modulus, the average base 2 logarithm of the

number of possible v∗i ’s is about 2.5, so if an attacker has 5 pairs (σi, σ
′
i) in this

model, they can expect to try all vectors v in a search space of around 12.5 bits,
i.e. run the attack a few thousand times, for a total running time of under 2
minutes. This is already quite practical.

If more pairs are available, the attacker can keep the 5 pairs for which the
number of possible v∗i ’s is the smallest. This reduces the search space accordingly.
In Table 3, we show how the exhaustive search space size and the expected
running time evolve with the number of signatures in a typical example.

3.2 Faults on Many Least Significant Bits

In this model, the attacker is able to obtain � = 5 signature families of the form
(σi, σ

′
i,1, . . . , σ

′
i,k), where the σi’s are correct signatures:

σi = αxi + βyi mod N

and the σ′
i,j ’s are faulty signatures of the form:

σ′
i,j = αxi + βyi mod N ′

i,j 1 ≤ i ≤ �, 1 ≤ j ≤ k.

In other words, for each one of the � different messages, the attacker learns the
reduction of the CRT value vi = αxi + βyi modulo N , as well as modulo k
different unknown faulty moduli N ′

i,j . Additionally, it is assumed that all N ′
i,j

differ from N only on the least significant bits, but the number of distinct bits
can be as large as half of the modulus size: we assume that|N −N ′

i,j | < N δ for
a certain constant δ < 1/2.

This is a reasonable fault model for a laser attack: it suffices to target a laser
beam on the least significant bits of N to produce this type of faults.

To run the attack successfully, the attacker needs to recover the CRT values
vi. This can be done with high probability when the number of available faults
k for a given message is large enough. The simplest approach is based on a GCD
computation.

200 É. Brier et al.

Indeed, fix an index i ∈ {1, . . . , �}, and write N ′
i,j = N + εj , vi = u, σi = u0

and σ′
i,j = uj. The attacker knows the uj’s and wants to recover u.

Now, observe that there are integers tj such that u satisfies u = u0 + t0 · N
and u = uj + tj · (N + εj). In particular, for j = 1, . . . , k we can write:

(tj − t0) ·N + (uj − u0) + tj · εj = 0. (3)

This implies that uj−u0 ≡ tj ·εj (mod N). However, we have tj ·εj < N1/2+δ �
N , so that the congruence is really an equality in Z. In view of (3), this implies
that all tj ’s are in fact equal, and hence:

t0 · εj = u0 − uj 1 ≤ j ≤ k.

If the errors εj on the modulus are co-prime, which we expect to happen with
probability ≈ 1/ζ(k), we can then deduce t0 as the GCD of all values u0 − uj ,
and this gives:

u = u0 + t0 ·N = u0 + N · gcd(u0 − u1, . . . , u0 − uk).

As seen in Table 4, the success probability is in practice very close to 1/ζ(k)
regardless of the size of errors.

It is probably possible to further improve the success probability by trying to
remove small factors from the computed GCD g = gcd(u0 − u1, . . . , u0 − uk) to
find t0 when g >

√
N , but we find that the number of required faults is already

reasonable without this computational refinement.
Indeed, recall that � = 5 CRT values are required to run the attack. If k faults

are obtained for each of the � messages, the probability that these � CRT values
can be successfully recovered with this GCD approach is ζ(k)−�. This is greater
than 95% for k = 7, and 99% for k = 9.

We can also mention an alternate, lattice-based approach to recovering the
CRT value u. The relation between the different quantities above can be written
in vector form as:

u01 = u + t0e

Table 4. Success probabilities of the GCD method for CRT value recovery, depending
on the number of available faults on a given message. Tested with random 1024-bit
moduli. In the simulation, errors εj are modeled as uniformly random signed integers
of the given size, and 10,000 of them were generated for each parameter set.

k (faults per message) 3 5 7 9

1/ζ(k) .832 .964 .992 .998

100-bit errors 83.2% 96.8% 99.0% 99.8%

200-bit errors 83.4% 96.2% 99.2% 99.8%

400-bit errors 82.7% 96.6% 99.1% 99.8%

Average CPU time .73 ms .75 ms .79 ms .85 ms

Modulus Fault Attacks against RSA-CRT Signatures 201

where 1 = (1, . . . , 1), u = (u1, . . . , uk) and e = (ε1, . . . , εk).
Then, since u0 ≈ N is much larger than ‖t0e‖ ≈ N1/2+δ, short vectors orthog-

onal to u will be orthogonal to both 1 and e. More precisely, we can heuristically
expect that when k is large enough (k � 2/(1− 2δ)), the first k− 2 vectors of a
reduced basis of u⊥ will be orthogonal to 1 and e.

Taking orthogonal lattices again, we can thus obtain a reduced basis {x, y} of
a two-dimensional lattice containing 1 and e (and of course u). Since 1 is really
short, we always find that x = 1 in practice. Then, it happens quite often that
y can be written as λ1± e, in which case t0 is readily recovered as the absolute
value of the second coordinate of u in the basis {x, y}.

However, this fails when Z1 ⊕ Ze is a proper sublattice of Zx ⊕ Zy = Zk ∩
(Q1 ⊕ Qe), namely, when there is some integer d > 1 such that all errors εj

are congruent mod d. Thus, we expect the success probability of this alternate
approach to be 1/ζ(k − 1), which is slightly less than with the GCD approach.

4 Practical Experiments

Practical experiments for validating the new attack were done on an 8-bit 0.35μm
RISC microcontroller with no countermeasures. As the microprocessor had no
arithmetic coprocessor the values σp and σq were pre-computed by an external
program upon each fault-injection experience and fed into the attacked device.
The target combined σp and σq using multiplications and additions (using For-
mula 1) as well as the final modular reduction.

The location and spread of the faults were controlled by careful beam-size and
shot-instant tuning. The reader is referred to the full version of this paper [9]
for a description of the physical setting (common to the experiments reported
in [16]).

We conducted several practical experiments corresponding to three different
scenarios, roughly corresponding to the fault models considered in §2.1, §3.1 and
§3.2 respectively. Let us describe these experiments in order.

4.1 First Scenario: Known Modulus

In this case, we considered 5 messages for a random 1024-bit RSA modulus N .
For each message mi, we obtained a correct signature σi, as well as a faulty-
modulus signature σ′

i where the faulty modulus N ′
i was also read back from the

microcontroller.
Therefore, we were exactly in the setting described in §2.1, and could apply the

algorithm from §2.3 directly: apply the Chinese Remainder Theorem to construct
the vector v of CRT values and run the lattice-based attack to recover a factor
of N .

The implementation of the attack used the same SAGE code as the simulation
from §2.4. In our experimental case, the ball of radius

√
N� contained only about

10 vectors of the double orthogonal lattice, and the whole attack revealed a factor
of N in less than 20 milliseconds.

202 É. Brier et al.

4.2 Second Scenario: Unknown Single Byte Fault

In this case, we tried to replicate a setting similar to the one considered in
§3.1. We considered 20 messages and a random 1024-bit RSA modulus N . For
each message mi, we obtained a correct signature σi, as well as faulty-modulus
signatures σ′

i with undisclosed faulty modulus N ′
i generated by targeting a single

byte of N with the laser.
We had to eliminate some signatures, however, because in some cases, errors

on the modulus turned out to exceed 8 bits.1 After discarding those, we had 12
pairs (σi, σ

′
i) left to carry out the approach described in §3.1.

The first step in this approach is to find, for each i, all values v∗i of the form
CRTN,N∗

i
(σi, σ

′
i) (N∗

i differing from N only on one byte) that are small enough
to be correct candidate CRT values. Unlike the setting of §3.1, we could not
assume that bit-differences were aligned on byte boundaries: we had to test a
whole 1016× 255 candidate moduli2 N∗

i for each i . Therefore, this search step
was a bit costly, taking a total of 11 minutes and 13 seconds. Additionally, due
to the higher number of candidate moduli, the number of candidate CRT values
v∗i was also somewhat larger than in §3.1, namely:

7, 17, 3, 9, 15, 5, 14, 44, 44, 17, 10, 55

for our 12 pairs respectively. Keeping only the 5 indices with the smallest number
of candidates, we obtained 3× 5× 7× 9× 10 = 9450 possible CRT value vectors
v∗.

We then ran the lattice-based attack on each of these vectors in order until a
factor of N was found. The factor was found at iteration number 2120, after a
total computation time of 43 seconds.

4.3 Third Scenario: Unknown Least Significant Bytes Faults

In this case, we considered 10 messages for a random 1024-bit N . For each
message mi, we obtained a correct signature σi, as well as 10 faulty-modulus
signature σ′

i,j with undisclosed faulty modulus N ′
i . The laser beam targeted the

lower order bytes of N but with a large aperture, generating multiple faults
stretching over as much as 448 modulus bits.

In practice, we only used the data (σi, σ
′
i,1, . . . , σ

′
i,10) for the first 5 messages,

discarding the rest. Then, we reconstructed the CRT values vi using the GCD
technique of §3.2:
1 Note that in a real-world attack, it might not be possible to detect such overly spread

out faults: hence, this particular technique should be used preferably when faults are
known to affect only single bytes (e.g. in a glitch attack), whereas the technique from
the next section is better suited to laser attacks as aperture control is much less of
an issue.

2 There are duplicates among those, corresponding to perturbations of 7 consecutive
bits or less, but we did not attempt to avoid testing them several times, as this
can only improve the search by a small constant factor while introducing significant
complexity in the code.

Modulus Fault Attacks against RSA-CRT Signatures 203

vi = σi + N · gcd(σi − σ′
i,1, . . . , σi − σ′

i,10) 1 ≤ i ≤ 5

and applied the lattice-based attack on the resulting vector v. This revealed a
factor of N in 16 milliseconds.

We also tried the same attack using a fewer number of the σ′
i,j ’s, and found

that it still worked when taking only 4 of those values in the computation of vi:

vi = σi + N · gcd(σi − σ′
i,1, . . . , σi − σ′

i,4) 1 ≤ i ≤ 5

but failed if we took 3 instead. Considering that 1/ζ(3)5 ≈ .40 and 1/ζ(4)5 ≈ .67,
this is quite in line with expectations.

5 Countermeasures and Further Research

Probabilistic and stateful signature schemes are usually secure against this at-
tack, since they make it difficult to obtain two signatures on the same padded
message. However, all deterministic schemes are typically vulnerable, including
those in which the attacker doesn’t have full access to the signed message, pro-
vided that the target device can be forced to compute the same signature twice.

A natural countermeasure is to use a CRT interpolation formula that does
not require N , such as Garner’s formula, computed as follows:

t ← σp − σq

if t < 0 then t ← t + p

σ ← σq + (t · γ mod p) · q
return(σ)

where we assume that p > q, and γ is the usual CRT coefficient q−1 mod p. Note
that the evaluation of σ does not require a modular reduction because

σ = σq + (t · γ mod p) · q ≤ q − 1 + (p− 1)q < N

Besides the obvious countermeasures consisting in checking signatures before
release, it would be interesting to devise specific countermeasures for protecting
Formula (1) (or Garner’s formula) taking into account the possible corruption
of all data involved.

Finally, in a number of special cases and particular settings (e.g. Appendix A)
other fault attacks on the CRT recombination phase can be devised. A thorough
analysis of such scenarios is also an interesting research direction.

Acknowledgments. We would like to thank the anonymous referees for helpful
comments. The work described in this paper has been supported in part by
the European Commission through the ICT program under contract ICT-2007-
216676 ECRYPT II.

204 É. Brier et al.

References

1. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault Attacks
on RSA with CRT: Concrete Results and Practical Countermeasures. In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275.
Springer, Heidelberg (2003)

2. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with
RSA and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

3. Berzati, A., Canovas, C., Dumas, J.-G., Goubin, L.: Fault attacks on RSA pub-
lic keys: Left-to-right implementations are also vulnerable. In: Fischlin, M. (ed.)
CT-RSA 2009. LNCS, vol. 5473, pp. 414–428. Springer, Heidelberg (2009)

4. Berzati, A., Canovas, C., Goubin, L.: Public key perturbation of randomized RSA
implementations. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 306–319. Springer, Heidelberg (2010)

5. Berzati, A., Canovas, C., Goubin, L.: Perturbating RSA public keys: An improved
attack. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 380–
395. Springer, Heidelberg (2008)

6. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. J. Cryptology 14(2), 101–119 (2001)

7. Boscher, A., Naciri, R., Prouff, E.: CRT RSA algorithm protected against fault
attacks. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.)
WISTP 2007. LNCS, vol. 4462, pp. 229–243. Springer, Heidelberg (2007)

8. Brier, E., Chevallier-Mames, B., Ciet, M., Clavier, C.: Why one should also secure
RSA public key elements. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 324–338. Springer, Heidelberg (2006)

9. Brier, E., Naccache, D., Nguyen, P.Q., Tibouchi, M.: Modulus Fault Attacks
Against RSA-CRT Signatures. Full version of this paper. Cryptology ePrint
Archive, http://eprint.iacr.org/

10. Ciet, M., Joye, M.: Practical fault countermeasures for Chinese remaindering based
cryptosystems. In: Breveglieri, L., Koren, I. (eds.) FDTC, pp. 124–131 (2005)

11. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

12. Coron, J.-S., Joux, A., Kizhvatov, I., Naccache, D., Paillier, P.: Fault attacks on
RSA signatures with partially unknown messages. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 444–456. Springer, Heidelberg (2009)

13. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002)

14. Giraud, C.: An RSA implementation resistant to fault attacks and to simple power
analysis. IEEE Trans. Computers 55(9), 1116–1120 (2006)

15. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

16. Mirbaha, A.-P., Dutertre, J.M., Tria, A., Agoyan, M., Ribotta, A.-L., Naccache,
D.: Study of single-bit fault injection techniques by laser on an AES cryptosystem.
In: Gizopoulos, D., Chatterjee, A. (eds.) IOLTS (2010)

17. Muir, J.A.: Seifert’s RSA fault attack: Simplified analysis and generalizations. In:
Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 420–434. Springer,
Heidelberg (2006)

http://eprint.iacr.org/

Modulus Fault Attacks against RSA-CRT Signatures 205

18. Nguyen, P.Q.: Public-key cryptanalysis. In: Luengo, I. (ed.) Recent Trends in Cryp-
tography. Contemporary Mathematics, vol. 477. AMS–RSME (2009)

19. Nguyên, P.Q., Stern, J.: Merkle-Hellman Revisited: A Cryptanalysis of the Qu-
Vanstone Cryptosystem Based on Group Factorizations. In: Kaliski Jr., B.S. (ed.)
CRYPTO 1997. LNCS, vol. 1294, pp. 198–212. Springer, Heidelberg (1997)

20. Nguyên, P.Q., Stern, J.: Cryptanalysis of a fast public key cryptosystem presented
at SAC 1997. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp.
213–218. Springer, Heidelberg (1999)

21. Nguyên, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

22. Rivain, M.: Securing RSA against fault analysis by double addition chain expo-
nentiation. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 459–480.
Springer, Heidelberg (2009)

23. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

24. Seifert, J.-P.: On authenticated computing and rsa-based authentication. In:
Atluri, V., Meadows, C., Juels, A. (eds.) ACM Conference on Computer and Com-
munications Security, pp. 122–127. ACM, New York (2005)

25. Stein, W.A., et al.: Sage Mathematics Software (Version 4.4.2). The Sage Devel-
opment Team (2010), http://www.sagemath.org

26. Vigilant, D.: RSA with CRT: A new cost-effective solution to thwart fault attacks.
In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 130–145.
Springer, Heidelberg (2008)

A Using Dichotomy in the Absence of Padding

Consider again the setting of §2.1, in which an adversary is able to obtain both
a correct signature σ on a message m, and a signature on the same message m
computed with a faulty modulus, allowing him to deduce the non reduced value
v = σp · α + σq · β ∈ Z. We can write:

v = (σ mod p) · α + (σ mod q) · β =
(

σ − p

⌊
σ

p

⌋)

· α +
(

σ − q

⌊
σ

q

⌋)

· β

Moreover, observe that α+β = N +1 (as is easily seen by reducing α+β modulo
p and q). Therefore, we have:

v = σ · (N + 1)− pα

⌊
σ

p

⌋

− qβ

⌊
σ

q

⌋

Hence, if we let ω = (σ · (N + 1)− v)/N , we get:

ω =
σ · (N + 1)− v

N
=

α

q

⌊
σ

p

⌋

+
β

p

⌊
σ

q

⌋

(4)

and this value ω is an integer since v ≡ σ (mod N).

http://www.sagemath.org

206 É. Brier et al.

Now assume further that the adversary can ask signatures on messages m
such that σ is small. This is the case, for example, when signatures are com-
puted without padding and the physical device under consideration will answer
arbitrary signature queries: then, the adversary can simply ask signatures on
messages of the form σe for small values σ of his choice.

In such a setting, the adversary can pick a σ close to N1/2, carry out the
fault attack and compute the integer ω. By (4), he gets ω = 0 if σ < min(p, q)
and ω > 0 otherwise. Trying this process again several times, the smallest prime
factor of N can be recovered by dichotomy.

Breaking Mifare DESFire MF3ICD40:
Power Analysis and Templates in the Real World�

David Oswald and Christof Paar

Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany

{david.oswald,christof.paar}@rub.de

Abstract. With the advent of side-channel analysis, implementations of
mathematically secure ciphers face a new threat: by exploiting the phys-
ical characteristics of a device, adversaries are able to break algorithms
such as AES or Triple-DES (3DES), for which no efficient analytical or
brute-force attacks exist. In this paper, we demonstrate practical, non-
invasive side-channel attacks on the Mifare DESFire MF3ICD40 contact-
less smartcard, a 3DES-based alternative to the cryptanalytically weak
Mifare Classic [9,25]. We detail on how to recover the complete 112-bit
secret key of the employed 3DES algorithm, using non-invasive power
analysis and template attacks. Our methods can be put into practice at
a low cost with standard equipment, thus posing a severe threat to many
real-world applications that employ the DESFire MF3ICD40 smartcard.

Keywords: contactless smartcard, side-channel analyis, templates,
DESFire.

1 Introduction

Radio Frequency Identification (RFID) technology has become the basis for
numerous large-scale, security-relevant applications, including public transport,
wireless payment, access control, or digital identification [39]. The information
stored on RFID smartcards, e.g., personal data, or cash balance, is often highly
sensitive — however, the access to the air interface and to the device itself is vir-
tually impossible to control. Hence, most modern RFIDs feature cryptographic
mechanisms, including encryption and authentication, in order to thwart attacks
such as eavesdropping, manipulation, or cloning of a smartcard.

Mifare DESFire MF3ICD40 is a contactless smartcard featuring a crypto-
graphic engine for authentication and encryption based on (Triple-)DES. The
smartcard is employed in several large payment and public transport systems
around the world, e.g., the Czech railway in-karta [7], the Australian myki
card [36], or the Clippercard used in San Francisco [40]. In the course of our

� The work described in this paper has been supported in part by the European
Commission through the ICT programme under contract ICT-2007-216676 ECRYPT
II.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 207–222, 2011.
c© International Association for Cryptologic Research 2011

208 D. Oswald and C. Paar

research, we also noticed many smaller installations, e.g., for mobile payment
or access control, that are based on the Mifare DESFire MF3ICD40. From a
mathematical point of view, the employed 3DES cipher is secure, because no
efficient cryptanalytical attacks are known. Thus, in this paper, we focus on
side-channel attacks, i.e., methods that target the physical implementation of
the cryptographic primitive in soft- or hardware. Using non-invasive and hence
non-detectable measurement of the electro-magnetic (EM) emanations of the de-
vice, we are able to completely recover the secret 112-bit master key and thus to,
for example, read out, manipulate, or duplicate the contents of a Mifare DESFire
MF3ICD40 card.

1.1 Related Work

The idea of exploiting physical side-channels to attack hardware implementa-
tions of secure ciphers was first put forward in [20] in 1998. Since then, a lot of
research has been conducted in this area, with important contributions including
the analysis using the EM emanation of a device [1] or the application of the
correlation coefficient in Correlation Power Analysis (CPA) to better model the
physical behaviour of Integrated Circuits (ICs) [2]. At CHES 2002, the authors
of [5] proposed the use of machine learning techniques such as pattern recognition
for Side-Channel Analysis (SCA) and coined the notion of “template attacks”.
Several extensions and improvements for this approach have been suggested in
the last few years, cf. [31,33,35].

The susceptibility of ciphers running on RFID devices towards SCA was ini-
tially shown in [12,30]: the authors present attacks on a white-box software imple-
mentation of the AES executed by a standard, unprotected microcontroller (μC)
on a self-made prototype RFID, evaluating techniques to overcome problems
such as misaligment of the measured signals.

With respect to the application of SCA to break commercial, real-world de-
vices, few papers have been published, as most research in this field is carried out
by evaluation labs behind closed doors. The potential impact of SCA in practice
was demonstrated by the complete break of the proprietary KeeLoq system pre-
sented at CRYPTO 2008 [8]. Results for the black-box analysis of a contactless
smartcard are given in [17], proposing a leakage model for RFIDs that forms
the basis for our analyses and is outlined in Sect. 2. However, the authors are
unable to recover the complete key and do not disclose to which device their
attacks apply. In [18], the application of analog demodulation for SCA of RFIDs
is presented for the first time. The measurement setup used in the present paper
is an extension of the setup described in [18].

1.2 Contribution of this Paper

The work presented in this paper is of practical nature: we highlight the relevance
of SCA in the real-world by demonstrating the first full key-recovery attack on
the popular Mifare DESFire MF3ICD40 smartcard reported in the literature.
Doing so, we point out problems and obstacles that occur when conducting
SCA in practice which are often neglected in academic papers. In addition, we

Breaking Mifare DESFire MF3ICD40 209

present the — to our knowledge — first application of template attacks to break
cryptographic RFIDs, allowing for potentially very fast determination of the
secret key. The remainder of this paper is structured as follows: in Sect. 2, we give
the signal-theoretical background of our measurement setup for RFID devices,
which is presented in Sect. 3. We then practically apply the developed techniques
to analyze the smartcard in Sect. 4, detailing on the internal hardware structure
of the device. In Sect. 5, we extend our findings and present a successful full
key-recovery attack on the 3DES engine. After that, in Sect. 6, we demonstrate
a different approach for obtaining the secret key based on template attacks to
eavesdrop on the internal databus. Finally, we conclude in Sect. 7, discussing the
implications of our findings for commercial applications and giving directions for
further research.

2 Demodulation for SCA of Contactless Smartcards

For contactless smartcards, the energy for operation is supplied wirelessly using
magnetic coupling. As proposed in [17,18], this gives rise to a different leakage
mechanism compared to contact-based devices. In a similar manner as for regular
data transmission, the 13.56 MHz field generated by the reader is load-modulated
by the power consumption of an RFID1.

Let the power consumption of the target device be given as p (t) = Pconst +
pdyn (t), where Pconst is the constant part and pdyn (t) the fraction caused by
internal operations, e.g., intermediate values being manipulated during a cryp-
tographic operation. Usually, the dynamic portion of the power consumption
is far weaker than the constant part, i.e., |pdyn (t)| << Pconst. The leakage
exploitable for an SCA thus heavily depends on the quality of the isolation
and amplification of pdyn (t). As mentioned, in an RFID setting, the ampli-
tude of the reader signal is modulated by p (t), i.e., s (t) = p (t) · cos (ωr · t) =
(Pconst + pdyn (t)) · cos (ωr · t).

where ωr = 2π fr, fr = 13.56 MHz is the standard carrier frequency. Clearly,
the extraction of p (t) (and especially of the weak dynamic portion) from s (t)
can be done using amplitude demodulation, cf. for instance [34]. In practice,
“incoherent” techniques (i.e., for which a separate, unmodulated carrier signal is
not necessary) based on rectification (often called envelope detection) are very
common, and in this paper, we follow that approach as well. The principle due
to which rectification can be used for demodulation is best understood in the
frequency domain, following [27]. First note that, as stated above, |pdyn (t)| <<
Pconst and hence, |s (t)| = |Pconst + pdyn (t)| · |cos (ωr · t)| = (Pconst + pdyn (t)) ·
|cos (ωr · t)|.

Let P (jω) = DFT {p (t)} = DFT {Pconst + pdyn (t)} denote the frequency
domain representation of the signal that is to be reconstructed. By expanding
|cos (ωr · t)| using its Fourier series, one obtains the spectrum of the rectified
signal:
1 However, for data transmission, the fluctuations of the EM field are intentional and

far stronger in magnitude.

210 D. Oswald and C. Paar

DFT {|s (t)|} = DFT {p (t) · |cos (ωr · t)|} = DFT
{

p (t) · 2
π

∑∞
ν=−∞

(−1)ν

1−4ν2 ej2νωrt
}

= 2
π

∑∞
ν=−∞

(−1)ν

1−4ν2 DFT
{
p (t) · ej2νωrt

}
= 2

π

∑∞
ν=−∞

(−1)ν

1−4ν2 P (jω − j2νωr)

The rectified signal is essentially formed by the spectrum of Pconst + pdyn (t),
which, however, is (scaled and) repeated at all even multiples of the carrier
frequency ωr = 2π 13.56 MHz. Thus, the first repetition occurs at 27.12 MHz.

Using a lowpass filter with a cutoff frequency less than 13.56 MHz isolates the
desired signal2 p (t).

3 Measurement Setup

For the analysis of the DESFire MF3ICD40, we extended the measurement en-
vironment of [18]. Fig. 1a gives an overview over the components of our setup. A
custom, freely programmable RFID reader [16] compliant to ISO 14443 [13,14]
and ISO 15693 [15] supplies the contactless smartcard (from now on occasionally
referred to as Device Under Test (DUT)) with power and handles the commu-
nication, for instance to trigger an encryption operation.

(a) Overall structure

Input signal
(from EM probe)

Summing
amplifier

Diode
(BAT43)

Non-inverting
amplifier

Output signal
(to oscilloscope)

Demodulator
PCB

Diode
(BAT43)

Inverting
amplifier

Bandpass
filter

Output
amplifier

1

2

3

4

5

(b) Analog demodulation circuitry

Fig. 1. Measurement setup

A wide-band EM probe with a suitable pre-amplifier [21] captures the mag-
netic near-field in the proximity of the IC, resulting in a “raw” signal (denoted
as ©2 in Fig. 1a) which is dominated by the 13.56 MHz carrier frequency of the
reader. On the one hand, this signal is directly recorded and stored using a Pico-
scope 5204 Digital Storage Oscilloscope (DSO) [29] at a sample rate of 500 MHz,
on the other hand, it is passed to an analog demodulator that performs the
operations outlined in Sect. 2 to facilitate SCA, resulting in the signal ©1 in
Fig. 1a. The central PC controls the measurement process, i.e., prepares and
sends commands to the DUT via the RFID reader and acquires and stores the
resulting side-channel signals ©1 and ©2 (from now on referred to as traces.
2 The constant term Pconst can be removed with a highpass filter that only blocks the

DC and very low-frequency components.

Breaking Mifare DESFire MF3ICD40 211

As explained in Sect. 2, analog demodulation is required to separate the ac-
tual power consumption signal from the carrier signal and to thereby improve
the quality of the (exploitable) side-channel leakage. Accordingly, we developed a
custom Printed Circuit Board (PCB) comprising a full-wave rectifier and appro-
priate filter circuitry to perform the incoherent demodulation approach. Fig. 1b
shows the basic structure of the demodulation circuitry. The full schematics are
given in an appendix in the extended version of this paper [28]. The full-wave
rectifier is formed by two isolated half-wave rectifiers, each employing an BAT43
Schottky diode [38]. To rectify the negative part of the input ©1 , the signal is
first inverted and then rectified by the diode, yielding signal ©3 in Fig. 1b. For
the positive portion, the buffer amplifier only provides isolation of the input sig-
nal and driving of the corresponding diode, but does not perform inversion to
produce signal ©2 . The two resulting parts ©2 and ©3 are then added to form the
full-wave rectified output ©4 .

A third-order LC bandpass filter extracts the baseband part, i.e., the portion
of the spectrum centered around 0 Hz. In our case, the −3 dB frequency was
specified to 12 Mhz. Additionally, the filter also suppresses frequency components
below 10 kHz to remove the constant part of the modulating signal. Finally, the
output amplifier adjusts the amplitude of the signal in order to optimally utilize
the minimum input range of ±100 mV of the Picoscope and drives a 50 Ω load,
i.e., a suitable coaxial cable.

In the case that a raw signal (i.e., ©2 in Fig. 1a) is used for SCA, it was shown
in [17] that the demodulation has to be performed digitally in order to con-
duct a successful CPA, i.e., digital pre-processing is mandatory. For the output
of the analog demodulator, digitally filtering the output signal ©1 is optional,
however, might help to further reduce the 13.56 MHz frequency component still
present due to certain characteristics of the analog circuits. For a more detailed
description of the effects of the respective processing techniques, cf. [18].

4 Practical Results: Profiling of Mifare DESFire
MF3ICD40

Mifare DESFire MF3ICD40 [26] is a contactless smartcard initially designed
by the semicondutor division of Philips, which became the separate company
NXP in 2006. The card is compliant to parts 1-4 of the ISO 14443A standard.
A communication with the card can be performed in plain, with an appended
Message Authentication Code (MAC), or with full data encryption using 3DES.
The device offers 4 kByte of storage that can be assigned to up to 28 different ap-
plications, whereas each application may hold a maximum of 16 files. Depending
on the configuration of the access rights, a mutual authentication protocol has
to be carried out before accessing the card, ensuring that the symmetric 3DES
keys of the card kC and of the reader kR are identical.

According to specifications found on the internet, the smartcard features
several functions to thwart physical attacks such as SCA, fault injection, or
reverse-engineering: the IC is built using asynchronous circuits and employs a

212 D. Oswald and C. Paar

Reader DESFire MF3ICD40

−
begin

−−−−−−−−−−−→ Generate nc ∈ {0, 1}64
B0 = 3DESkC (nc)

}

Step 1

←− B0−−−−−−−−−−−
Choose B1, B2 −

B1, B2−−−−−−−−−−−→ C2 = 3DESkC (B2)
C1 = 3DESkC (B1)

}

Step 2

Fig. 2. Exerpt of the Mifare DESFire authentication protocol relevant for SCA

custom, asynchronous μC design based on the 8051 architectures. Besides, all
digital units (i.e., control logic, cryptographic engine etc.) are “intermingled”
so that no functional block are discernible, a technology called “glue logic” by
the vendor. Note that all results in this paper do not directly apply to the
newer AES-based variant DESFire EV1. The authentication protocol of the
DESFire MF3ICD40 has been disclosed and can for instance be found in [19,4].
For the purpose of SCA, we refer to a simplified version in the following, given
in Fig. 2. kC = (kC,1, kC,2) is the 128-bit 3DES master key (including the par-
ity bits) used by the DUT, whereas the two halfs are of size 64 bit each, i.e.,
kC,1, kC,2 ∈ {0, 1}64. 3DESkC (x) = DESkC,1

(
DES−1

kC,2

(
DESkC,1 (x)

))
denotes

a 3DES encryption of a 64-bit value x in Encrypt-Decrypt-Encrypt (EDE) mode.
The full command set3 has been implemented for our custom reader mentioned
in Sect. 3.

Initially, we are facing a black-box scenario, i.e., have (apart from the com-
mand set and the specifications in the datasheet) no further knowledge on the
inner workings of the device. Hence, profiling to map different portions of a
power trace to steps of the operation of the DUT (e.g., a data transfer or an en-
cryption operation) is mandatory before attempting to perform real attacks on
cryptographic operations. As a first step, we dismantled the IC, took magnified
photographs of the silicon die, cf. Fig. 3a, and tried to distinguish the different
parts of the circuit. The hypothetical structure depicted in Fig. 3b is a result of
this optical inspection and the findings reported in the remainder of this section.

To prepare the actual SCA, we recorded side-channel traces for both steps of
the authentication protocol, separately varying either the key of the card kC or
the values for B1 and B2 in step 2. To estimate the effect of our analog processing
circuitry, we both store the “raw” signals before demodulation (©2 in Fig. 1a)
and the result of the demodulation process (©1 in Fig. 1a).

We then perform several CPAs to locate the points in time in the power traces
at which the known values for kC , B1 and B2 (and the encryption results C1,
C2

4) are processed. Employing an 8-bit Hamming weight model, all mentioned

3 Including the necessary commands for changing the key, performing a full authenti-
cation etc.

4 As we know kC during the profiling phase, we can predict these values that are never
output by the DUT.

Breaking Mifare DESFire MF3ICD40 213

(a) IC photo (b) Hypothetical struc-
ture

Fig. 3. The DESFire MF3ICD40 IC

(a) Step 1 (b) Step 2

Fig. 4. Annotated traces during the authentication protocol (after analog processing)

values can be precisely pinpointed, cf. Fig. 4. We observed a stable value of
≈ 0.15 for the respective correlation coefficient after around 1,000 traces. This
suggests that internally, an 8-bit data bus is used to connect the μC to the
memory and the cryptographic engine, yielding the structure of Fig. 3b. For
each byte transfered over this bus, a distinct peak appears in the power trace,
whereas the distance between two such peaks indicates an internal bus frequency
of fbus ≈ 282.5 kHz = 13.56/48 MHz. Note that the peaks for data bus transfers
later in a trace, e.g. for B2 or C2 in Fig. 4b, are often misaligned, i.e., their
exact position slightly varies from execution to execution. The reason for this
behaviour lies in the non-constant execution time of a 3DES operation, which
is further detailed in Sect. 5. Hence, it is necessary to re-align the respective
parts (for instance, using standard pattern matching approaches [23]) to obtain
a significant correlation.

214 D. Oswald and C. Paar

5 Practical Attack: CPA of the 3DES Engine

Having located the input and output values of the 3DES encryption, we now
focus on this part to perform the recovery of the secret key. Comparing this part
for several traces, we notice some interesting properties: first, the length of one
DES operation varies from execution to execution, even if the input data and
the key are kept constant. This hints at a countermeasure based on randomiza-
tion in time being employed to thwart CPA. We further address this problem
in Sect. 5.1. Second, the amplitude of the traces is significantly lower during
the supposed encryption, which coincides with the statements in the available
DESFire documentation that a dedicated low-power hardware engine performs
the cryptographic operation.

To prepare the actual key-recovery, we first attempt to characterize the leakage
of the 3DES engine and find a suitable power model by correlating with the full
intermediate 64-bit states5 using a known key. Conducting several experiments,
we found the Hamming distance model to yield a significant correlation and were
able to locate the first few rounds of the DES, as depicted in Fig. 5 for rounds
0→1, 5→6, 10→11, and 0→1 of the second DES iteration.

0→1

5→6

10→11 DES 2: 0→1

(a) Time domain

0→1

5→6

10→11 DES 2: 0→1

(b) Frequency domain

Fig. 5. Correlation coefficients for the Hamming distances between rounds of the 3DES,
500,000 traces

However, as evident from Fig. 5a, this approach only is able to locate the first
few rounds (with decreasing correlation), supposedly due to the randomization
mentioned above. Statistically analyzing the length of the first DES iteration
using 100,000 traces, we observe that one iteration takes 8.2 μs on average. This
duration varies in discrete steps of 290 ns over a total range from 6.9 μs to 9.1 μs.
This suggests that the cryptographic engine executes up to eight (�(9.1−6.9)/0.29�)
“dummy” rounds based on an internal Random Number Generator (RNG) to
impede SCA.

5 i.e.,
(
L

(n)
i , R

(n)
i

)
, 0 ≤ i ≤ 16, n ∈ {1, 2, 3}, where n denotes the Single-DES itera-

tion within the complete 3DES, for details cf. [24].

Breaking Mifare DESFire MF3ICD40 215

To solve this problem, we tried out methods to overcome misalignment sug-
gested in the literature, including comb filtering or windowing [6], Dynamic Time
Warping (DTW) [37], and Differential Frequency Analysis (DFA) [10,30]. Our
results show DFA to yield the best overall correlation, using the following steps:
before correlating with the prediction of the power model, a trace is partitioned
into (overlapping) segments, these segments are transformed to the frequency
domain with the Discrete Fourier Transform (DFT), and the phase information
is discarded by taking the absolute value of the DFT coefficients. The optimal
value for the size of each segment was determined to be 1.5 μs, with an overlap
of 75 % between adjacent segments. The strongest leakage occurs for low fre-
quencies, hence, we limited the analysed spectral range to 0. . .16 MHz. Fig. 5b
shows the according correlation coefficients for the respective rounds of the ci-
pher — in contrast to the analysis in the time domain, all rounds are clearly
distinguishable.

In order to quantify the improvement caused by the employed analog and
digital processing methods, we compare the maximum correlation coefficient over
the number of traces for the 32-bit Hamming distance R0 → R1 (again, using a
known key), with a detailed plot of the respective values given in an appendix
in [28]. In all cases, the correlation converges rather quickly to a significant
value far greater than 4/

√
No. of traces, yet, a distinct gain due to both analog and

digital processing is discernible: while the digitally demodulated traces without
re-alignment by DFA result in a stable value of ≈ 0.015, the combination of
analog demodulation with DFA yields ≈ 0.032, that is, an improvement by a
factor of two. As a result, we utilize these pre-processing techniques for the full
key-recovery presented in Sect. 5.1, taking the fact into account that in this
case, we have to target each 4-bit S-Box output separately, so smaller overall
correlations are to be expected.

5.1 Full Key-Recovery

Based on the findings of the profiling phase, a CPA can be mounted to obtain the
full 3DES key by recovering the 6-bit part of the round key for each S-Box, start-
ing with the first round of the first DES. To make use of all available information,
a natural choice is to target the full 4-bit output of each S-Box in the Hamming
distance R0 → R1. However, for the case of the DESFire MF3ICD40, this turned
out to be problematic: Fig. 6 shows the maximum correlation coefficients for the
correct key candidate for a standard CPA in the time domain and DFA in the
frequency domain, respectively. Although the complete key is discernible after
≈ 450,000 traces in Fig. 6b, the stable value for the correlation significantly dif-
fers depending on the S-Box, causing the attack to fail for five S-Boxes when
performed without re-alignment by means of DFA, cf. Fig. 6a.Testing other pre-
diction functions, a single-bit CPA (which is equivalent to the classic Differential
Power Analysis (DPA)) proved to be the most successful approach. As depicted
in Fig. 7, for each S-Box there is at least one bit providing sufficient leakage to
allow our attack to succeed after approx. 250,000 traces and 350,000 traces with
and without DFA, respectively.

216 D. Oswald and C. Paar

(a) Time domain (b) Frequency domain

Fig. 6. Maximum correlation coefficient for the correct key, 4-bit model, Hamming
distance R0 → R1 for all S-Boxes

(a) Time domain (b) Frequency domain

Fig. 7. Maximum correlation coefficient for the correct key, 1-bit model, Hamming
distance R0 → R1 for all S-Boxes

For the sake of optical clarity, the maximum correlation for wrong key can-
didates has been omitted in the above figures. Yet, we performed the actual
key-recovery computing these correlations as well and verified that in all cases,
the correlation for the wrong candidates is below 4/

√
No. of traces, i.e., there are no

“ghost peaks” that might interfere with the retreival of the correct key. Besides,
the results are not limited to the first round of the first DES: the analysis equiv-
alently works for other rounds of the first DES (to recover the remaining eight
bit of kC,1) and for the second DES iteration6 (to obtain kC,2). In summary, as
a result of this section, we conclude that the extraction of the complete secret
3DES key from a Mifare DESFire MF3ICD40 can be carried out with approx.
250,000 traces, which can be collected in approx. seven hours using our current
measurement setup.

6 In this case, alignment to the start pattern of this operation is necessary.

Breaking Mifare DESFire MF3ICD40 217

6 Practical Attack: Template Attack on the Key Transfer

As observed during the profiling phase described in Sect. 4, the internal databus
of the DUT seems to be completely unprotected and exhibits a far stronger
Hamming weight leakage than the cryptographic engine analyzed in Sect. 5.
Thus, template attacks to obtain information on internal values transfered over
this bus can be expected to work with a far lower number of traces compared to
a CPA. Of special interest is the initialization of the cryptographic engine before
the start of the actual 3DES operation: our analyses shows that the transfer of
the secret key can be identified in the power trace of the DUT after the reader has
sent the initial begin command in the authentication protocol (that is, during
Step 1 in Fig. 2). Fig. 8a depicts a trace for the loading of the key and indicates

(a) Side-channel trace (b) Correlation

Fig. 8. Transfer of the 3DES key over the internal databus

the internal order of operation: by repeatedly changing the key and performing
a CPA using the Hamming weight of each key byte, we found out that the 3DES
key is initialized in two steps. First, the upper eight byte (kC,2) are transfered,
starting with the least significant byte. After that, the lower half kC,1 (i.e.,
byte 0 . . . 7) is transmitted, this time in reverse byte order. In both cases, the
(redundant) parity bits are not removed prior to the key transfer, suggesting that
they are discarded internally by the cryptographic engine. Fig. 8b exemplarily
shows the corresponding correlation peaks for the key bytes 0 (blue), 7 (green),
8 (red) and 15 (cyan), allowing to exactly pinpoint the time instants at which
information on a specific byte is leaking.

In contrast to CPA, template attacks require a profiling phase, i.e., a step
during which the DUT is under full control of the adversary to estimate the
statistical relation between the observable random variables — in our case the
respective points in time of a trace — and the internal states that are to be
distinguished (here, the value of a key byte). The resulting training set is then
used to recover the desired values from a test set, i.e., traces for which the value
of the key byte is considered unknown.

To systematically evaluate the success rate of template attacks for the case
of the transfer of the key on the Mifare DESFire MF3ICD40, we obtain 8,000

218 D. Oswald and C. Paar

traces for each possible value of a targeted key byte7. Here, we only address byte
0 and 15, however, our results hold for all other bytes as well. 4,000 traces are
used for the training set, while the other 4,000 form the test set — in total, to
cover all 256 possible values for a byte, we acquired 2 · 256 · 4,000 = 2,048,000
traces. Again, we also compare the quality of analog demodulation compared to
its digital equivalent and hence recorded traces both before and after the analog
circuitry. Let Straining

b = {tb, 0, . . . , tb, 3999} be the training set and Stest
b =

{tb, 4000, . . . , tb, 7999} the test set , where tb, n denotes the n’th trace for a specific
byte 0 ≤ b < 256, i.e., a K × 1 vector of measured values. Given Stest for a fixed
but unknown key — in our case, the test set for some key byte value b — the
comparision to the training data is carried out as outlined in Alg. 1.

Algorithm 1. Template creation and matching procedure
for b = 0 . . . 255 do

(μb, Σb) ← estimate
(
Straining

b

)

end for
Σ ← 1

256

∑255
b=0 Σb

(μ′, Σ′) ← estimate (Stest)
for b = 0 . . . 255 do

δb ← distance
(
μb, Σb, Σ, μ′, Σ′)

end for
return argmin

b
δb

estimate (·) is an algorithm that estimates the (pointwise) sample mean and
covariance matrix from the respective set of traces, e.g., using the standard
empirical formulae [41]. distance (·) is a suitable distance measure based on the
previously estimated statistical parameters. The value for the key byte b that
minimizes the chosen distance measure is then returned as the most probable
candidate for the given test traces. We exemplarily selected the following distance
measures:

Difference of means. The simplest case only evaluates the norm of the point-
wise difference of the class means, i.e.,

∑K
k=1 (μb (k)− μ′ (k))2, discarding

any information on the (co-)variances
Euclidean. Assuming that the covariance matrix is diagonal, one obtains the

Euclidean distance,
∑K

k=1
(μb(k)−μ′(k))2

/Σb(k, k), for which the differences are
normalized using the pointwise variance

Mahalanobis. Taking all parameters of the distribution into account, the Ma-
halanobis distance [22] is given as (μb (k)− μ′ (k))T

Σ−1 (μb (k)− μ′ (k))

Table 1 summarizes the results of our template analysis both with (Table 1a)
and without analog preprocessing (Table 1b). The average bit error rates were
7 The training and test sets were acquired in separate measurement campaigns to rule

out effects due to slightly varying environmental conditions.

Breaking Mifare DESFire MF3ICD40 219

Table 1. Average bit error rates for the key recovery based on templates using 4,000
traces

(a) With analog processing

Keybyte Distance Bit error rate
0 (kC,1) DiffMeans 2.07

Euclidean 2.14
Mahalanobis 1.77

15 (kC,2) DiffMeans 0.55
Euclidean 0.51
Mahalanobis 0.64

(b) Without analog processing

Keybyte Distance Bit error rate
0 (kC,1) DiffMeans 2.89

Euclidean 2.66
Mahalanobis 2.4

15 (kC,2) DiffMeans 1.55
Euclidean 0.71
Mahalanobis 1.22

estimated by applying Alg. 1 for each byte, using the corresponding test set Stest
b

and computing the Hamming distance between the detected and the actual value
b. Evidently, the upper half kC,2 can be recovered with significantly less error
than kC,1, which interestingly admits a rather different leakage characteristic.
In either case, the remaining uncertainty can be accounted for using exhaus-
tive search over the key candidates, starting with the ones having the smallest
distance to the training set.

Limitations. Compared to the CPA presented in Sect. 5, the key recovery by
means of templates might be carried out with far less traces and hence within a
very short time8, thus potentially posing a severe security threat in a scenario
in which an adversary either has to extract many different keys (e.g., due to a
key distribution mechanism) or faces a constant risk of being detected. However,
due to the necessity for a profiling phase, implementing the approach in practice
turns out to be highly problematic: for the results given in Table 1, we could
employ the same DUT, whereas in a real-world attack, the profiling and the
attack device are different. In our experiments with different cards, we observed
significantly differing leakage characteristics, even if the measurement setup (i.e.,
the positions of the EM probe and the DUT on the antenna) was kept exactly
fixed. At present, we are therefore not able to apply the profiling data to a
different card, however, we are currently evaluating calibration approaches and
improved classifiers (e.g., using Principal Component Analysis (PCA) [35]). We
were already able to obtain correct matchings at least for a subset of all possible
key values.

7 Conclusion

We show several SCA attacks to fully recover the 3DES key of the Mifare DES-
Fire MF3ICD40, employing standard equipment in an academic measurement
setup that can be built for approx. 3000 $. As we figured out the details of the

8 In our current setup, recording 4,000 traces is a matter of minutes.

220 D. Oswald and C. Paar

implementation of the DUT, the attacks can be realized within a few hours (e.g.,
to collect approx. 250,000 traces for a CPA), and hence pose a severe threat to
the security of DESFire-based real-world systems.

System integrators should be aware of the new security risks that arise from
the presented attacks and can no longer rely on the mathematical security of
the used 3DES cipher. Hence, in order to avoid, e.g., manipulation or cloning of
smartcards used in payment or access control solutions, proper actions have to
be taken: on the one hand, multi-level countermeasures in the backend allow to
minimize the threat even if the underlying RFID platform is insecure, cf. [32].
For long-term security and when developing new systems, we recommend to use
certified smartcards, e.g., the AES-based Mifare DESFire EV1, which passed an
EAL-4+ evaluation [3] and which comprises SCA countermeasures that thwart
the attacks presented in this paper.

Having demonstrated the susceptibility of the DESFire MF3ICD40 towards
SCA, there are several interesting directions for further research to consider: first,
the SCA could be improved in order to work with a smaller number of traces,
for instance, employing different alignment methods or model-independent dis-
tinguishers like Mutual Information Analyis (MIA) [11]. Apart from that, exten-
sions of the proposed template attack may allow to reduce the error rate or to
utilize the templates generated with a profiling device to recover the unknown
key of another DESFire MF3ICD40 card. Also, a combination of CPA and tem-
plates could further reduce the required number of traces. Finally, the developed
techniques can be applied in order to attempt attacks on different cryptographic
RFIDs, possibly including (certified) high-security smartcards.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

2. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. BSI – German Ministry of Security. Mifare DESFire8 MF3ICD81 Public Evaluation
Documentation. Electronic resource (October 2008)

4. Carluccio, D.: Electromagnetic Side Channel Analysis for Embedded Crypto De-
vices. Master’s thesis, Ruhr-University Bochum (2005)

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)

6. Clavier, C., Coron, J.-S., Dabbous, N.: Differential Power Analysis in the Presence
of Hardware Countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 13–48. Springer, Heidelberg (2000)

7. Czech Railways. In-karta (March 2011), http://www.inkarta.cz/
8. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,

M.T.M.: On the Power of Power Analysis in the Real World: A Complete Break of
the KeeLoq Code Hopping Scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 203–220. Springer, Heidelberg (2008)

http://www.inkarta.cz/

Breaking Mifare DESFire MF3ICD40 221

9. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Schreur, R.W., Jacobs, B.: Dismantling MIFARE classic. In: Jajodia, S., Lopez, J.
(eds.) ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg (2008)

10. Gebotys, C.H., Ho, S., Tiu, C.C.: EM Analysis of Rijndael and ECC on a Wireless
Java-Based PDA. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
250–264. Springer, Heidelberg (2005)

11. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis – A
Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

12. Hutter, M., Mangard, S., Feldhofer, M.: Power and EM Attacks on Passive 13.56
MHz RFID Devices. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 320–333. Springer, Heidelberg (2007)

13. ISO. ISO/IEC 14443-3: Identification Cards – Contactless Integrated Circuit(s)
Cards – Proximity Cards – Part 3: Initialization and Anticollision (February 2001)

14. ISO. ISO/IEC 14443-4: Identification cards – Contactless Integrated Circuit(s)
Cards – Proximity Cards – Part 4: Transmission Protocol (February 2001)

15. ISO. ISO/IEC 15693-3: Identification Cards – Contactless Integrated Circuit Cards
– Vicinity Cards – Part 3: Anticollision and Transmission Protocol (April 2009)

16. Kasper, T., Carluccio, D., Paar, C.: An Embedded System for Practical Security
Analysis of Contactless Smartcards. In: Sauveron, D., Markantonakis, K., Bilas,
A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 150–160. Springer,
Heidelberg (2007)

17. Kasper, T., Oswald, D., Paar, C.: EM Side-Channel Attacks on Commercial Con-
tactless Smartcards Using Low-Cost Equipment. In: Youm, H.Y., Yung, M. (eds.)
WISA 2009. LNCS, vol. 5932, pp. 79–93. Springer, Heidelberg (2009)

18. Kasper, T., Oswald, D., Paar, C.: Side-Channel Analysis of Cryptographic
RFIDs with Analog Demodulation. Springer LNCS Proceedings of RFIDSec 2011,
Northampton, USA (to appear)

19. Kasper, T., von Maurich, I., Oswald, D., Paar, C.: Chameleon: A versatile emulator
for contactless smartcards. In: Rhee, K.-H. (ed.) ICISC 2010. LNCS, vol. 6829, pp.
189–206. Springer, Heidelberg (to appear)

20. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

21. Langer EMV-Technik. Details of Near Field Probe Set RF 2. Website
22. Mahalanobis, P.C.: On the Generalised Distance in Statistics. In: Proceedings Na-

tional Institute of Science, India, vol. 2, pp. 49–55 (April 1936)
23. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets

of Smart Cards. Springer, Heidelberg (2007)
24. NIST. FIPS 46-3 Data Encryption Standard (DES),

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
25. Nohl, K., Evans, D., Plötz, H.: Reverse-Engineering a Cryptographic RFID Tag.

In: USENIX Security Symposium, pp. 185–194. USENIX Association (2008)
26. NXP. Mifare DESFire Contactless Multi-Application IC with DES and 3DES Se-

curity MF3ICD40 (April 2004)
27. Ochs, K.: Transmission of Digital Signals. Lecture notes (2006)
28. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: Power Analysis and

Templates in the Real World — Extended Version (2011),
http://www.emsec.rub.de/research/publications/

29. Pico Technology. PicoScope 5200 USB PC Oscilloscopes (2008)

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www.emsec.rub.de/research/publications/

222 D. Oswald and C. Paar

30. Plos, T., Hutter, M., Feldhofer, M.: Evaluation of Side-Channel Preprocessing
Techniques on Cryptographic-Enabled HF and UHF RFID-Tag Prototypes. In:
Dominikus, S. (ed.) Workshop on RFID Security 2008, pp. 114–127 (2008)

31. Rechberger, C., Oswald, E.: Practical Template Attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 443–457. Springer, Heidelberg (2005)

32. Rohr, A., Nohl, K., Plötz, H.: Establishing Security Best Practices in Access Con-
trol (September 2010), http://www.srlabs.de/pub/acs

33. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

34. Schwartz, M., Bennett, W.R., Stein, S.: Communication Systems and Techniques.
Wiley, Chichester (1966)

35. Standaert, F.-X., Archambeau, C.: Using Subspace-Based Template Attacks to
Compare and Combine Power and Electromagnetic Information Leakages. In: Os-
wald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer,
Heidelberg (2008)

36. State Government Victoria. myki (March 2011), http://www.myki.com.au/
37. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving Differential

Power Analysis by Elastic Alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS,
vol. 6558, pp. 104–119. Springer, Heidelberg (2011)

38. Vishay Semiconductors, Inc. BAT43 Schottky Diode Datasheet
39. Wikipedia. Contactless Smart Card — Wikipedia, The Free Encyclopedia (2011)

(accessed March 5, 2011)
40. Wikipedia. MIFARE — Wikipedia, The Free Encyclopedia (2011) (accessed March

25, 2011)
41. Wikipedia. Sample Mean and Sample Covariance — Wikipedia, The Free

Encyclopedia (2011) (accessed April 1, 2011)

http://www.srlabs.de/pub/acs
http://www.myki.com.au/

Information Theoretic and Security Analysis

of a 65-Nanometer DDSLL AES S-Box

Mathieu Renauld�, Dina Kamel,
François-Xavier Standaert��, and Denis Flandre

UCL Crypto Group, Université catholique de Louvain
Place du Levant 3, B-1348, Louvain-la-Neuve, Belgium

Abstract. In a recent work from Eurocrypt 2011, Renauld et al. dis-
cussed the impact of the increased variability in nanoscale CMOS devices
on their evaluation against side-channel attacks. In this paper, we com-
plement this work by analyzing an implementation of the AES S-box, in
the DDSLL dual-rail logic style, using the same 65-nanometer technol-
ogy. For this purpose, we first compare the performance results of the
static CMOS and dual-rail S-boxes. We show that full custom design
allows to nicely mitigate the performance drawbacks that are usually re-
ported for dual-rail circuits. Next, we evaluate the side-channel leakages
of these S-boxes, using both simulations and actual measurements. We
take advantage of state-of-the-art evaluation tools, and discuss the quan-
tity and nature (e.g. linearity) of the physical information they provide.
Our results show that the security improvement of the DDSLL S-box
is typically in the range of one order of magnitude (in terms of “num-
ber of traces to recover the key”). They also confirm the importance
of a profiled information theoretic analysis for the worst-case security
evaluation of leaking devices. They finally raise the important question
whether dual-rail logic styles remain a promising approach for reducing
the side-channel information leakages in front of technology scaling, as
hardware constraints such as balanced routing may become increasingly
challenging to fulfill, as circuit sizes tend towards the nanometer scale.

1 Introduction

Side-channel attacks are an important concern for the security of cryptographic
devices. Since their apparition in the late 1990s, a significant attention has been
paid to the development of various solutions to prevent them, at different abstrac-
tion levels (e.g. hardware, algorithmic, protocol). In this paper, we are concerned
with technological countermeasures, usually denoted as dynamic and differential
logic (DDL). DDL aims to solve the side-channel issue directly at the circuit level.
For this purpose, such logic styles typically ensure that the switching activity
of an implementation is independent of the data that it manipulates. However,

� PhD student supported by the Walloon region SCEPTIC project.
�� Associate researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.).

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 223–239, 2011.
c© International Association for Cryptologic Research 2011

224 M. Renauld et al.

despite a constant switching activity, small data-dependent variations in the cur-
rent traces can generally be observed, e.g. due to the unbalanced capacitances
of the differential nodes and their interconnections. As a result, and similarly
to other countermeasures against side-channel attacks, the design of DDL is
mainly a tradeoff between performance and security. That is, logic styles such
as SABL [26], WDDL [27], DyCML [1,13], MCML [4] or MDPL [19] (to name
a few), have been introduced as different attempts to best reach the security
objectives of DDL while limiting their performance overheads.

Performance evaluation of integrated circuits is a relatively well understood
topic. Figures of merit such as the area, the delay, the area-delay product or the
power consumption of an implementation can be used, depending on the applica-
tions. Additionally, one also cares about the design facilities. In this respect, cir-
cuits that can be taped out from standard cell libraries (such as WDDL, MCML,
MDPL) offer a flexibility advantage compared to full custom logic styles (such as
SABL, DyCML). This flexibility naturally comes with a cost, as using full custom
logic offers more freedom for the designer to limit the information leakages.

By contrast, evaluating the resistance against side-channel attacks is more
challenging, and many different tools have been introduced for this purpose in
the literature. For example, early works on DDL used specific criteria such as the
normalized energy deviation (NED) [13,26,27]. Some other logic styles have been
analyzed using dedicated attacks, e.g. based on the correlation coefficient [19,21].
The main issue with such evaluation tools is that (at least in theory), they can
possibly lead to a false sense of security, because they do not consider a worst-
case scenario. The evaluation framework proposed at Eurocrypt 2009 was conse-
quently introduced in order to relax this limitation [25]. It suggests to evaluate
side-channel attacks in two steps. First, a (profiled) information theoretic analy-
sis is performed, in order to quantify the physical leakages, independently of the
adversary who exploits them. Second, a security analysis is performed, in order
to measure the effectiveness of various (e.g. non-profiled) distinguishers. When
designing countermeasures or logic styles, it is the information theoretic analysis
that is most revealing, as it provides a (more) objective measure of their qual-
ity1. Unfortunately, while such an analysis has already been successfully applied
in the case of different software implementations, no results have been published
in the case of DDL, except evaluations based on simulated experiments, of which
the practical relevance was left as an open problem [14].

Besides the development and evaluation of new countermeasures, the scaling
of microelectronic technologies towards the nanometer scale also has a significant
impact on the security of cryptographic devices. For example, it was recently ob-
served that process variations imply changes in the typical models (based on the
Hamming weight/distance) used in non-profiled side-channel attacks [12,22]. As
a result, distinguishers performing “on-the-fly” estimations of the leakage models

1 Naturally, the objectiveness of this evaluation still depends on the accurate estima-
tion of the leakage probability density functions. The expectation in [25] is that it is
significantly simplified by using profiled attacks rather than non-profiled ones. Yet,
as will be discussed Section 4.3, our analysis still relies on certain assumptions.

Information Theoretic and Security Analysis 225

have gained a particular interest. As discussed in [5], Schindler et al.’s stochastic
approach [23] is a very convenient tool for this purpose, when the actual leak-
age function can be approximated by a linear function of the target bits in the
attack. By contrast, as discussed in [28], none of the non-profiled distinguishers
used so far, including the ones based on Mutual Information Analysis [6], can
perform successful key recoveries when this function becomes highly non-linear.
Hence, it is an interesting problem to determine whether such highly non-linear
leakage functions can be observed in practice, e.g. for dual-rail logic styles.

The present paper brings two contributions related to this state-of-the-art:

First, we report and analyze the performances of a full custom designed AES
S-box, implemented in a 65-nanometer Dynamic and Differential Swing Lim-
ited Logic (DDSLL) [8]. We compare it with a static CMOS S-box (full custom
designed as well) in the same 65-nanometer technology. In both cases, our eval-
uations are based on simulations and measurements of a test chip (which allows
us to discuss the relevance of simulations). These experiments put forward an
interesting tradeoff, as the DDSLL S-box shows similar area cost as the CMOS
one (contrary to most previous similar logic styles), and reduced power con-
sumption. We explain its limited power consumption by a limited swing and its
limited area by the exploitation of trees in the DDL. Interestingly, and despite
this clear focus on performance, we also show that the resulting implementation
has reduced information leakages compared to the CMOS one.

Second, and for the first time, we apply the information theoretic analysis
of [25] to a DDL circuit. As the estimation of its leakage distributions turns
out to be relatively simple (as the logic style is not masked), this allows us to
provide a fair evaluation of its information leakage reduction. In addition to a
fully profiled analysis using templates [3], we also pay attention to the linear
nature of the leakages. We confirm that the stochastic approach from [23] is a
very interesting tool for analyzing this linearity. We also suggest to use it as an
informal criteria, reflecting the easiness of performing a successful non-profiled
attack. These results allow us to put forward a variety of leakage samples where,
depending on the cases: (1) a simple model based on the Hamming weight allows
efficient key recoveries, (2) only the on-the-fly stochastic approach, or single-bit
DPA attacks using well-chosen bits, are successful, (3) none of the non-profiled
attacks attempted was successful (under our measurement constraints). They
confirm the importance of profiled information theoretic evaluations if all the
available information is to be exploited, in a worst-case security evaluation.

Finally, our results raise important open questions related to the impact of
technology scaling on DDL. Informally speaking, the expectation for such logic
styles is that they allow reducing the information leakage and to make basic
assumptions (such as Hamming weight/distance models) invalid. In this respect,
the prevailing intuition for advanced technologies may suggest that this clear
advantage over CMOS vanishes as the technologies are shrinking, for two main
concurrent reasons. On the one hand, CMOS circuits become harder to attack
with side-channel analysis, as discussed in [22]. On the other hand, the con-
straints of DDL (e.g. the need of properly balanced capacitances) could become

226 M. Renauld et al.

more difficult to fulfill in advanced technologies, because of variability. Never-
theless, our results highlight that well-designed DDL could remain an interesting
alternative to CMOS for securing cryptographic hardware, in order to both re-
duce the information leakage and to increase its non-linearity.

Note that, because of place constraints, the variability issues are not discussed
in this paper. However, we mention that the observations made for the static
CMOS S-box in [22] essentially hold for the DDSLL one as well.

2 Previous Works

This section briefly surveys results related to DDL and side-channel attacks.
The first logic style purposed to prevent side-channel attacks was SABL. It is

a full custom logic style, in which the problem of unbalanced intrinsic differential
output capacitances is addressed by adding a transistor to each gate, in order to
discharge all internal nodes independent of the data. Compared to CMOS, the
area of a Kasumi S-box SABL implementation is increased by a factor of 1.8,
and its energy per cycle by a factor of 2, in a 0.18μm 1.8V technology in [26].

WDDL was introduced shortly after SABL and aims to emulate the behavior
of SABL gates using static CMOS standard cells. An implementation of a WDDL
AES coprocessor, in a 0.18μm 1.8V CMOS technology, was proposed in [9]. It
costs a 3 times increase in area, a 3.8 times decrease in throughput and a 3.7
times increase of the power consumption at 50 MHz, compared to its static
CMOS counterpart. WDDL is also expected to provide less security margins, as
it inherits from certain weaknesses of the CMOS library it is based on [14].

DyCML is a full custom, low-swing and self-timed current mode logic. It was
introduced independently of power analysis concerns and constitutes an interest-
ing alternative to SABL. SPICE simulation results using a 0.13μm 1.2V CMOS
partially depleted SOI technology suggest that DyCML and SABL have similar
NED, while the first one shows slightly better performance (e.g. a reduced power
consumption) [13]. By combining complex functions into a differential pull-down
network (DPDN), such logic styles can also implement cryptographic function-
alities with limited circuit size. However, the design of these DPDN may contain
unbalanced intrinsic capacitances, hence causing increased information leakage.

MCML is a CMOS current mode logic. It can be seen as a standard cell coun-
terpart to DyCML and has been the focus of significant attention with respect
to side-channel attacks [21]. As for WDDL, its main limitation is a significantly
increased power consumption and an area increase by a factor around 2.

Finally, MDPL is masked and dual-rail logic style. It was introduced in order
to get rid of the need of balanced capacitances in DDL. Experiments performed
on a prototype chip showed that this logic style is affected by an “early propa-
gation” effect [18]. It constitutes a good illustration of the difficulty to predict
all types of leaking events that can occur in electronic circuits.

Summarizing, and as already mentioned, these previous works propose differ-
ent tradeoffs between security and efficiency, and generally show large overheads
when compared to CMOS. As a result, the next section first tackles the question

Information Theoretic and Security Analysis 227

whether it is possible to design a (full custom) DDL for which the performances
better compare to CMOS. For this purpose, we investigate the implementation
of a DDSLL AES S-box, that combines a reduced swing (hence, power consump-
tion) and the combination of complex (here, 4-bit) functionalities into DPDN.

3 Performance Analysis

The DDSLL logic proposed in [8] is a low-power, dynamic & differential, self-
timed, low-swing logic. Figure 1 shows the basic structure of a generic DDSLL
gate. It mainly consists of a DPDN to realize the function of the gate, a dynamic
current source made of transistors M1, M2, a feedback circuit made of transistors
M3, M5, a precharge circuit featuring transistors M6, M7, M10 and M11, a latch
realized by transistors M12, M13 and finally a self-timing buffer which is a simple
inverter (transistors M14, M15). The DDSLL logic operates as a typical DDL,
with two phases: precharge and evaluation. During precharge, the clock signal
Clki is low charging the output nodes (out and out) to V DD via transistors
M10 and M11. Meanwhile, node S discharges to GND as transistor M7 turns
on, which subsequently switches off transistor M3. At the same time, node ENO
charges to V DD via transistor M6, which in turn switches on transistor M2.
However, there is no DC current path from V DD to GND, as transistor M1

is switched off. Next, during evaluation, the clock signal Clki is high, turning
on transistor M1, thus creating a current path from V DD to GND, through
the DPDN. Simultaneously, the transistors of the precharge circuit are turned
off (M6, M7, M10 and M11), allowing the DPDN to evaluate. As a result, one
of the output nodes will discharge, turning on one of the feedback transistors
(M4, M5), which in turn charges node S to V DD. Hence, transistor M3 turns on
and starts discharging node ENO to GND. This will cause the dynamic current
source to cut off the current supply of the DPDN, thereby limiting the voltage
swing of the output node. Also, as node ENO discharges to GND, the output
clock signal Clki+1 charges to V DD, via transistor M14 of the self-timing buffer
circuit, indicating the termination of the evaluation phase of the current block.

The S-box we considered in this work is taken from Mentens et al. [17]. The
resulting DDSLL architecture is designed in such a way that complex functions,
like the inversion in GF (24), can be implemented with 4 DPDN, corresponding
to the 4 output bits of this inversion. Such a design choice has clear advantages
in terms of area cost, but potentially implies more side-channel leakage. In or-
der to limit this leakage, we applied the methodology described in [15] for the
implementation of the DPDN. It essentially exploits binary decision diagrams
for choosing the representation of the DPDN that minimizes the power depen-
dencies caused by variations of the number of internal capacitances that are
charged/discharged in each cycle. The logic style additionally allows resources
sharing (the dynamic current source, parts of the precharge circuit, the feedback
circuit and the self-timing buffer of functions that evaluate at the same time). As
illustrated in Figure 1, the internal clock of the DDSLL logic is driven from gate
to gate, without any buffer added, and the block responsible of this derivation is

228 M. Renauld et al.

Fig. 1. Schematic of a generic DDSLL gate

considered as part of the logic in our different (simulated and measured) experi-
ments. Hence, all the VDD nodes in the figure are included in these experiments.
Note that the balanced routing, that is important for dual-rail logic styles to re-
duce side-channel leakages, has been hand-made as part of the full-custom S-box
design. We checked the capacitors of the differential routes after extraction from
the layout and, in the worst cases, found differences of 0.8 fF, corresponding to
roughly 10% of imbalance. Eventually, the complete S-box used in the following
accounts for 1275 transistors, with a logic depth of 13 gates.

Our test chip includes two versions of the AES S-box: the DDSLL one and a
static CMOS one, used for reference and based on the design described in [22].
The chip was fabricated using a low-power 65-nanometer technology. All mea-
surements were done at ambient temperature and using a nominal supply voltage
of 1.2 V. None of the S-boxes uses flip flops and both are fed with buffered inputs.
The DDSLL S-box additionally has a buffered clock. Each S-box is furnished by
its own power supply, which is different than the input buffer power supply.
Both S-boxes are full custom designed, with a target of minimizing the area.
The measurement setup is standard and monitored the voltage variations over
a resistor included in the S-box supply circuit, using a differential probe.

The performances of these S-boxes, obtained from actual measurements of
the prototype chip, are summarized in Table 1. One can notice that the area
of the DDSLL S-box is only 1.125 times that of the static CMOS S-box. This
can be explained by two factors. First, the use of DPDN to implement complex
(e.g. 4-bit) functions allows reduced sizes compared to the gate level approaches
used in previous SABL or WDDL designs. Next, the logic style allows sharing
the dynamic current sources and self-timing buffers of functions evaluating at
the same time. In addition, the average power consumption of the DDSLL S-
box at 100 kHz is 36 % less than that of the static CMOS. This results from the

Information Theoretic and Security Analysis 229

Table 1. Comparison between the DDSLL S-box and the static CMOS S-box

S-box: Static CMOS DDSLL

Area 1000 μm2 1125 μm2

Avg. power @ 100kHz 128 nW 82 nW
Delay 3 ns 8 ns

low-swing logic (combined with the previously mentioned low area). These inter-
esting figures come at the cost of a 2.6× increase in delay, which can be tolerated
for low-cost applications (e.g. running at 100 KHz is reasonable for RFID).

4 Side-Channel Attacks

In this section, we aim to compare the DDSLL logic style with static CMOS
implementations, from a side-channel attacks point of view. For this purpose,
we will analyze both simulated traces and actual measurements, obtained from
the test chip described in the previous section. Following [25], we will first con-
sider a (worst-case) information theoretic analysis and next perform a security
analysis, in order to evaluate how efficiently a non-profiled distinguisher can take
advantage of the information leakages. We start by introducting our notations,
metrics and tools, together with an informal investigation of our leakage traces.

4.1 Notations, Metrics and Tools

Notations. We use capital letters for random variables, lower cases for samples
and sans serif fonts for functions. Let a power trace l be the output of a leakage
function L. In our experiments, the leakage function output corresponds to the
power consumption of the AES S-boxes we investigate and essentially depends
on two input arguments: x and n. These sample values correspond to the discrete
random variable X , representing the S-box input, and the continuous random
variable N , representing the measurement noise. As a result, the continuous ran-
dom variable corresponding to the leakage is noted L(., .), with the parameters
written as capital letters if they are variable or as lower cases if they are fixed. For
instance, L(X, N) is the variable corresponding to a random input X with a ran-
dom noise vector N , and l(x, n) is a specific leakage for a fixed input x. Finally,
the leakage variable at a specific time sample t is noted Lt. Our experiments
considered three types of traces. First, simulated traces obtained from ELDO,
to which we added a Gaussian noise, are denoted as L1(X, N) = Lsimu(X) + N .
Second, real measurements are denoted as L2(X, N) = Lmeas(X, N). Finally, we
also considered a hybrid context, in which ELDO simulations are replaced by
the average measurement traces Lmeas(X) = Ê[Lmeas(X, N)], with Ê the sample
mean operator. This final context is denoted as L3(X, N) = Lmeas(X) + N .

230 M. Renauld et al.

Information Theoretic Metric. In order to evaluate the leakage of the CMOS
and DDSLL S-boxes, we start by estimating the perceived information:

PI(X ; L) = H[X]−
∑

x∈X
Pr[x]

∑

l∈L
P̂rchip[l|x] log2 P̂rmodel[x|l]. (1)

This metric essentially captures how accurately the leakage model used by an
adversary (denoted as P̂rmodel[x|l]) can predict the actual leakage distribution
of a target chip (denoted as P̂rchip[l|x]). The perceived information has been
introduced in [22] in order to capture the fact that in certain contexts (e.g.
when inter chip variability is significant), the adversary’s model and actual chip’s
leakage distribution can strongly differ, possibly resulting in a negative perceived
information. If the adversary’s model is perfect (i.e. exactly corresponds to the
chip’s one), then the perceived information is equal to the mutual information
metric from [25] and accurately captures the worst-case information leakage.

Tools. As a matter of fact, estimating the perceived information essentially re-
quires to perform a good estimation of the leakage distributions. The better
this estimation, the more accurate the evaluations. For this purpose, the follow-
ing section will consider two types of estimation tools: the (Gaussian) template
attacks introduced in [3] and the stochastic approach proposed in [23]. The
template attacks are useful to estimate the worst-case scenario, with the most
powerful adversary in the information theoretic sense. The stochastic approach
with a linear model allows to evaluate the linearity of the leakage function.

Template attacks work as follows. First, during a profiling phase, the adver-
sary builds 256 templates, corresponding to the 256 possible input values of the
AES S-box. Each of these templates is a Gaussian distribution N (l|μ̂x,N , σ̂2

x,N),
defined by two parameters: a sample mean μ̂x,N and a sample variance σ̂2

x,N .
Profiling just means that the adversary (or evaluator) estimates these parame-
ters for each S-box input2. Next, during the online phase, these templates are
used to select the candidate input that has maximum likelihood:

x̃ = argmax
x∗

P̂rmodel[x∗|l]. (2)

The stochastic approach works in a slightly different fashion than template at-
tacks. During profiling, the adversary chooses a basis [g0(x), g1(x), ..., gN (x)].
This basis is usually made of monomials in the input and/or output bits of the
target operation in the attack (e.g. the S-box in our case). Then, he performs a
regression in order to find the model L̂t =

∑
i βi,t · gi(x) that best matches the

measured leakages. The output of this model can be used as a replacement of the
sample means μ̂x,N in template attacks. Intuitively, the stochastic approach of-
fers a tradeoff between the precision and robustness of the model. For example, a
linear model obtained from a 9-element basis (corresponding to the S-box output
bits and a constant term) can be estimated rapidly (i.e. its profiling is cheap),
2 Template attacks can be directly generalized to a multivariate setting, by replacing

the means and variances by mean vectors and covariance matrices.

Information Theoretic and Security Analysis 231

Fig. 2. Up: simulated power traces for the static CMOS (left) and DDSLL (right)
S-boxes. Down: std. deviation over the inputs for different time samples.

Fig. 3. Up: avg. measured power traces for the static CMOS (left) and DDSLL (right)
S-boxes. Down: std. deviation over the inputs for different time samples.

but only provides a rough approximation of the leakage function if it is highly
non-linear. Next, increasing the degree of the stochastic model allows refining the
approximation at the cost of a more expensive profiling. Eventually, a stochastic
model of degree 8 with 256 coefficients is equivalent to a template. A convenient
feature of the stochastic approach is that it can be used to evaluate the non-
linearity of a leakage function, by comparing the information leakage obtained
from a linear basis model to the one obtained from exhaustive templates.

4.2 Leakage Traces

As a first (informal) step in our analysis, we observe the power traces in
Figures 2 and 3. For the CMOS S-box, they represent the 256 transitions between
0 and an arbitrary S-box input. For the DDSLL logic style, they correspond to
the evaluation phase of the S-box computation, for the same 256 possible inputs.
The figures also display the standard deviations computed over the different in-
puts. Note that, for readability purposes, the scaling of the Y-axis is not the
same in the different figures (i.e. we zoomed on the relevant parts). One can

232 M. Renauld et al.

observe that the simulated and measured traces have significantly different shapes,
in particular for the DDSLL case. For example, the simulated DDSLL traces are
perfectly aligned at the beginning of the clock cycle and then begin to misalign.
By contrast, this misalignment is much smaller in actual measurements, where
the variance between the curves rather comes from an amplitude difference. The
most likely reason to explain these differences is that our simulation environment
does not include the specificities of the measurement setup and the filtering it
implies. Modeling this setup and including it in our simulations is an interest-
ing scope for further research. However, we also note that, despite these visual
differences, the standard deviations for the static CMOS and DDSLL differ by
one order of magnitude, both in measurements and simulations.

4.3 Information Theoretic Analysis

The second step in our analysis is to apply the information theoretic metric to the
DDSLL and the CMOS logic styles, for simulations and real measurements, using
the tools from the previous section (i.e. template attacks, stochastic approach).
As mentioned in the introduction (Footnote 1), this information theoretic anal-
ysis still relies on a number of hypotheses that we now detail:

H1. The measurement noise is assumed to be normally distributed.
H2. Only 256 transitions are considered for the CMOS S-box (among the 2562

possible ones). This restriction was mainly motivated by practical mea-
surement constraints and is not expected to strongly affect the compar-
ison between the logic styles3. In practice, when performing attacks in
Section 4.4, we considered a pre-charge to zero before each S-box compu-
tation.

H3. We focused our analysis on the leakage samples of the evaluation phase for
the DDSLL S-box, because they exhibited the largest information leak-
ages.

H4. All our analyzes are univariate, i.e. they consider leakage samples one by
one. This choice was motivated by the goal to compare the amount and
nature of the leakage function observed for the different samples.

In order to estimate the perceived information, we use Equation 1 in which
the three probability distributions are computed as follows. First, Pr[x] is the
prior on the input value, i.e. the probability of each input hypothesis before tak-
ing into account the side-channel information. We considered a uniform prior
Pr[x] = 1/256. Next, P̂rchip[l|x] is the estimated conditional probability of
observing a leakage l given an input x. We considered two cases: either real
measurements with simulated noise in which case we have P̂rchip[l|x] computed
from the leakage probability density functions, or real measurements with real
noise, in which case this distribution is sampled from the actual chip, i.e. we
use

∑
x Pr[x]

∑
l P̂rchip[l|x] =

∑q
(x,l)=1

1
q , with q the number of traces measured.

3 The standard deviation curves of Figures 2, 3, obtained from the transitions between
a fixed value x and 256 byte values, looked essentially the same for different x.

Information Theoretic and Security Analysis 233

Fig. 4. Perceived information in function of the time samples in the actual measure-
ment traces with real noise for the CMOS (left) and DDSLL (right) S-boxes

Finally, P̂rmodel[x|l] is the conditional probability of the input given the leakages,
derived using the adversary’s model. This probability is computed from the tem-
plate distributions estimated during the profiling. Both for the CMOS and the
DDSLL S-box, our estimations are based on sets of 100 measurements for each
of the input events x, both for the profiling and the attack phases.

We started by investigating the informativeness of the different time samples
in the traces in Figure 4. Note again the different Y axes of the CMOS and
DDSLL plots. As expected, one can see that the information extracted with
templates is always higher than the one obtained from stochastic models using
a linear basis (i.e. the S-box output bits). This is natural, as the templates
capture all the information available, in an extensive manner, while the stochastic
approach provides a “simpler to estimate” approximation [7,24]. Nevertheless,
one can also observe that some of the samples are very accurately predicted by a
linear leakage model. Interestingly, the template-based curve is also reasonably
predicted by the standard deviation curves in Figure 3, confirming the analysis
of standard DPA in [16]. As a result, these information curves can be directly
used for selecting the points of interest for univariate attacks.

Next, we investigated the information theoretic metric for different noise
levels. As an illustration, Figure 5 shows the perceived information for the
two logic styles, computed from simulations (left) and actual measurements
(right). In both cases, we selected the time sample that maximized the per-
ceived information. For the real measurement curves, we used the hybrid sce-
nario (i.e. L3(X, N) = Lmeas(X) + N) as well as the real noise values (i.e.
L2(X, N) = Lmeas(X, N)), represented by the dots on the figure). This experi-
ment allows a number of useful observations that we now detail:

1. The Gaussian noise hypothesis is reasonably accurate, as the dots in Figure 5
are remarkably close to their corresponding (simulated) curves.

2. More importantly, the curves clearly illustrate the information leakage re-
duction obtained by implementing the AES S-box in the DDSLL logic style
(rather than in CMOS), in front of a worst-case template adversary.

234 M. Renauld et al.

Fig. 5. Perceived information in function of the noise, for the simulations (left), and
real measurements (right). The PI with real noise is marked with stars (*).

3. Both simulations and actual measurements show reduced information leak-
age. However, there is a noticeable reduction of the gap between logic styles
when moving from simulations towards measurements. This confirms that,
while ELDO (or Spice) simulations are a useful first step in order to analyze
physical security issues, the quantified data that their analysis provides does
not offer any formal guarantee for the security of the final test chip. This dif-
ference is essentially due to the previously mentioned difference between time
shifts and amplitude shifts in the traces corresponding to different inputs.

4. In the context of simulated DDSLL traces, the linear stochastic models do
not allow to extract any information (i.e. the leakage function corresponding
to the selected time sample cannot be approximated accurately enough with
a linear combination of the S-box output bits in this simulated case).

5. Finally, the perceived information can be higher for the DDSLL S-box than
for the CMOS one, when a linear stochastic model is used in the estima-
tions. It happens, e.g. in the right part of Figure 5, when the (simulated)
noise standard deviation is extremely small. This (seemingly paradoxical)
observation is explained by the impossibility to predict the actual leakages
precisely using an (incomplete) linear basis. Note that this observation would
vanish by extending the basis (as it is not observed with templates) and that
it does not happen for the actual noise values observed in our measurements.

Combined with the performance analysis in Section 3, these results lead to con-
trasted conclusions. On the one hand, they confirm that DDL can be an effi-
cient solution for improving security against side-channel attacks. Clearly, the
focus of the investigated DDSLL is more on performance than on perfectly data-
independent power consumption. But even in this case, experimental data shows
that the security improvement over CMOS remains noticeable in a 65-nanometer
technology. On the other hand, the information leakage reduction is also limited
and not sufficient to provide security when used as a stand alone solution (i.e.
without additional countermeasures). As a result, an interesting question is to
determine whether the information leakage of the CMOS and DDSLL S-boxes

Information Theoretic and Security Analysis 235

Fig. 6. Left: success rates for the template attacks (straight lines) and on-the-fly
stochastic attacks (dotted lines) against the CMOS (top) and DDSLL (bottom) S-box.
Right: perceived information for the selected samples (vertical lines).

are similarly easy to exploit with non-profiled side-channel attacks. We tackle
this problem (i.e. the security analysis of our test chips) in the next section.

4.4 Security Analysis

The previous experiments considered the worst-case information theoretic anal-
ysis of two prototype S-boxes. In this section, we detail the second part of the
evaluation framework in [25], namely the security analysis. For this purpose, we
investigated the success rates of various profiled and non-profiled attacks.

As far as profiled attacks are concerned, we carried out the template attacks
described in [3], as a worst-case (univariate) scenario. Next, and as a non-profiled
complement, we started by applying a variant of the stochastic approach de-
scribed in [11], in which the adversary builds a leakage model on-the-fly, using
a linear basis. The underlying assumption of this variant is that a correct key
hypothesis should give rise to the most accurate model, given that the base vec-
tors used to build it reasonably match the actual leakages. In addition, we also
performed a number of previously introduced attacks, namely the Correlation
Power Analysis (CPA) using a Hamming weight leakage model introduced by
Brier et al. in 2004 [2] and Kocher et al.’s single-bit Differential Power Analysis
(DPA) [10]. However, we note that these attacks are redundant to some extent
and that most intuitions can be extracted from the on-the-fly stochastic attacks4.
We now detail a few meaningful observations from our experiments.

First, Figure 6 shows the success rates corresponding to the template
and on-the-fly stochastic attacks, estimated using the CMOS and DDSLL
4 Summarizing, when provided with a single-element basis that corresponds to the tar-

get bit of a single-bit DPA, or the model of a CPA, the on-the-fly stochastic approach
is essentially similar to these CPA/DPA. Following a reasoning similar to to [16],
one could show that minor differences in the success rates of these distinguishers are
due to statistical artifacts. By contrast, when provided with a larger (e.g. 9-element
linear) basis, it allows improved resistance against incorrect assumptions, at the cost
of a more expensive estimation, reflected in a slightly higher data complexity.

236 M. Renauld et al.

Fig. 7. Non-profiled attacks against the CMOS (up) and DDSLL (bottom) test chips,
using the most informative samples (left) and less informative ones (right)

measurements, for different time samples, including the most informative ones.
The template curves provide a worst-case estimate of the number of measure-
ments needed to recover the key. They exhibit a security increase of approxi-
mately one order of magnitude, between the CMOS and DDSLL S-boxes. As
expected, the number of texts required to perform a successful template attack
is nicely correlated with the perceived information computed with profiled tem-
plates. Interestingly, the perceived information computed with profiled and linear
stochastic models also provides an accurate prediction of the non-profiled and
linear stochastic attacks for certain samples, although we have no formal guar-
antee in this case. These results underline that both for the CMOS and DDSLL
S-boxes, there are samples in the traces that have sufficiently strong linear de-
pendencies in the S-box output bits for being easily exploited with non-profiled
attacks.

Next, the left parts of Figure 7 show the results of DPA and CPA attacks us-
ing the most informative samples in our traces. They confirm that these attacks,
when based on a good assumption (e.g. single-bit DPA for the CMOS S-box,
CPA with Hamming weight leakage model for the DDSLL one) can slightly out-
perform the on-the-fly stochastic approach (and naturally remain bounded by
the worst-case template curves). Yet, as discussed in [5], the increase in data
complexity of the on-the-fly stochastic approach with linear basis is very lim-
ited. Interestingly, we could verify that the S-box output bits having high weight
in the stochastic models are the ones for which a single-bit DPA succeeds. In
other words, all the intuition provided by a single-bit DPA could be extracted
from a stochastic attack in this case. As illustrated in the upper right part
of Figure 7, there also exist time samples for which a correlation attack using a
Hamming weight leakage model does not succeed in recovering the key, while the

Information Theoretic and Security Analysis 237

non-profiled stochastic attack using a linear basis does. This confirms the previ-
ous observation in [22] that the latter distinguisher is a tool of choice for dealing
with leakage in recent technologies (including possible variability issues). Finally,
we could spot leakage samples, e.g. in the lower right part of Figure 7, for which
only profiled side-channel attacks allow successful key recoveries (i.e. for which
even the best single-bit DPA could not reach a high success rate).

Regarding the discussion about non-linear leakage functions in [28], these
experiments again lead to contrasted conclusions. First, let us mention that
with “non-linear” leakage samples, we simply denote the ones that could not be
exploited with a linear leakage model. As a matter of fact, many leakage samples
in the traces, including the most informative ones, were sufficiently linear. On
the other hand, we could also spot a few pathologic samples (e.g. ts = 74 for
the DDSLL S-box) for which these attacks do not succeed. As a result, and
as far as the experiments in this work are concerned, one can conclude that
the non-linearity issue is not a limitation for practical attacks, in which the
existence of a few linear leakage samples is sufficient to perform a successful
key recovery. But the existence of non-linear leakage samples also confirms that
only a profiled information theoretic evaluation is theoretically able to evaluate
all the information leaked by an implementation (i.e. in a worst-case scenario
extended to the multivariate setting, by getting rid of H4 in Section 4.3).

5 Discussion and Open Questions

This paper brings two main contributions related to the implementation of the
AES S-box in protected logic styles, using a 65-nanometer technology.

First, we show that optimizing such logic styles with performances in mind
can strongly mitigate the overheads of DDL compared to CMOS. Arguably, our
investigated DDSLL S-box is based on full custom design, which remains an
important drawback. But it illustrates that for some primitives, it could be an
acceptable solution, both in terms of area cost and power consumption.

Second, we put forward the information leakage reduction of such an S-box,
when evaluated in front of various side-channel distinguishers. In the case of a
worst-case template attack, it typically corresponds to one order of magnitude, in
terms of number of measurements to recover the key. Hence, practically secure
implementations would clearly require to combine the investigated logic style
with other countermeasures, like masking. Yet, it remains that relying on DDL
gives additional means for the designers to control the information leakage of an
implementation. As a consequence, it is an interesting open problem to determine
whether the gap between CMOS and such modified designs further reduces in
smaller technologies. That is, do the traditional advantages of DDL vanish as the
circuit sizes are shrinking, because of hardware constraints that become harder
to fulfill? In this respect, a very interesting project would be to systematically
compare technology nodes (e.g. 130nm, 90nm, 65nm, 45nm and 22nm) in terms
of their respective resistance against side-channel attacks.

Eventually, one disappointing point of our DDSLL test chip is the strongly
linear nature of its leakages (that goes against the expectations of ELDO/Spice

238 M. Renauld et al.

simulations). Although stochastic models are very useful to discuss such ques-
tions, the precise understanding of this linearity remains difficult. Hence, an
important question for further research is to determine if the use of DPDN in
our designs (allowing improved efficiency) is not the main cause of this limitation.
In other words, do other DDL such as SABL, WDDL or MCML provide more
non-linear power consumption traces? More generally, is it possible to develop a
logic style with non-linearity as a design guideline? In addition to the reduced
information leakages, this would then provide a clear gain over CMOS devices,
in view of the difficulty to exploit such leakages with non-profiled attacks [28].

References

1. Allam, M., Elmasry, M.: Dynamic current mode logic: a new low-power high-
performance logic style. Journal of Solid State Circuits 36, 550–558 (2001)

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

4. Deniz, Z.T., Leblebici, Y.: Low-power current mode logic for improved dpa-
resistance in embedded systems. In: ISCAS (2), pp. 1059–1062. IEEE, Los Alamitos
(2005)

5. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. Journal of Cryptographic Engineering (to appear)

6. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

7. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

8. Hassoune, I., Macé, F., Flandre, D., Legat, J.-D.: Dynamic differential self-timed
logic for robust and low-power security ics. Integration 40(3), 355–364 (2007)

9. Hwang, D.D., Tiri, K., Hodjat, A., Lai, B.-C., Yang, S., Schaumont, P.,
Verbauwhede, I.: Aes-based security coprocessor ic in 0.18um cmos with resistance
to differential power analysis side-channel attacks. IEEE Journal of Solid-State
Circuits 41(4), 781–792 (2006)

10. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

11. Lemke-Rust, K.: Models and algorithms for physical cryptanalysis. PhD disserta-
tion, University of Bochum (January 2007)

12. Lin, L., Burleson, W.P.: Analysis and mitigation of process variation impacts on
power-attack tolerance. In: DAC, pp. 238–243. ACM, New York (2009)

13. Macé, F., Standaert, F.-X., Hassoune, I., Legat, J.-D.: A dynamic current mode
logic to counteract power analysis attacks. In: DCIS, pp. 186–191 (2004)

14. Macé, F., Standaert, F.-X., Quisquater, J.-J.: Information theoretic evaluation
of side-channel resistant logic styles. In: Paillier, P., Verbauwhede, I. (eds.)
CHES 2007. LNCS, vol. 4727, pp. 427–442. Springer, Heidelberg (2007)

Information Theoretic and Security Analysis 239

15. Macé, F., Standaert, F.-X., Quisquater, J.-J., Legat, J.-D.: A design methodology
for secured iCs using dynamic current mode logic. In: Paliouras, V., Vounckx,
J., Verkest, D. (eds.) PATMOS 2005. LNCS, vol. 3728, pp. 550–560. Springer,
Heidelberg (2005)

16. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: Unifying
standard dpa attacks. IEEE Information Security 5(2), 100–110 (2011)

17. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A systematic evaluation of
compact hardware implementations for the rijndael S-box. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 323–333. Springer, Heidelberg (2005)

18. Popp, T., Kirschbaum, M., Zefferer, T., Mangard, S.: Evaluation of the masked
logic style mdpl on a prototype chip. In: CHES 2007 [19], pp. 81–94

19. Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: Dpa-resistance without
routing constraints. In: Rao and Sunar [20], pp. 172–186

20. Rao, J.R., Sunar, B. (eds.): CHES 2005. LNCS, vol. 3659. Springer, Heidelberg
(2005)

21. Regazzoni, F., Eisenbarth, T., Poschmann, A., Großschädl, J., Gürkaynak, F.K.,
Macchetti, M., Deniz, Z.T., Pozzi, L., Paar, C., Leblebici, Y., Ienne, P.: Evaluating
resistance of mcml technology to power analysis attacks using a simulation-based
methodology. Transactions on Computational Science 4, 230–243 (2009)

22. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011)

23. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao and Sunar [20], pp. 30–46

24. Standaert, F.-X., Koeune, F., Schindler, W.: How to Compare Profiled Side-
Channel Attacks? In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D.
(eds.) ACNS 2009. LNCS, vol. 5536, pp. 485–498. Springer, Heidelberg (2009)

25. Standaert, F.-X., Malkin, T., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

26. Tiri, K., Verbauwhede, I.: A dynamic and differential cmos logic with signal in-
dipendent power consumption to withstand differential power on smart cards.
In: Proceedings of the 28th European Solid-State Circuits Conference (ESSCIRC
2002), Florence, Italy, pp. 403–406 (September 2002)

27. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure dpa resis-
tant asic or fpga implementation. In: DATE, pp. 246–251 (2004)

28. Veyrat-Charvillon, N., Standaert, F.-X.: Generic side-channel distinguishers: Im-
provements and limitations. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 354–372. Springer, Heidelberg (2011)

Thwarting Higher-Order Side Channel Analysis

with Additive and Multiplicative Maskings

Laurie Genelle1, Emmanuel Prouff1, and Michaël Quisquater2

1 Oberthur Technologies
{l.genelle,e.prouff}@oberthur.com

2 University of Versailles
michael.quisquater@prism.uvsq.fr

Abstract. Higher-order side channel attacks is a class of powerful tech-
niques against cryptographic implementations. Their complexity grows
exponentially with the order, but for small orders (e.g. 2 and 3) recent
studies have demonstrated that they pose a serious threat in practice.
In this context, it is today of great importance to design software coun-
termeasures enabling to counteract higher-order side channel attacks for
any arbitrary chosen order. At CHES 2010, Rivain and Prouff have in-
troduced such a countermeasure for the AES. It works for any arbitrary
chosen order and benefits from a formal resistance proof. Until now,
it was the single one with such assets. By generalizing at any order a
countermeasure introduced at ACNS 2010 by Genelle et al. , we propose
in this paper an alternative to Rivain and Prouff’s solution. The new
scheme can also be proven secure at any order and has the advantage of
being at least 2 times more efficient than the existing solutions for orders
2 and 3, while maintaining the RAM consumption lower than 200 bytes.

1 Introduction

In the late nineties, attacks called Side Channel Analysis (SCA for short) have
been exhibited against cryptosystems implemented in embedded devices. Since
then, they have been refined and, in particular, their initial principle has been
generalized in order to exploit several leakage points simultaneously. This led
to the introduction of the higher-order SCA concept, which exploit leakage ob-
servations resulting from the handling of several intermediate variables during
the cryptosystem processing. One way to make them ineffective at order d is
to randomize the algorithm such that the probability distribution of any vector
of d observations is independent of the key. To perform this randomization, a
standard technique is based on secret sharing [23] and is often called masking in
the context of side channel analysis. We talk about additive (resp. multiplicative)
masking when any value is expressed as a sum (resp. product) of shares.

As side channel attacks, masking can be characterized by the number of ran-
dom shares per variable. This number is called the masking order. A dth-order
masking can always be theoretically defeated by a (d + 1)th-order SCA, but
noise effects imply that the difficulty of carrying out such an attack in practice

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 240–255, 2011.
c© International Association for Cryptologic Research 2011

Thwarting Higher-Order Side Channel Analysis 241

increases exponentially with its order [3,22]. For this reason, the masking order
is today a well accepted security criterion and many works have studied how
to apply dth-order masking to protect any kind of cryptosystem at any order
d. In particular, block cipher software implementations have been a privileged
target either to demonstrate the efficiency of an attack [15] or to argue on the
effectiveness of a countermeasure [4, 6, 16, 19, 21]. It is actually a matter of fact
that any improvement of an attack against, or a countermeasure for, a standard
block cipher such as AES has an important and direct impact on the (public or
military) embedded security industry.

1.1 Related Works

Protecting a block cipher software implementation by masking at any order d
reveals some issues which are very close to those tackled out in the Multi-Party
Computation or Private Circuits area [2,5]. The main difficulty lies in performing
all the algorithm steps by manipulating the shares separately, while being able
to re-build the expected result. As we will see, non-linear layers – crucial for the
block cipher security – are particularly difficult to protect. Only a few proposals
have been made regarding this issue in the context of embedded security. For
d = 2, there only exist three methods that perfectly thwart 2O-SCA [19,21,22].
For d > 2, several methods have been proposed [21, 22], but except [21] all
those attempts have been shown to be flawed, which has raised the need for
solutions with formal resistance proof. Solution in [21], which is dedicated to the
AES, benefits from such a proof and, when applied for d = 2, it is much more
efficient than [22] and [19]. However, the time efficiency is still low (around 200 K-
cycles in a classical smart card 8-bit architecture) and, even, becomes prohibitive
when d = 3 (greater than 300 K-cycles). Alternative solutions are therefore
missing, which would have equivalent security but would be more efficient. It is
all the more important that second and third order SCA have been substantially
improved during the last years and have even been successfully put into practice
[12, 14, 15, 18, 25].

1.2 Our Results

In this paper, we are interested in masking to the order d, block ciphers whose
design involves affine operations and power functions defined on a finite field.
The classic strategy is to mask the message additively and to calculate the masks
propagation through the various transformations. While calculating the propa-
gation of additive masks through affine operations is easy, this is no longer the
case for the power functions. The approach proposed in [21] is to express a power
function in terms of squares and multiplications. The computation of the propa-
gation of the additive masks through a multiplication requires little memory and
can be managed regardless of the order d. However, this step is very time con-
suming (quadratic in the order d). A natural idea to achieve better performance
is to mask affine functions additively and power functions multiplicatively. In this
case, the calculation of the masks spreading is fast and requires little memory.
When applied at order d, the only potentially costly part lies in the conversion

242 L. Genelle, E. Prouff, and M. Quisquater

of additives masks into multiplicative ones (and vice versa) since this conversion
must be done without manipulating d-tuple of shares dependent on sensitive
data. This strategy has already been followed to define implementations with
assumed security at order d = 1 [1, 10, 24]. Unfortunately, none of them was
perfectly thwarting first-order SCA and, even, [1] and [24] were shown to be
flawed. Finally, Genelle et al. have proposed in [7] a satisfactory solution with
formal security proof and good performances. This is an encouraging step but
the extension of [7] to any order poses several problems. Firstly, it requires to
calculate a Dirac function in a secure manner w.r.t. higher-order SCA. Secondly,
it implies to generalize the conversion functions that map additive maskings
into multiplicative ones and conversely. In a recent work, the authors of [8] have
solved the first issue efficiently. In this paper, we solve the second one and we
prove the security of our proposal. Having solved the two issues related to the
generalization of Genelle et al. ’s work at any order, we are now able to design
a masking scheme for any block cipher combining affine transformations and
power functions. When applied to secure the software implementation of the
AES at order d = 2 (resp. d = 3), we achieve a time efficiency around 70K cycles
(resp. 180K cycles) at the cost of a RAM memory consumption lower than 200
bytes in both cases. Since this amount of RAM is almost always acceptable in the
nowadays embedded systems, this secure AES implementation is, to the best of
our knowledge, the first one that makes 2nd and 3rd order security achievable,
even in very constraint contexts.

1.3 Road Map

In Sect. 2, we first introduce a few basics and notations related to the additive
and multiplicative maskings in finite fields. Then, in Sect. 3 we present the core
principle of our approach, we recall how the computation of a Dirac function
can be secured at any order d and we present two new conversion algorithms
enabling to securely convert an additive masking into a multiplicative one and
conversely. Eventually, in Sect. 4 we apply our masking scheme to the AES and
compare its efficiency with that of the state of the art solutions.

2 Basics and Notations

2.1 Notations

The bit-length of the elements involved in the algorithmic description of the
cryptosystem will be denoted by n. By default, any variables in this paper are
assumed to be in a vector space of some dimension m over GF(2n). The field ad-
dition in GF(2n) is denoted by ⊕ and the field multiplication by⊗. To operate on
elements of GF(2n)m, the two previous laws are extended: the addition continues
to be a bitwise addition and the multiplication between two vectors in GF(2n)m

corresponds to the componentwise product. For two vectors (x1, . . . , xm) and
(y1, . . . , ym) in GF(2n)m, the result of the latter product is a vector (z1, . . . , zm)
in GF(2n)m whose coordinates satisfy zi = xi ⊗ yi. The inverse of an element

Thwarting Higher-Order Side Channel Analysis 243

(x1, . . . , xm) ∈ (GF(2n)�)m for the componentwise product will be simply de-
fined as the vector (x−1

1 , . . . , x−1
m), where for every i, x−1

i is the inverse of xi for
the multiplicative law ⊗ of GF(2n)�. For convenience, we will keep the notations
⊕ and −1 for the extensions of the field operations ⊕ and −1. On the other
hand and to avoid any ambiguity, we will denote by

.⊗ the extension of the field
operations ⊗ into a componentwise multiplication. To differentiate vectors in
GF(2n)m from elements of GF(2n), we shall write the vector in bold. Namely,
by convention x shall denote a vector in GF(2n)m, whereas x shall denote an
element of GF(2n).

2.2 Basics on Masking

When higher-order masking is involved to secure the physical implementation
of a cryptographic algorithm, every sensitive variable x occurring during the
computation is randomly split into d + 1 shares x0, . . . , xd in such a way that
the following relation is satisfied for a group operation ⊥:

x0 ⊥ x−1
1 ⊥ · · · ⊥ x−1

d = x , (1)

where, xi
−1 denotes the inverse of xi w.r.t. to ⊥.

Usually, the d shares x1, . . . , xd (called the masks) are randomly picked up and
the last one x0 is processed such that (1) is satisfied. When d random masks are
involved per sensitive variable, the masking is said to be of order d. The so-called
additive masking assumes that ⊥ is the addition ⊕ in GF(2n)m. In this case,
we have x−1

i = xi for every i. The (d + 1)-tuple (x0, . . . ,xd) is called a (d + 1)-
additive sharing of x and the transformation (x, (xi)i>1) 	→ x0 = x⊕x1⊕· · ·⊕xd

is called dth-order additive masking. In multiplicative masking, the operation ⊥
is the componentwise product

.⊗ in the group (GF(2n)�)m. The (d + 1)-tuple
(x0, . . . ,xd) is called (d + 1)-multiplicative sharing of x and the transformation
(x, (xi)i>1) 	→ x0 = x

.⊗ x1

.⊗ · · · .⊗ xd is the dth-order multiplicative masking of
x. Note that the multiplicative masking is only defined for vectors x with only
non-zero coordinates. In what follows, we shall simply say masking if there is no
ambiguity on the nature of the operation or if the text is applicable for the two
kinds of maskings.

When dth-order masking is involved to secure an implementation composed of
elementary transformations in the form y ← Op(x), a so-called dth-order mask-
ing scheme must be designed to replace them by new transformations taking
at input a sharing (x0, . . . ,xd) of x and returning a sharing (y0, . . . ,yd) of y.
The dth-order security of such a design holds if and only if it can be proved
that every d-tuple of manipulated intermediate results during the computa-
tion is independent of any sensitive variable of the implementation (including x
and y).

3 Higher-Order Masking

We formally define a block cipher as a cryptographic algorithm that transforms
a plaintext block into a ciphertext block from a secret key. The transformation

244 L. Genelle, E. Prouff, and M. Quisquater

is done by operating several elementary operations on a so-called internal state,
viewed as a vector in GF(2n)m and initially filled with the plaintext. In this
section, we show how to secure at any order d a block cipher composed of trans-
formations Op that are either affine or are bijective power functions defined w.r.t.
to the same field operation laws ⊕ and ⊗ over GF(2n). Affine transformations
will be assumed to be defined over the vector space GF(2n)m. Power functions
will be assumed to operate on a vector in GF(2n)m coordinate by coordinate.

3.1 Core Idea

As usually done when applying masking, each calculation y ← Op(x) is replaced
by a sequence of elementary calculations that securely construct a (d+1)-sharing
(y0, . . . ,yd) of y from the (d + 1)-sharing (x0, . . . ,xd) of x. To define those se-
quences of elementary operations we use the fact that linear transformations
are automorphisms of (GF(2n)m,⊕), while bijective power functions are auto-
morphisms of (GF(2n)m,

.⊗). Hence, depending of its (affine or multiplicative)
nature, we involve either an additive or a multiplicative sharing of the internal
state to secure the operation Op.

Affine Transformations processing. If Op is a linear transformation defined over
GF(2n)m, then the sensitive variable x is assumed to be represented by a (d+1)-
additive sharing (x0, . . . ,xd). In this case, securing the calculation y ← Op(x)
simply consists in replacing it by d+1 applications of Op, one for each share xi.
After denoting by yi the value Op(xi), we have

⊕d
j=0 yj = y. We conclude that

(y0, . . . ,yd) is a (d + 1)-sharing of y. Moreover, it is obvious that no d-tuple of
intermediate data is sensitive during this processing. For affine transformations
the processing is done similarly, except for d even where only the linear part of
Op is applied to the last share xd.

Power Functions processing. If Op is a power function over GF(2n)m, then the
sensitive variable x is assumed to be non-zero and represented by a (d + 1)-
multiplicative sharing (z0, . . . , zd). In this case, y ← Op(x) is simply replaced
by d+1 elementary calculations of Op, one on each multiplicative share zi. This

results in d+1 shares yi = Op(zi) that satisfy y0

.⊗
.⊗d

j=1y
−1
j = y and are thus a

(d+1)-multiplicative sharing of y. It can be easily checked that every d-tuple of
intermediate variables involved in the processing is independent of any sensitive
variable, since all the zi (and yi) are manipulated independently.

The application of the most appropriate masking for each elementary oper-
ation enables to efficiently secure each (affine or non-linear) layer of the block
cipher. Nevertheless, the mix of additive and multiplicative maskings arises the
two following issues:

Issue 1: the proposed power functions processing involves multiplicative shar-
ings and the latter ones can only be defined for an element x in (GF(2n)�)m,
whereas the block cipher internal state is defined in GF(2n)m. A dth-order
secure scheme for the mapping of an element of GF(2n)m into an element
of (GF(2n)�)m (and vice versa) must therefore be defined. Moreover, the
mapping must be reversible at any time during the block cipher processing.

Thwarting Higher-Order Side Channel Analysis 245

Issue 2: since affine functions and power functions are processed alternatively,
special transformations must be defined to convert additive sharings into
multiplicative ones and conversely. Moreover those transformations must
themselves be dth-order secure to not decrease the overall security of the
block cipher implementation.

The first issue has been solved in [8]. We give in Sect. 3.2 the outlines of the
solution that essentially relies on the secure processing of a Dirac function. The
second issue is tackled out in Sect. 3.3, where we propose two algorithms that
transform an additive masking (AM for short) into a multiplicative masking (MM
for short) and conversely. All those transformations are eventually combined in
Sect. 3.4 to secure a block cipher round transformation according to the following
diagram.

Linear Op

Linear Op GF(2n∗)m → GF(2n)m

GF(2n)m → GF(2n∗)m

Power Op

AM to MM

MM to AM

Additively masked

Additively masked

Multiplicatively masked

3.2 Issue 1: Mapping Elements of GF(2n)m Into (GF(2n)�)m

The solution of Issue 1 proposed in [8] consists in transforming any zero value
into a non-zero one, keeping track of this modification if applied. Let us denote
by δ0 the Dirac function defined in GF(2n) by δ0(x) = 1 if x = 0 and δ0(x) = 0
otherwise. To map any x ∈ GF(2n) into GF(2n)�, the element is simply added
with its dirac value δ0(x). After extending the Dirac function to GF(2n)m by
setting δ(x) = (δ(x0), . . . , δ(xm−1)), we get a function x 	→ x⊕δ(x) mapping any
element of GF(2n)m into an element of (GF(2n)�)m. To secure the processing
of the latter transformation against dth-order SCA, the vector x is represented
by a (d + 1)-additive sharing (x0, . . . ,xd) and a secure processing is applied to
output an additive sharing (Δ0, . . . , Δd) of δ(x). The details of the processing,
as long a proof of its security against dth-order SCA are given in [8]. We call this
processing SecDirac in the following.

3.3 Issue 2: Conversion Functions

In this section, we show how to build dth-order secure transformations passing
from the (d + 1)-additive sharing (x0, . . . ,xd) of x ∈ (GF(2n)�)m to its (d +
1)-multiplicative sharing (z0, . . . , zd) and conversely. These transformations are
respectively called AMtoMM(·) and MMtoAM(·) and act as follows:

246 L. Genelle, E. Prouff, and M. Quisquater

– AMtoMM(x⊕
⊕d

i=1
xi,x1, . . . ,xd) → (x ⊗

.⊗d

i=1zi, z1, . . . , zd),

– MMtoAM(x⊗
.⊗d

i=1zi, z1, . . . , zd) → (x⊕
⊕d

i=1
xi,x1, . . . ,xd).

To process the AMtoMM transformation, the general strategy developed hereafter
consists in converting sequentially each additive mask of x into a multiplicative
one. To preserve the security order of the scheme at each step, an additive mask
is added to the multiplicatively masked representation of x prior to remove one
of the remaining multiplicative masks. The strategy followed for the MMtoAM is
exactly the same, except that the roles of the additive and multiplicative masks
are reversed.

In the hereafter detailed descriptions of the transformations we will use three
ordered sets SMV , SAM and SMM that will be respectively dedicated to the
storage of the masked value, the additive shares and the multiplicatives shares.

At the beginning of the AMtoMM processing, let us associate the (d+1)-additive
sharing (x0, . . . ,xd) of x with the sets SMV = {x0}, SAM = {x1, . . . ,xd} and
SMM = ∅. The conversion of the (d + 1)-additive sharing to a multiplicative one
(z0, . . . , zd) may be viewed as a sequence of updatings of those three sets such
that, at the end, SMV = {z0}, SAM = ∅ and SMM = {z1, . . . , zd}. To perform
such a conversion, the following treatment is repeated for every i ∈ [1; d]:

1. Masking multiplicatively the element in SMV and all the shares in SAM by
zi.

2. Inserting the multiplicative mask zi at the end of SMM .
3. Removing the first element of SAM and adding this value to the masked

value in SMV .

For the MMtoAM method, the (d + 1)-multiplicative sharing (z0, . . . , zd) of x is
associated with the sets SMV = {z0}, SMM = {z1, . . . , zd} and SAM = ∅ and
the conversion consists in repeating the following treatment for every i ∈ [1; d]:

1. Masking additively the element of SMV with xi.
2. Inserting the mask xi at the end of SAM .
3. Removing the first component, i.e. zi, of SMM and multiplying by z−1

i the
element of SMV and all the additive shares in SAM .

This straightforward strategy is dth-order secure when d = 1 or d = 2 but not
when d is higher. Indeed, it can be observed that the process of AMtoMM (resp.

MMtoAM) leads to the computation of the value xd

.⊗
.⊗d

i=1zi (resp. x1

.⊗
.⊗d

i=1z
−1
i).

Hence, if xd �= 0 (resp. x1 �= 0), then the secret value x may be recovered from

xd, xd

.⊗
.⊗d

i=1zi and x
.⊗

.⊗d

i=1zi (resp. x1, x1

.⊗
.⊗d

i=1z
−1
i and x

.⊗
.⊗d

i=1zi).
In both cases, this means that 3 shares are sufficient to recover x which implies
that the straightforward schemes are never 3rd-order secure.

In order to solve this issue, we slightly modify our approach. In place of the
third step in the sequence related to AMtoMM, we mask at order 1 all the shares
in SAM with new fresh random values, except for the last share which stays
unchanged. We remove all those elements from SAM and we add them to the

Thwarting Higher-Order Side Channel Analysis 247

element in SMV . Finally, we insert all the new fresh random masks into SAM .
For the MMtoAM transformation, we do not replace the third step of the sequence
and instead, we add a fourth step during which all the shares in SAM are masked
at order 1 with new fresh random values. We remove then all those values from
SAM and we add them to the element in SMV . Finally, we insert all the new
fresh random masks into SAM .

We present in Alg. 1 the sequence of the different steps required for the con-
version of an additive masking into a multiplicative one.

Algorithm 1. Secure AMtoMM(·)
Input(s): A (d + 1)-additive sharing (x0, . . . ,xd) of x
Output(s): A (d + 1)-multiplicative sharing (z0, . . . , zd) of x

1. z0 ← x0

2. for i = 1 to d do

zi ← rand((GF(2n)�)m)

z0 ← z0

.⊗ zi

3. for j = 1 to d − i do

U ← rand(GF(2n)m)

xj ← zi

.⊗ xj

∗∗ Refreshing of the additive share

xj ← xj ⊕ U

z0 ← z0 ⊕ xj

xj ← U

xd−i+1 ← zi

.⊗ xd−i+1

z0 ← z0 ⊕ xd−i+1

4. return (z0, z1, . . . , zd)

Alg. 2 describes the different steps to convert a multiplicative sharing into an
additive one.

Remark 1. The security of AMtoMM and MMtoAM algorithms is not affected if ad-
ditive masks are not refreshed during the two first steps. This optimization was
not presented for the sake of clarity. Also, in our application (see Sect. 4), we
will only handle the inverse of the multiplicative shares (z1, . . . , zd). Therefore,
AMtoMM and MMtoAM can be input with (z0, z−1

1 , . . . , z−1
d) instead of (z0, . . . , zd),

so that the inverse of the zi does not need to be computed inside the algorithms.

The following propositions state the completeness and the security of AMtoMM
and MMtoAM. There proofs are given in the extended version [9].

Proposition 1 (Completeness). If (x0, . . . ,xd) is a (d + 1)-additive sharing
of x, then algorithm AMtoMM(x0, . . . ,xd) is a (d + 1)-multiplicative sharing of x.
If (z0, . . . , zd) is a (d+1)-multiplicative sharing of x, then MMtoAM(z0, . . . , zd) is
a (d + 1)-additive sharing of x.

248 L. Genelle, E. Prouff, and M. Quisquater

Algorithm 2. Secure MMtoAM(·)
Input(s): A (d + 1)-multiplicative sharing (z0, . . . , zd) of x
Output(s): A (d + 1)-additive sharing (x0, . . . , xd) of x

1. x0 ← z0

2. for i = 1 to d do

xi ← rand(GF(2n)m)

x0 ← x0 ⊕ xi

x0 ← x0

.⊗ z−1
i

3. for j = 1 to i do

xj ← xj

.⊗ z−1
i

U ← rand(GF(2n)m)
∗∗ Refreshing of the additive share

xj ← xj ⊕ U

x0 ← x0 ⊕ xj

xj ← U

4. return (x0,x1, . . . ,xd)

Proposition 2 (Security). AMtoMM(·) and MMtoAM(·) are dth-secure.

3.4 Full Scheme

In this section we apply the principle presented in Sect. 3.1 and the functions
introduced in Sect(s) 3.2 and 3.3 to secure the processing of a block cipher
round. We assume that this round is parameterized by a secret round key
k ∈ GF(2n)m and operates a transformation of the form λ′ ◦ γ ◦λ on an internal
state x ∈ GF(2n)m. Functions λ and λ′ are assumed to be automorphisms of
(GF(2n)m,⊕) and function γ is assumed to be an automorphism of (GF(2n)m,

.⊗)
(e.g. a transformation processing bijective power functions – not necessarily the
same – to the n-bit coordinates of the input vector). In the following algorithm,
we assume that the round key k ∈ GF(2n)m and the internal state x ∈ GF(2n)m

have been previously additively shared into (k0, . . . ,kd) and (x0, . . . ,xd) respec-
tively. In the right-hand column of the following algorithm description, we added
an expression of the form · ← · to explicit to which variable (on the left) relies
the sharing (on the right).

The completeness of Alg. 3 is discussed in [9].

Security. The security of Alg. 3 w.r.t. dth-order SCA can be deduced from the
local resistance of its main steps. Steps 1, 2, 5-6, 8 and 9 operate a transforma-
tion or an operation on each share of the (d + 1)-sharing of the internal state
independently. They are therefore secure against dth-order SCA. The security of
SecDirac has been proved in [8] and is a direct consequence of the security proof
in [11]. Eventually, transformations AMtoMM and MMtoAM have been proved to be
secure against dth-order SCA in [9]. We deduce that Alg. 3 thwarts dth-order
SCA for any d.

Thwarting Higher-Order Side Channel Analysis 249

Algorithm 3. dth-order secure processing of λ′ ◦ γ ◦ λ(x⊕ k)

Input(s): A (d + 1)-additive sharing (k0, . . . ,kd) of k and a (d + 1)-additive sharing
(x0, . . . ,xd) of x
Output(s): A (d + 1)-additive sharing (x0, . . . , xd) of x = λ ◦ γ ◦ λ′(x ⊕ k)

∗∗ Secure processing of the round-key addition

1. for i = 0 to d do

xi ← xi ⊕ ki

[x ⊕ k ← (x0, . . . ,xd)]
∗∗ Secure processing of λ

2. for i = 0 to d do

xi ← λ(xi)

[λ(x ⊕ k) ← (x0, . . . ,xd)]
∗∗ Secure mapping from GF(2n)m into (GF(2n)�)m

∗∗ The (d + 1)-additive sharing (Δ0, . . . , Δd) of δ(x⊕ k) is saved in memory

3. (x0, . . . ,xd) ← SecDirac(x0, . . . ,xd)

[λ(x ⊕ k) ⊕ δ(λ(x⊕ k)) ← (x0, . . . ,xd)]
∗∗ Secure conversion of the additive masking into a multiplicative one

4. (z0, . . . , zd) ← AMtoMM(x0, . . . , xd)

[λ(x ⊕ k) ⊕ δ(λ(x⊕ k)) ← (z0, . . . , zd)]
∗∗ Secure processing of γ

5. z0 ← γ(z0)

6. for i = 1 to d do

zi ← γ(zi)

[γ ◦ λ(x ⊕ k) ⊕ δ(λ(x⊕ k)) ← (z0, z1, . . . , zd)]
∗∗ Secure conversion of the multiplicative masking into an additive one

7. (x0, . . . ,xd) ← MMtoAM(z0, z1 . . . , zd)

[γ ◦ λ(x ⊕ k) ⊕ δ(λ(x⊕ k)) ← (x0,x1, . . . ,xd)]
∗∗ Secure mapping from (GF(2n)�)m into GF(2n)m

8. for i = 0 to d do

xi ← xi ⊕ Δi

[γ ◦ λ(x ⊕ k) ← (x0,x1, . . . ,xd)]
∗∗ Secure processing of λ′

9. for i = 0 to d do

xi ← λ′(xi)

[λ′ ◦ γ ◦ λ(x ⊕ k) ← (x0,x1, . . . ,xd)]

10. return (x0, . . . ,xd)

Complexity. We list in Tables 1 and 2 the complexity of Alg. 3 in terms of the
following elementary operations: (n, n)-matrix transpositions Mᵀ required for the
secure Dirac computation (see [8]), n-bit operations AND, XOR and ⊗ and trans-
formations λ, γ and λ′ over GF(2n)m. To have interpretable results we consider
separately the operations related to: (1) the secure mapping from GF(2n)m to

250 L. Genelle, E. Prouff, and M. Quisquater

Table 1. Complexity of Algorithm SecDirac

Order SecDirac

Mᵀ XOR AND

1 2m/n 28m/n + 2m 28m/n
2 3m/n 84m/n + 3m 63m/n
3 4m/n 168m/n + 4m 112m/n
d (d + 1)m/n (14d + n)(d + 1)m/n 7(d + 1)2m/n

Table 2. Complexity of the masking conversions and Algorithm 3

Order AMtoMM MMtoAM Algorithm 3

XOR ⊗ XOR ⊗ λ γ λ′ XOR

1 m 2m 3m 2m 2 2 2 4m
2 4m 5m 8m 5m 3 3 3 6m
3 9m 9m 15m 9m 4 4 4 8m
d md2 md

2
(3 + d) md

2
(2 + d) md

2
(3 + d) d + 1 d + 1 d + 1 2m(d + 1)

(GF(2n)�)m (i.e. SecDirac), (2) the conversion functions (Algorithms 1 and 2)
and (3) the remaining transformations in Alg. 3 (right-hand column of Table 2).

Remark 2. For our implementations reported in Sect. 4 (in this case we had
m = 16 and n = 8), we experimented that the cost of the n-bit operations
XOR and AND was equal to 1 clock cycle. The cost of ⊗ was equal to 22 and
that of Mᵀ was equal to 148. Moreover, we implemented the functions λ, λ′ and
γ thanks to ROM lookup tables and hence, each computation costed around m
clock cycles (considering that one table access costs one clock cycle).

As it can be checked in Table 2, the complexity of the secure processing of the
non-linear function γ (Steps 3 to 8 in Alg. 3) essentially corresponds to the sum
of the complexities of SecDirac and Algorithms AMtoMM and MMtoAM. Neglecting
the cost of the matrix transposition and assuming m = 16 and n = 8 (as it is the
case for the AES), our secure processing of γ requires 74d2+104d+30 operations1

XOR or AND and 16d2 +48d operations ⊗. For comparison, the cost of Rivain and
Prouff’s solution [21] to secure the AES non-linear layer (which corresponds
to our transformation γ) is 128d2 + 192d operations XOR and 64d2 + 128d + 64
operations ⊗, neglecting the cost of the look-up table accesses. In view of the two
costs above, our solution is clearly more efficient than that in [21]. In particular,
the number of operations ⊗ is divided by around 4, which is an important
improvement considering that the latter operation is costly (around 20 times
more costly than a XOR or a AND).

1 The two operations are considered globally since they have the same cost.

Thwarting Higher-Order Side Channel Analysis 251

4 Application to the AES

The AES-128 is a cryptosystem that iterates 10 times a same round transfor-
mation on a 16-bytes internal state initially filled with the plaintext (i.e. pa-
rameters n and m in Sect. 3.4 equal here 8 and 16 respectively). The round
is composed of a key addition AddRoundKey, a nonlinear layer SubBytes which
applies the same substitution-box (s-box) to every byte of the internal state and
linear transformations ShiftRows and MixColumns. The s-box is defined as the
left-composition of a linear transformation λA over GF(256) with the power
function f : x ∈ GF(256) 	→ x254 ∈ GF(256), followed by the addition of a con-
stant term. The SubBytes transformation can thus also be represented as the left
composition of the two transformations A = (λA, . . . , λA) and Inv = (f, · · · , f),
both defining a componentwise transformation of the internal state, followed
by the bitwise addition of a constant term c ∈ GF(2n)m. While A, ShiftRows
and MixColumns are automorphisms of (GF(2n)m,⊕), the transformation Inv

defines an automorphism of (GF(2n)�)m,
.⊗). In view of this description, it is

clear that the AES round can be rewritten as a composition of transformations
satisfying the assumptions done in the introduction of Sect. 3: λ is defined as
the identity function over GF(2n)m, γ is the function Inv and λ′ is the function
MixColumns ◦ ShiftRows ◦ A. The masking scheme presented in Sect. 3.4 can
thus be applied to protect the AES rounds.

In this section, we compare the efficiency of our proposal with that of the state
of the art solutions when applied to secure the AES. All the implementations
presented below involve the same code to process the linear transformations λ′

and AddRoundKey. Namely, we use a (d + 1)-additive masking such as presented
previously in this article. We chose to protect all the rounds of the AES process-
ing. To secure the γ transformation, we chose to select few methods from the
literature for d = {1, 2, 3}. In what follows, we give details on the methods we
chose in each category.

For d = 1, we selected four methods. First we chose the table re-computation
method [13] since it achieves the best timing performance. The second chosen
method is the tower field method [16], which offers the best memory perfor-
mance. Then, since the work of this paper is the generalization of the 1st-order
multiplicative masking scheme proposed in [7], we implemented it as well. Even-
tually, we chose to implement the dth-order SCA secure scheme proposed in [21].
Though it is less efficient than the others for d = 1, choosing it enables to com-
pare our proposal with another method which can be applied generally for any
order d.

For d = 2, only few methods exist that are perfectly SCA secure. Actually,
only the works [22], [20] and [21] propose such kind of schemes. We chose to
implement all of them.

For d = 3, only [21] proposes a solution in this category.

252 L. Genelle, E. Prouff, and M. Quisquater

Table 3. Comparison of secure AES implementations

Method Reference cycles (103) RAM (bytes)

Unprotected Implementation

1. No Masking Na. 2 32

First-Order Masking

2. Re-computation [13] 10 256

3. Tower Field in GF(22) [16,17] 77 42

4. Multiplicative Masking [7] 22 256

5. Secure exponentiation for d = 1 [21] 73 24

6. Our scheme for d = 1 This paper 25 50

Second-Order Masking

7. Double Re-computations [22] 594 512 + 28

8. Single Re-computation [20] 672 256 + 22

9. Secure exponentiation for d = 2 [21] 189 48

10. Our scheme for d = 2 This paper 69 86

Third-Order Masking

11. Secure exponentiation for d = 3 [21] 326 72

12. Our scheme for d = 3 This paper 180 128

Table 3 lists the timing/memory performances of the different implementa-
tions. We wrote the codes in assembly language for an 8051 based 8-bit architec-
ture with bit-addressable memory. RAM consumption related to implementation
choices (e.g. use of some local variables, use of pre-computed values to speed-up
some computations, etc.) are not taken into account in the performances report-
ing. Also, ROM consumptions (i.e. code sizes) are not listed since they are not
prohibitive for almost all current embedded devices. Eventually, cycles numbers
are multiple of 103.

Remark 3. For d = 1 (Implementations 2 to 5), improvements have been added
to the original proposals. They essentially amount to preprocess a part of the
masking material, which is possible since the latter one does not need to be
changed during the algorithm processing when only first-order SCA are
considered.

We observe that only two methods achieve better timing performances than
our proposal and that this occurs only in the case d = 1. As expected, the re-
computation remains the most efficient method when 256 bytes of RAM are avail-
able. We can also note that the original countermeasure involving multiplicative
masking [7] stays better than our countermeasure (which merely generalizes it
at any order). The difference is due to the tabulation of the Dirac function used
in [7] which implies a faster processing than the algebraic implementation of
this function but at the cost of memory. Except those two particular cases, it
turns out that our proposal is the most efficient one: it is at least 2.9 times
faster for d = 1, 2 and 1.8 times faster for d = 3. Even if our scheme requires

Thwarting Higher-Order Side Channel Analysis 253

more RAM than [21], the consumption stays lower than 200 bytes and is therefore
acceptable for almost all embedded systems (even the low cost ones).

Memory and timing performances of the solution [21] and those of our proposal
progress similarly as soon as the order increases. This is explained by the fact that
both methods use the same approach to thwart SCA, that is to replace each trans-
formation calculation by a sequence of elementary calculations. To secure them,
the solution [21] involves additive maskings while our solution mixes additive and
multiplicative maskings. Memory allocation differences between the two methods
are merely due to the fact that additional vectors are required in our scheme since
it involves more shares (multiplicative shares, dirac shares, etc.). The differences
of timing performances come from the fact that solution [21] involve much more
field multiplications than in our proposal (see Tables 1 and 2).

5 Conclusion

In this paper, we have introduced a new higher-order masking scheme dedicated
to block ciphers mixing affine transformations with power functions. It is prov-
ably secure at any chosen order and can be implemented in software at the cost
of a reasonable overhead. In particular, it is an efficient alternative to [21] in or-
der secure the AES implementation at any order. For our construction, we have
introduced conversion functions that can securely transform an additive masking
into a multiplicative one. We think that those transformations could be inter-
esting as secure primitives in other contexts where security against higher-order
side channel attacks must be achieved and power functions are involved.

References

1. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10.
ACM, New York (1988)

3. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

4. Coron, J.-S.: A New DPA Countermeasure Based on Permutation Tables. In:
Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp.
278–292. Springer, Heidelberg (2008)

5. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting Cir-
cuits from Leakage: the Computationally-Bounded and Noisy Cases. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

254 L. Genelle, E. Prouff, and M. Quisquater

6. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine Masking against Higher-
Order Side Channel Analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011)

7. Genelle, L., Prouff, E., Quisquater, M.: Secure Multiplicative Masking of Power
Functions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 200–
217. Springer, Heidelberg (2010)

8. Genelle, L., Prouff, E., Quisquater, M.: Montgomery’s trick and fast implementa-
tion of masked AES. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011.
LNCS, vol. 6737, pp. 153–169. Springer, Heidelberg (2011)

9. Genelle, L., Prouff, E., Quisquater, M.: Thwarting Higher-Order Side Channel
Analysis with Additive and Multplicative Masking. Cryptology ePrint Archive (to
appear, 2011)

10. Golić, J., Tymen, C.: Multiplicative masking and power analysis of AES. In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212.
Springer, Heidelberg (2003)

11. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Prob-
ing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

12. Joye, M., Paillier, P., Schoenmakers, B.: On second-order differential power anal-
ysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 293–308.
Springer, Heidelberg (2005)

13. Messerges, T.S.: Securing the AES Finalists Against Power Analysis Attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

14. Oswald, E., Mangard, S.: Template Attacks on Masking—Resistance Is Futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006)

15. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order
DPA attacks for masked smart card implementations of block ciphers. In:
Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Hei-
delberg (2006)

16. Oswald, E., Mangard, S., Pramstaller, N.: Secure and Efficient Masking of AES –
A Mission Impossible? Cryptology ePrint Archive, Report 2004/134 (2004)

17. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

18. Peeters, E., Standaert, F.-X., Donckers, N., Quisquater, J.-J.: Improved higher-
order side-channel attacks with FPGA experiments. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 309–323. Springer, Heidelberg (2005)

19. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. Cryptology ePrint Archive, Report
2008/021 (2008), http://eprint.iacr.org/

20. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. In: Baignères, T., Vaudenay, S. (eds.)
FSE 2008. LNCS, vol. 5086, pp. 127–143. Springer, Heidelberg (2008)

21. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Man-
gard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427.
Springer, Heidelberg (2010)

http://eprint.iacr.org/

Thwarting Higher-Order Side Channel Analysis 255

22. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

23. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613
(1979)

24. Trichina, E., DeSeta, D., Germani, L.: Simplified adaptive multiplicative masking
for AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 187–197. Springer, Heidelberg (2003)

25. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

Extractors against Side-Channel

Attacks: Weak or Strong?

Marcel Medwed� and François-Xavier Standaert��

UCL Crypto Group, Université catholique de Louvain
Place du Levant 3, B-1348, Louvain-la-Neuve, Belgium

Abstract. Randomness extractors are important tools in cryptography.
Their goal is to compress a high-entropy source into a more uniform
output. Beyond their theoretical interest, they have recently gained at-
tention because of their use in the design and proof of leakage-resilient
primitives, such as stream ciphers and pseudorandom functions. How-
ever, for these proofs of leakage resilience to be meaningful in practice,
it is important to instantiate and implement the components they are
based on. In this context, while numerous works have investigated the
implementation properties of block ciphers such as the AES Rijndael,
very little is known about the application of side-channel attacks against
extractor implementations. In order to close this gap, this paper instan-
tiates a low-cost hardware extractor and analyzes it both from a perfor-
mance and from a side-channel security point of view. Our investigations
lead to contrasted conclusions. On the one hand, extractors can be ef-
ficiently implemented and protected with masking. On the other hand,
they provide adversaries with many more exploitable leakage samples
than, e.g. block ciphers. As a result, they can ensure high security mar-
gins against standard (non-profiled) side-channel attacks and turn out to
be much weaker against profiled attacks. From a methodological point
of view, our analysis consequently raises the question of which attack
strategies should be considered in security evaluations.

1 Introduction

Randomness extractors have recently been used as components of leakage-
resilient cryptographic primitives such as stream ciphers [3,19], pseudorandom
functions [2,16] and signatures [4]. They are also important in the design of
public-key cryptosystems resistant to key leakage [12]. In this setting, the proofs
of leakage-resilience usually rely on the fact that the amount of information leak-
age that is provided by one iteration of the extractor (i.e. when executed on one
input) is bounded in some sense. As a result, an important requirement for these
proofs to be meaningful in practice is that such a bounded leakage can actually
be guaranteed by hardware designers. For this purpose, a first implementation
and side-channel analysis of such a primitive was described in [14]. This work
� Postdoctoral researcher funded by the 7th framework European project TAMPRES.

�� Associate researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.).

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 256–272, 2011.
c© International Association for Cryptologic Research 2011

Extractors against Side-Channel Attacks: Weak or Strong? 257

analyzed an unprotected software implementation of an extractor. It was shown
that, if no attention is paid, the extractor can actually lead to larger information
leakages than an unprotected implementation of the AES Rijndael. Mainly, this
happens because the extractor allows exploiting multiple leakage samples per
plaintext. Thus, this previous work emphasized the importance of including the
instantiation of cryptographic primitives in models of leakage resilience.

In this paper, we extend these preliminary investigations in two directions.
First, we analyze a low-complexity extractor implemented in hardware (rather
than software), and investigate the tradeoffs that such a design allows. Appeal-
ing design goals for the hardware implementation are a higher throughput and a
leakage reduction due to parallelization. Second, we evaluate the impact of the
masking countermeasure on the security of this extractor implementation. In par-
ticular, we exhibit an interesting homomorphic property that can be exploited to
mask our design efficiently. The results of our hardware design-space evaluation
show that the extractor can be masked up to unusually high orders while showing
similar performance as a first-order masked block cipher implementation. As for
the side-channel analysis results, they confirm part of the previous evaluations,
showing that multi-sample per input attacks allow very efficient profiled side-
channel attacks. Hence, depending on the adversarial strategies considered in
the security evaluations, the implementation of a masked extractor may appear
as weaker or stronger than the one of a block cipher. Positively, we show that
hardware implementations of randomness extractors can guarantee a bounded
leakage for bounded number of measurements. This validates their use as possi-
ble components of leakage-resilient constructions. Eventually, this work questions
the methodologies for the evaluation of leaking devices in general, and underlines
the large difference between profiled and non-profiled attacks that occurs for the
extractor case.

The remainder of the paper is structured as follows. Sections 2 and 3 describe
the analyzed low-complexity Hadamard extractor and its different hardware im-
plementations. The side-channel attack scenario is detailed in Section 4. This is
followed by an information theoretic analysis and security analysis in Sections 5
and 6. Finally, we draw conclusions in Section 7.

2 Low Complexity Extractor

In this section, we specify the instance of the low complexity Hadamard ex-
tractor, denoted as �, the implementation of which will be investigated in the
remaining of the paper. It relies on the LFSR-based hashing technique from [8].
In order to compute k�x, one first expands x = s0s1· · ·sn−1 with the recurrence:

si+n
def
= a0si + a1si+1 + · · ·+ an−1si+n−1 (mod 2), (1)

where the public constants an−1· · ·a0 are the coefficients of a primitive polyno-
mial of degree n. Then, we simply compute m inner products (mod 2) between
k and the rows of a matrix filled with the expanded x:

258 M. Medwed and F.-X. Standaert

� : {0, 1}n × {0, 1}n → {0, 1}m (m≤n) :

k � (x
def= s0s1· · ·sn−1) =

⎡

⎢
⎢
⎢
⎢
⎣

sn−1 · · · sk−1 · · · s1 s0

sn
. . . · · · . . . s2 s1

...
. · · ·

sn+m−2 · · · sn sn−1 · · · sm−1

⎤

⎥
⎥
⎥
⎥
⎦
· k.

Hence, the function “ � ” is equivalent to:

� : k × x 	→ [〈x · A0, k〉, 〈x · A1, k〉, · · · , 〈x ·Am−1, k〉], (2)

where the matrix A is defined as follows:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 a0

1 0 · · · 0 a1

0 1
. . . 0

...
...

. 0 an−2

0 0 · · · 1 an−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3)

This function is a 2-source extractor since the Toeplitz matrix (as in the defini-
tion of �) has full rank for any non-zero vector x, which in turn follows from the
properties of maximal length LFSR. Note, that this extractor directly inherits
the homomorphic property of Krawczyk’s hash function. Namely, we have that
〈x · Ai, k + m〉+ 〈x ·Ai, m〉 = 〈x · Ai, k〉.

3 Hardware Implementation

Following the specification from the previous section, we now present the hard-
ware architecture and the tradeoffs that we considered when implementing the
Hadamard extractor. We also use this description of the hardware to list the
different parameters that will be analyzed in our following side-channel evalu-
ations. As indicated by the notations in Section 2, we will generally apply the
extractor to an n-bit public value x and an n-bit secret key k, in order to pro-
duce an l-bit random string y (which is the typical scenario in leakage resilient
cryptography). Practical values that we consider in this work are n = 192 and
l = 128. For simplicity, we start by describing a fully serial implementation (with
n = 8), illustrated in Figure 1.

In this basic form, the extractor circuit mainly consists of two registers. One
is used to store the current LFSR values (denoted as r[0] to r[7] in the figure),
and consequently evolves as the implementation is running. The other one is
used to store the key and remains static during the extraction process. Note
that the decision to store the secret key in the static register is motivated by the
minimization of the computations (hence, leakage) involving secret data. In a
fully serial implementation, the r register is shifted by one position at each clock

Extractors against Side-Channel Attacks: Weak or Strong? 259

Fig. 1. Fully serial hardware implementation of the extractor

cycle. Next, n AND gates and n− 1 XOR gates are added to the design, in such
a way that one can extract one bit (i.e. compute one inner product 〈x · Ai, k〉)
per clock cycle. Thus, in order to extract 128 bits, we have to clock the circuit
128 times (while the registers are typically 192-bit long). Such a basic design can
essentially be extended in two main directions that we now detail.

Parallelizing the Implementation. In general, hardware implementations
are most efficient if they can take advantage of some inherent parallelism in
algorithms. Fortunately, this is typically the case when considering our extractor.
That is, as illustrated in Figure 2, one can easily double the throughput of
the previous design, by extending the LFSR by one cell r[8] and duplicating
the combinatorial parts of the design (i.e. the XOR gates used in the LFSR
recurrence and the inner product computation). This allows one to compute two
inner products per clock cycle. Interestingly, the registers cells r[1] to r[7] and
the key register can be shared by these two inner product combinations, which
makes the parallelization quite efficient. Such a process can be further extended.
In general, by multiplying the number of inner product combinations p times,
we decrease the number of cycles to extract 128 bits by the same factor.

Masking the Implementation. Next, as detailed in Section 2, the proposed
extractor inherently benefits from an additive homomorphic property. This im-
plies that it can be easily masked, following the proposals of Goubin and Patarin
[7] and Chari et al. [1]. In our setting, it is most natural to mask the key, as
masking the plaintext would lead to a weakness similar to the “zero problem”
when applying multiplicative masking to the AES S-box [6]. That is, the bitwise
AND between a masked plaintext and a key would still allow distinguishing the
zero key bits. From an implementation point of view, a masked computation
〈x · Ai, k + m〉 + 〈x · Ai, m〉 = 〈x · Ai, k〉 can be performed using essentially
the same design as in the unmasked case. And it straightforwardly extends to
higher-order masking, where the order o of the masking scheme refers to the
number of n-bit masks consumed per extraction, as we now detail.

260 M. Medwed and F.-X. Standaert

Fig. 2. Hardware implementation of the extractor with parallelism (p = 2)

First observe that, in the unprotected case, the result of an extraction is
available after 128/p clock cycles. In the masked case, this performance decreases
only linearly, since it is possible to operate on all shares independently. In other
words, each mask can be discarded immediately after it has been processed. For
this purpose, we first need 192 clock cycles to load the mask register and (at the
same time) add the mask to the key. Next, 128 clock cycles are needed to extract
from the mask. Finally, the (bidirectional) plaintext register is rewound during
128 clock cycles. Overall, every mask needs 448 clock cycles to be processed. And
the final result is obtained by extracting from the masked key, which requires
another 128 clock cycles. Summarizing, we have implemented the circuit such
that the cycle count c increases linearly, following the formula c = (128+o·448)/p,
with o the masking order and p the degree of parallelization. Table 1 summarizes
the performances of various extractor implementations. These numbers were
obtained from post-synthesis results, using Cadence RTL compiler 2009 and the
UMC F180GII standard-cell library. Note that, in a fully serial and unprotected
implementation, the area cost is already dominated by the registers r and k.
They alone account for 3.6 kGE. Roughly speaking, the hardware overhead of a
masked implementation mainly corresponds to one additional register for storing
the mask, and a 192-bit multiplexer in order to switch the AND gates’ input
between the key and the mask.

4 Adversarial Capabilities and Leakage Assumptions

The goal of this paper is to investigate the side-channel resistance of different
versions of the implemented extractor, with and without parallelism and mask-
ing. For this purpose, we will apply the two parts of the framework in [15]. That
is, we start with an information theoretic analysis (in the next section), in order

Extractors against Side-Channel Attacks: Weak or Strong? 261

Table 1. Area in kilo gate equivalents (kGE) and cycle count (c) for extractor imple-
mentations with different datapath widths and different masking orders (the polyno-
mial x192 + x149 + x97 + x46 + 1 has been used in the recurrence)

Parallelization 1 4 8

w/o masking 4.3 kGE 128 c 7.0 kGE 32 c 10.3 kGE 16 c
1st-order 7.3 kGE 576 c 10.1 kGE 144 c 13.6 kGE 72 c
2nd-order 7.3 kGE 1024 c 10.1 kGE 256 c 13.6 kGE 128 c

3rd-order 7.3 kGE 1472 c 10.1 kGE 368 c 13.6 kGE 184 c

to capture a worst case scenario. Next, we perform a security analysis, that con-
siders the success rates of different adversaries. In general, such an evaluation
requires to define the adversary’s capabilities and leakage assumptions.

In our present context, the first question to answer is to determine the target
operations for the side-channel adversary. For this purpose, one generally selects
the operations where the known input x and secret key k are mingled. For the
extractor implementations in Figures 1 and 2, this corresponds to the bitwise
AND gates (the side-channel attacks against a software implementation of ex-
tractor in [14] were based on exactly the same assumption). Next, it is typically
needed to determine the size of the key guess (i.e. the number of key candidates
that will be enumerated in the attack). In the following, we will consider a 4-
bit key guess, that is a convenient choice for limiting the time complexity of
the evaluations. This choice is motivated by the fact that we aim to investigate
many sets of parameters. In the Figures 1 and 2, it means that an adversary will
typically try to predict the output of the AND gates that are included in the
gray rectangles.

In addition, and more importantly, a central feature of the Hadamard extrac-
tor implementations is that the key register is used numerous times in order to
extract l bits. For example, in the serial implementation of Figure 1, in which one
extracts l = 128 bits, it implies that 128 leaking operations can potentially be
exploited by the adversary. In the case of the parallel implementation of Figure 2,
where p = 2, this amount of exploitable leakage points is decreased to 64. This
is in strong contrast with traditional implementations of block ciphers, where
one typically predicts a few leakage points, corresponding to the intermediate
computations of the block cipher that can be easily enumerated. For example,
in the block cipher PRESENT, a 4-bit guess allows predicting the first (or last)
key addition and S-box computations of an encryption process. But following
operations become hard to predict, because of the diffusion in the cipher. As im-
plementations of extractors are not affected by such a strong diffusion property,
a very important parameter is the number of leakage points exploited by the
adversary. Our experiments will consider both single-sample attacks, that are
similar to standard DPA attacks against block ciphers, and t-sample attacks, for
which we aim at discussing their relevance in a side-channel evaluation context.
Summarizing, our evaluations will investigate three main parameters:

262 M. Medwed and F.-X. Standaert

1. the degree of parallelism in the implementation p,
2. the order of the masking scheme o,
3. the number of leakage samples per plaintext exploited in the attacks t.

Our experiments are based on simulated traces, which reflect the ideal power con-
sumption of the previously described hardware architecture. In order to allow a
systematic comparison between the level of security of the extractor implemen-
tation and the one of a masked S-box, we added Gaussian noise. More precisely,
we used simulated traces to generate the mean value of the target leakages, with
the Signal-to-Noise Ratio as a parameter (SNR = 10 · log10(

σ2
s

σ2
n
)). In other words,

we extended the simulation environment of [17] to the context of an extractor.
Note, that most of our following conclusions relate to the comparative impact
of the parameters p, o and m. Hence, the possible deviations that one would
observe between simulated traces and actual measurements would not affect
these conclusions (i.e. they would essentially only cause some slight shifts of the
information theoretic and security analysis curves in the following sections).

5 Information Theoretic Analysis

In this section, we aim to evaluate the security of the previously described ex-
tractor implementation, in function of the amount of parallelism, masking and
leakage samples available to the adversary. For this purpose, we start with the
information theoretic analysis advocated in [15], the goal of which is to analyze
a worst case scenario, where the adversary has perfect knowledge of the leak-
age distribution (i.e. is able to perform a perfect profiling). For our simulated
setting, this means that the adversary is provided with the leakage samples lij ,
where the subscript j relates to the number of shares in a masking scheme and
the superscript i relates to the number of samples used per input x in the at-
tack. More specifically, in an unmasked implementation, the adversary is given
the following leakage samples:

li1 = WH

(
(x · Ai) ∧ k

)
+ n, (4)

where WH denotes the Hamming weight function and n is a Gaussian noise.
From this definition, one can straightforwardly compute the following mutual
information metric, for the fully serial (i.e. p = 1) single sample (i.e. t = 1) case:

I(K; X, L1
1) = H[K]−

∑

k∈K
Pr[k]

∑

x∈X
Pr[x]

∑

l11∈L
Pr[l11|x, k] · log2 Pr[k|x, l11]. (5)

Next, considering a masked implementation would change the previous analysis
as follows. First, the adversary now has to exploit the leakage of several shares.
For example, in the first-order case (i.e. o = 1), we have:

li1 = WH

(
(x · Ai) ∧m

)
+ n, (6)

li2 = WH

(
(x · Ai) ∧ (k ⊕m)

)
+ n. (7)

Extractors against Side-Channel Attacks: Weak or Strong? 263

Second, the computation of the mutual information metric is turned into:

I(K; X, L1
1, L

1
2) = H[K]−

∑

k∈K
Pr[k]

∑

x∈X
Pr[x]

∑

m∈M
Pr[m]

·
∑

l11,l12∈L2

Pr[l11, l
1
2|x, m, k] · log2 Pr[k|x, l11, l

1
2], (8)

where Pr[k|x, l11, l
1
2] =

∑
m′ Pr[m′|x, l11] Pr[k|x, m′, l12]. That is, the mask is not

given to the adversary, but its leakage allows building a bivariate conditional
distribution that is key-dependent. This naturally extends towards larger o’s.

These previous equations were considering single-sample-per-input attacks
that are typically similar to the DPA against the AES S-box in [10] and masked
AES S-box in [17]. When moving to the multi-sample context, the computation
of the mutual information metric for the unmasked case is turned into:

I (K; X, Lt
1) = H[K]−

∑

k∈K
Pr[k]

∑

x∈X
Pr[x]

·
∑

l11,l21,...,lt1∈Lt

Pr[l11, l
2
1, . . . , l

t
1|x, k] · log2 Pr[k|x, l11, l

2
1, . . . , l

t
1]. (9)

And for the masked case, it becomes:

I (K; X, Lt
1, L

t
2) = H[K]−

∑

k∈K
Pr[k]

∑

x∈X
Pr[x]

∑

m∈M
Pr[m]

·
∑

l11,l21,...,lt1,l12,l22,...,lt2∈L2t

Pr[l11, l
2
1, . . . , l

t
1, l

1
2, l

2
2, . . . , l

t
2|x, m, k]

· log2 Pr[k|x, l11, l
2
1, . . . , l

t
1, l

1
2, l

2
2, . . . , l

t
2]. (10)

Interestingly, this multi-sample case implies that many samples can be used to
“bias” the mask in the computation of the mixture distribution:

Pr[k|x, l11, l
2
1, . . . , l

t
1, l

1
2, l

2
2, . . . , l

t
2] =
∑

m

Pr[m|x, l11, l
2
1, . . . , l

t
1] Pr[k|x, m, l12, l

2
2, . . . , l

t
2].

As will be seen in the following, this strongly reduces the security improvements
of masking in this setting. Finally, independent of the parameters o and t, an
increased parallelism is modeled by changing the leakage function. For example,
in the p = 2 case of Figure 2, the adversary would obtain samples of the form:

li,i+1
1 = WH

(
(x · Ai) ∧ k

)
+ WH

(
(x · Ai+1) ∧ k

)
+ n. (11)

In general, modifying the parallelism has no impact on the previous equations.
However, increasing p implies that the maximum number of samples that one can
exploit per plaintext is more limited (to 64 if p = 2, 32 if p = 4, . . .). Note again
that, due to the weak diffusion of the extractor implementation, a 4-bit guess
would then allow to predict several 4-bit parts of the inner product computations
(e.g. one part of both WH functions in Equation (11) can be predicted).

264 M. Medwed and F.-X. Standaert

Fig. 3. Single sample attacks, serial im-
plementation, without masking

Fig. 4. Single sample attacks, serial im-
plementation, with masking

5.1 Single Sample Attacks, Serial Implementation

For the first scenario, we assume an adversary who looks only at one leakage
sample per side-channel trace. This can be seen as a naive attack, where the
adversary applies exactly the same strategy as he would for an S-box. The im-
plementation of the extractor is fully serialized and its masking order varies
between zero and two. Figure 3 shows the unprotected case (t = 1, p = 1, o = 0)
and Figure 4 shows the masked case (t = 1, p = 1, o ∈ {1, 2}). We compare those
curves with the information curves for an unmasked and a masked PRESENT
S-box. As higher-order masking schemes leading to efficient hardware implemen-
tations remain an open problem, we restrict the S-box evaluations to first-order
masking1. For the unmasked case, the curves confirm what was already observed
in [14]. Namely, a single extractor sample contains less information than a single
S-box sample, on average. As for the masked case, the results follow the expec-
tations in [1,17]. That is, for a sufficient amount of noise, increasing the order
of the masking scheme implies an exponential security increase, reflected by the
different slopes of the log scale curves in Figure 4. Note finally that, in this lat-
ter case and for similar orders, the information provided by a single sample of
the extractor is now slightly higher than the one provided by an S-box sample
(which can be explained by the shape of the masked leakage distributions).

5.2 Multi-sample Attacks, Serial Implementation

The results in the previous section suggest that the security of an extractor im-
plementation can be strong when adversaries exploit a single sample per leakage
trace. But as previously mentioned, extractors are different than standard block
ciphers in the sense that a small key guess (here 4-bit) allows adversaries to pre-
dict multiple intermediate computation results (up to t = 128). In this section,
we consider the worst case of a serial implementation where an adversary would
exploit all this information. Applying this approach to the unmasked case implies

1 The only straightforward solution is to use a large look-up table of size 2o·n ×n bits.

Extractors against Side-Channel Attacks: Weak or Strong? 265

Fig. 5. Multi sample attacks, serial implementation

to compute the mutual information metric given in Equation (9). We mention
that, since integrating over 128 dimensions is too complex, the following estima-
tions are obtained by statistical sampling. Similarly, evaluating a multi-sample
attack against a masked implementation requires to compute Equation (10). As
previously mentioned, this equation suggests that the mask can be strongly bi-
ased because, in the multi-sample attack setting, an adversary can exploit 128
leakage points generated from the manipulation of the same mask value.

The results of the information theoretic analysis corresponding to this
strongest possible adversary are depicted in Figure 5. It can be seen that the
situation changes dramatically. Up to an SNR of -5, the remaining entropy of
the key variable after seeing a single side-channel trace is zero (i.e. unbound
leakage). For SNRs below -5 the recovered information eventually decreases and
also masking starts to bring additional security. However, due to the mask bi-
asing process, it also requires smaller SNRs until the impact of masking is fully
released. Furthermore, even for an SNR as small as -20, the second-order masked
extractor implementation reveals more information than the unprotected S-box
one. Summarizing, while an extractor implementation provides strong security
against standard univariate DPA attacks, the exploitation of multiple samples
leads to an opposite conclusion. Roughly speaking, the exploitation of t samples
per trace in this setting corresponds to the exploitation of t single-sample traces
(all using the same mask) in the previous section. We now discuss strategies to
relax this limitation.

5.3 Decreasing the Leakage by Reducing t

Following the previous section, one important objective for improving the se-
curity of an extractor implementation is to limit the number of leakage points
exploitable per trace. In the full version of this paper [11], we investigate different
strategies to achieve this goal, namely re-keying, re-masking and parallelism and
compare them from an implementation and side-channel point of view. Here, we
focus on the general effect of reducing the parameter t and in particular discuss
parallelization as it is the most appealing approach from a performance point of
view.

266 M. Medwed and F.-X. Standaert

Fig. 6. Multi-sample attacks, reducing t
for masking of order 1

Fig. 7. Multi-sample attacks, reducing t
for masking of order 2

Figures 6 and 7 show the impact of limiting t in such a way, for masking of
order one and two. It can be seen that the information decreases exponentially
with t. Furthermore, this exponential decrease is larger the higher the masking
order is, essentially because we do not only limit the available samples for the
key but also for the masks.

In general, parallelization has the same impact as just reducing t. However, as
now more computations are performed per clock cycle, also the amount of infor-
mation leakage contained per sample might be higher. As a simple example, let
us denote two leakage samples generated by an unprotected serial implementa-
tion as l1 and l2. By parallelizing the operations corresponding to these leakage
samples, one provides the adversary with a new sample l′ = l1 + l2. If these
two leakage samples are related to the same key guess, the information provided
by one of them is generally less than the information provided by their sum,
which is again less than their joint information. This is illustrated in Figures 8
and 9. However, as will be seen in the security analysis, not every distinguisher
is capable of exploiting this extra information.

6 Security Analysis

The results of the previous IT analysis define upper bounds for the information
which can be extracted by an adversary. In this section we discuss how well
these upper bounds represent the capabilities of an adversary. In particular, we
raise two questions: (1) Are t-sample attacks relevant in practice? (2) How large
is the practical security gain of masking an extractor? The first question can
be answered positively under some reasonable assumptions. As for the second
question, it turns out that masked extractors can actually provide good security
when looking at standard higher-order DPA attacks.

6.1 Identifying Multiple Samples

In general, the critical parameters for evaluating side-channel attacks are the
data complexity (in the first place) and the time complexity (when the order of

Extractors against Side-Channel Attacks: Weak or Strong? 267

Fig. 8. Single sample attacks with paral-
lelism, no masking

Fig. 9. Single sample attacks with paral-
lelism, masking order 1

the attacks increases). The data complexity typically depends on the amount of
information contained in each leakage trace. The time complexity typically de-
pends on the number of samples of interest to identify in the traces. As a result,
it is interesting to determine how efficiently the previous multi-sample attacks
trade time and data. For this purpose, say an adversary has to identify t samples
in an N -sample leakage trace. Without additional assumptions, the complexity
of finding them is in O(N t). However, in the case of the hardware extractor, the
adversary can assume that time samples are equidistantly distributed along the
power trace. For instance, our hardware architecture produces p bits every clock
cycle and the extraction process takes t clock cycles. Thus the distance between
the interesting samples is one clock cycle. Given this information, one can sweep
over the power trace like in a standard single-sample DPA, and directly launch
a multi-sample attack exploiting the t equidistant samples with a complexity in
O(N). In other words, an adversary does not have to detect these samples of
interest separately and in advance. This observation implies the interesting con-
sequence that the order of a side-channel attack (usually defined as the number
of samples exploited per trace) is not a generally good indicator of security. It
is sometimes easy to launch high-order attacks. Note also that the assumptions
on the underlying hardware to launch such low complexity attacks are generally
easy to guess for adversaries. Hence, ruling out multi-sample attacks in this case
implies to rely on “security by obscurity” in an excessive manner.

6.2 Attacking the Masking

An interesting feature of our extractor implementation is that its homomorphic
property allows efficient masking of unusually large orders (compared, e.g. to
the AES Rijndael). However, as previously discussed, the impact of masks can
be strongly reduced in multi-sample attacks, as an adversary can theoretically
bias the mask using all the available samples. In this section, we discuss the
feasibility of such a biasing in a non-profiled attack setting.

268 M. Medwed and F.-X. Standaert

Biasing the Mask. As detailed in Section 5.2, biasing the masks is straight-
forward in profiled side-channel attacks. The adversary just has to launch a
template attack on the masks, prior to the attack, and can use the resulting dis-
tribution of the masks when launching the same template attack on the secret
key. By contrast, when moving to a non-profiled attack setting, such a mask
biasing becomes more difficult to exploit. The natural approach would again be
to launch a DPA (e.g. correlation-based) on the mask extraction 〈x · Ai, m〉. If
the measurements are quite informative, then this DPA can lead to a complete
recovery of the masks (i.e. the masked implementation becomes as easy to break
as the unprotected one). But when measurements become noisy, the adversary
ends up with a vector of key candidates ranked according to the output of the
DPA distinguisher, e.g. a correlation coefficient. Exploiting this information in
a non-profiled attack has to be based on one of the following approaches:

1. If only a couple of mask candidates remain likely after the biasing process,
one solution is to test them exhaustively. But this strategy becomes inten-
sive when combining multiple plaintexts, as the number of such tests scales
exponentially in the number of plaintexts in the attack.

2. If the mask distribution obtained after the observation of a trace is not
enough biased, or if the number of plaintexts required to perform a success-
ful key recovery is too high, one then has to rely on heuristics. For exam-
ple, one solution would be to normalize the correlation coefficient obtained
after the DPA against the masks, and to interpret them as probabilities.
As detailed in [18], this heuristic already implies significant efficiency losses
compared to the application of a template attack. In addition, one then
needs to exploit this vector of mask “probabilities” in the high-order attack
against the extractor implementation, which is again not trivial. For exam-
ple, one could try to exploit this information to improve the combination
function used in a second-order DPA, as suggested in [13]. But it usually re-
sults in quite involved techniques that may not be easy to apply in practical
settings.

As in the previous subsection, it is interesting to observe that the evaluation
of the extractor implementation crucially relies on the strategy adopted by the
adversary. But while the multi-sample approach is quite realistic in a hardware
implementation context, even for non-profiled attacks, the biasing of the masks
becomes much less realistic when profiling the chip and taking advantage of
Bayesian key recovery is not possible. In fact, a more practical adversary will
probably perform a higher-order DPA directly on the different time samples
provided by the traces (for instance by performing a Pearson-correlation based
attack after applying the normalized product combining function [9] or by di-
rectly using a multivariate distinguisher like MIA [5]). Interestingly, one can
easily evaluate the information loss caused by this strategy, by replacing the last
factor in Equation (10) by:

Extractors against Side-Channel Attacks: Weak or Strong? 269

Fig. 10. Information leakage without mask biasing (p=8, t=16)

Pr[k|x, l11, l
2
1, . . . , l

t
1, l

1
2, l

2
2, . . . , l

t
2] =

∏t
i=1

∑
m Pr[m|x, li1] Pr[k|x, m, li2]∑

k′
∏t

i=1

∑
m Pr[m|x, li1] Pr[k′|x, m, li2]

.

The result of such an evaluation for t = 16 and a parallelization of 8 is plot-
ted in Figure 10. Intuitively, it represents the upper bound for the informa-
tion which can be retrieved by a non-biased DPA attack. In a typical scenario
where an adversary attacks 8 out of 128 bits at once, the SNR can be com-
puted as 10 log10(8/120) = −11.761. It can be seen from the figure that this is
approximately the point where a profiled adversary does not gain more informa-
tion from a multi-sample attack on the 3rd-order masked extractor than from a
single-sample attack on a 1st-order masked S-box.

Higher-Order DPA Attacks. Eventually, it is interesting to evaluate how
efficiently a standard higher-order DPA against the masked extractor imple-
mentation can take advantage of the information leakage in Figure 10. For this
purpose, and based on the fact that our implementation exhibits a perfect Ham-
ming weight leakage model, it is natural to apply a DPA based on Pearson’s
correlation coefficient, and using a normalized-product combining function. In
Figure 11, we compare a 1st-order masked S-box and a 3rd-order masked ex-
tractor for SNRs of 0 and 10. One can observe that the results of this security
evaluation do not directly reflect the outcome of the IT analysis. Namely, even
in the low noise scenario, the multi-sample attack on the extractor is almost
a magnitude less efficient than the single-sample attack on the S-box, due to
the information loss caused by the normalized-product combining. Interestingly,
even in an unprotected context, the sub-optimality of DPA attacks can be high-
lighted, e.g. in Figure 12, where parallelism always improves security2.

We finally note that, more than the results of specific adversarial strategies
used in this section (which may be suboptimal), it is the very observation that
these strategies play a central role in the security evaluation of cryptographic
2 In contrast with the result given in Section 5.3, Figure 8.

270 M. Medwed and F.-X. Standaert

Fig. 11. Multi-sample correlation at-
tacks against masked implementations,
normalized product combining

Fig. 12. Single-sample correlation at-
tacks against unprotected implementa-
tions, with an SNR=-0.3

devices that is interesting. Especially, if the leakage of the analyzed primitive
has flavors unknown from block ciphers, such as multiple samples per plaintext
and inherent mask re-use, special care has to be taken during the evaluation and
the interpretation of the results.

7 Conclusions

This paper first shows the interest of implementing randomness extractors in
hardware. By taking advantage of different design tradeoffs (namely, parallelism,
re-keying and re-masking), such implementations allow improving the security
against side-channel attacks, in particular when compared to their software coun-
terpart. Next, our results put forward the strong impact of adversarial strategies
in the evaluation of extractor implementations (and leaking devices in general).
Depending on the capabilities of an adversary, the information leakage provided
by the extractor implementations considered in this paper range from large (in
Figure 5) to much more limited (in Figure 10) and is sometimes difficult to ex-
ploit with standard DPA attacks (in Figure 11). From a methodological point
of view, this observation suggests to always consider different capabilities in an
evaluation, in order to avoid overestimating (or underestimating) the security of
an implementation. Our results also show that the order of an attack, defined
as the number of samples per trace, may not be a good indication of security if
these samples do not corresponds to the different shares of a masking scheme. As
a scope for further research, we notice that the main weakness of the extractor
investigated in this paper derives from the ability to predict many intermedi-
ate computations from a small key guess, which reduces the interest in its nice
homomorphic property. As a result, it would be interesting to design an extrac-
tor limiting this weakness, e.g. by introducing a type of “key-scheduling” in the
algorithm, in order to add some diffusion during the extraction process.

Extractors against Side-Channel Attacks: Weak or Strong? 271

References

1. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

2. Dodis, Y., Pietrzak, K.: Leakage-Resilient Pseudorandom Functions and Side-
Channel Attacks on Feistel Networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 21–40. Springer, Heidelberg (2010)

3. Dziembowski, S., Pietrzak, K.: Leakage-Resilient Cryptography. In: FOCS, pp.
293–302. IEEE Computer Society, Los Alamitos (2008)

4. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

5. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

6. Golic, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2003)

7. Goubin, L., Patarin, J.: DES and Differential Power Analysis (The ”Duplication”
Method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

8. Krawczyk, H.: LFSR-Based Hashing and Authentication. In: Desmedt, Y. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

9. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

10. Mangard, S., Oswald, E., Standaert, F.-X.: One for All - All for One: Unify-
ing Standard DPA Attacks. Cryptology ePrint Archive, Report 2009/449 (2009),
http://eprint.iacr.org/ to appear in IET Information Security

11. Medwed, M., Standaert, F.-X.: Extractors Against Side-Channel Attacks: Weak or
Strong? Cryptology ePrint Archive, Report 2011/348 (2011),
http://eprint.iacr.org/

12. Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg
(2009)

13. Prouff, E., Rivain, M., Bevan, R.: Statistical Analysis of Second Order Differential
Power Analysis. IEEE Trans. Computers 58(6), 799–811 (2009)

14. Standaert, F.-X.: How Leaky Is an Extractor? In: Abdalla, M., Barreto, P.S.L.M.
(eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 294–304. Springer, Heidelberg
(2010)

15. Standaert, F.-X., Malkin, T., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

16. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage Resilient Cryptography in Practice. In: Basin, D., Maurer, U., Sadeghi, A.-
R., Naccache, D. (eds.) Towards Hardware-Intrinsic Security, Information Security
and Cryptography, pp. 99–134. Springer, Heidelberg (2010)

http://eprint.iacr.org/
http://eprint.iacr.org/

272 M. Medwed and F.-X. Standaert

17. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The World Is Not Enough: Another Look on Second-
Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129.
Springer, Heidelberg (2010)

18. Veyrat-Charvillon, N., Standaert, F.-X.: Adaptive Chosen-Message Side-Channel
Attacks. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 186–199.
Springer, Heidelberg (2010)

19. Yu, Y., Standaert, F.-X., Pereira, O., Yung, M.: Practical leakage-resilient pseudo-
random generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM
Conference on Computer and Communications Security, pp. 141–151. ACM, New
York (2010)

Standardization Works for Security Regarding

the Electromagnetic Environment

Tetsuya Tominaga

NTT Energy and Environment Systems Laboratories
3-9-11, Midori-cho, Musashino-shi, Tokyo, 180-8585

Abstract. Telecommunication functions of electronic devices have been
and will continue to increase. The so called smart community, a society
in which more advanced communications technology is used, will enable
life to be increasingly convenient. Thus, telecommunications will become
more and more important. However, when such functions become un-
available for some reason, it will negatively impact society. Therefore,
device robustness and information leakage are serious issues that need
to be addressed. Security regarding electromagnetic waves has been ex-
tensively studied in terms of electromagnetic compatibility. In partic-
ular, high power electromagnetic phenomena and information leakage
due to electromagnetic waves have been discussed in IEEE EMC TC5,
ITU-T SG5 and IEC SC77C. In this presentation, an overview of the
results, trends, and future works are discussed. Recently developed rec-
ommendation ITU-T K.84 (test methods and guide against information
leaks through unintentional EM emissions), a leakage mechanism, and
protection methods are also discussed.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, p. 273, 2011.
c© International Association for Cryptologic Research 2011

Meet-in-the-Middle and Impossible Differential

Fault Analysis on AES

Patrick Derbez1, Pierre-Alain Fouque1, and Delphine Leresteux2

1 École Normale Supérieure, 45 rue d’Ulm, F-75230 Paris CEDEX 05
2 DGA Information Superiority, BP7, 35998 Rennes Armées

{patrick.derbez,pierre-alain.fouque}@ens.fr,
delphine.leresteux@dga.defense.gouv.fr

Abstract. Since the early work of Piret and Quisquater on fault attacks
against AES at CHES 2003, many works have been devoted to reduce
the number of faults and to improve the time complexity of this attack.
This attack is very efficient as a single fault is injected on the third round
before the end, and then it allows to recover the whole secret key in 232

in time and memory. However, since this attack, it is an open problem
to know if provoking a fault at a former round of the cipher allows to
recover the key. Indeed, since two rounds of AES achieve a full diffusion
and adding protections against fault attack decreases the performance,
some countermeasures propose to protect only the three first and last
rounds. In this paper, we give an answer to this problem by showing two
practical cryptographic attacks on one round earlier of AES-128 and for
all keysize variants. The first attack requires 10 faults and its complexity
is around 240 in time and memory, an improvement allows only 5 faults
and its complexity in memory is reduced to 224 while the second one
requires either 1000 or 45 faults depending on fault model and recovers
the secret key in around 240 in time and memory.

Keywords: AES, Differential Fault Analysis, Fault Attack, Impossible
Differential Attack, Meet-in-the-Middle Attack.

1 Introduction

Fault Analysis was introduced in 1996 by Boneh et al. [8] against RSA-CRT
implementations and soon after Biham and Shamir described differential fault
attack on the DES block cipher [4]. Several techniques are known today to pro-
voke faults during computations such as provoking a spike on the power supply, a
glitch on the clock, or using external methods based on laser, Focused Ion Beam,
or electromagnetic radiations [18]. These techniques usually target hardware or
software components of smartcards, such as memory, register, data or address
bus, assembly commands and so on [1]. After a query phase where the adver-
sary collects pairs of correct and faulty ciphertexts, a cryptographic analysis of
these data allows to reveal the secret key. The knowledge of a small difference
at an inner computational step allows to reduce the analysis to a small number

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 274–291, 2011.
c© International Association for Cryptologic Research 2011

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 275

of rounds of a block cipher for instance. On the AES block cipher, many such
attacks have been proposed [6,14,17,23,27] and the first non trivial and the most
efficient attack has been described by Piret and Quisquater in [27].

Related Works. The embedded software and hardware AES implementations
are particularly vulnerable to side channel analysis [5,7,30]. Considering fault
analysis, it exists actually three different categories of attacks. The first category
is non cryptographic and allows to reduce the number of rounds by provoking a
fault on the round counter [1,11]. In the second category, cryptographic attacks
perform fault in the state during a round [6,14,17,23,27] and in the third category,
the faults are performed during the key schedule [10,17,31].

Several fault models have been considered to attack AES implementations.
The first one and the less common is the random bit fault [6], where a fault
allows to switch a specific bit. The more realistic and widespread fault model is
the random byte fault model used in the Piret-Quisquater attack [27], where a
byte somewhere in the state is modified. These different fault models depend on
the technique used to provoke the faults.

Piret and Quisquater described a general Differential Fault Analysis (DFA),
against Substitution Permutation Network schemes in [27]. Their attack uses a
single random byte fault model injected between the two last MixColumns of
AES-128. They exploited only 2 pairs of correct and faulty ciphertexts. Since
this article was published in 2003, many works have proposed to reduce the
number of faults needed in [24,32], or to apply this attack to AES-192 and to
AES-256 [20].

There exist two kinds of countermeasures to protect AES implementations
against fault attacks. The first category detects fault injection with hardware
sensors for instance. However, they are specifically designed for one precise fault
injection mean and do not protect against all different fault injection techniques.
The second one protects hardware implementation against fault effects. This
kind of countermeasures increases the hardware surface requirement as well as
the number of operations. As a consequence, there is a tradeoff between the
protection and the efficiency and countermeasures essentially only protect from
existing fault attacks by taking into account the known state-of-the-art fault
analysis. Therefore, the first three and the last three rounds used to be pro-
tected [12]. The same kind of countermeasures has been performed on DES
implementation and a rich literature has been devoted to increase the number
of attacked rounds as it is done in [28]. Securing AES implementation consists
in duplicating rounds, verifying operation with inverse operation for non-linear
operations and with complementary property for linear ones, for example. More-
over, another approach computes and associates to each vulnerable intermediate
value a cyclic redundancy checksum or, an error detection or correction code, for
instance fault detection for AES S-Boxes [19] as it has been proposed at CHES
2008. Our attacks could target any operation between MixColumns at the 6th

round and MixColumns at the 7th round. Another countermeasure consists in
preventing from fault attack inside round [29]. However, it is possible to perform
fault injection between rounds.

276 P. Derbez, P.-A. Fouque, and D. Leresteux

Our Results. We show that it is possible to mount realistic attacks between
MixColumns at the 6th round and MixColumns at the 7th round on AES-128.
In particular, we present one new attack and improve a second one at the 7th

round on AES-128. We mount our attacks in two different fault models. The first
attack corresponds of a strong adversary who could choose or know the attacked
byte at the chosen round. The cryptographic analysis relies on a meet-in-the-
middle and its complexity is around 242 in time and memory. It only requires
10 pairs of correct and faulty ciphertexts. Recently, in [9], authors developed
automatic tool that allows us to automatically recover an improved attack with
only 5 pairs and 224 in memory. The second attack describes an adversary that
targets any byte among 16 bytes of the inner state at the targeted round. It uses
ideas similar to impossible differential attack and allows to recover the secret key
using around 240 time. However, this attack requires 1000 pairs. If the position
is fixed, the number of faults is reduced to 45. We have verified this attack
experimentally using glitch fault on the clock on an embedded microprocessor
board which contains an AES software and simulated these two last attacks.
Finally, we extend all the attacks to AES-192 and AES-256.

Table 1. Summary of Differential Fault Analysis presented in this paper

Attack Section Fault model # of faults AES-128 AES-192 &
cost AES-256 cost

Meet-in-the-Middle 3.2 known byte 10 � 240 � 240

Meet-in-the-Middle 3.3 unknown byte 10 � 260 � 260

Meet-in-the-Middle 3.4 fixed unknown byte 5 � 240 � 240

Impossible 4.2 random unknown byte 1000 � 240 � 240

Impossible 4.3 fixed unknown byte 45 � 240 � 240

Organization of the Paper. In Section 2, we recall the backgrounds on AES
and on the Piret-Quisquater attack. Then, we describe our meet-in-the-middle
and our impossible differential attack on the 7th round in Sections 3 and 4 for
AES-128. Finally, in Section 5, we extend these results to the other versions of
AES.

2 Backgrounds and Previous Attacks

In this section, we recall the AES operations and we briefly explain how the
Piret-Quisquater attack works.

2.1 Description of the AES

AES [15] has a 128-bit input block and can be used with three different key-
sizes 128, 192 or 256-bit. It iterates 10 rounds (resp. 12 and 14) for the 128-bit
version (resp. for the 192-bit version and for the 256-bit version). According to

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 277

Fig. 1. SubBytes, ShiftRows and MixColumns operations [15]

the bitlength version, we define n as the number of rounds. In Figure 1, we de-
scribe one round of the AES which is a composition of the SubBytes, ShiftRows,
MixColumns and AddRoundKey operations.

SubBytes (SB). This operation substitutes a value to another one according
to the permutation table S-Box, which associates 256 input toward 256 output
values. Its goal is to mix non-linearly the bits into one byte.

ShiftRows (SR). This operation changes byte order in the state depending on
the row. Each row has its own permutation. The first row changes nothing, the
second row is rotated by one position to the left, the third row is rotated by two
positions to the left, the fourth row is rotated by three positions to the left.

MixColumns (MC). This operation linearly mixes state bytes by columns
and consists in the multiplication of each columns of the state by an MDS
matrix (Maximum Distance Separable) in the finite field GF (28). We will use
the property that, when the input column has one non-null difference in one
byte, all the bytes after this operation have a non-null difference.

AddRoundKey Operation (ARK). This operation is only a XOR between
intermediate state and the subkey generated by the key schedule.

KeySchedule. The key schedule, which derives the symmetric key K, is com-
posed of two operations, RotWord and SubWord. RotWord is a circular per-
mutation of four elements of one column. SubWord operation corresponds to
SubBytes. It is well-known that one subkey of AES-128 allows to retrieve mas-
ter key K and two consecutive subkeys of AES-192 and AES-256 allow to recover
the whole key K. We denote by K10 the last subkey of AES-128 and by K10(0)
the first byte of the last subkey of AES-128.

2.2 Previous Differential Fault Analysis

In [27], Piret and Quisquater assume a fault injection on one byte during the state
computation between the 2 last MixColumns on AES-128 as it is represented
in the Figure 2. This attack allows to recover the last subkey in 240 in time
and 232 in memory. The idea of the attack consists of expressing 4 differential
equation systems at the beginning of the last round state S12. One system is
described for each column like equation system (1), where X denotes a non-null

278 P. Derbez, P.-A. Fouque, and D. Leresteux

Fig. 2. State-of-the-art differential fault analysis on AES-128

byte difference in state S10. After collecting two couples of correct and faulty
ciphertexts, they entirely retrieve the subkey K10.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SB−1(C(0)⊕K10(0))⊕ SB−1(C̃(0)⊕K10(0)) = X

SB−1(C(13)⊕K10(13))⊕ SB−1(C̃(13)⊕K10(13)) = X

SB−1(C(10)⊕K10(10))⊕ SB−1(C̃(10)⊕K10(10)) = 3X

SB−1(C(7)⊕K10(7))⊕ SB−1(C̃(7)⊕K10(7)) = 2X

(1)

The right-hand side of the equation system is described one round earlier in an-
nexe B. With only one couple of right and wrong associated results, these equa-
tions (1) allow to reduce the possible subkeys from (28)4 = 232 to 28 for each
equation system. Indeed, according to system (1), there are (28)4 = 232 possi-
ble quadruplets of the whole K10:{K10(0), K10(13), K10(10), K10(7)}. Moreover,
there are 240 candidates for {X, K10(0), K10(13), K10(10), K10(7)}, and the 4
equations give a 32-bit constraint, and consequently, the number of solution is
240

232 = 28. Then, instead of using another pair of faulty and correct ciphertext
as it is done in [27], an exhaustive search can be performed at the end. In the
following sections, we will present our differential fault analysis.

3 Meet-in-the-Middle Fault Analysis on AES-128

In our attack, we realize a fault injection on one byte between MixColumns
at the 6th round and MixColumns at the 7th round on AES-128. The fault is
totally diffused at the whole 10th round as the Figure 3 shows it. This fault
analysis requires 10 pairs of correct and faulty ciphertexts. If the attacker knows
exactly which byte is faulted, the complexity of the attack is around 240 in
time and memory. The overall attack consists in expressing the fault path from

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 279

Fig. 3. Overall meet-in-the-middle fault attack on AES-128

the ciphertext to the beginning of the 9th round in the backward direction,
and in the forward direction from the fault injection to the beginning of the
9th round. Figure 3 illustrates the error propagation. A classical cryptographic
attack against AES, such as the square attack [13], allows to add two rounds
after the distinguisher by guessing 5 key bytes. However, this allows to recover
one byte of the state. Here, we need to know two bytes of the state, which depend
each on 5 different key bytes. By using a clever meet-in-the-middle attack as in
the attack of Gilbert and Minier in [16], we are able to recover the key using only
240 space and time. In the following of this section, we explain our differential
fault system, our method to retrieve all bytes of the last subkey of AES-128 and
its complexity.

3.1 From Fault Path to Differential Fault Equations

The left-hand side of the equation (2) describes the fault path from the ciphertext
C at the 10th round toward the state S8 at the beginning of the 9th round. We
obtain:

S8 = SB−1
(
SR−1

(
MC−1

(
ARK−1

(
SB−1

(
SR−1

(
ARK−1(C)

))))))
(2)

We consider each equation byte by byte. The notation S8(x) denotes the value
of the byte x at the state 8. We get the following relations (3) and (4) with S8(0)
and the similar one with S̃8(0) as a function of faulty ciphertext C̃, where MC|0
denotes the projection onto the state into the first byte 0.

280 P. Derbez, P.-A. Fouque, and D. Leresteux

S8(0) = SB−1
(
MC−1|0

(
SB−1 (C(0, 7, 10, 13) ⊕ K10(0, 7, 10, 13)) ⊕ K9(0, 1, 2, 3)

))

(3)

If we define U9(0) for
(
MC−1|0 (K9(0, 1, 2, 3))

)
. Consequently, the byte S8(0)

has the simple expression that depends on 5 unknown bytes, which come key
bytes:

S8(0) = SB−1
(
MC−1|0

(
SB−1 (C(0, 7, 10, 13)⊕K10(0, 7, 10, 13))

)⊕ U9(0)
)

(4)
We obtain a differential equation from the difference between the correct and
the faulty state at the end of MixColumns of the 8th round, for example, the
first differential equation system (5).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S8(0)⊕ S̃8(0) = X

S8(1)⊕ S̃8(1) = X

S8(2)⊕ S̃8(2) = 3X

S8(3)⊕ S̃8(3) = 2X

(5)

where X denotes for example the unknown difference of the first column in state
S6 (see Appendix B). We notice that the difference at the end of MixColumns
of the 8th round is equal to the difference at the end of AddRoundKey of the
8th round for AES-128. As we mentioned before each equation depends on 5
unknown bytes. We can eliminate the unknown X by considering the following
equation:

S8(0)⊕ S̃8(0) = S8(1)⊕ S̃8(1). (6)

In the next subsection, we will explain how we solve this equation that depend
on 80 key bits in time and memory 240 using 10 pairs of faulty and correct
ciphertexts.

3.2 Recovery K10

We are interesting in solving 4 difference equations like (5). To simplify the
exposition, we will assume that the fault is injected at a known position. Fur-
thermore, the adversary has 10 pairs of correct and faulty ciphertexts and all
faults are introduced between the MixColumns at the 6th round and the Mix-
Columns at the 7th round. The constant U9(0) is invariant for S8(x) or S̃8(x)
where x ∈ {0, 1, 2, 3} whatever the plaintext value is.

One idea to solve the system is the following. We consider equation (6) for the
ten pairs. Then, we can compute the left hand side for the 240 possible key bytes
and store the ten bytes S8(0)⊕ S̃8(0) and the key bytes in a first list. Then, we
do the same with the right hand side and store the ten bytes S8(1)⊕ S̃8(1) and
the key bytes in a second list. We can merge the two lists, sort them and find
collision for the ten bytes. If there is a collision between the two lists, the values
of the key bytes gives a solution for the 80 key bits. This simple technique allows

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 281

to recover the key bytes in time 245 and memory 241. We can reduce the space
complexity by storing and sorting the list and for each value computed for the
second list, we look at if it is also in the first list.

In the following, we present a technique that avoids to increase the time
complexity too much by using a hash table.

1. The differential state S8(0)⊕ S̃8(0) is calculated for the 5 pairs of faulty and
correct ciphertexts and the results are stored in one hash table according to
the values Si

8(0)⊕ S̃i
8(0)1≤i≤5in the one hand, and for the 5 others in the

other hand for all possible values of {K10(0), K10(7), K10(10), K10(13), U9(0)}.
These two hash tables have for input index 5 values of S8(0)⊕ S̃8(0) and for
output {K10(0), K10(7), K10(10), K10(13),
U9(0)}.

2. Then we calculate α(S8(1) ⊕ S̃8(1)) for all 10 couples of correct and faulty
ciphertexts, for all possible hypotheses of K10(3), K10(6), K10(9), K10(12)
and U9(13). Where U9(13) = MC−1|13 (K9(12, 13, 14, 15)) and α is known
because fault position is known, i.e α = 1. Therefore, we have a relation (7)
between S8(1) and S8(0) such as:

S8(0)⊕ S̃8(0) = α(S8(1)⊕ S̃8(1)) (7)

For each guess for {K10(3), K10(6), K10(9), K10(12), U9(13)}, due to the 5
first S8(0)⊕ S̃8(0) indexes and the 5 first α(S8(1)⊕ S̃8(1)) calculations, we
retrieve a very few potential number of solutions {K10(0), K10(7), K10(10),
K10(13), U9(0)} closed to 1 for the first hash table. For the second table,
we obtain similar results too. For each table, we make and arrange a linked
list for the results of {K10(0), K10(7), K10(10), K10(13), U9(0)}. Due to these
two arrangements and only for the right values of {K10(0), K10(7), K10(10),
K10(13), U9(0)}, we have only one intersection between the two linked lists;
that is why we only retrieve 8 bytes of K10 and the value of α is confirmed
for each couple of correct and faulty ciphertexts.

3. We similarly compute β(S8(2)⊕S̃8(2)) for the 10 couples of correct and faulty
ciphertexts, and for all potential subkey bytes of K10(2), K10(5), K10(8),
K10(15) and U9(10), where U9(10) = MC−1|10 (K9(8, 9, 10, 11)). As step 3,
β is known for known fault position, i.e β = 1

3 . We obtain the equation (8):

S8(0)⊕ S̃8(0) = β(S8(2)⊕ S̃8(2)) (8)

Due to previous step, we have knowledge of the value S8(0)⊕ S̃8(0) for the
10 pairs of cipher results. We reuse the previous method of two arranged
linked lists. We retrieve K10(2), K10(5), K10(8), K10(15) and U9(10).

4. As S8(2), we compute S8(3)⊕ S̃8(3) for the 10 correct and faulty ciphertexts
for all possible subkey bytes of {K10(1), K10(4), K10(11), K10(14), U9(7)}.
Where U9(7) = MC−1|7 (K9(4, 5, 6, 7)) and γ = 1

2 . We have the equation (9):

S8(0)⊕ S̃8(0) = γ(S8(3)⊕ S̃8(3)) (9)

We also retrieve K10(1), K10(4), K10(11), K10(14), U9(7) as step 3.

282 P. Derbez, P.-A. Fouque, and D. Leresteux

3.3 Cost and Complexity

By the birthday paradox, we have two hash tables with 240 values inside. The
complexity of all the system is also 280. However each equation gives 8-bit con-
straints, so with ten equations we obtain 80-bit constraints. Consequently, with
ten ciphertexts, there is only one solution in our system. Our meet-in-the-middle
fault attack requires around 240 in complexity for AES-128: 240 in memory and
3× 240 in instructions.

Random Byte Fault Model. In equation (7), α takes on the values { 1
3 , 1, 3

2 , 2}
in case of unknown fault position. Several cases could be studied. In the first
one, we know exactly for each faulty ciphertext byte faulty position, we have
knowledge of α for each equation. In the second one, we use the same method
to inject fault at the same time, we suppose that the same byte is faulted. For
consequences, it multiplies by four the computations. In the third case, the worst,
we make no assumptions on the location of the fault for each pair of correct and
incorrect ciphertexts. In fact for each couple of correct and incorrect results, we
need to compute 4 intermediate results. This operation costs 410 values more, it
costs too much, i.e 260.

3.4 Reduction of Memory Requirement

We suppose that an adversary has a sixtuplet of the correct message and five
faulty ciphertexts, with all five faults on the same byte. In this case, the tool
from [9] allows us to find a similar attack but it requires much less memory, 224

instead of 240.
The previous attack can be schematized as follows :

– Build the four lists, the index 0 corresponds to the correct ciphertext :
• L0 =

{(
K10 (0) , K10 (7) , K10 (10) , K10 (13) , S0

9 (0)
)}

• L1 =
{(

K10 (3) , K10 (6) , K10 (9) , K10 (12) , S0
9 (1)
)}

• L2 =
{(

K10 (2) , K10 (5) , K10 (8) , K10 (15) , S0
9 (2)
)}

• L3 =
{(

K10 (1) , K10 (4) , K10 (11) , K10 (14) , S0
9 (3)
)}

– Each element of Li allows to deduce unique values for ΔSj
8 (i) , j = 1, . . . , 5

is the index of jth faulty ciphertext.
– Look for collisions since the vector

(
ΔSj

8 (0) , . . . , ΔSj
8 (3)
)

must be collinear
with a column vector of the matrix of the MixColumn operation.

To reduce memory, we note that we can build each list in beginning with guessing
ΔS1

8 (0) and ΔS2
8 (0). This operation allows us to partially build the lists and

thus save memory.
Building, for example, the list L0 by assuming that these values are known :

– Build the list L′
0 =

{(
K10 (0) , S0

8 (0)
)}

– Each element of L′
0 allows to deduce unique values for :

• ΔSj
10 (0) , j = 1, 2

• ΔSj
11 (0) , j = 1, . . . , 5

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 283

– Guess K10 (7) , K10 (10) , K10 (13)
• Deduce ΔSj

11 (1, 2, 3) , j = 1, . . . , 5
• Look in L′

0 corresponding values for K10 (0) and S0
8 (0) using ΔSj

11 =
MC
(
ΔSj

10

)

• Deduce ΔSj
8 (0) , j = 3, 4, 5

L1, L2 and L3 can be built in the same way.
This improvement makes the attack much more feasible. The implementation
providing by the tool takes a little bit more than 13 days on a Core 2 Duo E8500
and 900MB of ram to test all possibilities but it can be improved by parallelizing
the C code.

4 Impossible Differential Fault Attack on AES-128

In this section, we present a more efficient attack since we do not assume where
the fault is provoked and the time complexity is reduced to 241. However, this
fault attack needs more faulty ciphertexts, less than 1000 or 45 depending on
the fault model. Our attack is based on the fact that it is impossible to have a
zero-difference in state S10 in the 9th round just before MixColumns operation;
as Phan and Yen mentioned this fact in [26] and developed with an example of
the fault injected on the subkey K7 in the key schedule. This fact is illustrated
by the Figure 4. In this section, two principles are associated, the first one
impossible differential, which is first published in [21,22], and the second one
fault analysis, like [2,26]. Our impossible differential fault analysis corresponds to
5-round impossible differential cryptanalysis attack, which is described in [3]. We
firstly present the differential inequation systems, then the retrieval algorithm
and in the last part the comparison between the experimental, simulation and
theoretical results.

4.1 From Impossible Differential to Inequation System

Due to a well-known property of the differential through the MixColumn opera-
tion, all differences between bytes are not null at the internal state S10 in (10).

S10(C)⊕ S10(C̃) �= 0 (10)

Moreover, we have the following equation (11):

S10(C) = MC−1
(
SB−1

(
SR−1(C ⊕K10)

)⊕K9

)
(11)

We obtain similar equation for S10(C̃). Like the attack below, we have the same
simplification with the subkey K9. The differential equations have the following
form (12):

S10(C)⊕S10(C̃) = MC−1
(

SB−1
(

SR−1(C ⊕ K10)
))

⊕MC−1
(

SB−1
(

SR−1(C̃ ⊕ K10)
))

(12)

We execute the same kind of computations as in the previous attack. We analyze
column per column. We guess 4 key bytes of K10. Due to the 4 inequalities, we

284 P. Derbez, P.-A. Fouque, and D. Leresteux

Fig. 4. Overall impossible differential fault attack on AES-128

can filter bad key byte candidates in a list of possible keys. Using many pairs of
correct and faulty ciphertexts, we can reduce the possible key space. We reuse
four times the no difference computation algorithm for each column of S10. In
this attack, the attacker does not use fault position to retrieve the last subkey
bytes. The algorithm allows to recover all bytes of the subkey K10. In the case
of AES-128, it is enough to retrieve the secret key K.

4.2 Recovery Steps

1. For each pair of correct and incorrect results, we take four guesses for
{K10(0), K10(13), K10(10), K10(7)}. Then we eliminate at each level the key
quadruplets which do not satisfy the system (13). We test at each loop all
not dismissed quadruplets among 232 possible quadruplets at the beginning.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

MC−1|0(SB−1(C(0) ⊕ K10(0))) ⊕ MC−1|0(SB−1(C̃(0) ⊕ K10(0))) �= 0

MC−1|1(SB−1(C(13) ⊕ K10(13))) ⊕ MC−1|1(SB−1(C̃(13) ⊕ K10(13))) �= 0

MC−1|2(SB−1(C(10) ⊕ K10(10))) ⊕ MC−1|2(SB−1(C̃(10) ⊕ K10(10))) �= 0

MC−1|3(SB−1(C(7) ⊕ K10(7))) ⊕ MC−1|3(SB−1(C̃(7) ⊕ K10(7))) �= 0

(13)

2. We repeat previous steps and we retrieve the right quadruplets of K10 for
each following column.

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 285

3. This research could be complemented by an exhaustive search, if only less
than 210 possible quadruplets for each column are left. Hence, a global com-
plexity is 240 research operations.

4.3 Property of Recombination

An interesting property of reusing incorrect ciphertexts is described here. The
same plaintext is encrypted while fault injection targeted on the same byte. Only
MixColumns operation generates collision in one byte, whereas the others do not.
Furthermore, if two different inputs of MixColumns only vary on one byte, the
two outputs of MixColumns do not collide. For instance, if two different random
byte faults ε1 and ε2 are injected on state S0.

∃!y ∈ [0, 15], ∀ε1 �= ε2, S0(y) = x⊕ ε1 S0(y) = x⊕ ε2 (14)

C̃(1) is the faulty ciphertext obtained where fault ε1 is injected, similarly, C̃(2)

the faulty ciphertext links to fault ε2. We have the two following facts :

S10(C)⊕ S10(C̃(1)) �= 0 (15)

S10(C)⊕ S10(C̃(2)) �= 0 (16)

Due to equation (14) and the properties of the MixColumns described below, we
obtain the following inequation:

S10(C̃(1))⊕ S10(C̃(2)) �= 0 (17)

On our test platform, we collect with one correct ciphertext, 5 or 6 different
faulty ciphertexts whose faulty bytes are the same.

4.4 Theoretical and Simulation Results

Theoretical Cost and Complexity. The impossible differential algorithm
requires 232 guesses as there are 4 unknown key bytes on each column. The
probability that all 4 inequations are satisfied equals (255

256)4. With one pair of
correct and faulty ciphertexts, we eliminate around 226 subkeys of K10 amongst
232 possible values of K10 for each column: E = 232 × (1 − (255

256)4) � 226. Each
couple could bring the same information about the key than another couple.
The recombination of faulty results introduces collision too. Same quadruplets
of key bytes are eliminated several times. Two couples of correct and incorrect
ciphertexts create an overlap of E2

232 � (226)2

232 = 252

232 = 220. We define Un as the
number of rejected quadruplets with n pairs of correct and faulty ciphertexts
with the following recursive formula, where U0 = 0:

Un+1 = 226 + Un(1− 2−6). (18)

286 P. Derbez, P.-A. Fouque, and D. Leresteux

In solving recurrence in previous equation 18, we obtain the following equation:

Un = 232 − 232(1 − 2−6)n. (19)

The recovery algorithm of the impossible difference stops where Un ≥ 232− 210.
That is why, due to equation 19,

n ≥ −22 log(2)/ log(1− 2−6) ⇔ n ≥ 968. (20)

Simulation Results. We obtain around 226 eliminated quadruplets of bytes
for each pair. We also retrieve the calculated overlap of 220 between two pairs.
Considering the random byte fault model, we need on average around 1000
couples of correct and faulty ciphertexts with performing an exhaustive search
on 240 possible subkeys at the end. In the case of recombination based on the
fixed byte fault model, due to collision results, our attack only requires about 45
faulty ciphertexts with the same plaintext among the 256 possible ciphertexts:(
45+1

2

)
= 45×46

2 = 1035 > 1000. It is also possible to combine classical resolution
with several recombinations.

5 Extension to AES-192 and AES-256

Introducing fault between the MixColumns of the 6th round and the MixColumns
of the 7th round on AES-128 amounts to injecting fault between the MixColumns
of the 8th round and MixColumns of the 9th round on AES-192, and between
the 10th round and the 11th round on AES-256. Because faults are injected one
round before all previous papers, we have access at the same time at subkeys
Kn and Kn−1 with the same differential path.

5.1 Meet-in-the-Middle Fault Analysis on AES-192 and AES-256

We extend the previous concepts for AES-192 and AES-256 without more
faulty ciphertexts than AES-128. We use the meet-in-the-middle algorithm in or-
der to recover: {Kn(4), Kn(1), Kn(14), Kn(11), Un−1(7)}, {Kn(8), Kn(5), Kn(2),
Kn(15), Un−1(10)}, {Kn(0), Kn(7), Kn(10), Kn(13), Un−1(0)} and {Kn(3),
Kn(6), Kn(9), Kn(12), Un−1(13)}. We obtain 2 tables which contain S8(0)⊕S̃8(0)
for 5 couples of correct and incorrect results. We compute S8(1)⊕ S̃8(1), S8(2)⊕
S̃8(2) and S8(3)⊕ S̃8(3). By hypothesis, we know fault position for each faulty
ciphertext, it means that α, β and γ are known for all equations. Due to these
computations, we retrieve all bytes of the subkey Kn. We write the differential
equations S8(5), S8(10) and S8(15) as a function of the same 4 bytes of Kn−1.
Then we also write system of S8(6), S8(11) and S8(12) as a function of the same
4 bytes of Kn−1, S8(7), S8(8) and S8(13) as a function of 4 bytes of Kn−1 and
S8(4), S8(9) and S8(14) as a function of 4 bytes of Kn−1. We inject the 16 com-
puted bytes of Kn in the previous equations like (5). We recognize the form of

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 287

Piret and Quisquater equations in our ones (21), that is why we apply Piret and
Quisquater resolution in our recovery method.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SB−1 (A⊕ Un−1(4))⊕ SB−1(Ã⊕ Un−1(4)) = Y

SB−1 (B ⊕ Un−1(1))⊕ SB−1(B̃ ⊕ Un−1(1)) = 3Y

SB−1 (C ⊕ Un−1(14))⊕ SB−1(C̃ ⊕ Un−1(14)) = 2Y

SB−1 (D ⊕ Un−1(11))⊕ SB−1(D̃ ⊕ Un−1(11)) = Y

(21)

The values {A, B, C, D} are known values at this stage and only depend on the
correct ciphertext and Kn. The values {Ã, B̃, C̃, D̃} are known values too and
only depend on the faulty ciphertext and Kn. Using 3 generalizations of Piret
and Quisquater equation systems allow to recover the subkey Un−1, because we
have already retrieved {Un−1(0), Un−1(13), Un−1(10), Un−1(7)}. Then we resolve
4 systems of 4 equations in using the Gauss’ method. Each equation describes
MixColumns inverse operation with unknown outputs, in order to recover all
bytes of Kn−1. This scenario costs around 240 in complexity for AES-192 or
AES-256 divided in 240 for memory and 3×240 for operation code like AES-128,
plus 240 for Piret and Quisquater resolution.

5.2 Impossible Differential Fault Analysis on AES-192 and AES-256

In the cases of AES-192 and AES-256, we do not need more fault than AES-
128 if no exhaustive search is realized. However, we have to collect couples until
all bytes of the subkey Kn are retrieved. We reuse the equation systems (5) of
the first attack, because both attacks consider fault injection between the same
MixColumns. Now, we obtain as the previous subsection the systems (21), thanks
to which we know all bytes of Kn. In order to retrieve all bytes of the subkey
Kn−1, we use 4 Piret and Quisquater generalization. This fault attack is achieved
with a complexity around 242, because Piret and Quisquater generalization has
the same cost as Piret and Quisquater attack [27] described in the second part
of this paper.

6 Conclusion

We have presented two different attacks on the n− 3th round of AES as it is
shown in Table 1. The first attack implies random fault byte on known or fixed
position for AES-128, AES-192 or AES-256. The second attack involves ran-
dom fault byte too with less complexity for AES-128. The first one costs around
242 and requires 10 pairs of correct and faulty ciphertexts, its improvement 5
pairs and costs 240 whereas the second one around 240 deals with 1000 couples.
Moreover, we can associate the first analysis to solve the second subpart of the
second analysis. In this case, a differential fault analysis could be performed
on AES-128, AES-192 and AES-256 with a random fault injected between the
n − 4th and the n − 3th MixColumns. Current state-of-the-art countermeasure

288 P. Derbez, P.-A. Fouque, and D. Leresteux

consists on protecting the three first rounds and the three last rounds of AES.
All operations inside round need to be protected and state between rounds too.
In order to defeat our fault analysis, all AES-128 rounds need to be protected
against fault attacks. Considering AES-192 and AES-256, at least the last 5
rounds and the first 5 rounds need to be protected against fault analysis.

Acknowledgments. We would like to thank Nicolas Guillermin and the anony-
mous reviewers for their helpful and valuable comments and discussions.

References

1. Anderson, R.J., Kuhn, M.G.: Low Cost Attacks on Tamper Resistant Devices. In:
Christianson, B., Lomas, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp.
125–136. Springer, Heidelberg (1998)

2. Biham, E., Granboulan, L., Nguyen, P.Q.: Impossible fault analysis of RC4 and
differential fault analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005)

3. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael. In: 3rd AES
Conference, New York, USA (2000)

4. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

5. Biryukov, A., Khovratovich, D.: Two New Techniques of Side-Channel Cryptanal-
ysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
195–208. Springer, Heidelberg (2007)

6. Bloemer, J., Seifert, J.-P.: Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181.
Springer, Heidelberg (2003)

7. Bogdanov, A.: Improved Side-Channel Collision Attacks on AES. In: Adams, C.,
Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Hei-
delberg (2007)

8. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking
Cryptographic Protocols for Faults (Extended Abstract). In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

9. Bouillaguet, C., Derbez, P., Fouque, P.-A.: Automatic Search of Attacks on Round-
Reduced AES and Applications. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 169–187. Springer, Heidelberg (2011)

10. Chen, C.-N., Yen, S.-M.: Differential Fault Analysis on AES Key Schedule and
Some Countermeasures. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS,
vol. 2727, pp. 118–129. Springer, Heidelberg (2003)

11. Choukri, H., Tunstall, M.: Round Reduction Using Faults. In: Proceedings of the
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2005, pp.
13–24 (2005)

12. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M.: Passive and Active Combined
Attacks on AES Combining Fault Attacks and Side Channel Analysis. In: FDTC,
pp. 10–19 (2010)

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 289

13. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

14. Dusart, P., Letourneux, G., Vivolo, O.: Differential Fault Analysis on A.E.S. In:
Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306.
Springer, Heidelberg (2003)

15. FIPS. Advanced Encryption Standard (AES). pub-NIST (November 2001)
16. Gilbert, H., Minier, M.: A Collision Attack on 7 Rounds of Rijndael. In: AES

Candidate Conference. LNCS, pp. 230–241. Springer, Heidelberg (2000)
17. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES

2005. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)
18. Hamid, H.B.-E., Choukri, H., Tunstall, D.N.M., Whelan, C.: The Sorcerer’s Ap-

prentice Guide to Fault Attacks (2004), http://eprint.iacr.org/2004/100.pdf
19. Kermani, M.M., Reyhani-Masoleh, A.: A Lightweight Concurrent Fault Detection

Scheme for the AES S-Boxes Using Normal Basis. In: Oswald and Rohatgi [25],
pp. 113–129

20. Kim, C.H.: Differential Fault Analysis against AES-192 and AES-256 with Minimal
Faults. In: Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 3–9
(2010)

21. Knudsen, L.R.: DEAL - a 128 bit block cipher. In: Technical report 151, Departe-
ment of Informatics, University of Bergen, Norway (1998)

22. Knudsen, L.R.: DEAL - a 128 bit block cipher. In: AES Round 1 Technical Eval-
uation, NIST (1998)

23. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A Generalized Method of Differ-
ential Fault Attack Against AES Cryptosystem. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)

24. Mukhopadhyay, D.: An Improved Fault Based Attack of the Advanced Encryption
Standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 421–
434. Springer, Heidelberg (2009)

25. Oswald, E., Rohatgi, P. (eds.): CHES 2008. LNCS, vol. 5154. Springer, Heidelberg
(2008)

26. Phan, R.C.-W., Yen, S.-M.: Amplifying Side-Channel Attacks with Techniques
from Block Cipher Cryptanalysis. In: Domingo-Ferrer, J., Posegga, J., Schreckling,
D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 135–150. Springer, Heidelberg (2006)

27. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

28. Rivain, M.: Differential Fault Analysis on DES Middle Rounds. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 457–469. Springer, Heidelberg
(2009)

29. Satoh, A., Sugawara, T., Homma, N., Aoki, T.: High-Performance Concurrent Er-
ror Detection Scheme for AES Hardware. In: Oswald and Rohatgi [25], pp. 100–112

30. Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES: Com-
bining Side Channel- and Differential-Attack. In: Joye, M., Quisquater, J.-J. (eds.)
CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)

31. Takahashi, J., Fukunaga, T., Yamakoshi, K.: DFA Mechanism on the AES Key
Schedule. In: FDTC 2007: Proceedings of the Workshop on Fault Diagnosis and Tol-
erance in Cryptography, pp. 62–74. IEEE Computer Society, Los Alamitos (2007)

32. Tunstall, M., Mukhopadhyay, D.: Differential Fault Analysis of the Advanced
Encryption Standard using a Single Fault. Cryptology ePrint Archive, Report
2009/575 (2009), http://eprint.iacr.org/

http://eprint.iacr.org/2004/100.pdf
http://eprint.iacr.org/

290 P. Derbez, P.-A. Fouque, and D. Leresteux

A Difference Path from the 10th to the 9th Round for
AES-128

Due to fault path from the ciphertext to the beginning of the 9th round, we
give the following relations between bytes at different steps for the Meet-in-the-
Middle attack. We obtain the following system of 4 equations, where U9(a, b, c, d)
= MC−1 (K9(a, b, c, d)), for AES-128 from the 10th to the 9th round, for AES-
192 from the 12th to the 11th and for AES-256 from the 14th to the 13th:

S8(0, 5, 10, 15) = SB−1
(

MC−1
(

SB−1 (C(0, 7, 10, 13) ⊕ K10(0, 7, 10, 13))
)
⊕ U9(0, 1, 2, 3)

)
(22)

S8(1, 6, 11, 12) = SB
−1
(

MC
−1
(

SB
−1

(C(3, 6, 9, 12) ⊕ K10(3, 6, 9, 12))
)
⊕ U9(12, 13, 14, 15)

)

(23)

S8(2, 7, 8, 13) = SB−1
(

MC−1
(

SB−1 (C(2, 5, 8, 15) ⊕ K10(2, 5, 8, 15))
)
⊕ U9(8, 9, 10, 11)

)
(24)

S8(3, 4, 9, 14) = SB
−1
(

MC
−1
(

SB
−1

(C(1, 4, 11, 14) ⊕ K10(1, 4, 11, 14))
)
⊕ U9(4, 5, 6, 7)

)
(25)

B Difference Path from the 7th towards the 8th Round on
AES-128

Fault on one byte among bytes {0, 5, 10, 15} at the 7th round on AES-128
produces case 1, fault on one byte among {3, 4, 9, 14} produces case 2, fault
on one byte among {2, 7, 8, 13} produces case 3 and fault on one byte among
{1, 6, 11, 12} produces case 4. All different cases are presented in Figure 5. We
obtain same behavior with fault injected at the 9th round of AES-192 and at the
11th round of AES-256.

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 291

Fig. 5. Difference path during the 8th round for the four different AES-128 cases

On the Power of Fault Sensitivity Analysis and
Collision Side-Channel Attacks

in a Combined Setting

Amir Moradi1, Oliver Mischke1, Christof Paar1,
Yang Li2, Kazuo Ohta2, and Kazuo Sakiyama2

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{moradi,mischke,cpaar}@crypto.rub.de

2 Department of Informatics, The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

liyang@ice.uec.ac.jp, {ota,saki}@inf.uec.ac.jp

Abstract. At CHES 2010 two powerful new attacks were presented,
namely the Fault Sensitivity Analysis and the Correlation Collision At-
tack. This paper shows how these ideas can be combined to create even
stronger attacks. Two solutions are presented; both extract leakage infor-
mation by the fault sensitivity analysis method while each one applies a
slightly different collision attack to deduce the secret information without
the need of any hypothetical leakage model. Having a similar fault injec-
tion method, one attack utilizes the non-uniform distribution of faulty
ciphertext bytes while the other one exploits the data-dependent timing
characteristics of the target combination circuit. The results when at-
tacking several AES ASIC cores of the SASEBO LSI chips in different
process technologies are presented. Successfully breaking the cores pro-
tected against DPA attacks using either gate-level countermeasures or
logic styles indicates the strength of the attacks.

1 Introduction

Since the last decade designers of cryptographic devices have to deal with the
problem that embedded secret information, e.g., the used encryption key in a
symmetric cipher, is leaking through physical side channels. The side-channel
leakage can be the timing [11], the power consumption [12], the electro-magnetic
radiation [8,21] and so on. Also fault analysis attacks such as differential fault
analysis (DFA) was demonstrated to be effective against implementations of
block ciphers such as DES [5] and AES [20].

At CHES 2010 a new fault attack called Fault Sensitivity Analysis (FSA) [14]
was proposed. The authors used fault injections by means of clock glitches to
measure the calculation time of the S-boxes as side-channel leakage. This in-
formation, whose data dependency is caused by the underlying gates, is then
used to recover the secret information. Using this attack the secret key of an
AES ASIC implementation could be completely extracted, but it was stated
that masking might be a countermeasure against such a kind of attack since the

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 292–311, 2011.
c© International Association for Cryptologic Research 2011

On the Power of Fault Sensitivity Analysis 293

randomization of the S-box input makes it difficult to repeat fault injections and
to measure the timings of specific calculations.

Another contribution to CHES 2010 was a collision attack enhanced by cor-
relation [15]. Compared to classical power analysis attacks, its main feature is
that it does not rely on the knowledge of an underlying (hypothetical) power
model. Instead, it directly correlates power traces to each other and – by finding
colliding S-box computations – is able to recover the relation between key parts.
Using such an attack a complete break of a masked FPGA implementation of
AES has been demonstrated.

The combination and improvement of these two ideas is the main contribution
of this article. From [14] we will use the fault injection method and utilize the
fact that the timing characteristics of each S-box can be independently observed,
while the correlation-collision approach from [15] is used to find the relations
between key bytes without the need to have any knowledge how the observed
characteristics relate to the inputs. Two options to combine these two schemes
are presented:

– First we present an attack which exploits the finding that given a fixed clock
glitch period and a fixed unmasked S-box input byte the distribution of the
resulting faulty ciphertext byte will be data dependent. This is achieved by
setting the period of the clock glitch so that about 50% of the executions
lead to faulty values. Repeating this measurements for all possible differ-
ences between two targeted ciphertext bytes, one can identify the correct
key difference if the distributions of two faulty ciphertext bytes collide.

– In the second attack we take a closer look at the fault rate of each S-box in-
stance over a large range of clock glitch periods, thereby getting very detailed
information about the timing characteristics of the targets. Again using the
concept of the correlation collision attack, several collisions between these
timing sets can be detected at the same time. This allows us to fully recover
all relations between the key bytes, i.e., shrinking the key space to 28.

Similarly to [14], we have chosen the SASEBO-R [2] board as the evaluation plat-
form. The board can hold different ASICs, and we have analyzed the SASEBO
LSI2 [3], both in 130nm and 90nm technology, as well as the SASEBO LSI3 [4]
in 65nm technology. Each of the LSIs contain the same 14 different implementa-
tions of AES, therefore the only difference is the process technology, which has
a big influence on the timing characteristics. The implementations themselves
differ in the style of the S-box realization and in side-channel countermeasures.
Using the attacks presented in this paper we will provide detailed results show-
ing the successful key recovery for a large number of cores including the ones
applying gate-level DPA countermeasures and DPA-resistant logic styles.

In the later parts of this article the prerequisites, including a review of fault
sensitivity analysis and the correlation collision attack, are given in Section 2.
Our first proposed attack using collisions of faulty ciphertext distributions and
its results on two SASEBO LSI2 cores are presented in Section 3. The second
proposed attack, namely the collision timing attack, is expressed in Section 4,

294 A. Moradi et al.

which also contains the practical evaluation results on several of the 130nm,
90nm, and 65nm SASEBO LSI2 and LSI3 cores. Finally, Section 5 concludes
the paper.

2 Preliminaries

This section summarizes the underlying attacks, namely the fault sensitivity
analysis [14] and correlation collision attack [15], which are the basis to the
attacks presented here. We also address how these two methods can be combined
to develop more sophisticated attacks improving their efficiency and relaxing the
requirements. The experimental setup used in all the practical results shown in
this work are also introduced in this section.

2.1 Fault Sensitivity Analysis

A new type of fault attack called Fault Sensitivity Analysis (FSA) was proposed
in [14]. Unlike some of the previous fault attacks, e.g., DFA [5], the FSA attack
does not require the value of the faulty outputs in the key recovery process.
Instead, the attack works by increasing the fault intensity until a distinguish-
able characteristic can be observed, e.g., the first appearance of a faulty out-
put. The concept of the FSA attack was verified by attacking the unprotected
AES_PPRM1 core of the SASEBO LSI2 [3] using only 50 different plaintexts1.
By successfully revealing three key bytes of the AES_WDDL implementation
of the same ASIC using 1200 plaintexts it was also shown that the FSA attack
can bypass some known countermeasures against DFA attacks.

The presented method of increasing the fault sensitivity in [14] is the short-
ening of the clock glitch, whereby the glitch period can be gradually decreased
until a faulty output occurs or the fault becomes stable. Since the critical path
of some gates, e.g., AND and OR gates, is data dependent, knowing the under-
lying model for this data dependency helps revealing the secret. For example,
the simulation results ascertained that the timing delay of a PPRM S-box cor-
relates to the Hamming weight (HW) of its input. For AES_WDDL, which in
theory should be immune against set-up time violation attacks, by profiling with
a known key it was shown that at least some bits correlate to the timing delay
which lead to the aforementioned recovery of three key bytes. Moreover, this
issue has been carefully studied later in [13].

In addition to the fact that FSA does not require faulty ciphertexts, another
difference to DFA attacks is that the fault does not need to be restricted to
a small sub-space. In contrary, by for example attacking the last round of the
AES_PPRM1 implementation, each faulty output byte can be independently
observed and therefore the same complete faulty output can be used to attack
all key bytes simultaneously. On the other hand, as stated in [14], while coun-
termeasures like masking are only of limited use against DFA attacks, they may
1 The fault sensitivity leakage for each plaintext has been recovered using around 200

faulty executions.

On the Power of Fault Sensitivity Analysis 295

have a great impact on FSA attacks since the critical path is affected by the
random mask bits. Indeed, this is an issue which we demonstrate in this pa-
per to be incorrect by providing the result of successful attacks on the masked
implementations.

2.2 Correlation Collision Attack

The correlation collision attack was introduced in [15]. Its major advantage com-
pared to classical power analysis attacks is that it neither relies on a hypothetical
power model nor requires a profiling phase. Enhancing linear collision attacks [6]
by the methods of correlation-based DPAs, it is able to overcome side-channel
countermeasures as long as a minimal first order leakage remains.

A linear collision occurs if two instances of combinational circuits or one in-
stance at two different points in time process(es) the same value, i.e., for AES
two 8-bit outputs and thereby the inputs of the S-boxes must be the same. It is
therefore possible to recover the key relation between the attacked bytes since
rearranging of Sbox(i1 ⊕ k1) = Sbox(i2 ⊕ k2) leads to Δ = i1 ⊕ i2 = k1 ⊕ k2,
where both i1 and i2 are known.

The correlation collision attack on AES works similarly, but starts by com-
puting sets of mean traces for each possible input byte in case the attack is
performed on the first round. To do this for two input bytes, namely i1 and i2,
all traces are sorted based on the corresponding input byte value, and traces
with the same value are averaged, thereby creating 256 different mean traces
M1(i1) and M2(i2) for each of the two input bytes. Computing the variances for
each set of mean traces will reveal the point in time where the corresponding
bytes are processed by the S-box, which is necessary to align the mean traces
for the attack.

If the power consumption of two S-box computations are highly similar, com-
paring pairs of mean sets also shows a high similarity between certain mean
traces. Therefore, when attacking the input bytes i1 and i2 and Δ = k1 ⊕ k2,
then M1(i1) ≈ M2(i2 = i1 ⊕Δ). The correct Δ can be found by computing the
correlation between the two sets of mean traces for each of the 256 candidates of
Δ. This yields a very high correlation coefficient since no hypothetical model is
applied but instead the averaged real power consumptions are used and only a
low number of points contributes to the estimation of the correlation coefficient.

2.3 Combinations

In order to avoid the need of a hypothetical model matching the fault sen-
sitivity leakages, the two above attacks can be combined in several different
ways. Two options for such a combination are expressed in this article. It should
be noted that each of these two options has been independently developed by
each group of the authors, and both have been submitted in parallel to CHES
2011. These two works have been merged as requested by the program com-
mittee. The first option, which is developed by the team of the University of

296 A. Moradi et al.

Electro-Communications (Japan), is expressed in Section 3. It extracts the dis-
tribution of the faulty ciphertext bytes and tries to find the collision within
the distributions to recover the linear difference between the corresponding key
bytes. The feasibility of this attack is practically confirmed by breaking two
masked AES cores. The second option is developed by the team of the Ruhr
University of Bochum (Germany) and is illustrated in Section 4. It extracts the
precise timing characteristics of combinational circuits, e.g., S-boxes, and applies
the correlation collision attack on timings to detect the colliding cases which re-
veal, similar to the first option, the linear difference between the corresponding
key bytes. The shown practical results of this attack on several different AES
cores in different process technologies highlight the strength of this attack.

2.4 Experimental Setup

All the practical results shown in this work are based on the AES implementa-
tions of three ASIC chips built for the SASEBO-R board, namely the SASEBO
LSI2 (130nm), LSI2 (90nm), and LSI3 (65nm). Each chip contains the same 14
different AES cores including unprotected, DPA protected, and fault attack pro-
tected ones. The similar approach for fault injection as in [14] is used to inject
the faults or extract the timing characteristics of the target circuit. An addi-
tional external clock, generated by an programmable digital function generator,
is fed into the SASEBO-R control FPGA where it is multiplied using a Digital
Clock Management (DCM) unit. This fast clock signal is then used together
with some logic to shape the glitchy clock signal. An internal circuit controls the
clock signal of the LSI to infer the glitchy clock at the preferred instance of time
synchronized to the AES computation of the target core.

We have first tried to generate the glitchy clock inside the control FPGA
without using an external function generator, but the width of the glitchy clock
could only be adjusted in large steps (e.g., of around 170ps [7]), which were not
small enough to reach the desired results. Therefore, we had to use a function
generator to externally provide the precise clock frequencies. As it is represented
in the following, we change the width of the glitchy clock in steps of 25ps to 5ps.
Also, the multiplication of the clock frequency is necessary because of the limi-
tation (maximum frequency of 15 MHz) of the function generator we have used,
while the frequencies necessary to inject a fault in the combinational circuit are
up to the range of 300MHz. Also, the DCMs inside the Virtex-II control FPGA
of the SASEBO-R can, when fed with a low frequency input signal, only gener-
ate output frequency up to 210 MHz. Since some of the cores, especially of the
65nm LSI3, require a higher frequency for fault injection, for these cores it was
necessary to daisy chain two DCMs, one for generating a high frequency signal
out of the function generator output and another one to reach the maximum
supported output frequency which can only be generated by the DCM using a
high frequency input [26].

On the Power of Fault Sensitivity Analysis 297

K10

C

R2

I R1
Masked S-boxR1, R2 Q

Fig. 1. A combinational circuit in the fi-
nal round of a masked AES

0 64 128 192 255
0

4

8

12

Faulty ciphertext byteN
um

be
r

of
 o

cc
ur

en
ce

Fig. 2. A faulty ciphertext byte distribu-
tion

3 Option 1: Colliding Faulty Ciphertext Distributions

For the implementation with masking countermeasures, attackers cannot keep
the device repeating the same calculation due to the randomization of the inter-
nal calculations in each trial. Thus, the fault sensitivity is difficult to be measured
for a specific calculation, e.g., an S-box calculation with a fixed unmasked input
and masks.

As shown in [15], the statistical observation of the side-channel leakage of a
masked implementation may recover some sensitive information, e.g., the un-
masked inputs, when there is still a first order leakage. We note that when faults
are injected, the faulty ciphertexts can be used as an information source in the
context of attacking the masked implementation. This section shows that the
faulty ciphertext distribution is data dependent and can be used to detect the
collision between unmasked intermediate values. This attack has been verified by
successfully attacking two AES implementations masked using the Masked-AND
gates and a form of threshold implementation.

3.1 Model and Attack Concept

As shown in Fig. 1, we make a simple model of a combinational circuit in the
final AES encryption round of a masked implementation. A masked intermediate
result I ⊕ R1 goes through the substitution in a masked S-box calculation, the
addition with the final round key K10 and the unmasking procedure (XOR with
R2) to become a ciphertext byte C. In Fig. 1, Q denotes the output of the
masked S-box. Hereafter, we use Q′ and C′ to denote the faulty masked S-box
output and the faulty ciphertext byte, respectively. The attack procedure can
be divided in two steps consisting of i) classifying the random numbers, and ii)
detecting the colliding unmasked S-box inputs.

Classifying the Random Numbers. A general security requirement for a
masking countermeasure is the uniform distribution of the used random numbers,
while we use a variation of fault sensitivity to classify the used random numbers.

Given a plaintext, the value of I in Fig. 1 is fixed. For all the possible random
numbers, the calculations in the S-box circuit are different, and more importantly
the critical delay timings are different. Attackers can focus on a specific S-box

298 A. Moradi et al.

calculation and trigger the setup-time violation in the final AES round. The fault
injection intensity can be adjusted by modifying the period of the clock glitch.

In our attack, the clock glitch is set to a level where about 50% of the execu-
tions generate a faulty output. In this case, the executions are divided into two
groups according to whether or not the output is faulty. Furthermore, these two
groups of executions are corresponding to two groups of random numbers whose
corresponding intermediate values, as we see later, are not uniformly distributed.

Detecting the Colliding Unmasked S-box Inputs. After using the fault
sensitivity as a leakage to classify the random intermediate values which are
non-uniformly distributed, the next step is to find another information source
to effectively identify the sensitive intermediate value. According to Fig. 1, since
both K10 and R2 are the inputs of the XOR gates, these part of the circuit can
be seen as a set of fixed (per clock cycle) Buffers and Inverters. According to the
architecture of our experimental setup, the round key K10 and R2 get available
at the start of the corresponding clock cycle (last encryption round). Therefore,
the computation of the masked S-box (Q), which is definitely longer than two
following XORs, is interrupted by the clock glitch. So, we can assume that the
faulty ciphertext C′ is calculated as

C′ = Q′ ⊕K10 ⊕R2. (1)

If we suppose that the faulty S-box output Q′ has a fixed non-uniform distri-
bution when I is fixed and the fault injection intensity is fixed at 50% success
rate, those values of R2 which are corresponding to the 50% faulty executions
should follow a fixed non-uniform distribution. On the other hand, the values of
Q′ and R2 are not independent of each other. As a result, we expect that the
value of Q′ ⊕ R2 follows a fixed non-uniform distribution corresponding to the
value of the fixed I. At last, the distribution of C′ is permuted based on the value
of K10. An example of the distribution of C′ is shown in Fig. 2.

The main idea of the attack is to check the similarity between two faulty
ciphertext distributions, e.g., of two ciphertext bytes, each of which corresponds
to a masked S-box followed by a fixed key addition, i.e., in the last round of
the AES encryption. According to the linear collision in AES [6], the difference
between key bytes equals to the difference between the corresponding fault-free
ciphertext bytes when such a collision occurs.

3.2 Attack Scheme

The attack target is the linear difference ΔK between two bytes of K10, i.e.,
ΔK = Ki

10 ⊕Kj
10, where i, j = 1, 2, · · · , 16. After guessing the value of ΔK as

ΔKg, the attacker provides one plaintext so that the corresponding ciphertext
satisfies Ci ⊕ Cj = ΔKg. Therefore, if the current key difference guess is cor-
rect, the unmasked input I of the corresponding masked S-boxes collide. Such
a case can be detected by examining the similarity of the distributions of the
corresponding faulty ciphertext bytes. The distributions of the faulty ciphertext
byte for the targeted S-boxes can be collected using Algorithm 1.

On the Power of Fault Sensitivity Analysis 299

Algorithm 1. Collecting the distribution of the faulty ciphertext byte
1: Inputs: A plaintext P , number of executions N , position of the target: j
2: Outputs: The count of all the faulty ciphertext byte: Cnt(i), i = 0, 1, 2 . . . 255.
3: Set the plaintext as P , Cnt(i) ← 0 for i = 0, 1, 2 . . . 255
4: Obtain the fault-free ciphertext byte Cj by running the fault-free encryption on P
5: for i = 1 to N do
6: Obtain the j-th byte of the output C′j by running the faulty encryption on P
7: if C′j �= Cj then
8: Cnt(C′j) ← Cnt(C′j) + 1
9: end if

10: end for

Algorithm 2. Attack algorithm (colliding faulty ciphertext distributions)
1: Inputs: Position of the target key bytes: i and j
2: Output: Most probable key difference ΔK = Ki ⊕ Kj

3: for ΔK = 0 to 255 do
4: Select randomly plaintext P so that ciphertext bytes Ci ⊕ Cj = ΔK
5: Obtain faulty ciphertext distributions Cnti and Cntj using Algorithm 1
6: Set Cnt′j as the rearranged form of Cntj based on ΔK
7: Cor(ΔK) = ρ(Cnti, Cnt′j)
8: end for
9: return arg max

ΔK
Cor(ΔK)

Given two distributions of the faulty ciphertext bytes Cnti and Cntj , one can
use the current ΔKg = Ci ⊕ Cj to rearrange Cntj as

Cnt′j(i⊕ΔKg) = Cntj(i), i = 0, 1, 2 . . .255,

and check the similarity using the correlation coefficient as ρ(Cnti, Cnt′j), where
ρ denotes the calculation of the Pearson product-moment correlation coefficient.
Repeating this procedure for all possible key differences, the ΔKg correspond-
ing to the largest correlation coefficient is expected to be the correct key differ-
ence. For clarification we have provided a pseudo code of the attack shown by
Algorithm 2.

3.3 Practical Results

Results on AES_MAO. The first attack target is the AES core protected
against power analysis attacks using the masked-AND gates [24] in 130nm tech-
nology. In our experiments, the total number of executions to obtain the faulty
ciphertext byte distribution is set to N = 400.2 In order to cover all possi-
ble key byte differences, we collected the distributions for 256 plaintexts which
2 We should mention that N is the total number of executions including faulty and

fault-free ones.

300 A. Moradi et al.

0 64 192 255

0

0.3

0.6

Δ K
g

C
or

re
la

tio
n

Fig. 3. Correlation vs. Key byte difference
for AES_MAO (130nm)

1 100 200 300 400

0

0.3

0.6

Number of executions (× 256)

C
or

re
la

tio
n

Fig. 4. Correlation evolution vs. Number
of executions for AES_MAO (130nm)

correspond to 256 differences between the first two ciphertext bytes. Running
the attack algorithm, which is given by Algorithm 2, led to the results shown
in Fig. 3 where the correct key byte difference can be clearly identified. Fur-
thermore, Fig. 4 shows that 150× 256 executions of AES_MAO is sufficient to
identify the correct key byte difference. The successful attack experiments have
been also confirmed recovering the difference between other key bytes.

Results on AES_TI. The next target is the AES core in 130nm technol-
ogy realized using the threshold implementation scheme which is a high-order
masking countermeasure based on secret sharing [18]. Even in the presence of
signal glitches, its resistance against power analysis attacks has been theoret-
ically proven [19]. We should emphasize that the threshold implementation is
an algorithmic-level countermeasure which needs to fulfill certain properties in-
cluding correctness, non-completeness, and uniformity. In contrary to [17], our
targeted AES_TI core has been made without considering the later two prop-
erties. This core has been realized by modifying a plain AES core at the gate
level. The non-linear gates are provided by only 2-input AND gates, every sig-
nal is represented by four shares, and finally the AND gates are replaced with
the 4-shared threshold implementation of a 2-input AND gate which is available
in [18]. This can be verified by examining the source code of this core available
at [1].

The attack procedure is the same as the one applied to the AES_MAO core
even with the same number of executions, i.e., 400, to obtain the distribution of
the faulty ciphertext bytes. The attack result on the key byte difference between
the first two key bytes is shown in Fig. 5. The peak corresponding to the correct
key byte difference can be clearly identified. Figure 6 also shows that at around
200× 256 executions are required to identify the correct key byte difference.

3.4 Observations

Relaxing Fault Requirements. One important observation from experiments
is that the setting of the fault injection success rate is not as strict as we expected.
In our experiments, we could collect the distributions of faulty ciphertext bytes
simultaneously for parallel S-boxes. Due to the difference between the inherent
delay of parallel S-boxes, the fault injection success rates were different from
40% to 60%. Surprisingly, the key difference can still be clearly recovered. In

On the Power of Fault Sensitivity Analysis 301

0 64 192 255

0

0.2

0.4

Δ K
g

C
or

re
la

tio
n

Fig. 5. Correlation vs. Key byte difference
for AES_TI (130nm)

1 100 200 300 400

0

0.2

0.4

Number of executions (× 256)

C
or

re
la

tio
n

Fig. 6. Correlation evolution vs. Number
of executions for AES_TI (130nm)

other words, we found that the distribution of the faulty ciphertext byte is not
very sensitive to the fault injection intensity.

As a result, compared to the one-byte fault injection in the DFA attacks or
the accurate intensity management in the FSA attack, our proposed attack has
the fewest requirements about the fault injection.

Reducing the Number of Executions. In our experiments, we have collected
the distributions for 256 ciphertexts to identify a linear difference between two
key bytes. The attack efficiency regarding to the number of executions of AES can
be easily improved by specifically selecting ciphertexts (plaintexts). For example,
one can collect 16 distributions for the first fault-free ciphertext byte as 0x00,
0x01 . . . 0x0F and 16 distributions for the second fault-free ciphertext byte as
0x00, 0x10 . . . 0xF0, respectively. The combinations of these two groups of 16
distributions already cover all the possible linear key differences. Therefore, with
a delicate selection of the ciphertexts (plaintexts), collecting the distributions for
the 16 selected ciphertexts are enough to identify a key byte difference.

4 Option 2: Colliding Timing Characteristics

This section expresses the second combination of fault sensitivity analysis and
correlation collision attack where the timing characteristics of combinational
circuits like S-boxes are analyzed. In the following the fundamental concepts
which are essential for the attack are explained, and later practical results of the
attack breaking a couple of ASIC AES cores are presented.

4.1 How to Measure the Timing

As explained in [14], when the input of a combinational circuit changes, its
output stops toggling after a certain time (so-called Δt). The maximum value
of Δt for different inputs is known as the longest critical path of the circuit,
and defines the maximum frequency of the clock signal which triggers the flip-
flops providing the input and storing the output of the considered combinational
circuit. Timing characteristics of a circuit are therefore defined as a set of Δt
(
{
Δt1, Δt2, . . . , Δtn

}
), where Δti is the minimum Δt for the given input i.

Let us suppose that the target combinational circuit is a part of a bigger cir-
cuit, e.g., a co-processor, which provides some I/O signals for communication.

302 A. Moradi et al.

If the output of the target combinational circuit is stored into registers which
are triggered by a clock signal that can be controlled from the outside, as shown
in [14], one can steadily shorten the time interval between the input transition
and the output storage (known as setup time) till an incorrect value is stored
into the registers while input i is given to the combinational circuit. The mini-
mum time interval when the considered register stores the correct value can be
concluded to Δti. Note that this procedure is similar to the scheme explained
in Section 3. However, measuring Δt in this case does not deal with the faulty
outputs; once a faulty output is detected, Δti can be concluded.

It should be noted that, because of the environmental noise, it might be
required to repeat the same procedure and shorten the clock glitch period until
the probability of detecting faulty output gets higher than a threshold. Also,
if the target combinational circuit is not a single-bit function and it is possible
to detect which output bit is faulty, one can measure Δti for each output bit
independently.

Therefore, we define the adversary model and define his capabilities in order to
be able to measure Δti of the target combinational circuit for the given input i:

– The adversary has access to and can control the clock signal which trig-
gers the registers providing the input and saving the output of the target
combinational circuit.

– He knows in which clock cycle the target combinational circuit processes the
desired data, e.g., known or guessed input or output.

– He can control the target device in a way that the same input value i is
repeatedly processed by the target combinational circuit during shortening
the time interval of the clock glitch.

– He is equipped with appropriate instruments to shorten the duration of the
clock glitch with suitable accuracy.

4.2 Definitions

Bitwise Capture: BitCapi
b,Δt is the result of a Bernoulli trial whether the

output of the target combinational circuit at bit b is faulty while processing
the input i and when Δt is the time interval of the clock glitch. Correspond-
ingly, pi

b,Δt is defined as the probability of “success” in independently repeated
BitCapi

b,Δt trials.

Capture: Capi
Δt =

∨

b

BitCapi
b,Δt. In other words, Capi

Δt is the same as the

above defined trial regardless of a certain output bit, and is meaningful when
differentiating between different faulty output bits is not possible, e.g., if a circuit
is equipped with a fault detection scheme and prevents the propagation of faulty
results. pi

Δt is also the probability of “success” in independently repeated Capi
Δt

trials.

Time: To represent the timing characteristics of the target combinational cir-
cuit, we define T i

b = Δt; pi
b,Δt ≈ pTH as the time required to compute the

corresponding output bit b when input i is given, where pTH is a threshold for

On the Power of Fault Sensitivity Analysis 303

the probability and is defined based on physical characteristics of the target
circuit and is also based on the maximum probability achieved by shortening
Δt. Accordingly, the time required to complete the computation of all bits when
processing input i is defined as T i = Δt; pi

Δt ≈ pTH .

Remark: Depending on the target device, its architecture, and the role of the
target combinational circuit inside the target device, it might not be possible to
know the input i processed. However, if the output of the target combinational
circuit is accessible, one can make all the above defined terms based on the
fault-free output o, i.e., BitCapo

b,Δt, po
b,Δt, Capo

Δt, po
Δt, T o

b , and T o.

4.3 Attack Scheme

For simplicity let us suppose that the target combinational circuit is an S-box
of the first round of an AES encryption, i.e., Sbox(i⊕ k), where i is the corre-
sponding input plaintext byte and k the target key byte.

If (bitwise) timing characteristics of an S-box, i.e., T i (T i
b), show a diversity

of Δt depending on input i, one can perform an attack and recover the secret
knowing how the secret k contributes in T i (T i

b). In other words, if the timing
characteristics of an S-box itself regardless of k and prior key addition (⊕) are
known as an extra information or are obtained by profiling using a circuit similar
to the target, one can make a hypothetical leakage function and examine its
similarity to T i (T i

b) for each key guess. A similar approach has been presented
in [14], where the timing characteristics of an AES S-box implementation were
profiled and an attack similar to a correlation power analysis using a HW model
was successfully performed. In fact, a set of Capo

Δt for a specific Δt is used in [14]
to mount the attack at the last round of the AES encryption.

One may also try using information theoretic tools, e.g., mutual information
analysis [9], to relax the leakage model. However, it is necessary to use a suit-
able leakage model that cannot be selected without extra knowledge about the
(timing) characteristics of the target combinational function [25], or several dif-
ferent models must be examined to find a suitable one. It is noteworthy that the
leakages (Capi

Δt) consist of only two values (“fail” and “success”). This causes
probability distributions (used in e.g., mutual information analysis) to be rep-
resented by only two bins in a histogram, and using other schemes to estimate
the probability distributions, e.g., kernel density estimation, in this case leads to
increasing the noise. Here, when using histograms, mutual information will also
be identical to the variance of means.

In contrast to a correlation attack or mutual information analysis using a
leakage model, we apply a correlation collision attack [15] to avoid the necessity
of considering any such model. Here the correlation collision attack compares
the timing characteristics T i (T i

b) of two S-box instances running on two input
sets, each of which is previously XORed by a secret key byte. Suppose that T 1i

and T 2i (or their corresponding bitwise versions) are the timing characteristics
of the S-box when processing Sbox(i⊕k1) and Sbox(i⊕k2) respectively. As stated

304 A. Moradi et al.

Algorithm 3. Correlation Timing Attack (the last round of the AES encryption)
Input: T1o :

(
Δto=0, Δto=1, . . . , Δto=255

)
; o = Sbox(i) ⊕ k1

Input: T2o :
(
Δto=0, Δto=1, . . . , Δto=255

)
; o = Sbox(i) ⊕ k2

1: for 0 ≤ Δ ≤ 255 do
2: Cor(Δ) = Correlation(T1o, T2o⊕Δ)
3: end for
4: return arg max

Δ
Cor(Δ)

in [15], the aim of a correlation collision attack is to find the linear difference
between k1 and k2, i.e., Δ = k1⊕ k2.

This can be extended when attacking the last round of the AES encryption,
thanks to the absence of the MixColumns in the last round. For example, suppose
that T 1o and T 2o are the timing characteristics of the S-box followed by the
key addition when calculating o = Sbox(i) ⊕ k1 and o = Sbox(i) ⊕ k2. Then,
the correlation collision attack can – exactly as in the previous case – recover
Δ = k1⊕k2 comparing T 1o and T 2o for all possible guesses of Δ. For clarification
of the attack scheme see Algorithm 3.

4.4 Practical Results

In all cores of the LSIs 16 instances of the S-box are implemented to perform
the complete SubBytes operation in each clock cycle. According to [3,4], all
cores – except the one supporting a counter mode and the fault-protected one –
realize a round based architecture, i.e., S-boxes and MixColumns are performed
consecutively in each clock cycle except for the last round where MixColumns is
absent. Therefore, extracting the timing characteristics of the S-boxes in the first
9 rounds is not easily possible. So, one needs to inject and play with the width
of the clock glitches in the last round, when the target cores only compute the
SubBytes operation followed by the final key addition and the result is stored
in registers (similar scheme as used in [14]). In addition, one can see from the
design architecture of the cores (see Fig. 5.1 of [3] and Fig. 13.1 of [4]) that the
round key of the last round is already computed in the previous round and is
stored into a register. The glitchy clock at the last round, hence, does not affect
the key scheduling computations.

In the following the results of the attacks on the different cores and different
LSIs are presented. Because of the high number of broken cores, only a subset
of the performed attacks are presented in detail, giving additional information
about the differences to the not mentioned cores as required.

Attacking the Unprotected Cores. We start by showing the results of the
attack on the first AES core of the 130nm chip, namely AES_Comp, whose
S-boxes have been made using a composite field approach. As stated before,
16 separate S-box instances have been implemented which are active at the
same time. Therefore, it is not possible to compare the timing characteristics
of one S-box instance when processing e.g., two values with different key bytes,

On the Power of Fault Sensitivity Analysis 305

6300 5100

0.1

0.7

Δt [ps]

P
ro

ba
bi

lit
y

6300 5100

0.1

0.7

Δt [ps]
P

ro
ba

bi
lit

y

Fig. 7. First 10 po
b=0,Δt curves for S-box

instances no. (left) 0 and (right) 4 of
AES_Comp (130nm)

0 255
5000

6400

Output value

Δt
 [p

s]

0 255
5000

6400

Output value

Δt
 [p

s]

Fig. 8. Bitwise timing characteristics T o
b=0

of S-box instances no. (left) 0 and (right)
4 of AES_Comp (130nm).

that would be an ideal case for a collision timing attack. In contrast, the timing
characteristics of different S-box instances must be compared, which may slightly
vary because of different placement and routing even when being based on the
same netlist.

Since changing the glitchy clock width in our setup requires reseting the
DCM(s), we have collected BitCapo

b,Δt for a specific Δt while random plain-
texts are given to the core. This was repeated shortening Δt by steps of 10ps
and finally exploiting the bitwise timing characteristics T o

b . Figure 7 shows po
b,Δt

of the LSB (i.e., b = 0) for some output byte values of two S-box instances3
extracted from their corresponding bitwise captures (10 000 captures for each
Δt). Also, Fig. 8 presents the bitwise timing characteristics T o

b=0 of these two
S-box instances obtained by defining pTH = 0.1 (as can be seen in Fig. 7). The
diversity of Δt for these two S-boxes shows the dependency between the tim-
ing characteristics and the output values. Performing the attack Algorithm 3 on
T o

b=0 of S-box instance number 0 and all other instances led to recovering all 15
independent relations between the 16 bytes of the last round key; part of the
result is shown in Fig. 9. The attack works the same considering other output
bits to derive T o

b as well as on other LSI chips.
Carefully study of the timing characteristics shown in Fig. 8 revealed that

Δt is much smaller than the other cases when the S-box input is zero, that is
a known issue since the zero-input power model has been defined [10] to mount
CPA attacks on AES S-box leakages. In fact, it is not needed to mount the
collision timing attack in this case, and the key bytes can be recovered observing
T o

b=0 of each S-box instance separately. However, as it is shown later this property
does not hold for the other cores realized by different S-boxes, and mounting our
proposed attack is essential to reveal the secrets.

In order to perform the attack on the cores AES_PPRM1, AES_PPRM3,
AES_Comp_ENC_top, and AES_PKG the same procedures as explained above
have been repeated. As a reference for the timing characteristics and the number
of captures collected to mount the attack on different cores in different LSIs, we
have provided a list shown in Table 1. Attacking the AES_TBL core, where

3 S-box instance numbers start from 0 and are corresponding to ciphertext byte in-
dexes.

306 A. Moradi et al.

0 255
−0.3

0.9
k: 2
Corr: 0.8966

Δk

C
or

re
la

tio
n

0 255
−0.3

0.9
k: 14
Corr: 0.8967

Δk
C

or
re

la
tio

n
0 255

−0.3

0.9
k: 108
Corr: 0.8891

Δk

C
or

re
la

tio
n

0 255
−0.3

0.9 k: 240
Corr: 0.9355

Δk

C
or

re
la

tio
n

Fig. 9. Result of the attack on the last round of AES_Comp (130nm) recovering Δk
between key bytes (from left to right) (0,1), (0,2), (0,3), and (0,4)

0 255

4300

4500

Output value

Δt
 [p

s]

0 255

4300

4500

Output value

Δt
 [p

s]

Fig. 10. Bitwise timing characteristics
T o

b=0 of S-box instances no. (left) 5 and
(right) 6 of AES_MAO (65nm)

0 255
−0.2

0.6 k: 222
Corr: 0.5751

Δk

C
or

re
la

tio
n

0 255
−0.2

0.6
k: 131
Corr: 0.3995

Δk

C
or

re
la

tio
n

Fig. 11. Result of the attack on the last
round of AES_MAO (65nm) recovering Δk
between key bytes (left) (5,6), (right) (5,7)

S-boxes have been realized by look-up tables (case statements), is different to
the aforementioned cores. We illustrate this case when explaining how to mount
the attack on the WDDL and MDPL cores.

Attacking the DPA-Protected Cores. Most of the DPA-protected cores
can be attacked in the same way as the unprotected ones. In Fig. 10 one can
see that even when using the masked AND-gates of the AES_MAO (65nm)
core, the timing characteristics for different outputs still differ. Consequently,
it is possible to extract the relation between the key bytes, which is depicted
in Fig. 11. Interestingly the randomness provided by the masked gates does not
have much impact on the timing characteristics, as shown in Fig. 11, where the
results after obtaining 10 000 captures (the same technique as used to attack the
unprotected cores) while shortening Δt with steps of 25ps are presented.

Attacking the other DPA-protected cores is the same except on those realiz-
ing WDDL and MDPL logic styles. The result of the attack on the AES_WO
core, which is implemented using an Pseudo-RSL [22] logic style, is shown in
Fig. 12 and Fig. 13. Although we have used 10 000 captures for each Δt in steps
of 10ps to attack the AES_WO core, attacking the AES_PR core (which is an-
other realization of Pseudo-RSL) and the AES_TI (which has been discussed in
Section 3.3) required considerably more captures. As stated in Table 1 we have
used 1 000 000 captures for each of these cores to successfully mount the attack.
To the best of our knowledge it is due to the amount of randomness provided

On the Power of Fault Sensitivity Analysis 307

0 255
5400

5900

Output value

Δt
 [p

s]

0 255
5400

5900

Output value
Δt

 [p
s]

Fig. 12. Bitwise timing characteristics
T o

b=1 of S-box instances no. (left) 7 and
(right) 8 of AES_WO (90nm)

0 255
−0.3

0.9 k: 228
Corr: 0.8217

Δk

C
or

re
la

tio
n

0 255
−0.3

0.9 k: 16
Corr: 0.8218

Δk

C
or

re
la

tio
n

Fig. 13. Result of the attack on the last
round of AES_WO (90nm) recovering Δk
between key bytes (left) (7,8), (right) (7,9)

0 255

5700

5780

Output value

Δt
 [p

s]

0 255

5700

5790

Output value

Δt
 [p

s]

Fig. 14. Timing characteristics T o of S-
box instances no. (left) 2 and (right) 3 of
AES_MDPL (65nm)

0 255
−0.3

0.9
k: 98
Corr: 0.8506

Δk

C
or

re
la

tio
n

0 255
−0.3

0.9
k: 87
Corr: 0.8463

Δk

C
or

re
la

tio
n

Fig. 15. Result of the attack on the last
round of AES_MDPL (65nm) recovering Δk
between key bytes (left) (2,3), (right) (2,6)

by the DPA countermeasures. For instance, third-order masking is used in the
AES_TI core compared to first-order masking in AES_MAO.

The AES_WDDL and AES_MDPL cores require an slightly adjusted ap-
proach, since they need two clock cycles per round because of the used master-
slave flip-flops, i.e., four flip-flops to store a single bit value. Also, an injected
fault by a clock glitch at the evaluation phase can only lead to a bit flip from
1 to 0, not vice versa, because of the pre-discharge phase of both WDDL and
MDPL styles. This issue has been also addressed in [13] where a successful at-
tack is performed on an AES_WDDL core. Interestingly, we have seen – for
reasons unknown to us – the same behavior when attacking the AES_TBL core.
Therefore, bitwise timing characteristics T o

b does not provide any information for
those output values o in which bit b is zero. Our solution is to avoid using bit-
wise characteristics, and apply the attack on timing characteristics T o, e.g., those
shown in Fig. 14, which are of the AES_MDPL (65nm) core. Two attack results
are also shown in Fig. 15. It should be noted that, to attack the AES_MDPL
and AES_WDDL cores, we only used 10 000 captures for each Δt with steps of
5ps. On the other hand, a successful attack on the AES_TBL required around
1 000 000 captures, which might be because of marginal differences between the
critical paths of the circuit realizing the look-up table.

We should emphasize that this attack has been successfully performed on all
AES cores including one equipped by a fault attack countermeasure [23]. Because

308 A. Moradi et al.

of the page restriction the details of the attack on the other cores are left for the
extended version which can be found in [16].

Difficulties. In the following some of the difficulties that we experienced during
our practical investigations are explained in detail.

– As stated in [3] and [4], each core has its own clock tree which had a strong
impact on glitchy clocks. The capacitive and resistive features of the clock
line of the LSIs, which is supplied by the control FPGA, changed the glitchy
clock shape and modified the situation whether the registers are triggered
two times, or if one of the positive edges is filtered by the clock tree elements.
Therefore, we had to put different capacitors and resistors in the SASEBO-R
board to change the rising and falling slopes of the clock signal to reach the
desired situation.

– Since the temperature has an effect on the critical path and the speed of the
ASICs, some values are given in Table 4.7 of [3], we not only kept the room
temperature constant during capturing, but also kept the board and the LSIs
in different temperatures while playing with capacitances and resistances to
solve the problem mentioned above.

– Since DCM outputs have an increased jitter when they are used to multiply
the clock inputs, the glitchy clock width also had significant jitter that made
the capturing process noisy. The situation got worse when we had to cascade
two DCMs for some cores, especially in 65nm technology, to reach the desired
Δt. In this case, the second DCM often could not get locked because of the
high jitter of the first DCM. So, we had to provide another circuit controlled
by the PC to automatically reset the control FPGA (in fact the DCMs) until
the DCMs get locked and provide the requested high frequencies.

– Since we have required high amounts of captures, e.g., 1 000 000, for different
Δt values to successfully mount the attacks, we have developed a special
design for the control FPGA to speed up the capturing process. Our control
FPGA communicates with the target LSI, makes the glitchy clock on the
desired clock cycle, and finally after performing a couple of capturing process
sends the result back to the PC. In this way we could efficiently increase the
speed of the capturing up to couple of thousands per second.

– According to [3] and [4], the clock signal of the interface circuit of the LSIs is
separated from the core clocks. So, the glitchy clock does not appear on the
interface circuit which makes the attacks easier. It might be a challenging
case when the interface circuit sees the glitches, and the control flow of the
target core gets infected.

5 Conclusions

We have presented two collision attacks which utilize certain kinds of side-
channel leakage which is made possible by the fault injection method of [14]. One
is a major improvement of the attack idea of [14] since by applying techniques
of correlation-based DPAs to find collisions it does not require any knowledge

On the Power of Fault Sensitivity Analysis 309

about the characteristics of the target combinational circuit. The other one ex-
ploits a newly observed leakage which is the fact that given a fixed fault intensity
the distribution of the resulting faulty ciphertext bytes is not completely random
but data dependent.

It is indicated in [14] that while masking does not prevent DFA attacks, it may
actually provide security against FSA-based attacks because of the randomized
inputs of the combinational functions. However, by breaking all DPA-protected
cores of the mentioned ASICs we have shown that randomizing countermeasures
itself cannot prevent data-dependent timing of the combinational circuit, and
they therefore remain vulnerable to the attacks introduced here.

Using the attack exploiting the faulty ciphertext byte distributions two DPA
protected cores could be broken. Furthermore, using the attack focusing on the
timing of the combinational circuits all SASEBO LSI2 and LSI3 cores could be
broken, including the one applying an algorithmic fault detection scheme. In
short, the results shown in this work imply the need for a special unit in the –
especially side-channel protected – designs in order to detect the clock glitches
to thwart such kind of attacks.

Acknowledgment. The authors would like to thank Akashi Satoh and the
Research Center for Information Security (RCIS) of Japan for the prompt and
kind help in obtaining SASEBOs and cryptographic LSIs. The authors of the
Ruhr University of Bochum (Germany) have been supported in part by the Euro-
pean Commission through the ICT programme under contract ICT-2007-216676
ECRYPT II. The authors of the University of Electro-Communications (Japan)
have been supported by the Strategic International Cooperative Program (Joint
Research Type), Japan Science and Technology Agency.

References

1. Cryptographic Circuits with Logic Level Countermeasures against DPA. Informa-
tion and Physical Security Research Group, YOKOHAMA National University,
http://ipsr.ynu.ac.jp/circuit/

2. Side-channel Attack Standard Evaluation Board (SASEBO-R). Further infor-
mation are available via, http://staff.aist.go.jp/akashi.satoh/SASEBO/en/
board/sasebo-r.html

3. ISO/IEC 18033-3 Standard Cryptographic LSI – with Side Channel Attack Coun-
termeasures – Specification, ver 1.0 (2009), http://staff.aist.go.jp/akashi.
satoh/SASEBO/resources/crypto_lsi/CryptoLSI2_Spec_Ver1.0_English.pdf

4. Standard Cryptographic LSI Specification – Countermeasures against Side
Channel Attacks (65nm) – Specification, ver 0.9 (2010), http://staff.aist.
go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI3_Spec_Ver0.9_
English.pdf

5. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

6. Bogdanov, A.: Multiple-Differential Side-Channel Collision Attacks on AES. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer,
Heidelberg (2008)

http://ipsr.ynu.ac.jp/circuit/
http://staff.aist.go.jp/akashi.satoh/SASEBO/en/board/sasebo-r.html
http://staff.aist.go.jp/akashi.satoh/SASEBO/en/board/sasebo-r.html
http://staff.aist.go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI2_Spec_Ver1.0_English.pdf
http://staff.aist.go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI2_Spec_Ver1.0_English.pdf
http://staff.aist.go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI3_Spec_Ver0.9_English.pdf
http://staff.aist.go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI3_Spec_Ver0.9_English.pdf
http://staff.aist.go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI3_Spec_Ver0.9_English.pdf

310 A. Moradi et al.

7. Endo, S., Sugawara, T., Homma, N., Aoki, T., Satoh, A.: An on-chip glitchy-clock
generator and its application to safe-error attack. In: COSADE 2011, pp. 175–182
(2011)

8. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

9. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

10. Golic, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2003)

11. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

12. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

13. Li, Y., Ohta, K., Sakiyama, K.: Revisit Fault Sensitivity Analysis on WDDL-AES.
In: HOST 2010, pp. 148–153. IEEE Computer Society, Los Alamitos (2010)

14. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault
Sensitivity Analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 320–334. Springer, Heidelberg (2010)

15. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis
Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 125–139. Springer, Heidelberg (2010); The extended version is avail-
able on ePrint Archive, Report 2010/297, http://eprint.iacr.org/

16. Moradi, A., Mischke, O., Paar, C.: Collision Timing Attack when Breaking 42 AES
ASIC Cores. Cryptology ePrint Archive, Report 2011/162 (2011), http://eprint.
iacr.org/

17. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

18. Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-
Channel Attacks and Glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

19. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

20. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

21. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

22. Saeki, M., Suzuki, D., Shimizu, K., Satoh, A.: A Design Methodology for a DPA-
Resistant Cryptographic LSI with RSL Techniques. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 189–204. Springer, Heidelberg (2009)

23. Satoh, A., Sugawara, T., Homma, N., Aoki, T.: High-Performance Concurrent Er-
ror Detection Scheme for AES Hardware. In: Oswald, E., Rohatgi, P. (eds.) CHES
2008. LNCS, vol. 5154, pp. 100–112. Springer, Heidelberg (2008)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

On the Power of Fault Sensitivity Analysis 311

24. Trichina, E.: Combinational Logic Design for AES SubByte Transformation on
Masked Data. Cryptology ePrint Archive, Report 2003/236 (2003), http://
eprint.iacr.org/

25. Veyrat-Charvillon, N., Standaert, F.-X.: Generic Side-Channel Distinguishers:
Improvements and Limitations. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 354–372. Springer, Heidelberg (2011); The extended version is avail-
able on ePrint Archive, Report 2011/149, http://eprint.iacr.org/

26. XILINX. Virtex-II Pro and Virtex-II Pro X FPGA User Guide. Technical re-
port version 4. 2 (2007), http://www.xilinx.com/support/documentation/user_
guides/ug012.pdf

Appendix

Table 1. Specification of AES cores of the three targeted LSIs including the Δt ranges
and the number of captures used to mount the attacks

IP core Description
LSI2 130nm LSI2 90nm LSI3 65nm

Δt range No. of Δt range No. of Δt range No. of
[ps] Captures [ps] Captures [ps] Captures

AES_Comp
composite field 6450 5320 3650
S-box Δ : 10 10 000 Δ : 10 10 000 Δ : 10 10 000

5000 5130 3370

AES_TBL
table look-up 5475 3960 3570
S-box by Δ : 25 1 000 000 Δ : 20 1 000 000 Δ : 10 1 000 000
case statement 4900 3550 3420

AES_PPRM1
S-box by 11350 6135 5325
1-stage Δ : 25 10 000 Δ : 20 10 000 Δ : 25 10 000
AND-XOR 7775 5555 5000

AES_PPRM3
S-box by 6425 5230 3650
3-stage Δ : 25 10 000 Δ : 10 10 000 Δ : 10 10 000
AND-XOR 5150 5130 3420

AES_Comp
ENC_top

composite field 6325 5200 3700
S-box, only Δ : 25 10 000 Δ : 10 10 000 Δ : 10 10 000
encryption 5100 5130 3410

AES_PKG
composite field 6325 5360 3850
S-box, precomp. Δ : 25 10 000 Δ : 10 10 000 Δ : 10 10 000
roundkeys 5100 5130 3370

AES_MAO
DPA count. 8475 5900 4500
by Masked Δ : 25 10 000 Δ : 5 10 000 Δ : 25 10 000
And Operation 6250 5850 4300

AES_MDPL
DPA count. 12825 9350 5800
by MDPL Δ : 25 10 000 Δ : 25 10 000 Δ : 5 10 000
logic style 10850 8050 5260

AES_TI
DPA count. 10860 5900 6340
by Threshold Δ : 20 1 000 000 Δ : 5 1 000 000 Δ : 20 1 000 000
Implementation 9800 5850 5940

AES_WDDL
DPA count. 6750 5250 3835
by WDDL Δ : 10 10 000 Δ : 5 50 000 Δ : 5 10 000
logic style 5730 5150 3675

AES_PR
DPA count. 31685 14400 6650
by pseudo RSL Δ : 10 1 000 000 Δ : 20 1 000 000 Δ : 25 1 000 000
logic style 31055 13840 6150

AES_WO
DPA count. 7575 5910 3900
by pseudo RSL Δ : 25 10 000 Δ : 10 10 000 Δ : 25 10 000
(evaluation) 6475 5430 3600

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.xilinx.com/support/documentation/user_guides/ug012.pdf
http://www.xilinx.com/support/documentation/user_guides/ug012.pdf

spongent: A Lightweight Hash Function�

Andrey Bogdanov1, Miroslav Knežević1,2, Gregor Leander3, Deniz Toz1,
Kerem Varıcı1, and Ingrid Verbauwhede1

1 Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Belgium
{andrey.bogdanov,deniz.toz,kerem.varici,
ingrid.verbauwhede}@esat.kuleuven.be
2 NXP Semiconductors, Leuven, Belgium

miroslav.knezevic@nxp.com
3 DTU Mathematics, Technical University of Denmark

g.leander@mat.dtu.dk

Abstract. This paper proposes spongent – a family of lightweight
hash functions with hash sizes of 88 (for preimage resistance only), 128,
160, 224, and 256 bits based on a sponge construction instantiated with
a present-type permutation, following the hermetic sponge strategy.
Its smallest implementations in ASIC require 738, 1060, 1329, 1728,
and 1950 GE, respectively. To our best knowledge, at all security lev-
els attained, it is the hash function with the smallest footprint in hard-
ware published so far, the parameter being highly technology dependent.
spongent offers a lot of flexibility in terms of serialization degree and
speed. We explore some of its numerous implementation trade-offs.

We furthermore present a security analysis of spongent. Basing the
design on a present-type primitive provides confidence in its security
with respect to the most important attacks. Several dedicated attack
approaches are also investigated.

Keywords: Hash function, lightweight cryptography, low-cost cryptog-
raphy, low-power design, sponge construction, present, spongent, RFID.

1 Introduction

1.1 Motivation

As crucial applications go pervasive, the need for security in RFID and sensor
networks is dramatically increasing, which requires secure yet efficiently imple-
mentable cryptographic primitives including secret-key ciphers and hash func-
tions. In such constrained environments, the area and power consumption of
� Andrey Bogdanov is a postdoctoral fellow of the Fund for Scientific Research - Flan-

ders (FWO). This work is supported in part by the IAP Programme P6/26 BCRYPT
of the Belgian State, by FWO project G.0300.07, by the European Commission
under contract number ICT-2007-216676 ECRYPT NoE phase II, by K.U.Leuven-
BOF (OT/08/027 and OT/06/40), and by the Research Council K.U.Leuven: GOA
TENSE.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 312–325, 2011.
c© International Association for Cryptologic Research 2011

spongent: A Lightweight Hash Function 313

a primitive usually comes to the fore and standard algorithms are often pro-
hibitively expensive to implement.

Once this research problem was identified, the cryptographic community de-
signed a number of tailored lightweight cryptographic algorithms to specifi-
cally address this challenge: stream ciphers like Trivium [12,10], Grain [13,14],
and Mickey [2] as well as block ciphers like SEA [26], DESL, DESXL [21],
HIGHT [16], mCrypton [22], KATAN/KTANTAN [11], and present [5] — to
mention only a small selection of the lightweight designs.

Rather recently, some significant work on lightweight hash functions has been
also performed: [6] describes ways of using the present block cipher in hash-
ing modes of operation and [1] takes the approach of designing a dedicated
lightweight hash function Quark based on a sponge construction [9,3]. How-
ever, while for the stream and block ciphers, the designs have already closely
approached the minimum ASIC hardware footprint theoretically attainable, it
does not seem the case for lightweight hash functions so far. This paper illus-
trates this point by proposing the lightweight hash function spongent with a
considerably smaller footprint than SHA-2, SHA-3 finalists, present in hashing
modes, and Quark. Similarly to Quark, a part of this advantage comes from
a reduced level of preimage and second preimage security, while maintaining the
standard level of collision resistance.

1.2 Design Considerations for a Lightweight Hash Function

The standard security requirements for a hash function with an n-bit output
size are collision resistance of 2n/2 as well as preimage and second-preimage
resistance of 2n.

The footprint of a hash function is mainly determined by
1. the number of state bits (incl. the key schedule for block cipher based designs)

as well as
2. the size of functional and control logic used in a round function.

For highly serialized implementations (usually used to attain low area and power),
the logic size is normally rather small and the state size dominates the total area
requirements of the design.

As shown in [6], using a lightweight block cipher in a hashing mode (single
block length such as Davies-Meyer or double block length such as Hirose) is not
necessarily an optimal choice for reducing the footprint, the major restriction
being the doubling of the datapath storage requirement due to the feed-forward
operation. At the same time, no feed-forward is necessary for the sponge con-
struction.

In a permutation-based sponge construction, let r be the rate (the number
of bits input or output per one permutation call) and c be the capacity (inter-
nal state bits not used for input or output). The design of [1] as well as the
works [3,4,9] convincingly demonstrate that a permutation-based sponge con-
struction can allow to almost halve the state size for n ≥ c and reasonably
small r. In this case, if the underlying permutation does not have any structural
distinguishers (thus, the sponge construction being hermetic), the preimage and

314 A. Bogdanov et al.

second-preimage resistances are reduced to 2n−r and 2c/2, correspondingly, while
the collision resistance remains at the level of 2c/2. As in most embedded sce-
narios, where a lightweight hash function is likely to be used, the full second-
preimage security is not a necessary requirement, we will take this approach in
the design of spongent. For relatively small rate r, the loss of preimage security
is limited.

However, while using this novel idea of reducing the state size to minimize
(1), the Quark hash function does not appear to provide an optimal logic size,
which is mainly due to the Boolean functions with many inputs used in its round
transform. spongent keeps the round function very simple which reduces the
logic size close to the smallest theoretically possible, thus, minimizing (2) and
resulting in a significantly more compact design.

As to the output hash size n, we opt for 5 variants of spongent covering
most security applications in the field. spongent-88 is designed for extremely
restricted scenarios and low preimage security requirements. It can be used e.g. in
some RFID protocols and for PRNGs. spongent-128 and spongent-160 might
be used in highly constrained applications with low and middle requirements for
collision security. The latter also provides compatibility to the SHA-1 interfaces.
The parameters of spongent-224 and spongent-256 correspond to those of
a subset of SHA-2 and SHA-3 to make spongent compatible to the standard
interfaces in usual lightweight embedded scenarios.

1.3 Organization of the Paper

The remainder of the paper is organized as follows. Section 2 describes the design
of spongent and gives a design rationale. Section 3 presents some results of
security analysis, including proven lower bounds on the number of differentially
active S-boxes, best differential characteristics found, rebound attacks, and linear
attacks. In Section 4, the implementation results are given for a range of trade-
offs. We conclude in Section 5.

2 The Design of spongent

spongent is a sponge construction based on a wide present-type permutation.
Given a finite number of input bits, it produces an n-bit hash value. A design
goal for spongent is to follow the hermetic sponge strategy (no structural dis-
tinguishers for the underlying permutation are allowed).

2.1 Permutation-Based Sponge Construction

spongent relies on a sponge construction – a simple iterated design that takes
a variable-length input and can produce an output of an arbitrary length based
on a permutation πb operating on a state of a fixed number b of bits. The size
of the internal state b = r + c ≥ n is called width, where r is the rate and c the
capacity.

The sponge construction proceeds in three phases (see also Figure 1):

spongent: A Lightweight Hash Function 315

m1 m2 m3 m4

p p p p

h2 h3h1

squeezingabsorbing

0

0

πb πb

r

c

Fig. 1. Sponge construction based on a b-bit permutation πb with capacity c bits and
rate r bits. mi are r-bit message blocks. hi are parts of the hash value.

– Initialization phase: the message is padded by a single bit 1 followed by a
necessary number of 0 bits up to a multiple of r bits (e.g., if r = 8, then the
1-bit message ‘0’ is transformed to ‘01000000’). Then it is cut into blocks of
r bits.

– Absorbing phase: the r-bit input message blocks are xored into the first
r bits of the state, interleaved with applications of the permutation πb.

– Squeezing phase: the first r bits of the state are returned as output, in-
terleaved with applications of the permutation πb, until n bits are returned.

In spongent, the b-bit 0 is taken as the initial value before the absorbing phase.
In all spongent variants, except spongent-88, the hash size n equals capacity
c. The message chunks are xored into the r rightmost bit positions of the state.
The same r bit positions form parts of the hash output.

Let a permutation-based sponge construction have n ≥ c and c/2 > r which
is fulfilled for the parameter choices of all spongent variants. Then the works
[3,4,9] imply the preimage security of 2n−r as well as the second preimage and
collision securities of 2c/2 if this construction is hermetic (that is, if the underly-
ing permutation does not have any structural distinguishers). The best preimage
attack we are aware of in this case has a computational complexity of 2n−r+2c/2.

2.2 Parameters

We propose five variants of spongent with five different security levels:

n b c r R number security(bit)
(bit) (bit) (bit) (bit) of rounds preimage 2nd preimage collision

spongent-88 88 88 80 8 45 80 40 40
spongent-128 128 136 128 8 70 120 64 64
spongent-160 160 176 160 16 90 144 80 80
spongent-224 224 240 224 16 120 208 112 112
spongent-256 256 272 256 16 140 240 128 128

316 A. Bogdanov et al.

2.3 present-type Permutation

The permutation πb : Fb
2 → Fb

2 is an R-round transform of the input state of b
bits that can be outlined at a top-level as:

for i = 1 to R do
state ← lCounter b(i)⊕ state⊕ lCounterb(i)
state ← sBoxLayerb(state)
state ← pLayerb(state)

end for
where sBoxLayerb and pLayerb describe how the state evolves. For ease of
design, only widths b with 4|b are allowed. The number R of rounds depends on
block size b and can be found in Subsection 2.2. lCounterb(i) is the state of an
LFSR dependent on b at time i which yields the round constant in round i and
is added to the rightmost bits of state. lCounter b(i) is the value of lCounterb(i)
with its bits in reversed order and is added to the leftmost bits of state.

The following building blocks are generalizations of the present structure to
larger b-bit widths:

1. sBoxLayerb: This denotes the use of a 4-bit to 4-bit S-box S : F4
2 → F4

2

which is applied b/4 times in parallel. The S-box fulfills the present S-box
criteria [5]. The action of the S-box in hexadecimal notation is given by the
following table:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] E D B 0 2 1 4 F 7 A 8 5 9 C 3 6

2. pLayerb: This is an extension of the (inverse) present bit-permutation and
moves bit j of state to bit position Pb(j), where

Pb(j) =
{

j · b/4 mod b− 1, if j ∈ {0, . . . , b− 2}
b− 1, if j = b− 1.

3. lCounterb: This is one of the three �log2 R�-bit LFSRs. The LFSR is clocked
once every time its state has been used and its final value is all ones. If ζ is
the root of unity in the corresponding binary finite field, the 6-bit LFSR used
in spongent-88 is defined by the primitive trinomial ζ6 + ζ5 +1 (initialized
with ‘000101’). The 7-bit LFSR with a primitive trinomial of ζ7 + ζ6 + 1 is
used in spongent-128, spongent-160, and spongent-224 and respectively
initialized with ‘1111010’, ‘1000101’, and ‘0000001’. spongent-256 uses an
8-bit LFSR based on the pentanomial ζ8 +ζ4+ζ3+ζ2+1 and it is initialized
with ‘10011110’.

2.4 Design Rationale

Permutation. The 4-bit S-box is the major block of functional logic in a se-
rial low-area implementation of spongent, the bit permutation requiring some
additional space in silicon. Its simplicity and small size minimize the area and
power consumption on the logic side. The structures of the bit permutation and
the S-box in spongent make it possible to prove

spongent: A Lightweight Hash Function 317

Theorem 1. Any 5-round differential characteristic of the underlying permuta-
tion in spongent-{88, 128, 160, 224, 256} has a minimum of 10 active S-boxes.

Proof. The statements for spongent-{88, 128, 160, 224, 256} can directly be
proven by applying the same technique used in [5, Appendix III].

The concept of counting active S-boxes is central to the differential cryptanalysis.
The minimum number of active S-boxes relates to the maximum differential
characteristic probability of the construction. Since in the hash setting there are
no random and independent key values added between the rounds, this relation
is not exact (in fact that it is even not exact for most practical keyed block
ciphers). However, differentially active S-boxes are still the major technique used
to evaluate the security of SPN-based hash functions.

An important property of the spongent S-box is that its maximum
differential probability is 2−2. This fact and the assumption of the indepen-
dency of difference propagation in different rounds yield an upper bound on
the differential characteristic probability of 2−20 over 5 rounds for spongent-
{88, 128, 160, 224, 256}, which follows from the claims of Theorem 1.

Theorem 1 is used to determine the number R of rounds in permutation πb:
R is chosen in a way that πb provides at least b active S-boxes. Other types of
analysis are performed in the next section.

3 Security Analysis

In this section, we discuss the security of spongent against the currently known
cryptanalytic attacks by applying the most important state-of-the-art methods
of cryptanalysis and investigating their complexity.

3.1 Resistance against Differential Cryptanalysis

Here we analyze the resistance of spongent against differential attacks where
Theorem 1 plays a key role providing a lower bound on the number of active
S-boxes in a differential characteristic. The similarities of the spongent permu-
tations and the basic present cipher allow to reuse some of the results obtained
for present in [5]. More precisely, the results on the number of differentially ac-
tive S-boxes over 5 rounds will hold for all spongent variants which is reflected
in Theorem 1.

For all spongent variants, we found that those 5-round bounds are actually
tight. We present the characteristics attaining them in Table 1 as well as in
Appendix A.

3.2 Collision Attacks

A natural approach to obtain a collision for a sponge construction is to inject
a difference in a message block and then cancel the propagated difference by
a difference in the next message block, i.e., (0 . . . 0||Δmi)

π→ (0 . . . 0||Δmi+1).

318 A. Bogdanov et al.

Table 1. Differential characteristics with lowest numbers of differentially active S-
boxes (ASN). The probabilities are calculated assuming the independency of round
computations.

of spongent-88 spongent-128 spongent-160 spongent-224 spongent-256
rounds ASN Prob ASN Prob ASN Prob ASN Prob ASN Prob

5 10 2−21 10 2−22 10 2−21 10 2−21 10 2−20

10 20 2−47 29 2−68 20 2−50 20 2−43 − −
15 30 2−74 - - 30 2−79 30 2−66 − −

For this purpose, we follow a narrow trail strategy using truncated differential
characteristics. We start from a given input difference (some difference restricted
to S-boxes that the message block is xored into) and look for all paths that
go to a fixed output difference (also located in the bitrate part of the state).
Based on our experiments, even by using truncated differential characteristics,
the probability of such a path is quite low and it is not possible to attack the
full number of rounds (see Appendix A).

The rebound attack [24], a recent technique for cryptanalysis of hash func-
tions, is applicable to both block cipher based and permutation based hash
constructions. It consists of two main steps: the inbound phase where the free-
dom is used to connect the middle rounds by using the match-in-the-middle
technique and the outbound phase where the connected truncated differentials
are calculated in both forward and backward directions.

Dedicated Rebound Attack on 6 Rounds of spongent-88. Here we de-
scribe a dedicated rebound attack on spongent-88. For other hash sizes, a
similar method is applicable. The path for this attack is shown in Figure 2.

– Inbound phase: In the forward direction, we start from the input of the sec-
ond round. We generate 228 structures as follows: We restrict the input of the
active S-boxes to the eight values such that the difference ΔS : [{Ox2, Ox3} →
Oxf] and to the four values such that the difference ΔS : [Ox4→ Oxf] and we
generate the passive bits at random. For each fixed value of the passive part,
we can obtain (23)2 · (22)2 = 210 pairs, so we repeat the procedure 218 times.
At the input of round 3, we have 16 active S-boxes and 6 passive S-boxes,
and it is guaranteed to have all S-boxes active at the input of round 4. In
the backward direction, we start from the input of the S-boxes in round 6.
Similarly, we generate 228 structures by restricting the values of the active
S-boxes to four values such that the difference ΔS−1 : [Ox1 → {Oxb, 0xd}].
Again, we can generate (22)11 = 222 pairs for each value of the passive part,
hence we choose random 26 values. Then at the input of the fifth round all
S-boxes are active and with high probability they will still be active after
the permutation layer.

– Merging phase: We look for a matching input/output difference of the S-
box layer in round 4 using the precomputed difference distribution table. We

spongent: A Lightweight Hash Function 319

S S S S SS P P P P P P

1 2 3 4 5 6

Fig. 2. Differential path for the rebound attack (black: starting S-boxes with condi-
tions, grey: active S-boxes, S: sBoxLayer88, P: pLayer88)

can find a match with probability of 2−2.4 for each word that has one fixed
bit with zero difference and a match with probability 23.6 for each word that
has two fixed bit zero. Therefore, we can find an entire differential path with
probability (2−2.4)20 · (2−3.6)2 = 2−55.2. Hence we expect to find at least one
solution.

– Outbound phase: We further extend the differential path backwards
(from round 2 to round 1) and forwards (to the end of round 6) with
probability 1.

3.3 Linear Attacks

The most successful attacks, the attacks that can break the highest number of
rounds, for the block cipher present are attacks based on linear approxima-
tions. In particular the multi-dimensional linear attack [7] and the statistical
saturation attack [8] claim to break up to 26 rounds. It was shown in [20] that
both attacks are closely related. Moreover, the main reason why these attacks
are the most successful attacks on present so far, is the existence of many lin-
ear trails with only one active S-box in each round. It is not immediately clear
how linear distinguishers on the spongent permutation πb could be transferred
into collision or (second) pre-image attacks on the hash function. However, as we
claim that spongent is a hermetic sponge construction, the existence of such
distinguishers has to be excluded. So the spongent S-box was chosen in a way
that allows for at most one trail with this property given a linear approximation.

320 A. Bogdanov et al.

r

pLayer

state

m

r

r
gi
8

r

4 4 4

b

. . .

r

r

4

4

4

4

4

4

sBox sBox sBox r/4 × sBox

rM

(b)

4 4
gi [0..3] gi [4..7]

sBox
Layer

m

gi
0

0

. . .

d d
d d d d d

d d

dd
d

d

d-bit
FF d-bit

FF
d-bit
FF

pLayer

d d d d d d

scan-FF scan-FF scan-FFM1

M2

(a)

Fig. 3. Hardware architecture representing (a) serial datapath (b) parallel datapath of
the spongent variants

4 Hardware Implementations

Using the most serialized implementation, the hash functions spongent-{88,
128, 160, 224, 256} can be implemented with 738 GE, 1060 GE, 1329 GE,
1728 GE, and 1950 GE, respectively, which is smaller than the most compact
Quark designs [1] of respective sizes. Furthermore, even the spongent-256
hash function is more compact than s-Quark having a hash output of 224 bits.
Though some of this advantage is at the expense of a performance reduction,
also less serialized (and, thus, faster) implementations result in area requirements
significantly lower than those of the corresponding Quark variants.

In order to provide very compact implementations, we first focus on seri-
alized designs. We explore different datapath sizes (d) for each of the spon-

gent variants: for spongent-{88, 128, 160} we implement d ∈ {4, 8, 16, 32},
d ∈ {4, 8, 16, 68}, d ∈ {4, 8, 16, 44, 88}, respectively, while for spongent-{224,
256} we implement d ∈ {4, 8, 16, 32, 64}. An architecture representing our se-
rialized datapath is depicted in Fig. 3(a). The control logic consists of a single
counter for the cycle count and some extra combinational logic to drive the select
signals of the multiplexers. In order to further reduce the area we use so-called
scan registers (6.25 GE in our library), which act as a combination of two input
multiplexer and an ordinary register1. Instead of providing a reset signal to each
register separately, we use two zero inputs at the multiplexers M1 and M2 to cor-
rectly initialize all the registers. This additionally reduces hardware resources, as
the scan registers with a reset input approximately require additional GE per bit
of storage. With gi we denote the value of lCounterb(i) in round i. lCounterb(i)
is implemented as an LFSR as explained in Subsection 2.3. The input of the
message block m, denoted with dashed line, is omitted in some cases, i.e. d ≥ r.
The pLayer module requires no additional logic except some extra wiring.

Additionally, we implement all the spongent variants as depicted in Fig. 3(b).
Every round now requires a single clock cycle, therefore resulting in faster, yet
rather compact designs.
1 Scan registers are typically used to provide scan-chain based testability of the circuit.

Due to the security issues of scan-chain based testing [28], other methods such as
Built-In-Self-Test (BIST) are recommended for testing the cryptographic hardware.

spongent: A Lightweight Hash Function 321

Table 2. Hardware performance of the spongent family and comparison with state-
of-the-art lightweight hash designs. The nominal frequency of 100 kHz is assumed in
all cases and the power consumption is therefore adjusted accordingly.

Hash function
Security (bit) Hash Cycles Datapath Process Area Throughput Power

Pre. Coll. 2nd Pre. (bit) (bit) (μm) (GE) (kbps) (μW)

spongent-88 80 40 40 88
990 4 0.13 738 0.81 1.57
45 88 0.13 1127 17.78 2.31

spongent-128 120 64 64 128
2380 4 0.13 1060 0.34 2.20
70 136 0.13 1687 11.43 3.58

spongent-160 144 80 80 160
3960 4 0.13 1329 0.40 2.85
90 176 0.13 2190 17.78 4.47

spongent-224 208 112 112 224
7200 4 0.13 1728 0.22 3.73
120 240 0.13 2903 13.33 5.97

spongent-256 240 128 128 256
9520 4 0.13 1950 0.17 4.21
140 272 0.13 3281 11.43 6.62

u-Quark [1] 120 64 64 128
544 1 0.18 1379 1.47 2.44
68 8 0.18 2392 11.76 4.07

d-Quark [1] 144 80 80 160
704 1 0.18 1702 2.27 3.10
88 8 0.18 2819 18.18 4.76

s-Quark [1] 192 112 112 224
1024 1 0.18 2296 3.13 4.35
64 16 0.18 4640 50.00 8.39

dm-present-80 [6] 64 32 64 64
547 4 0.18 1600 14.63 1.83
33 64 0.18 2213 242.42 6.28

dm-present-128 [6] 64 32 64 64
559 4 0.18 1886 22.90 2.94
33 128 0.18 2530 387.88 7.49

h-present-128 [6] 128 64 64 128
559 8 0.18 2330 11.45 6.44
32 128 0.18 4256 200.00 8.09

c-present-192 [6] 192 96 192 192
3338 12 0.18 4600 1.90 -
108 192 0.18 8048 59.26 9.31

Keccak-f[400] [17] 160 80 160 160
1000 16 0.13 5090 14.40 11.50
20 16 0.13 10560 720.00 78.10

Keccak-f[200] [17] 128 64 128 128
900 8 0.13 2520 8.00 5.60
18 8 0.13 4900 400.00 27.60

SHA-1 [18] 160 80 160 160 450 32 0.25 6812 113.78 11.00
SHA-256 [19] 256 128 256 256 490 32 0.25 8588 104.48 11.20

BLAKE [15] 256 128 256 256 816 32 0.18 13575 62.79 11.16
Grøstl [27] 256 128 256 256 196 64 0.18 14622 261.14 221.00

Next, we present our hardware figures of all the spongent variants. For
the purpose of extensive hardware evaluation we use Synopsys Design Compiler
version D-2010.03-SP4 and target the High-Speed UMC 0.13 μm CMOS process
provided by Faraday Technology Corporation (fsc0h d tc). We provide synthesis
results only. Our reasoning follows a simple design decision: we provide a large
design space, focusing on multitude of design choices and discuss in detail our
implementation strategy. Therefore, we rather spend our efforts by exploring a
large set of hardware designs than by performing a time-consuming place and
route process for each of the design separately. Moreover, the physical size of
the designs (in terms of gate equivalences) is expected to remain the same even
after the place and route is performed. We expect slightly worse results only
with respect to the overall power consumption.

322 A. Bogdanov et al.

A
re
a
[G
E]

Throughput [kbps]

x

80/88-bit

(a) (b)

128-bit

160-bit

224-bit

256-bit

Digest Size:

Throughput [kbps]

A
re
a
[G
E]

0

500

1000

1500

2000

2500

3000

3500

0.1 1 10 100

Spongent 88

Spongent 128

Spongent 160

Spongent 224

Spongent 256

0

2000

4000

6000

8000

10000

12000

0.1 1 10 100 1000

SPONGENT 88 SPONGENT 128

SPONGENT 160 SPONGENT 224

SPONGENT 256 H PRESENT 128

U QUARK D QUARK

S QUARK Keccak f[200]

Keccak f[400]

Fig. 4. (a) Area versus throughput trade-off of the spongent hash family. (b) Com-
parison with state-of-the-art lightweight hash functions.

The power is estimated by observing the internal switching activity of the
complete design. Using Mentor Graphics ModelSim version 10.0 SE, we simu-
late the circuits’ behavior for very long messages and generate the VCD (Value
Change Dump) files. The VCD files are then converted to the backward SAIF
(Switching Activity Interchange Format) files and used within Synopsys Design
Compiler for the accurate estimation of the mean power consumption. A typical
frequency of 100 kHz is used for all measurements.

Table 2 reports hardware figures obtained using the aforementioned method-
ology. Besides having a very small footprint, another remarkable result is that
the most serialized versions of spongent-{88, 128, 160, 224, 256} are built of
89.3%, 92.5%, 93.8%, 95%, and 96% sequential logic, respectively. For the sake
of comparison, we include figures for several state-of-the-art lightweight hash
functions. We also include two out of five SHA-3 finalists for which the data of
compact hardware implementations is publicly available. We do not compare our
design with software-like solutions that benefit from using an external memory
for storing the intermediate data. Figure 4(a) illustrates the wide spectrum of
our explored design space, where a typical trade-off between speed and area is
scrutinized. Using the same metrics, we compare our design with state-of-the-
art lightweight hash functions (Fig. 4(b)). For the same level of security, the
spongent family tends to require much smaller area than its counterparts.

5 Conclusion

In this paper, we have proposed the family of lightweight hash functions spon-

gent with hash sizes 88, 128, 160, 224, and 256 bits. Its serialized implementa-
tions in ASIC hardware require 738, 1060, 1329, 1728, and 1950 GE, respectively.
Thus, spongent has the smallest footprint among all hash functions published
so far at all security levels it attains, though area requirements are highly de-
pendent on technology used.

spongent: A Lightweight Hash Function 323

References

1. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A lightweight
hash. In: Mangard and Standaert [23], pp. 1–15

2. Babbage, S., Dodd, M.: The MICKEY Stream Ciphers. In: Robshaw and Billet
[25], pp. 191–209

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the Indifferentiability of the
Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 181–197. Springer, Heidelberg (2008)

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge-Based Pseudo-Random
Number Generators. In: Mangard and Standaert [23], pp. 33–47

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

6. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,
Y.: Hash Functions and RFID Tags: Mind the Gap. In: Oswald, E., Rohatgi, P.
(eds.) CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

7. Cho, J.Y.: Linear Cryptanalysis of Reduced-Round PRESENT. In: Pieprzyk, J.
(ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

8. Collard, B., Standaert, F.-X.: A Statistical Saturation Attack against the Block
Cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
195–210. Springer, Heidelberg (2009)

9. Daemen, J., Peeters, M., Assche, G.V.: Sponge Functions. In: Ecrypt Hash Work-
shop 2007 (2007),
http://www.csrc.nist.gov/pki/HashWorkshop/PublicComments/2007May.html

10. De Cannière, C.: Trivium: A Stream Cipher Construction Inspired by Block Ci-
pher Design Principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S.,
Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg
(2006)

11. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

12. De Cannière, C., Preneel, B.: Trivium. In: Robshaw and Billet [25], pp. 244–266

13. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain Family of Stream
Ciphers. In: Robshaw and Billet [25], pp. 179–190

14. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-
ronments. IJWMC 2(1), 86–93 (2007)

15. Henzen, L., Aumasson, J.P., Meier, W., Phan, R.C.W.: LSI Characterization of
the Cryptographic Hash Function BLAKE (2010),
http://131002.net/data/papers/HAMP10.pdf

16. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

17. Kavun, E., Yalcin, T.: A Lightweight Implementation of Keccak Hash Function for
Radio-Frequency Identification Applications. In: Ors Yalcin, S.B. (ed.) RFIDSec
2010. LNCS, vol. 6370, pp. 258–269. Springer, Heidelberg (2010)

http://www.csrc.nist.gov/pki/HashWorkshop/PublicComments/2007May.html
http://131002.net/data/papers/HAMP10.pdf

324 A. Bogdanov et al.

18. Kim, M., Ryou, J.: Power Efficient Hardware Architecture of SHA-1 Algorithm for
Trusted Mobile Computing. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007.
LNCS, vol. 4861, pp. 375–385. Springer, Heidelberg (2007)

19. Kim, M., Ryou, J., Jun, S.: Efficient Hardware Architecture of SHA-256 Algorithm
for Trusted Mobile Computing. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008.
LNCS, vol. 5487, pp. 240–252. Springer, Heidelberg (2009)

20. Leander, G.: On Linear Hulls, Statistical Saturation Attacks, PRESENT and a
Cryptanalysis of PUFFIN (to appear, 2011)

21. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

22. Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security
of Low-Cost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.)
WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

23. Mangard, S., Standaert, F.-X. (eds.): CHES 2010. LNCS, vol. 6225. Springer, Hei-
delberg (2010)

24. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

25. Robshaw, M.J.B., Billet, O. (eds.): New Stream Cipher Designs. LNCS, vol. 4986.
Springer, Heidelberg (2008)

26. Standaert, F.X., Piret, G., Gershenfeld, N., Quisquater, J.J.: SEA: A Scalable En-
cryption Algorithm for Small Embedded Applications. Presented at the Workshop
on RFID and Light-Weight Crypto in Graz, Austria (2005)

27. Tillich, S., Feldhofer, M., Issovits, W., Kern, T., Kureck, H., Mühlberghuber, M.,
Neubauer, G., Reiter, A., Köfler, A., Mayrhofer, M.: Compact Hardware Implemen-
tations of the SHA-3 Candidates ARIRANG, BLAKE, Grøstl, and Skein. Cryptol-
ogy ePrint Archive, Report 2009/349 (2009), http://eprint.iacr.org/2009/349

28. Yang, B., Wu, K., Karri, R.: Scan Based Side Channel Attack on Dedicated Hard-
ware Implementations of Data Encryption Standard. In: International Test Con-
ference, pp. 339–344 (2004)

http://eprint.iacr.org/2009/349

spongent: A Lightweight Hash Function 325

A Some Differential Paths

Table 3. Sample differential paths for spongent−{88, 128}

spongent-88 spongent-128

Round Difference Prob Difference Prob

0 0500000000000009000000 2−21 0000000000000000900090000000000000 2−22

5 0000000400800000000000 0000000000008000400000000000000000

0 9000900000000000000000 2−47 0000000550000000000003300000000000 2−68

10 20000000000080000A0000 0000040040000000100000000000001010

0 9000900000000000000000 2−74

15 0000000080100000000000

Table 4. Sample differential paths for spongent−{160, 224, 256}

spongent-160

Round Difference Prob

0 06000000060000000000000000000000000000000000 2−21

5 00000000000000000400800000000000000000000000

0 90000000000090000000000000000000000000000000 2−50

10 00800000000000000000000020000000000A00000000

0 00000000000000000000000000003000300000000000 2−79

15 00000000000000000080100000000000000000000000

spongent-224

Round Difference Prob

0 0900000000000900 2−21

5 00000002000400

0 000000000000000000000000000000000009000000000009000000000000 2−43

10 008000000000000000000000000000001000000000000009000000000000

0 00000000100100 2−66

15 008000000000000000000000000000001000000000000009000000000000

spongent-256

Round Difference Prob

0 000660000000000660 2−20

5 000000000200010020001000

The LED Block Cipher

Jian Guo1, Thomas Peyrin2,�, Axel Poschmann2,�, and Matt Robshaw3,��

1 Institute for Infocomm Research, Singapore
2 Nanyang Technological University, Singapore

3 Applied Cryptography Group, Orange Labs, France
{ntu.guo,thomas.peyrin}@gmail.com,

aposchmann@ntu.edu.sg,
matt.robshaw@orange-ftgroup.com

Abstract. We present a new block cipher LED. While dedicated to com-
pact hardware implementation, and offering the smallest silicon footprint
among comparable block ciphers, the cipher has been designed to simul-
taneously tackle three additional goals. First, we explore the role of an
ultra-light (in fact non-existent) key schedule. Second, we consider the
resistance of ciphers, and LED in particular, to related-key attacks: we
are able to derive simple yet interesting AES-like security proofs for LED

regarding related- or single-key attacks. And third, while we provide a
block cipher that is very compact in hardware, we aim to maintain a
reasonable performance profile for software implementation.

Keywords: Lightweight, block cipher, RFID tag, AES.

1 Introduction

Over past years many new cryptographic primitives have been proposed for use
in RFID tag deployments, sensor networks, and other applications characterised
by highly-constrained devices. The pervasive deployment of tiny computational
devices brings with it many interesting, and potentially difficult, security issues.

Chief among recent developments has been the evolution of lightweight block
ciphers where an accumulation of advances in algorithm design, together with
an increased awareness of the likely application, has helped provide important
developments. To some commentators the need for yet another lightweight block
cipher proposal will be open to question. However, in addition to the fact that
many proposals present some weaknesses [2,10,45], we feel there is still more
to be said on the subject and we observe that it is in the “second generation”
of work that designers might learn from the progress, and omissions, of “first
generation” proposals. And while new proposals might only slightly improve on
� The authors were supported in part by the Singapore National Research Foundation

under Research Grant NRF-CRP2-2007-03.
�� The author gratefully acknowledges the support of NTU during his visit to Singa-

pore. This work is also supported in part by the European Commission through the
ICT program under contract ICT-2007-216676 ECRYPT II.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 326–341, 2011.
c© International Association for Cryptologic Research 2011

The LED Block Cipher 327

successful initial proposals in terms of a single metric, e.g. area, they might, at
the same time, overcome other important security and performance limitations.
In this paper, therefore, we return to the design of lightweight block ciphers and
we describe Light Encryption Device, LED.

During our design, several key observations were uppermost in our mind. Prac-
tically all modern block cipher proposals have reasonable security arguments; but
few offer much beyond (potentially thorough) ad hoc analysis. Here we hope to
provide a more complete security treatment than is usual. In particular, related-
key attacks are often dismissed from consideration for the application areas that
typically use such constrained devices, e.g. RFID tags. In practice this is often
perfectly reasonable. However, researchers will continue to derive cryptanalytic
results in the related-key model [18,2] and there has been some research on how
to modify or strengthen key schedules [35,15,39]. So having provable levels of re-
sistance to such attacks would be a bonus and might help confusion developing
in the cryptographic literature.

In addition, our attention is naturally focused on the performance of the
algorithm on the tag. However, there can be constraints when an algorithm is
also going to be implemented in software. This is something that has already been
discussed with the design of KLEIN [22] and in the design of LED we have aimed
at very compact hardware implementation while maintaining some software-
friendly features.

Our new block cipher is based on AES-like design principles and this allows
us to derive very simple bounds on the number of active Sboxes during a block
cipher encryption. Since the key schedule is very simple, this analysis can be done
in a related-key model as well; i.e. our bounds apply even when an attacker tries
to mount a related-key attack. And while AES-based approaches are well-suited
to software, they don’t always provide the lightest implementation in hardware.
But using techniques presented in [23] we aim to resolve this conflict.

While block ciphers are an important primitive, and arguably the most useful
in a constrained environment, there has also been much progress in the de-
sign of stream ciphers [14,25] and even, very recently, in lightweight hash func-
tions [23,4]. In fact it is this latter area of work that has provided inspiration for
the block cipher we will present here.

2 Design Approach and Specifications

Like so much in today’s symmetric cryptography, an AES-like design appears to
be the ideal starting point for a clean and secure design. The design of LED will
inevitably have many parallels with this established approach, and features such
as Sboxes, ShiftRows, and (a variant of) MixColumns will all feature and take
their familiar roles.

For the key schedule we chose to do-away with the “schedule”, i.e. the user-
provided key is used repeatedly as is. As well as giving obvious advantages in
hardware implementation, it allows for simple proofs to be made for the security
of the scheme even in the most challenging attack model of related keys. At

328 J. Guo et al.

first sight the re-use of the encryption key without variation appears danger-
ous, certainly to those familiar with slide attacks and some of their advanced
variants [7,8]. But we note that such a simple key schedule is not without prece-
dent [42] though the treatment here is more complete than previously.

The LED cipher is described in Section 2.1. It is a 64-bit block cipher with two
primary instances taking 64- and 128-bit keys. The cipher state is conceptually
arranged in a (4× 4) grid where each nibble represents an element from GF(24)
with the underlying polynomial for field multiplication given by X4 + X + 1.

Sboxes. LED cipher re-uses the present Sbox which has been adopted in many
lightweight cryptographic algorithms. The action of this box in hexadecimal
notation is given by the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

MixColumnsSerial. We re-use the tactic adopted in [23] to define an MDS
matrix for linear diffusion that is suitable for compact serial implementa-
tion. The MixColumnsSerial layer can be viewed as four applications of a
hardware-friendly matrix A with the net result being equivalent to using the
MDS matrix M where

(A)4 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0

0 0 1 0

0 0 0 1

4 1 2 2

⎞

⎟
⎟
⎟
⎟
⎠

4

=

⎛

⎜
⎜
⎜
⎜
⎝

4 2 1 1

8 6 5 6

B E A 9

2 2 F B

⎞

⎟
⎟
⎟
⎟
⎠

= M.

The basic component of LED will be a sequence of four identical rounds used
without the addition of any key material. This basic unit, that we later call
“step”, makes it easy to establish security bounds for the construction.

2.1 Specification of LED

For a 64-bit plaintext m the 16 four-bit nibbles m0‖m1‖ · · · ‖m14‖m15 are ar-
ranged (conceptually) in a square array:

⎡

⎢
⎢
⎣

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

⎤

⎥
⎥
⎦

This is the initial value of the cipher state and note that the state (and the
key) are loaded row-wise rather than in the column-wise fashion we have come
to expect from the AES; this is a more hardware-friendly choice, as pointed out
in [38].

The key is viewed nibble-wise and loaded nibble-by-nibble into one or two
arrays, K1 and K2, depending on the key length. Our primary definition is for

The LED Block Cipher 329

64- or 128-bit keys, but other key lengths, e.g. the popular choice of 80 bits, can
be padded to give a 128-bit key thereby giving a 128-bit key array. By virtue of
the order of loading the tables, any key that is padded (with zeros) to give a 64-
or 128-bit key array will effectively set unused nibbles of the key array to 0.⎡

⎢
⎢
⎣

k0 k1 k2 k3

k4 k5 k6 k7

k8 k9 k10 k11

k12 k13 k14 k15

⎤

⎥
⎥
⎦ for 64-bit keys giving K1

⎡

⎢
⎢
⎣

k0 k1 k2 k3

k4 k5 k6 k7

k8 k9 k10 k11

k12 k13 k14 k15

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

k16 k17 k18 k19

k20 k21 k22 k23

k24 k25 k26 k27

k28 k29 k30 k31

⎤

⎥
⎥
⎦ for 128-bit keys giving K1‖K2

The operation addRoundKey(state,Ki) combines nibbles of subkey Ki with the
state, respecting array positioning, using bitwise exclusive-or. There is no key
schedule, or rather this is the sum total of the key schedule, and the arrays K1

and, where appropriate, K2 are repeatedly used without modification. Encryp-
tion is described using the previously mentioned addRoundKey(state,Ki) and
a second operation, step(state). This is illustrated in Figure 1.

one step

P 4 rounds

K1

4 rounds

K1

4 rounds

K1 K1

4 rounds

K1 K1

C

P 4 rounds

K1

4 rounds

K2

4 rounds

K1 K2

4 rounds

K2 K1

C

Fig. 1. The use of key arrays K1 and K2 in LED showing both a 64-bit key array (top)
and a 128-bit key array (bottom)

The number of steps during encryption depends on whether there are one or two
key arrays.

for i = 1 to 8 do {
addRoundKey(state,K1)
step(state)

}
addRoundKey(state,K1)

for i = 1 to 6 do {
addRoundKey(state,K1)
step(state)
addRoundKey(state,K2)
step(state)

}
addRoundKey(state,K1)

for 64-bit key arrays for 128-bit key arrays

330 J. Guo et al.

The operation step(state) consists of four rounds of encryption of the cipher
state. Each of these four rounds uses, in sequence, the operations AddConstants,
SubCells, ShiftRows, and MixColumnsSerial as illustrated in Figure 2.

AddConstants

4 cells

4 cells

4 bits

SubCells

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

ShiftRows MixColumnsSerial

Fig. 2. An overview of a single round of LED

AddConstants. A round constant is defined as follows. At each round, the six
bits (rc5, rc4, rc3, rc2, rc1, rc0) are shifted one position to the left with the
new value to rc0 being computed as rc5 ⊕ rc4 ⊕ 1. The six bits are initialised
to zero, and updated before use in a given round. The constant, when used
in a given round, is arranged into an array as follows:

⎡

⎢
⎢
⎣

0 (rc5‖rc4‖rc3) 0 0
1 (rc2‖rc1‖rc0) 0 0
2 (rc5‖rc4‖rc3) 0 0
3 (rc2‖rc1‖rc0) 0 0

⎤

⎥
⎥
⎦

The round constants are combined with the state, respecting array position-
ing, using bitwise exclusive-or.

SubCells. Each nibble in the array state is replaced by the nibble generated
after using the present Sbox.

ShiftRow. Row i of the array state is rotated i cell positions to the left, for
i = 0, 1, 2, 3.

MixColumnsSerial. Each column of the array state is viewed as a column
vector and replaced by the column vector that results after post-multiplying
the vector by the matrix M (see earlier description in this section).

The final value of the state provides the ciphertext with nibbles of the “array”
being unpacked in the obvious way. Test vectors for LED are provided at https://
sites.google.com/site/ledblockcipher/.

3 Security Analysis

The LED block cipher is simple to analyze and this allows us to precisely evaluate
the necessary number of rounds to ensure proper security.

https://sites.google.com/site/ledblockcipher/
https://sites.google.com/site/ledblockcipher/

The LED Block Cipher 331

Our scheme is meant to be resistant to classical attacks, but also to the type
of related-key attacks that have been effective against AES-256 [9] and other
ciphers [2]. We will even study the security of LED in a hash function setting, i.e.
when it is used in a Davies-Meyer or similar construction with a compression
function based on a block cipher. In other words, we will consider attackers that
have full access to the key(s) and try to distinguish the fixed permutations from
randomly chosen ones. While this analysis provides additional confidence in the
security of LED, it is not our intent to propose a hash function construction.

We chose a conservative number of rounds for LED. For example, when using a
64-bit key array we use 32 AES-like rounds that are grouped as eight “big” add-
key/apply-permutation steps that are each composed of four AES-like rounds.
Further, our security margins are even more conservative if one definitively dis-
regards related-key attacks; as will be seen with the following proofs.

3.1 The Key Schedule

The LED key schedule has been chosen for its simplicity and security. Because it
is very simple to analyze, it allows us to directly derive a bound on the minimal
number of active Sboxes, even in the scenario of related-key attacks. The idea is
to first compute a bound on the number of active big steps (each composed of
4 AES-like rounds). Then, using the well known 4-round proofs for the AES, one
can show that one active big step will contain at least 25 active Sboxes. Note
that this bound is tight as we know 4-round differential paths containing exactly
this number of active Sboxes.

When not considering related-key attacks, we directly obtain that any differ-
ential path for LED will contain at least �r/4� · 25 active Sboxes. For related-key
attacks, we have to distinguish between the different key-size versions.

64-Bit Key Version. If we assume that differences are inserted in the key
input, then every subkey K1 in the 64-bit key variant of LED will be active.
Therefore, one can easily see that it is impossible to force two consecutive non-
active big steps and we are ensured that for every two big steps at least one
is active. Overall, this shows that any related-key differential path contains at
least �r/8� · 25 active Sboxes.

128-Bit Key Version. If we assume that differences are inserted in the key
input, then we have to separate two cases. If the two independent parts K1 and
K2 composing the key both contain a difference, then we end up with exactly the
same reasoning as for the 64-bit key variant: at least �r/8� ·25 active Sboxes will
be active. If only one of the two independent parts composing the key contains a
difference, then subkeys with and without differences are alternatively incorpo-
rated after each big step. The non-active subkeys impact on the differential paths
is completely void and thus in this case one can view LED as being composed
of even bigger steps of 8 AES-like rounds instead. The very same reasoning then
applies again: it is impossible to force two consecutive of these new bigger steps
to be inactive and therefore we have at least �r/16� · 50 active Sboxes ensured

332 J. Guo et al.

Table 1. Minimal number of active Sboxes and upper bounds on the best differential
path and linear approximation probability for the 64-bit key array and 128-bit key
array versions of LED (in both the single-key (SK) and related-key (RK) settings)

LED-64 SK LED-64 RK LED-128 SK LED-128 RK

minimal no. of active Sboxes 200 100 300 150

differential path probability 2−400 2−200 2−600 2−300

linear approx. probability 2−400 2−200 2−600 2−300

for any differential path (since the best differential path for 8 rounds trivially
contains 50 active Sboxes).

We summarize in Table 1 the results obtained for the two main versions of
LED, both for single-key attacks and related-key attacks. Note that the bounds
on the number of active Sboxes are tight as we know differential paths meeting
them (for example the truncated differential path for each active big step can
simply be any of the 4-round path for AES-128 with 25 active Sboxes).

For LED-128, since we are using two independent key parts one can peel off
the first and last key addition (which is always the first key part K1). Thus,
an attacker can remove one big step on each side of the cipher, for a total of 8
rounds, with a complexity of 264 tries on K1. This partially explains why the
versions of LED using two independent key parts have 16 more rounds than for
LED-64.

3.2 Differential/Linear Cryptanalysis

Since LED is an AES-like cipher, one can directly reuse extensive work that has
been done on the AES. We will compute a bound on the best differential path
probability (where all differences on the input and output of all rounds are
specified) or even the best differential probability (where only the input and
output differences are specified), in both single- and related-key settings.

As the best differential transition probability of the PRESENT Sbox is 2−2,
using the previously proven minimal number of active Sboxes we deduce that
the best differential path probability on 4 active rounds of LED is upper bounded
by 2−2·25 = 2−50. By adapting the work from [40], the maximum differential
probability for 4 active rounds of LED is upper bounded by

max

⎧
⎨

⎩
max

1≤u≤15

15∑

j=1

{DPS(u, j)}5, max
1≤u≤15

15∑

j=1

{DPS(j, u)}5

⎫
⎬

⎭

4

= 2−32

where DPS(i, j) stands for the differential probability of the Sbox to map the
difference i to j. The duality between linear and differential attacks allows us
to similarly apply the same approaches to compute a bound on the best linear
approximation. Over four rounds the best linear approximation probability is
upper bounded by 2−50 and the best linear hull probability is upper bounded
by 2−32.

The LED Block Cipher 333

Since we previously proved that all rounds will be active in the single-key
scenario and half of them will be active in the related-key scenario, we can easily
compute the upper bounds on the best differential path probability and the
best linear approximation probability for each version of LED (see Table 1). Note
that this requires that random subkeys be used at each round to make the Sbox
inputs independant. In the case of LED the subkeys are simulated by the addition
of round constants and the derived bounds give a very good indication of the
quality of the LED internal permutation with regards to linear and differential
cryptanalysis.

3.3 Cube Testers and Algebraic Attacks

We applied the most recent developed cube testers [3] and its zero-sum distin-
guishers to the LED fixed-key permutation, the best we could find within practical
time complexity is at most three rounds (with the potential to be doubled un-
der a meet-in-the-middle scenario). Note, in case of AES, “zero-sum” property is
also referred as “balanced”, found by the AES designers [16], in which 3-round
balanced property is shown. To the best of our knowledge, there is no balanced
property found for more than 3 AES rounds.

The PRESENT Sbox used in LED has algebraic degree 3 and one can check that
3 · �r/4� ·25 ≫ 64 for all LED variants. Moreover, the PRESENT Sbox is described
by e = 21 quadratic equations in the v = 8 input/output-bit variables over
GF (2). The entire system for a fixed-key LED permutation therefore consists of
(16 · r · e) quadratic equations in (16 · r · v) variables. For example, in the case
of the 64-bit key version, we end up with 10752 equations in 4096 variables. In
comparison, the entire system for a fixed-key AES permutation consists of 6400
equations in 2560 variables. While the applicability of algebraic attacks on AES
remains unclear, those numbers tends to indicate that LED offers a higher level
of protection.

3.4 Other Cryptanalysis

The slide attack is a block cipher cryptanalysis technique [7] that exploits the
degree of self-similarity of a permutation. In the case of LED, all rounds are
made different thanks to the round-dependent constants addition, which makes
the slide attack impossible to perform.

Integral cryptanalysis is a technique first applied on SQUARE [17] that is par-
ticularly efficient against block ciphers based on substitution-permutation net-
works, like AES or LED. The idea is to study the propagation of sums of values;
something which is quite powerful on ciphers that only use bijective compo-
nents. As for AES, the best integral property can be found on three rounds, or
four rounds with the last mixing layer removed. Thus, two big LED steps avoid
any such observation. Considering the large number of rounds of LED, we believe
integrals attacks are very unlikely to be a threat.

Rotational cryptanalysis [28] studies the evolution of a rotated variant of some
input words through the round process. It was proven to be quite successful
against some Addition-Rotation-XOR (ARX) block ciphers and hash functions.

334 J. Guo et al.

LED is an Sbox-oriented block cipher and any rotation property in a cell will be
directly removed by the application of the Sbox layer. Even if one looks for a
rotation property of cell positions, this is unlikely to lead to an attack since the
constants used in a LED round are all distinct and any position rotation property
between columns or lines is removed after the application of two rounds.

Methods to find better bounds on the algebraic degree were recently pub-
lished in [12]. With the first two rounds combined as Super-Sboxes, the best
algebraic degree we can find for fixed-key LED permutation and its inverse are
3, 11, 33, 53, 60, 62, for r rounds with r = 1, . . . , 6. Using this technique, one can
distinguish up to 12 rounds with complexity bounded by 263, in the known key
model.

3.5 LED in a Hash Function Setting

Studying a block cipher in a hash function setting is a good security test since
it is very advantageous for the attacker. In this scenario he will have full control
on all inputs. In the so-called known-key [29] or chosen-key models, the attacker
can have access or even choose the key(s) used, and its goal is then to find some
input/output pairs having a certain property with a complexity lower than what
is expected for randomly chosen permutation(s). Typically, the property is that
the input and output differences or values are fixed to a certain subset of the
whole domain.

While we conduct an analysis of the security of LED in a hash function setting,
we would like to emphasize that our goal is not to build a secure hash function.
However, we believe that this section adds further confidence in the quality of
our block cipher proposal.

Rebound and Super-Sbox Attacks. The recent rebound attack [37] and
its improved variants (start-from-the-middle attack [36] and Super-Sbox crypt-
analysis [21,31]) have much improved the best known attacks on many hash
functions, especially for AES-based schemes. The attacker will first prepare a
differential path and then use the available freedom degrees to the most costly
part of the trail (often in the middle) so as to reduce the overall complexity.
The costly part is called the controlled rounds, while the rest of the trail are the
uncontrolled rounds and they are verified probabilistically. The rebound attack
and its variants allows the attacker to nicely use the freedom degrees so that
the controlled part is as big as possible. At the present time, the most powerful
technique in the known-key setting allows the attacker to control three rounds
and no method is known to control more rounds, even if the key is chosen by
the attacker.

In order to ease the analysis, we assume pessimistically that the attacker can
control four rounds, that is one full active big step, with a negligible computa-
tion/memory cost (even if one finds a method to control four AES-like rounds
in the chosen-key model, it will not apply here since no key is inserted during
four consecutive rounds). In the case of 64-bit key LED, the attacker can control
two independent active big steps and later merge them by freely fixing the key

The LED Block Cipher 335

value. However, even in this advantageous scenario for the attacker we are en-
sured that at least two big steps will be active and uncontrolled, and this seems
sufficient to resist distinguishing attacks. Indeed, for two active big steps of LED,
the upper bound for the best differential path probability and the best linear
approximation probability (respectively the best differential probability and the
best linear hull probability) is 2−100 (respectively 2−64).

For the 128-bit key version, we can again imagine that the attacker to control
and merge two active big steps with a negligible computation/memory cost.
Even if so, with the same reasoning we are ensured that at least four big steps
will be active and uncontrolled, and again this seems sufficient since for four
active big steps of LED, the upper bound for the best differential path probability
and the best linear approximation probability (respectively the best differential
probability and the best linear hull probability) is 2−200 (respectively 2−128).

Integral Attacks. One can directly adapt the known-key variant of integral
attacks from [29] to the LED internal permutation. However, this attack can
only reach seven rounds with complexity 228, which is worse than what can be
obtained with previous rebound-style attacks.

4 Performance and Comparison

4.1 Hardware Implementation

We used Mentor Graphics ModelSimXE 6.4b and Synopsys DesignCompiler A-
2007.12-SP1 for functional simulation and synthesis of the designs to the Vir-
tual Silicon (VST) standard cell library UMCL18G212T3, which is based on
the UMC L180 0.18μm 1P6M logic process with a typical voltage of 1.8 V.
For synthesis and for power estimation (using Synopsys Power Compiler version
A-2007.12-SP1) we advised the compiler to keep the hierarchy and use a clock
frequency of 100 KHz, which is a widely cited operating frequency for RFID
applications. Note that the wire-load model used, though it is the smallest avail-
able for this library, still simulates the typical wire-load of a circuit with a size
of around 10, 000 GE.

To substantiate our claims on the hardware efficiency of our LED family, we
have implemented LED-64 and LED-128 in VHDL and simulated their post-synthesis
performance. As can be seen in Figure 3, our serialized design consists of seven
modules: MCS, State, AK, AC, SC, Controller, and Key State.

State comprises a 4 · 4 array of flip-flop cells storing 4 bits each. Every row
constitutes a shift-register using the output of the last stage, i.e. column 0, as
the input to the first stage (column 3) of the same row and the next row. Using
this feedback functionality ShiftRows can be performed in 3 clock cycles with
no additional hardware costs. Further, since MixColumnsSerial is performed on
column 0, also a vertical shifting direction is required for this column. Con-
sequently, columns 0 and 3 consist of flip-flop cells with two inputs (6 GE),
while columns 1 and 2 can be realized with flip-flop cells with only one input
(4.67 GE).

336 J. Guo et al.

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

4

4

4

input

A

RC

S

4
IC

4

2

output
State

AC

Controler

4

MCS

4

4

enAC

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

4

4

4

4

enAK

Key

SC

enAC
enAK

IC
RC

AK

outReady
Key State

x2

x4 x2 x2

x4

4

44 4 4

A

Fig. 3. Serial hardware architecture of LED (left) and A with its sub-components (right)

The key is stored in Key State, which comprises of a 4-bit wide simple shift
register of the appropriate length, i.e. 64 or 128. Please note that the absence
of a key-schedule of LED has two advantages: it allows 1) to use the most basic,
and thus cheapest, flip-flops (4.67 GE per bit); and 2) to hardwire the key in
case no key update is required. In the latter case additional combinational logic
is required to select the appropriate key chunk, which reduces the savings to
278 GE and 577 GE for LED-64 and LED-128, respectively. For arbitrary key
lengths the area requirements grow by 4.67 GE per bit. An LED-80 with the
same parameters as PRESENT-80 would thus require approximately 1, 040 GE
with a flexible key and around 690 GE with fixed key.

MCS calculates the last row of A in one clock cycle. The result is stored in the
State module, that is in the last row of column 0, which has been shifted up-
wards at the same time. Consequently, after 4 clock cycles the MixColumnsSerial
operation is applied to an entire column. Then the whole state array is rotated
by one position to the left and the next column is processed. As an example of
the hardware efficiency of MCS we depict A in the upper and its sub-components
in the lower right part of Figure 3. In total only 40 GE and 20 clock cycles are
required to perform MCS, which is 4 clock cycles slower but 85% smaller than a
serialized implementation of the AES MixColumns [24]. If we take into account
that AES operates on 8 bits and not like LED on 4 bits, the area savings are still
more than 40%.

AK performs the AddRoundKey operation by XORing the roundkey every
fourth round. For this reason the input to the XNOR gate is gated with a
NAND gate.

AC performs one part of the AddConstant operation by XORing the first col-
umn of the round constant matrix (a simple arithmetic 2-bit counter) to the
first column of the state matrix. For this reason, the input to the XNOR gate is
gated with a NAND gate. In order to use a single control signal for the addition
of the round constants, which span over the first two columns, the addition of
the second column of the round constant matrix to the second column of the
state array is performed in the State module.

SC performs the SubCells operation and consists of a single instantiation of
the corresponding Sbox. We used an optimized Boolean representation of the

The LED Block Cipher 337

PRESENT Sbox,1 which only requires 22.33 GE. It takes 16 clock cycles to perform
AddConstant and SubCells on the whole state.

Controller uses a Finite State Machine (FSM) to generate all control signals
required. The FSM consists of one idle state, one init state to load the initial
values, one state for the combined execution of AC and SC, 3 states for ShR and
two states for MCS (one for processing one column and another one to rotate the
whole state to the left). Several LFSR-based counters are required: 6-bit for the
generation of the second column of the round constants matrix, 4-bit for the key
addition scheduling and 2-bit for the transition conditions of the FSM. Besides,
a 2-bit arithmetic counter is required for the generation of the first column of
the round constants matrix. Its LSB is also used to select either the 3 MSB
rc5||rc4||rc3 or the 3 LSB rc2||rc1||rc0 of the 6-bit LFSR-based counter. In total
the control logic sums up to 199 GE.

It requires 39 clock cycles to perform one round of LED, resulting in a total
latency of 1248 clock cycles for LED-64 and 1872 clock cycles for LED-128. The
estimated power consumption at a frequency of 100 KHz and a supply voltage
ov 1.8V is 1.67μW for LED-64 (1.11μW with a hard-wired key) and 2.2μW for
LED-128 (1.11μW). It is a well-known fact that at low frequencies, as typical for
low-cost applications, the power consumption is dominated by its static part,
which is proportional to the amount of transistors involved. Furthermore, the
power consumption strongly depends on the used technology and greatly varies
with the simulation method. To address these issues and to reflect the time-
area-power trade-off inherent in any hardware implementation a new figure of
merit (FOM) was proposed by [5]. In order to have a fair comparison, we omit
the power values in Table 2 and only compare cycles per block, throughput at
100 KHz (in kilo bits per second), the area requirements (in GE), and FOM (in
nano bits per clock cycle per GE squared).

Table 2 compares our results to previous work, sorted according to key flexi-
bility and increasing security levels. Note that we have not been able to include
all recent proposals and we have restricted ourselves to block ciphers for our
comparison. Other techniques such as hummingbird [19] and armadillo [5]
are of some interest in the literature, though attacks on early versions have
lead to some redesign [45,1,20]. As can be seen from Table 2, the block cipher
LED is the smallest when compared to other block ciphers with similar key and
block size.

4.2 Software Implementation

We have made two implementations of LED; one for reference and clarity with the
second being optimized for performance (by using table lookups). The measure-
ments were taken on an Intel(R) Core(TM) i7 CPU Q 720 clocked at 1.60GHz.

In the optimised implementation, we represent the LED state as a single 64-
bit word and we build eight lookup tables each with 256 64-bit entries. This is
similar to many AES implementations, except we treat two consecutive nibbles

1 Due to Dag Arne Osvik.

338 J. Guo et al.

Table 2. Hardware implementation results of some block ciphers. [44] also synthesized
the same architecture of PRESENT and yielded a lower gate count of 1, 000 GE. However,
the number quoted below is from the same library used here and hence is a fairer choice
for comparison. * denotes estimated values.

key block cycles/ T’put Tech. Area FOM

Algorithm Ref. size size block (@100 KHz) [μm] [GE] [bits×109

clk·GE2]

Flexible Keys

DESL [32] 56 64 144 44.4 0.18 1,848 130

LED-64 64 64 1,248 5.1 0.18 966 55

KLEIN-64 [22] 64 64 207 N/A 0.18 1,220 N/A

LED-80* 80 64 1,872 3.4 0.18 1,040 32

PRESENT-80 [44] 80 64 547 11.7 0.18 1,075 101

PRESENT-80 [11] 80 64 32 200.0 0.18 1,570 811

KATAN64 [13] 80 64 255 25.1 0.13 1,054 226

KLEIN-80 [22] 80 64 271 N/A 0.18 1,478 N/A

LED-96* 96 64 1,872 3.4 0.18 1,116 27

KLEIN-96 [22] 96 64 335 N/A 0.18 1,528 N/A

mCrypton [33] 96 64 13 492.3 0.13 2,681 685

SEA [34] 96 96 93 103.0 0.13 3,758 73

LED-128 128 64 1,872 3.4 0.18 1,265 21

PRESENT-128 [41] 128 64 559 11.4 0.18 1,391 59

PRESENT-128 [11] 128 64 32 200.0 0.18 1,886 562

HIGHT [26] 128 64 34 188.0 0.25 3,048 203

AES [38] 128 128 226 56.6 0.13 2,400 98

DESXL [32] 184 64 144 44.4 0.18 2,168 95

Hard-wired Keys

LED-64 64 64 1,280 5.13 0.18 688 108

PRINTcipher-48 [30] 80 48 768 6.2 0.18 402 387

KTANTAN64 [13] 80 64 255 25.1 0.13 688 530

LED-80* 80 64 1,872 3.4 0.18 690 72

LED-96* 96 64 1,872 3,42 0.18 695 71

LED-128 128 64 1,872 3.42 0.18 700 70

PRINTcipher-96 [30] 160 96 3072 3.13 0.18 726 59

(2 × 4 bits) as a unit for the lookup table. Hence SubCells, ShiftRows and
MixColumnsSerial can all be achieved using eight table lookups and XORs.

Overall, we need to access 8 × 32 × 2 = 512 32-bit words of memory (or
8× 32 = 256 64-bit words of memory). In contrast, an AES implementation with
four tables of 256 entries would require (16+4)×10 = 200 accesses. This suggests
that LED-64 should be about 2.5 times slower than AES on 32-bit platforms with
table-based implementations, and similarly LED-128 will be 3.8 slower than AES,
while the optimized table-based implementation runs 57 and 86 cycles per byte
for LED-64 and LED-128, respectively.

5 Conclusion

In this paper we have presented the block cipher LED. Clearly, given its novelty,
the cipher should not be used in applications until there has been sufficient

The LED Block Cipher 339

independent analysis. Nevertheless, we hope that our design is of some interest
and we have focused our attention on what seem to be the neglected areas of
key schedule design and protection against related-key attacks. Furthermore,
we have done so while working in one of the more challenging design spaces—
that of constrained hardware implementation—and we have proposed one of the
smallest block ciphers in the literature (for comparable choices of parameters)
while striving to maintain a competitive performance in software. Additional
information on LED will be made available via https://sites.google.com/
site/ledblockcipher/ and we welcome all comments and analysis.

References

1. Abdelraheem, M., Blondeau, C., Naya-Plasencia, M., Videau, M., Zenner, E.:
Cryptanalysis of Armadillo-2, http://eprint.iacr.org/2011/160.pdf

2. Ågren, M.: Some Instant- and Practical-Time Related-Key Attacks on KTAN-
TAN32/48/64, http://eprint.iacr.org/2011/140

3. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube Testers and Key Recovery
Attacks on Reduced-Round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)

4. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A
Lightweight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 1–15. Springer, Heidelberg (2010)

5. Badel, S., Dagtekin, N., Nakahara, J., Ouafi, K., Reffé, N., Sepehrdad, P., Susil, P.,
Vaudenay, S.: ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated
to Hardware. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 398–412. Springer, Heidelberg (2010)

6. Barreto, P., Rijmen, V.: The Whirlpool Hashing Function. Submitted to NESSIE
(September 2000), http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

(revised May 2003)
7. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,

vol. 1636, pp. 245–259. Springer, Heidelberg (1999)
8. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.)

EUROCRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)
9. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192

and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

10. Blondeau, C., Naya-Plasencia, M., Videau, M., Zenner, E.: Cryptanalysis of
ARMADILLO2, http://eprint.iacr.org/2011/160

11. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

12. Boura, C., Canteaut, A., De Cannière, C.: Higher-Order Differential Properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011)

13. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

https://sites.google.com/site/ledblockcipher/
https://sites.google.com/site/ledblockcipher/
http://eprint.iacr.org/2011/160.pdf
http://eprint.iacr.org/2011/140
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://eprint.iacr.org/2011/160

340 J. Guo et al.

14. De Cannière, C., Preneel, B.: Trivium. In: Robshaw and Billet [43], pp. 244–266

15. Choy, J., Zhang, A., Khoo, K., Henricksen, M., Poschmann, A.: AES variants secure
against related-key differential and boomerang attacks. In: Ardagna, C.A., Zhou,
J. (eds.) WISTP 2011. LNCS, vol. 6633, pp. 191–207. Springer, Heidelberg (2011),
http://eprint.iacr.org/2011/072

16. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. NIST AES proposal (1998)

17. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

18. Dunkelman, O., Keller, N., Shamir, A.: A Practical-Time Related-Key Attack on
the KASUMI Cryptosystem Used in GSM and 3G Telephony. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010)

19. Engels, D., Fan, X., Gong, G., Hu, H., Smith, E.M.: Ultra-Lightweight Cryptog-
raphy for Low-Cost RFID Tags: Hummingbird Algorithm and Protocol, http://
www.cacr.math.uwaterloo.ca/techreports/2009/cacr2009-29.pdf

20. Engels, D., Saarinen, M.-J.O., Smith, E.M.: The Hummingbird-2 Lightweight Au-
thenticated Encryption Algorithm, http://eprint.iacr.org/2011/126.pdf

21. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like
Permutations. In: Hong and Iwata [27], pp. 365–383

22. Gong, Z., Nikova, S., Law, Y.-W.: A New Family of Lightweight Block Ciphers. In:
Juels, A., Paar, C. (eds.) RFIDSec 2011. Springer, Heidelberg (to appear, 2011),
http://www.rfid-cusp.org/rfidsec/files/RFIDSec2011DraftPapers.zip

23. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

24. Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and Imple-
mentation of Low-Area and Low-Power AES Encryption Hardware Core. In: DSD,
pp. 577–583 (2006)

25. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain Family of Stream
Ciphers. In: Robshaw and Billet [43], pp. 179–190

26. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

27. Hong, S., Iwata, T. (eds.): FSE 2010. LNCS, vol. 6147. Springer, Heidelberg (2010)

28. Khovratovich, D., Nikolic, I.: Rotational Cryptanalysis of ARX. In: Hong and Iwata
[27], pp. 333–346

29. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

30. Knudsen, L.R., Leander, G., Robshaw, M.J.B.: PRINTcipher: A Block Cipher for
IC-Printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 16–32. Springer, Heidelberg (2010)

31. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg
(2009)

32. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

http://eprint.iacr.org/2011/072
http://www.cacr.math.uwaterloo.ca/techreports/2009/cacr2009-29.pdf
http://www.cacr.math.uwaterloo.ca/techreports/2009/cacr2009-29.pdf
http://eprint.iacr.org/2011/126.pdf
http://www.rfid-cusp.org/rfidsec/files/RFIDSec2011DraftPapers.zip

The LED Block Cipher 341

33. Lim, C., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security of
Low-Cost RFID Tags and Sensors. In: Kwon, T., Song, J., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

34. Mace, F., Standaert, F.-X., Quisquater, J.-J.: ASIC Implementations of the Block
Cipher SEA for Constrained Applications. In: RFID Security - RFIDsec 2007,
Workshop Record, Malaga, Spain, pp. 103–114 (2007)

35. May, L., Henricksen, M., Millan, W.L., Carter, G., Dawson, E.: Strengthening the
Key Schedule of the AES. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS,
vol. 2384, pp. 226–240. Springer, Heidelberg (2002)

36. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of
the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Ci-
pher. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 16–35. Springer, Heidelberg (2009)

37. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

38. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Paterson, K. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

39. Nikolić, I.: Tweaking AES. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 198–210. Springer, Heidelberg (2011)

40. Park, S., Sung, S.H., Lee, S., Lim, J.: Improving the Upper Bound on the Maximum
Differential and the Maximum Linear Hull Probability for SPN Structures and
AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer,
Heidelberg (2003)

41. Poschmann, A.: Lightweight Cryptography - Cryptographic Engineering for a Per-
vasive World. Number 8 in IT Security. Europäischer Universitätsverlag, Published:
Ph.D. Thesis, Ruhr University Bochum (2009)

42. Robshaw, M.J.B.: Searching for Compact Algorithms: cgen. In: Nguyen, P. (ed.)
VIETCRYPT 2006. LNCS, vol. 4341, pp. 37–49. Springer, Heidelberg (2006)

43. Robshaw, M.J.B., Billet, O. (eds.): New Stream Cipher Designs. LNCS, vol. 4986.
Springer, Heidelberg (2008)

44. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implementa-
tions for Smart Devices – Security for 1000 Gate Equivalents. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer, Hei-
delberg (2008)

45. Saarinen, M.-J.O.: Cryptanalysis of Hummingbird-1. In: Joux, A. (ed.) FSE 2011.
LNCS, vol. 6733, pp. 328–341. Springer, Heidelberg (2011)

Piccolo: An Ultra-Lightweight Blockcipher

Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda,
Toru Akishita, and Taizo Shirai

Sony Corporation
1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan

{Kyoji.Shibutani,Takanori.Isobe,Harunaga.Hiwatari,Atsushi.Mitsuda,
Toru.Akishita,Taizo.Shirai}@jp.sony.com

Abstract. We propose a new 64-bit blockcipher Piccolo supporting 80
and 128-bit keys. Adopting several novel design and implementation
techniques, Piccolo achieves both high security and notably compact im-
plementation in hardware. We show that Piccolo offers a sufficient secu-
rity level against known analyses including recent related-key differential
attacks and meet-in-the-middle attacks. In our smallest implementation,
the hardware requirements for the 80 and the 128-bit key mode are only
683 and 758 gate equivalents, respectively. Moreover, Piccolo requires
only 60 additional gate equivalents to support the decryption function
due to its involution structure. Furthermore, its efficiency on the energy
consumption which is evaluated by energy per bit is also remarkable.
Thus, Piccolo is one of the competitive ultra-lightweight blockciphers
which are suitable for extremely constrained environments such as RFID
tags and sensor nodes.

Keywords: blockcipher, generalized Feistel networks, related-key
differential attacks, meet-in-the-middle attacks, ultra-lightweight.

1 Introduction

Background and Motivation. Blockciphers are essential primitives for cryp-
tographic applications such as data integrity, confidentiality, and protection
of privacy. At the same time, with the large deployment of low resource de-
vices such as RFID tags and sensor nodes and increasing need to provide se-
curity among such devices, lightweight cryptography has become a hot topic.
Hence, recently, research on designing and analyzing lightweight blockciphers
has received a lot of attention. In fact, there have been several blockciphers
designed for a lightweight hardware implementation such as mCrypton [28],
HIGHT [20], DESL/DESXL [27], PRESENT [11], KATAN/KTANTAN [13] and
PRINTcipher [25]. The structures of these ciphers are generally categorized
into two structures: Substitution Permutation Networks (SPNs) and Feistel-type
structures1.

SPNs are known as the basic structure of the current U.S. encryption standard
AES [16]. Also, several lightweight blockciphers based on an SPN have been
1 KATAN/KTANTAN is exceptional, which is based on a stream cipher.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 342–357, 2011.
c© International Association for Cryptologic Research 2011

Piccolo: An Ultra-Lightweight Blockcipher 343

published. PRESENT consisting of an SPN is supposed to be competitive ciphers
among them, since its required gate is comparable with compact stream ciphers
such as Grain and Trivium2 [19,15]. Recently, PRINTcipher was designed for
IC-printing, which is also an instantiation of an SPN. It achieves remarkably
compact implementation, though it has uncommon block size, i.e., 48 or 96 bits.
mCrypton, which is a miniature of Crypton [29], also adopts an SPN.

On the other hand, Feistel-type structures including Feistel networks and gen-
eralized Feistel networks (GFNs) are the other most widely used structure and
known as the basic structure of the former U.S. encryption standard DES [17].
Though a lot of lightweight blockciphers instantiated by the Feistel-type struc-
ture have also been published, most of them have security problems in contrast to
the SPN based designs. HIGHT was designed for low resource devices, which is a
variant of GFN. While it is relatively light, it has been theoretically broken by a
related-key differential attack [26]. GOST is known as the former Soviet encryp-
tion standard, and has Feistel network [32]. Since the compact implementation
result on GOST requiring 651 GE has been published [35], it is considered as
one of the ultra-lightweight blockciphers. However it has also been theoretically
broken by an improved three-subset meet-in-the-middle (MITM) attack [21].

These attacks basically rely on the slow diffusion of the Feistel-type structures
and high controllability of round keys caused by a simple key schedule. Thus, to
avoid those attacks, the Feistel-type structures generally require a larger number
of rounds than an SPN based construction. Since this reduces the efficiency on
the energy consumption, the Feistel-type structure does not seem to be suitable
for lightweight blockciphers. However, it has a lot of distinct features from those
of SPNs. For instance, the Feistel-type structure has a smaller round function
than SPNs, since only half of the data are updated per one round. Moreover the
Feistel-type structure can support a decryption function without much imple-
mentation cost. As discussed in [11], by using the counter-mode, any encryption-
only ciphers can support decryption function. Yet, if the cipher itself supports
decryption function, it can be used for more applications, e.g., an application
requiring CBC-mode. Also, a diversity of designs is considered to be impor-
tant. Thus, it is meaningful to think about design possibilities of a Feistel-type
structure based lightweight blockcipher that is not only efficient but also secure
against known attacks including the above explained powerful attacks.

Efficiency Metrics. While hardware efficiency can be measured in many
different ways, both the energy consumption and the power consumption are
important measure for lightweight applications. The energy consumption is con-
sidered as a metric for active devices which have an own power supply, and the
power consumption for passive devices which do not have an own power supply.
Though the power consumption heavily depends on the used technology and the
EDA tool, it is well known that it is proportional to the area requirement at
low frequencies, e.g., 100 kHz [25]. Thus, we adopt the area requirement, i.e.,
gate equivalents (GE) as the measure to evaluate the efficiency with respect to
2 Note that the expected security of them against distinguish attacks is substantially

higher than that of 64-bit lightweight blockciphers.

344 K. Shibutani et al.

Table 1. Comparative results in hardware implementations

block key serialized arch. round-based arch.
Algorithm size size type area cycles/ area cycles/ energy/∗1 FOM∗2

[bit] [bit] [GE] block [GE] block bit
DESXL [27] 64 184 Feistel 2,168 144 - - - -

†HIGHT [20]� 64 128 GFN - - 3,048 34 1,620 202
mCrypton-96 [28] 64 96 SPN - - 2,681 13 545 684
mCrypton-128 [28] 64 128 SPN - - 2,949 13 600 566

PRESENT-80 [36,11] 64 80 SPN 1,000 547 1,570 32 785 811
KATAN64 [13] 64 80 stream 1,054 254 - - - -

‡KTANTAN64 [13] 64 80 stream 688 254 - - - -
‡GOST-PS [35] 64 256 Feistel 651 264 1,017 32 509 1,933
‡GOST-FB [35] 64 256 Feistel 800 264 1,000 32 500 2,000

Piccolo-80 64 80 GFN 683 432 1,136 27 480 1,836
Piccolo-128 64 128 GFN 758 528 1,197 33 618 1,353
Piccolo-80� 64 80 GFN 743 432 1,274 27 538 1,460
Piccolo-128� 64 128 GFN 818 528 1,362 33 703 1,045

AES-128 [31],[38]� 128 128 SPN 2,400 226 12, 454∗3 11 1,071 75
CLEFIA-128 [1],[40]� 128 128 GFN 2,488 328 5,979 18 841 202
PRINTcipher-48 [25] 48 80 SPN 402 768 503 48 503 3,952
PRINTcipher-96 [25] 96 160 SPN 726 3,072 967 96 967 1,069
†: Theoretically broken under related-key setting [26].
‡: Theoretically broken under single-key setting [12,21].
�: Including decryption function. The others support encryption-mode only.
∗1: energy / bit = (area [GE] × required cycles for one block process [cycle]) / block size [bit].
∗2: FOM = (nanobit per cycles) / area squared [GE2].
∗3: This implementation is not intended to be high efficiency but high throughput.

the power consumption in this work. The energy consumption is the power con-
sumption over a certain time period, and for one block process, it is evaluated by
multiplying the area requirements with the required cycles for one block. Then,
by dividing the power estimation for one block process by the block size, we
obtain energy per bit as the fair measure for the energy consumption. FOM (in
nano bits per clock cycle per GE squared) proposed by [4] is known as another
metric for energy consumption. In this work, we mainly adopt the above men-
tioned measures area requirement, energy per bit and FOM for the efficiency
comparison.

Contributions and Outline. In this paper, we propose a new lightweight
blockcipher Piccolo which is optimized for extremely constrained devices. Pic-
colo supports 64-bit block with 80 or 128-bit keys, and has an iterative structure
which is a variant of a generalized Feistel network. We demonstrate that Piccolo
offers a sufficient security level against known analyses including recent related-
key differential and MITM attacks. Moreover, we present that Piccolo achieves
remarkably compact implementation in hardware. In our smallest implementa-
tion, the area requirements for the 80 and the 128-bit key mode are only 683 and
758 GE with 432 and 528 cycles per block, respectively. The efficiency on the
energy consumption evaluated by energy per bit is 480 for the 80-bit key mode,
which is the smallest class among current lightweight blockciphers in literature.
Furthermore, Piccolo requires only 60 additional GE to support decryption
function. Therefore, Piccolo supporting both encryption and decryption func-
tions is still comparable to other encryption-only lightweight blockciphers. These

Piccolo: An Ultra-Lightweight Blockcipher 345

RP

RP

RP

FF

FF

FF

FF

X(64)

Y(64)

64

64

161616 16

wk0 wk1

wk2 wk3

rk0 rk1

rk2 rk3

rk2r−4 rk2r−3

rk2r−2 rk2r−1

Fig. 1. Encryption function Gr

X(64)

Y(64)

x0

x0

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5

x6

x6

x7

x7

64

64

88 8 88 8 8 8

Fig. 2. Round permutation RP

comparative results regarding the hardware efficiency for lightweight blockci-
phers whose key size is more than 80 bits are summarized in Table 1. Note that,
in our implementations, a key input is assumed to hold its value during the
block process. Thus, Piccolo achieves both high security and extremely com-
pact implementation unlike the other Feistel-type structure based lightweight
blockciphers.

This paper is organized as follows. The specification of Piccolo is given in
Section 2. Section 3 describes the design rationale. Sections 4 and 5 provide
results on security and hardware implementation, respectively. Finally, we con-
clude in Section 6.

2 Specification

This section provides the specification of Piccolo. Piccolo is a 64-bit blockcipher
supporting 80 and 128-bit keys. The 80 and the 128-bit key mode are referred
as Piccolo-80 and Piccolo-128, respectively. Both ciphers consist of a data pro-
cessing part and a key scheduling part. The differences between two key modes
lie in the number of rounds for the data processing part and the key scheduling
part. We first give notations used throughout this paper, then define each part.

2.1 Notations

a(b) : b denotes the bit length of a.
a|b or (a|b) : Concatenation.

a ← b : Updating a value of a by a value of b.
ta : Transposition of a vector or a matrix a.
{a}b : Representation in base b.

346 K. Shibutani et al.

S

S

S

S

S

S

S

S

4

4

4

4

1616
M

Fig. 3. F-function

MSB

LSB

44

Fig. 4. S-box

2.2 Data Processing Part

The data processing part of Piccolo consisting of r rounds, Gr, takes a 64-bit
data X ∈ {0, 1}64, four 16-bit whitening keys wki ∈ {0, 1}16(0 ≤ i < 4) and 2r
16-bit round keys rki ∈ {0, 1}16(0 ≤ i < 2r) as the inputs, and outputs a 64-bit
data Y ∈ {0, 1}64. Gr is defined as follows:

Gr :
{{0, 1}64 × {{0, 1}16}4 × {{0, 1}16}2r → {0, 1}64

(X(64), wk0(16), ..., wk3(16), rk0(16), ..., rk2r−1(16))
→ Y(64)

Algorithm Gr(X(64), wk0, ..., wk3, rk0, ..., rk2r−1) :
X0(16)|X1(16)|X2(16) |X3(16) ← X(64)

X0 ← X0 ⊕ wk0, X2 ← X2 ⊕ wk1

for i ← 0 to r − 2 do
X1 ← X1 ⊕ F (X0) ⊕ rk2i, X3 ← X3 ⊕ F (X2) ⊕ rk2i+1

X0|X1|X2|X3 ← RP (X0|X1|X2|X3)
X1 ← X1 ⊕ F (X0) ⊕ rk2r−2, X3 ← X3 ⊕ F (X2) ⊕ rk2r−1

X0 ← X0 ⊕ wk2, X2 ← X2 ⊕ wk3

Y(64) ← X0|X1|X2|X3

where F is a 16-bit F-function and RP is a 64-bit permutation defined in the
following sections. The decryption function G−1

r is obtained from Gr by simply
changing the order of whitening and round keys as follows:

G−1
r :
{{0, 1}64 × {{0, 1}16}4 × {{0, 1}16}2r → {0, 1}64

(Y(64), wk0(16), ..., wk3(16), rk0(16), ..., rk2r−1(16))
→ X(64)

Algorithm G−1
r (Y(64), wk0, ..., wk3, rk0, ..., rk2r−1) :

wk′
0 ← wk2, wk′

1 ← wk3, wk′
2 ← wk0, wk′

3 ← wk1

for i ← 0 to r − 1 do

rk′
2i|rk′

2i+1 ←
{

rk2r−2i−2|rk2r−2i−1 (if i mod 2 = 0)
rk2r−2i−1|rk2r−2i−2 (if i mod 2 = 1)

X(64) ← Gr(Y,wk′
0, ..., wk′

3, rk
′
0, ..., rk

′
2r−1)

The number of rounds, r, is 25 and 31 for Piccolo-80 and -128, i.e., G25 and G31

for Piccolo-80 and -128, respectively (See Fig. 1).

Piccolo: An Ultra-Lightweight Blockcipher 347

Table 2. 4-bit bijective S-box S in hexadecimal form

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] e 4 b 2 3 8 0 9 1 a 7 f 6 c 5 d

F-Function. F-function F : {0, 1}16 → {0, 1}16 consists of two S-box layers
separated by a diffusion matrix (See Fig. 3). The S-box layer consists of four
4-bit bijective S-boxes S given by Table 2, and updates a 16-bit data X(16) as
follows:

(x0(4), x1(4), x2(4), x3(4)) ← (S(x0(4)), S(x1(4)), S(x2(4)), S(x3(4))),

where X(16) = x0(4)|x1(4)|x2(4)|x3(4). The diffusion matrix M is defined as

M =

⎛

⎜
⎜
⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞

⎟
⎟
⎠ .

Then the diffusion function updates a 16-bit data X(16) as follows:
t(x0(4), x1(4), x2(4), x3(4)) ← M · t(x0(4), x1(4), x2(4), x3(4)),

where the multiplications between matrices and vectors are performed over
GF(24) defined by an irreducible polynomial x4 + x + 1.

Round Permutation. The round permutation RP : {0, 1}64 → {0, 1}64 di-
vides a 64-bit input X(64) into eight 8-bit data as X(64) = x0(8)|x1(8)|...|x7(8),
then permutes them by the following manner:

RP : (x0(8), x1(8), ..., x7(8)) ← (x2(8), x7(8), x4(8), x1(8), x6(8), x3(8), x0(8), x5(8)).

Finally, the round permutation concatenates (x0(8), x1(8), ..., x7(8)) into X(64)

(See Fig. 2).

2.3 Key Scheduling Part

The key scheduling part of Piccolo supports 80 and 128-bit keys, and outputs
16-bit whitening keys wki(16)(0 ≤ i < 4) and round keys rkj(16)(0 ≤ j < 2r) for
the data processing part. The key scheduling functions for Piccolo-80 and -128
are referred as KS80

r and KS128
r , respectively. We first define 16-bit constants

con80
i and con128

i , then describe each key schedule.

Constant Values. The constants con80
i and con128

i used in KS80
r and KS128

r ,
respectively, are generated as follows:
{

(con80
2i |con80

2i+1) ← (ci+1|c0|ci+1|{00}2|ci+1|c0|ci+1) ⊕ {0f1e2d3c}16,
(con128

2i |con128
2i+1) ← (ci+1|c0|ci+1|{00}2|ci+1|c0|ci+1) ⊕ {6547a98b}16,

where ci is a 5-bit representation of i, e.g., c11 = {01011}2.

348 K. Shibutani et al.

Key Schedule for 80-Bit Key Mode (KS80
r). The key scheduling function

for the 80-bit key mode, KS80
r , divides an 80-bit key K(80) into five 16-bit sub-

keys ki(16) (0 ≤ i < 5) and provides wki(16)(0 ≤ i < 4) and rkj(16)(0 ≤ j < 2r)
as follows:

Algorithm KS80
r (K(80)) :

wk0 ← kL
0 |kR

1 , wk1 ← kL
1 |kR

0 , wk2 ← kL
4 |kR

3 , wk3 ← kL
3 |kR

4

for i ← 0 to (r − 1) do

(rk2i, rk2i+1) ← (con80
2i , con80

2i+1) ⊕
⎧
⎨

⎩

(k2, k3) (if i mod 5 = 0 or 2)
(k0, k1) (if i mod 5 = 1 or 4)
(k4, k4) (if i mod 5 = 3),

where kL
i and kR

i are left and right half 8 bits of ki, respectively, i.e., ki(16) =
kL

i(8)|kR
i(8) and kR

i(8) contains the least significant bit of ki(16).

Key Schedule for 128-Bit Key Mode (KS128
r). The key scheduling func-

tion for the 128-bit key mode, KS128
r , divides a 128-bit key K(128) into eight 16-

bit sub-keys ki(16) (0 ≤ i < 8) and provides wki(16)(0 ≤ i < 4) and rkj(16)(0 ≤
j < 2r) as follows:

Algorithm KS128
r (K(128)) :

wk0 ← kL
0 |kR

1 , wk1 ← kL
1 |kR

0 , wk2 ← kL
4 |kR

7 , wk3 ← kL
7 |kR

4

for i ← 0 to (2r − 1) do
if (i + 2) mod 8 = 0 then

(k0, k1, k2, k3, k4, k5, k6, k7) ← (k2, k1, k6, k7, k0, k3, k4, k5)
rki ← k(i+2) mod 8 ⊕ con128

i

3 Design Rationale

In this section, we briefly describe design rationale of Piccolo.

Structure. Piccolo supports 64-bit block to fit standard applications, and 80
and 128-bit keys to achieve moderate security levels. The underlying structure
is a variant of GFN that can easily support decryption function without much
implementation cost and has light round functions.

Key Schedule. We adopt a permutation based key schedule which can signifi-
cantly reduce the required number of gates. For instance, the registers for storing
keys are not required and it leads the almost same gate requirement for each
key size, in contrast to a key schedule requiring key state. While the drawback
is security concern, by carefully choosing the permutation, it has enough immu-
nity against attacks exploiting weakness of the key schedule such as related-key
differential and MITM attacks. Note that, in our evaluation, key inputs are not
required to be hard-wired, but are assumed to hold its values during the block
operation.

Piccolo: An Ultra-Lightweight Blockcipher 349

Round Permutation. In order to improve diffusion property, Piccolo utilizes
an 8-bit word based permutation between rounds instead of a 16-bit word based
cyclic shift used in the standard GFN. Moreover, it demolishes the 16-bit word
structure and thus improves the security against cryptanalysis exploiting strong
word-based structure such as saturation attacks. We choose the specific one
among several possibilities not to destroy the involution property in which the
encryption process is identical to the decryption process when whitening and
round keys are not introduced.

F-Function. The F-function consists of two S-box layers separated by a diffu-
sion matrix without key additions before the second S-box layer. The S-box in
the F-function has a 4-round iterative structure like GFN, and is extremely light.
As shown in Fig. 4, each S-box consists of only four NOR gates, three XOR gates
and one XNOR gate. Both the maximum differential probability (MDP) and the
maximum linear probability (MLP) of the S-box are 2−2 which are optimal, and
it has no fixed point. Moreover, it is suitable for efficient threshold implementa-
tion as discussed in Section 5. Furthermore, by using a standard PC, we obtain
2−9.3 and 2−8.0 as MDP and MLP of the F-function, respectively. While those
figures are not optimal for a 16-bit bijective function, it is sufficient for our de-
sign, since Piccolo has enough differentially and linearly active F-functions over
a certain number of rounds.

4 Security Analysis

In this section, we provide results on security analysis for Piccolo.

Differential Attack / Linear Attack [7,30]. We first show the minimum
numbers of differentially and linearly active F-functions of Gr up to 30 rounds
in Table 3. The figures in the table are obtained by an exhaustive search based
on the algorithm given by [39]. Note that the minimum numbers for differentially
and linearly active F-functions are the same due to the duality of differential and
linear attacks and the similarity of Gr and G−1

r . As explained in Section 3, MDP
and MLP of the F-function are 2−9.3 and 2−8.0, respectively. Combining those
results, Piccolo consisting of at least 7 or 8 rounds provide at least 7 or 8 active
F-functions, and have no differential or linear trails whose probabilities are more
than 2−64, respectively. Thus, we expect that the full-round of Piccolo (25 and
31 rounds for Piccolo-80 and -128) has enough immunity against differential and
linear attacks, since it has large security margin.

Boomerang-Type Attacks [42,23,6]. The boomerang-type attacks (includ-
ing the boomerang, amplified boomerang and rectangle attacks) first divide the
cipher into two sub-ciphers, then find a boomerang quartet with high probability.
The probability of constructing a boomerang quartet is denoted as p̂2q̂2, where
p̂ =
√∑

β Pr2[α → β], and α and β are input and output differences for the

first sub-cipher, and q̂ for the second sub-cipher. p̂2 is bounded by the maximum
differential trail probability, i.e., p̂2 ≤ maxβ Pr[α → β], and q̂2 as well. Let p, q

350 K. Shibutani et al.

Table 3. Min. # differentially and linearly active F-functions (single-key setting)

rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
min. # active F-functions 0 1 2 3 4 6 7 8 9 10 11 12 13 14 15

rounds 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
min. # active F-functions 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

be the maximum differential trail probability for the first and the second sub-
ciphers. Then, p, q are bounded by multiplying the minimum number of active
F-functions in each sub-cipher with MDP of the F-function. From Table 3, any
combination of two sub-ciphers for Piccolo consisting of at least 9 rounds has
at least 7 active F-functions in total. Hence, we conclude that the full-round of
Piccolo is sufficiently secure against boomerang-type attacks.

Impossible Differential Attack [5]. An impossible differential attack is likely
to be applied to a variant of GFN due to its slow diffusion. However, Piccolo
utilizes the round permutation RP to achieve faster diffusion compared to a
standard type-II GFN. Then, for both encryption and decryption sides, Piccolo
requires only four rounds to be full diffusion, which is a property that all outputs
are affected by all inputs. This implies that there exists at most 9-round impossi-
ble differential using a 16-bit truncated differential from the observation in [41].
We also search the longest impossible differential by modified U-method [24] al-
gorithm and found a 7-round impossible differential exploiting a 4-bit truncated
differential. Therefore, we conclude that the full-round of Piccolo is expected to
be secure against the impossible differential attack.

Related-Key Differential Attacks [9,8]. In the related-key setting, a dis-
tinguisher is allowed to use related-keys and usually uses key differentials to
cancel out differentials in a data processing part. While the practical impact
of related-key differential attacks is still controversial, we care about it from a
pessimistic (designers’) point of view. To evaluate the resistance to it, we follow
an approach presented in [10]. In other words, we evaluate the immunity against
related-key differential attacks by counting the minimum number of differentially
active F-functions in the related-key setting. Table 4 shows the minimum num-
bers of differentially active F-functions for the 80 and the 128-bit key modes up
to 20 rounds. Unlike the attacks under the single-key setting, the total number
of active F-functions for the related-key differential attacks may vary accord-
ing to the starting round. However, in our evaluations, those differences are at
most 2 active F-functions, even if the starting round is changed. Consequently,
we obtain that over 14 and 16 rounds for Piccolo-80 and -128 have at least 7
differentially active F-functions in the related-key setting, respectively.

Moreover, we consider related-key boomerang/rectangle attacks [8]. Similarly
to non related-key boomerang-type attacks, we evaluate the security in the
worst case that an attacker can use pq instead of p̂2q̂2 for the probability of
a boomerang quartet. As a result, we confirmed that over 17 and 21 rounds of
Piccolo-80 and -128 provide enough (seven) differentially active F-functions in
this setting.

Piccolo: An Ultra-Lightweight Blockcipher 351

Table 4. Min. # differentially active F-functions (related-key setting)

����������starting round i
rounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

for Piccolo-80 encryption

i mod 5 = 0 0 0 0 0 0 2 3 4 4 5 5 6 7 7 7 8 9 10 11 11
i mod 5 = 1 0 0 0 0 1 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11
i mod 5 = 2 0 0 0 0 1 2 3 3 4 6 6 6 7 7 9 9 9 10 10 12
i mod 5 = 3 0 0 0 0 1 2 2 3 4 5 5 6 6 7 8 8 9 9 10 11
i mod 5 = 4 0 0 0 0 0 0 2 3 4 5 6 6 7 7 7 7 9 10 11 11

for Piccolo-80 decryption

i mod 5 = 0 0 0 0 0 1 2 2 3 4 5 5 6 6 7 8 8 9 9 10 11
i mod 5 = 1 0 0 0 0 1 2 3 3 4 6 6 6 7 7 9 9 9 10 10 12
i mod 5 = 2 0 0 0 0 1 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11
i mod 5 = 3 0 0 0 0 0 2 3 4 4 5 5 6 7 7 7 8 9 10 11 11
i mod 5 = 4 0 0 0 0 0 0 2 3 4 5 6 6 7 7 7 7 9 10 11 11

for Piccolo-128 encryption

i mod 4 = 0 0 0 0 0 0 0 0 1 3 3 4 5 5 6 7 7 8 9 10 10
i mod 4 = 1 0 0 0 0 0 0 1 2 3 3 4 5 5 6 7 7 8 9 10 11
i mod 4 = 2 0 0 0 0 0 0 1 2 2 3 4 4 5 6 6 7 7 9 9 9
i mod 4 = 3 0 0 0 0 0 1 1 1 2 3 4 5 5 6 7 7 8 9 9 10

for Piccolo-128 decryption

i mod 4 = 0 0 0 0 0 0 1 1 2 3 3 4 5 5 6 6 7 8 9 9 11
i mod 4 = 1 0 0 0 0 0 0 1 2 3 3 4 4 5 6 7 7 8 9 9 9
i mod 4 = 2 0 0 0 0 0 0 0 1 2 3 4 5 5 6 7 7 7 9 10 10
i mod 4 = 3 0 0 0 0 0 0 1 1 2 3 4 5 5 6 7 7 8 9 10 10

Furthermore, we take related-key impossible differential attacks [22] into ac-
count. Consequently, by using modified U-method, we found an 11 and a 17-
round impossible differential distinguisher using an 8-bit truncated differential
for Piccolo-80 and -128 in the related-key setting, respectively, and they are the
longest in our evaluation. Therefore, we conclude that the full-round Piccolo is
expected to be resistant to those attacks.

Meet-in-the-Middle Attack [12]. Three-subset meet-in-the-middle (MITM)
cryptanalysis [12] is a recent attack on blockciphers. This attack works well for
blockciphers having a simple key schedule and slow diffusion. Indeed, KTAN-
TAN and GOST have been theoretically broken by this attack [12,21]. Since
Piccolo consists of the permutation based key scheduling and a variant of GFN,
evaluating the resistance against this attack is important.

Similarly to data difference, Piccolo requires 4 rounds to non-linearly diffuse
any round-key difference to all output data in the data processing part, i.e., any
round-key bits of the i-th round non-linearly affect all input of the (i − 3)-th
round and all output of the (i + 3)-th round. Thus, we assume that an attacker
might construct an 8-round indirect-partial matching [3] and a 4-round initial
structure [37] in the worst case. Besides, we even allow the attacker to use code
book and splice and cut techniques [2]. In this worst setting, Piccolo-80 and -128
without whitening keys have neutral words up to 19 and 23 consecutive rounds,
respectively. We expect that the attacked rounds obtained by this observation
are upper bounds on the security against the three-subset MITM attack, since
the given assumptions are sufficiently strong. Moreover, we attempt to construct

352 K. Shibutani et al.

actual attacks to obtain the lower bounds on the security. As a result, the Pic-
colo-80 and -128 without whitening keys reduced to 14 and 21 rounds can be
attacked by the three-subset MITM attacks, respectively. Since Piccolo actually
has whitening keys, it is obviously stronger than the variants evaluated above.
Thus, we conclude that Piccolo has enough immunity against the three-subset
MITM attack.

Other Attacks. We also consider other attacks including a slide, a saturation,
an interpolation, a higher order differential, a truncated differential, and an
algebraic attack. Though the details of the evaluations for those attacks are
omitted due to the page limitation, consequently, we expect that none of them
work better than the previously explained attacks.

5 Implementation Aspects

This section provides results on compact hardware implementation of Piccolo
with novel implementation techniques, showing two types of implementations: a
round-based implementation and a serialized implementation. While one round
function is processed within one clock cycle in a round-based implementation,
only a fraction of one round is treated in a clock cycle in a serialized implemen-
tation to realize the low-power and low-area implementation.

5.1 Optimization in Key Scheduling Part

The key scheduling part of Piccolo can be implemented by using multiplexers
without flip-flops which have high area requirement, in a way similar to the
implementation of GOST and KTANTAN [35,13]. Actually, our round-based
implementation of Piccolo-80 needs only 32-bit wide 3-to-1 MUX to select the
appropriate round key. For a serialized implementation, we require a 4-bit wide
20-to-1 MUX to select the right chunk of the round key.

In our evaluation, key inputs are assumed to hold those values during the
block process, but are not required to be hard-wired. Therefore, our results do
not contain registers for storing keys. If such registers are needed, around 360 and
576 extra GE are required for Piccolo-80 and -128, respectively. Moreover, if we
use hard-wired key, we can reduce around 85 and 114 GE from the round-based
implementations, also about 67 and 104 GE from the serialized implementations
for Piccolo-80 and -128, respectively.

5.2 Optimization in Data Processing Part

A round-based implementation of Piccolo can be done straightforwardly. Note
that we use scan flip-flops for the data state, which take both an input and an
output of a round function as inputs.

On the other hand, a serialized implementation has many variety. Our serial-
ized implementation is based on 4-bit shift registers in the similar way as [18].
The 4-bit data path for Piccolo-80 is described in Fig. 5.

Piccolo: An Ultra-Lightweight Blockcipher 353

16

16

16

16

16

16

4

4

4

4 k0

k1

k2

k3

k4

2:1
2:1

2:1

2:1

2:1

3:1

4:1 5:1

D D D D

DDDDDDDDDDDD

Q Q Q Q

QQQQQQQQQQQQ

path A

con

data in

data out

SS−1

×{2} ×{3}

R0 R1 R2 R3

Fig. 5. Data path of our serialized implementation

In our serialized implementation, firstly outputs of the first S-box are set to
the registers (R0, R1, R2, R3) described in Fig. 5. In the next four clock cycles,
each row of the diffusion matrix is updated in order by rotating the registers
(R0, R1, R2, R3). Simultaneously, the outputs of the matrix are input to S-box
S through path A, then the outputs of the F-function are obtained. In the next
four clock cycles, the inputs of the F-function are recovered in order through
S−1 which is the inversion of S. At the same time, the outputs of the first S-box
layer of the next F-function are set to the registers (R0, R1, R2, R3). Therefore,
this implementation requires 8 clock cycles per F-function, and thus 16 clock
cycles per round. We emphasize that our serialized implementation does not
require additional registers for storing intermediate values of the F-functions by
appending S−1 which costs only 12 GE.

5.3 Hardware Performance

Table 5 shows the detailed implementation figures of the round-based and the
serialized implementations of Piccolo-80 and -128.

We designed hardware implementations of Piccolo in Verilog-HDL and syn-
thesized the designs to a 0.13 μm standard cell library. We used VCS version
2006.06 for simulation and Design Compiler version 2007.03-SP3 for synthesis.
One GE is equivalent to the area of a 2-way NAND.

In a recent trend, the implementation of lightweight blockciphers uses a scan
flip-flop instead of a combination of a D flip-flop and a 2-to-1 MUX [13,35,36] to
reduce the gate requirement. In our evaluation environment, a D flip-flop and a
2-to-1 MUX cost 4.5 and 2.0 GE, respectively, while a scan flip-flop costs 6.25
GE. Thus, we can save 0.25 GE per bit of storage by using this implementation
technique. Moreover, the library we used has the 4-input AND-NOR and 4-input
OR-NAND gates with two inputs inverted as described in Fig. 6. The outputs
of these cells are corresponding to those of XOR or XNOR when the inputs
X, Y are set as shown in Fig. 6. Thus, we can use these cells instead of XOR or

354 K. Shibutani et al.

Table 5. Implementation figures for Piccolo

Piccolo-80 Piccolo-128
serial round serial round

cycles per block 432 27 528 33

throughput @ 100 kHz (kbps.) 14.81 237.04 12.12 193.94

Area [GE] sum 683.00 1,135.25 757.75 1,196.50
Key scheduling 95 72 135 120

Data state 309 344 309 344
S-box/S-box−1 24 192 24 192

Matrix 34 208 34 208
Key XOR 8∗ 64 8∗ 64

Constants XOR -∗ 40 -∗ 40
F-func. output XOR 8 64 8 64

MUX 24 72 24 72
Others/Control 181.00 79.25 215.75 92.50

∗: XOR for round keys and constants is shared

XX

YY

XX

YY

4-input AND-NOR gate 4-input OR-NAND gate

with 2 inputs invertedwith 2 inputs inverted

Fig. 6. 4-input AND-NOR and 4-input OR-NAND gates with 2 inputs inverted, which
correspond to XOR and XNOR gate

XNOR cells. Since both cells cost 2 GE instead of 2.25 GE required for XOR
or XNOR, we can save 0.25 GE per an XOR or XNOR gate. We employed the
above mentioned implementation techniques in our evaluation.

5.4 Security against Side Channel Attacks

A provably secure countermeasure against first order side-channel attacks called
threshold implementations [33,34] can be applied to Piccolo. In threshold imple-
mentations, at least three shares are necessary for any nonlinear function. The
S-box of Piccolo defined in Section 2 is chosen to belong to the alternating group
A16, where a 4 × 4 bijection can be decomposed using quadratic bijections [14].
Therefore, for the S-box of Piccolo, the masking method can be applied using
only three shares, which leads efficient threshold implementations of Piccolo.

6 Conclusion

In this paper, we have presented a lightweight blockcipher consisting of a variant
of generalized Feistel network with a permutation based key schedule. Despite
several desirable implementation properties for a combination of Feistel-type

Piccolo: An Ultra-Lightweight Blockcipher 355

structure with a permutation based key schedule, the ciphers having such struc-
tures are likely to be vulnerable to attacks. The proposed cipher Piccolo employs
several new design approaches including the half-word based round permutation
and the effective permutation for key expanding to avoid known attacks without
loosing efficiency on both power and energy consumptions. Consequently, Piccolo
achieves not only notably compact implementation but also high security.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their helpful comments.

References

1. Akishita, T., Hiwatari, H.: Very compact hardware implementations of the blockci-
pher CLEFIA. Sony corporation (June 2011), http://www.sony.co.jp/Products/
cryptography/clefia/download/data/clefia-hw-compact-20110615.pdf

2. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
103–119. Springer, Heidelberg (2009)

3. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

4. Badel, S., Dagtekin, N., Nakahara, J., Ouafi, K., Reffé, N., Sepehrdad, P., Susil, P.,
Vaudenay, S.: ARMADILLO: A multi-purpose cryptographic primitive dedicated
to hardware. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 398–412. Springer, Heidelberg (2010)

5. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

6. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the Ser-
pent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357.
Springer, Heidelberg (2001)

7. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

8. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle at-
tacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

9. Biham, E., Dunkelman, O., Keller, N.: A unified approach to related-key attacks.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 73–96. Springer, Heidelberg
(2008)

10. Biryukov, A., Nikolić, I.: Automatic Search for Related-Key Differential Character-
istics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and
Others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344.
Springer, Heidelberg (2010)

11. Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

12. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: Cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)

http://www.sony.co.jp/Products/cryptography/clefia/download/data/clefia-hw-compact-20110615.pdf
http://www.sony.co.jp/Products/cryptography/clefia/download/data/clefia-hw-compact-20110615.pdf

356 K. Shibutani et al.

13. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

14. De Cannière, C., Nikov, V., Nikova, S., Rijmen, V.: S-box decompositions for SCA-
resisting implementations. In: Poster Session of CHES 2010 (2010)

15. De Cannière, C., Preneel, B.: trivium. In: Robshaw, M.J.B., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008)

16. FIPS, Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication 197

17. FIPS, Data Encryption Standard. Federal Information Processing Standards Pub-
lication 46

18. Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and imple-
mentation of low-area and low-power AES encryption hardware core. In: DSD, pp.
577–583. IEEE Computer Society, Los Alamitos (2006)

19. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain Family of Stream
Ciphers. In: Robshaw, M.J.B., Billet, O. (eds.) New Stream Cipher Designs. LNCS,
vol. 4986, pp. 179–190. Springer, Heidelberg (2008)

20. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J.,
Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A new block cipher suitable for low-
resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 46–59. Springer, Heidelberg (2006)

21. Isobe, T.: A single-key attack on the full GOST block cipher. In: Joux, A. (ed.)
FSE 2011. LNCS, vol. 6733, pp. 290–305. Springer, Heidelberg (2011)

22. Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key
AES variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

23. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp.
75–93. Springer, Heidelberg (2001)

24. Kim, J., Hong, S., Sung, J., Lee, C., Lee, S.: Impossible differential cryptanalysis
for block cipher structures. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003.
LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)

25. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A
block cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

26. Koo, B., Hong, D., Kwon, D.: Related-key attack on the full HIGHT. In: Pre-
Proceedings of ICISC 2010. Springer, Heidelberg (2010)

27. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

28. Lim, C.H., Korkishko, T.: mCrypton – A lightweight block cipher for security of
low-cost RFID tags and sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

29. Lim, C.H.: A Revised Version of CRYPTON - CRYPTON V1.0 -. In: Knudsen,
L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 31–45. Springer, Heidelberg (1999)

30. Matsui, M.: Linear cryptanalysis of Data Encryption Standard. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg
(1994)

31. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

Piccolo: An Ultra-Lightweight Blockcipher 357

32. National Soviet Bureau of Standards, Information Processing System - Crypto-
graphic Protection - Cryptographic Algorithm GOST 28147-89

33. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

34. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-
linear functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

35. Poschmann, A., Ling, S., Wang, H.: 256 bit standardized crypto for 650 GE – GOST
revisited. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 219–233. Springer, Heidelberg (2010)

36. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-lightweight implemen-
tations for smart devices – security for 1000 gate equivalents. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer, Hei-
delberg (2008)

37. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2009)

38. Satoh, A., Morioka, S.: Hardware-Focused Performance Comparison for the Stan-
dard Block Ciphers AES, Camellia, and Triple-DES. In: Boyd, C., Mao, W. (eds.)
ISC 2003. LNCS, vol. 2851, pp. 252–266. Springer, Heidelberg (2003)

39. Shirai, T., Araki, K.: On generalized Feistel structures using the diffusion switching
mechanism. IEICE Trans. Fundamentals E91-A(8), 2120–2129 (2008)

40. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Block-
cipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS,
vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

41. Suzaki, T., Minematsu, K.: Improving the generalized Feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)

42. Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

A Test Vectors

We give test vectors of Piccolo for each key length. The data are represented in
hexadecimal form.

80-bit key:
key 00112233 44556677 8899
plaintext 01234567 89abcdef
ciphertext 8d2bff99 35f84056

128-bit key:
key 00112233 44556677 8899aabb ccddeeff
plaintext 01234567 89abcdef
ciphertext 5ec42cea 657b89ff

Lightweight and Secure PUF Key Storage Using

Limits of Machine Learning

Meng-Day (Mandel) Yu1, David M’Raihi1, Richard Sowell1,
and Srinivas Devadas2

1 Verayo Inc., San Jose, CA, USA
{myu,david,rsowell}@verayo.com

2 MIT, Cambridge, MA, USA
devadas@mit.edu

Abstract. A lightweight and secure key storage scheme using silicon
Physical Unclonable Functions (PUFs) is described. To derive stable
PUF bits from chip manufacturing variations, a lightweight error correc-
tion code (ECC) encoder / decoder is used. With a register count of 69,
this codec core does not use any traditional error correction techniques
and is 75% smaller than a previous provably secure implementation,
and yet achieves robust environmental performance in 65nm FPGA and
0.13μ ASIC implementations. The security of the syndrome bits uses a
new security argument that relies on what cannot be learned from a ma-
chine learning perspective. The number of Leaked Bits is determined for
each Syndrome Word, reducible using Syndrome Distribution Shaping.
The design is secure from a min-entropy standpoint against a machine-
learning-equipped adversary that, given a ceiling of leaked bits, has a
classification error bounded by ε. Numerical examples are given using
latest machine learning results.

Keywords: Physical Unclonable Functions, Key Generation, Syndrome
Distribution Shaping, Machine Learning, FPGA, ASIC.

1 Introduction

Gassend et al. introduced silicon-based Physical Unclonable Functions (PUFs)
in [5], [6]; PUFs generate responses based on device manufacturing variations.
Given a challenge as input, a PUF produces a response that is based on man-
ufacturing variations on a particular instance of a silicon device. As such, PUF
responses are noisy; although most of the response bits stay the same from run
to run, some of the bits may flip. PUF noise increases with a change in volt-
age, temperature, and age between the provisioning condition, where a reference
snapshot of the response is taken, and the regeneration condition. To derive sta-
ble PUF bits, some form of error correction code (ECC) or equivalent function
is required. A set of syndrome bits is generated during provisioning, to help cor-
rect the regenerated PUF response back to the provisioned snapshot. There have
been relatively few works that explicitly address the issue of information leaked
via syndrome bits in the context of key storage using PUFs.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 358–373, 2011.
c© International Association for Cryptologic Research 2011

Secure PUF Key Storage 359

Security arguments for the syndrome bits have taken several forms. The idea
is to construct an argument that quantifies the amount of secrecy remaining in
the provisioned PUF secret given that the syndrome is known to the adversary.
One frequently cited work is by Dodis et al. [4], which contains an often-used
result that Code-Offset Generic Syndrome with a code word length of n has an
entropy loss of n− log A(n, 2t + 1), where A(n, 2t + 1) represents the size of the
largest code for a Hamming space with minimal distance of 2t+1. Assuming an
optimal code, the value n− logA(n, 2t + 1) is also the size of the parity encoded
as the syndrome. This result is useful to the extent that the number of parity
bits in the error correction code does not exceed the min-entropy of the PUF
bits that are used to derive the n-bit codeword. To safely account for the case
where a large number of syndrome bits are used (a seemingly necessary tradeoff
to reduce ECC complexity), additional security arguments may be useful. Yu
and Devadas in [21] developed an alternative to Code-Offset Syndrome, using
a technique called Index-Based Syndrome (IBS) coding, which was proven to
be information-theoretically secure under the assumption that the PUF output
bits are independent and identically distributed (i.i.d.); the security arguments
apply even for a heavily biased (and thus min-entropy reduced) PUF.

Although the work of [21] achieved a quadratic reduction in ECC complexity,
the work does not explicitly describe the PUF complexity required for producing
the i.i.d. PUF output bits beyond a brief mention of using disjoint oscillator
pairs. The PUF complexity (number of PUF elements, and in this case disjoint
oscillator pairs per key bit) is 2520/128 = 19.7, taking [21] at face value.1 The
current work, by contrast, describes a lightweight key storage mechanism that is
lightweight both in terms of its ECC complexity and PUF complexity, by using
the indexing scheme in [21] as a starting point and eliminating the BCH coding.
It achieves a 75% reduction in ECC complexity compared to [21] and achieves
a PUF complexity of 5 (using ten 64-sum PUFs, see Figure 1 for a description
of k-sum PUFs) to as little as 1 (using two 64-sum PUFs); this is a 4x to 20x
improvement. The PUF complexity reduction derives from a machine-learning-
based security argument that each additional syndrome bit does not require a
linear increase in the number of PUF elements (e.g., disjoint oscillator pair [18]
[21] or a memory cell [1] [12] [7] [17] [8]) but instead relies on assumptions on
what cannot be learned about a challengeable physical system.

Machine learning theory as pioneered in [20] is interested primarily in what
can be learned. For example, the number of training samples needed to learn
reasonably well a hypothesis class grows linearly with the Vapnik-Chervonenkis
dimension of that class. In the context of learning a k-sum PUF, the theory
suggests that the number of training samples required for learning grows linearly
in the number of parameters in the learning model, which corresponds to the
number of summation stages in the PUF. Empirical results in [13] [14] [15] show

1 Using the example parameters described in [21], a 128-bit key would require 5
BCH(63,30,t=6) blocks, or 315 bits. Since each bit is coded using a 3-bit index,
picking the best value out of 8 PUF output bits, a total of 2520 disjoint oscillator
pairs are needed.

360 M.-D. Yu et al.

that the required number of training samples does in fact grow linearly with the
number of delay sums. The current work turns this (apparent) weakness of a
PUF into a strength by taking advantage of what cannot be learned; this results
in reduction in the PUF complexity required. PUF complexity is the number
of PUF elements per key bit; for a k-sum PUF (Figure 1), a PUF element is a
pair of ring oscillators whose frequency difference effectively forms a stage in the
PUF.

1.1 Contributions

The main contributions of the current work include the following:

– 75% reduction in ECC complexity because no traditional error correction
codes are used. We note that [21] mentions this possibility; in this paper we
provide extensive supporting experiments;

– 4x to 20x reduction in PUF complexity;
– ASIC implementation results. We believe this paper to be the first to give

results on reliable key generation in an ASIC with integrated ECC;
– Accelerated aging result on stable PUF keys, well beyond published PUF

aging results;
– A new metric, Leaked Bits, which entropically computes leakage per Syn-

drome Word;
– A new technique called Syndrome Distribution Shaping, to minimize Leaked

Bits;
– A new security argument relating machine learning classification error ε to

the average min-entropy remaining in the PUF-derived secret.

1.2 Related Works

To the best knowledge of the authors, the current work is the first to marry
results from two fields: machine learning [13] [14] [15] and PUF-based key gen-
eration [1] [5] [11] [12] [18] [21]. [5] pioneered the use of error correction on
PUF outputs using 2D Hamming codes. [4] provides a security framework for
using Code-Offset Syndrome. [18] took a more robust approach to account for
environmental noise using a single stage BCH(255) code. [1] used a two-stage
coding approach, with the use of heavy first-stage repetition coding to reduce
second-stage ECC complexity. [12] introduced the use of soft-decision decod-
ing. The Code-Offset Syndrome in [4], however, yields at best very little (or in
some cases negative) remaining min-entropy for some of the more efficient re-
cent approaches where a large number of syndrome bits are produced (e.g., by
a repetition coding stage) to reduce ECC complexity.2 [21] introduced an alter-
native to Code-Offset Syndrome; under the assumption that PUF output bits

2 Consider a PUF with a min-entropy = 0.8. If a (5,1,5) repetition code is used, 4 bits
are leaked via syndrome (assume code is optimal). This is also the min-entropy of
the 5 PUF output bits (5 × 0.8 = 4) used to form the code word. No secrecy remains
from a min-entropy standpoint.

Secure PUF Key Storage 361

are i.i.d., Index-Based Syndrome Coding (IBS) results in syndrome bits that are
information-theoretically secure. The current work uses IBS as a starting point
and eliminates the BCH coding of [21], and uses a security framework that elimi-
nates the need for the i.i.d. PUF output assumption in [21] by deriving syndrome
security based on what cannot be learned by a machine-learning-equipped ad-
versary. This new security framework based on limits of machine learning has
the effect of reducing PUF complexity.3 The machine-learning-based syndrome
security framework differs from and complements the syndrome security argu-
ments derived in [4] and [21]; for example, operating in the regime where machine
learning classification error ε = 0.5 is essentially equivalent in security to using
an i.i.d. PUF output assumption. The current work is also one of few published
works which contains results of an integrated ASIC PUF + ECC implementation
under environmental stresses, and complements FPGA results obtained in [21].

1.3 Organization

We describe the implementations of k-sum PUFs with associated error correction
in Section 2. Section 3 establishes the empirical viability of the lightweight error
correction scheme with respect to stability results (against voltage, temperature,
and aging) and implementation complexity. Section 4 uses the empirically viable
building blocks, consisting of the lightweight error correction coder plus one or
more 64-sum PUFs, to derive Secure Constructions.

2 PUFs with Lightweight Error Correction

In this section, we describe the FPGA and ASIC implementations of PUFs and
the error correction schemes that we are evaluating in Section 3.

A simplified high-level block diagram is shown in Figure 1. The basic 64-sum
PUF looks at the difference between two delay terms, each produced by the sum
of 64 ring oscillator delay values. The challenge bit Ci for each of the 64 stages
determines which ring oscillator is used to compute the top delay term, and
which is used to compute the bottom delay term. The sign bit of the difference
between the two delay terms determines whether the PUF produces a ′1′ output
bit or a ′0′ output bit for the 64-bit challenge C0 · · ·C63. The remaining bits
of the difference determine the confidence level of the ′1′ or the ′0′ output bit.
The k-sum PUF can be thought of as a k-stage Arbiter PUF [11] with a real-
valued output (as opposed to a single bit output) that contains both the output
bit as well as its confidence level. This information is used by the downstream
lightweight error correction block, using the indexing scheme described in [21],
coupled with a Syndrome Distribution Shaper (to be described in Section 4) to
minimize syndrome leakage. The indexing scheme uses index sizes between 4 bits
(choosing best out of 16 output bits) and 5 bits (best out of 32). If a ′1′ bit is

3 Reducing PUF complexity is more difficult to achieve with an i.i.d. PUF output
assumption, where an increase in syndrome length requires no less than a linear
increase in the number of PUF elements.

362 M.-D. Yu et al.

to be encoded, the location of the maximum (out of 16 for a 4-bit index, and
out of 32 for a 5-bit index) is chosen and written out as the Syndrome Word;
alternatively, if a ′0′ bit is to be encoded, the location of the minimum is chosen
and written out as the Syndrome Word.

The 0.13μ ASIC implementation contains multiple banks of 64-sum PUFs, a
lightweight error correction engine (including Indexing algorithm and Syndrome
Distribution Shaping algorithm), universal hashing [10], cryptographic functions,
and various other logic. Various Xilinx FPGA versions were created as the design
evolved; the final FPGA version included all the functionality mentioned above
for the ASIC.

Fig. 1. Lightweight PUF Key Storage Block Diagram

3 Empirical Viability of Lightweight Error Correction

This section establishes the empirical viability of the lightweight error correction
scheme, which is derived from the Index-only coding approach in [21], without
the use of traditional ECC. The results in this section show a 75% reduction in
error correction implementation complexity. Yet, when the indexing parameters
are properly selected and applied in the context of the 64-sum PUF shown
in Figure 1, stable PUF bits are derived under very extreme environmental
conditions in FPGAs and ASICs.

3.1 Implementation Complexity

This section compares ECC complexity for three main classes of PUF error
correction schemes using representatives from each:

1. Lightweight (Indexing only)
2. 2-stage ECC (Indexing + BCH63)
3. Large Block ECC (BCH255)

The analysis includes both encoder and decoder complexity and does not in-
clude I/O buffering, host interface logic, and other peripheral logic. Lightweight
ECC has an implementation complexity that is estimated to be 75% smaller

Secure PUF Key Storage 363

than the two-stage scheme published in [21] (secure based on i.i.d. PUF output
assumption) and an estimated 98% smaller than the single-stage scheme pub-
lished in [18] (secure based on Dodis’ framework). The results are summarized
in Table 1 below. The SLICE utilization is minimal (1.2% of a modestly-sized
Xilinx Virtex-5 LX50 SLICE count), containing only 69 registers.

Table 1. Three Classes of PUF Error Correction and Relative Complexities

Lightweight (This work) 2-stage ECC (From [21]) Large Block (From [18])

69 registers 471 registers 6400 registers (est. 16x)

1.2% SLICE count*(99/7200) 5% SLICE count*(393/7200) 65% SLICE count*

*Utilization of a modestly-sized Xilinx Virtex-5 LX50 device as a benchmark.

3.2 Stability

This section describes the performance of the Lightweight ECC with a 64-sum
PUF. The results show that a 4-bit index is capable of achieving parts-per-
million (ppm) level performance when provisioning is performed under nominal
temperature and voltage (25◦C, Vnom), and regeneration is performed under
a fast-fast temperature-voltage corner (-55◦C, Vnom + 10%) and a slow-slow
temperature-voltage corner (125◦C, Vnom - 10%). Figure 2 shows representative
results for each corner, where a total of 1M+ error correction blocks using 4-bit
indexing ran without errors for each corner using empirical data collected from
Xilinx Virtex-5 FPGAs, with the 4-bit indexing post-processed in software using
empirical PUF data. The data illustrates that ppm level stability is feasible, and
better performance is achievable with either a larger index size (choosing best
out of > 16) or using retry mechanisms if a failure is observed [21]. The average
number of noisy bits is about 6 bits out of 63 in both cases, with the maximum
number of noisy bits (for 1M+ blocks) at 9 out of 63 bits, and every single noisy
bit was error corrected for all the cases that were run.

The empirical results also showed that under higher stress, a larger index size
was required. For example, in the context of accelerated aging (Figure 3) where
provisioning was performed at 25◦C, 1.0V and regeneration at 125◦C, 1.1V, an
increase in index size by 0.25 bit is necessary (choosing best out of 20 instead
of best out of 16) to achieve error-free performance. The analysis was performed
using empirical PUF data from a Xilinx Virtex-5 FPGA device aged under high
temperature and high voltage stress, with empirical PUF data extracted in-situ
and 4.25-bit indexing (best out of 20) emulated as a post-processing step (in
practice, this can be implemented using a 5-bit index, and choosing best out of
20 instead of best out of 32). Test parameters for accelerated aging were derived
from MIL-STD-883G Method 1005.8 Steady State Life as well as accelerated
aging parameters obtained from Xilinx. Specifically, 0.70eV activation energy
was assumed, at a confidence level of 60% (same assumptions as those used
by Xilinx). Over 80M+ blocks of PUF data were corrected, representing an
accelerated life of 260+ years at 25◦C and 20+ years at 55◦C, with every single
block error corrected using a 4.25-bit index for that entire dataset; this has an

364 M.-D. Yu et al.

Fig. 2. Lightweight ECC performance, WC Temperature / Voltage corners (4-bit
index). The right distribution in each plot is the PUF noise histogram before ECC,
and the left distribution (at 0 errors) is the histogram after lightweight ECC.

Fig. 3. Lightweight ECC performance, Accelerated Aging (4.25 bit index)

implied error rate of less than 12 parts per billion. As shown below, the average
number of bits in error prior to indexing ranges from about 8 bits to 16 bits for
a block size of 63 over 20 years at 55◦C (or equivalently 260+ years at 25◦C).
The least mean square fit shows a slight upward slope of the PUF noise over this
time. Yet with 4.25-bit indexing all the errors were corrected.

The FPGA results are consistent with results from a 0.13μ ASIC implemen-
tation (Figure 4), which has multiple 64-sum PUFs as well as the lightweight
encoding / decoding algorithm integrated into a single device. The results in
Figure 4 show that under extreme voltage conditions, 4-bit indexing (best out
of 16) results in a 2.5ppm block failure rate, whereas 5-bit indexing (best out
of 32) results in error-free performance. The integrated ASIC device (unlike the
FPGA results above which emulated the indexing with empirical PUF data as a
post-processing step to help algorithmic derivation) does not allow for fractional
index sizes.

Secure PUF Key Storage 365

Fig. 4. 0.13μ ASIC with PUF + Lightweight ECC, Extreme Voltage performance.
The right distribution in each plot is the PUF noise histogram before ECC, and the
left distribution (near 0 errors) is the histogram after lightweight ECC.

4 Secure Constructions

The previous section demonstrated the empirical viability of a PUF + lightweight
ECC combination. This section derives several Secure Constructions consisting
of lightweight ECC and one or more 64-sum PUF blocks in the context of de-
riving a 128-bit key.4 By adopting a machine-learning-based security argument
instead of an i.i.d. PUF output argument, the number of ring oscillator pairs is
reduced from 2520 to 640 (Secure Construction #1) or as little as 128 (Secure
Construction #4). The PUF complexity reduction resulting from the machine-
learning-based security argument is a result of the fact that each additional
syndrome bit does not require a linear increase in the number of ring oscilla-
tors but instead relies on what cannot be learned about a challengeable physical
system.

4.1 Unlearnable Bits

To determine what cannot be learned from a k-sum PUF, consider what is
required to learn the delay differences of each pair of oscillators. A machine-
learning-equipped adversary using a physical model of the PUF for learning
starts with a model consisting of k parameters. The adversary also needs access
to challenge/response pairs, for example, pairs consisting of k-bit challenges and
1-bit responses. Ruhrmair et al. in [14] derived an empirical equation relating
the number of challenge/response (C/R) pairs NCRP , number of parameters k,
and the classification error rate ε as follows:

NCRP ≈ 0.5
k + 1

ε
4 If additional key bits are required, then the entropy has to be increased, e.g., by

doubling the number of 64-sum PUFs used for a 256-bit key.

366 M.-D. Yu et al.

The equation was derived using the best of results obtained from using Support
Vector Machine (SVM), Logistical Regression (LR), and Evolution Strategy (ES)
algorithms corresponding to an Arbiter delay PUF [11], including the case where
k = 64. (While our PUF is not an Arbiter PUF per se, it has a very similar
structure.) According to the equation, if k C/R pairs are known to the adversary
for a k-parameter PUF, the adversary cannot do much better than guessing since
the error rate ε = 0.5. Intuitively, the results make sense; a k-parameter PUF
would have at least k or more bits worth of parameter information (if each
parameter is 1-bit, there would be k bits of information, and the parameter size
likely needs to be a few bits for the machine learning to converge). As a result,
if no more than k C/R pairs (each response is a single bit) are given out, no
more than k bits of information are derived, and therefore the machine learning
algorithm cannot infer much information.

4.2 Leaked Bits (LB)

We analyze several PUF Syndrome Coding algorithms, and describe their behav-
ior with respect to Leaked Bits, the number of bits leaked per Syndrome Word
for a particular Syndrome Coding algorithm, as defined below.

LB(Salg) ≡ I(Salg; M∞) = H(Salg) − H(Salg|M∞)5

where,

– Salg is a random variable representing the Syndrome Word. Its variability
comes from a particular syndrome coding algorithm used, denoted by the
superscript alg.

– M∞ is a random variable representing a PUF model that is perfect in pre-
dicting the PUF output bits (superscript ∞ denotes its perfect predicting
ability). Its variability comes from PUF manufacturing variations.

– H is the Shannon entropy measure [2]

H(X) = −
∑

x

p(x) log2 p(x)

X is a random variable with a probability mass function p(x), and the sum-
mation is taken over x over its entire alphabet

– I is the mutual information measure [2]

I(Y ; X) = H(Y) − H(Y |X)

where H(Y |X) = −∑
x

p(x)
∑
y

p(y|x) log2 p(y|x). Note: I(Y ; X) = I(X ; Y).

Mutual information I computes the amount of information shared between two
random variables. For example, in a cryptographic encryption system, the amount
of information shared between the Ciphertext (denoted CT) and Key (i.e., infor-
mation leaked by the Ciphertext about the Key from an information-theoretic
standpoint) is

Secure PUF Key Storage 367

I(CT alg; Key) = I(Key; CT alg) = H(Key) − H(Key|CT alg).

To determine the amount of information leaked by a Syndrome Word about the
PUF, we use the same concept, and call the result Leaked Bits, as defined above.

We now describe several syndrome coding algorithms that have been published
in open literature, and analyze their information leakage with respect to Leaked
Bits. We also analyze the use of a new technique called Syndrome Distribution
Shaping to reduce Leaked Bits while preserving the average error correction
power.

Code-Offset. In the Code-offset Method [4], the syndrome bits generated cor-
respond to the XOR mask for a sequence of PUF output bits required to form a
valid error correction code codeword. Consider a simple example of a binary 3x
repetition code. Let the random variable B be a bit we want to store in a PUF.6

Let the random variable O represent a sequence of PUF output bits correspond-
ing to the error correction word size (3-bits in the 3x repetition coding example).
Let the random variable S represent the corresponding Syndrome Word (3-bits
in the 3x repetition coding example). The valid code words are (000) and (111).
If we want to store a bit B = 0, the valid code word (000) is used. Alternatively,
if we want to store a bit B = 1, the valid code word (111) is used. To generate
the syndrome, three PUF output bits O = o0o1o2 are required. The syndrome
S using Code-Offset is the XOR mask required to make the PUF output bits
O = o0o1o2 a valid code word, i.e., S = C ∧ O, where ∧ is the bitwise XOR
operator.

Now, let’s compute Leaked Bits using this example. In the 3x repetition exam-
ple above, H(S3x) = log2(#(S3x)) = 3 bits, where # operator is the cardinality
of the random variable, or the number of possibilities that the random variable
can take. This is the amount of uncertainty of the 3-bit syndrome not conditioned
on any other knowledge. Recall that M∞ represents a perfect PUF model in that
it has perfect knowledge in predicting PUF output bit O. Given a perfect PUF
model, the uncertainty remaining in S reduces to the uncertainty as to whether
the valid code word is (000) or (111). That is, H(S3x|M∞) = log2(#(B)) = 1
bit. Putting it together:

LB(S3x) ≡ I(S3x; M∞) = H(S3x) − H(S3x|M∞)
= log2(#(S3x)) − log2(#(B)) = 3 − 1 = 2 bits.

Two bits of information are leaked for each Syndrome Word derived from a 3x
repetition codeword.

6 Here, we consider the case where the PUF is used as a generalized key-store: the
keying bit B can come from a source external to the PUF chip (e.g., user chosen
key), or it can be derived from a PUF on the same chip.

368 M.-D. Yu et al.

Index-Based Syndrome (IBS) Coding. In Index-Based Syndrome coding
[21], the Syndrome Word is an index lookup into a sequence of PUF output bits.
Consider a simple example of a syndrome index with a width of 3 (i.e., W = 3,
or a 3-bit index). H(S3i) = log2(#(S3i)) = 3 bits. The 3-bit index takes on
the value of the best out of #(S3i) = 8 choices, requiring 8 PUF output bits
O = o0o1o2o3o4o5o6o7. If we want to store B = 0, S3i = arg(minj∈0,1,···,J−1(or

j)),
where J = 2W=3. (Superscript r of or denotes the real-valued output of the
PUF, not just the binary ′1′ or ′0′ portion of the PUF output.) If we want
to store B = 1, S3i = arg(maxj∈0,1,···,J−1(or

j)). Now consider M∞, which a
perfect PUF model that predicts O = o0o1o2o3o4o5o6o7 with perfect accuracy.
Given a perfect PUF model, the uncertainty remaining in S reduces to the
uncertainty as to whether the maximum or the minimum value is picked. That
is, H(S3i|M∞) = log2(#(B)) = 1 bit. The amount of information leaked by S3i

about M∞ is the Leaked Bits for S3i:

LB(S3i) ≡ I(S3i; M∞) = H(S3i) − H(S3i|M∞)
= log2(#(S3i)) − log2(#(B)) = 3 − 1 = 2 bits.

Two bits of information are leaked for each 3-bit index.7

Syndrome Distribution Shaping (SDS). Now, we present a new technique
where we shape the syndrome distribution to minimize Leaked Bits while pre-
serving, on average, error correction power. In its simplest form, the main idea
is to enlarge the number of bits generated by O and to randomly select which
of those bits would be used in forming a Syndrome Word and which would not
be. As an example, visualize a case with a 3-bit Index-Based Syndrome. Let
us order or

0o
r
1o

r
2o

r
3o

r
4o

r
5o

r
6o

r
7 from minimum to maximum, as tr0t

r
1t

r
2t

r
3t

r
4t

r
5t

r
6t

r
7 =

π(or
0o

r
1o

r
2o

r
3o

r
4o

r
5o

r
6o

r
7), where π is a minimum-to-maximum sorting permutation.

Here, tr0 is the smallest or
j,jε0...J−1 value, tr1 is the next smallest or

j,jε0...J−1 value,
tr7 is the largest or

j,j∈0...J−1 value. If there is equality in any of the comparisons,
a random ordering among those is chosen.

Now, look at the unconditional probability of a particular 3-bit index value
being selected. If we have no knowledge of the model or anything else, the prob-
ability of any index being selected is 1/8, i.e., H(S3i) = 3 bits.

pr(or
0 selected) = 1/#(S3i) = 1/8

· · ·
pr(or

7 selected) = 1/#(S3i) = 1/8

Now, look at the probabilities conditioned upon M∞, a perfect model, which
allows us to sort the PUF output bits tr0t

r
1t

r
2t

r
3t

r
4t

r
5t

r
6t

r
7 = π(or

0o
r
1o

r
2o

r
3o

r
4o

r
5o

r
6o

r
7)

and obtain:

pr(tr0 selected) = 1/#(B) = 1/2
7 We are not making the assumption that PUF output bits are i.i.d., as in [21], under

which the indices are provably secure.

Secure PUF Key Storage 369

pr(tr1 selected) = 0
· · ·

pr(tr6 selected) = 0
pr(tr7 selected) = 1/#(B) = 1/2

Here, H(S3i|M∞) = 1 bit; either or
j,jε0...J−1 = tr0 or or

j,j∈0...J−1 = tr7 will be
selected, depending on whether B = 0 or B = 1. Now, we want a randomization
mapping that flattens the probability distribution while on the average preserv-
ing the error correction power. In the example above, a 3-bit index is used to
choose the best PUF output value out of 8 choices. The distribution peaks on
the ends: either the maximum or the minimum value will be selected. To flatten
the distribution, one possibility is to use a 4-bit index, and randomly clobber or
skip over half of the 16 choices such that the 4-bit index still chooses the best
out of 8 values (same as the 3-bit index case).

This distribution will not peak at the ends (and be zero elsewhere), as is
the case for a 3-bit index, but will be flatter (i.e., more uniformly distributed).
More generally, consider an independent bit generator with output R where
pr(R = 1) = p and pr(R = 0) = 1−p = q. Now, consider a 4-bit index (W = 4),
where each of the 16 values (J = 2W = 16) have a probability of p of being
clobbered (i.e., skipped or not used). On the average, if p = 0.5, 8 values out of
16 will not be clobbered, and the maximum or the minimum out of 8 will still
be selected, thus giving on the average a similar error correction power as the
3-bit index case (which also selects the maximum or minimum out of 8). More
generally,

pr(tjε0...J−1 selected) = 1/2(pjq + pJ−1−jq)
pr(none selected) = pJ

Assume in this example that if all values are clobbered we randomly choose a
value. Practically, this distinction does not make a difference in this example,
since the probability is very small:

pr(tjε0...J−1 selected) = 1/2(pjq + pJ−1−jq) + pJ/J

Here, the amount of uncertainty remaining when applying Syndrome Distribu-
tion Shaping (SDS) given a perfect PUF model is:

H(S|M∞) = H(pr(tj∈0...J−1 selected))

Now, compute the Leaked Bits of 4-bit SDS index:

LB(SW=4,p=.5) = I(SW=4,p=.5; M∞)
= H(SW=4,p=.5) − H(SW=4,p=.5|M∞)
= log2(#(SW=4,p=.5)) − H(pr(tj∈0..J−1 selected))
= 4 − 2.98 = 1.02 bits

370 M.-D. Yu et al.

Note that a W = 4-bit SDS index with a clobbering rate of 0.5 has a similar
average error correction capability as a W = 3-bit index-based syndrome (i.e.,
both, on the average, select the strongest out of 8), and yet the Leaked Bits
has been reduced by 50%, from 2 bits to 1.02 bits. By expanding the number
of PUF output bits O and randomly eliminating them so that on the average
we select the index from the same number of choices (i.e., preserving on average
the same error correction power), we have lowered the number of bits leaked
via each Syndrome Word from 2 bits to about 1 bit. Moving on to W = 5-bit
syndrome, and p = 0.75, to preserve on the average the same error correction
power, and beyond we have the following results:

I(S3i, M∞) = 2 bits

I(SW=4,p=1/2, M∞) = 1.02 bits

I(SW=5,p=3/4, M∞) = 0.80 bits

I(SW=6,p=7/8, M∞) = 0.71 bits

I(SW=7,p=15/16, M∞) = 0.67 bits

Note that between W = 3 and W = 6 there is almost a 3x improvement. Be-
yond W = 6 there are diminishing returns. Alternative SDS algorithms include
ones that yield an even lower Leaked Bits, while others guarantee a certain min-
imum number of un-clobbered choices available by using only one side of the
un-clobbered binomial distribution.

4.3 Secure Construction Examples

Now, armed with a metric (LB) to determine the number of bits leaked from
each Syndrome Word, we describe different methodologies to derive secure con-
structions using the 64-sum PUF as a building block. The methodology requires
an assumption describing the relationship between the classification error ε and
Leaked Bits (and more precisely, a Leaked Bits sum ΣLB). In other words, we
are establishing secure constructions assuming an (ε, ΣLB) machine-learning-
equipped adversary. This adversary cannot produce a classification error better
than ε given that a total leaked bits of ΣLB. For the numerical examples be-
low, we use the machine learning results in [14] as a proxy for the relationship
between classification error and a sum of Leaked Bits;8 this use has been prelim-
inarily affirmed by the authors of this work using SVM and Simulated Annealing
methods, and shall be further developed as future work.

8 Formally, Leaked Bits for raw PUF responses can be computed using a null Syndrome

notation: LB(Snull) ≡ I(Snull; M∞) = H(Snull) − H(Snull|M∞) = 1 − 0 = 1 bit,

since the unconditional entropy of Snull (raw PUF response bit) is H(Snull) = 1

bit, and when conditioned with a perfect PUF model, Snull is completely known,

i.e., H(Snull|M∞) = 0 bit. As such, each bit leaked in the context of Leaked Bits
(as defined) can also be interpreted as a leak of one equation for the PUF system
with a 1-bit outcome.

Secure PUF Key Storage 371

Secure Construction #1: ΣLB well within ε = 0.5. In this construction, we
conservatively operate well within the regime of ε = 0.5. Using the machine
learning results in [14], we can choose to operate at a point where the Leaked
Bits sum is no more than half the number of parameters in the PUF.

ΣLB ≈ 1
2
0.5

k + 1
ε

∣
∣
∣
∣
ε=0.5,k=64

= 32.5 bits per 64-sum PUF

As an example, using a 6-bit index with a clobber rate of 5/8, the average error
correction power is between 4 and 5-bit index (best out of 64 x 3/8 = 24 bits on
the average). The LB is:

LB = I(SW=6,p=5/8, M∞) = 2.45 bits per Syndrome Word

With k = 64 sum stages, we allow ΣLB = k/2 = 32 bits to be leaked per PUF;
this translates to the use of 32 / 2.45 = 13 SDS indices. To generate a 128-bit key,
we need ten (128/13) 64-sum PUFs, using 640 delay parameters to keep secret
128-bits worth of information (PUF complexity = 640/128 = 5). It is likely a safe
assumption that if less than k/2 equations are leaked from a k parameter PUF,
a machine-learning-equipped adversary cannot learn much about the PUF since
there remain k/2 degrees of freedom. This construction is formally equivalent to
security obtained using an i.i.d. PUF output assumption, with a 2x margin on
the certainty of ε = 0.5.

Secure Construction #2: ΣLB at ε = 0.5 boundary. We remove the 2x margin
on the certainty of ε = 0.5, thus requiring half the number of PUFs. This con-
struction is formally equivalent to security obtained using an i.i.d. PUF output
assumption.

Secure Construction #3: Challenge Modification on Block Boundary. Here,
we operate across multiple blocks in the range where ε ≤ 0.5, and compute the
average min-entropy to account for cases where ε �= 0.5. Continuing the example
from above, the first block of 26 SDS indices leaks 64 bits worth of information,
but ε = 0.5. Now, let’s assume that the results of the first block (consisting of
26 data bits) are used to modify the challenge bits for the second block; that is,
we use a Challenge Modification Schedule at the block boundary so that the 26
Syndrome indices for the second block cannot be used by the machine learning
algorithm unless the first 26 bits are guessed or estimated correctly. The machine
learning algorithm requires input / output sets, i.e., Challenge/Syndrome sets
in our case, in order to train the delay parameters and the Challenges are known
for the second block 0.526 of the time. Now, let’s compute average min-entropy
of this chained scheme given that after the first block ε �= 0.5.

First, we recall the definition of min-entropy H∞(.) ≡ − log2(Prmax(.)) and
average min-entropy H̃∞(X|Y) ≡ − log2(Ey←Y [2−H∞(X|Y =y)]) using the defi-
nitions and notation from [4].

In our context: H̃∞(P |CS) ≡ − log2(Ecs←CS [2−H∞(P |CS=cs)]) where P is a
random variable predicting all #(P) PUF-derived bits, and CS = cs a subset of
the available Challenge/Syndrome sets used for regenerating P . The subset is

372 M.-D. Yu et al.

based on the number of Challenge/Syndrome sets that is known to the adversary
at any one time as the result of the Challenge Modification Schedule.

Now let’s consider the case where two blocks are generated using a 64-sum
PUF, with syndrome modification at the block boundary. There is γ = 0.5#(P)/2

probability that the syndrome for the second block is useful; this is for the case
where the 26 bits of the first block are guessed or estimated correctly.

H̃∞(P |CS) ≡ − log2(Ecs←CS [2−H∞(P |CS=cs)])

= − log2{[(1 − γ)max(ε, 1 − ε)#(P)]|ε=0.5,#(P)=52,γ=0.526

+ [γ max(ε, 1 − ε)#(P)]|ε=0.25,#(P)=52,γ=0.526} = 47.51 bits

The number of PUFs required is reduced to three (128 / 47.51) for 128-bit secret
(PUF complexity = 3 x 64 / 128 = 1.5), if we assume that the machine learning
result in [14] is a good proxy in estimating ε.

Secure Construction #4: Challenge Modification on Syndrome Word Bound-
ary. Here, the challenge schedule is deviated once per Syndrome Word (e.g.,
index) vs. once per block. Due to space constraints, the derivation is omitted.
Results for different number of blocks extracted per 64-sum PUF are below:

– 1 Block: H̃∞(P |CS)|#(P)=26 = 26 bits
– 2 Blocks: H̃∞(P |CS)|#(P)=52 = 52 bits
– 3 Blocks: H̃∞(P |CS)|#(P)=78 = 70 bits

Two PUFs (128/70) are required for a 128-bit secret (PUF complexity = 1).

5 Conclusions

A PUF-based key storage is built using a lightweight ECC, without the use of
traditional error correction techniques, and one or more 64-sum PUFs. The ECC
complexity is low, with a register count of 69 for the encoder / decoder core, yet
producing robust environmental stability results on FPGAs and ASICs. To our
knowledge, this is the first time an integrated key generator ASIC implementa-
tion has been evaluated. We presented a new security argument that relies on
what cannot be learned from a machine learning perspective, allowing a large
reduction in PUF complexity. Future work includes further validation and re-
finements of the machine learning results in [14], applying the machine learning
security method to XOR’ed PUFs (that are more difficult to learn), and methods
to de-rate the ε vs. leaked bits curve to account for side channel leaks.

References

1. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient Helper
Data Key Extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

2. Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. (2006)

Secure PUF Key Storage 373

3. Devadas, S., Suh, E., Paral, S., Sowell, R., Ziola, T., Khandelwal, V.: Design and
Implementation of PUF-Based ’Unclonable’ RFID ICs for Anti-Counterfeiting and
Security Applications. In: Proc. RFID 2008, pp. 58–64 (May 2008)

4. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data (2008)

5. Gassend, B.: Physical Random Functions, Master’s Thesis, EECS, MIT (2003)
6. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon Physical Random Func-

tions. In: Proc. ACM CCS, pp. 148–160. ACM Press, New York (2002)
7. Guajardo, J., Kumar, S., Schrijen, G., Tuyls, P.: FPGA intrinsic pUFs and their

use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

8. Holcomb, D., Burleson, W., Fu, K.: Initial SRAM State as a Fingerprint and Source
of True Random Numbers for RFID Tags. In: Conf. RFID Security (2007)

9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

11. Lim, D.: Extracting Secret Keys from Integrated Circuits, MS Thesis, MIT (2004)
12. Maes, R., Tuyls, P., Verbauwhede, I.: A Soft Decision Helper Data Algorithm for

SRAM PUFs. In: IEEE ISIT 2009. IEEE Press, Los Alamitos (2009)
13. Ruhrmair, U.: On the Foundations of Physical Unclonable Functions (2009)
14. Ruhrmair, U., Sehnke, F., Solter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-

eling Attacks on Physical Unclonable Functions. In: Proc. ACM CCS (October
2010)

15. Sehnke, F., Osendorfer, C., Sölter, J., Schmidhuber, J., Rührmair, U.: Policy gra-
dients for cryptanalysis. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN
2010. LNCS, vol. 6354, pp. 168–177. Springer, Heidelberg (2010)

16. Skorobogatov, S.P.: Semi-Invasive Attacks: A New Approach to Hardware Security
Analysis. Univ. Cambridge, Computer Lab.: Tech. Report (April 2005)

17. Su, Y., Holleman, J., Otis, B.: A 1.6pJ/bit 96 (percent) Stable Chip ID Generating
Circuit Using Process Variations. In: ISSCC 2007, pp. 200–201 (2007)

18. Suh, G.: AEGIS: A Single-Chip Secure Processor, PhD thesis, EECS, MIT (2005)
19. Suh, G., Devadas, S.: Physical Unclonable Functions for Device Authentication

and Secret Key Generation. In: DAC 2007, pp. 9–14 (2007)
20. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Prob. and its App. (1971)
21. Yu, M., Devadas, S.: Secure and Robust Error Correction for Physical Unclonable

Functions. IEEE D&T 27(1), 48–65 (2010)

Recyclable PUFs: Logically Reconfigurable PUFs

Stefan Katzenbeisser1, Ünal Koçabas1, Vincent van der Leest2,
Ahmad-Reza Sadeghi3, Geert-Jan Schrijen2, Heike Schröder1,

and Christian Wachsmann1

1 Technische Universität Darmstadt (CASED), Germany
{katzenbeisser,busch}@seceng.informatik.tu-darmstadt.de,

{unal.kocabas,christian.wachsmann}@trust.cased.de
2 Intrinsic-ID, Eindhoven, The Netherlands

{vincent.van.der.leest,geert.jan.schrijen}@intrinsic-id.com
3 Technische Universität Darmstadt and Fraunhofer SIT Darmstadt, Germany

ahmad.sadeghi@trust.cased.de

Abstract. We introduce the concept of Logically Reconfigurable
Physical Unclonable Functions (LR-PUFs). In contrast to classical Physi-
cally Unclonable Functions (PUFs) LR-PUFs can be dynamically ‘recon-
figured’ after deployment such that their challenge/response behavior
changes in a random manner. To this end, we amend a conventional
PUF with a stateful control logic that transforms challenges and re-
sponses of the PUF. We present and evaluate two different constructions
for LR-PUFs that are simple, efficient and can easily be implemented.
Moreover, we introduce a formal security model for LR-PUFs and prove
that both constructions are secure under reasonable assumptions. Fi-
nally, we demonstrate that LR-PUFs enable the construction of securely
recyclable access tokens, such as electronic tickets: LR-PUFs enhance
security against manipulation and forgery, while reconfiguration allows
secure re-use of tokens for subsequent transactions.

1 Introduction

In the last decades we are witnessing a rapid development and enhancement as
well as an evolution of information technologies: On the one hand, computing
and communication devices tend to become increasingly smaller and physically
highly integrated. On the other hand, the growing usage and interconnection of
millions of devices processing sensitive information raises many new trust and
security challenges. Hence enabling technologies that can uniquely identify an
(embedded) device and use the corresponding identity as a trust anchor in higher
level security architectures are highly desirable. Although modern cryptography
provides many useful tools for authentication and secure channels, it cannot
guarantee the device’s integrity, in particular in presence of hardware attacks.

In this context, Physically Unclonable Functions (PUFs) seem to be promis-
ing primitives that aim to exploit (random) physical variations to extract unique
features of the underlying hardware to uniquely identify a device. The assumed
properties of PUFs such as unclonability, unpredictability and tamper-evidence

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 374–389, 2011.
c© International Association for Cryptologic Research 2011

Recyclable PUFs: Logically Reconfigurable PUFs 375

make them very appealing for deployment in cryptographic applications. Since
their introduction by Pappu [38,39], PUFs have been proposed for secure gener-
ation and storage of strong cryptographic keys (see, e.g., [52,26]), and for emerg-
ing hardware-entangled cryptography [3], where the security of the cryptographic
scheme is based on the physical properties of PUFs instead of mathematical prob-
lems. Moreover, today, there are already PUF-based security products aimed for
the market (e.g., RFID, IP-protection, anti-counterfeiting solutions) [51,16].

So far, most existing PUFs exhibit a static behavior while a variety of ap-
plications greatly benefits from the availability of PUFs whose characteristics
can be changed dynamically, i.e., reconfigured, after deployment: For instance,
PUF-based key storage [52,26] and PUF-based cryptographic primitives [3] may
require that previous secrets derived from the PUF cannot be retrieved any more.
Another example are solutions to prevent downgrading of software [20] by bind-
ing the software to a certain hardware configuration, e.g., a PUF, which require
the PUF behavior to be irreversibly altered upon installation of a software up-
date. Moreover, when PUF-based wireless access tokens1 (e.g., [40,49,37,42,51])
are re-used/recycled, the new users of the token shall not be able to retrieve ac-
cess rights and/or to obtain privacy-sensitive information of the previous users
of the token (see, e.g., [53,17,4]).

Unfortunately, all known implementations of physically reconfigurable PUFs
rely on optical mechanisms, reconfigurable hardware (i.e., FPGAs), or novel
memory technologies [20], which all have serious drawbacks in practice. In par-
ticular, optical PUFs cannot easily be integrated into integrated circuits and
require expensive and error-prone evaluation equipment while FPGA-based so-
lutions cannot be realized with non-reconfigurable hardware (e.g., ASICs) that
is commonly used in practice [29].

Our goal and contributions. In this paper, we propose Logically Reconfigurable
PUFs (LR-PUFs), an alternative construction to physically reconfigurable PUFs.
LR-PUFs augment a physical PUF with a stateful control logic that changes the
challenge/response behavior of the LR-PUF according to its internal state.2 In
particular, our contributions are as follows:

– New constructions: We propose two different constructions for logically re-
configurable PUFs (LR-PUFs). Our performance measurements show that
the implementation overhead of the logical reconfiguration on top of a phys-
ical PUF is rather small.

– Security model: We introduce a formal security model for LR-PUFs and prove
that both of our constructions are secure. More precisely, we show that, when
instantiated by an appropriate physical PUF under reasonable assumptions,

1 PUFs provide a lightweight and cost-effective solution to the problem of detecting
counterfeit or cloned access tokens (e.g., RFID-based electronic tickets) by crypto-
graphically binding a user’s access rights to the physical characteristics of the token.

2 A similar concept has been independently proposed by Lao et al. [22]. However, they
do not provide a (formal) security model and do not discuss the adversary model
and assumptions underlying their constructions.

376 S. Katzenbeisser et al.

our LR-PUFs can achieve both forward- and backward-unpredictability: The
former assures that responses measured before the reconfiguration event are
invalid thereafter, while the latter assures that an adversary with access to a
reconfigured PUF cannot estimate the PUF behavior before reconfiguration.

– Applications: We demonstrate how LR-PUFs could be deployed for re-usable
(recyclable) access tokens, such as electronic transit tickets, and discuss other
envisaged applications of LR-PUFs.

Note that, although the constructions of LR-PUFs as proposed in this paper
seem to be similar to Controlled PUFs [11], LR-PUFs and Controlled PUFs
have very different objectives: In contrast to Controlled PUFs, LR-PUFs do
not aim to prevent modeling attacks on PUFs but provide a practical way to
enable reconfigurability for existing, typically static PUF constructions. We will
elaborate on this aspect in Section 3.

Outline. The rest of the paper is structured as follows: After providing back-
ground information on Physically Unclonable Functions (PUFs) in Section 2, we
present the concept of Logically Reconfigurable PUFs (LR-PUFs) in Section 3.
We show two concrete LR-PUF constructions in Section 4, describe their im-
plementation and evaluate their performance in Section 5, and formally prove
their security in Section 6. In Section 7, we show how LR-PUFs could be used
to realize recyclable access tokens and discuss several other potential use cases
of LR-PUFs. Finally, we conclude in Section 8.

2 Background: Physically Unclonable Functions (PUFs)

A Physically Unclonable Function (PUF) is a noisy function that is embedded
into a physical object, e.g., an integrated circuit [39,2]. When queried with a
challenge w, a PUF generates a response y ← PUF(w) that depends on both
w and the unique device-specific intrinsic physical properties of the object con-
taining PUF(). Since PUFs are subject to noise (e.g., environmental variations),
they return slightly different responses when queried with the same challenge
multiple times.

In literature, PUFs are typically assumed to be robust, physically unclon-
able, unpredictable and tamper-evident, and several approaches to heuristically
quantify and formally define their properties have been proposed (see [2] for a
comprehensive overview). Robustness means that, when queried with the same
challenge multiple times, the same PUF will always return the same response.
Physical unclonability means that it is infeasible to produce two PUFs that can-
not be distinguished based on their challenge/response behavior, which cannot
be achieved by (cryptographic) algorithms. Unpredictability requires that it is
infeasible to predict the PUF response to a given unknown challenge, even if the
PUF can be adaptively queried for a certain number of times. Since this is the
most interesting property for cryptographic applications of PUFs [2], we will for-
mally define unpredictability later, when we prove the security of our LR-PUF
constructions. Tamper-evidence means that any attempt to physically access the

Recyclable PUFs: Logically Reconfigurable PUFs 377

PUF irreversibly changes its challenge/response behavior. This is an important
issue for practical deployment since it allows the detection of invasive hardware
attacks, to which embedded devices are typically exposed to in practice.

A broad variety of different PUF constructions exists (see [29] for an overview).
The most appealing ones for integration into electronic circuits are electronic
PUFs. The most prominent examples of electrical PUFs include delay-based
PUFs that exploit race conditions (arbiter PUFs [23,37,27]) and frequency vari-
ations (ring oscillator PUFs [12,48,30]) that can be found in integrated circuits;
memory-based PUFs that are based on the instability of volatile memory cells
like SRAM [14,15], flip-flops [28,24] and latches [47,19]; and coating PUFs [50],
which are based on the capacitance caused by a special dielectric coating applied
to the chip that houses the PUF.

Note that the amount of unique responses of a memory-based PUF is lim-
ited by the number of its memory cells. Moreover, it has been shown that most
delay-based PUFs are subject to model building attacks that allow simulating
the PUF in software (see, e.g., [23,37,27,41]). To counter this problem, additional
primitives must be used: Controlled PUFs [11] use cryptography in hardware to
hide the actual response of the underlying PUF, which prevents model building
attacks. However, this requires the link between the PUF and the crypto com-
ponent as well as the crypto component itself to be protected against invasive
and/or side channel attacks.

3 Logically Reconfigurable PUFs

A logically reconfigurable PUF (LR-PUF) is a PUF whose challenge/response
behavior depends on both the physical properties of the PUF and the logical state
maintained by a control logic, as shown in Figure 1(a). The challenge/response
behavior of the LR-PUF can be dynamically changed after it has been deployed
by updating its state.

3.1 System Model

An LR-PUF combines a conventional physically unclonable function PUF() and
a control logic circuit. As shown in Figure 1(b), the control logic maintains a
S, which is stored in non-volatile memory, provides an algorithm queryS() for
querying, and rcnf() for reconfiguring the LR-PUF. The algorithm queryS()
consists of an input transformation function mapinS() and an output trans-
formation function mapoutS(): queryS(x) computes w ← mapinS(c), evaluates
y ← PUF(w), and returns r ← mapoutS(y). The algorithm implementing rcnf()
reconfigures the LR-PUF by changing the current state S to a new independent
state S′ ← rcnf().

Note that the generic LR-PUF construction depicted in Figure 1(b) can be
seen as a generalization of controlled PUFs [11]. Controlled PUFs aim to hide
the challenge/response behavior of the underlying PUF to the adversary to pre-
vent model building attacks [11,41] by applying an appropriate mapin() and/or

378 S. Katzenbeisser et al.

Control
Logic

(State S)

PUF

Input

Reconfigure

Output

Challenge Response

(a) LR-PUF concept

Reconfiguration
Algorithm rcnf()

(State S)

Input Transformation
mapinS(·)

Output Transformation
mapoutS(·)

Physically Unclonable
Function PUF(·)

Control Logic

rcnf()

queryS(c) r

Challenge w Response y

State S

(b) Generic LR-PUF construction

Fig. 1. Logically Reconfigurable PUFs: Concept and generic construction

mapout() function. In contrast, LR-PUFs aim to enable reconfigurability for con-
ventional non-reconfigurable PUFs after they have been deployed by entangling
an updatable state with the challenges and/or responses of the underlying PUF.

3.2 Assumptions and Adversary Model

We assume that the underlying PUF is physically unclonable and unpredictable
(see Section 2). The algorithms mapin(), mapout(), and rcnf() are publicly
known. Moreover, the adversary A is assumed to know the current and all
previous states S of the LR-PUF, e.g., by performing hardware attacks like
side-channel or invasive attacks. However, we assume that A cannot force the
control logic to set the LR-PUF state to a specific value, i.e., A cannot change
the state S of the LR-PUF to a value of its choice (e.g., an old LR-PUF state).

For this, it must be assured that (1) rcnf() cannot be manipulated such
that it generates predictable states, and that (2) the non-volatile memory cells
storing the LR-PUF state cannot be set to specific values (e.g., by hardware
attacks). The first requirement can be achieved by implementing the reconfigu-
ration function using a fault injection aware design at a reasonable performance

Recyclable PUFs: Logically Reconfigurable PUFs 379

penalty [31,1]. Moreover, although fault injection attacks against non-volatile
memory (e.g., EEPROM or Flash) have been shown [44], it seems to be difficult
in practice to perform invasive attacks that change the content of specific non-
volatile memory cells without affecting the content of the surrounding cells [45].
Hence, in practice it should be infeasible for an adversary to write a specific value
(e.g., an old LR-PUF state) into the non-volatile memory of the LR-PUF. In
particular, due to the increasing complexity of modern embedded systems and
the fact that technology nodes are progressively getting smaller, the amount
of precision and the quality of the equipment required to successfully perform
such attacks renders them uneconomical in most practical applications (e.g.,
electronic ticketing).

3.3 Security Objectives

As pointed out in Section 2, physical unclonability and unpredictability are fun-
damental security requirements for PUF-based applications. Ideally, an LR-PUF
should resemble a physically reconfigurable PUF. This implies that it should be
infeasible for an adversary A to predict the response to a challenge of an LR-
PUF for some state, even if A knows the responses to this challenge of the same
LR-PUF but for other (e.g., old) states. Here, we must distinguish between the
case where A aims to predict the responses of the LR-PUF for the current state
(e.g., to forge a PUF response in an authentication protocol) or for a previous
LR-PUF state (e.g., to recover an old key bound to the previous LR-PUF state).
Moreover, in most applications of reconfigurable PUFs, it must be infeasible to
set the state of the LR-PUF to a specific value, which would allow resetting the
LR-PUF to a previous state and may help the adversary to predict LR-PUF
responses. We first informally summarize the security requirements of LR-PUFs
below and later give formal definitions and proofs for two different LR-PUF
constructions in Section 6.

– Backward unpredictability: The adversary A cannot predict the response
of the LR-PUF for a previous state S (i.e., before reconfiguration) to a
challenge that has not been queried for the previous state, even if A knows
an adaptively chosen set of challenge/response pairs of the LR-PUF for the
previous state and can adaptively obtain challenge/response pairs of the
LR-PUF for the current state.

– Forward unpredictability: The adversary A cannot predict the response of
an LR-PUF for the current state S to a challenge that has not yet been
queried for the current state, even if A knows an adaptively chosen set
of challenge/response pairs of the LR-PUF for the previous state and can
adaptively obtain challenge/response pairs of the LR-PUF for the current
state (except for the challenge in question).

– Non-resettability: The adversary cannot set the state of the LR-PUF to a
specific value.

380 S. Katzenbeisser et al.

Alg. 1 Speed-optimized LR-PUF
queryS(c)

w ← Hash(S‖c)
y ← PUF(w)

rcnf()

S ← Hash(S)

r ← y

// mapinS(c)

// mapoutS(y)

Return r

Alg. 2 Area-optimized LR-PUF
queryS(c)

rcnf()

S ← Hash(S)

// mapoutS(y)

Return r

wj ← Hash(S‖c‖j)
for j = 0 to n do

yj ← PUF(wj)

r ← (y0‖ . . . ‖yn)
endfor

// mapinS(c)

// mapinS(c)

4 Constructions

In this section, we present two instantiations of our generic LR-PUF construction
described in Section 3. The first construction is optimized for the fast genera-
tion of responses, while the second construction aims for the area constraints
of low-cost devices (e.g., RFID chips) and provides a tradeoff between response
generation time and the amount of area required.

4.1 Speed-Optimized LR-PUF Construction

Our first construction uses a PUF with a large challenge and a large response
space and implements the control logic based on a single collision-resistant hash
function. The challenge space must be large since otherwise it may be possible to
create a complete challenge/response pair (CRP) database, which allows simu-
lating the PUF. A large response space is a fundamental security requirement in
many applications such as PUF-based identification/authentication [52,26] and
hardware-entangled cryptography [3], where it is crucial that the PUF response
to a formerly unknown challenge can be guessed with negligible probability only.

Our first construction is specified in Algorithm 1 and works as follows: When
challenged with queryS(c), the control logic computes w ← Hash(S‖c) and re-
turns y ← PUF(w), i.e., mapinS(c) := Hash(S‖c) and mapoutS(y) := y. To recon-
figure the LR-PUF, rcnf() sets the LR-PUF state to S ← Hash(S).

Since most PUF constructions that support a large challenge space (e.g., ar-
biter PUFs [23,37,27]) typically have only a small response space, several of these
PUFs can be evaluated in parallel on the same challenge, which, however, sig-
nificantly increases the amount of area required for their implementation. The
collision-resistance property of the hash function assures the unpredictability
property of the LR-PUF (see Section 2), as we will show later in the formal
security analysis. Note that the LR-PUF state is just used to parameterize the
hash function and thus needs not to be secret. Hence, to reconfigure the LR-
PUF it is sufficient to hash the previous LR-PUF state to obtain a new and
independent state (assuming the hash function implements a random oracle).

Recyclable PUFs: Logically Reconfigurable PUFs 381

4.2 Area-Optimized LR-PUF Construction.

Our first LR-PUF construction described in Section 4.1 typically requires multi-
ple parallel PUFs. Hence, we propose a second construction using just one single
PUF that is evaluated sequentially n times to generate an n bit LR-PUF re-
sponse, providing a tradeoff between area consumption and response generation
speed. The intuition of this second construction is very similar as for the speed-
optimized construction described in Section 4.1. Note that the underlying PUF
must be queried with different challenges to generate a large response consist-
ing of different (ideally) independent bits. This can be achieved by including a
counter j as additional input to the hash function that now generates a sequence
of PUF challenges wj from the LR-PUF challenge c and the current LR-PUF
state S. The corresponding PUF responses yj are then concatenated to form the
response r of the LR-PUF.

Our second construction is specified in Algorithm 2 and works as follows:
On queryS(c), the control logic computes mapinS(c) as wj ← Hash(S‖w‖j) for
j ∈ {0, . . . , n}, evaluates yj ← PUF(wj), and mapoutS() returns r ← (y0‖ . . . ‖yn).
To reconfigure the LR-PUF, rcnf() sets the LR-PUF state to S ← Hash(S).

5 Implementation and Performance Evaluation

Both constructions presented in Section 4 are based on PUFs with a large chal-
lenge space. The only existing electronic PUFs that provide this feature seem
to be arbiter PUFs [23,13]. The hash function of the control logic can be imple-
mented efficiently by using a lightweight block cipher.

We implemented a prototype of both of our LR-PUF constructions on a Xilinx
Spartan-6 FPGA board. We instantiated the underlying PUF based on arbiter
PUFs that support 64 bit challenges and generate 1 bit responses, following
the approach in [46]. The hash function of the control logic is based on the
PRESENT block cipher [5] in Davies-Meyer mode [21]. Both resulting LR-PUF
implementations use 80 bit challenges and generate 64 bit responses.

Table 1. Performance results of the LR-PUF constructions presented in Section 4

Optimization Response time Area consumption in slices (gate equivalents)
in clock cycles Control logic Arbiter PUF Total

Speed 1069 166 (1162 GE) 4288 (29056 GE) 4454 (30218 GE)
Area 64165 358 (2506 GE) 67 (454 GE) 425 (2960 GE)

We evaluated our implementation with regard to response generation speed
and area consumption. Our results are summarized in Table 1. The second col-
umn shows the time in number of clock cycles required to compute an LR-PUF
response r. The remaining columns show the number of slices and gate equiv-
alents (GE) required to implement the control logic, the PUF, and the overall
construction. The area estimation does not include the non-volatile memory for

382 S. Katzenbeisser et al.

storing the LR-PUF state, which cannot be implemented on FPGA. Our results
show that the area-optimized construction requires only about 10% of the area
of the speed-optimized construction but is 60 times slower.

Note that our implementation is meant to demonstrate the feasibility of our
approach and to obtain performance results. Due to the technical constraints of
FPGAs, our implementation does not cover the non-volatile memory for storing
the LR-PUF state, which is emulated by providing the state as an input to the
FPGA. Moreover, our implementation is based on arbiter PUFs, which do not
have the unpredictability property [41] that is required for the security of our
constructions. To securely implement our LR-PUF constructions, the underlying
PUF must be unpredictable (e.g., a Controlled PUF [11] can be used) and the
non-volatile memory and control logic should be protected against fault-injection
attacks, e.g., by applying the techniques described in [31,1].

6 Security Definitions and Evaluation

In this section we formally define the LR-PUF security properties of forward- and
backward-unpredictability and show that both are fulfilled by the constructions
proposed in Section 4. To this end, we first formalize the security property of
unpredictability of a standard PUF.

Unpredictability of a PUF. Along the lines of [2] we define unpredictability of
a PUF in terms of an unpredictability game between an adversary A and a
challenger C. A is first given a PUF and is allowed to query it at most q times.
This step allows to model adversaries that are able to “learn” challenge/response
pairs (CRPs) either by direct physical access to the interface of the PUF or by
eavesdropping on messages containing PUF challenges and responses. At the end
of the game, A is required to output a (non-trivial) valid pair of a PUF challenge
and response.

Unpredictability Game of a PUF
Setup: The challenger C issues the PUF to the adversary A.
Queries: Proceeding adaptively, A queries the PUF at most q times on challenges

wi (for 1 ≤ i ≤ q). For each query, yi ← PUF(wi) is given to A.
Output: Eventually, A outputs a challenge/response pair (w∗, y∗).

Let Q denote the set of all challenges issued by A. We say that A wins the
game, if y∗ is a valid PUF response to PUF(w∗) and w∗ �∈ Q. Conversely, a
PUF is unpredictable, if no efficient adversary A is able to win the game with
significant success probability:

Definition 1. A PUF is (q, ε)-unpredictable, if no probabilistic polynomial ad-
versary A that makes at most q queries to the LR-PUF is able to win the un-
predictability game with a probability greater than ε.

Recyclable PUFs: Logically Reconfigurable PUFs 383

Backward- and Forward-Unpredictability of an LR-PUF. We define backward-
and forward-unpredictability in terms of a two-stage game between an adver-
sary A and a challenger C. In the first stage, A is given oracle access (i.e., access
to the interface) of the LR-PUF, from which A can obtain challenge/response
pairs (CRPs) at will. This stage models the ability of A to obtain challenges and
responses (with respect to a fixed internal LR-PUF state) by passive eavesdrop-
ping. We also give A access to the internal LR-PUF state S in order to model
hardware attacks against the LR-PUF implementation. Once A has learned
enough CRPs, the challenger performs the reconfiguration operation and finally
gives A oracle access to the reconfigured LR-PUF such that A can obtain CRPs
of the reconfigured LR-PUF. At the end of the game, A outputs a prediction
(c∗, r∗) of an LR-PUF challenge/response pair.

More formally, A = (AL,AC) consists of two probabilistic polynomial time
algorithms, where AL interacts with the LR-PUF before reconfiguration and AC

thereafter. A engages in the following experiment:

Backward- and Forward-Unpredictability Game of an LR-PUF
Setup: The challenger C sets up an LR-PUF by choosing a random state S,

which is given to the adversary A = (AL,AC).
Phase I: AL is allowed to call queryS() of the LR-PUF up to qL times. At the

end of phase I, AL stops and outputs a log file st that is used as input to
AC . We denote with QL the set of challenges issued by AL during phase I.

Reconfiguration: C reconfigures the LR-PUF by calling rcnf(), which updates
the internal LR-PUF state to S′.

Phase II: AC is initialized with log file st from AL and the LR-PUF state S′.
AC is allowed to query the reconfigured LR-PUF queryS′() up to qC times
on arbitrary challenges. We denote with QC the set of challenges issued by
AC during phase II.

Output: AC outputs a challenge/response pair (c∗, r∗) of the LR-PUF.

Depending on whether we consider backward- or forward-unpredictability, we
can state different conditions of an adversary being successful: A wins the back-
ward-unpredictability game if r∗ is a valid LR-PUF response to queryS′(c∗)
and c∗ �∈ QC . Thus, once the LR-PUF has been reconfigured, the adversary
cannot output a (non-trivial) challenge/response pair for the reconfigured LR-
PUF. Conversely, A wins the forward-unpredictability game if r∗ is a valid LR-
PUF response to queryS(c∗) and c∗ �∈ QL. Thus, an adversary, who has access
to a reconfigured LR-PUF cannot predict (non-trivial) responses of the LR-PUF
before reconfiguration happened. We say that an LR-PUF is backward- (resp.
forward-) unpredictable, if no efficient adversary A is able to win the game with
significant success probability:
Definition 2 (Backward- and Forward-Unpredictability). An LR-PUF
is (qL, qC , ε)-backward unpredictable (resp. forward-unpredictable), if no proba-
bilistic polynomial adversary A that makes at most qL queries in phase I and at
most qC queries in phase II, is able to win the backward-unpredictability (resp.
forward-unpredictability) game with a probability greater than ε.

384 S. Katzenbeisser et al.

Both constructions of Section 4 achieve backward- and forward- unpredictability:

Proposition 1. The speed-optimized LR-PUF construction shown in Section 4.1
is (qL, qC , ε)-backward unpredictable (resp. forward-unpredictable), if Hash() is
collision-resistant and the underlying PUF is (qL + qC , ε)-unpredictable.

Proposition 2. The area-optimized LR-PUF construction shown in Section 4.2
is (qL, qC , ε)-backward unpredictable (resp. forward-unpredictable), if Hash() is
collision-resistant and the underlying PUF is (n(qL + qC) , ε)-unpredictable.

The proofs of both propositions follow from the standard reductionist approach
and can be found in the full version of this paper [18]. In particular, we show that
any adversary A against the LR-PUF can be converted into an adversary B that
either breaks the collision resistance of the hash function or the unpredictability
of the underlying physical PUF. To this end, B simulates A: Whenever A makes
an LR-PUF query, B simulates this query by help of his PUF oracle, i.e., B
transforms the challenges received from A by using the (known) internal LR-
PUF state, queries the physical PUF on the transformed challenge and returns
the obtained response to A. Once the simulation stops, it can easily be seen that
either a hash collision or a valid prediction of a challenge/response pair of the
physical PUF can be extracted from A’s output.

7 Applications

7.1 LR-PUF-Based Authentication Tokens

Electronic payment and ticketing systems have been gradually introduced in
many countries over the past few years (see, e.g., [35,7,33]). Typically, these sys-
tems are using RFID-enabled tokens and provide different types of electronic
transit tickets. Given the typically large number of tickets used in an electronic
transit ticket system and the costs per token (typically between 1-3 Euro), from
an economic perspective it may be worthwhile to consider recycling of RFID-
based tickets. In fact, some systems (e.g., the Dutch transportation system [36])
allow recharging RFID-based tickets with money and to returning used tickets
to the vendor with possible restitution of preloaded money left on the ticket.
Moreover, many U.S. and European governments make manufacturers and im-
porters of electronic products responsible for the disposal of their products when
discarded by the consumer (see, e.g., [6,9]). In this context, recyclable tokens can
help to save waste disposal costs and to reduce the amount of electronic waste.
In this section, we discuss how LR-PUFs could be used to enhance the security
of electronic ticketing and payment systems while at the same time enabling
secure and privacy-preserving recycling of used RFID-tickets.

There are several proprietary solutions for electronic tickets in practice. Most
of them are based on widely used RFID tokens, where the most prominent exam-
ple is the MiFare family produced by NXP Semiconductors [34]. There are several
hard- and software attacks against MiFare Classic tokens [32,43,10], which use a

Recyclable PUFs: Logically Reconfigurable PUFs 385

proprietary encryption algorithm that has been completely broken [8]. However,
other MiFare products are claimed not to be affected. A recent attack on MiFare
Classic 4K chipcards concerns the Dutch electronic payment and transit ticket
system [36]: Using a MiFare compatible card reader and a software from the
Internet, an average user can add debit to his RFID-based transit ticket without
being detected [54,25].

In this context, PUFs could provide a cost-effective security mechanism:
Authentication based on PUFs can prevent copying and manipulating the in-
formation (i.e., the debit of the RFID-based ticket and/or the user’s rights) by
cryptographically binding this data to the physical characteristics of the underly-
ing RFID chip. Existing PUF-based authentication schemes (see, e.g.,
[40,15,37,42,51]) typically assume each device, i.e., each RFID-based token T ,
to be equipped with a PUF, whereas the verifier V maintains a database D, i.e.,
a set if challenge/response pairs (CRPs) of each ticket. In the authentication
protocol, V chooses a random challenge from D and sends it to T , which then
returns some response. V accepts if the response of T matches the one in D.

Using LR-PUFs instead of non-reconfigurable PUFs would allow for
cost-effective, secure and privacy-preserving recycling of RFID-based tickets:
By reconfiguring the LR-PUF all information and access rights bound to T
are securely “erased”, which cannot be achieved with non-reconfigurable PUFs.
However, reconfiguring the LR-PUF invalidates the CRP database D of V , which
means that after each reconfiguration of T a new CRP database must be estab-
lished. To counter this problem, V could know the LR-PUF state S of each token
and maintain a CRP database D′ of the PUF underlying the LR-PUF, which can
be seen as the “authentication secrets” of the token. This is common in ticketing
applications because usually the verifier is the ticket issuer who typically knows
the authentication secrets of all tokens. Since the algorithms of the control unit,
i.e., the input and output transition functions mapin() and mapout(), respec-
tively, and the state update algorithm rcnf(), are publicly known, V could use
D′ to recompute the LR-PUF response for any state of T and compare it to the
response sent by T . V accepts if the response of T matches the one recomputed
based on D′ and S.

7.2 Other Applications Envisaged

Many airlines have started to move from paper-based tickets to electronic tick-
ets. However, they still print luggage tags, which are increasingly equipped with
disposable RFID chips. The purpose of these chips is to ease the tracking of in-
dividual luggage in the process of loading. However, RFID-enabled labels could
be read out even without visual contact. This may allow several attacks rang-
ing from copying luggage tags to smuggle in additional luggage in the name
of another passenger. Moreover, RFID-enabled luggage tags may disclose per-
sonal information on their owner (e.g., name, number of luggage pieces, luggage
weight), which could be used to track the user on the airport or provide useful
information to luggage thieves. To solve these problems, travellers could pur-
chase or rent a more powerful LR-PUF-enabled RFID token that is put into the

386 S. Katzenbeisser et al.

luggage or that could even be embedded into new generations of suitcases. Each
time the traveller checks in, his RFID-based tag is reconfigured by the airline
attendant, which securely erases the previous information stored on it. This pre-
vents tracking the traveler for more than one flight and impedes misrouting of
luggage due to old travel information. Further, to avoid illegitimate tracking of
travellers, the RFID-enabled luggage tag could be reconfigured or temporarily
disabled once the passenger leaves the baggage claim area.

One can find many other applications that could take advantage of LR-PUFs.
Examples include, secure deletion and/or update of cryptographic secrets in
PUF-based key storage [52,26] and hardware-entangled cryptography [3], where
the reconfiguration of the PUF ensures that old secrets cannot be retrieved any
more. Another example are solutions to prevent downgrading of software [20] by
binding the software to the PUF, where reconfiguring the PUF invalidates the
old software version such that only the latest version can be used.

8 Conclusion

In this paper, we have proposed the concept of logically reconfigurable PUFs,
which utilize a control logic to enable dynamic reconfigurability for existing,
typically static PUFs. We introduced two different constructions to realize LR-
PUFs: Our first construction is optimized for response generation speed, while
our second construction aims for resource-constrained embedded devices (like
RFID tags). Furthermore, we have shown that both constructions achieve the
security properties of backward- and forward unpredictability, which are two
desirable properties in the context of PUF-based cryptographic applications like
key storage, device identification, and hardware-entangled cryptography. Finally,
we showed how LR-PUFs could be applied in the context of recyclable (access)
tokens to enhance the security properties of existing solutions while providing a
means for secure recycling of PUF-based access tokens.

Acknowledgements. We thank our anonymous reviewers for their helpful com-
ments, Patrick Koeberl and Jérôme Quevremont for several useful discussions
on hardware attacks and use cases, and Timm Korte for providing us his imple-
mentation of PRESENT. This work has been supported in part by the European
Commission under grant agreement ICT-2007-238811 UNIQUE.

References

1. Akdemir, K.D., Wang, Z., Karpovsky, M.G., Sunar, B.: Design of cryptographic
devices resilient to fault injection attacks using nonlinear robust codes. In: Fault
Analysis in Cryptography (2011)

2. Armknecht, F., Maes, R., Sadeghi, A.R., Standaert, F.X., Wachsmann, C.: A formal
foundation for the security features of physical functions. In: IEEE Symposium on
Security and Privacy, pp. 397–412. IEEE Computer Society, Los Alamitos (2011)

Recyclable PUFs: Logically Reconfigurable PUFs 387

3. Armknecht, F., Maes, R., Sadeghi, A.R., Sunar, B., Tuyls, P.: Memory leakage-
resilient encryption based on physically unclonable functions. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 685–702. Springer, Heidelberg (2009)

4. Armknecht, F., Sadeghi, A.R., Visconti, I., Wachsmann, C.: On RFID privacy with
mutual authentication and tag corruption. In: Zhou, J., Yung, M. (eds.) ACNS
2010. LNCS, vol. 6123, pp. 493–510. Springer, Heidelberg (2010)

5. Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M.,
Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007)

6. Californians Against Waste: E-waste laws in other states (April 2011),
http://www.cawrecycles.org/issues/ca_e-waste/other_states

7. Calypso Networks Association: Website (April 2011),
http://www.calypsonet-asso.org/

8. Courtois, N.T., Nohl, K., O’Neil, S.: Algebraic attacks on the Crypto-1 stream
cipher in MiFare Classic and Oyster Cards. Cryptology ePrint Archive, Report
2008/166 (2008)

9. European Commission: Waste electrical and electronic equipment website (April
2011), http://ec.europa.eu/environment/waste/weee/index_en.htm

10. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Schreur, R.W., Jacobs, B.: Dismantling MIFARE classic. In: Jajodia, S., Lopez, J.
(eds.) ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg (2008)

11. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random
functions. In: Computer Security Applications Conference, pp. 149–160. IEEE
Computer Society, Los Alamitos (2002)

12. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random
functions. In: ACM Conference on Computer and Communications Security
(ACM CCS), pp. 148–160 (2002)

13. Gassend, B., Lim, D., Clarke, D., van Dijk, M., Devadas, S.: Identification and
authentication of integrated circuits. Concurrency and Computation: Practice and
Experience 16(11), 1077–1098 (2004)

14. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

15. Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags. In: Conference on RFID Security
(RFIDSec) (2007)

16. Intrinsic ID: Product webpage (April 2011),
http://www.intrinsic-id.com/products.htm

17. Juels, A.: RFID security and privacy: A research survey. Journal of Selected Areas
in Communication 24(2), 381–395 (2006)

18. Katzenbeisser, S., Ünal Kocabas, van der Leest, V., Sadeghi, A.R., Schrijen, G.J.,
Schröder, H., Wachsmann, C.: Recyclable PUFs: Logically reconfigurable PUFs
(full version) (June 2011), http://www.trust.cased.de/

19. Kumar, S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: Extended ab-
stract: The butterfly PUF protecting IP on every FPGA. In: IEEE Workshop
on Hardware-Oriented Security and Trust (HOST), pp. 67–70 (2008)

20. Kursawe, K., Sadeghi, A.R., Schellekens, D., Tuyls, P., Scoric, B.: Reconfigurable
physical unclonable functions — Enabling technology for tamper-resistant stor-
age. In: IEEE International Workshop on Hardware-Oriented Security and Trust
(HOST), pp. 22–29. IEEE Computer Society, San Francisco (2009)

http://www.cawrecycles.org/issues/ca_e-waste/other_states
http://www.calypsonet-asso.org/
http://ec.europa.eu/environment/waste/weee/index_en.htm
http://www.intrinsic-id.com/products.htm
http://www.trust.cased.de/

388 S. Katzenbeisser et al.

21. Lai, X., Massey, J.: Hash functions based on block ciphers. In: Rueppel, R.A. (ed.)
EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

22. Lao, Y., Parhi, K.K.: Novel reconfigurable silicon unclonable functions. In: Work-
shop on Foundations of Dependable and Secure Cyber-Physical Systems (FDSCPS)
(April 11, 2011)

23. Lee, J.W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A technique
to build a secret key in integrated circuits for identification and authentication
application. In: Symposium on VLSI Circuits, pp. 176–179 (2004)

24. van der Leest, V., Schrijen, G.J., Handschuh, H., Tuyls, P.: Hardware intrinsic
security from D flip-flops. In: ACM Workshop on Scalable Trusted Computing
(ACM STC), pp. 53–62 (2010)

25. Letter from Dutch minister on OV-chipkaart,
https://zoek.officielebekendmakingen.nl/dossier/32440/kst-23645-415.
html

26. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extracting
secret keys from integrated circuits. IEEE Transactions on VLSI Systems 13(10),
1200–1205 (2005)

27. Lin, L., Holcomb, D., Krishnappa, D.K., Shabadi, P., Burleson, W.: Low-power
sub-threshold design of secure physical unclonable functions. In: ACM/IEEE In-
ternational Symposium on Low Power Electronics and Design (ISLPED), pp. 43–48
(2010)

28. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfig-
urable devices. In: Workshop on Information and System Security (WISSec), p. 17
(2008)

29. Maes, R., Verbauwhede, I.: Physically unclonable functions: A study on the state
of the art and future research directions. In: Sadeghi, A.R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security. Information Security and Cryptography, pp.
3–37. Springer, Heidelberg (2010)

30. Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characteriza-
tion of RO-PUF. In: IEEE Symposium on Hardware-Oriented Security and Trust
(HOST), pp. 94–99 (2010)

31. Monnet, Y., Renaudin, M., Leveugle, R.: Designing resistant circuits against mali-
cious faults injection using asynchronous logic. IEEE Trans. Comput. 55, 1104–1115
(2006), http://dx.doi.org/10.1109/TC.2006.143

32. Nohl, K., Plötz, H.: MiFare — Little security despite obscurity (2007),
http://events.ccc.de/congress/2007/Fahrplan/events/2378.en.html

33. NXP Semiconductors: MiFare applications (April 2008),
http://www.mifare.net/applications/

34. NXP Semiconductors: MiFare smartcard ICs (February 2011),
http://www.mifare.net/products/smartcardics/

35. Octopus Holdings: Website (April 2011), http://www.octopus.com.hk/en/
36. OV-Chipkaart: Website (April 2011), http://www.ov-chipkaart.nl/
37. Öztürk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication for

pervasive devices. In: IEEE International Conference on Pervasive Computing and
Communications (PERCOM 2008). IEEE Computer Society, Los Alamitos (2008)

38. Pappu, R.S.: Physical one-way functions. Ph.D. thesis, Massachusetts Institute of
Technology (March 2001)

39. Pappu, R.S., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297, 2026–2030 (2002)

https://zoek.officielebekendmakingen.nl/dossier/32440/kst-23645-415.html
https://zoek.officielebekendmakingen.nl/dossier/32440/kst-23645-415.html
http://dx.doi.org/10.1109/TC.2006.143
http://events.ccc.de/congress/2007/Fahrplan/events/2378.en.html
http://www.mifare.net/applications/
http://www.mifare.net/products/smartcardics/
http://www.octopus.com.hk/en/
http://www.ov-chipkaart.nl/

Recyclable PUFs: Logically Reconfigurable PUFs 389

40. Ranasinghe, D.C., Engels, D.W., Cole, P.H.: Security and privacy: Modest propos-
als for low-cost RFID systems. In: Auto-ID Labs Research Workshop (September
2004)

41. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-
eling attacks on physical unclonable functions. In: ACM conference on Computer
and communications security (ACM CCS), pp. 237–249 (2010)

42. Sadeghi, A.R., Visconti, I., Wachsmann, C.: PUF-enhanced RFID security and
privacy. In: Workshop on Secure Component and System Identification, SECSI
(2010)

43. Schreur, R.W., van Rossum, P., Garcia, F., Teepe, W., Hoepman, J.H., Jacobs, B.,
de Koning Gans, G., Verdult, R., Muijrers, R., Kali, R., Kali, V.: Security flaw in
MiFare Classic (March 2008),
http://www.sos.cs.ru.nl/applications/rfid/pressrelease.en.html

44. Skorobogatov, S.: Semi-invasive attacks — A new approach to hardware security
analysis. Technical Report UCAM-CL-TR-630, University of Cambridge, 15 JJ
Thomson Avenue, Cambridge CB03 0FD, UK (April 2005)

45. Skorobogatov, S.: Local heating attacks on Flash memory devices. In: IEEE Inter-
national Workshop on Hardware-Oriented Security and Trust (HOST 2009), pp.
1–6. IEEE, Los Alamitos (July 27, 2009)

46. Soybali, M., Ors, B., Saldamli, G.: Implementation of a PUF circuit on an FPGA.
In: IFIP International Conference on New Technologies Mobility and Security
(2011)

47. Su, Y., Holleman, J., Otis, B.: A 1.6pJ/bit 96% stable chip-ID generating circuit
using process variations. In: IEEE International Solid-State Circuits Conference
(ISSCC), pp. 406–611 (2007)

48. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Design Automation Conference, pp. 9–14 (2007)

49. Tuyls, P., Batina, L.: RFID-tags for anti-counterfeiting. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)

50. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-proof hardware from protective coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

51. Verayo, Inc.: Product webpage (April 2011),
http://www.verayo.com/product/products.html

52. Škorić, B., Tuyls, P., Ophey, W.: Robust key extraction from physical uncloneable
functions. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 407–422. Springer, Heidelberg (2005)

53. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of
low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan,
W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp. 50–
59. Springer, Heidelberg (2004)

54. Wikipedia: OV-Chipkaart, http://en.wikipedia.org/wiki/OV-chipkaart

http://www.sos.cs.ru.nl/applications/rfid/pressrelease.en.html
http://www.verayo.com/product/products.html
http://en.wikipedia.org/wiki/OV-chipkaart

Uniqueness Enhancement of PUF Responses

Based on the Locations of Random Outputting
RS Latches

Dai Yamamoto1, Kazuo Sakiyama2, Mitsugu Iwamoto2, Kazuo Ohta2,
Takao Ochiai1, Masahiko Takenaka1, and Kouichi Itoh1

1 FUJITSU LABORATORIES LTD
4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan

{ydai,tochiai,takenaka,kito}@labs.fujitsu.com
2 The University of Electro-Communications

1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan
{saki,mitsugu,ota}@inf.uec.ac.jp

Abstract. Physical Unclonable Functions (PUFs) are expected to rep-
resent an important solution for secure ID generation and authentication
etc. In general, PUFs are considered to be more secure the larger their
output entropy. However, the entropy of conventional PUFs is lower than
the output bit length, because some output bits are random numbers,
which are regarded as unnecessary for ID generation and discarded. We
propose a novel PUF structure based on a Butterfly PUF with multiple
RS latches, which generates larger entropy by utilizing location infor-
mation of the RS latches generating random numbers. More specifically,
while conventional PUFs generate binary values (0/1), the proposed PUF
generates ternary values (0/1/random) in order to increase entropy. We
estimate the entropy of the proposed PUF. According to our experi-
ment with 40 FPGAs, a Butterfly PUF with 128 RS latches can improve
entropy from 116 bits to 192.7 bits, this being maximized when the fre-
quency of each ternary value is equal. We also show the appropriate RS
latch structure for satisfying this condition, and validate it through an
FPGA experiment.

Keywords: PUF, Butterfly PUF, RS latch, Metastable, Random
number, FPGA, ID Generation, Authentication.

1 Introduction

Secure identification/authentication technology using Integrated Circuit (IC)
chips is very important for secure information infrastructure. It is used for anti-
counterfeiting devices on medical supplies, prepaid-cards and public ID cards
such as passports and driver’s licenses. The IC card is a well-known solution for
this kind of application. Counterfeiting is prevented by storing a secret key on
the IC card and using a secure cryptographic protocol to make the key invisible
from outside. In theory, however, the possibility of counterfeiting still remains

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 390–406, 2011.
c© International Association for Cryptologic Research 2011

 {ydai,tochiai,takenaka,kito}@labs.fujitsu.com
{saki,mitsugu,ota}@inf.uec.ac.jp

Uniqueness Enhancement of PUF Responses 391

if its design is revealed and reproduced by the counterfeiter. Naturally, this is
difficult because current IC cards are equipped with several highly-developed
tamper-proofing technologies. However, further anti-counterfeiting technologies
are desirable to meet future developments in reverse-engineering techniques.

Recently, interest has been focused on Physical Unclonable Functions (PUFs)
as a solution [1]. In a PUF, the output value (response) to the input value
(challenge) is unique for each individual IC. This uniqueness is provided by the
process variations of each individual IC [2] [3]. It is expected that PUFs will
represent breakthrough in technology for anti-counterfeiting devices, through its
use for ID generation, key generation and authentication protocol, which make
cloning impossible even when the design is revealed.

The PUFs on ICs are classified into two categories [4]. One uses the character-
istics of memory cells such as SRAM-PUFs [5] [6] and Butterfly PUFs (BPUFs)
[7]. SRAM-PUFs are based on the unstable power-up values of SRAM cells on
ICs such as ASIC and FPGA. However, a device power-up operation is required
for the generation of every response. To counter this drawback, BPUFs are com-
posed of cross-coupled latches which behave similarly to an SRAM cell. The
output of the BPUF is triggered by a clock edge signal applied to the latches,
without an actual device power-up. The other uses the characteristics of delay
variations such as Arbiter PUFs [8], Glitch PUFs [9] and Ring Oscillator (RO)
PUFs [10]. Arbiter PUFs have an arbiter circuit that generates a response deter-
mined by the difference in the signal delay between two paths, which is mixed by
a challenge. However, a machine learning attack can predict challenge-response
pairs by using a large number of past pairs [11]. The Glitch PUF [9] was proposed
to solve this problem of ease of prediction. It generates a response by utilizing
glitch waveforms and delay variations between logic gates. Since its response
to challenges behaves like a non-linear function, machine learning attacks are
prevented. RO PUFs derive entropy from the difference in oscillator frequencies.

Today, PUFs in the former category are some of the most feasible and se-
cure because there have already been implementations of error correcting codes
(ECCs) and universal hash functions [12] for randomness extraction optimized
for the PUFs, which are needed for Fuzzy Extractors [13]. In addition, BPUFs
implemented in ASIC seem to have many advantages over SRAM-PUFs, such
as not requiring a power-up operation. This paper therefore focuses on BPUFs,
which generate n-bit responses based on n outputs from n RS latches.

The PUFs in both categories need to eliminate the randomness of responses
in order to generate stable responses. For example, the Glitch PUF can generate
very stable responses because it selects available challenges to output stable
responses by a masking process. However, as pointed out by the designers of the
Glitch PUF, the masking process causes entropy loss. In conventional PUFs, the
outputs of random latches are not used to generate stable responses; however,
in this paper we make efficient use of random latches.

The responses from PUFs need to have extremely high uniqueness. This paper
defines uniqueness as the independence among multiple PUFs of responses to
the same challenge. In order to prevent clones of cryptographic hardware, it is

392 D. Yamamoto et al.

important for manufacturers to make sure that multiple PUFs with the same
challenge-response pairs do not exist. However, this is very difficult in terms
of cost because there are a huge number of manufactured PUFs and challenge-
response pairs. Therefore, one of the most practical solutions is to increase the
number and range of responses as much as possible. We must note that a large
number of responses are not necessarily equivalent to a high level of entropy in
those responses. PUFs that output responses with high entropy are capable of
generating completely unpredictable responses. Consequently, the probability of
multiple PUFs that output unpredictable responses having the same challenge-
response pairs is extremely small. Hence, it is also important for PUFs to increase
the entropy of responses so as to have extremely high uniqueness.

In addition, the response needs to have high reliability. This paper defines
reliability as the consistency of PUF challenge-response pairs for repeated mea-
surements. That is, ideally, a PUF always generates the same response to a given
challenge. The BPUF has some RS latches that generate random numbers (i.e.
“random latches”). This randomness causes a problem in that the reliability of
the response is reduced. This is because the values of the response corresponding
to the random latches change every time a response is generated. In the conven-
tional approach - in order to maintain the reliability of responses - the outputs
of the random latches are discarded, similar to the masking process in the Glitch
PUF, which is a widely known technique for the generation of responses. How-
ever, the number of responses becomes lower as the number of random latches
increases, which reduces the entropy and uniqueness of responses.

Our Contributions. This paper proposes a novel PUF structure for generating
high-entropy responses using randomness. Note that our proposed methods can
be applied to any PUFs. As an example, our paper focuses on a BPUF with
random latches. The use of random latches dramatically increases entropy and
uniqueness. Also, the construction can maintain the reliability of responses even
if random latches are used for the generation of responses. In specific terms,
responses are generated based on the location information of the random latches.
The proposed PUF generates approximately 3n responses with ternary value
(0/1/random), which is maximized when the frequency of each ternary value
is equal. Here, 3n is not accurate, but is intuitively easy-to-understand, and
so a rigorous discussion is given below. We also propose a suitable RS latch
structure to satisfy this equality condition to the maximum extent. We evaluate
the performance of the proposed PUF with 40 FPGAs. A BPUF with 128 RS
latches based on our RS latch construction increases the average number of
random latches from 12 to 32, approaching around 43 (=128/3). The proposed
PUF with ternary values improves the number of responses from 2116 to 2196.
From the actual responses generated by 40 PUFs, the entropy of responses is
evaluated as 192.7 bits, which indicates that the proposed PUF has extremely
high uniqueness.

Uniqueness Enhancement of PUF Responses 393

Organization of the Paper. The rest of the paper is organized as follows.
Section 2 gives an outline of the BPUF with RS latches, and the conventional
methods for implementing RS latches on FPGAs. Section 3 proposes our original
BPUF, which generates responses by using the location information of the ran-
dom latches. In addition, new methods of implementing RS latches are proposed
that maximize the performance of our PUF. Section 4 evaluates the performance
of our PUF on an FPGA platform. Finally, in Section 5, we give a summary and
comment on future directions.

2 Conventional Methods

2.1 Conv. Mtd (1): Generation of Responses from a BPUF

This paper focus on a BPUF using RS latches. First, we describe the circuit
and behavior of an RS latch, shown in Fig. 1. An RS latch can be created from
two NAND gates, and is in a stable state with output (B, C) = (1, 1) when
input A = 0. When input A changes from 0 to 1 (= rising edge), the RS latch
temporarily enters a metastable state. It then enters a stable state with either
output (B, C) = (1, 0) or (B, C) = (0, 1). Ideally, the probability of transition
to either of these states is equal. In fact, however, many RS latches have a high
probability of entering one specific state. This is because the drive capabilities
of the two NAND gates and the wire length between them are not exactly the
same. Hence, the output B from RS latches fall into three patterns: all 0’s, all
1’s, or a mixture of 0’s and 1’s (= random number) when a clock signal is applied
to input A.

We now describe the BPUF, shown in Fig. 2. Challenges to the BPUF are
equivalent to choosing m(≤ n) RS latches from n implemented RS latches. The
BPUF can generate m-bit responses corresponding to nCm challenges. Here,
nCm is defined as the number of combinations of n elements taken m at a time.
The BPUF in Fig. 2 generates an n-bit response RES[n − 1 : 0] because m
is set equal to n. Note that, in order to simplify discussion in this paper, the
more significant bits of the response correspond to the outputs of RS latches
with bigger latch labels. BPUFs, which generate only a response, can be used
for applications such as authentication. For example, a random number S is sent
from an authentication server to a PUF as a new challenge, and a response R
from the PUF is newly defined by equation R = H(S ‖ RES). Here, H() indicates
a mixing function, such as various hash functions. The value of response R
changes depending on the challenge S, so BPUFs provide security when used for
this application. The PUF in Fig. 2 has some RS latches that generate random
numbers such as LATCH2 and LATCHn−2. These random numbers cause a
problem in that the reliability of the response RES is reduced since its value
changes every time it is generated.

There are two widely known conventional approaches to response generation
aimed at solving this problem. In the first approach (“conventional method (1-
A)”), random latches are not used for the generation of responses. This approach
maintains the reliability of responses, but reduces their uniqueness, and requires

394 D. Yamamoto et al.

A

B

C

Fig. 1. NAND-based RS latch

000000…

111111…

110100…

001100…

111111…

000000…

RES[3] = 1

RES[n-1] = 0

RES[1] = 1

RES[0] = 0

RES[n-2] = 1/0 (Rnd)

RES[2] = 1/0 (Rnd)

LATCHn-1

LATCH
3

LATCH2

LATCH1

LATCH0

LATCHn-2
.

.

.

Fig. 2. Butterfly PUF

a mechanism to detect random latches. For example, the BPUF with 128 RS
latches (n = 128) in Fig. 2 has 40 random latches. The bit-length of the re-
sponses is reduced from 128 bits to 88 bits, so their entropy and uniqueness are
also reduced. Hence, it is necessary to implement extra RS latches in the PUF
in accordance with the number of random latches. This PUF is, however, not
suitable for embedded systems with limited hardware resources such as smart
cards because, while also maintaining the uniqueness of responses, it is necessary
for PUFs in embedded systems to have an RS latch area size and peripheral cir-
cuit that are as small as possible. In the second approach (“conventional method
(1-B)”), ECCs are used to correct the variation in the responses resulting from
the random latches. This approach requires larger redundant data for response
correction as the number of random latches increases. In addition, it also suffers
from the disadvantage of necessitating increased hardware resources and pro-
cessing time for the ECCs. A BPUF with 128 RS latches generates no more
than 2128 responses even if ECCs are used. From the above, it can be seen that
the first approach, in which random latches are not used for responses, is not
suitable. Furthermore, it is not sufficient to use only ECCs, as in the second
approach. In Section 3, we propose a method for generating responses based on
the locations of random latches. The proposed method maintains the reliability
of responses, and dramatically improves their uniqueness.

2.2 Conv. Mtd (2): Implementation of RS Latches on FPGAs

A method for implementing RS latches as a true random number generator on
Xilinx FPGAs (“conventional method (2-A)”) is proposed in Ref. [14], [15]. Flip-
Flops (FFs) are positioned in front of the two NAND gates, as shown in Fig.
3. This minimizes the difference in signal arrival time between the two gates,
enabling the RS latch to enter the metastable state more readily and improving
the probability of the RS latches outputting random numbers. A Xilinx FPGA
consists of a matrix of configurable logic blocks (CLBs). Some kinds of Xilinx
FPGA devices have four slices per CLB. A slice includes two pairs of LookUp
Tables (LUTs) and FFs. The right and left slices of the CLB are different. The

Uniqueness Enhancement of PUF Responses 395

In

Out

Fig. 3. Conv. mtd (2-A): RS latch
circuit [14]

CLB A CLB B

Slice M Slice MSlice L Slice L

LUT FF

(I) Conventional method (2-B1)

CLB A CLB B

Slice M Slice MSlice L Slice L

LUT FF

(II) Conventional method (2-B2)

Fig. 4. Implementation of RS latches on Xilinx
FPGAs [14]

right slice (SliceL) is available only for logic, while the left one (SliceM) is for both
memory and logic. Two types of implementation for an RS latch are reported
in Ref. [14]. In one type (“conventional method (2-B1)”), two RS latches are
implemented on two CLBs, as shown in Fig. 4(I). In the other (“conventional
method (2-B2)”), only one RS latch is implemented on two CLBs, as shown in
Fig. 4(II). Both methods implement the NAND gates of an RS latch by using
the same kind of slice (SliceL in Fig. 4) on different CLBs. The conventional
method (2-B1) uses two CLBs per two RS latches, leading to reasonable circuit
efficiency. However, Ref. [14] points out that multiple RS latches which have
NAND gates implemented on the same CLB, as shown in Fig. 4(I), have a low
probability of outputting random numbers. RS latches based on conventional
method (2-B2) have some probability of generating random numbers, but result
in low circuit efficiency because an RS latch requires two CLBs. The next section
proposes an implementation method that gives the RS latches a high probability
of outputting random numbers. In addition, the proposed method gives higher
circuit efficiency than in the conventional methods.

3 Proposed Methods

3.1 Proposed Mtd (1): Use of the Locations of Random Latches

The conventional BPUF in Fig. 2 generates responses based only on RS latches
outputting fixed numbers such as 0’s or 1’s (i.e. “fixed latches”). Our proposed
BPUF uses the location information of random latch X , rather than the random
numbers from the random lathes. If a BPUF with N RS latches has T random
latches, then the number of locations of random latches equals to NCT , which

396 D. Yamamoto et al.

000000…

001100…

111111…

000000…

RES[2n-1,2n-2] = 00

RES[3:2] = 11

RES[1:0] = 00

RES[2i+1:2i] = Si[1:0]

RES[5:4] = 10

Detection circuit n-1LATCHn-1

LATCHi

LATCH2

LATCH1

LATCH0

・

・

・

・

・

・

Detection circuit i

Detection circuit 2

Detection circuit 1

Detection circuit 0

Fig. 5. Proposed method (1)

D-FF

0 : 00

1 : 11

Rnd: 10

Default = 0

OR

AND D-FF

Default = 0

0 : 0

1 : 1

Rnd: 1

Upper bit

Lower bit

0 : 0

1 : 1

Rnd: 0

Output stream

of a RS latch

Bit concatenate

2-bit output of

detection circuit

Fig. 6. Proposed detection circuit

generates the entropy due to random latch locations. Hence, the PUF based on
our method utilizes the entropy for uniqueness of responses. However, this kind
of BPUF requires complex controls to associate the location of RS latch X with
the output number, which leads to a large circuit size. In this paper, we propose
a simple and efficient method of solving this problem (“proposed method (1)”).
Proposed method (1) regards the three types of output patterns from the RS
latches (0’s, 1’s, and random numbers) as ternary values (00/11/10). Our method
can generate responses with much larger patterns than conventional approaches.
We describe the details of the proposed method with reference to Fig. 5. When
a clock signal is applied to the inputs of the RS latches in our BPUF, they
generate three types of outputs: 0’s, 1’s, and random numbers. The PUF based
on our method has new detection circuits - shown in Fig. 6 - located after the RS
latches which distinguish these three types. The detection circuit i outputs a 2-
bit value (00/11/10) depending on the output of the RS latch i (0’s/1’s/random
numbers). If the output stream of RS latch i includes a transition from 0(1) to
1(0), detection circuit i regards RS latch i as a random latch, and from that
point onwards continues outputting the 2-bit value ‘10’ regardless of RS latch
i’s subsequent output stream. Stated more rigorously, let Si[1 : 0] be the 2-bit
output of detection circuit i located after RS latch i, and RES[2n−1 : 0] be the
2n-bit response of our BPUF. Then

RES[2n− 1 : 0] =
n∑

i=0

{Si · 22i}. (1)

The gate size of the detection circuit shown in Fig. 6 is estimated to be around
28 gates, which is definitely compact enough for embedded systems. Here, we
use the equivalencies 1 FF = 12 NAND gate, 1 AND = 1.5 NAND gate, 1 OR
= 1.5 NAND gate, and 1 INV = 0.5 NAND gate, introduced in [16]. Naturally,
in order to distinguish three types of outputs, CPU-based software approach is
able to be used instead of the detection circuit. The reason why we propose the
detection circuit as hardware approach is that it is essential when our proposed
PUF is implemented on ASIC.

Next, for the PUF based on our proposed method, we theoretically estimate
the number of responses. Let N be the number of implemented RS latches, and T

Uniqueness Enhancement of PUF Responses 397

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

T
he

 n
um

be
r

of
 R

es
po

ns
es

 [
lo

g2
]

The number of latches outputting random number

 128

Conventional method (1-A)
Proposed method (1)

Fig. 7. The number of responses against the number of random latches (Estimate)

be the number of random latches. The number of responses arising from the fixed
latches is 2N−T , while the number of responses arising from the random latches
is NCT . Therefore, the number of responses for a given value of T is estimated
to be 2N−T · NCT . The PUF based on the proposed method generates ternary
values (00/11/10), so the total number of responses is 3N . This total number is
estimated in consideration of all the possible values of T (0 ≤ T ≤ N). However,
the value of T is in fact determined by the kind of PUF device and the way in
which the RS latches are implemented. Therefore, the PUF generates less than
3N responses. To be specific, the number of responses for given T corresponds
to the T -th term of the binomial expansion of 3N = (2 + 1)N , which is 2N−T ·
NCT , the same as the above estimate. Figure 7 shows a comparison between
the number of responses for the conventional method (1-A) without random
latches and the number of responses using our proposed method with various
T values and given N(= 128). The conventional method (1-A) generates 2N−T

responses, so the number of responses decreases as the number of random latches
increases. Even conventional method (1-B), which uses ECCs, generates no more
than 2128 responses. In contrast, the proposed method (1) dramatically increases
the number of responses. The number of responses takes on its maximum value
(≈ 2203) when the numbers of the three types of RS latches are equal, that
is, when T is around 43 (≈ 128/3). Hence, the proposed method dramatically
improves the uniqueness of responses.

3.2 Proposed Mtd (2): Increasing the Number of Random Latches

This section proposes new methods (“proposed methods (2-A) and (2-B)”) to
give a higher probability of RS latches outputting random numbers than those
obtained with the conventional methods in Sect. 2.2. The proposed methods
increase the number of random latches to 1/3 of the total number of RS latches,
which improves the effectiveness of the proposed method (1).

In proposed method (2-A), a shared FF is positioned in front of two NAND
gates, as shown in Fig. 3. This FF sharing between two NAND gates eliminates

398 D. Yamamoto et al.

In

Out

Fig. 8. Prop. mtd (2-A): RS latch circuit
CLB A

Slice M Slice L

LUT FF

Fig. 9. Prop. mtd (2-B): Implementation of
RS latches on Xilinx FPGAs

clock skew in FFs. Consequently, the signal arrival times for the two NAND
gates are much closer, allowing the RS latches to become metastable more easily,
and increasing the probability of the RS latches outputting random numbers.
Proposed method (2-A) also reduces the FF gate size per RS latch by FF sharing.

In proposed method (2-B), one RS latch is implemented on a CLB in a Xilinx
FPGA, as shown in Fig. 9. In Ref. [14], an RS latch is implemented on two
different CLBs, as described in Sect. 2.2, because FPGA synthesis tools cannot
implement two NAND gates of an RS latch on ‘different’ kinds of Slices (SliceM
and SliceL) on the same CLB. To avoid this problem, proposed method (2-B)
implements two NAND gates by using the ‘same’ kind of Slice on the same CLB.
Proposed method (2-B) uses only one CLB (two slices) per RS latch, giving high
circuit efficiency. In addition, it is anticipated that the probability of RS latches
becoming metastable and outputting random numbers would increase since the
signal arrival times for the two NAND gates are much closer due to shortening
of the wire length between the gates. The concepts behind proposed methods
(2-A) and (2-B) can be applied not only to FPGAs but also to ASICs.

4 Performance Evaluation

4.1 Experimental Environment

Figure 10 shows our experimental evaluation system, which uses a Spartan-3E
starter kit board [17] with a Xilinx FPGA (XC3S500E). A 50-MHz clock signal
generated by an on-board oscillator is applied to a Digital Clock Manager (DCM)
primitive, which divides it into a 2.5-MHz clock signal that is applied to 128 RS
latches. The output stream from each RS latch is switched by a multiplexer
(MUX), and stored into a block RAM. Finally, the raw stream data from all the
RS latches are transmitted to the PC through an RS232C port. In our evaluation,
a software on the PC detects whether or not the streams contain random numbers
rather than this being done with detection circuits. We regard that the detection
technique does not influence PUF performance because the latter depends only
on the output of the RS latches. We implement 128 RS latches on a 16 × 8 matrix
of FPGA CLBs in accordance with proposed methods (2-A) and (2-B), this

Uniqueness Enhancement of PUF Responses 399

Block

RAM

RS232C

module

CLK (2.5MHz)

PC

FPGA (XC3S500E-4FG320C)

DCM Oscillator

(50MHz)

・

・

・

LATCH0

LATCH1

LATCH2

LATCH126

LATCH127

A software

for detection

Fig. 10. Experimental evaluation system

being done manually with the FPGA synthesis tools in Xilinx ISE Design Suite
11.1. We regard one FPGA board as four virtual boards, since the RS latches
are implemented at four completely different locations in the CLB matrixes for
each FPGA. The evaluation uses 10 actual FPGA boards, but in the following
discussion, we take the number of FPGA boards to be 40.

4.2 Experimental Results

Reliability and Uniqueness. Before we represent an evaluation of the effec-
tiveness of proposed method (1), we show the basic performance of our BPUF,
reliability and uniqueness. Our BPUF with 128 RS latches - based on proposed
methods (2-A) and (2-B) - gives the results for reliability and uniqueness shown
in Fig. 11 and Fig. 12, respectively. In our experiment, the PC is used to mea-
sure a 1000-bit output stream from each RS latch. The 2-bit partial response
generated by each RS latch is ‘00(11)’ if the 1000-bit bitstream is identically zero
(one), or ‘10’ if it includes a transition from 0(1) to 1(0). As a result, our BPUF
with 128 RS latches can generate a 256-bit response. The reliability evaluation
generates 40 responses using only a single specific FPGA selected at random.
Figure 11 shows a histogram of normalized hamming distance between two ar-
bitrary responses among the 40 responses (i.e. 40C2 = 780 combinations). The
average error rate is approximately 2.4% with a standard deviation of 0.75%,
which is much less than the 15% assumed in Ref. [18] for stable responses based
on a Fuzzy Extractor with a reasonable size of redundant data. Hence, our PUF
gives responses that are of high reliability. Next, the uniqueness evaluation gener-
ates a total of 40 responses using all 40 FPGAs (one response per FPGA). Figure
12 shows a histogram of normalized hamming distance between two arbitrary
responses among the 40 responses. This evaluation is a general way of showing
the extent to which the responses of the chips are different. The difference in
the responses of two arbitrary PUFs is approximately 46% with a standard de-
viation of 3.8%. The ideal difference is 50%, so our PUF gives responses with a
high level of uniqueness.

400 D. Yamamoto et al.

 0

 0.05

 0.10

 0.15

 0.20

 0.25

 0.30

 0.35

 0.40

 0.45

 0.50

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

R
at

io

Normalized Hamming Distance

Fig. 11. Reliability

 0

 0.05

 0.10

 0.15

 0.20

 0.25

 0.30

 0.35

 0.40

 0.45

 0.50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
at

io

Normalized Hamming Distance

Fig. 12. Uniqueness

Table 1. Gate size and processing time of our PUF (not including detection circuits)

Gate size
SLICEs used 532/9312

BRAM16s used 16/20

Processing time 0.4 ms (1000 cycles @ 2.5 MHz)

Cost. Table 10 indicates the gate size and processing time of our PUF evaluation
system, shown in Fig. 10. In the FPGA evaluation system, a software on the PC
is used instead of detection circuits. Our PUF (not including detection circuits)
uses only 5% of the total slices in a FPGA, and the gate size is expected to
be very small in ASICs. However, our PUF implemented in ASICs requires 128
detection circuits, and the gate size is estimated to be about 5.4K gates, using
the gate equivalencies introduced in [16]. The gate size of our PUF is comparable
to that of compact hardware for common key block ciphers such as AES. Hence,
our PUF is sufficiently small to be implemented in embedded systems. The gate
size can be reduced by a shared detection circuit switched by a multiplexer. The
processing time is around 0.4ms, this being the total time taken to generate a
response. One way of improving the processing time is to reduce the bitstream
length for detection (1000 bits in our experiment). However, too short a length
may result in misdetection. For example, RS latches outputting a large number
of 0’s and very few 1’s might be detected not as random, but as fixed latches. This
misdetection leads to loss of reliability, so our PUF makes a tradeoff between
reliability and processing time. Our proposed PUF has advantages in terms of
low noise because RS latches are allowed to become non-metastable through
RS latch clock gating except when generating responses. In addition, our PUF
can generate responses at anytime, unlike SRAM PUFs which can only generate
them during power activation.

Effectiveness of Proposed Methods. Figure 13, a histogram showing the
number of random latches per FPGA, represents an evaluation of the effec-
tiveness of proposed methods (2-A) and (2-B). The results show that the pro-
posed methods increase the number of random latches. This is because these
methods allow the RS latches to become readily metastable, and increase their

Uniqueness Enhancement of PUF Responses 401

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35 40 45 50

T
he

 n
um

be
r

of
 F

PG
A

s

The number of random lathes

Conventional (2-B1)
Conventional (2-B2)
Proposal (2-B)

Fig. 13. Histogram for the number of random latches per FPGA

Table 2. The average number of random latches and number of responses

Implementation
Average # of random latches # of responses

(experimental value) (theoretical value)

Conv.(1-A)+Conv.(2-B1) ≈ 12/128 ≈ 2116

Prop.(1)+Conv.(2-B1) ≈ 12/128 ≈ 2170

Prop.(1)+Conv.(2-B2) ≈ 26/128 ≈ 2192

Prop.(1)+Prop.(2-B) ≈ 32/128 ≈ 2196

probability of outputting random numbers. In proposed method (1), the number
of responses for 128 RS latches takes its maximum value when the number of
random latches is around 43. Hence, the proposed methods improve the unique-
ness of responses by increasing the number of random latches to as close to 43
as possible.

Table 2 shows the average number of random latches and number of responses
for various implementation methods. Here, the number of responses is calculated
theoretically based on the average number of random latches and Fig. 7. The
number of responses is estimated to be 2116(= 2128−12) when PUFs implemented
by conventional method (2-B1) generate responses without 12 random latches.
The PUFs based on proposed method (1) can generate 2170 responses using the
location information entropy of 12 random latches. Moreover, PUFs based on
both proposed methods (1) and (2-B) generate approximately 2196 responses
with 32 random latches. Our proposed methods therefore dramatically increase
the number of responses.

Entropy of Responses. Here, we perform a rigorous evaluation of the en-
tropy of responses. The number of responses estimated in Table 2 is based on
the assumption that RS latches output 0’s, 1’s, or random numbers with equal
probability. If an RS latch (e.g. LATCH0) outputs 0’s independently of FPGA,
then the 2-bit partial response corresponding to that latch must be ‘00’, so the
response cannot have a particular value. As a result, the actual number of re-
sponses is much smaller than the above estimated number. Table 2 therefore

402 D. Yamamoto et al.

shows the theoretical upper bound on the number of responses. By following the
2 steps below, we rigorously calculate the entropy of responses from our PUFs
using the experimental results with 40 FPGAs.

In the first step, we show the ratios of RS latches outputting 0’s, 1’s, and
random numbers, shown in Fig. 14. We explain how to read the figure with
the specific example in Fig. 15, as follows. First, the 40 RS latches at the same
physical CLB location (e.g. LATCH0) on the 40 FPGAs are called “a latch
group”. Hence, in our experiment, there are 128 latch groups corresponding to
the range from LATCH0 to LATCH127. The 40 RS latches labeled as LATCH0

include 15 latches outputting 0’s, 20 outputting 1’s, and 5 outputting random
numbers. The ratios are therefore 0.375, 0.500 and 0.125, respectively. A plot
of LATCH0 is obtained by relating the ratios to the three sides of a triangle,
and 128 plots are obtained, corresponding to the 128 latch groups in Fig. 14. A
plot is located at the central point of the triangle if the ratios are equal, which
is the ideal. Given the limited number of FPGAs (i.e. 40) in our experiment, it
is desirable as a practical criterion that a large proportion of plots are located
in the small central triangle illustrated by thick line. If the plot is in the small
triangle, the three ratios fall within a range of 0.20 to 0.60. In conventional
method (2-B1), it can be seen that all of the RS latches in each latch group
have a low probability of outputting random numbers since many of the plots
are located on the right side of the triangle. In addition, most RS latches in
each latch group have a one-sided probability of outputting 0’s or 1’s since many
of the plots are located throughout the whole of the right side. Conventional
method (2-B2) improves the ratios, making them roughly equal, but requires a
large number of CLBs to implement the RS latches shown in Fig. 4. In addition,
there are not so many random latches (around 26), so the number of responses is
not very large. In contrast, proposed method (2-B) improves the ratios such that
they are almost equal since as many as 93 plots are located in the small central
triangle. Furthermore, no latch groups have RS latches outputting ternary values
at a high (> 0.9) or low (< 0.1) probability. The number of plots in the small
triangle is significantly higher than with conventional methods, which implies
that the proposed method makes many of the RS latches readily metastable, so
that the ratios become almost equal as a favorable side effect. Hence, using the
proposed methods, the number of responses is expected to be close to the upper
bound shown in Table 2.

In the second step, we rigorously calculate the Shannon entropy of responses
based on the ratios discussed in the first step. Let the ratios of the RS latches
labeled as LATCHn outputting 0’s, 1’s, or random numbers be Pn(0), Pn(1) and
Pn(R), respectively. The Shannon entropy En derived from LATCHn is defined
as

En = −Pn(0) · log2 Pn(0) − Pn(1) · log2 Pn(1) − Pn(R) · log2 Pn(R). (2)

Uniqueness Enhancement of PUF Responses 403

1

0

R
an

do
m

 N
um

be
r

0.
9

0.
5

0.
1

0.1 0.5 0.9

0.9

0.5

0.1

Conv. Mtd (2-B1)
(10 plots in the small

triangle)

1

0

R
an

do
m

 N
um

be
r

0.
9

0.
5

0.
1

0.1 0.5 0.9

0.9

0.5

0.1
Conv. Mtd (2-B2)

(65 plots in the small
triangle)

1

0

R
an

do
m

 N
um

be
r

0.
9

0.
5

0.
1

0.1 0.5 0.9

0.9

0.5

0.1

Prop. Mtd (2-B)
(93 plots in the small

triangle)

Fig. 14. Ratios of RS latches outputting 0’s, 1’s, or random nums in 128 latch groups

LATCH0

・

・

・

LATCH1

LATCH127

LATCH0

・

・

・

LATCH1

LATCH127

LATCH0

・

・

・

LATCH1

LATCH127

・ ・ ・

FPGA1 FPGA2 FPGA40

15/40

=37.5%

5/40

=12.5%

20/40

=50.0%

Rnd 1

0

50.0%

12.5%

37.5%

Rnd

1

0

A latch group

of LATCH
0

Fig. 15. How to read Fig. 14

Hence, the total Shannon entropy derived from LATCH0 to LATCH127 is∑N−1
n=0 En, where N = 128. Here, the total entropy can also be given as

N−1∑

n=0

En = log2(2
N−T · NCT) (3)

by Stirling’s approximation (log2 x! ≈ x log2 x − x log2 e) under the ideal condi-
tion that Pn(0) = Pn(1) = 1

2 (1−T/N) and Pn(R) = T/N (0 ≤ n ≤ N, N = 128).
Equation 3 shows that the total Shannon entropy corresponds to the number of
responses estimated in Sect. 3.1. Therefore, in consideration of the ratios of RS
latches outputting 0’s, 1’s, and random numbers in first step, the number of re-
sponses can be rigorously calculated on the basis of the Shannon entropy in Eq.
2. Table 3 shows the Shannon entropy for responses. A PUF with 128 RS latches
based on conventional method (2-B1) generates 2126.6 responses even if proposed
method (1) is applied. This is because the number of random latches is small,
and the ratios are not equal. In contrast, the PUF based on proposed method
(2-B) generates 2192.7 responses, which is almost same as the upper bound in
Table 2, and is larger than for PUFs based on conventional methods. Hence,
a PUF based on both proposed methods reduces circuit size and dramatically
improves the entropy (i.e. uniqueness) of responses.

404 D. Yamamoto et al.

Table 3. Shannon entropy of responses

Entropy of responses (bits)

Conv.(1-A)+Conv.(2-B1) 97.2
Prop.(1)+Conv.(2-B1) 126.6
Prop.(1)+Conv.(2-B2) 187.7
Prop.(1)+Prop.(2-B) 192.7

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60 70 80 90

R
es

po
ns

e
E

rr
or

 R
at

e
[%

]

Temperature(oC)

Fig. 16. Error rates against various temperatures

The entropy per unit area (gate size) of proposed method (1) is expected to
be higher than that of conventional methods (1-A) and (1-B). Both proposed
and conventional methods (1-A) requires a mechanism to detect random latches,
so their area sizes are almost same, while the entropy of proposed method (1)
is higher from Table 3. In contrast, conventional method (1-B) does not require
the mechanism, so the area size is smaller than proposed method (1). Hence,
by implementing more RS latches, the entropy of conventional method (1-B)
seems to be higher. In fact, however, conventional method (1-B) needs to correct
the variation resulting from all the random latches, which requires larger ECC
redundant data for stable responses. In contrast, proposed method (1) regards
random numbers as the third stable value, which leads to a reasonable size of
redundant data. Therefore, in consideration of the area size for redundant data,
the proposed method is expected to generate higher entropy per unit area.

Temperature Resistance. Figure 16 shows the change in error rate for various
temperatures ranging from 0 ◦C to 85 ◦C, which is within the rated temperature
of the FPGA (XC3S500E-4FG320C). Here, error rate is the ratio of the number
of 2-bit partial responses that are different from those at 25 ◦C. Figure 16 plots
the error rates of 40 FPGAs at 0 ◦C, 25 ◦C, and 85 ◦C. The bigger the temper-
ature difference from 25 ◦C - as the standard temperature - the higher the error
rate. The error rate is less than around 15% regardless of temperature, so stable
responses are generated based on a Fuzzy Extractor with a reasonable size of
redundant data [18].

Uniqueness Enhancement of PUF Responses 405

5 Conclusion

This paper proposed a method for generating responses from a BPUF based on
the location information of RS latches outputting random numbers. Our pro-
posed detection circuit generates ternary values (00/11/10) in accordance with
the three types of output bitstream from RS latches. This increases the number
of responses from 2128 to around 3128 with 128 RS latches, thereby dramatically
improving the uniqueness of the responses. In addition, with its small circuit
size, the new implementation method increases the number of random latches,
and equalizes the ratios of RS latches outputting 0’s, 1’s, and random numbers,
thereby enhancing the effectiveness of the proposed method. According to our
experiment with 40 FPGAs, a BPUF with 128 RS latches based on the proposed
methods is able to generate responses with 193-bit entropy, which is larger than
the 116-bit entropy achieved by conventional methods. The proposed methods
can be applied to other PUFs, such as the Arbiter PUF. Unstable (random) out-
puts from the PUF can be used for generating highly-unique responses without
the necessity of selecting available challenges. Future work will include discus-
sion of voltage resistance, performance evaluation on ASIC, and the application
of the proposed methods to other kinds of PUFs than BPUFs.

References

1. Pappu, R.S.: Physical one-way functions. PhD thesis, Massachusetts Institute of
Technology (March 2001)

2. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Proceedings of CCS 2002, pp. 148–160 (2002)

3. Gassend, B., Clarke, D., Lim, D., van Dijk, M., Devadas, S.: Identification and
authentication of integrated circuits. In: Concurrency and Computation: Practice
and Experiences, pp. 1077–1098 (2004)

4. Maes, R., Verbauwhede, I.: Physically unclonable functions: A study on the state
of the art and future research directions. In: Towards Hardware Intrinsic Secu-
rity: Foundation and Practice. Information Security and Cryptography, pp. 3–37.
Springer, Heidelberg (2010)

5. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic pUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

6. Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags. In: Proceedings of the Conference
on RFID Security (July 2007)

7. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The butterfly puf:
Protecting ip on every fpga. In: HOST, pp. 67–70 (2008)

8. Jae, W., Lee, D., Lim, B., Gassend, G.E., Suh, M., Van Dijk, M., Devadas, S.: A
technique to build a secret key in integrated circuits with identification and au-
thentication applications. In: Proceedings of the IEEE VLSI Circuits Symposium,
pp. 176–179 (2004)

9. Suzuki, D., Shimizu, K.: The glitch PUF: A new delay-PUF architecture exploit-
ing glitch shapes. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 366–382. Springer, Heidelberg (2010)

406 D. Yamamoto et al.

10. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Proceedings of DAC 2007, pp. 9–14 (2007)

11. Rührmair, U., Sölter, J., Sehnke, F.: On the foundations of physical unclonable
functions. Cryptology ePrint Archive, Report 2009/277 (2009)

12. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: ACM Sym-
posium on Theory of Computing (1977)

13. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38, 97–139
(2008)

14. Hata, H., Ichikawa, S.: Fpga implementation of metastability-based true random
number generator. In: IEICE Tech. Rep., RECONF2008-59 (January 2009)

15. Ichikawa, S., Hata, H.: True random number generator based on metastability of
rs latch. In: SCIS 2009, pages 2F1–5 (2009)

16. Batina, L., Lano, J., Mentens, N., Ors, S.B., Preneel, B., Verbauwhede, I.: Energy,
performance, area versus security trade-offs for stream ciphers. In: The State of
the Art of Stream Ciphers, Workshop Record, ECRYPT 2004, pp. 302–310 (2004)

17. Spartan-3E starter kit board,
http://www.xilinx.com/products/devkits/HW-SPAR3E-SK-US-G.htm

18. Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft deci-
sion helper data algorithm for SRAM pUFs. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009)

 http://www.xilinx.com/products/devkits/HW-SPAR3E-SK-US-G.htm

MECCA: A Robust Low-Overhead PUF Using

Embedded Memory Array

Aswin Raghav Krishna, Seetharam Narasimhan, Xinmu Wang,
and Swarup Bhunia

Case Western Reserve University, Cleveland OH-44106, USA
ark70@case.edu

Abstract. The generation of unique keys by Integrated Circuits (IC)
has important applications in areas such as Intellectual Property (IP)
counter-plagiarism and embedded security integration. To this end, Phys-
ical Unclonable Functions (PUF) have been proposed to build tamper-
resistant hardware by exploiting random process variations. Existing
PUFs suffer from increased overhead to the original design due to their
specific functions for generating unique keys and/or routing constraints.
In this paper, we propose a novel memory-cell based PUF (MECCA
PUF), which performs authentication by exploiting the intrinsic pro-
cess variations in read/write reliability of cells in static memories. The
reliability of cells is characterized after manufacturing by inducing tem-
poral failures, such as write and access failures in the cells using a pro-
grammable word line duty cycle controller. Since most modern designs
already have considerable amount of embedded memory, the proposed
approach incurs very little overhead (<1%) compared to existing PUF
designs. Simulation results for 1000 chips with 10% inter-die variations
show that the PUF provides large choice of challenge-response pairs with
high uniqueness (49.9% average inter-die Hamming distance) and excel-
lent reproducibility (0.85% average intra-die Hamming distance).

Keywords: Physical Unclonable Function (PUF), IC authentication,
Memory failures, Negative Bias Temperature Instability (NBTI).

1 Introduction

In recent years, shorter product-cycle marketing requirements in the semicon-
ductor industry have driven chip vendors to reuse their hardware designs and
outsource Integrated Circuits (IC) production to external foundries shared by
many companies. Apart from reuse, the intellectual property (IP) is often an
additional source of income to a vendor through external licensing to other com-
panies who can include the design in their products. However, production out-
sourcing and IP licensing have exposed the designs to theft and cloning and it
is estimated that counterfeit electronics cost the industry upto US$100 billion
every year [1]. Counterfeiting attacks on IP/IC can occur at the manufactur-
ing site, e.g. an untrusted foundry makes several copies of the design, or during

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 407–420, 2011.
c© International Association for Cryptologic Research 2011

408 A.R. Krishna et al.

deployment in the field. These attacks can be broadly classified into two cate-
gories: (i) invasive attacks, e.g, by delayering the IC through reverse engineering
and obtaining circuit function from physical layout; and (ii) non-invasive attacks
which in turn can be classified as passive and active attacks. Passive attacks are
mounted by observing side-channel information such as power consumption [2],
delay or electromagnetic radiation, to obtain secret keys or sensitive informa-
tion. Active attacks, on the other hand, are induced by the introduction of a
fault followed by a passive attack [3]. IP designs can also be stolen from FPGAs
during power-up by reading their bitstream information which is stored in an
external memory. Building a tamper-proof hardware that is resistant to all forms
of attacks is, thus, crucial for securing IP/IC against counterfeit attacks.

Authentication plays an important role in detecting counterfeit products. Sim-
ply put, the role of authentication is to check the identity of a product and to
validate that it comes from a genuine source. The common practice is to em-
bed a digital secret/ID in a non-volatile memory, e.g. in a RFID tag, and use
digital key comparison and encryption for authentication and protection of se-
cret information. However, since the secret information is stored in digital form,
it is vulnerable to invasive attacks and providing high tamper resistance envi-
ronment is very expensive. Furthermore, since each product contains only one
unique identifier, it is possible for an attacker to obtain it by intercepting the
communication of the key between an authorized reader and a tag and use it for
cloning or mounting replay attacks.

Physical Unclonable Functions (PUFs) are rapidly becoming the preferred
method for IC/IP identification, authentication and secure system design. They
are secure, low-cost, and robust functions built into a design that implement a
challenge-response protocol by exploiting the inherent random variations in the
manufacturing process to generate unique signatures [4,5]. Inevitable variations
in the device paramaters (e.g. threshold voltage) make it practically impossible
to clone the original PUF even with the same mask set, foundry and manufac-
turing process. Typically, the challenge response pairs for each device are stored
by the vendor after production in a database and is given to a trusted party
who wishes to use the device. The trusted party applies a challenge and checks
the corresponding response with the database to verify the authenticity of the
device in any environment [6]. PUFs have several advantages that make them
robust to cloning and replay attacks. Firstly, since a PUF response is based on
random process variations, it is not possible for an attacker to ‘predict’ the re-
sponse before or after production. Secondly, since PUFs have a very large set
of challenge-response pairs, an attacker must obtain all the pairs to make an
identical copy of the PUF - merely obtaining only a few pairs is not useful, since
a different pair may be used for authentication. Thirdly, unlike conventional ap-
proaches in which the stored keys are preserved digitally in non-volatile memory
even after power-down, PUFs generate signatures only when they are powered-
up, thus forcing attackers to mount attacks to extract signatures only when the
PUF is in operation [6].

MECCA: A Robust Low-Overhead PUF Using Embedded Memory Array 409

In this paper, we propose a novel (ME)mory (C)ell-based (C)hip
(A)uthentication PUF - MECCA PUF for authentication and key generation
based on the concept of failure mechanisms in the memory array. It is observed
that more than 50% of System-On-Chip (SOC) area is used for memory with
estimates indicating that the number could increase to 90% in 2013 [7]. The
proposed PUF leverages on the fact that most designs already contain embed-
ded SRAM memory array for their operation and hence can also be used for
generating signatures. The basic idea is to control the word line duty cycle of
the SRAM cells to determine their vulnerability to failures during read/write
access. Word line controllability allows us to generate multiple responses from
the array and hence increase the number of challenge-response pairs. The ran-
dom process variations of the cells’ parameters across the chip determine the
reliability (low or high) of the cells; the cells’ reliability is translated to a digi-
tal response. We analyze the effectiveness of MECCA PUF in detail and show
that it provides excellent unclonability, uniqueness and robustness of signatures.
Since environmental effects such as temperature and device ageing effects (such
as bias temperature instability or BTI [22]) affect the repeatability of signa-
tures, we propose an ageing-tolerant scheme to make the cells generate highly
stable responses. Simulation results show that the proposed PUF offers several
advantages: 1) very less area overhead (<1%); 2) high uniqueness (49.9% av-
erage inter-die Hamming distance); and 3) high reproducibility. Additionally,
the delay controller circuit can also be integrated with a Design-for-Test (DFT)
technique [8] for detecting stability faults in memory, thus allowing it to serve
dual purposes and to further reduce the cost per function.

The remainder of the paper is organized as follows: Section 2 describes prior
works on PUF circuits. Section 3 describes the methodology of the proposed
MECCA PUF along with theoretical analysis of PUF properties. Simulation
results and analysis are presented in Section 4. Finally, we conclude in Section 5.

2 Related Work

Several silicon PUFs have been published in literature. Silicon PUFs can be
classified as memory PUFs and delay PUFs [9]. Delay PUFs such as Ring Os-
cillator PUF [6, 10] and Arbiter PUF [11, 12] translate the process variations
into random delay variations to produce a digital signature. These PUFs in-
volve introduction of the circuits which are solely used for key generation and
authentication and hence present substantial area overhead. Existing memory
based PUFs rely on the random initializations of the cells due to process vari-
ations for generating signatures [13, 14, 15]. However, these PUFs only provide
a single bit response per cell and have limited challenge-response pairs [9]. Fur-
thermore, these PUFs are prone to cloning attacks in the foundry as the entire
random initialization memory map can be copied to produce the signatures as
the original PUF. Another type of PUF, known as Butterfly PUF [16], is based
on exploiting interconnect variations in cross-coupled latches during startup. A
major disadvantage with this PUF is that attaining the metastable point for

410 A.R. Krishna et al.

Fig. 1. MECCA PUF architecture: (a) Memory block with peripheral circuitry and
programmable delay circuit, (b) Schematic of an SRAM cell

each cross-coupled latch prior to key generation is difficult due to the finite de-
lays of the latches and interconnects which causes the outputs of the latches to
oscillate. This oscillation imposes precise timing requirements of the control (ex-
cite) signal for reproducible keys. Finally, PE-PUFs [9] couple process variations
with environmental effects, such as temperature, power supply noise and noise
due to circuit activity, for generating signatures. However, PE-PUFs require long
interconnects and placement over the entire chip which can result in significant
area overhead/routing constraints in modern technologies.

3 MECCA PUF

The concept of the proposed MECCA PUF architecture can be explained with
the help of Fig. 1. The PUF contains an SRAM array along with peripherals
and a programmable delay generator. Most modern designs already contain one
or more memory block(s) for their normal operation and the delay generator
introduces only a minor area penalty. In the core array, inter-die and intra-
die variations in the device parameters cause a mismatch in the strengths of
transistors which can be exploited to cause failures in cells. However, some cells
are more prone to failure than others because of the random effect of process
variations.

The failure mechanisms [20, 21] observed in a memory cell are as below:
Write failure: Occurs when the internal node in an SRAM cell cannot be

discharged through the access transistors during the word line’s active duration.
Read failure: Flipping of the data in SRAM cell during a read operation.
Access failure: Occurs when the voltage difference between the bitlines is lower

than the offset voltage of the sense amplifier when it is activated.
Hold failure: When the supply voltage is lowered during standby, leakage

currents through the NMOS transistors can cause internal node voltage to reduce
below the switching threshold of the inverter for a data flip.

The idea of using memory failures in PUFs has been investigated earlier in [17,
18] by inducing read/write collisions or using metastability in the cross-coupled

MECCA: A Robust Low-Overhead PUF Using Embedded Memory Array 411

Fig. 2. Reliability of 8 cells for different word line duty cycles; WL3>WL2>WL1

(WL3 is used for normal memory operation)

loop to generate responses. In the MECCA PUF, we use a different approach
of evaluating the reliability of a single SRAM cell by inducing a write failure by
changing the word line duration. Assume that the cell stores a ‘0’ and we wish
to write a ‘1’. This is accomplished by setting BL to ‘1’ and BL to ‘0’ which
causes the cross-coupled inverters to change states. As shown in Fig. 1(b), the
different transistors have varying ΔVT components imposed on nominal VT due
to process variations. Equating the dc currents through the transistors AXL
and NL, we compute the internal node voltage, VQ as shown in eqn. (1), where
the required pull-up ratio of the cell, PUR, is decided such that VQ is below the
switching point of the inverter.

VQ = VDD − (VTn + ΔVAXL) − [((VDD − (VTn + ΔVAXL))2 − 2 × PUR

×(
μp

μn
)((VDD − |(VTp + ΔVPR)|) × VDSATp) − (

V 2
DSATp

2
))]0.5 (1)

In a realistic scenario, the VT and ΔVT components of the other transistors also
play an important role as the cell starts switching due to regenerative feedback.
For normal memory operation, the word line (WL) duration is selected such that
a write operation can be successfully performed under all process corners. When
the memory is used as a PUF, we purposely reduce the WL duration such that a
stable cell at a normal WL length may or may not be stable at a reduced length
as determined by process variations. For example, by using a programmable delay
word line, the WL duty-cycle is shortened which will randomly cause some of
the cells to have write failure. The effect of reducing WL duration is shown in
Fig. 2 where the values of 8 cells are compared for 3 durations. For each WL
duration, by selecting a set of R cells, we obtain a signature consisting of both
good cells (which are written correctly even with shorter WL) and defective cells
(which have write failure). Access failure may also be exploited in the MECCA
PUF to evaluate reliability of a cell by reducing the WL duration required for
discharging one of the bit-lines for a read operation.

In contrast, read and hold failures are static failures which cannot be con-
trolled by WL duration and hence are not useful for evaluating the reliability of

412 A.R. Krishna et al.

Fig. 3. Dependence of stability of a cell on write value (In both cases, the reduced
word length ON time is the same) (a) Successful write-0 operation. (b) Write-0 failure.

a cell in our PUF. For example, for a read-1 failure, the node voltage (VQ̄) which
is determined by voltage division across the resistances of transistors AXR and
NR, must rise above the switching threshold (VS) of the subsequent inverter for
the cell to flip its value. The voltage division is independent of the WL duration
and hence read failures cannot be induced by varying the WL duration. Hold
failures occur due to leakage currents and hence cannot be induced by controlling
the WL duration. The reliability of a cell also depends on the logic value being
written into the cell at reduced word-line duration. As shown in Fig. 3, the cell
has high reliability for a write-1 but a low reliability (write failure) for a write-0
operation for the same WL. This is due to the fact that different PMOS and
access NMOS transistors (and hence different VT variations) are involved at the
initialization of write-0 and write-1 operations before the other transistors play a
role in engaging positive feedback. This dependence on write value is very useful
in increasing the number of unique signatures since a write-0 success (failure)
does not imply a write-1 success (failure) at the same WL.

The major steps for generating unique signatures are as follows.

1. We choose the address of the R-cells as part of the input challenge.
2. A background write operation of 0 (or 1) in cell(s) is performed at the normal

word line duration depending on whether we want to exploit the reliability
for a write-1 or write-0. This is required to ensure that the cells are in
a known initialized state, thus ensuring that a possible successful write is
not due to random initialization. Next, the bitlines are precharged to their
respective values depending on the values to be written.

3. We reduce the word line duration using the programmable delay circuit and
perform the write operation at this reduced duration for all the chips.

4. Finally, we read out the values stored in the cells to give an R-bit response.

Word Line Duty Cycle Controller: Fig. 4 illustrates a programmable word
line duty cycle controller that is used for inducing write failures in the SRAM
array. The circuit consists of a chain of inverters with the outputs of k subgroups
of odd number of inverters connected to the inputs of a k X 1 mux. The pro-
grammable select bits, which become part of the challenge, choose one out of
k possible duty cycles to generate a shortened word line, e.g. by acting as the

MECCA: A Robust Low-Overhead PUF Using Embedded Memory Array 413

Fig. 4. Programmable word line duty cycle controller

Fig. 5. (a) Write-time distribution of 1000 chips, (b) Programmable delay variation
across 1000 chips

enable signal for the address row decoder. The k duty cycles consist of n = k−1
duty cycles used for PUF operation and one for normal memory operation.

The word line durations can be chosen from the distribution of write-time
(Fig. 5(a)) of all the cells in the chips. For PUF operation, we choose the mean
word line to be the nominal, μ, of the write-time distribution since the cells will
have equal probability of write failure and success. The inverter chain is then
tapped for outputs to obtain n duty cycles such that they fall within ±T from
the nominal. The n levels must be separated such that they don’t overlap with
each other due to VT variations in the duty cycle controller as shown in Fig. 5(b)
where three WL durations are sorted in increasing order of inter-die VT . Also,
it is interesting to note that since the controller and the SRAM array are at
the same inter-die VT for a particular chip, all n levels will move in the same
direction (albeit by different amounts) and only the intra-die variations need be
considered for choosing T . For a C chosen based on the accepted distribution
of ‘1’s and ‘0’s in the responses, i.e., P (X < μ − T) < C, T can be computed
in terms of σ. As an added layer of security, a challenge to address-duty cycle
mapping or other well-known techniques (e.g. controlled PUFs [19]) can be used
to make it harder for an attacker to model the PUF. We investigate the following
properties of PUFs:

Unclonability: From a security perspective, a PUF itself must not be prone to
cloning by an attacker by observing a few challenge response pairs. In the case

414 A.R. Krishna et al.

of our PUF, an attacker must obtain the addresses of the cells, the word line
duration and the values being written into each cell for each challenge. In this
context, we are referring to an attacker in the foundry who has complete access
to the chips. Choosing an arbitrary WL and observing the values of all the cells
in the array to clone a copy by skewing will not be useful to the attacker since
the values in all the cells in the original MECCA PUF will be different from the
values in the skewed design for different word line durations; the attacker must
skew the design such that each cell has the same response at each WL for a
write-0 and write-1 - a significantly difficult challenge.

Entropy: Different signatures can be obtained by measuring the reliability of
different sets of cells, i.e., by using a different set of addresses (challenges).
Moreover, as the WL duration can be controlled to generate different sets of
low and high reliability cells for a chosen set of addresses, the WL duration is
also part of the challenge and can be used to produce many keys from a given set
of addresses. As an example, for a set of chosen addresses (A0, A1, A2,. . . An),
by setting WL duration to, say WL1, we obtain a signature as (D0, D1, D2 . . .
Dn) where Di is 0 or 1 depending on whether the cell at Ai is a high reliability
cell (with no write failure) or low reliability cell (with write failure) respectively.
By changing the WL duration to WL2, we can obtain another signature set (S0,
S1, S2,. . . Sn) for the same addresses (A0, A1, A2,. . . An), with Dk �=Sk for some
cells for 0≤k<n. For example, the address set (900, 100, 500, 825,. . ., 1024) in
a 1024 SRAM array for a write-1 can have a signature

– (1, 0, 0, 1,. . .,1) for word line length, WL1, where cells at 900, 825 and 1024
are high reliability cells (1s) and cells at 100, 500 are low reliability cells (0s)

– (1, 0, 1, 1,. . ., 1) for word line length, WL2, (such that WL2>WL1) where
cells at 900, 500, 825 and 1024 are high reliability cells (1s) and the cell at
100 is a low reliability cell (0)

As mentioned before, measurement of reliability is relative among cells and word
line durations, i.e., a cell (such as A2 in the above example) which has high reli-
ability for a given WL duration can have low reliability for a shorter WL. How-
ever, since the delay circuit is designed to produce n-levels of durations close to
the nominal required write-time of the cells, the values at many bit positions in
an R-bit response will be different for a shorter WL duration. Additionally, the
dependence of reliability on the value being written for a given WL duration also
increases entropy by choosing different write values for the given set of addresses.

4 Simulation Results and Analysis

The proposed PUF has been implemented with an SRAM array designed for
the 45nm Predictive Technology Model (PTM) [28]. Simulations were carried
out using Synopsys HSPICE for 1000 chips for generating 128 bit responses.
The effect of process variations for the chips was introduced by running Monte
Carlo simulations for inter-die variations with σ = 10% and random intra-die

MECCA: A Robust Low-Overhead PUF Using Embedded Memory Array 415

Fig. 6. HD distribution of inter-die responses of 1000 chips for (a) write-1 at mean WL
(b) write-0 at mean WL (c) Avg. inter-die HD for 3 WLS for write-0 and write-1

variations with σ = 6%. The duty cycle controller was implemented as shown in
Fig. 4 to produce n=3 duty cycles. The SRAM cells were brought to a known
initialization state with a background write at the normal WL duration. The
challenge consisted of the addresses of the cells along with the select inputs to
the duty cycle controller. After a pattern was applied, the values of the 128 cells
were extracted as a signature at a short WL duration for all the chips.

Uniqueness Analysis: To determine the uniqueness of the MECCA PUF, we plot-
ted the distribution of the inter-die Hamming distance (HD) of 1000 MECCA
PUFs for write-0 and write-1 operations for the 3 WL durations as shown in
Fig. 6; the horizontal axis represents the number of bits differing between re-
sponses of any two chips for a given challenge while the vertical axis represents
the number of comparisons among the 1000 chips corresponding to a HD. To
quantify the uniqueness property, we computed the average inter-die Hamming
Distance (HDAvg) [29] of the signatures of m=1000 chips with percentage HD
(out of r response bits) between any two chips m1 and m2 as follows:

HDAvg =
2

m × (m − 1)

m−1∑

i=1

m∑

j=i+1

HDperc(m1, m2). (2)

The average inter-die HD was found to be close to the ideal 50% for write-0 and
write-1 operations at the mean WL but reduced by a maximum of 2.5% (for a
write-0 operation) for WL1 and WL2. The reduction in inter-die HD is due to
bit-skewing at some bit positions in the responses from the 1000 chips. Ideally,
each bit in the responses from all the chips should have 50% probability of being
a 0 or a 1 to center the inter-die HD distribution about 50%. However, if some
bit has higher probability towards 0 or 1, then the inter-die HD for that bit be-
comes close to zero. In our case, the skewing is due to the fact that a cell failure
at a longer WL implies a failure at a shorter WL for a given write value (Fig. 7).

Robustness Analysis: The robustness of a PUF shows how reproducible are the
signatures from the chips in changing operating conditions. The HD between
responses from the same PUF in different operating conditions must be as low
as possible for high reproducibility. We estimated the intra-die HD among the

416 A.R. Krishna et al.

Fig. 7. Bit-skewing for write-1 at (a) WL1 < mean WL (b) WL2 > mean WL

Fig. 8. Average intra-die HD from 1000 chips for MECCA PUF (a) for supply voltage
variation (compared to nominal Vdd=1V), and (b) for temperature variation

128-bit responses for each chip for supply voltage variations and compared them
with that obtained at nominal voltage (Fig. 8(a)). At the worst-case voltage of
0.8V, the intra-die HD is as high as 23 bits (≈ 18%). Fig. 8(b) shows the intra-
die HD for temperature variations for each chip at room temperature compared
with that obtained at 5 temperatures (for the same challenge) till 100◦C in steps
of 15◦C. Most of the responses (≈ 93.3%) from the 1000 chips change by less
than 3 bits with very few responses changing by 5 bits or more (≈ 1%) for mean
WL showing that the PUF is very stable even at high temperatures. From the
two figures, the overall conclusion is that the PUF showed lower reliability due
to voltage variations than due to temperature variations.

Ageing Effects: Ageing effects due to temporal variations in device parameters
also affect the reliability of a device over its lifetime [23, 24, 25]. With contin-
uous scaling in device dimensions, stronger electric fields have resulted in an
increase in the number of interface traps in PMOS transistors over time at high
temperatures. The increase in traps has resulted in an increase in the VT of
transistors causing reliability issues due to negative bias temperature instability
(NBTI) [26, 27]. In the case of a PUF, VT degradation of the transistors can
affect the uniqueness and reproducibility of signatures. In the MECCA PUF,
the transistor marked PL in the cell suffers from NBTI due to a strong electric
field across gate-source (|Vgs| = Vdd), as shown in Fig. 9(a). Due to temporal
variations in VT , a cell A1 (refer Fig. 9(b)) which fails at word length WL2 can
pass through that level and become successful at WL2 (unfilled brown (dark)
circle) and hence produce an incorrect bit output.

MECCA: A Robust Low-Overhead PUF Using Embedded Memory Array 417

Fig. 9. Ageing effects in memory. (a) NBTI effect in SRAM cell. (b) Characterization
of cells as reliable and unreliable cells for expected ΔVT =17mV. (c) % unreliable cells
in all the chips as a function of ε (and ΔVT). (d) Number of unreliable bits per chip
at mean WL.

To quantify the temporal reliability of cells, we design a guard band around
the WLs based on an expected VT shift of 17mV based on results in [22] over a
10-year lifetime of the product.Accordingly, we included the VT shift (on top of
process variations) in our PMOS model file and performed monte-carlo simula-
tions to obtain the number of temporally unreliable cells and change in intra-die
HD. The word line duty cycle controller can be used to produce additional WLs
to characterize the cells post-production and identify unreliable cells (within a
guard band). The numbers on the right in Fig. 9(b) show the distribution of
the unreliable cells for guard band, ε=5% for ΔVT =17mV. It can be seen that
approximately only 6% of the cells (out of all cells in all chips) fall within the
guard band and can potentially produce an incorrect output over the products’
lifetime. The actual number of unreliable cells per chip at mean WL is shown
in Fig. 9(d), from which it can be seen that 87.6% of the chips have less than 4
bits for a ΔVT =17mV (corresponding to ≈2% unreliable cells around mean WL
in Fig. 9(b)). We propose the following solutions to ageing: 1) discarding the
temporally unreliable cells (by choosing more cells); 2) if the number of unreli-
able bits is tolerable (low avg. intra-die HD), they can be used in the signature
generation; 3) intentional ageing can be done to those few unreliable cells (at
high temperature and high supply voltage) to ensure that the cells are moved
out of the guard band to make it a temporally reliable cell (dotted green circle
in Fig. 9(b)). Additionally, since the VT shift can be reduced by flipping contents
of the cells [23, 22], it is possible that fewer cells can produce incorrect outputs
due to VT recovery during normal operation of the memory.

418 A.R. Krishna et al.

Table 1. Area Overhead Comparison

PUF RO-PUF MECCA PUF

including memory w/o memory

Area (μm)2 3122 520 21

Overhead: We computed the area overhead of the MECCA PUF and compared
it with that of a RO-PUF (as an example of delay based PUF) to generate a
128-bit key. For the RO-PUF, assuming all orderings of the ROs are likely, 35
ROs are required. This would require two 35 X 1 MUXs, two 32-bit counters
and one 32-bit comparator along with the 35 ROs (5 stages) to produce the key.
For the MECCA PUF, we used a 128 cell SRAM array along with the periph-
erals (a 4 X 16 row address decoder, 8-bit I/O with buffers, sense amplifiers
and precharge circuitry) and the programmable delay circuit. Both PUFs were
synthesized using Synopsis Design Compiler and Table 1 shows the area com-
parison of the MECCA PUF and RO-PUF. Even if the chip has no memory, i.e.
(the memory has to be implemented), the total overhead of the MECCA PUF
is small compared to the RO-PUF (≈ 16.6%). As mentioned earlier, since most
modern designs already contain embedded memory which can be used as the
PUF, the area overhead is only due to the programmable delay circuit and is
extremely small compared to the RO-PUF (≈ 0.6%).

5 Conclusion

In this paper, we have presented MECCA, a novel memory based PUF that
exploits the intrinsic variations in static memory cells by inducing failures for
cryptographic operations. We have shown that even moderate variations in the
device parameters provides high-quality signatures (in terms of uniqueness, re-
producibility and entropy) while incurring significantly less hardware overhead
compared to other PUFs by using the embedded memory array already present
in most designs. Furthermore, we analyze the effect of voltage/temperature vari-
ations as well as ageing effects on the robustness of the PUF outputs and propose
solutions using temperature induced stressing to further improve the reliability.
With increasing effect of parameter variations in nanoscale memory, effective-
ness of the proposed method is expected to increase in future technology nodes.
Extending the proposed approach to other forms of memory, e.g. flash, would be
subject of future research.

References

1. ORS-LABS: Counterfeit Electronic Components - An Overview (2007),
http://www.ors-labs.com/pdf/MASH07CounterfeitDevice.pdf

2. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

http://www.ors-labs.com/pdf/MASH07CounterfeitDevice.pdf

MECCA: A Robust Low-Overhead PUF Using Embedded Memory Array 419

3. Kulikowski, K.J., Karpovsky, M.G., Taubin, A.: DPA on faulty cryptographic hard-
ware and countermeasures. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P.
(eds.) FDTC 2006. LNCS, vol. 4236, pp. 211–222. Springer, Heidelberg (2006)

4. Gassend, B., et al.: Controlled Physical Random Functions. In: Proceedings of 18th
Annual Computer Security Applications Conference (2002)

5. Gassend, B., et al.: Silicon Physical Random Functions. In: Proceedings of the
Computer and Communication Security Conference (2002)

6. Suh, G.E., Devadas, S.: Physical Unclonable Functions for Device Authentication
and Secret Key Generation. In: Proc. DAC, pp. 9–14 (2007)

7. Semiconductor Industry Association (SIA), International Technology Roadmap for
Semiconductors (ITRS) (2005)

8. Ney, A., et al.: A New Design-For-Test Technique for SRAM Core-Cell Stability
Faults. In: Proc. DATE, pp. 1344–1348 (2009)

9. Wang, X., Tehranipoor, M.: Novel Physical Unclonable Function with Process and
Environmental Variations. In: Proc. DATE, pp. 1065–1070 (2010)

10. Maiti, A., Schaumont, P.: Improved Ring Oscillator PUF: An FPGA-friendly Se-
cure Primitive. Journal of Cryptology, 1–23 (2010)

11. Pappu, R.: Physical One-Way Functions, Phd thesis, Massachusetts Institute of
Technology (2001)

12. Ozturk, E., Hammouri, G., Sunar, B.: Physical Unclonable Function with Tristate
Buffers. In: Proc. ISCAS, pp. 3194–3197 (2008)

13. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

14. Holcomb, D., Burleson, W., Fu, K.: Initial SRAM State as a Fingerprint and Source
of True Random Numbers for RFID Tags. In: Proc. the Conference on RFID
Security (2007)

15. Su, Y., Holleman, J., Otis, B.: A Digital 1.6 pJ/bit Chip Identification Circuit
Using Process Variations. In: Proc. ISSCC, pp. 15–17 (2007)

16. Kumar, S., Guajardo, J., Maes, R., Schrijen, G., Tuyls, P.: The Butterfly PUF:
Protecting IP on Every FPGA. In: Proc. HOST (2008)

17. Guajardo, J., Kumar, S., Tuyls, P., Schrijen, G. : Identification Of Devices Using
Physically Unclonable Functions. WIPO Patent Application WO/2009/024913 A2

18. Guyensu, T.: Using Data Contention in Dual-ported Memories for Security Appli-
cations. Journal of Signal Processing Systems (2010)

19. Gassend, B., Clarke, D., van Dijkm, M., Devadas, S.: Controlled Physical Random
Functions. In: Proc. ACSAC (2002)

20. Mukhopadhyay, S., Mahmoodi, H., Roy, K.: Modeling of Failure Probability and
Statistical Design of SRAM Array for Yield Enhancement in Nanoscaled CMOS.
In: IEEE TCAD, pp. 1859–1880 (2005)

21. Mukhopadhyay, S., Mahmoodi, H., Roy, K.: Reduction of Parametric Failures in
Sub-100-nm SRAM Array Using Body Bias. In: IEEE TCAD, pp. 174–183 (2008)

22. Luo, H., Wang, Y., He, K., Luo, R., Yang, H., Xie, Y.: Modeling of PMOS NBTI
Effect Considering Temperature Variation. In: Proc. ISQED, pp. 139–144 (2007)

23. Kumar, S.V., Kim, K.H., Sapatnekar, S.S.: Impact of NBTI on SRAM Read Sta-
bility and Design for Reliability. In: Proc. ISQED (2006)

24. Paul, B.C., Kang, K., Kufluoglu, H., Alam, M.A., Roy, K.: Impact of NBTI on the
Temporal Performance Degradation of Digital Circuits. IEEE Electron Devices,
560–562 (2005)

420 A.R. Krishna et al.

25. Kang, K., Gangwal, S., Park, S.P., Roy, K.: NBTI Induced Performance Degrada-
tion in Logic and Memory Circuits: How Effectively Can we Approach a Reliability
Solution? In: Proc. ASP-DAC (2008)

26. Bansal, A., et al.: Impacts of NBTI and PBTI on SRAM Static/Dynamic Noise
Margins and Cell Failure Probability. In: Microelectronics Reliability, pp. 642–649
(2009)

27. Yang, S., Yang, H., Chuang, C., Hwang, W.: Timing Control Degradation and
NBTI/PBTI Tolerant Design for Write-Replica Circuit in Nanoscale CMOS
SRAM. In: Proc. VLSI-DAT, pp. 162–165 (2009)

28. Predictive Technology Model, http://www.eas.asu.edu/~ptm/
29. Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A Large Scale Characterization

of RO-PUF. In: Proc. HOST, pp. 94–99 (2010)

http://www.eas.asu.edu/~ptm/

FPGA Implementation of Pairings Using

Residue Number System and Lazy Reduction�

Ray C.C. Cheung1, Sylvain Duquesne2, Junfeng Fan4, Nicolas Guillermin2,3,
Ingrid Verbauwhede4, and Gavin Xiaoxu Yao1

1 Department of Electronic Engineering
City University of Hong Kong, Hong Kong SAR

r.cheung@cityu.edu.hk, gavin.yao@student.cityu.edu.hk
2 IRMAR, UMR CNRS 6625, Université Rennes 1
Campus de Beaulieu, 35042 Rennes cedex, France

3 DGA.IS, La Roche Marguerite - 35170 - Bruz, France
sylvain.duquesne@univ-rennes1.fr, nicolas.guillermin@m4x.org

4 Katholieke Universiteit Leuven, COSIC & IBBT
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
{junfeng.fan,ingrid.verbauwhede}@esat.kuleuven.be

Abstract. Recently, a lot of progress has been made in the implementa-
tion of pairings in both hardware and software. In this paper, we present
two FPGA-based high speed pairing designs using the Residue Number
System and lazy reduction. We show that by combining RNS, which is
naturally suitable for parallel architectures, and lazy reduction, which
performs one reduction for multiple multiplications, the speed of pairing
computation in hardware can be largely increased. The results show that
both designs achieve higher speed than previous designs. The fastest ver-
sion computes an optimal ate pairing at 126-bit security level in 0.573
ms, which is 2 times faster than all previous hardware implementations
at the same security level.

Keywords: Optimal Pairing, Residue Number System, Lazy Reduction,
FPGA.

1 Introduction and Motivation

Bilinear pairings on elliptic curves have been introduced in cryptography in
the middle of 90’s for cryptanalysis [18, 33]. In 2000, Joux introduced the first
constructive use of pairings with a tripartite key exchange protocol [25]. In the
last decade many pairing-based schemes such as identity-based encryption [10],

� This work was supported in part by the European Commission’s ECRYPT II
NoE (ICT-2007-216676), by the Belgian State’s IAP program P6/26 BCRYPT, by
the K.U. Leuven-BOF (OT/06/40), by the Research Council K.U. Leuven: GOA
TENSE (GOA/11/007), by French ANR projects no. 07-BLAN-0248 “ALGOL” and
09-BLAN-0020-01 “CHIC”, and by City University of Hong Kong Start-up Grant
7200179.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 421–441, 2011.
c© International Association for Cryptologic Research 2011

422 R.C.C. Cheung et al.

identity-based signatures [12] and short signatures [11] have been proposed and
studied. Compared with other popular public key cryptosystems, e.g. Elliptic
Curve Cryptography (ECC) [30, 34] and RSA [41], pairing computation is much
more complicated. For this reason, efficient implementation of cryptographic
pairings has received increasing interests [3, 8, 16, 20, 23, 27, 36].

The computation of a pairing can be broken down into modular operations
in the underlying fields. For example, one optimal ate pairing [44] defined on
a 256-bit Barreto-Naehrig (BN) curve [7] requires around 104 modular multi-
plications [3]. Thus, having an efficient modular multiplier is the key step to a
high performance pairing processor. In this work, we are interested in hardware
implementation of pairings over large characteristic fields. In this case one possi-
ble optimization is to use lazy reduction. Lazy reduction in pairing computation
was introduced by Scott [42] and then generalized by Aranha et al. in [3]. In
short, it performs one reduction for expressions like

∑
AiBj , where Ai, Bj ∈ Fp.

Aranha et al. have shown that lazy reduction can significantly speed up optimal
ate pairings in software [3].

As suggested by Duquesne [14], lazy reduction can be combined with the
Residue Number System (RNS) to further reduce the complexity. Besides, the
RNS distributes computation over a group of small integers, and is naturally
suitable for parallel implementations [22, 29]. In this paper, we propose two
FPGA-based pairing processors that use RNS representation and lazy reduction.
The first design, referred as Design I, is based on a general (but enhanced) RNS
data-path. Design I is scalable in terms of security level and flexible in terms
of target devices. On an Altera Stratix III FPGA, Design I computes a pairing
at 126-bit security level in 1.07 ms. The second design, referred as Design II,
has an optimized architecture for pairings over 254-bit curves. We use a set of
parameters that leads to a reduced complexity and an optimized datapath that
benefits from the reduction. Design II computes a pairing at 126-bit security level
in 0.573 ms on a Xilinx Virtex-6 FPGA. To the best of our knowledge, these are
the first hardware designs of pairing using RNS, and the designs outperform all
previous hardware implementations at a similar security level [16, 19, 27].

The rest of the paper is organised as follows. Section 2 and Section 3 provide
the background on optimal ate pairing and RNS, respectively. In Section 4 and
Section 5 we describe the architecture of Design I and Design II. Section 6
describes the control of the data-path and the high level scheduling. We give a
detailed analysis of the performance in Section 7. Finally, Section 8 concludes
the paper.

2 Optimal Ate Pairings

2.1 Pairings on Barreto-Naehrig Curves

A bilinear pairing is a non-degenerate map from G1 × G2 to GT which is linear
in both components. Popular pairings such as Tate pairing [6], ate pairing [24],
R-ate pairing [32], optimal pairing [44] choose G1 and G2 to be specific cyclic
subgroups of E(Fpk), and GT to be a subgroup of F∗

pk .

FPGA Implementation of Pairings Using RNS and Lazy Reduction 423

Let Fp be a finite field and let E be an elliptic curve defined over Fp. Let �
be a large prime dividing #E(Fp) and k the embedding degree with respect to
�, namely, the smallest positive integer k such that �|pk − 1. Small embedding
degrees can be easily obtained using supersingular curves. However, it is too small
(k ≤ 2) if large characteristic base fields are used. Thus, we use ordinary curves
with prescribed embedding degrees constructed via the complex multiplication
method as surveyed in [17]. We focus on the most popular one to date, namely
the Barreto-Naehrig curves [7]. The reason for their popularity is that they are
well-suited for 128-bit security level and they have degree 6 twist.

Let u ∈ Z such that p = 36u4 + 36u3 + 24u2 + 6u + 1 and � = 36u4 + 36u3 +
18u2 + 6u + 1 are prime. A BN curve is an elliptic curve defined over Fp by

E : y2 = x3 + b,

where b �= 0 such that #E = �, and it has 12 as an embedding degree.
In this paper, we mainly focus on the discussion of optimal ate pairing [36]

because it is the most efficient to date for BN curves. Let r = 6u+2, an optimal
ate pairing on BN curves is defined as follows [2, 36]:

aopt : E(Fp12) ∩ Ker(πp − p)×E(Fp)[�] → F∗
p12/
(
F∗

p12

)�

(Q, P)
→
(
f(r,Q)(P) · g(rQ,πp(Q))(P) · g(rQ+πp(Q),−π2

p(Q))(P)
) p12−1

�

where πp is the Frobenius map on the curve (πp(x, y) = (xp, yp)), and g(Q1,Q2)

is the line through Q1 and Q2.

2.2 Pairing Computation and Parameter Selection

Pairing Computation. The computation consists of two main functions, f(r,Q)

and f
p12−1

� . The function f(r,Q) has the following divisor:

div(f(r,Q)) = r(Q) − (rQ) − (r − 1)(O).

It is normally computed using a double-and-add method (also known as Miller’s

loop [35]). Concerning f
p12−1

� , also known as the final exponentiation, Koblitz
and Menezes show in [31] that it can be split in two steps due to the integer
factorization

p12 − 1
�

=
(
p6 − 1

) (
p2 + 1

)
(

p4 − p2 + 1
�

)

.

The first step is powering to p6 − 1 and to p2 + 1. This is easily obtained via
cheap Frobenius computations and an inversion. The second step is powering to
p4−p2+1

� which is called the hard part of the final exponentiation.

424 R.C.C. Cheung et al.

Parameter Selection. The selection of parameters has an essential impact on
the security and the performance of a pairing computation. It is explained in [39]
how to generate BN curves with nice properties. For this work we choose two
curves both with b = 2. The first one, BN126, is defined by u = −(262 + 255 + 1)
and has already been used in [2, 39]. It ensures only 126 bits of security, but is
well suited to registers on a general-purpose CPU when lazy reduction is used.
However, FPGA architectures have no such constraints, since multipliers of larger
size can always be constructed with DSP slices. Hence, we also consider a curve
BN128 defined by u = −(263+222+218+27+1) which ensures 128 bits of security.
Finally, we propose BN192, the BN curve defined by u = −(2160 +274 +212 +1).
Optimal pairing defined on this curve provides 192 bits of security [38].

In the three cases, the extension fields are defined as follows:

– Fp2 = Fp[i]/(i2 + 1)
– Fp6 = Fp2 [β]/(β3 − (1 + i))
– Fp12 = Fp6 [Γ]/(Γ 2 − β) = Fp2 [γ]/(γ6 − (1 + i))

This tower of extensions has many advantages, the most important being an
efficient multiplication algorithm for the canonical polynomial base.

Note that BN curves always have degree 6 twists. This means E is isomorphic
over Fp12 to a curve E′ defined by y2 = x3 + b

ζ , where ζ is neither a square nor
a cube in Fp2 . In our case we take ζ = 1 + i so that it defines both the sextic
extension of Fp2 and the twist. Then we can define twisted versions of pairings
on E′(Fp2)×E(Fp)[�]. In other words, the coordinates of Q can be written as
(xQζ

1
3 , yQζ

1
2) where xQ and yQ are in Fp2 . For u selected as a negative integer,

the optimal ate pairing for BN curves is computed by Algorithm 1 [2] where dbl,
add and hard-part are given in appendix.

3 Residue Number System

A Residue Number System (RNS) represents a large integer using a set of smaller
integers. Let B = {b1, b2, . . . , bn} be a set of pairwise co-prime integers, and
MB =

∏n
i=1 bi. For any integer X , 0 ≤ X < MB, there is a unique RNS

representation on B: {X}B = {x1, x2, . . . , xn}, where xi = |X |bi , 1 ≤ i ≤ n.
Throughout the paper we use |a|b to denote a mod b. Given {X}B, one can
recover X using the Chinese Remainder Theorem (CRT):

X =

∣
∣
∣
∣
∣

n∑

i=1

∣
∣
∣xi · B−1

i

∣
∣
∣
bi

· Bi

∣
∣
∣
∣
∣
MB

whereBi =
MB

bi
. (1)

The set B is also known as a base, and each element bi, 1 ≤ i ≤ n, is called an
RNS modulus or an RNS channel.

RNS representation admits efficient parallel computations. Consider two inte-
gers X, Y and their RNS representations {X}B = {x1, x2, . . . , xn} and {Y }B =
{y1, y2, . . . , yn}, then we have

{|X � Y |MB
}B = {|x1 � y1|b1 , . . . , |xn � yn|bn}, � ∈ {+,−,×, /}. (2)

FPGA Implementation of Pairings Using RNS and Lazy Reduction 425

Algorithm 1. Optimal ate pairing on BN curves for u < 0
Require: P ∈ E(Fp)[�], Q = (xQγ2, yQγ3) ∈ E(Fp12)∩Ker(πp−p) with xQ and yQ ∈

Fp2 , r = |6u + 2| =
∑s−1

i=0 ri2
i, where u < 0.

Ensure: aopt(Q,P) ∈ Fp12

1: T = (XT γ2, YT γ3, ZT) ← (xQγ2, yQγ3, 1), f ← 1
2: for i = s − 2 downto 0 do
3: T, g ← dbl(T, P), f ← f2 · g
4: if ri = 1 then
5: T, g ← add(T, Q, P), f ← f · g
6: end if
7: end for
8: T ← −T, f ← fp6

(fp6
is equivalent to f−1 as noticed in [3])

9: Q1 ← πp(Q),Q2 ← −πp(Q1)
10: T, g ← add(T, Q1, P), f ← f · g
11: T, g ← add(T, Q2, P), f ← f · g
12: f ←

(
fp6−1

)p2+1

13: f ← hard-part(f, |u|)
14: return f

Note that the division is available only if Y is co-prime with MB. For all these
operations, computations between xi and yi have no dependency on other chan-
nels, which makes RNS naturally suitable for parallel implementations.

The computation of |X |bi is called a channel reduction. To accelerate this
operation, pseudo-Mersenne numbers of the form bi = 2w − εi, where εi <
2w/2, are typically selected as RNS moduli. Hence, the computation of |X |bi is
performed using 2 times of X ← �X/2w� · εi + (X mod 2w), and a correction
step in the end to bring the result back to the range [0, bi).

3.1 RNS Montgomery Reduction

Using RNS representation ensures efficient computation in Z/MBZ. Unfortu-
nately, it can’t be applied directly in Fp since MB is not prime. One way to
utilize RNS for field multiplication is to combine RNS and Montgomery reduc-
tion [22, 29]. This is shown in Algorithm 2.

RNS Montgomery reduction requires two bases, B and C, with MC co-prime
to MB. The reason of including C is that division by MB is not possible in B.
Note that the size of MB and MC, compared to p, determine the upper bound
of input X . Guillermin found that if X < αp2, MB > αp and MC > 2p, then
Algorithm 2 has output S < 2p [22, Proposition 1]. This is an important principle
for base selection.

3.2 Base Extension

The operation to transform the representation in one RNS base to another base is
called Base Extension (BE). To compute {X}C = {x′

1, x
′
2, . . . , x

′
n} from {X}B =

426 R.C.C. Cheung et al.

Algorithm 2. RNS Montgomery reduction [5]
Require: RNS bases B and C with MB > αp, MC > 2p, p coprime with MBMC ,

{X}B and {X}C being the RNS representations of X < αp2.
Precomputed: {| − p−1|MB}B , {|M−1

B |MC}C and {p}C .
Ensure: {S}B , {S}C such that |S|p = |XM−1

B |p and S < 2p
1: {Q}B ← {X}B × {−p−1}B

2: {Q}B
Base Extension−−−−−−−−−−−→ {Q}C

3: {S}C ← ({X}C + {Q}C × {p}C

) × {M−1
B }C

4: {S}B
Base Extension←−−−−−−−−−−− {S}C

{x1, x2, . . . , xn}, one can use the Posch-Posch method [40]. Given {X}B, for (1),
there must exist an integer λ < n such that:

X =

∣
∣
∣
∣
∣

n∑

i=1

∣
∣
∣xi · B−1

i

∣
∣
∣
bi

· Bi

∣
∣
∣
∣
∣
MB

=

∣
∣
∣
∣
∣

n∑

i=1

ξi · Bi

∣
∣
∣
∣
∣
MB

=
n∑

i=1

ξi · Bi − λ · MB (3)

where ξi =
∣
∣
∣xi · B−1

i

∣
∣
∣
bi

, 1 ≤ i ≤ n. In the Posch-Posch method, λ can be

calculated by the following equation:

λ =
⌊ n∑

i=1

ξi · Bi

MB

⌋

=
⌊ n∑

i=1

ξi

bi

⌋

(4)

In [29], ξi/bi is further approximated by ξi/2w as bi is chosen as a pseudo-
Mersenne number near 2w. Once λ is obtained, {X}C = {x′

1, . . . , x
′
n} can be

computed as follows:

x′
j =
∣
∣
∣
∣

n∑

i=1

ξi · Bi − λ · MB

∣
∣
∣
∣
cj

=
∣
∣
∣
∣

n∑

i=1

ξi · |Bi|cj − λ · |MB|cj

∣
∣
∣
∣
cj

. (5)

|Bi|cj and |MB|cj , 1 ≤ i, j ≤ n, can be precomputed once B and C are fixed.
The following algorithm describes the computation of |X |ck

.

4 Design I: A Scalable Architecture

In this section we propose an enhancement of the Cox-Rower architecture first
proposed in [29] such that it is suitable for pairing computation.

4.1 Cox-Rower Architecture

The Cox-Rower architecture was first proposed by Kawamura et al. in [29]. It
was first implemented in a VLSI design of an RSA cryptosystem [37]. It was
later enhanced by Guillermin [22] to support all arithmetic operations in Fp and
fast Elliptic Curve Scalar Multiplications (ECSM).

FPGA Implementation of Pairings Using RNS and Lazy Reduction 427

Algorithm 3. Base extension algorithm for k-th element of X [29]
Require: |X|bi for i ∈ {1, .., n}
Ensure: |X|ck

Precomputed: |B−1
i |bi , |Bi|ck , 1 ≤ i ≤ n, |MB |ck

1: ξi ← |xi · B−1
i |bi for i ∈ {1, .., n}

2: ψ ← 0, z ← 0
3: for i = 0 to (n − 1) do
4: ψ ← ψ + ξi

5: ρ ← �ψ/2w� //ρ ∈ {0, 1}
6: ψ ← |ψ|2w
7: z ← z + (ξi · |Bi|ck

) − ρ · |MB |ck

8: end for
9: return z

Fig. 1 shows our Cox-Rower implementation. The top-level structure is similar
to the one proposed by [29]. It is consists of n similar Rower units performing
in parallel operations in one RNS channel of B or C. The Cox unit is only used
during the base extension (Algorithm 3) to generate the ρ. The Rower unit
normally consists of a multiplier and channel reduction logic, and serves as the
workhorse of both multiplication (operation × in (2)) and reduction (step 1,
3 in Algorithm 2 and step 1, 7 in Algorithm 3). The Cox-Rower is driven by a
microcoded sequencer, and the sequencer can be easily reprogrammed to provide
support for different algorithms.

While the basic structure of our design resembles the Cox-Rower architecture
in Guillermin’s ECC processor [22], our architecture has an optimized pipeline
structure and a more aggressive memory organization specifically designed for
pairing support.

4.2 Cox-Rower Parametrization for Pairing

First we need to parametrize the Cox-Rower to support the pairings on the three
curves defined in Section 2.2. Popular Altera and Xilinx FPGAs have embedded
18× 18 multipliers or even 25× 18 multipliers (Virtex-5 and higher). Moreover,
a full 36 × 36 multiplier can be built by efficiently combining several such small
multipliers. It is thus natural to select w=18 or w=36. For the implementation
of BN126 or BN128, w=36 gives the best trade-off. Indeed the gain in frequency
brought by smaller multipliers and adders does not compensate the necessary
cycle surplus of reductions. The parameter n can then be set to 8 for BN126

and BN128, and 19 for BN192. Because of our chosen arithmetic (see Section 6),
the value α defined in Section 3.1 reaches 198 for all the curves. The worst case
is reached during the schoolbook multiplication in Fp12 . One can verify that,
in order to have MB > αp, w=33 is enough to support BN126 and w=34 for
both BN126 and BN128. For BN192, w is set to 35. In this architecture, we used
the same method to select bases as in [22], with pseudo-Mersennes of the form
ti = 2w − εi, ti ∈ B ∪ C and εi positive.

428 R.C.C. Cheung et al.

An adaptation of Guillermin’s architecture is necessary to provide pairing
support. As the number of local variables and precomputations is much larger
for pairings than that of ECSM (in fact, the Miller’s loop has a built-in ECSM),
we use a single triple port RAM of 256 words instead of the ROM and a group of
16 registers to store precomputed values and temporary results. This is enough
to support all curves listed in Section 2.2.

RAM

coxi

RAM

inv

RAM
2w − ti

register modular adder

modular subtracter

0 or 1 bit shifterunsigned multiplier

main MUX

sequencer

command

in
out

main bus

Cox Row1 Row2 Rown

sequencer

q

ALU

main bus

Triple port RAM

main bus

q + 1

q + 1 w

2q + 1

w

ww

w w

w

w

w w

w w

MUX

main MUX

Fig. 1. Design I: architecture of the Cox-Rower and its pipeline structure

4.3 Pipeline Architecture

Our goal is to keep the maximal frequency already available in [22]. Additive
hardware must be carefully introduced, to keep the critical path under control.
On the other hand, we can easily raise the pipeline depth without a lot of cycle

FPGA Implementation of Pairings Using RNS and Lazy Reduction 429

loss. Indeed, pairing computation has more parallelizable operations than clas-
sical elliptic curve scalar multiplication over Fp. The architecture in [37] and
[22] uses 2-stage and 5-stage pipelines, respectively. For the implementation of
pairings, we found that a pipeline of up to 10 stages can still be efficiently filled
during the whole pairing computation except for Fp inversion.

Based on Guillermin’s architecture, two accumulators are included in the
pipeline to efficiently support pairing computation. Fig. 1 shows the adapted
pipeline architecture. The first 4 stages perform |a × b|ti , where ti ∈ B ∪ C. We
also introduce shift and MUX units in the first 4 stages to compute |2× a× b|ti,
which are utilized to accelerate squarings in the extension fields. Three multipli-
ers (w × w, w×(q+1) and (q+1)×q) are used, where q=�log2 εi�.

In the 6th stage we implemented two independent accumulators. They are
preceded by a subtracter (which computes |−a×b|ti) and a MUX in the 5th stage.
The output of the first 4 stages can then be independently added, subtracted
or ignored by both accumulators. These two accumulators, together with the
use of tower extensions, save a lot of cycles during the pairing computation. See
Section 6 for details.

On this architecture, an RNS multiplication costs 2 cycles and the results can
be accumulated immediately. An RNS reduction costs 2n+3 cycles as previously
described in [22].

5 Design II: Hardware/Algorithm Co-optimization

In this section, we propose an optimized design that achieves an even higher
throughput. The improvement comes mainly from two tricks: a set of good bases
that admits a less-expensive base extension, and a fine-tuned pipeline structure
that allows a higher frequency.

5.1 Base Selection Revisited

The core observation here is that the complexity of base extension can be reduced
if the moduli in the two bases are close to each other. The base extension is the
most computational expensive operation in the RNS Montgomery algorithm. It
requires n2 times of w×w multiplications. Indeed, (5) can be written as a matrix
multiplication below.

⎛

⎜
⎝

x′
1
...

x′
n

⎞

⎟
⎠ ≡

⎛

⎜
⎝

|B1|c1 · · · |Bn|c1

...
. . .

...
|B1|cn · · · |Bn|cn

⎞

⎟
⎠

⎛

⎜
⎝

ξ1

...
ξn

⎞

⎟
⎠− γ

⎛

⎜
⎝

|MB|c1

...
|MB|cn

⎞

⎟
⎠ (6)

Note that the elements in the matrix, |Bi|cj , 1 ≤ i, j ≤ n, are constants and are
generated as follows:

|Bi|cj =
∣
∣
∣
∣

n∏

k=1,k =i

bk

∣
∣
∣
∣
cj

=
∣
∣
∣
∣

n∏

k=1,k =i

(bk − cj)
∣
∣
∣
∣
cj

(7)

430 R.C.C. Cheung et al.

Define B̃i,j :=
∏n

k=1,k =i(bk − cj). When bk and cj are close to each other, the
difference bk − cj is small. In practice, |B̃i,j | could be much smaller than |cj | if n

is relatively small. Note that using |Bi|cj or B̃i,j makes no difference in the final
results due to the channel reduction on the products.

Furthermore, B̃i,j for 1 ≤ i, j ≤ n will be predictably divisible by 2n−2 if cj is
odd. Consider the two bases B = {b1, b2, · · · , bn} and C = {c1, c2, · · · , cn}. Since
there is at most one even number in B ∪ C, (bi − cj) is divided by 2 unless bi

or cj is even. In practice, B̃i,j can have more than n − 2 zero bits in the least
significant bits (LSBs). To shrink the operand size of the matrix multiplications,
we can use truncate the least significant zeros of B̃i,j , and restore the correct
results by a simple left-shift. We denote B̃′

i,j the B̃i,j after truncation.
Considering the size of p and the Cox-Rower architecture, we again select

n = 8 and thus bi (and cj) close to 233. The selection of moduli also takes into
account the size of B̃′

i,j for 1 ≤ i, j ≤ n. The following 16 moduli (w = 33) were
selected as the bases.

B = {2w − 1, 2w − 9, 2w + 3, 2w + 11, 2w + 5, 2w + 9, 2w − 31, 2w + 15},
C = {2w, 2w + 1, 2w − 3, 2w + 17, 2w − 13, 2w − 21, 2w − 25, 2w − 33}.

After applying the truncation of zero bits, we manage to reduce the bitlength of
all |Bi,j | (actually, B̃′

i,j) from standard 34 to 25. While this complexity reduc-
tion seems negligible, it admits notable savings in hardware design. A detailed
analysis of the base selection is given in Appendix A.2.

5.2 A Fine-tuned Rower for Pairing Computation

Our refinement focuses solely on the design of Rowers. Fig. 2(c) shows the
overview of a Rower. It consists of a dual mode multiplier, 3 accumulators, a
channel reduction module, a channel adder, a triple port RAM for multiplier
inputs and a RAM for adder inputs.

Dual Mode Multiplier. The multiplier in the Rower is built to support the
bases selected in Section 5.1. There are two types of multiplication executed
in an RNS multiplication: 34×34 multiplication (step 1, 3 of Algorithm 2) and
25×35 multiplication (step 1, 7 of Algorithm 3). The DSP slices in recent Xil-
inx FPGAs are made of a signed 25×18 bit multiplier, a 17-bit left shifter, and
an accumulator. The dual mode multiplier is built with four DSP slices, which
supports either 34×34 unsigned multiplication or two signed 35×25 multiplica-
tions in parallel. Fig. 2(a) illustrates the structure of the dual mode multiplier.
For pairing computation, multiplication by small constants (2, 3, 6) is widely
employed. Therefore, a constant multiplier is also included in the pipeline.

Because two multiplications are executed simultaneously in the base exten-
sion, the number of cycles to perform the Cox-Rower algorithm (Algorithm 3)
is reduced from n to n/2. This is a significant speedup of the base extension.

FPGA Implementation of Pairings Using RNS and Lazy Reduction 431

Fig. 2. The fine-tuned Rower architecture

Other Optimizations. The architecture of channel reduction is shown in
Fig. 2(d). As the Hamming weights of all the εi are either equal to or less
than 3 in non-adjacent form, multiplication by εi can be realized by 4 adders
instead of multipliers. In order to maintain a high operating frequency, we use a
three-stage pipeline to realize the channel reduction.

To achieve the maximum usage of the multiplier, a separate adder together
with a dedicated RAM is included. Because of the lazy reduction inside the
Rower, the write port of RAM0 is not always occupied by the multiplier. There-
fore, the addition and the multiplication can run in parallel. While most of the
additions in the pairing computation are performed by the accumulators, the
separate adder is useful in point additions and doublings.

While this architecture requires less cycles for reduction than Design I, it is
less scalable. Indeed, in order to support larger p, we need to choose larger n.
The bitlength of Bi,j increases quickly when n goes up, and two multiplications
in parallel becomes impossible on the current Rower.

432 R.C.C. Cheung et al.

6 Scheduling the Pairing Algorithm

In this section we present the implementation choices for every step of the pairing
computation.

6.1 Arithmetic in Fp2 : Back to the Schoolbook Method

Karatsuba and derived interpolation methods have been used intensively in field
operations in the literature to save the expensive multiplication [3, 8, 23, 42].
Karatsuba uses 3 instead of 4 multiplications at the cost of 3 extra additions.
In a normal positional number system, this method saves computation power,
as multiplications are much more expensive than additions. However, in RNS,
the complexities of a multiplication and an addition are the same. Hence, the
schoolbook method involves less operations (counting both additions and mul-
tiplications) and is preferred. On both architectures, a full Fp2 multiplication
finishes in 8 cycles, and a squaring in only 6 cycles.

6.2 Arithmetic in Fp12 : Interpolation with Parsimony

Let X = {x1, · · · , x12}, Y = {y1, · · · , y12} and Z = X ×Y ∈ Fp12 . To accelerate
Fp12 arithmetic, we aim to execute only once xi×yj, for all {i, j} ∈ {1, · · · , 12}2.
As i2=−1 and γ6=(1 + i), the result of xi × yj is either added to or subtracted
from at most two components of Z. This is the reason for the presence of two
independent accumulators. Moreover, the result of the multiplication can be
multiplied by 2 on the fly before it is accumulated, which speeds up the squaring
in Fp12 .

We estimate if the interpolation techniques at higher levels may save cycles
or not. We exclude the reduction step, therefore the cycle count is equivalent on
the flexible as well as the optimized design. We only consider Karatsuba in Fp12

over Fp6 which is the best case for these techniques (interpolation at other levels
Fp12/Fp4 , Fp6/Fp2 or Fp4/Fp2 would give worse results). Four different types of
multiplications and squaring are needed during pairing, each one requiring a
different algorithm:

– Squaring during the Miller loop: the operand of this squaring has no specific
structure. We propose to use schoolbook squaring. Thanks to the multipli-
cation by 2 included in the pipeline of both Design I and Design II, a squar-
ing costs 156 cycles. The interpolation on Fp12/Fp6 leads to the following
formula: (XH + ΓXL)2 =

(
(XH + XL)(XH + Γ 2XL) − (1 + Γ 2)XHXL

)
+

Γ (2XHXL) (with XH , XL ∈ Fp6). We found no method to go below 156
cycles on both designs.

– Multiplication by the line in the Miller loop: half the values of B are equal
to 0, therefore the schoolbook multiplication costs 144 cycles. Interpolation
techniques do not manage to take the advantage of the half size operand.

– Squaring during final exponentiation: during the hard part of FE, the operands
to be squared are in GΦ6(Fp2). We use the formulae given in [21] (Algorithm

FPGA Implementation of Pairings Using RNS and Lazy Reduction 433

A.1). On Design I, we need 84 cycles to implement it. This approach is much
more efficient than interpolation techniques. 1

– Multiplication during final exponentiation: Without counting pipeline bub-
bles, Karatsuba requires 278 and 254 cycles on Design I and Design II, re-
spectively, while the schoolbook method requires 288 on both. Note that
there are only 20 such multiplications in the whole pairing for BN126, and
the savings are really limited. Because of the moderate gain and the compli-
cation brought to the sequencer, we decided not to implement it.

6.3 Fp Inversion

In the final exponentiation of pairing, an Fp12 inversion is required. It can be done
with only one inversion, 35 reductions and additional multiplications/additions
in Fp [14, 23], but the remaining inversion in Fp is very expensive. Since com-
parison in RNS is difficult, inversion through exponentiation (X−1 ≡ Xp−2 mod
p) is used. For this operation, we use a simple square and multiply algorithm
with least significant bit first. It is more memory consuming, but it allows to
perform multiplications in parallel. On a pipelined datapath, LSB-first exponen-
tiation is more efficient than the MSB-first method. In total, an inversion needs
�log(p)− 1� squarings and many multiplications, but the cost of multiplications
is hidden in the pipeline.

6.4 Higher Level Scheduling

Based on the operation over Fp and its extension fields, we are ready to imple-
ment the whole pairing computation. The following two points are important to
efficiently utilize the datapath and to have limited memory usage:

– control of the number of local variables to limit the size of RAMs;
– control of the dependency between operations, to avoid pipeline bubbles.

For the first point, the step which requires the most live local variables is in the
hard-part of the final exponentiation. We use the algorithm described by Scott
et al. [43], which is to date the fastest way to compute the hard-part (Algo-
rithm A.1). To keep its full power while limiting the number of local variables
(with a classical register allocation technique) we slightly rearranged their orig-
inal formulae. For the second point, excluding the Fp inversion where idle states
cannot be avoided, the most constrained part is the Fp2 arithmetic in the Miller
loop. Therefore we rearranged the projective coordinates addition and doubling
formulae to emphasize the inherent parallelism. Formulas can be found in Al-
gorithm 4 and 5 in appendix. On both architectures, we managed to eliminate
almost all pipeline bubbles in the Miller loop. Idle states on the multiplier re-
main less than %1 of the time on both architectures in the pairing computation,
excluding the Fp inversion.
1 More recently, Karabina introduced a compressed form for elements in Fp12 which

require less operations to be squared [3, 28]. Unfortunately, this method involves
extra inversions so that it is not suitable for our designs.

434 R.C.C. Cheung et al.

7 Implementation Results and Analysis

7.1 Area

The prototype of the proposed pairing coprocessors were implemented on com-
mercial FPGAs. Table 1 gives the logic utilization of both designs.

Design I. We synthesized the first design for n = 8 on three different FPGAs :
– EP2C35: A low cost (less than $100) 65 nm node Altera FPGA. It is designed

for industrial series production;
– EP2S30: A 65 nm node high end series of Altera. It is picked for the sake of

comparison with the Xilinx Virtex-4 used in [15].
– EP3SE50: A 40 nm node high end FPGA. Note that it is the smallest FPGA

of the series. BN192 (n = 19) is also implemented on this device.
The area consumption is given in ALM, the equivalence of the Xilinx Virtex-4
slice, and in LE for the Cyclone, which can be considered as a simple 4× 4 LUT
with carry chain and registers. We refer the reader to [1] for details.

We let the synthesizer decide how to implement multiplications (with speed
constraints). Note that this choice lead to the maximal use of DSP blocks. We
used also embedded RAMs: the RAM of each Rower is built the M4k or M9k
(depending on the FPGA). We gave no instructions to the design suite for the
implementation of the sequencer (containing 20 kB microcode), therefore they
were placed in the big available memories. The same design provides support for
the two curves defined in 2.2, with the only difference being the content of the
RAM blocks (precomputed values and the sequencer).

Design II. Design II is implemented on a Xilinx Virtex-6 XC6VLX240T-2
FPGA, which embeds 25×18 DSP slices. As there are 8 Rowers and each Rower
contains 4 DSP slices, the total number of DSPs is 32. Data RAMs used in
each Rower are implemented with distributed memory blocks. The block RAMs
(BRAMs) serve as the microcode sequencer. Thanks to the fine-tuned pipeline,
the coprocessor can operate at 250MHz.

Table 1. Logic Utilization

n Device Freq. Multipliers Logic Data Sequencer
Elements Memory

Design I

Cyclone II 91 MHz 35 18-bit Mult. 14274 LE 32 M4k 35 M4k
8 Stratix II 165 MHz 72 DSP18el 4227 ALMs 32 M4k 1 M512

Stratix III 165 MHz 72 DSP18el 4233 ALMs 16 M9k 1 M144 +2 M9k
19 Stratix III 131 MHz 171 DSP18el 9910 ALMs 38 M9k 1 M144 +2 M9k

Design II 8 Virtex-6 250 MHz 32 DSP48E1s 7032 Slices - 45 18Kb BRAMs

7.2 Performance

Table 2 gives number of cycles used by the sub-functions used in optimal ate
pairing on both Design I and Design II. Due to the carefully selected bases and
dual mode multiplier, Design II achieved a lower cycle count. The improvement
mainly comes from the speedup of RNS reduction: 19 cycles on Design I com-
pared to 12 cycles on Design II when n = 8.

FPGA Implementation of Pairings Using RNS and Lazy Reduction 435

Table 2. Cycle count in one optimal pairing

Curve Mul./Red. 2T and T+Q and f2 f · g Miller’s Final Total
in Fp g(T,T)(P) g(T,Q)(P) Loop Exp.

BN126 2 / 19 507 581 384 372
86,530 89,581 176,111

Design I BN128 92,480 94,101 192,502
BN192 2 / 41 947 1153 648 636 401,565 388,284 789,849

Design II BN126 2 / 12 320 430 301 289 61,116 81,995 143,111

7.3 Comparison and Discussion

Table 3 lists the performance of software and hardware implementations re-
ported in recent literature. Both Design I and II achieve a better performance
than previous hardware implementations [16, 19, 27]. Due to the use of different
platforms, a fair comparison is difficult. Nevertheless, compared with the design
of [16] which also uses Virtex-6, Design II achieves a speedup of factor 2. The
software implementations achieve very high performance. Although we did not
break the software record, the speed of our design is already close to that of
software.

Table 3. Performance comparison of software and hardware implementations of
pairings

Design Pairing Security Platform Algorithm Area Freq. Cycle Delay
[bit] [MHz] [×103] [ms]

126

Altera FPGA 14274 LE
91 176 1.93

(Cyclone II) 35 mult.

Design I optimal ate
Altera FPGA RNS 4233 A

165 176 1.07
(Stratix III) Montgomery 72 DSPs

192
Altera FPGA 9910 A

131 790 6.03
(Stratix III) 171 DSPs

Design II optimal ate 126
Xilinx FPGA RNS 7032 slices

250 143 0.573
(Virtex-6) Montgomery 32 DSPs

[16]
ate

128
Xilinx FPGA Hybrid 4014 slices

210
336 1.60

optimal ate (Virtex-6) Montgomery 42 DSPs 245 1.17
Tate 1,730 34.6

[19] ate 128 Xilinx FPGA Blakley 52k Slices 50 1,207 24.2
optimal ate (Virtex-4) 821 16.4

Tate 11,627∗ 34.4
[27] ate 128 ASIC Montgomery 97 kGates 338 7,706∗ 22.8

optimal ate (130 nm) 5,340∗ 15.8

[15]
Tate over

128
Xilinx FPGA 4755 Slices

192 429 2.23
F35·97 (Virtex-4) - 7 BRAMs

[2]
optimal Eta

128
Xilinx

-
4518

220 774∗ 3.52
over F2367 Virtex-4 Slices

[23]
ate

128 64-bit Core2 Montgomery
-

2400
15,000 6.25

optimal ate 10,000 4.17
[20] ate 128 64-bit Core2 Montgomery 2400 14,429 6.01
[36] optimal ate 128 Core2 Quad Hybrid Mult. - 2394 4,470 1.86
[8] optimal ate 126 Core i7 Montgomery - 2800 2,330 0.83
[3] optimal ate 126 Phenom II Montgomery - 3000 1,562 0.52

[4] ηT over F21223 128 Xeon - - 2000 3,020 1.51
[9] ηT over F3509 128 Core i7 - - 2900 5,423 1.87
[2] opt. Eta F2367 128 Core i5 - - 2530 2,440 0.96

∗ Estimated by the authors.

436 R.C.C. Cheung et al.

The speedup comes mainly from three improvements. First, RNS multiplica-
tion has lower complexity than traditional integer multiplications. For example,
an 256-bit multiplication on RNS involves 16 33×33 multiplications, while a 256-
bit integer multiplication requires 27 32×32 multiplications using Karatsuba’s
method. Second, the use of lazy reduction reduces the cost of multiplications in
extension fields. Third, RNS representation is very parallelization-friendly. In-
deed, it only involves relatively small numbers (no long carry propagation) and
always uses data in the local memory (no inter-core communication overhead).
The performance of both Design I and II has demonstrated the efficiency of RNS
in pairing implementations, and confirms with actual implementations on FPGA
the analysis of [14].

8 Conclusions

In this paper, we demonstrated that RNS together with lazy reduction is a really
competitive approach for pairing computation in hardware. Thanks to the use
of RNS, both datapath and memory can be nicely parallelized. The results show
that both designs we proposed achieve higher speed than all previous designs in
hardware. The fastest version computes an optimal ate pairing at 126-bit security
level in 0.573 ms, which is 2 times faster than all previous hardware implemen-
tations. Moreover, we also reported the first hardware pairing implementation
at 192-bit security level.

For future work, we would like to further optimize the pipeline structure to
achieve higher speed, particularly for 192-bit optimal pairing. We would like
implement using RNS a pairing processor that provides 256-bit security. For
these levels, BN curves may become less competitive, and have to be compared to
other approaches such like KSS curves[26]. Also, as shown in Section 5, carefully
selected RNS bases can help to reduce the complexity of RNS base extension.
However, it is not clear how much we can benefit from it when the number of
channels is relatively large, and this is definitely part of the design exploration
for the implementation of pairings at higher security levels.

References

1. Altera web site, http://www.altera.com
2. Aranha, D., Beuchat, J.-L., Detrey, J., Estibals, N.: Optimal eta pairing on super-

singular genus-2 binary hyperelliptic curves. Cryptology ePrint Archive, Report
2010/559 (2010), http://eprint.iacr.org/

3. Aranha, D., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

4. Aranha, D., López, J., Hankerson, D.: High-speed parallel software implementation
of the ηT pairing. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 89–105.
Springer, Heidelberg (2010)

5. Bajard, J.-C., Didier, L.-S., Kornerup, P.: An RNS Montgomery modular multi-
plication algorithm. IEEE Transactions on Computers 47(7), 766–776 (1998)

http://www.altera.com
http://eprint.iacr.org/

FPGA Implementation of Pairings Using RNS and Lazy Reduction 437

6. Barreto, P., Kim, H., Lynn, B., Scott, M.: Efficient algorithms for pairing-based
cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–369.
Springer, Heidelberg (2002)

7. Barreto, P., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel,
B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg
(2006)

8. Beuchat, J.-L., González-Dı́az, J., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-Speed Software Implementation of the Optimal
Ate Pairing over Barreto–Naehrig Curves. In: Joye, M., Miyaji, A., Otsuka, A.
(eds.) Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)

9. Beuchat, J.-L., López-Trejo, E., Mart́ınez-Ramos, L., Mitsunari, S., Rodŕıguez-
Henŕıquez, F.: Multi-core Implementation of the Tate Pairing over Supersingular
Elliptic Curves. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 413–432. Springer, Heidelberg (2009)

10. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

11. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17(4), 297–319 (2004)

12. Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman
Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2002)

13. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with
high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 224–242. Springer, Heidelberg (2010)

14. Duquesne, S.: RNS arithmetic in Fpk and application to fast pairing computation.
Cryptology ePrint Archive, Report 2010/555 (2010), http://eprint.iacr.org/ to
appear in Journal of Mathematical Cryptology

15. Estibals, N.: Compact hardware for computing the tate pairing over 128-bit-
security supersingular curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing
2010. LNCS, vol. 6487, pp. 397–416. Springer, Heidelberg (2010)

16. Fan, J., Vercauteren, F., Verbauwhede, I.: Efficient hardware implementation of Fp-
arithmetic for pairing-friendly curves. IEEE Transactions on Computers PP(99),
1 (2011)

17. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology 23, 224–280 (2010)

18. Frey, G., Rück, H.G.: A remark concerning m-divisibility and the discrete logarithm
in the divisor class group of curves. Mathematics of Computation 62(206), 865–874
(1994)

19. Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: High speed flexible pairing cryp-
toprocessor on FPGA platform. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing
2010. LNCS, vol. 6487, pp. 450–466. Springer, Heidelberg (2010)

20. Grabher, P., Großschädl, J., Page, D.: On software parallel implementation of cryp-
tographic pairings. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS,
vol. 5381, pp. 35–50. Springer, Heidelberg (2009)

21. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 209–223. Springer, Heidelberg (2010)

22. Guillermin, N.: A High Speed Coprocessor for Elliptic Curve Scalar Multiplications
over Fp. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
48–64. Springer, Heidelberg (2010)

http://eprint.iacr.org/

438 R.C.C. Cheung et al.

23. Hankerson, D., Menezes, A., Scott, M.: Software Implementation of Pairings. Cryp-
tology and Information Security Series, vol. 2, pp. 188–206. IOS Press, Amsterdam
(2009); M. Joye and G. Neven edition

24. Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006)

25. Joux, A.: A one round protocol for tripartite Diffie-Hellman. Journal of Cryptol-
ogy 17, 263–276 (2004)

26. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing brezing-weng pairing-friendly
elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Pater-
son, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg
(2008)

27. Kammler, D., Zhang, D., Schwabe, P., Scharwaechter, H., Langenberg, M., Auras,
D., Ascheid, G., Mathar, R.: Designing an ASIP for Cryptographic Pairings
over Barreto-Naehrig Curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 254–271. Springer, Heidelberg (2009)

28. Karabina, K.: Squaring in cyclotomic subgroups. Cryptology ePrint Archive, Re-
port 2010/542 (2010), http://eprint.iacr.org/

29. Kawamura, S., Koike, M., Sano, F., Shimbo, A.: Cox-rower architecture for fast par-
allel montgomery multiplication. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 523–538. Springer, Heidelberg (2000)

30. Koblitz, N.: Elliptic Curve Cryptosystem. Math. Comp. 48, 203–209 (1987)
31. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:

Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

32. Lee, E., Lee, H.-S., Park, C.-M.: Efficient and generalized pairing computation
on abelian varieties. IEEE Transactions on Information Theory 55(4), 1793–1803
(2009)

33. Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms
to logarithms in a finite field. IEEE Transactions on Information Theory 39(5),
1639–1646 (1993)

34. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

35. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptol-
ogy 17, 235–261 (2004), doi:10.1007/s00145-004-0315-8

36. Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for cryp-
tographic pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010)

37. Nozaki, H., Motoyama, M., Shimbo, A., Kawamura, S.-i.: Implementation of RSA
algorithm based on RNS montgomery multiplication. In: Koç, Ç.K., Naccache, D.,
Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 364–376. Springer, Heidelberg
(2001)

38. National Institute of Standard and technology. Key management (2007),
http://csrc.nist.gov/groups/ST/toolkit/key_management.html

39. Pereira, G.C.C.F., Simpĺıcio, M.A., Naehrig, M., Barreto, P.S.L.M.: A family of
implementation-friendly BN elliptic curves. Journal of Systems and Software (2011)

40. Posch, K., Posch, R.: Base extension using a convolution sum in residue number
systems. Computing 50, 93–104 (1993)

41. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/toolkit/key_management.html

FPGA Implementation of Pairings Using RNS and Lazy Reduction 439

42. Scott, M.: Implementing cryptographic pairings. In: Pairing-Based Cryptography
- Pairing 2007. LNCS, vol. 4575, pp. 117–196. Springer, Heidelberg (2007)

43. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L., Kachisa, E.: On
the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009)

44. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information The-
ory 56(1), 455–461 (2010)

A Appendix

A.1 Sub-routines for Optimal Ate Pairing

Algorithm 4. dbl, doubling step
Require: T = (XT γ2, YT γ3, ZT) ∈ E(Fp12) with XT , YT and ZT ∈ Fp2 , P =

(xP , yP) ∈ E(Fp).
Ensure: The point 2T and the evaluation in P of the equation of the tangent line in

T to the curve up to multiplicative factors in Fp2 .
1: B ← Y 2

T , C ← 3Z2
T , D ← 2XT YT

2: F ← B + 3iC, G ← B − 3iC, H ← 3C, t3 ← B + iC, A ← X2
T , E ← 2YT ZY

3: X2T ← DF, Y2T ← G2 + 4HC, Z2T ← 4BE, t0 ← EyP , t1 ← −3AxP

4: return (X2T γ2, Y2T γ3, Z2T), t0 + t1γ + t3γ
3

These algorithms are specific to the BN curve y2 = x3 + 2 and the tower
of extensions given in Subsection 2.1. Jacobian coordinates are usually used for
pairing computations [8, 23, 36] but projective coordinates are more interesting
in our case [3, 13]. Using the degree 6 twist on the curve, the point Q can be
written as (xQγ2, yQγ3) with xQ and yQ ∈ Fp2 . The “doubling” step of the
Miller loop consists of two stages: the doubling of a temporary projective point
T = (XT γ2, YT γ3, ZT) with XT , YT and ZT ∈ Fp2 and the evaluation in P of the
tangent line in T to the curve. This is given in Algorithm 4 where the classical
formulae are rearranged in a way to highlight the reductions (every temporary
result needs a reduction except F, G, H and t3), and the inherent parallelism
in the local variables (each line can be implemented in random order). This
is important to avoid idle states in Cox-Rower. The total cost of this step is 4
multiplications, 5 squarings, 8 reductions in Fp2 and 2 modular multiplications of
an element of Fp2 by an element of Fp. Note that multiplications like 2XT YT can
be transformed into squaring of (XT + YT) at the cost of some extra additions
[3, 13], thus it is not interesting for our design. In the same way, the cost of
the addition step given by Algorithm 5 is 11 multiplications, 2 squarings, 11
reductions in Fp2 and 2 modular multiplications of an element of Fp2 by an
element of Fp.

440 R.C.C. Cheung et al.

Algorithm 5. add, addition step
Require: T = (XT γ2, YT γ3, ZT) ∈ E(Fp12) with XT , YT and ZT ∈ Fp2 , Q =

(xQγ2, yQγ3) ∈ E(Fp12), P = (xP , yP) ∈ E(Fp).
Ensure: The point T + Q and the evaluation in P of the equation of the line passing

through T and Q up to multiplicative factors in Fp2 .
1: E ← xQZT − XT , F ← yQZT − YT

2: E2 ← E2, F2 ← F 2

3: A ← F2ZT − 2XT E2 − EE2, B ← XT E2, E3 ← EE2

4: XT+Q ← AE,ZT+Q ← ZT E3, t3 ← FxQ − EyQ

5: YT+Q ← F (B − A) − yQE3, t0 ← EyP , t1 ← −FxP

6: return (XT+Qγ2, YT+Qγ3, ZT+Q), t0 + t1γ + t3γ
3

Algorithm 6. hard-part, hard part of the final exponentiation according [43]
Require: f ∈ Fp12 of order p4 − p2 + 1 , x = |u|.
Ensure: f (p4−p2+1)/� with p and � as in 2.1.

{Computation of the yi}
1: y0 ← fpfp2

fp3
, y1 ← fx, y3 ← yx

1 , y5 ← yx
3 , y4 ← yp

5 , y6 ← y4y5

(
= fx3

(
fx3
)p)

2: y5 ← yp
3 , y2 ← y−1

5 , y4 ← y1y2

(
= fx/

(
fx2
)p)

3: y2 ← yp
5

(

=
(
fx2
)p2)

, y5 ← y−1
3

(
= 1/fx2

)
, y3 ← yp

1 ((mx)p), y1 ← f−1

{Multi-addition chain for computing y0.y
2
1 .y6

2 .y12
3 .y18

4 .y30
5 .y36

6 }
4: t0 ← y2

6 , t0 ← t0y4, t0 ← t0y5, t1 ← y3y5, t1 ← t1t0, t0 ← t0y2, t1 ← t21
5: t1 ← t1t0, t1 ← t21, t0 ← t1y1, t1 ← t1y0, t0 ← t20, t0 ← t0t1
6: return t0

Algorithm 7. Squaring during final exponentiation (hard-part)[21]
Require: A =

∑5
i=0 aiγ

i ∈ Fp12 with ai ∈ Fp2 , 0 ≤ i ≤ 5
Ensure: A2

A0 ← 3a2
0 + 3(1 + i)a2

3 − 2a0, A1 ← 6(1 + i)a2a5 + 2a1

A2 ← 3a2
1 + 3(1 + i)a2

4 − 2a2, A3 ← 6a0a3 + 2a3

A4 ← 3a2
2 + 3(1 + i)a2

5 − 2a4, A5 ← 6a1a4 + 2a5

return
∑5

i=0 Aiγ
i

A.2 RNS Parameter Selection

Since p should be around 254 bits, we set n to be 8 and the moduli are chosen
near 233. We consider for i, j ∈[1,n] the following issues: (1) bitlength of |Bi|cj

and |Ci|bj ; (2) Hamming weight of bi and cj . A simple (bounded) exhaustive
search program returns the bases shown in Section 5.

We denote the bitlength of all B̃i,j in a length matrix, LB̃, and the bitlength
matrix of all C̃i,j as LC̃ . For the selected bases, we have the following LB̃ and
LC̃ .

FPGA Implementation of Pairings Using RNS and Lazy Reduction 441

LB̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

23 20 21 20 21 20 18 19
22 20 22 20 21 20 18 19
25 23 23 22 23 22 21 22
25 24 25 26 25 26 23 28
29 30 28 28 28 28 28 27
32 33 32 31 31 31 33 31
32 33 32 32 32 32 34 32
33 33 33 32 33 33 37 32

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, LC̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

24 23 23 20 21 20 20 19
25 25 26 24 26 25 24 24
26 27 25 24 24 23 23 23
30 31 30 31 29 29 29 28
28 28 27 27 26 26 26 25
30 30 30 30 29 28 28 28
27 27 27 26 28 29 29 31
30 30 30 33 29 29 29 29

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

After truncating the least significant zeros, we get the following bitlength, de-
noted as LB̃′ and LC̃′ . Note that we applied the same truncation parameter for
all the numbers in the same row. The number of zeros truncated is chosen as

min{z(B1,j), z(B2,j), · · · , z(Bn,j)}
where z(Bi,j) gives the number of zeros at the LSBs of Bi,j .

LB̃′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

23 20 21 20 21 20 18 19
12 10 12 10 11 10 8 9
16 14 14 13 14 13 12 13
15 14 15 16 15 16 13 18
17 18 16 16 16 16 16 15
20 21 20 19 19 19 21 19
19 20 19 19 19 19 21 19
19 19 19 18 19 19 23 18

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, LC̃′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

14 13 13 10 11 10 10 9
15 15 16 14 16 15 14 14
16 17 15 14 14 13 13 13
20 21 20 21 19 19 19 18
20 20 19 19 18 18 18 17
21 21 21 21 20 19 19 19
17 17 17 16 18 19 19 21
20 20 20 23 19 19 19 19

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Now all of B̃′
i,j and C̃′

i,j are less than 25 bits, and they fit in one operand of
an FPGA DSP slice, while the standard 34-bit operands do not. In fact, in the
implementation we do not truncate more zeros as far as all elements in that row
fit in 25 bits.

High Speed Cryptoprocessor for ηT Pairing on

128-bit Secure Supersingular Elliptic Curves
over Characteristic Two Fields

Santosh Ghosh, Dipanwita Roychowdhury, and Abhijit Das

Computer Science and Engineering
Indian Institute of Technology Khaargpur

WB, India, 721302
{santosh,drc,abhij}@cse.iitkgp.ernet.in

Abstract. This paper presents an efficient architecture for computing
cryptographic ηT pairing for providing 128-bit security. A cryptoproces-
sor is proposed for Miller’s Algorithm with a new 1223-bit Karatsuba
multiplier that exploits parallelism. To the best of our knowledge this
is the first hardware implementation of 128-bit secure ηT pairing on su-
persingular elliptic curves over characteristic two fields. The design has
been implemented on Xilinx FPGAs. The place-and-route results show
that the proposed design takes only 190μs to complete an 128-bit secure
ηT pairing on a Virtex-6 FPGA. The proposed cryptoprocessor achieves
eight times speedup compared to the best known existing design. It also
outperforms the previous designs with respect to area × time product.

Keywords: Pairing, Supersingular curves, characteristic two fields,
FPGA, Karatsuba multiplier.

1 Introduction

Since 2000, pairing is used in cryptography for developing security schemes for
various applications. It is well suited for identity based cryptography [8] which
has gained lot of importance in recent times. As a natural consequence, im-
plementations of pairings are also extremely important. The implementations
should be cost effective, both in terms of time and space requirement. In practice,
pairing could be implemented either as a software library executed on general
purpose processors or as a dedicated cryptoprocessor. However, the later one
is favored due to huge mathematical operations required for pairing computa-
tion [5]. This paper broadly addresses design techniques of a pairing cryptopro-
cessor for high security level.

Pairing for cryptographic applications are computed on elliptic or hyperellip-
tic curves defined over suitably large finite fields and having small embedding
degree [19,13]. The security of a pairing depends on the underlying algebraic
curves and respective field types. For example, 128-bit symmetric security could
be achieved by computing ηT pairing [3,18] on a supersingular elliptic curve

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 442–458, 2011.
c© International Association for Cryptologic Research 2011

High Speed Cryptoprocessor for 128-bit Secure ηT Pairing 443

defined over F21223 and having embedding degree k = 4. As per NIST recom-
mendation, 128-bit symmetric security is essential beyond 2030 [2]. Therefore,
it is of importance to explore the efficient implementation techniques of 128-bit
secure pairings on different platforms.

Hardware implementation of 128-bit secure pairings was introduced in 2009,
individually by Kammler et al. [21] and Fan et al. [12]. Both of them described
hardware implementation techniques for computing 128-bit secure pairings over
Barreto-Naehrig curves (BN curves) [4]. These CMOS based designs take 15.8ms
and 2.9ms for computing an optimal-ate pairing, respectively. Thereafter, de-
signs in [10,14,1,9] are appeared in literature, which computes 128-bit secure
pairings in 2.3ms, 16.4ms, 3.5ms, and 1.07ms respectively. However, to the best
of our knowledge there is no hardware implementation results available in the
literature which computes 128-bit secure pairings below one ms time limit. High-
speed software implementations reported in [6,7] compute 128-bit secure pairings
in 0.832ms and 1.87ms. The work proposed by Beuchat et al. [5] describes design
architectures for ηT pairings on supersingular elliptic curves over characteristic
two and three fields for a maximum of 105-bit and 109-bit security, respectively.
However, to the best of the authors’ knowledge no hardware architectures are
available for computing ηT pairing on 128-bit secure supersingular elliptic curves
over binary fields.

Contribution. This paper explores the hardware design techniques for ηT pair-
ing on 128-bit secure supersingular elliptic curves over characteristic two fields. It
first designs cost-effective and time-efficient hybrid architectures for Karatsuba
multiplication over F21223 field, on which the respective supersingular elliptic
curve is defined. The major contributions of the paper are highlighted here.

• The paper explores area-time tradeoff designs of hybrid Karatsuba multiplier
over F21223 field.

• It further explores high speed architectures for computing ηT pairing on
supersingular elliptic curves based on the proposed hybrid multiplier.

• It provides the first hardware implementation result of an 128-bit secure
pairing on elliptic curves over characteristic two fields.

• The proposed design is the first one which computes an 128-bit secure pairing
in less than one ms.

The proposed design of hybrid multiplier and parallelism techniques result in
the high speed cryptoprocessor which achieves significant improvement on the
performance of 128-bit secure ηT pairing on supersingular elliptic curves over
small characteristic fields.

Organization of the Paper. Section 2 of the paper proposes design techniques
of Karatsuba multipliers for F21223 field. Section 3 describes the proposed pairing
cryptoprocessor. Results and comparisons are provided in Section 4. Finally, the
paper is concluded in Section 5.

444 S. Ghosh, D. Roychowdhury, and A. Das

2 The F21223-Multiplier

Multiplication is the key operation of a pairing computation. The 128-bit secure
ηT pairing could be computed on a supersingular elliptic curve defined over
1223-bit characteristic-two fields. Therefore, the multiplication in F21223 field is
an essential operation in this context. Karatsuba multiplication [22] is one of the
most efficient and popular techniques for fields like Fqm . This technique is based
on divide-and-conquer algorithm, where a full m-bit multiplication is divided
recursively into several m/k-bit multiplications with small k ∈ {2, 3}. It then
accumulates the results of smaller multiplications for the generating final result.
Karatsuba technique for k = 2 computes product a · b of two elements a, b ∈ Fqm

by the following way:

a · b = (a1x
�m/2� + a0)(b1x

�m/2� + b0)
= a1b1x

m + [(a1 + a0)(b1 + b0) − a1b1 − a0b0] x�m/2� + a0b0. (1)

Hence, an m-bit multiplication can be performed by three m/2-bit multiplica-
tions along with four m-bit and two m/2-bit addition/subtraction operations.
Generalization of Karatsuba multiplication is provided in [29]. We refer to the
reader [27,17] for getting idea about implementation techniques of Karatsuba mul-
tiplication. Efficient implementation of Karatsuba multiplication is challenging−
mainly for larger field sizes like m = 1223. It is more challenging on resource-
constrained environments like an FPGA platform where the number of logic cells
are limited. We may follow several ways for making trade-off between the mul-
tiplication latency and hardware resources for developing a multiplier for F21223

field. Fig. 1 shows the decomposition of a 1223-bit operand for Karatsuba multi-
plication with k = 2. The operand is decomposed recursively up to their 19-bit or
20-bit levels as it gives the most optimum design [27].

1223

611 612

305 306 306 306

152 153 153 153 153 153 153 153

19-bit and 20-bit general Karatsuba multiplication

Simple Karatsuba
multiplication

Fig. 1. The decomposition of an 1223-bit operand for Karatsuba multiplication

Fully Parallel Multiplier for F21223 . A fully parallel Karatsuba multiplier
can be designed for F21223 field by following the decomposition as shown in Fig. 1.
After implementing it by Verilog (HDL) we synthesize the design by ISE tool
for a Virtex-4 FPGA. The synthesis tool estimates 324342 LUTs for an 1223-bit
fully parallel Karatsuba multiplier, which makes it infeasible to implement on a
single Virtex-4 FPGA device.

High Speed Cryptoprocessor for 128-bit Secure ηT Pairing 445

Serial Use of 612-bit Parallel Multiplier. As an alternative to area-time
tradeoff we take a fully parallel 612-bit Karatsuba multiplier on which three
multiplications are performed in serial for computing multiplication in F21223 .
After synthesizing by ISE synthesis tool, it demands 95324 LUTs. Thus, it could
be useful to implement a high throughput F21223 multiplier on a high-end single
FPGA device. However, a pairing cryptoprocessor demands more circuits along
with multipliers, which may not be put together on a single FPGA device.

2.1 Serial Use of 306-bit Parallel Multiplier

It is shown that the fully parallel multiplier as well as serial use of 612-bit parallel
multiplier for F21223 are infeasible to implement a respective ηT pairing crypto-
processor. Here we propose a serial use of 306-bit parallel Karatsuba multiplier
for F21223 field. The current multiplier is based on a 306-bit fully parallel Karat-
suba multiplier on which top two levels of Fig. 1 are performed in serial. The
proposed architecture for computing 1223-bit multiplication based on this serial-
parallel hybridization is shown in Fig. 2. The architecture follows the exact steps
and nomenclatures of variables that are described in Algorithm 2, Appendix A.

The proposed architecture works as follows. During the initialization stage
(Algorithm 2, step 1 to step 7) it breaks the operands a, and b into four parts
by following two repeated Karatsuba decompositions. The smaller operands are
generated by following way:

a · b = (a1x
612 + a0)(b1x

612 + b0)
= a1b1x

1222 + [(a1 + a0)(b1 + b0) − a1b1 − a0b0] x612 + a0b0.

The 1223-bit multiplication is performed by three 612-bit multiplications1, a0 ·b0,
a1 · b1, and (a1 + a0) · (b1 + b0), which are further decomposed by following way.

a0 · b0 = (a01x
306 + a00)(b01x

306 + b00)
= a01b01x

612 + [(a01 + a00)(b01 + b00) − a01b01 − a00b00] x306 + a00b00

= a01b01x
612 + [g0h0 − a01b01 − a00b00] x306 + a00b00, (2)

where, g0 = a01 + a00 and h0 = b01 + b00. Similarly, the second 612-bit multipli-
cation is performed by following equation.

a1 · b1 = (a11x
306 + a10)(b11x

306 + b10)
= a11b11x

611 + [(a11 + a10)(b11 + b10) − a11b11 − a10b10] x306 + a10b10

= a11b11x
611 + [g1h1 − a11b11 − a10b10] x306 + a10b10, (3)

where, g1 = a11 + a10 and h1 = b11 + b10. The third 612-bit multiplication is
performed as:

1 More accurately, two 612-bit multiplications and one 611-bit multiplication. For
simplicity we say three 612-bit multiplications.

446 S. Ghosh, D. Roychowdhury, and A. Das

b c

RL

k

L RL RLR RLRL RL

306-bit
hybrid-parallel Karatsuba multiplier

h 4 h 3

1
 0

c1

h 2

1
 0

c1

h 1

1
 0

c1

b 1
1

1
 0

c0

b 1
0

1
 0

c0

h 0

1
 0

c1

b 0
1

1
 0

c0

1
 0

c0

+2
1

 0

c1

b 0
0

d0d1d2d3

c3 c2c4c5

1 0 c61 0c7

+4+4

e0e1e2e3

c9 c8c10c11

1 0 c121 0c13

+4+4

f0f1f2f3

c15 c14c16c17

1 0 c181 0c19

+4+4

t0t1

c20c21

r0r1r2r3

c22 c22c22c22

+4

r4r5r6r7

c22 c22c22c22

+4 +4 +4

+2

+2

+2

+2

+4a d

f = a + b + c + d
b

a

+2 f = a + b

a b

g
4

g
3

1 0

c1

g
2

1 0

c1
g

1

1 0

c1

a
11

1 0

c0

a
10

1 0

c0

g
0 1 0

c1

a
01

1 0

c0

1 0

c0

+2

1 0

c1

a
00

+2

+2

+2

+2

a0-305 a306-611 a612-917 a918-1222

b0-305b306-611b612-917b918-1222

Fig. 2. The architecture of F21222 multiplier unit

g2 = a10 + a00; g3 = a11 + a01

h2 = b10 + b00; h3 = b11 + b01

(a1 + a0) · (b1 + b0) = (g3x
306 + g2)(h3x

306 + h2)
= g3h3x

612 + [(g3 + g2)(h3 + h2) − g3h3 − g2h2] x306 + g2h2

= g3h3x
612 + [g4h4 − g3h3 − g2h2] x306 + g2h2, (4)

where, g4 = g3 + g2 and h4 = h3 + h2. Therefore, one 1223-bit multiplication is
performed by nine 306-bit multiplications. In our proposed architecture (Fig. 2),
the operands of these nine multiplications are stored into nine 306-bit parallel
shift registers. These registers are automatically reloaded by synchronous shift

High Speed Cryptoprocessor for 128-bit Secure ηT Pairing 447

operations so that the two correct operands of 306-bit parallel multiplier are
available into a00 and b00 registers, respectively, at every clock. The 306-bit par-
allel Karatsuba multiplier takes only one clock cycle to compute one respective
multiplication. The strategy of shift register is adopted for avoiding two com-
plex 9-to-1 multiplexers to the multiplier input ports. The first three 309-bit
multiplication results (Algorithm 2, step 8 to step 13) are combined to generate
the intermediate result of first 612-bit multiplication a0 · b0. The final result of
a0 · b0 as defined in Eq. 2 (Algorithm 2, step 14) is computed by means of two
306-bit 4-input parallel adders (4-input XORs in this case) and it is stored into
the registers di, 0 ≤ i ≤ 3. Similarly, the result of the second 612-bit multipli-
cation as defined in Eq. 3 (Algorithm 2, step 15 to step 21) is stored into the
registers ei, 0 ≤ i ≤ 3, and for the third one, Eq. 4, (Algorithm 2, step 22 to
step 28) is stored into the registers fi, 0 ≤ i ≤ 3. Finally, in steps 29 to 31, the
algorithm combines the final result of 1223-bit multiplication and stores into the
registers ri, 0 ≤ i ≤ 7. The proposed architecture (Fig. 2) takes 10 clock cycles
for completing one multiplication in the respective base field F21223 .

Implementation Results on FPGA Platforms. The synthesis tool esti-
mates 34325 LUTs on a Virtex-4 FPGA for implementing the proposed serial
use of 306-bit parallel multiplier for F21223 . In this paper, we are looking for a
pairing cryptoprocessor on a medium-range FPGA device. The place-and-route
results as summarized in Table 1 ensure that this multiplier is suitable for de-
signing our target cryptoprocessor.

Table 1. Cost and time of 1223-bit multipliers on FPGA platforms

Multiplier FPGA
LUTs

Frequency Serial Multiplication
(A · T)§

type family [MHz] use latency [ns]

Serial use of Virtex-2 34 547 125 10 80.0 2.76
306-bit parallel Virtex-4 34 325 168 10 60.0 2.06
multiplier Virtex-6 30 148 250 10 40.0 1.21

§ : (A · T) represents product of area in LUTs and time in milliseconds.

However, designer may opt for serial use of 153-bit parallel multiplier with low
resources. But, it requires 27 serial use, which slows down the multiplication. On
a Virtex-4 FPGA one such multiplier takes 16231 LUTs and achieves maximum
185 MHz clock frequency. Therefore, this multiplier with lower resource requires
151ns for completing one 1223-bit multiplication which is 2.5 times slower than
serial use of 306-bit parallel multiplier. The respective A · T value (2.46) of this
design is 1.2 times higher than the same for the design with 306-bit parallel mul-
tiplier. Thus, serial use of 306-bit parallel multiplier provides the most optimized
design with respect to the feasibility of implementation as well as area × time
product.

448 S. Ghosh, D. Roychowdhury, and A. Das

3 The ηT Pairing Cryptoprocessor over F21223

In this section, we present a high-speed cryptoprocessor for computing the ηT

pairing over a large characteristic-two field F21223 . The proposed architecture is
depicted in Fig. 3. The pairing computation consists of two major operations
− the non-reduced pairing (Miller’s algorithm) and the final exponentiation.
Beuchat et al. in [5] proposed two separate coprocessors on which these two
tasks are pipelined. Two separate coprocessors in pipeline helps to reduce the
computation time. But, at the same time it needs larger area. In case of a large
field like F21223 it is important to take care of the overall area requirement for
pairing computation as most of its applications demand area-constrained de-
vices. It is observed that almost 50% datapath of both the above coprocessors
are consumed by the base-field multipliers. This paper attempts to optimize the
area of an ηT pairing cryptoprocessor. We propose here a common datapath for
computing both the Miller’s algorithm and the final exponentiation. Adequate
parallelism is also applied in the datapath to achieve a high-speed cryptoproces-
sor. The supersingular elliptic curves, the representation of the fields, and the
ηT pairing algorithm that are used in this paper are described in Appendix B.

The ηT pairing computation in characteristic-two field is described in [16]. We
rewrite it, specifically for F21223 , in Algorithm 1 with parenthesized indices in
superscript in order to emphasize the intrinsic dependency as well as parallelism
of the pairing computation. Two interdependent operations in the Miller’s algo-
rithm, namely, the computation of the G(i) (step 7 to step 10) and the sparse
multiplication2 F (i−1) · G(i) over F(21223)4 along with the computation of x

(i)
2 ,

y
(i)
2 for next iteration (step 11 and step 12) are performed in serial, whereas we

apply the parallelism within each of these two operations.

3.1 Computation of Miller’s Loop

The proposed cryptoprocessor as shown in Fig. 3 first computes the non-reduced
pairing based on Algorithm 1. It breaks this computation in three sub-parts as
described here. We use the same nomenclature of Algorithm 1 for representing
the intermediate results in the architecture.

Initialization. The registers x
(i)
1 , y

(i)
1 , x

(i−1)
2 , y

(i−1)
2 , and s(i) are initialized

according to step 1 and step 2 of Algorithm 1 [Fig. 3]. During the initialization
of s(i), the operation x1 +1 is performed simply by inverting the least significant
bit of x1 as x1 ∈ F2[x]. The variables t

(i)
0 and t

(i)
1 are initialized by two sets of

2-input XORs,3 which perform s(0) +x
(0)
2 and y

(0)
1 +y

(0)
2 , respectively. These two

operations are performed on the fly. As defined in step 4, the initialization of

2 An operand in F(21223)4 is sparse when some of its coefficients are trivial (i.e., either
zero or one).

3 The addition in F2[x] is performed by simple bit-wise XOR. Therefore, addition and
XOR are used with same meaning in this paper.

High Speed Cryptoprocessor for 128-bit Secure ηT Pairing 449

x1

s(i) c1

0 1

+2 1

x1

c2

1 0 reset
x2

1 0 reset

()2

y1
1 0 reset

y2
1 0 reset

()2

x(i)
1

c3x(i-1)
2

c2y(i)
1

c3y(i-1)
2

reset

0 1c4

+2

+2 1 +2

+2

0 1 c5

x + x
s + x

y + y
y + y + x + 1

c7

0 1

+2

c6

(i-1)
0f c9

0 1 c8

f (i-1)
1

c11

0 1 c10

f (i-1)
2

c13

0 1 c12

f (i-1)
3

c14g(i)
0

c14g(i)
1

1 0

6 5 4 3 2 1 0 3 2 1 0

1223-bit
hybrid Karatsuba multiplication

and reduction unit

a b

c15 c16

0 1 c17 0 1 c17

+2 +2 +2

c19r0
c20r 1 m2, m3,

m5, m6

m
1 ,m

4 +2

c25
(i)
0f

+2

c26
(i)
1f

+2

c27
(i)
2f

+2

c28
(i)
3f

+2

+2 +2

(i)
1

(i-1)
2

(i) (i-1)
2

(i-1)
2

(i)
1

(i-1)
2

(i)
1

(i)
1

t (i)
0 t (i)

1

Squaring and
addition in

final
exponentiation

c
18

Data access
mechanism

c29

0 1 c21 0 1 c22 0 1 c23 0 1 c24

c29 c29 c29

0
t

1
t

d
t

Fig. 3. The ηT pairing cryptoprocessor over F21223

register f
(i−1)
0 is done by means of the output of a multiplication followed by a 2-

input addition. Similarly, the initialization of f
(i−1)
1 requires a 2-input addition,

whereas the same for f
(i−1)
2 and f

(i−1)
3 are trivial. In total, the initialization part

of Miller’s algorithm takes only 12 clock cycles in our proposed cryptoprocessor.

Computation of G(i). We represent G(i) ∈ F(21223)4 in {1, u, v, uv} basis. How-
ever, throughout Miller’s loop G(i) contains sparse value which is represented as

450 S. Ghosh, D. Roychowdhury, and A. Das

−−−
Algorithm 1 . Computing the ηT pairing on E/F21223 . Intermediate variables
in uppercase belong to F(21223)4 , whereas those in lowercase to F21223 .
−−−
Input: P (x1, y1) and Q(x2, y2) ∈ E(F21223)[r].
Output: ηT (P, Q).
−−−
1. x

(0)
1 ← x1 ; y

(0)
1 ← y1 ; x

(0)
2 ← x2 ; y

(0)
2 ← y2 ;

2. s(0) ← x1 + 1 ;
3. t

(0)
0 ← s(0) + x

(0)
2 ; t

(0)
1 ← y

(0)
1 + y

(0)
2 ;

4. f
(0)
0 ← s(0) · t(0)0 + t

(0)
1 ; f

(0)
1 ← s(0) + x

(0)
2 ; f

(0)
2 ← 1 ; f

(0)
3 ← 0 ;

5. F (0) ← f
(0)
0 + f

(0)
1 u + f

(0)
2 v + f

(0)
3 uv ;

6. for i from 1 to 612 do

7. s(i) ← x
(i−1)
1 , x

(i)
1 ←

√
x

(i−1)
1 ; y

(i)
1 ←

√
y
(i−1)
1 ;

8. t
(i)
0 ← x

(i)
1 + x

(i−1)
2 ; t

(i)
1 ← y

(i)
1 + y

(i−1)
2 + x

(i)
1 + 1 ;

9. g
(i)
0 ← s(i) · t(i)0 + t

(i)
1 ; g

(i)
1 ← s(i) + x

(i−1)
2 ;

10. G(i) ← g
(i)
0 + g

(i)
1 u + v ;

11. F (i) ← F (i−1) · G(i) ;
12. x

(i)
2 ← (x

(i−1)
2)2 ; y

(i)
2 ← (y

(i−1)
2)2 ;

13. end for
14. return (F (612))(2

2446−1)(21223−2612+1).
−−−

g
(i)
0 +g

(i)
1 u+1.The computation of g(i)

0 (Algorithm 1, step 9) is performedby means
of one multiplication in F21223 followed by one 2-input addition. The operands of
above multiplication s(i) and t

(i)
0 are generated on the fly after computing two

square-root operations (in step 7) in parallel. Current cryptoprocessor computes
the square-root operations inexpensively by means of simple shift and XOR oper-
ations. Let, a =

∑
aix

i ∈ F21223 , then
√

a =
∑

a2jx
j + (x612 + x128)

∑
a2j+1x

j ,
which is computed in one clock. Therefore, in the proposed cryptoprocessor (Fig. 3)
the control signal c2 is activated only in that respective clock cycle during the exe-
cution of each iteration of Miller’s algorithm. After computing x

(i)
1 and y

(i)
1 at the

next clock the cryptoprocessor starts the multiplication s(i) · t
(i)
0 . The multipli-

cation in F21223 takes 10 clock cycles and immediately at the next clock the cryp-
toprocessor updates g

(i)
0 and g

(i)
1 registers. Therefore, in total the computation of

G(i) takes 12 clock cycles by the proposed cryptoprocessor.

Sparse Multiplication over F(21223)4 . The operation F (i−1) · G(i) in Algo-
rithm 1, step 11 is identified as sparse multiplication in F(21223)4 as G(i) consists
only two non-trivial coefficients. The computation of this sparse multiplication
is much easier than a full multiplication in the above extension field. The com-
putation procedure on our proposed cryptoprocessor is described in Table 2.

In the proposed cryptoprocessor multiplications mi, 1 ≤ i ≤ 6, are performed
in serial on a single F21223 multiplier core. The registers r0 and r1 (in Fig. 3) are
alternatively used to hold the multiplication outputs. After completing m1 and
m2 we start m3 at the next clock when in parallel the value of f

(i)
0 is computed

High Speed Cryptoprocessor for 128-bit Secure ηT Pairing 451

Table 2. Computation of F (i−1) · G(i)

m1 : r0 ← f
(i−1)
0 · g(i)

0 ; m4 : r0 ← f
(i−1)
2 · g(i)

2 ;

m2 : r1 ← f
(i−1)
1 · g(i)

1 ; m5 : r1 ← f
(i−1)
3 · g(i)

3 ;

x
(1)
4 : f

(i)
0 ← (r0 + r1) + f

(i−1)
4 ; x

(3)
4 : f

(i)
2 ← (r0 + r1) + (f

(i−1)
1 + f

(i−1)
3) ;

m3 : r1 ← (f
(i−1)
0 + f

(i−1)
1) · (g(i)

0 + g
(i)
1) ; m6 : r1 ← (f

(i−1)
2 + f

(i−1)
3) · (g(i)

0 + g
(i)
1) ;

x
(2)
4 : f

(i)
1 ← (r0 + r1) + (f

(i−1)
3 + f

(i−1)
4) ; x

(4)
4 : f

(i)
1 ← (r0 + r1) + (f

(i−1)
2 + f

(i−1)
4) ;

by two sets of 2-input XORs as defined by x
(1)
4 in Table 2. Similarly, we perform

m4 and x
(2)
4 in parallel and also do m6 and x

(3)
4 . Finally, after m6 we execute x

(4)
4

for computing f
(i)
3 at the next clock cycle. Therefore, the computation of sparse

multiplication F (i−1) ·G(i) takes 61 clock cycles in the proposed cryptoprocessor.

Computation of x
(i)
2 and y

(i)
2 . Squaring over F2[x] is free. Let a =

∑
aix

i ∈
F21223 then a2 =

∑
aix

2i. However, the reduction after squaring requires some
XOR operations, which are performed in parallel in only one clock cycle. The
computation of x

(i)
2 and y

(i)
2 are independent of the last step of sparse multipli-

cation (step x
(4)
4 of Table 2). Therefore, they are computed in parallel with x

(4)
4

which does not take any additional time.

Computation Cost of Miller’s Algorithm. One iteration of Miller’s algo-
rithm is performed by following three parts. The computation of G(i) which takes
12 clock cycles, the computation of F (i−1) ·G(i) which takes 61 clock cycles, and
the computation of x

(i)
2 , y

(i)
2 which is free. Thus, in total, each iteration of Al-

gorithm 1 takes 73 clock cycles, which incurs 44688 clock cycles for computing
whole Miller’s algorithm including initialization.

3.2 Computation of Final Exponentiation

The output F (612) ∈ F(21223)4 of the Miller’s algorithm is raised to the power
(22446 − 1)(21223 − 2612 + 1). The 21223-th powering an element G = g0 + g1u +
g2v + g3uv in F(21223)4 is easily computed by following equation.

G21223
= (g0 + g1 + g2) + (g1 + g2 + g3)u + (g2 + g3)v + g3uv, (5)

which is computed by three additions (one 2-input and two 3-input additions).
Thus, two clock cycles are taken for computing (F (612))2

2446
by the current cryp-

toprocessor. Further we perform one inversion followed by one multiplication in
F(21223)4 for computing (F (612))2

2446−1.

The Inversion in F(21223)4 . Let G = g0 + g1u + g2v + g3uv and H = G−1 =
h0 +h1u+ h2v +h3uv then (g0 + g1u + g2v + g3uv)(h0 +h1u+ h2v +h3uv) = 1.
This could follow the matrix representation :

452 S. Ghosh, D. Roychowdhury, and A. Das

⎡

⎢
⎢
⎣

g0 g1 g3 g2 + g3

g1 g0 + g1 g2 + g3 g2

g2 g3 g0 + g2 g1 + g3

g3 g2 + g3 g1 + g3 g0 + g1 + g2 + g3

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

h0

h1

h2

h3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦

From which the value of h1, h2, h3, and h4 could be solved by (I + 36M + 8S +
57A), where I, M, S, A stand for inversion, multiplication, squaring, and addition
in the base field F21223 . Operation I is performed by Itoh-Tsujii algorithm [20],
which requires (14M +1222S). Thus the cost for computing inversion in F(21223)4

is (50M + 1230S + 57A). Thereafter, a multiplication in F(21223)4 is performed
by (16M + 22A) operations. Thus, in total, the computation of (F (612))2

2446−1

requires (66M + 1230S + 82A) operations.

The Exponentiation by (21223 −2612+1). The second part of the exponent
(21223 − 2612 + 1) is raised to the power of (F (612))2

2446−1 by means of (32M +
612S + 53A). This is possible as the inverse of (F (612))2

2446−1 in F(21223)4 is
performed by computing ((F (612))2

2446−1)2
2446

, which is easy as shown in Eq. 5.
Thus, major operations in the second part are two multiplications in F(21223)4 .

Computation Costs of Final Exponentiation and ηT Pairing. The final
exponentiation is performed by means of (98M + 1842S + 135A) operations.
In our proposed cryptoprocessor (Fig. 3) the multiplier unit is shared by both
Miller’s algorithm and the final exponentiation. The control signal c17 selects
operands from one of these two operations. The squaring and additions of final
exponentiation are performed separately from the Miller’s algorithm. Some of
squaring and additions are performed in parallel. The proposed cryptoprocessor
computes final exponentiation in 2922 clock cycles, which is much less than
the cycle count for computing Miller’s algorithm. Total clock cycle count for
computing an 128-bit secure ηT pairing is 47610 on our proposed architecture.

4 Results

The whole design has been done in Verilog (HDL). All results have been ob-
tained from the place-and-route report of Xilinx ISE Design Suit. Table 3 shows
the implementation results. The critical path of the design is formed in between
the input and the output of the hybrid 306-bit Karatsuba multiplier (in Fig. 2).
We produce the results for fair comparison, observing the performance of the
proposed cryptoprocessor on different FPGA platforms. The Virtex-6 is the lat-
est FPGA family of Xilinx, on which the proposed design runs at a maximum
frequency of 250MHz. In total, it uses 15167 logic slices including whole data
path (for Miller’s algorithm and for final exponentiation), the controller logic,
and registers on the Virtex-6 FPGA, where it finishes computation of one 128-bit
secure ηT pairing in 190μs.

High Speed Cryptoprocessor for 128-bit Secure ηT Pairing 453

Table 3. Implementation results of the ηT pairing cryptoprocessor

Platform Slice LUT
Frequency Clock Security Times

[MHz] Cycles [bit] [μs]

Virtex-2 36534 69367 125
47610 128

381
Virtex-4 35458 69367 168 286

Virtex-6‡ 15167 54681 250 190

‡ : One Virtex-6 slice consists of four LUTs and eight flip-flops.

4.1 Comparison with Existing Designs

Two aspects of the proposed design are considered when it is compared with
the existing designs. First, we compare it with the existing ηT pairing processors
over characteristic-two fields as summarized in Table 4. We consider only the
design results with maximum security level provided by the respective authors.
To the best of the authors’ knowledge no hardware implementation is available

Table 4. Hardware designs for the ηT pairing

Designs Curve
Security

FPGA Area
Frequency Times

[bit] [Slices] [MHz] [μs]

Shu et al. [28] E/F2557 96 xc4vlx200-10 37931 66 675.5
Beuchat et al. [5] E/F2691 105 xc4vlx200-11 78874 130 18.8
This work E/F21223 128 xc4vlx200-11 35458 168 286.0
This work E/F21223 128 xc6vlx130t-3 15167 250 190.0

for computing 128-bit secure ηT pairing on supersingular elliptic curves over
characteristic-two fields. The existing designs in this respect are for a maximum
of 105-bit secure design over F2691 field, which is proposed by Beuchat et al. in [5].
The design proposed in [5] computes 105-bit secure ηT pairing and achieves a
very good speed of 18.8μs. However, compared to the respective design in [5] our
design with higher security level demands much lesser, less than half, number
of slices on the same FPGA family. As a result, the proposed design could be
implemented on a medium-range Virtex-4 device, whereas the existing one’s
demand a high-range device in the same FPGA family. This makes our design
more useful in resource-constrained identity-aware devices.

The second aspect of the design is considered on the fact of 128-bit secure
pairing computation irrespective of underlying curve and field types. Table 5
summarizes the comparative studies of related designs. The proposed design is
the first one which computes an 128-bit secure pairing in less than one millisecond
(190μs on a Virtex-6 FPGA) on a dedicated hardware.

All the existing designs except [1] are based on elliptic curves. The design
of [1] computes optimal-eta pairing on 128-bit secure supersingular Genus-2 bi-
nary hyperelliptic curves. The compact design proposed in [10] computes ηT

pairing on supersingular elliptic curves over F3m′ fields. Due to its low area the

454 S. Ghosh, D. Roychowdhury, and A. Das

Table 5. Hardware designs for 128-bit secure pairings

Designs Curve FPGA Area
Freq. Times

A · T†
[MHz] [μs]

Duquesne et al. [9]§ E/Fp256 Stratix III 4233 A‡ 165 1070 -
Fan et al. [11] E/Fp256 xc6vlx240-3 4014 Slices, 42 DSP 210 1170 -
Kammler et al. [21] E/Fp256 130nm CMOS 97000 Gates 338 15800 -
Fan et al. [12] E/Fp256 130nm CMOS 183000 Gates 204 2900 -
Ghosh et al. [14] E/Fp256 xc4vlx200-12 52000 Slices 50 16400 852.8
Estibals [10] E/F35·97 xc4vlx200-11 4755 Slices 192 2227 10.6
Aranha et al. [1] Co/F2367 xc4vlx25-11 4518 Slices 220 3518 15.9
This work E/F21223 xc4vlx200-11 35458 Slices 168 286 10.1
This work E/F21223 xc6vlx130t-3 15167 Slices 250 190 2.9

† A · T represents product of area in slices and time in seconds.
§ It provides 126-bit security instead of 128-bit.
‡ It has 8 Rowers, each consisting of two 36x36 DSP blocks and one 9x9 multiplier.

Table 6. Software for 128-bit secure pairings

Reference Platform Pairing Curve
Frequency Times

[MHz] [ms]

Beuchat et al. [7] core i7 2.8GHz modified Tate E/F3509 2800 1.87
E/F21223 2800 3.08

Naehrig et al. [26] core2 Q6600 optimal-ate E/Fp256 2394 1.86

Beuchat et al. [6] core i7 2.8GHz optimal-ate E/Fp256 2800 0.83

Hankerson et al. [16] 64-bit core2 optimal-ate E/Fp256 2400 6.25
ηT E/F21223 2400 16.25
ηT E/F3509 2400 13.75

Grabher et al. [15] 64-bit core2 ate E/Fp256 2400 6.01

design of [10] is useful to resource constrained applications. It is analyzed in
Section 5.2, [5] that the number of base-field multiplications required for com-
puting an ηT pairing with high security level over F2m and F3m′ are almost
same. This is also true for other fields with 128-bit security. For example, the
optimal-ate pairing on E/Fp256 reported in [9,11,12,14,21] requires 15093 multi-
plications in the base field [16]. On the other hand, the ηT pairing on E/F21223

requires 4566 multiplications in the base field, which is only 1/3 of optimal-ate
pairing. Furthermore, the base field size of F21223 is 1223 bits which is 4.8 times
longer than the size of Fp256. Thus, the operation complexities for computing
both the pairings are almost same. To sum up, the proposed design achieves a
significant performance improvement for computing 128-bit secure pairings on
hardware platforms. With respect to the A · T product too, the proposed design
gives the best results compared to all existing designs. The software implementa-
tion results of 128-bit secure pairings computed over different elliptic curves are
enlisted in Table 6. The most efficient software for computing 128-bit pairings

High Speed Cryptoprocessor for 128-bit Secure ηT Pairing 455

on supersingular elliptic curves over F21223 is proposed in [7]. It takes 3.08ms on
eight parallel cores of a core i7 2.8GHz processor.

5 Conclusion

In this paper we have proposed an area and time optimized hybrid Karatsuba
multiplier for F21223 . Sufficient parallelism has been employed in the architecture
for which we have achieved a high-speed ηT pairing cryptoprocessor. A common
datapath for both non-reduced pairing and final exponentiation has been shared
which reduces the overall logic cells in its FPGA implementation. The proposed
design achieves a significant improvement with respect to two aspects of the
design. It computes ηT pairing in characteristic-two field with higher security
(128:105) in half area. On the other hand, it achieves eight times speedup and
also provides the best area×time product among existing designs for computing
128-bit secure pairings.

References

1. Aranha, D.F., Beuchat, J.L., Detrey, J., Estibals, N.: Optimal Eta pairing on su-
persingular genus-2 binary hyperelliptic curves. Cryptology ePrint Archive, Report
2010/559, http://eprint.iacr.org/

2. Barke, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management part 1: General (revised). National Institute of Standards and Tech-
nology, NIST Special Publication 800-57 (2007)

3. Barreto, P.S.L.M., Galbraith, S.D., ÓhÉigeartaigh, C., Scott, M.: Efficient pairing
computation on supersingular Abelian varieties. Designs, Codes and Cryptogra-
phy 42, 239–271 (2007)

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

5. Beuchat, J.L., Detrey, J., Estibals, N., Okamoto, E., Henŕıguez, F.R.: Fast archi-
tectures for the ηT pairing over small-characteristic supersingular elliptic curves.
IEEE Transactions on Computers 60(2) (2011)

6. Beuchat, J.-L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal ate
pairing over barreto–naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)

7. Beuchat, J.L., Trejo, E.L., Ramos, L.M., Mitsunari, S., Henŕıquez, F.R.: Multi-core
Implementation of the Tate Pairing over Supersingular Elliptic Curves. Cryptology
ePrint Archive, Report 2009/276 (2009), http://eprint.iacr.org/

8. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

9. Duquesne, S., Guillermin, N.: A FPGA pairing implementation using the residue
number system. Cryptology ePrint Archive, Report 2011/176 (2011),
http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

456 S. Ghosh, D. Roychowdhury, and A. Das

10. Estibals, N.: Compact Hardware for Computing the Tate Pairing over 128-Bit-
Security Supersingular Curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing
2010. LNCS, vol. 6487, pp. 397–416. Springer, Heidelberg (2010)

11. Fan, J., Vercauteren, F., Verbauwhede, I.: Efficient Hardware Implementation of
Fp-arithmetic for Pairing-Friendly Curves. IEEE Trasaction on Computers (to ap-
pear, 2011)

12. Fan, J., Vercauteren, F., Verbauwhede, I.: Faster Fp-Arithmetic for Cryptographic
Pairings on Barreto-Naehrig Curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 240–253. Springer, Heidelberg (2009)

13. Galbraith, S.: Pairings. In: Blake, I.F., Seroussi, G., Smart, N.P. (eds.) Advances in
Elliptic Curve Cryptography. London Mathematical Society Lecture Note Series,
vol. ch. IX, Cambridge University Press, Cambridge (2005)

14. Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: High speed flexible pairing cryp-
toprocessor on FPGA platform. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing
2010. LNCS, vol. 6487, pp. 450–466. Springer, Heidelberg (2010)

15. Grabher, P., Großschädl, J., Page, D.: On software parallel implementation of cryp-
tographic pairings. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS,
vol. 5381, pp. 35–50. Springer, Heidelberg (2009)

16. Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. Cryp-
tology and Information Security Series, ch. 12, pp. 188–206. IOS Press, Amsterdam
(2009)

17. Henŕıquez, F.R., Koç, Ç.K.: On fully parallel Karatsuba multipliers for GF (2m).
In: International Conference on Computer Science and Technology CST 2003, pp.
405–410 (2003)

18. Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006)

19. Hoffstein, J., Pipher, J., Silverman, J.H.: An introduction to mathematical cryp-
tography. Springer, Heidelberg (2008)

20. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)

21. Kammler, D., Zhang, D., Schwabe, P., Scharwaechter, H., Langenberg, M., Auras,
D., Ascheid, G., Mathar, R.: Designing an ASIP for Cryptographic Pairings
over Barreto-Naehrig Curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 254–271. Springer, Heidelberg (2009)

22. Karatsuba, A., Ofman, Y.: Multiplication of Multidigit Numbers on Automata.
Soviet Physics Doklady (English Translation) 7(7), 595–596 (1963)

23. Lee, E., Lee, H.S., Park, C.M.: Efficient and generalized pairing computation on
abelian varieties. Cryptology ePrint Archive, Report 2009/040 (2009),
http://eprint.iacr.org/

24. Lenstra, A.: Unbelievable security: Matching AES security using public key sys-
tems. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 67–86. Springer,
Heidelberg (2001)

25. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptol-
ogy 17, 235–261 (2004)

26. Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for cryp-
tographic pairings. Cryptology ePrint Archive, Report 2010/186,
http://eprint.iacr.org/

27. Rebeiro, C., Mukhopadhyay, D.: High speed compact elliptic curve cryptopro-
cessor for FPGA platforms. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.)
INDOCRYPT 2008. LNCS, vol. 5365, pp. 376–388. Springer, Heidelberg (2008)

http://eprint.iacr.org/
http://eprint.iacr.org/

High Speed Cryptoprocessor for 128-bit Secure ηT Pairing 457

28. Shu, C., Kwon, S., Gaj, K.: Reconfigurable computing approach for tate pairing
cryptosystems over binary fields. IEEE Transactions on Computers 58(9), 1221–
1237 (2009)

29. Weimerskirch, A., Paar, C.: Generalizations of the Karatsuba algorithm for efficient
implementations. Cryptology ePrint Archive, Report 2006/224 (2006),
http://eprint.iacr.org/

Appendix A

We describe 1223-bit multiplication based on the serial use of 306-bit parallel
multiplier in Algorithm 2. The variable names of the algorithm are similar to the
registers and intermediate results computed by the proposed 1223-bit multiplier
as shown in Fig. 2.

Appendix B

The ηT Pairing on Supersingular Elliptic Curves over F21223 . This paper
considers the ηT pairing computed over characteristic two field F21223 , which is
represented as F2[x]/(x1223 + x255 + 1) in the polynomial basis with irreducible
polynomial (x1223 +x255 +1). The supersingular elliptic curve E over above field
is defined as:

E/F21223 : Y 2 + Y = X3 + X, (6)

which has embedding degree k = 4. It forms a large subgroup with prime order
r = (21223+2612+1)/5. The ηT pairing on E/F21223 attains 128-bit security level
because Pollard’s rho method for computing discrete logarithms in above order-r
subgroup has running time at least 2128, as do the index-calculus algorithms for
computing discrete logarithms in the extension field F(21223)4 . We refer the reader
to [3,18,24] for more details about the computation techniques of ηT pairing and
its respective security. We represent the extension field F(21223)4 using tower field
extensions F(21223)2 = F21223 [u]/(u2+u+1) and F(21223)4 = F(21223)2 [v]/(v2+v+u),
where a basis for F(21223)4 over F21223 is [1, u, v, uv].

http://eprint.iacr.org/

458 S. Ghosh, D. Roychowdhury, and A. Das

−−−
Algorithm 2 . The 1223-bit multiplication based on Karatsuba technique†.
−−−
Input: a =

∑1222
i=0 aix

i and b =
∑1222

i=0 bix
i.

Output: a · b.
−−−
1. a00 ←∑305

i=0 aix
i ; a01 ←∑611

i=306 aix
i ;

2. a10 ←∑917
i=612 aix

i ; a11 ←∑1222
i=918 aix

i ;
3. b00 ←∑305

i=0 bix
i ; b01 ←∑611

i=306 bix
i ;

4. b10 ←∑917
i=612 bix

i ; b11 ←∑1222
i=918 bix

i ;
5. g0 ← a00 + a01 ; g1 ← a10 + a11 ; g2 ← a00 + a10 ; g3 ← a01 + a11 ;
6. h0 ← b00 + b01 ; h1 ← b10 + b11 ; h2 ← b00 + b10 ; h3 ← b01 + b11 ;
7. g4 ← g2 + g3 ; h4 ← h2 + h3 ;
8. k ← a00 · b00 ;
9. d1 ← kL ; d0 ← kR ;

10. k ← a01 · b01 ;
11. d3 ← kL ; d2 ← kR ;
12. k ← g0 · h0 ;
13. t1 ← kL ; t0 ← kR ;
14. d1 ← d1 + d0 + d2 + t0 ; d2 ← d2 + d1 + d3 + t1 ;
15. k ← a10 · b10 ;
16. e1 ← kL ; e0 ← kR ;
17. k ← a11 · b11 ;
18. e3 ← kL ; e2 ← kR ;
19. k ← g1 · h1 ;
20. t1 ← kL ; t0 ← kR ;
21. e1 ← e1 + e0 + e2 + t0 ; e2 ← e2 + e1 + e3 + t1 ;
22. k ← g2 · h2 ;
23. f1 ← kL ; f0 ← kR ;
24. k ← g3 · h3 ;
25. f3 ← kL ; f2 ← kR ;
26. k ← g4 · h4 ;
27. t1 ← kL ; t0 ← kR ;
28. f1 ← f1 + f0 + f2 + t0 ; f2 ← f2 + f1 + f3 + t1 ;
29. r0 ← d0 ; r1 ← d1 ; r2 ← d2 + d0 + e0 + f0 ;
30. r3 ← d3 + d1 + e1 + f1 ; r4 ← e0 + d2 + e2 + f2 ;
31. r5 ← e1 + d3 + e3 + f3 ; r6 ← e2 ; r7 ← e3 ;
32. return (r7 · x2142 + r6 · x1836 + r5 · x1530 + r4 · x1224 + r3 · x918+

r2 · x612 + r1 · x306 + r0).
−−−
† In the algorithm, kR represents the least significant m bits of (2m − 1)-bit
result k, and kL represents the most significant m − 1 bits of k.
−−−

Fast Multi-precision Multiplication for

Public-Key Cryptography on Embedded
Microprocessors

Michael Hutter and Erich Wenger

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{Michael.Hutter,Erich.Wenger}@iaik.tugraz.at

Abstract. Multi-precision multiplication is one of the most fundamen-
tal operations on microprocessors to allow public-key cryptography such
as RSA and Elliptic Curve Cryptography (ECC). In this paper, we
present a novel multiplication technique that increases the performance
of multiplication by sophisticated caching of operands. Our method sig-
nificantly reduces the number of needed load instructions which is usually
one of the most expensive operation on modern processors. We evaluate
our new technique on an 8-bit ATmega128 microcontroller and compare
the result with existing solutions. Our implementation needs only 2, 395
clock cycles for a 160-bit multiplication which outperforms related work
by a factor of 10 % to 23%. The number of required load instructions is
reduced from 167 (needed for the best known hybrid multiplication) to
only 80. Our implementation scales very well even for larger Integer sizes
(required for RSA) and limited register sets. It further fully complies to
existing multiply-accumulate instructions that are integrated in most of
the available processors.

Keywords: Multi-precision Arithmetic, Microprocessors, Elliptic Curve
Cryptography, RSA, Embedded Devices.

1 Introduction

Multiplication is one of the most important arithmetic operation in public-key
cryptography. It engross most of the resources and execution time of modern
microprocessors (up to 80% for Elliptic Curve Cryptography (ECC) and RSA
implementations [6]). In order to increase the performance of multiplication, most
effort has been put by researchers and developers to reduce the number of in-
structions or minimize the amount of memory-access operations.

Common multiplication methods are the schoolbook or Comba [4] technique
which are widely used in practice. They require at least 2n2 load instructions
to process all operands and to calculate the necessary partial products. In 2004,
Gura et al. [6] presented a new method that combines the advantages of these
methods (hybrid multiplication). They reduced the number of load instructions

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 459–474, 2011.
� International Association for Cryptologic Research 2011

460 M. Hutter and E. Wenger

to only 2�n2/d� where the parameter d depends on the number of available reg-
isters of the underlying architecture. They reported a performance gain of about
25% compared to the classical Comba multiplication. Their 160-bit implemen-
tation needs 3,106 clock cycles on an 8-bit ATmega128 microcontroller. Since
then, several authors applied this method [7,12,14,15,17] and proposed various
enhancements to further improve the performance. Most of the related work
reported between 2,593 and 2,881 clock cycles on the same platform.

In this paper, we present a novel multiplication technique that reduces the
number of needed load instructions to only 2n2/e where e > d. We propose a
new way to process the operands which allows efficiently caching of required
operands. In order to evaluate the performance, we use the ATmega128 micro-
controller and compare the results with related work. For a 160-bit multiplica-
tion, 2,395 clock cycles are necessary which is an improvement by a factor of 10%
compared to the best reported implementation of Scott et al. [14] (which need
2,651 clock cycles) and by a factor of about 23% compared to the work of Gura
et al. [6]. We further compare our solution with different Integer sizes (160, 192,
256, 512, 1,024, and 2,048) and register sizes (e = 2, 4, 8, 10, and 20). It shows
that our solution needs about 15% less clock cycles for any chosen Integer size.
Our solution also scales very well for different register sizes without significant
loss of performance. Besides this, the method fully complies with common ar-
chitectures that support multiply-accumulate instructions using a (Comba-like)
triple-register accumulator.

The paper is organized as follows. In Section 2, we describe related work on
that topic and give performance numbers for different multiplication techniques.
Section 3 describes different multi-precision multiplication techniques used in
practice. We describe the operand scanning, product scanning, and the hybrid
method and compare them with our solution. In Section 4, we present the results
of our evaluations. We describe the ATmega128 architecture and give details
about the implementation. Summary and conclusions are given in Section 5.

2 Related Work

In this section, we describe related work on multi-precision multiplication over
prime fields. Most of the work given in literature make use of the hybrid-
multiplication technique [6] which provides best performance on most micro-
processors. This technique was first presented at CHES 2004 where the authors
reported a speed improvement of up to 25 % compared to the classical Comba-
multiplication technique [4] on 8-bit platforms. Their implementation requires
3,106 clock cycles for a 160-bit multiplication on an ATmega128 [1]. Several
authors adopted the idea and applied the method for different devices and en-
vironments, e.g. sensor nodes. Wang et al. [18] and Ugus et al. [16] made use
of this technique and implemented it on the MICAz motes which feature an
ATmega128 microcontroller. Results for the same platform have been also re-
ported by Liu et al. [11] and Szczechowiak et al. [15] in 2008 who provide software
libraries (TinyECC and NanoECC) for various sensor-mote platforms. One of
the first who improved the implementation of Gura has been due to Uhsadel et

Fast Multi-precision Multiplication for Public-Key Cryptography 461

al. [17]. They have been able to reduce the number of needed clock cycles to only
2,881. Further improvements have been also reported by Scott et al. [14]. They
introduced additional registers (so-called carry catchers) and could increase the
performance to 2,651 clock cycles. Note that they fully unrolled the execution
sequence to avoid additional clock cycles for loop instructions. Similar results
have been also obtained by Kargl et al. [7] in 2008 which reported 2,593 clock
cycles for an un-rolled 160-bit multiplication on the ATmega128.

In 2009, Lederer et al. [9] showed that the needed number of addition and
move instructions can be reduced by simply rearranging the instructions during
execution of the hybrid-multiplication method. Similar findings have been also
reported recently by Liu et al. [12] who reported the fastest looped version of the
hybrid multiplication needing 2,865 clock cycles in total.

3 Multi-precision Multiplication Techniques

In the following subsections, we describe common multiplication techniques that
are often used in practice. We describe the operand scanning, product scanning,
and hybrid multiplication method1. The methods differ in several ways how to
process the operands and how many load and store instructions are necessary to
perform the calculation. Most of these methods lack in the fact that they load
the same operands not only once but several times throughout the algorithm
which results in additional and unnecessary clock cycles. We present a new mul-
tiplication technique that improves existing solutions by efficiently reducing the
load instructions through sophisticated caching of operands.

Throughout the paper, we use the following notation. Let a and b be two
m-bit large Integers that can be written as multiple-word array structures A =
(A[n−1], . . . , A[2], A[1], A[0]) and B = (B[n−1], . . . , B[2], B[1], B[0]). Further let
W be the word size of the processor (e.g. 8, 16, 32, or 64 bits) and n = �m/W �
the number of needed words to represent the Integers a or b. We denote the
result of the multiplication by c = ab and represent it in a double-size word
array C = (C[2n − 1], . . . , C[2], C[1], C[0]).

3.1 Operand-Scanning Method

Among the most simplest way to perform large Integer multiplication is the
operand-scanning method (or often referred as schoolbook or row-wise multipli-
cation method). The multiplication can be implemented using two nested loop
operations. The outer loop loads the operand A[i] at index i = 0 . . . n − 1 and
keeps the value constant inside the inner loop of the algorithm. Within the in-
ner loop, the multiplicand B[j] is loaded word by word and multiplied with the
operand A[i]. The partial product is then added to the intermediate result of the
same column which is usually buffered in a register or stored in data memory.
1 Note that we do not consider multiplications methods such as Karatsuba-Ofman or

FFT in this paper since they are considered to require more resources and memory
accesses on common microcontrollers than the given methods [8].

462 M. Hutter and E. Wenger

A[7]B[7]

A[0]B[7]

A[7]B[0]

A[0]B[0]

C[0]C[7]C[14]

Fig. 1. Operand-scanning multiplication of 8-word large Integers a and b

Figure 1 shows the structure of the algorithm on the left side. The individual
row levels can be clearly discerned. On the right side of the figure, all n2 partial
products are displayed in form of a rhombus. Each point in the rhombus repre-
sents a multiplication A[i] × B[j]. The most right-sided corner of the rhombus
starts with the lowest indices i, j = 0 and the most left-sided corner ends with
the highest indices i, j = n − 1. By following all multiplications from the right
to the lower-mid corner of the rhombus, it can be observed that the operand
A[i] keeps constant for any index i ∈ [0, n). The same holds true for the operand
B[j] and j ∈ [0, n) by following all multiplications from right to the upper-mid
corner of the rhombus. Note that this is also valid for the left-handed side of the
rhombus.

For the operand-scanning method, it can be seen that the partial products
are calculated from the upper-right side to the lower-left side of the rhombus (we
marked the processing of the partial products with a black arrow). In each row,
n multiplications have to be performed. Furthermore, 2n load operations and n
store operations are required to load the multiplicand and the intermediate result
C[i + j] and to store the result C[i + j] ← C[i + j] + A[i]×B[j]. Thus, 3n2 + 2n
memory operations are necessary for the entire multi-precision multiplication.
Note that this number decreases to n2 + 3n for architectures that can maintain
the intermediate result in available working registers.

3.2 Product-Scanning Method

Another way to perform a multi-precision multiplication is the product-scanning
method (also referred as Comba [4] or column-wise multiplication method). There,
each partial product is processed in a column-wise approach. This has several
advantages. First, since all operands of each column are multiplied and added
consecutively (within a multiply-accumulate approach), a final word of the result
is obtained for each column. Thus, no intermediate results have to be stored or
loaded throughout the algorithm. In addition, the handling of carry propagation

Fast Multi-precision Multiplication for Public-Key Cryptography 463

A[7]B[7]

A[0]B[7]

A[7]B[0]

A[0]B[0]

C[0]C[7]C[14]

Fig. 2. Product-scanning multiplication of 8-word large Integers a and b

is very easy because the carry can be simply added to the result of the next
column using a simple register-copy operation. Second, only five working regis-
ters are needed to perform the multiplication: two registers for the operand and
multiplicand and three registers for accumulation2. This makes the method very
suitable for low-resource devices with limited registers.

Figure 2 shows the structure of the product-scanning method. By having a
look at the rhombus, it shows that by processing the partial products in a
column-wise instead of a row-wise approach, only one store operation is needed
to store the final word of the result. For the entire multi-precision operation, 2n2

load operations are necessary to load the operands A[i] and B[j] and 2n store
operations are needed to store the result. Therefore, 2n2+2n memory operations
are needed.

3.3 Hybrid Method

The hybrid multiplication method [6] combines the advantages of the operand-
scanning and product-scanning method. It can be implemented using two nested
loop structures where the outer loop follows a product-scanning approach and the
inner loop performs a multiplication according to the operand-scanning method.

The main idea is to minimize the number of load instructions within the inner
loop. For this, the accumulator has to be increased to a size of 2d + 1 registers.
The parameter d defines the number of rows within a processed block. Note that
the hybrid multiplication is equals to the product-scanning method if parameter
d is chosen as d = 1 and it is equal to the operand-scanning method if d = n.

Figure 3 shows the structure of the hybrid multiplication for d = 4. It shows
that the partial products are processed in form of individual blocks (we marked
the processing sequence of the blocks from 1 to 4). Within one block, all operands
are processed row by row according to the operand-scanning approach. Note that
2 We assume the allocation of three registers for the accumulator register whereas 2+
�log2(n)/W � registers are actually needed to maintain the sum of partial products.

464 M. Hutter and E. Wenger

A[7]B[7]

A[0]B[7]

A[7]B[0]

A[0]B[0]

C[0]C[7]C[14]

1

2

3

4

Fig. 3. Hybrid multiplication of 8-word large Integers a and b (d = 4)

these blocks use operands with a very limited range of indices. Thus, several load
instructions can be saved in cases where enough working registers are available.
However, the outer loop of the hybrid method processes the blocks in a column-
wise approach. So between two consecutive blocks no operands can be shared
and all operands have to be loaded from memory again. This becomes clear by
having a look at the processing of Block 1-3. Block 2 and 3 do not share any
operands that possess the same indices. Therefore, all operands that have already
been loaded for Block 1 and that can be reused in Block 3 have to be loaded
again after processing of Block 2 which requires additional and unnecessary load
instructions. However, in total, the hybrid method needs 2�n2/d�+2n memory-
access instructions which provides good performances on devices that feature a
large register set.

3.4 Operand-Caching Method

We present a new method to perform multi-precision multiplication. The main
idea is to reduce the number of memory accesses to a minimum by efficiently
caching of operands. We show that by spending a certain amount of store opera-
tions, a significant amount of load instructions can be saved by reusing operands
that have been already loaded in working registers.

The method basically follows the product-scanning approach but divides the
calculation into several rows. In fact, the product-scanning method provides best
performance if all needed operands can be maintained in working registers. In
such a case, only 2n load instructions and 2n store instructions would be nec-
essary. However, the product-scanning method becomes inefficient if not enough
registers are available or if the Integer size is too large to cache a significant
amount of operands. Hence, several load instructions are necessary to reload
and overwrite the operands in registers.

In the light of this fact, we propose to separate the product-scanning method
into individual rows r = �n/e�. The size e of each row is chosen in a way that all

Fast Multi-precision Multiplication for Public-Key Cryptography 465

binit

1

2

3

4

1

2

3

4

r0

r1
A[7]B[7]

A[0]B[7]

A[7]B[0]

A[0]B[0]

C[0]C[7]C[14]

1

23

4

1

2
3

4

r0

r1

binit

Fig. 4. Operand-caching multiplication of 8-word large Integers a and b (e = 3)

needed words of one operand can be cached in the available working registers.
Figure 4 shows the structure of the proposed method for parameter e = 3. That
means, 3 registers are reserved to store 3 words of operand a and 3 registers
are reserved to store 3 words of operand b. Thus, we assume f = 2e + 3 = 9
available registers including a triple-word accumulator. The calculation is now
separated into r = �8/3� = 2 rows, i.e. r0 and r1, and consists of one remaining
block which we further denote as initialization block binit. This block calculates
the partial products which are not processed by the rows.

All rows are further separated into four parts. Part 1 and 4 use the clas-
sical product-scanning approach. Part 2 and 3 perform an efficient multiply-
accumulate operation of already cached operands.

The algorithm starts with the calculation of binit and processes the individual
rows afterwards (starting from the the smallest to the largest row, i.e. from
the top to the bottom of the rhombus). Furthermore, all partial products are
generated from right to left. In the following, we describe the algorithm in a
more detail.

Initialization Block binit. This block (located in the upper-mid of the rhom-
bus) performs the multiplication according to the classical product-scanning
method. The Integer size of the binit multiplication is (n− re), i.e. 8− 6 = 2
in our example, which is by definition smaller than e. Because of that, all
operands can be loaded and maintained within the available registers result-
ing in only 4(n − re) memory-access operations. Note that the calculation
of binit is only required if there exist remaining partial products, i.e. n mod
e �= 0. If n mod e = 0, the calculation of binit is skipped. Furthermore,
consider the special case when n < e where only binit has to be performed
skipping the processing of rows (trivial case).

Processing of Rows. In the following, we describe the processing of each row
p = r − 1 . . . 0. Each row consists of four parts.

Part 1. This part starts with a product-scanning multiplication. All operands
for that row are first loaded into registers, i.e. A[i] with i = pe . . . e(p + 1) − 1

466 M. Hutter and E. Wenger

A[2] x B[1]

A[0] x B[3]

… …

C[3]+
A[2] x B[2]

A[0] x B[4]

… …

C[4]+

A[2] x B[5]

A[0] x B[7]

… …

C[7]+

ACC0ACC1ACC2

C[3]

A[3] x B[5]

A[1] x B[7]

… …

C[8]+
A[4] x B[5]

A[2] x B[7]

… …

C[9]+

A[7] x B[5]

A[5] x B[7]

… …

C[12]+

+

23

Fig. 5. Processing of Part 2 and 3 of the row r1

and B[j] with j = 0 . . . e − 1. The sum of all partial products A[i] × B[j] is
then stored as intermediate result to the memory location C[i] (same index
range as A[i]). Therefore, 2e load instructions and e store instructions are
needed.

Part 2. The second part, processes n − e(p + 1) columns using a multiply-
accumulate approach. Since all operands of A[i] were already loaded and
used in Part 1, only one word B[j] has to be loaded from one column to
the next. The operands A[i] are kept constant throughout the processing of
Part 2. Next to the needed load instructions for B[j], we have to load and
update the intermediate result of Part 1 with the result obtained in Part 2.
Thus, 2(n − e(p + 1)) load and n − e(p + 1) store instructions are required
for that part.

Part 3. The third part performs the same operation as described in Part 2
except that the already loaded operands B[j] are kept constant and that
one word A[i] is loaded for each column. Figure 5 shows the processing of
Part 2 and 3 of row r1 (p = 0). For each column, two load instructions are
necessary (marked in grey). All other operands have been loaded and cached
in previous parts. Operands which are not required for further processing
are overwritten by new operands, e.g. B[1] . . . B[4] in Part 2 of our example.

Part 4. The last part calculates the remaining partial products. In contrast to
Part 1, no load instructions are required since all operands have been already
loaded in Part 3. Hence, only e memory-access operations are needed to store
the remaining words of the (intermediate) result c.

Table 1 summaries the memory-access complexity of the initialization block and
the individual parts of a row p. By summing up all load instructions, we get

2(n − re) +
r−1∑

p=0

(4n − 4pe − 2e) = 2n + 4rn − 2er2 − 2er ≤ 2n2

e
. (1)

The total number of store operations can be evaluated by

2(n − re) +
r−1∑

p=0

(2n − 2pe) = 2n + 2rn − er2 − er ≤ n2

e
+ n. (2)

Fast Multi-precision Multiplication for Public-Key Cryptography 467

Table 1. Memory-access complexity of binit and each part of row p = 0 . . . r − 1

Component Load Instr. Store Instr. Total

binit 2(n − re) 2(n − re) 4(n − re)
Part 1 2e e 3e
Part 2 2(n − e(p + 1)) n − e(p + 1) 3(n − e(p + 1))
Part 3 2(n − e(p + 1)) n − e(p + 1) 3(n − e(p + 1))
Part 4 0 e e

Table 2 lists the complexity of different multi-precision multiplication tech-
niques. It shows that the hybrid method needs 2�n2

d � load instructions whereas
the operand-caching technique needs about 2n2

e . Since the total number of avail-
able registers f equals to 2e + 3 for the operand-caching technique (2e registers
for the operand registers and three registers for the accumulator) and 3d + 2 for
the hybrid method (d + 1 registers for the operands and 2d + 1 registers for the
accumulator), we obtain

2e + 3 = 3d + 2 =⇒ e =
3d − 1

2
and e > d. (3)

If we compare the total number of memory-access instructions for the hybrid
and the operand-caching method and express both runtimes using f , we get

2
⌈

3n2

f − 2

⌉

+ 2n >
6n2

f − 3
+ n (4)

Note that there are more parameters to consider. The number of additions of
the operand-caching method is 3n2 and the number of additions of the hybrid
method is n2(2 + d/2) (upper bound). Also the pseudocode of Gura et al. [6] for
the hybrid multiplication method is inefficient in the special case of n mod d �= 0.

Table 2. Memory-access complexity of different multiplication techniques

Method Load Store Memory
Instructions Instructions Instructions

Operand Scanning 2n2 + n n2 + n 3n2 + 2n
Product Scanning [4] 2n2 2n 2n2 + 2n
Hybrid [6] 2�n2/d� 2n 2�n2/d� + 2n
Operand Caching 2n2/e n2/e + n 3n2/e + n

4 Results

We used the 8-bit ATmega128 microcontroller for evaluating the new multiplica-
tion technique. The ATmega128 is part of the megaAVR family from Atmel [1].
It has been widely used in embedded systems, automotive environments, and

468 M. Hutter and E. Wenger

Table 3. Unrolled instruction counts for a 160-bit multiplication on the ATmega128

Method Instruction Clock
LD ST MUL ADD MOVW Others Cycles

Operand Scanning 820 440 400 1,600 2 464 5,427
Product Scanning 800 40 400 1,200 2 159 3,957
Hybrid (d=4) 200 40 400 1,250 202 109 2,904
Operand Caching (e=10) 80 60 400 1,240 2 68 2,395

sensor-node applications. The ATmega128 is based on a RISC architecture and
provides 133 instructions [2]. The maximum operating frequency is 16MHz. The
device features 128kB of flash memory and 4 kB of internal SRAM. There ex-
ist 32 8-bit general-purpose registers (R0 to R31). Three 16-bit registers can
be used for memory addressing, i.e. R26:R27, R28:R29, and R30:R31 which
are denoted as X, Y, and Z. Note that the processor also allows pre-decrement
and post-increment functionalities that can be used for efficient addressing of
operands. The ATmega128 further provides an hardware multiplier that per-
forms an 8 × 8-bit multiplication within two clock cycles. The 16-bit result is
stored in the registers R0 (lower word) and R1 (higher word).

We used register R25 to store a zero value. Furthermore, we reserved R23,
R24, and R25 as accumulator register. Thus, 20 registers, i.e. R2...R21, can be
used to store and cache the words of the operands (e = 10 registers for each
operand a and b). All implementations have been done by using a self-written
code generator that allows the generation of (looped & unrolled) assembly code.

In order to demonstrate the performance of our method, we implemented
all multiplication techniques described in Section 3. For comparison reasons, we
decided to implement a 160 × 160-bit multiplication as it has been done by
most of the related work. Note that for RSA and ECC, larger Integer sizes
are recommended in practice [10,13]. The Standards for Efficient Cryptography
(SEC) already removed the recommended secp160r1 elliptic curve from their
standard since SEC version 2 of 2010 [3].

Table 3 summarizes the instruction counts for the operand scanning, product
scanning, hybrid, and operand-caching implementation. The operand-scanning
and product-scanning methods have been implemented without using all the
available registers (as it usually would be implemented). For hybrid multiplica-
tion, we applied d = 4 because it allows a better optimization regarding necessary
addition operations compared to a multiplication with d = 5. The carry propa-
gation problem has been solved by implementing a similar approach as proposed
by Liu et al. [12]. Thus, 200 MOVW instructions have been necessary to handle
the carry propagation accordingly. For a fair comparison, all methods have been
optimized for speed and provide unrolled instruction sequences. Furthermore,
we implemented all accumulators as ring buffers to reduce necessary MOV in-
structions. After each partial-product generation, the indices of the accumulator
registers are shifted so that no MOV instructions are necessary to copy the carry.

Fast Multi-precision Multiplication for Public-Key Cryptography 469

Table 4. Comparison of multiplication methods
for different Integer sizes

Size Op. Prod. Hybrid Operand
[bit] Scan. Scan. Method Caching

160 5,427 3,957 2,904 2,395
192 7,759 5,613 4,144 3,469
256 13,671 9,789 7,284 6,123
512 53,959 38,013 28,644 24,317
1,024 214,407 149,757 113,604 96,933
2,048 854,791 594,429 452,484 387,195

160 256 512 1024 2048
103

104

105

106

Integer size

C
lo

ck
 c

yc
le

s

Op. Scan.
Prod. Scan.
Hybrid
Op. Caching

Fig. 6. Comparison chart

Best results have been obtained for the operand-caching technique. By trading
additional 20 store instructions, up to 120 load instructions could be saved when
we compare the result with the best reference values (hybrid implementation).
Note that load, store, and multiply instructions on the ATmega128 are more
expensive than other instructions since they require two clock cycles instead of
only one. For operand-caching multiplication, almost the same amount of load
and store instructions are required. In total 2,395 clock cycles are needed to
perform the multiplication. Compared to the hybrid implementation, a speed
improvement of about 18% could be achieved.

We also compare the performance of the implemented multi-precision methods
for different Integer sizes. Table 4 shows the result for Integer sizes from 160 up
to 2,048 bits3. The operand-caching technique provides the best performance
for any Integer size. It is therefore well suited for large Integer sizes such as it
is in the case of RSA. In average, a speed improvement of about 15% could
be achieved compared to the hybrid method. Figure 6 shows the appropriate
performance chart in a double logarithmic scale.

Table 5. Performance of operand-caching multi-
plication for different Integer sizes and available
registers

Size e=2 e=4 e=8 e=10 e=20

160 3,915 2,965 2,513 2,395 2,205
192 5,611 4,255 3,577 3,469 3,207
256 9,915 7,531 6,339 6,123 5,671
512 39,291 29,915 25,227 24,317 22,451
1,024 156,411 119,227 100,635 96,933 89,529
2,048 624,123 476,027 401,979 387,195 357,581

2 4 8 10 20
103

104

105

106

Available registers e

C
lo

ck
 c

yc
le

s

2048
1024
512
256
192
160

Fig. 7. Performance chart

3 Note that due to a fully unrolled implementation such large Integer multiplications
might be impractical due to the huge amount of code.

470 M. Hutter and E. Wenger

Table 6. Comparison with related work

Method Instruction Clock
LD ST MUL ADD MOVW Others Cycles

Hybrid
Gura et al. [6] (d=5) 167 40 400 1,360 355 197 3,106
Uhsadel et al. [17] (d=5) 238 40 400 986 355 184 2,881
Scott et al. [14] (d=4)a 200 40 400 1,263 70 38 2,651
Liu et al. [12] (d=4) 200 40 400 1,194 212 179 2,865

Operand Caching
with loopinga,c (e=9) 92 66 400 1,252 41 276 2,685

unrolledb,c (e=10) 80 60 400 1,240 2 68 2,395

a binit, Part 1, and Part 4 unrolled. Part 2 and Part 3 looped.
b Fully unrolled implementation without overhead of loop instructions.
c w/o PUSH/POP/CALL/RET.

Table 5 and Figure 7 show the performance for different Integer sizes in re-
lation to parameter e. The parameter e is defined by the number of available
registers to store words of one operand, i.e. e = f−3

2 , where f = 2e + 3 denotes
the number of available registers in total (including the triple-size register for
the accumulator). It shows that for e > 10 no significant improvement in speed
is obtained. The performance decrease for smaller e and higher Integer sizes.
However, if we compare our solution (160-bit multiplication with smallest pa-
rameter e = 2 → f = 7 registers) with the product-scanning method (needing
f = 5 registers), we obtain 3,915 clock cycles for the operand-caching method
and 3,957 clock cycles for the product scanning method. It therefore provides
a good performance even for a smaller set of available registers. For the special
case e = 20, where all 20 words of one 160-bit operand can be maintained in reg-
isters (ideal case for product scanning), it shows that the number of clock cycles
reaches nearly the optimum of 2,160 clock cycles, i.e. 4n = 80 memory-access
instructions, n2 = 400 multiplications, and 3n2 = 1, 200 additions.

We compare our result with related work in Table 6. For a fair comparison, we
also implemented a operand-caching version that does not unroll the algorithm
but includes additional loop instructions. It shows that the operand-caching
method provides best performance. Compared to Gura et al. [6] 23% less clock
cycles are needed for a 160-bit multiplication. A 10% improvement could be
achieved compared to the best solution reported in literature [14]. Note that
most of the related work need between 167 to 238 load instructions which mostly
explains the higher amount of needed clock cycles.

5 Conclusions

We presented a novel multiplication technique for embedded microprocessors.
The multiplication method reduces the number of necessary load instructions

Fast Multi-precision Multiplication for Public-Key Cryptography 471

through sophisticated caching of operands. Our solution follows the product-
scanning approach but divides the processing into several parts. This allows
the scanning of sub-products where most of the operands are kept within the
register-set throughout the algorithm.

In order to evaluate our solution, we implemented several multiplication tech-
niques using different Integer sizes on the ATmega128 microcontroller. Using
operand-caching multiplication, we require 2,395 clock cycles for a 160-bit multi-
plication. This result improves the best reported solution by a factor of 10% [14].
Compared to the hybrid multiplication of Gura et al. [6], we achieved a speed
up of 23%. Our evaluation further showed that our solution scales very well for
different Integer sizes used for ECC and RSA. We obtained an improvement of
about 15% for bit sizes between 256 and 2,048 bits compared to a reference
implementation of the hybrid multiplication.

It is also worth to note that our multiplication method is perfectly suitable for
processors that support multiply-accumulate (MULACC) instructions such as ARM
or the dsPIC family of microcontrollers. It also fully complies to architectures
which support instruction-set extensions for MULACC operations such as proposed
by Großschädl and Savaş [5].

Acknowledgements. The work has been supported by the European Com-
mission through the ICT program under contract ICT-2007-216646 (European
Network of Excellence in Cryptology - ECRYPT II) and under contract ICT-
SEC-2009-5-258754 (Tamper Resistant Sensor Node - TAMPRES).

References

1. Atmel Corporation. 8-bit AVR Microcontroller with 128K Bytes In-System Pro-
grammable Flash (August 2007), http://www.atmel.com/dyn/resources/prod_

documents/doc2467.pdf

2. Atmel Corporation. 8-bit AVR Instruction Set (May 2008), http://www.atmel.

com/dyn/resources/prod_documents/doc0856.pdf

3. Certicom Research. Standards for Efficient Cryptography, SEC 2: Recommended
Elliptic Curve Domain Parameters, Version 2.0. (January 2010), http://www.

secg.org/

4. Comba, P.: Exponentiation cryptosystems on the IBM PC. IBM Systems Jour-
nal 29(4), 526–538 (1990)

5. Großschädl, J., Savaş, E.: Instruction Set Extensions for Fast Arithmetic in Finite
Fields GF(p) and GF(2m). In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS,
vol. 3156, pp. 133–147. Springer, Heidelberg (2004)

6. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing Elliptic Curve
Cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

7. Kargl, A., Pyka, S., Seuschek, H.: Fast Arithmetic on ATmega128 for Elliptic
Curve Cryptography. Cryptology ePrint Archive Report 2008/442 (October 2008),
http://eprint.iacr.org/

8. Koç, Ç.K.: High Speed RSA Implementation. Technical report, RSA Laboratories,
RSA Data Security, Inc. 100 Marine Parkway, Suite 500 Redwood City (1994)

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.secg.org/
http://www.secg.org/
http://eprint.iacr.org/

472 M. Hutter and E. Wenger

9. Lederer, C., Mader, R., Koschuch, M., Großschädl, J., Szekely, A., Tillich, S.:
Energy-Efficient Implementation of ECDH Key Exchange for Wireless Sensor Net-
works. In: Markowitch, O., Bilas, A., Hoepman, J.-H., Mitchell, C.J., Quisquater,
J.-J. (eds.) Information Security Theory and Practice. LNCS, vol. 5746, pp. 112–
127. Springer, Heidelberg (2009)

10. Lenstra, A., Verheul, E.: Selecting Cryptographic Key Sizes. Journal of Cryptol-
ogy 14(4), 255–293 (2001)

11. Liu, A., Ning, P.: TinyECC: A Configurable Library for Elliptic Curve Cryptog-
raphy in Wireless Sensor Networks. In: International Conference on Information
Processing in Sensor Networks - IPSN 2008, St. Louis, Missouri, USA, Mo, April
22-24, pp. 245–256 (2008)

12. Liu, Z., Großschädl, J., Kizhvatov, I.: Efficient and Side-Channel Resistant RSA
Implementation for 8-bit AVR Microcontrollers. In: Workshop on the Security of
the Internet of Things - SOCIOT 2010, 1st International Workshop, Tokyo, Japan,
November 29. IEEE Computer Society, Los Alamitos (2010)

13. National Institute of Standards and Technology (NIST). SP800-57 Part 1: DRAFT
Recommendation for Key Management: Part 1: General (May 2011), http://

csrc.nist.gov/publications/drafts/800-57/Draft_SP800-57-Part1-Rev3_

May2011.pdf

14. Scott, M., Szczechowiak, P.: Optimizing Multiprecision Multiplication for Public
Key Cryptography. Cryptology ePrint Archive, Report 2007/299 (2007), http://
eprint.iacr.org/

15. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC:
Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. In: Verdone,
R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008)

16. Ugus, O., Hessler, A., Westhoff, D.: Performance of Additive Homomorphic EC-
ElGamal Encryption for TinyPEDS. In: GI/ITG KuVS Fachgespräch Drahtlose
Sensornetze, RWTH Aachen, UbiSec 2007 (July 2007)

17. Uhsadel, L., Poschmann, A., Paar, C.: Enabling Full-Size Public-Key Algorithms
on 8-bit Sensor Nodes. In: 4th European Workshop on Security and Privacy in
Ad-hoc and Sensor Networks, ESAS 2007, Cambridge, UK, July 2-3 (2007)

18. Wang, H., Li, Q.: Efficient Implementation of Public Key Cryptosystems on Mote
Sensors (Short Paper). In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 519–528. Springer, Heidelberg (2006)

A Algorithm for Operand-Caching Multiplication

The following pseudo code shows the algorithm for multi-precision multipli-
cation using the operand-caching method. Variables that are located in data
memory are denoted by Mx where x represents the name of the Integer a or
b. The parameter e describes the number of locally usable registers Ra[e −
1, . . . , 0] and Rb[e−1, . . . , 0]. The triple-word accumulator is denoted by ACC =
(ACC2, ACC1, ACC0).

http://csrc.nist.gov/publications/drafts/800-57/Draft_SP800-57-Part1-Rev3_May2011.pdf
http://csrc.nist.gov/publications/drafts/800-57/Draft_SP800-57-Part1-Rev3_May2011.pdf
http://csrc.nist.gov/publications/drafts/800-57/Draft_SP800-57-Part1-Rev3_May2011.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

Fast Multi-precision Multiplication for Public-Key Cryptography 473

Require: word size n, parameter e, n ≥ e, Integers a, b ∈
[0, n), c ∈ [0, 2n).

Ensure: c = ab.
r = �n/e�.
RA[e − 1, . . . , 0] ← MA[n − 1, . . . , re].
RB [e − 1, . . . , 0] ← MB[n − re − 1, . . . , 0].
ACC ← 0.
for i = 0 to n − re − 1 do

for j = 0 to i do
ACC ← ACC + RA[j] ∗ RB[i − j].

end for
MC [re + i] ← ACC0.
(ACC1, ACC0) ← (ACC2, ACC1).
ACC2 ← 0.

end for
for i = 0 to n − re − 2 do

for j = i + 1 to n − re − 1 do
ACC ← ACC + RA[j] ∗ RB[n − re − j + i].

end for
MC [n + i] ← ACC0.
(ACC1, ACC0) ← (ACC2, ACC1).
ACC2 ← 0.

end for
MC [2n − re − 1] ← ACC0.
ACC0 ← 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

binit

for p = r − 1 to 0 do } Row Loop:
RA[e − 1, . . . , 0] ← MA[(p + 1)e − 1, . . . , pe].
RB[e − 1, . . . , 0] ← MB[e − 1, . . . , 0].
for i = 0 to e − 1 do
for j = 0 to i do
ACC ← ACC + RA[j] ∗ RB[i − j].

end for
MC [pe + i] ← ACC0.
(ACC1, ACC0) ← (ACC2, ACC1).
ACC2 ← 0.

end for

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Part 1

for i = 0 to n − (p + 1)e − 1 do
RB[e − 1, . . . , 0] ← MB[e + i], RB[e − 2, . . . , 1].
for j = 0 to e − 1 do
ACC ← ACC + RA[j] ∗ RB[e − 1 − j].

end for
ACC ← ACC + MC [(p + 1)e + i].
MC [(p + 1)e + i] ← ACC0.
(ACC1, ACC0) ← (ACC2, ACC1).
ACC2 ← 0.

end for

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Part 2

474 M. Hutter and E. Wenger

for i = 0 to n − (p + 1)e − 1 do
RA[e − 1, . . . , 0] ← MA[(p + 1)e + i], RA[e − 2, . . . , 1].
for j = 0 to e − 1 do
ACC ← ACC + RA[j] ∗ RB[e − 1 − j].

end for
ACC ← ACC + MC [(n + i].
MC [n + i] ← ACC0.
(ACC1, ACC0) ← (ACC2, ACC1).
ACC2 ← 0.

end for

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Part 3

for i = 0 to e − 2 do
for j = i + 1 to e − 1 do
ACC ← ACC + RA[j] ∗ RB[e − j + i].

end for
MC [2n − (p + 1)e + i] ← ACC0.
(ACC1, ACC0) ← (ACC2, ACC1).
ACC2 ← 0.

end for
MC [2n − 1 − pe] ← ACC0.
ACC0 ← 0.

end for
Return c.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Part 4

B Example: 160-Bit Operand-Caching Multiplication

A[19]B[19]

A[0]B[19]

A[19]B[0]

A[0]B[0]

C[0]C[19]C[38]

1

23

4 1

23

4

r0

r1

binit

Fig. 8. Operand-caching multiplication for n = 20 and e = 7

Small Public Keys and Fast Verification for

Multivariate Quadratic Public Key Systems

Albrecht Petzoldt1, Enrico Thomae2, Stanislav Bulygin1,
and Christopher Wolf2

1 Technische Universität Darmstadt and
Center for Advanced Security Research Darmstadt (CASED)

apetzoldt@cdc.informatik.tu-darmstadt.de, Stanislav.Bulygin@cased.de
2 Horst Görtz Institute for IT-security

Faculty of Mathematics
Ruhr-University of Bochum, 44780 Bochum, Germany
Enrico.Thomae@rub.de, Christopher.Wolf@rub.de,

chris@Christopher-Wolf.de

Abstract. Security of public key schemes in a post-quantum world is a
challenging task—as both RSA and ECC will be broken then. In this pa-
per, we show how post-quantum signature systems based on Multivariate
Quadratic (MQ) polynomials can be improved up by about 9/10, and
3/5, respectively, in terms of public key size and verification time. The
exact figures are 88% and 59%. This is particularly important for small-
scale devices with restricted energy, memory, or computational power. In
addition, we provide evidence that this reduction does not affect security
and that it is also optimal in terms of possible attacks. We do so by com-
bining the previously unrelated concepts of reduced and equivalent keys.
Our new scheme is based on the so-called Unbalanced Oil and Vinegar
class of MQ-schemes. We have derived our results mathematically and
verified the speed-ups through a C++ implementation.

Keywords: Multivariate Quadratic Cryptography, Post-Quantum Cryp-
tography, Implementation, Unbalanced Oil and Vinegar Signature Scheme.

1 Introduction

When finding an old sonnet of Shakespeare, we can usually determine its valid-
ity accurately by checking the wording, the ink, the paper, and so on. Similar
techniques apply in disputes over last wills - or other documents of historical or
financial interest. Even if they are several decades old, we can fairly certainly
determine if they have been written by the person in question and sometimes
even date them accurately.

For digital documents, this is a much more difficult task. They are electroni-
cally signed with the help of so-called digital signature schemes. The ones widely
used today are Digital Signature Algorithms (DSAs) based on RSA and ellip-
tic curve cryptography (ECDSA). Unfortunately, all these schemes are broken

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 475–490, 2011.
c© International Association for Cryptologic Research 2011

476 A. Petzoldt et al.

if large enough quantum computers will be built. The reason is the algorithm
of Shor which breaks all cryptographic algorithms based on the difficulty of
factoring and the discrete logarithm (DL) problem [16]. This covers DL over
numbers, RSA, and ECDSA. Even if unlikely now, quantum computers may be
available in the medium future and are hence a concern for long-term-validity
of authentication data. We must be sure that a document signed today is not
repudiated 50 years later. Likewise, we do not want a signature that is gener-
ated today to be forged in the future. So to guard security even in the presence
of quantum computers, post-quantum cryptography is needed and has hence
become a vital research area [1]. One possible solution in this context is the
so-called Multivariate Quadratic cryptography. It is widely believed that it is
secure against attacks with quantum computers.

In addition, Multivariate Quadratic (or MQ for short) signature schemes
have nice properties in terms of speed of signature generation and verification
which make them superior to DL, RSA and ECDSA. Note that ECDSA is the
most efficient of the three. However, even when comparing to signature genera-
tion in MQ and ECC, the former are a factor of 2 - 50 faster on FPGA than the
latter [3]. Similar results have been demonstrated for comparison with RSA and
ECC in software [21], [4], [5]. One of the main reasons for this higher efficiency
is the comparably small finite fields, e.g. F28 which allows for efficient hardware
and software implementations. The other operations usually boil down to vector-
matrix functions, which can be implemented efficiently, too. As an immediate
consequence, we can use MQ schemes in restricted devices, i.e. with low energy
or computational power.

Another point is the high flexibility of MQ-schemes. This allows for the use of
sparse polynomials in the private key as done in the TTS schemes of Yang, Chen,
and Chen [21]. This leads both to a significant reduction of the time needed for
signature generation, as well as for the size of the private key. Another way to
reduce the private key is by choosing the coefficients of the private maps from
smaller fields (e.g. F16 instead of F256), [4]. In addition, we want to mention the
so-called similar keys which exploit linear relations between public and private
key [9]. However, they are not applicable to schemes like UOV. Finally, one
research direction deals with reducing the public key directly. In [13, 14] it is
shown how to reduce the public key size of the UOV scheme by choosing public
coefficients in a structured way, cf. Section 3.

1.1 Achievement

Combining two previously unrelated ideas, we deal with reducing the size of the
public key. For MQ schemes like Unbalanced Oil and Vinegar (UOV - see below),
typical choices of parameters lead to around 80 kByte for the public key. We use
the approach of [14] to bring this size down to about 9 kB. We show that we
can use this idea to reduce the verification time, too. By choosing them partially
to be 0 or 1 only, verification time is reduced by up to 59%. This way, MQ
verification can be performed in low-power, low-energy devices. For example for
mobile devices, we can easily imagine a scenario where a server signs data which

Small Public Keys and Fast Verification for UOV 477

needs to be verified by a (comparably restricted) phone. As further contribution,
we give arguments that this reduction in size does not affect security. This is
due to an observation regarding equivalent keys of [19, 20].

In addition, our modification also works for restricting the choice of the coef-
ficients. Using Turán graphs we demonstrate that this further reduction in size
and verification time resists all know attacks.

1.2 Organization

The structure of this paper is as follows: After giving some introduction in
Section 1, we continue with the background on MQ-schemes and in particu-
lar the UOV in Section 2. In Section 3, we review the cyclic construction from
[13]. This is followed by security considerations regarding cyclic keys in UOV in
Section 4. Using these results, we outline our new constructions, its implemen-
tation, efficiency, and security implications in Section 5. The paper concludes
with Section 6. Some background on Turán graphs and how this relates to our
monomial ordering in Subsection 5.3 can be found in the full version of this
paper [15].

2 Multivariate Quadratic Cryptography

The main idea behind Multivariate Quadratic cryptography is to choose a sys-
tem F of m quadratic polynomials in n variables which can be easily inverted.
Here F is called the central map. In addition, we need invertible affine maps S
and T to hide the structure of the central map F . The public key of the cryp-
tosystem is now composed as P = T ◦ F ◦ S. For a secure MQ-system, P must
be difficult to invert. The private key consists of (F , T, S) and therefore allows
efficient inversion of P . More information on Multivariate Quadratic schemes
can be found in [6, 18].

2.1 Notation

Solving non-linear systems of m equations in n variables over a finite field is a
difficult problem in general. Restricting it to the seemingly easy case of quadratic
equations is still difficult. Actually this problem is also known as MQ-problem
which is proven to be NP-hard in the worst-case [8], even over F2.
Let P be an MQ system of the form

p(1)(x1, . . . , xn) = 0
p(2)(x1, . . . , xn) = 0

... (1)
p(m)(x1, . . . , xn) = 0,

with

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

p
(k)
ij xixj +

∑

1≤i≤n

p
(k)
i xi + p

(k)
0 (k = 1, . . . , m). (2)

478 A. Petzoldt et al.

Let π(k) be the coefficient vector of p(k)(x1, . . . , xn) w.r.t. graded lexicographic
ordering of monomials, i.e.

π(k) = (p(k)
11 , p

(k)
12 , . . . , p

(k)
1n , p

(k)
22 , p

(k)
23 , . . . , p(k)

nn , p
(k)
1 , . . . , p(k)

n , p
(k)
0). (3)

Let MP be the corresponding coefficient matrix

MP :=

⎛

⎜
⎝

π(1)

...
π(m)

⎞

⎟
⎠ . (4)

Note that the ordering of monomials (and thus coefficients) in the matrix MP

does not necessarily have to be graded lexicographic ordering. We may want to
order monomials of the public key in a certain way. Therewith, the ordering of
coefficients (columns of MP) is then changed accordingly.

2.2 Unbalanced Oil and Vinegar

In this subsection we introduce the Oil and Vinegar Signature Scheme, which
was proposed by J. Patarin in [12]. Let Fq be a finite field. Denote the number
of oil variables by o ∈ N, the number of vinegar variables by v ∈ N and set
n := o+v. Let V := {1, . . . , v} and O := {v+1, . . . , n} denote the sets of indices
of vinegar and oil variables. The private key F := (f (1), . . . , f (o)) is defined by

f (k)(u1, . . . , un) :=
∑

i∈V,j∈O

f
(k)
ij uiuj +

∑

i,j∈V,i≤j

f
(k)
ij uiuj (k = 1, . . . , o) . (5)

Remark: We omit the linear part of F and the constant part of S, because it
was shown in [11, 10] that it does not contribute to the security of UOV.

For the inversion of the map F it is important that the variables in f (k) are
not completely mixed, i.e. oil variables are only multiplied by vinegar variables
and never by oil variables. This construction leads to an efficient way to invert
F . If we assign arbitrary values to the vinegar variables we obtain a system of o
linear equations in o variables. With high probability this system has a solution.
If not we try again with a different choice for the vinegar variables x1, . . . , xv.
In the public key P , the central map F is hidden by composing it with a linear
map S : Fn

q → Fn
q , i.e. P := F ◦ S.

Note that, in opposite to other multivariate schemes, the second linear map
T is not needed for the security of UOV. So it can be dropped.

Figure 1 shows the signature generation and verification process for UOV.

Signature Generation: To sign a document d, one uses a hash function H :
F�

q → Fm
q to compute the hash value h = H(d) ∈ Fm

q . After that one computes
first u := F−1(h) and then x := S−1(u). The signature of the document d is

Small Public Keys and Fast Verification for UOV 479

Generation
x ∈ Fn

�
private: S−1

u ∈ Fn

�
private: F−1

h ∈ Fm�

Verification

public:

P

Fig. 1. Signature generation and verification for UOV

x ∈ Fn
q . In a slight abuse of notation we write F−1(h) for finding one (of possibly

many) pre-image of h under F .

Signature Verification: To verify the authenticity of a signature, one com-
putes the hash value h of the corresponding document and the value h′ = P(x).
If h = h′ holds, the signature is accepted, otherwise rejected.

In his original paper [12], Patarin suggested to use o = v (Balanced Oil and
Vinegar - OV). After this scheme was broken by Kipnis and Shamir in [11], it
was proposed in [10] to use v ≥ 2o (Unbalanced Oil and Vinegar (UOV)). UOV
parameters q = 28, (o, v) = (26, 52) give 80-bit security against the most efficient
attacks currently known [2].

3 Reviewing Cyclic Keys

In this section we review the approach of [13] to create a UOV-based scheme with
a partially cyclic public key. Remember that, in the case of the Unbalanced Oil
and Vinegar signature scheme [10], the public key P is given as the concatenation
of the central UOV-map F and a linear invertible map S, i.e. P = F ◦ S.

In [13] it is observed, that this equation (after fixing the linear map S), leads
to a linear relation between the coefficients of the quadratic monomials of P and
F of the form

p
(k)
ij =

n∑

r=1

n∑

s=r

αrs
ij · f (k)

rs , (6)

where p
(k)
ij and f

(k)
ij are the coefficients of xixj in the k-th component of P and

F respectively and the αrs
ij are given as

αrs
ij =
{

sri · ssi (i = j)
sri · ssj + srj · ssi otherwise . (7)

Here sij ∈ Fq denote the coefficients of the linear map S. Let D := v·(v+1)
2 +

ov be the number of non-zero quadratic terms in any component of F and
D′ := n·(n+1)

2 be the number of quadratic terms in the public polynomials. Let

480 A. Petzoldt et al.

MP and MF be the coefficient matrices of P and F respectively (w.r.t. graded
lexicographic ordering of monomials). The matrices MP and MF are divided
into submatrices as shown in Figure 2. Note that, due to the absence of oil ×
oil terms in the central polynomials, we have a block of zeros on the right side
of MF .

Q

B

0

C

D D′

MP

MF

Fig. 2. Layout of the matrices MP and MF

Furthermore, the authors of [13] defined the so called transformation matrix
AUOV ∈ FD×D

q containing the coefficients αrs
ij of equation (6), i.e. AUOV =

(
αrs

ij

)

for 1 ≤ r ≤ v, r ≤ s ≤ n for the rows and 1 ≤ i ≤ v, i ≤ j ≤ n for the columns.

AUOV =

⎛

⎜
⎜
⎜
⎝

α11
11 α11

12 . . . α11
vn

α12
11 α12

12 . . . α12
vn

...
...

αvn
11 αvn

12 . . . αvn
vn

⎞

⎟
⎟
⎟
⎠

. (8)

With this notation, equation (6) yields

B = Q · AUOV . (9)

If matrix AUOV is invertible, this equation has a solution for Q. Experiments
indicate that this condition is fulfilled with high probability. By solving equation
(9) for Q, the authors of [13] were able to insert a partially circulant matrix B
into the UOV public key. By doing so, they reduced the public key size of the
scheme by a factor of 6. After choosing matrix B, we can use Algorithm 1 to
compute the corresponding key.

4 Security of UOV

Due to equivalent keys [19, 20] UOV contains a lot of redundancy. We show
which part of the public key is important for security and which part can be
chosen such that the public key gets as small as possible.

It is rather intuitive that the linear and constant part of the public key do not
provide extra security because we can easily separate them from the quadratic
part. This was previously exploited by Kipnis and Shamir in their cryptanalysis
of (balanced) Oil and Vinegar [11]. But it is quite surprising that also a fraction of
the quadratic part is not essential for security. This is implied by the observation
of equivalent keys by Wolf and Preneel [19, 20].

Small Public Keys and Fast Verification for UOV 481

Algorithm 1. Alternative Key Generation for UOV schemes
1: Choose an o × D matrix B (e.g. partially circulant or generated by an LRS).
2: Choose randomly a linear map S (represented by an n × n-matrix S). If S is not

invertible, choose again.
3: Compute for S the corresponding transformation matrix AUOV (using equations

(7) and (8)). If AUOV is not invertible, go back to step 2.
4: Solve the linear system given by equation (9) to get the matrix Q and there with

the coefficients of the central polynomials.
5: Compute the public key as P = F ◦ S .

Definition 1. Let (F , S) and (F ′, S′) be two UOV private keys. They are called
equivalent if they result in the same UOV public key, i.e. F ◦ S = F ′ ◦ S′ =: P.

The set of all private keys resulting in a given public key P is denoted by
EQP .

In order to produce equivalent keys we use the following transformation Ω on
the variables u that preserves the structure of F .

Ω =

(
Ω

(1)
v×v 0

Ω
(2)
o×v Ω

(3)
o×o

)

resp. Ω = (ωij)n
i,j=1 (10)

Let F(u) := (f (1)(u), . . . , f (o)(u)) be a UOV central map (i.e. no quadratic
cross terms in oil variables). Let u = Ω · u′. The vinegar variables u1, . . . uv

are computed as sums of vinegar variables u′
1, . . . , u

′
v. Therefore we get (for

k = 1, . . . , o):

f (k)(u) =
∑

i,j∈V

f
(k)
ij uiuj +

∑

i∈V,j∈O

f
(k)
ij uiuj

=
∑

i,j∈V

f
(k)
ij

(
∑

l∈V

ωilu
′
l

)

·
(
∑

m∈V

ωjmu′
m

)

+
∑

i∈V,j∈O

f
(k)
ij

(
∑

l∈V

ωilu
′
l

)

·
(
∑

m∈V

ωjmu′
m +
∑

m∈O

ωjmu′
m

)

=
∑

i,j∈V

˜
f

(k)
ij u′

iu
′
j +

∑

i∈V,j∈O

˜
f

(k)
ij u′

iu
′
j for some

˜
f

(k)
ij (fij , ωlm).

Due to F ◦ S = F ◦Ω−1 ◦Ω ◦S both (F , S) and (F ◦Ω−1, Ω ·S) are equivalent
private keys for the public key P .

Lemma 1. For every UOV public key P there exists a UOV private key (F , S) ∈
EQP such that S has the form

S =
(

I S̃
0 I

)

(11)

for some (v × o) matrix S̃ (except for permutations of rows and columns).

482 A. Petzoldt et al.

Proof. Let Ω be of form (10) and F and

S =

(
S

(1)
v×v S

(2)
v×o

S
(3)
o×v S

(4)
o×o

)

an arbitrary private key. There exists a permutation of rows and columns such
that S(1), S(4) and I − S(3)S(1)−1

S(2)S(4)−1
are invertible1. Now we choose Ω

such that Ω(1)S(1) = I, Ω(2)S(2) + Ω(3)S(4) = I and Ω(2)S(1) + Ω(3)S(3) = 0,
i.e. Ω(1) = S(1)−1

, Ω(3) = S(4)−1 · (I − S(3)S(1)−1
S(2)S(4)−1

)−1 and Ω(2) =
−Ω(3)S(3)S(1)−1

. ��
For the following, we assume w.l.o.g. that the linear map S has the form (11),
since the further analysis is not changed by row and column permutations.
The next lemma shows that the vinegar × vinegar coefficients in the public key
do not hide any information about the secret map.

Lemma 2. In the case of S having the form (11) we get f
(k)
ij = p

(k)
ij for i, j ∈

{1, . . . , v} and k ∈ {1, . . . , o}.
Proof. We consider for k ∈ {1, . . . o} the quadric forms of p(k) and f (k), i.e.
MP (k) = ST ·MF (k) ·S. For S having the form (11) this yields MP

(k)
1 = MF

(k)
1

(k = 1, . . . , o). ��
For a key recovery attack it is sufficient to find any of the equivalent keys. Thus
an attacker can search for a private key, with S of the form (11). This means we
can assume that the attacker actually knows all coefficients of squared vinegar
variables in the private map. This does not effect the overall knowledge of the
attacker. So the p

(k)
ij with i, j ∈ V in the public map do not hide any secret and

thus we can choose them in an arbitrary way.

Proposition 1. The first v(v+1)
2 coefficients of each public polynomial do not

provide any security in the sense of key recovery attacks. Arbitrarily fixing these
coefficients does not give advantage to an attacker who wants to recover the whole
private key.

By equation (9) we are even able to choose the first v(v+1)
2 + ov coefficients of

each public polynomial of a special form and thus save memory. Proving the
security of this construction is not as obvious as in the latter construction. We
have to show that additionally fixing ov coefficients does not give advantage to
an attacker in the sense of key recovery attacks

Usually, we fix the coefficients of the central polynomials F and the linear map
S and then compute the public polynomials P . However, for our construction
we turn things around by first fixing parts of the public polynomials and then
computing the central polynomials. Intuitively, this should be equally secure.
We capture this in the following proposition.
1 Our experiments showed, that these three conditions are fulfilled for 99.2 % of all

UOV private keys without changing rows and columns.

Small Public Keys and Fast Verification for UOV 483

Proposition 2. Let the o × D matrix B be an MDS matrix (i.e. every choice
of o columns leads to an invertible submatrix). Then, fixing the first v(v+1)

2 + ov
coefficients of each public polynomial to the elements of B does not give the
attacker any advantage in the sense of key recovery attacks.

Proof. We start our proof with equation (9)

B = Q · AUOV .

For S having the form (11) we can write this as

(B1|B2) = (F1|F2) ·
(

I Σ
0 1

)

(12)

with a o × o · v matrix F2 containing the coefficients fij , (i ∈ {1, . . . , v}, j ∈
{v + 1, . . . , n}) and a v·(v+1)

2 × o · v matrix Σ linear in the elements of S.
This leads to F1 = B1 and

B2 = F1 · Σ + F2 = B1 · Σ + F2. (13)

Equation (13) yields o · o · v linear equations in the (o + 1) · o · v unknowns sij

and f
(k)
ij . We can use the last o ·v of these equations to eliminate the sij and get

(o − 1) · o · v linear relations between the coefficients f
(k)
ij . If the map

S
→ B2 − B1 · Σ(S) := F2

is injective, there remain exactly o · v coefficients f
(k)
ij , which have to be guessed

correctly to obtain a valid private key. The injectivity follows from the fact that
all square submatrices of B1 are invertible, which is the property we obtain by
using an MDS matrix2.

This is exactly the same situation we obtain for the standard UOV scheme.
Therefore, fixing the matrix B to an MDS-matrix does not make key recovery
attacks easier. ��
We use this observation by proposing a variant of the UOV, which is provably as
secure as the original scheme, but reduces the public key size by a huge factor.

In comparison to the case of Algorithm 1 the (o × D) matrix B is now fixed
to an MDS matrix and system parameter of the algorithm. In the remainder of
this paper, we refer to this scheme as Compressed UOV (see Algorithm 2).

5 The New Construction

We are now investigating, how much additional structure we can hide in B
to speed up the verification process. We do this by choosing the elements of
the matrix B from the ground field F2. In order to make sure that message
recovery attacks are still difficult, we have to choose the ordering of monomials
appropriately, as explained in Subsection 5.3.
2 For large enough q, e.g. q = 28, the matrix B with coefficients chosen uniformly at

random is MDS with high probability.

484 A. Petzoldt et al.

Algorithm 2. Key Generation for Compressed UOV
1: Choose randomly a linear map S (represented by an n × n-matrix S). If S is not

invertible, choose again.
2: Compute for S the corresponding transformation matrix AUOV (using equations

(7) and (8)). If AUOV is not invertible, go back to step 1.
3: Solve the linear system given by equation (9) to get the matrix Q and therewith

the quadratic coefficients of the central polynomials.
4: Compute the public key as P = F ◦ S.

5.1 Message Recovery Attacks

Let MP = (B|C) with B an (o × D) matrix. After we claimed that fixing B
does not give to an attacker advantage in the sense of key recovery attacks, we
have to clarify how B ∈ Fo×D

2 can be chosen without decreasing security against
message recovery attacks. Obviously B = 0 is a bad choice, as this would imply
C = 0. We also have to assure that B has full rank, as otherwise C would also
not have full rank. In general our goal is that solving our structured system using
Gröbner bases is as difficult as solving a random instance over Fq.

We now first introduce our choice of B. Afterwards we explain, why message
recovery remains hard.

5.2 Choice of B

The first (o×o) block in B can be chosen to be the identity matrix Io×o as every
attacker is able to reach this situation by Gaussian Elimination. Furthermore this
ensures B to have full rank. The remaining part B1 of B has to be chosen in such
a way that there are no systematic dependencies between the elements of B, i.e.
every m columns with m ≥ o have a big chance to have full rank. Otherwise we
could produce large zero-blocks which would decrease the complexity of Gröbner
bases algorithms.

We suggest to choose every element of the matrix B1 uniformly at random
from F2. Note that for such a B1 the rank property above is fulfilled with over-
whelming probability. Note that B is no longer part of the public key. Once B
is constructed, it is fixed, and thus it is a part of the key generation algorithm.

5.3 Ordering of Monomials

In contrast to the method described in [13, 14], we need to choose a special mono-
mial ordering for our construction. In order to understand why this monomial
ordering is constructed, let us recall how direct (Gröbner) attacks on multivariate
signature schemes work. In the message recovery attack, the attacker is facing
the problem of solving the public UOV system P(x) = h directly. This system
is defined over Fq and has o equations in n = o + v variables. Such a system has
on average qn−o = qv solutions. Considering the values of v usually used (e.g.
v = 52), such a system has a huge amount of solutions (for q = 28 and v = 52 it

Small Public Keys and Fast Verification for UOV 485

is 2416). Gröbner bases methods have a great difficulty in solving such a system,
since they have to describe a huge variety. Since the attacker is interested in
only one solution for the signature forgery, recovering all solutions is unneces-
sary. By fixing values of any v variables in the public system, an attacker obtains
a quadratic system in o variables and o equations. On average such a system has
a unique solution. Solving this new system with Gröbner bases methods is much
easier.

Going back to the matrix MP we see that C (as defined in Section 3) contains
coefficients of monomials xixj with i, j ∈ {v + 1, . . . , n}, since there we used
the graded lexicographic ordering of monomials. Now if the attacker fixes values
for the variables xv+1, . . . , xn, the monomials represented by C will become
constants. Therewith, the resulting quadratic system will have only quadratic
terms over F2 coming from the matrix B. Clearly, Gröbner bases computations
will be much easier then, since the attacker does not have to deal with F28

arithmetics that much. Thus we have to ensure that an attacker is not able to
remove too many monomials with coefficients in F28 by assigning v variables to
some values.

Note that we do not consider monomials of the form x2
i . If such monomials

remain after fixing v variables they do not force us to calculate in F28 as they are
linear due to the Frobenius homomorphism. Note that for UOV schemes over
fields with odd characteristic, it makes sense to consider such monomials.

Denote by C the set of monomials whose coefficients are contained in the
matrix C. We can represent this set as a graph G(V, E) with V := {x1, . . . , xn}
being the vertices and E := {e(xi, xj) |xixj ∈ C} being the edges. By construc-
tion we have |E| = o(o+1)

2 . In the following our goal is to construct the graph G
in such a way that the induced monomial ordering precludes an attacker from
removing too many F28 -terms (independent of the choice of variables he fixes).
Note also that by “monomial ordering” we do not mean a monomial well-ordering
as in the theory of Gröbner bases, but just some ordering of monomials w.r.t.
which the columns of the coefficient matrix MP are ordered. For the following
we need two definitions.

Definition 2. Let G(V, E) be a graph. A subset V ′ ⊆ V is called a k-independent
set, if |V ′| = k and {e(vi, vj) : vi, vj ∈ V ′} ∩ E = ∅.
Definition 3. For a graph G(V, E) the set V ′ ⊆ V is called a k-clique, if |V ′| =
k and all the vertices vi ∈ V ′ are pairwise connected, i.e. {e(vi, vj) : vi, vj ∈
V ′} ⊆ E.

We observe the following. If G contains an o-independent set, an attacker is able
to fix v variables in such a way that all the monomials in C become constants.

So our task is to choose the edges of G in such a way, that G does not
contain a k-independent set (for minimal k). For fixed k, the problem of finding
a graph without k-independent set and minimal number of edges is solved by
the complementary Turán graph [17].

So we start with k = 1 and construct the complementary Turán graph
CT(n, 1). We then increase k until the number of edges in CT(n, k) will be

486 A. Petzoldt et al.

less or equal to o·(o+1)
2 . If the number of edges in CT(n, k) is less than o·(o+1)

2 ,
we add arbitrarily edges until we reach the number of monomials in C. By doing
so we get a graph G with CT(n, k) ≤ G.

Example 1. In our case (o = 26, v = 52) we find a solution for k = 8 and thus
it is assured that at least 30 monomials over F28 remain after fixing v variables.
The best attack on this parameter set is called HybridF5 [2] and uses fixing v
and then guessing two variables before applying Faugères F5 algorithm [7] to
compute a Gröbner basis. But even if we fix/guess v + 2 variables, there will
remain at least 24 monomials over F28 . So an attacker can not hope to transfer
the system into a smaller field. More details to these experiments can be found
in the full version of this paper [15].

Once we have constructed our graph G as above, it defines which monomials
are in the set C. Therefore, we can now define an induced ordering on quadratic
monomials, such that monomials from C are smaller than those that are not
from this set. For the monomials not being in C we define real squares (i.e. x2

i

for i = 1, . . . , n) to be bigger than other monomials. Once we defined an ordering
of monomials, it is fixed and is a system parameter.

Let us investigate the effect of the new ordering on the construction of matrix
AUOV . In Section 3 the columns of the matrix AUOV corresponded to the first
D monomials w.r.t. graded lexicographic ordering. Now we have to choose the
columns of the transformation matrix in such a way that its columns correspond
to the first D monomials in the monomial ordering defined above. With respect
to the graph G, if the i-th edge of the complementary graph G (which is actually
a subgraph of the Turán graph T(n, k)) connects the vertices vi1 and vi2 , we have

ÃUOV =

⎛

⎜
⎜
⎜
⎝

α11
11 α12

22 . . . α11
nn α̃11

1 α̃11
2 . . . α̃11

D−n

α12
11 α12

22 . . . α12
nn α̃12

1 α̃12
2 . . . α̃12

D−n
...

...
αvn

11 αvn
22 . . . αvn

nn α̃vn
1 α̃vn

2 . . . α̃vn
D−n

⎞

⎟
⎟
⎟
⎠

. (14)

Here, the coefficients αrs
ii are given by equation (7) and the α̃rs

i are given by

α̃rs
i = srvi1 · ssvi2 + srvi2 · ssvi1 . (15)

With this notation we get (as in Section 3)

B = Q · ÃUOV . (16)

In the case of ÃUOV being invertible we can use equation (16) to compute the
matrix Q and therewith the non zero coefficients of the central map F .

In Algorithm 3 the matrix B chosen as shown in Subsection 5.2 with a fixed
matrix B1 ∈R Fo×(D−o)

2 .

5.4 Efficiency of the Verification Process

During the verification process one has to evaluate for each public polynomial
the equations

Pi(z) = (z1, . . . , zn) · Pi · (z1, . . . , zn)T , 1 ≤ i ≤ o,

Small Public Keys and Fast Verification for UOV 487

Algorithm 3. Key Generation for 0/1 UOV
1: Choose randomly a linear map S (represented by an n × n-matrix S). If S is not

invertible, choose again.

2: Compute for S the corresponding transformation matrix ÃUOV (using equations

(7), (15) and ((14)). If ÃUOV is not invertible, go back to step 1.
3: Solve the linear system given by equation (16) to get the matrix Q and therewith

the quadratic coefficients of the central polynomials.
4: Compute the public key as P = F ◦ S.

with z = (z1, . . . , zn) being the signature of the message and Pi being the (upper
triangular) matrix representing the i-th public polynomial.

To evaluate this equation for a randomly chosen Pi one needs n·(n+1)
2 +n mul-

tiplications in F28 for each of the o polynomials, or o · n·(n+3)
2 F28-multiplications

and the same number of additions for the whole key.
For our reduced version we can do better. We first compute z·Pi (i = 1, . . . , o).

For this we divide each of the matrices Pi into two parts P
(1)
i and P

(2)
i , which

we cover by for loops. For an element a ∈ P
(1)
i we test if a = 0 or a = 1. In

the first case, we don’t have to do anything, if a = 1 we have to carry out one
addition. Only for the elements from P2 we have to perform one multiplication.

By doing so, we can reduce the number of multiplications needed during the
verification process to o·(o+1)

2 + n. For the parameters (o, v) = (26, 52), we get
therefore a reduction of 85 %.

However, since we have to perform a number of other operations, for practical
implementations we don’t get such a hugh reduction in time.

5.5 Security of 0/1 UOV

Since we do not have MDS matrices over F2, we can not use Proposition 2
to prove the security of our scheme. Therefore we checked the security of our
schemes against known attacks, including

1. Direct attacks
2. Rank attacks
3. UOV-Reconciliation attack
4. UOV attack

and found that these attacks cannot use the special structure of our public keys.
The results of our experiments can be found in the full version of this paper [15].

5.6 Parameters and Implementation

In this section, we give our choice of parameters and show how they transfer to
a practical C++ implementation. More concrete, based on our security consid-
erations, we propose for our scheme the same parameters as for the standard

488 A. Petzoldt et al.

UOV scheme, namely field size q = 28, (o, v) = (26, 52). Additionally, Table 1
gives one more conservative parameter set, namely (q, o, v) = (28, 28, 56).
We implemented our scheme and the standard UOV in C++.

Key Generation: For the key generation we follow closely Algorithm 3. The
linear system in step 3 of the algorithm is solved by inverting the matrix ÃUOV

and then computing the matrix product B · ÃUOV . For both we use the M4RIE
library for efficient linear algebra over finite fields and Travolta tables. By doing
so, we can compute a key pair for 0/1 UOV(28,26,52) in roughly 27 sec on an
Intel Dual Core 2 with 2.53 MHz.

Signature Generation: The signature generation process works as for the
standard UOV Scheme. The running time of the signature generation process is
about 0.69 ms.

Signature Verification: The signature verification process works as desribed in
Subsection 5.4. For each parameter set listed in Table 2 we carried out 1,000,000
verification processes on the Intel machine as well as on an AMD Athlon XP
2400+ with 2.00 GHz. Table 2 shows the results.

Table 1. Proposed parameters for UOV schemes

system public key private key reduction of
Scheme(q, o, v) parameter (kB) size (kB) size (kB) public key size (%)

UOV(28,26,52) - 78.2 75.3 -

Compr.UOV(28,26,52) 69.3 8.9 75.3 88.6

0/1 UOV(28,26,52) 8.7 8.9 75.3 88.6

UOV(28,28,56) - 97.6 93.4 -

Compr.UOV(28,28,56) 86.5 11.1 93.4 88.6

0/1 UOV(28,28,56) 10.8 11.1 93.4 88.6

Table 2. Running time of the verification process

Intel Dual Core 2 2.53 GHz AMD Athlon XP 2400+ 2.00 GHz

(o, v) UOV 0/1 UOV reduction factor UOV 0/1 UOV reduction factor

(26,52) 0.49 ms 0.21 ms 57 % 0.68 ms 0.29 ms 57 %

(28,56) 0.54 ms 0.22 ms 58 % 0.74 ms 0.32 ms 58 %

(32,64) 0.75 ms 0.30 ms 59 % 1.03 ms 0.43 ms 58 %

6 Conclusion

In this paper, we have shown that Multivariate Quadratic public key schemes
can benefit from much smaller public key sizes (cf. Table 1) without any degen-
eration of security. The overall idea requires some flexibility in the private key.

Small Public Keys and Fast Verification for UOV 489

To our knowledge, only the two MQ-schemes UOV and Rainbow have these.
UOV was covered in this article. Rainbow has a more difficult internal structure,
so we have to leave a concrete application of our improvement to Rainbow as an
open question, which we plan to address.

The security arguments made use of the idea of equivalent keys. Hereby, each
public key can be assigned many private keys. We have turned this idea around
by considering transformations of the public key P instead and showed that an
attacker does not gain from this specific structure.

As we can enforce a specific form on the public key P , we can also use it to
speed up public key operations, namely verification of signatures. As we see in
Table 2, this reduces the overall time by about 59% or a markable factor of 2.4.

As the construction is very general, it can be used on other platforms (e.g.
GPU, FPGA) as well. We actually expect similar gains in area reduction or
speed there, too.

From a theoretical perspective, forcing a specific structure on the central
polynomials F or the public polynomials P are equivalent: We can do either.
Hence, for specific application domains it might be useful to find a certain trade-
off. For example, we could reduce the computational workload on a server based
on the maximal available memory on a smart card.

Acknowledgements. We thank Ishtiaq Shah for doing the implementation of
our scheme. Furthermore we want to thank our financial supporters. The first
author is supported by the Horst Görtz Foundation (HGS) within the project
where the third author is the principal investigator. The third author is sup-
ported by the DFG grant BU 630/22-1. The second author was supported by
the German Science Foundation (DFG) through an Emmy Noether grant where
the forth author is principal investigator.

References

[1] Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009)

[2] Bettale, L., Faugére, J.-C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. Journal of Mathematical Cryptology 3, 177–197 (2009)

[3] Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-
key engines: MQ-cryptosystems as replacement for elliptic curves? In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg
(2008)

[4] Chen, A.I.-T., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M., Yang, B.-Y.: Practical-
sized instances of multivariate pKCs: Rainbow, TTS, and �IC-derivatives. In:
Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 95–108.
Springer, Heidelberg (2008)

[5] Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H.,
Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate pKCs on modern
x86 cPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48.
Springer, Heidelberg (2009)

490 A. Petzoldt et al.

[6] Ding, J., Gower, J.E., Schmidt, D.: Multivariate Public Key Cryptography. Cam-
bridge University Press, Cambridge (2006)

[7] Faugére, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: ISSAC 2002, pp. 75–83. ACM Press, New York (2002)

[8] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

[9] Hu, Y., Wang, L., Chou, C., Lai, F.: Similar keys of multivariate quadratic public
key cryptosystems. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS
2005. LNCS, vol. 3810, pp. 211–222. Springer, Heidelberg (2005)

[10] Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999)

[11] Kipnis, A., Shamir, A.: Cryptanalysis of the oil & vinegar signature scheme. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Hei-
delberg (1998)

[12] Patarin, J.: The oil and vinegar signature scheme. Presented at the Dagstuhl
Workshop on Cryptography, transparencies (September 1997)

[13] Petzoldt, A., Bulygin, S., Buchmann, J.: A multivariate signature scheme with a
partially cyclic public key. In: SCC 2010, pp. 229–235 (2010)

[14] Petzoldt, A., Bulygin, S., Buchmann, J.: Linear recurring sequences for the UOV
key generation. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 335–350. Springer, Heidelberg (2011)

[15] Petzoldt, A., Thomae, E., Bulygin, S., Wolf, C.: Small Public Keys and
Fast Verification for Multivariate Quadratic Public Key Systems (full version),
http://eprint.iacr.org/2011/294

[16] Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509
(1997)

[17] Turán, P.: On an extremal problem in Graph Theory. Matematiko Fizicki
Lapok 48, 436–452 (1941)

[18] Wolf, C., Preneel, B.: Taxonomy of public key schemes based on the problem of
multivariate quadratic equations, http://eprint.iacr.org/2005/077

[19] Wolf, C., Preneel, B.: Superfluous keys in Multivariate Quadratic asymmetric
systems. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 275–287. Springer,
Heidelberg (2005)

[20] Wolf, C., Preneel, B.: Equivalent keys in multivariate quadratic public key systems.
Journal of Mathematical Cryptology (to appear, 2011)

[21] Yang, B.-Y., Chen, J.-M., Chen, Y.-H.: TTS: High-speed signatures on a low-cost
smart card. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 371–385. Springer, Heidelberg (2004)

http://eprint.iacr.org/2011/294
http://eprint.iacr.org/2005/077

Throughput vs. Area Trade-offs in High-Speed

Architectures of Five Round 3 SHA-3
Candidates Implemented Using Xilinx and

Altera FPGAs�

Ekawat Homsirikamol, Marcin Rogawski, and Kris Gaj

ECE Department, George Mason University, Fairfax, VA 22030, U.S.A.
{ehomsiri,mrogawsk,kgaj}@gmu.edu

http://cryptography.gmu.edu

Abstract. In this paper we present a comprehensive comparison of all
Round 3 SHA-3 candidates and the current standard SHA-2 from the
point of view of hardware performance in modern FPGAs. Each algo-
rithm is implemented using multiple architectures based on the concepts
of folding, unrolling, and pipelining. Trade-offs between speed and area
are investigated, and the best architecture from the point of view of the
throughput to area ratio is identified. Finally, all algorithms are ranked
based on their overall performance, and the characteristic features of
each algorithm important from the point of view of its implementation
in hardware are identified.

Keywords: benchmarking, hash functions, SHA-3, hardware, FPGA.

1 Introduction

Performance in hardware has proven to be an important tie-breaker in the con-
tests for new cryptographic standards. For example, in the AES contest [14],
performance in FPGAs and ASICs has played a major role, because all five fi-
nalists have been judged to have adequate security, and their performance in
hardware varied substantially.

In this paper, we focus on comparing hardware performance of the remaining
five final candidates in the SHA-3 contest organized by NIST in the period
from 2007 to 2012 [1]. The unique and novel feature of our approach is the
investigation of multiple hardware architectures of each algorithm. Our goal is
to analyze the entire performance space in terms of the throughput to area trade-
offs, for all Round 3 SHA-3 candidates, as well as the current standard, SHA-2.
This investigation is very important because the exact requirements on the speed
and area of a hash function core depend on a particular application and very in

� This work has been supported in part by NIST through the Recovery Act
Measurement Science and Engineering Research Grant Program, under contract no.
60NANB10D004.

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 491–506, 2011.
c© International Association for Cryptologic Research 2011

http://cryptography.gmu.edu

492 E. Homsirikamol, M. Rogawski, and K. Gaj

a wide range. Knowledge of alternative architectures may allow the developer to
substantially reduce the relative area of a hash core in a system-on-chip, or move
to a substantially less expensive part in case of a stand-alone implementation of
a hash core in an FPGA.

We perform our investigation using four high-performance FPGA families
from two major vendors: Virtex 5 and Virtex 6 from Xilinx, and Stratix III and
Stratix IV from Altera. All algorithms have been implemented based on their
updated Round 3 specifications, published in January 2011.

2 Previous Work

Previous results on comparison of Round 2 SHA-3 candidates in hardware are
summarized in [2]. These results are classified into four major categories, based
on the technology (FPGA vs. ASIC), and the optimization target (High-Speed
vs. Low-Area). The previous results most relevant to the subject of this pa-
per belong to the category of High-Speed Implementations in FPGAs. The
most comprehensive results belonging to this category have been reported in
[5][8][12][13]. All these papers include results for all 14 Round 2 candidates.
Majority of published results concern 256-bit variants of the candidates, imple-
mented using Xilinx Virtex 5 FPGAs. In [12], results for 256-bit and 512-bit
variants of all algorithms, implemented using 10 FPGA families from Xilinx and
Altera are discussed. Additionally, pipelined implementations of three Round 2
SHA-3 candidates have been investigated in [4].

Some of the most interesting low-area implementations of the SHA-3 can-
didates have been described in [6][7][15]. The most comprehensive studies of
the ASIC implementations of the Round 2 SHA-3 candidates are presented in
[10][11][16].

All results obtained based on the Round 2 specifications of SHA-3 candidates
carry without any changes for Keccak and Skein. The specifications of BLAKE,
Groestl, and JH have been tweaked at the start of Round 3, in January 2011,
and at the time of writing, we are not aware of any published reports on the
high-speed FPGA implementations of the Round 3 variants of these algorithms.

3 Performance Metrics

Three major performance metrics used in our study are throughput, area, and
throughput to area ratio. Throughput is understood as the throughput for long
messages, or cumulative throughput for a large number of small messages (where
processing and input/output functions overlap in time). The resource utilization
in FPGAs is a vector, with coordinates specific to the given FPGA family, e.g.

Resource UtilizationV irtex 5 = (#CLB slices, #BRAMs, #DSPs) (1)

Resource UtilizationStratixIII = (#ALUTs, #memory bits, #DSPs). (2)

Throughput vs. Area Trade-offs in High-Speed Architectures 493

In these formulas: #CLB slices is the number of Configurable Logic Block
slices, BRAM stands for Block RAM, DSP is a Digital Signal Processing unit,
#ALUTs represents the number of Adaptive Look-Up Tables, and #memory bits
is the number of bits placed in dedicated Altera FPGA memories. Taking into
account that vectors cannot be easily compared to each other, we have decided
to opt out of using any dedicated resources in the hash function implementa-
tions used for our comparison. Thus, all coordinates of our vectors, other than
the first one have been forced (by choosing appropriate options of the synthesis
and implementation tools) to be zero. This way, our resource utilization (further
referred to as Area) is characterized using a single number, specific to the given
family of FPGAs, namely #CLB slices for Xilinx Virtex 5 and Virtex 6, and
#ALUTs in Stratix III and Stratix IV. We believe that the capability of using
embedded resources should be treated as a measure of the algorithm flexibility,
and should be investigated independently from this study.

4 Investigated Hardware Architectures

A starting point for our exploration of various architectures of hash functions is
the basic iterative architecture, shown in Fig. 1a. The characteristic features of
this architecture are as follows: a) datapath width = state size (denoted by s), b)
one round is performed in a single clock cycle, c) only one message is processed
at a time. The minimum block processing time is typically given by (3),

Tblock = (r + f) · T (3)

where r is the number of rounds, f is the number of clock cycles required to
finalize computations for a block (typically 0 or 1), and T is the minimum clock
period. The corresponding throughput is given by (4),

Tp = b/Tblock (4)

where b is the size of a message block in bits. We denote the area of this archi-
tecture by Area. The basic iterative architecture is typically an architecture of
choice for high-speed hardware implementations of SHA-1, SHA-2, and SHA-3
candidates.

If a round of a hash function has a symmetric structure, with two or more
similar operations performed one after another, horizontal folding is possible. In
Fig. 1b, horizontal folding by a factor of two is demonstrated. We will denote
this architecture by /2(h). In this architecture, a half of a round is implemented
as combinational logic, and the entire round is executed using two clock cycles.
The datapath width stays the same as in the basic iterative architecture, and is
equal to the state size, s. The block processing time is given by (5),

Tblock−/2(h) = (2 · r + f) · T/2(h) (5)

where T/2 < T/2(h) < T , ideally T/2(h) ≈ T/2, and Area/2 < Area/2(h) <
Area. As a result, the block processing time (and thus also throughput) stays

494 E. Homsirikamol, M. Rogawski, and K. Gaj

b)
0 1
s

s s

s

R

a)

S1

0 1

s

0 1

s

S2

R/2

s

s/2

s/2

s/2

0 1
s

s

s

R/2

s

s/2s/2

s/2

c) s

Fig. 1. Three hardware architectures of a hash function: a) basic iterative: x1, b) folded
horizontally by a factor of 2: /2(h), c) folded vertically by a factor of 2: /2(v). R –
round, S1, S2 – selection functions.

approximately the same, and area decreases. These dependencies lead to the
overall increase of the Throughput to Area ratio. In general, folding by a factor
of k might be possible, and the corresponding architecture will be denoted by
/k(h).

Among the five finalists, the only candidate that can benefit substantially from
horizontal folding is BLAKE. The round of BLAKE consists of two horizontal
layers of identical G functions, separated only by a permutation. By implement-
ing only one layer in combinational logic, horizontal folding by a factor of two can
be easily achieved. Additionally, each G function has a very symmetric structure
along the horizontal axis, and can be easily folded horizontally by a factor of 2.
As a result a folding factor of 4, is achieved for the entire round. Other SHA-3
finalists do not demonstrate any similar symmetry.

In case horizontal folding is either not possible or does not achieve the required
reduction in area, vertical folding may be attempted. In Fig. 1c, we demonstrate
vertical folding by a factor of 2, which we denote by /2(v). In this architecture,
the datapath width is reduced by a factor of two. As a result two clock cycles are
required to complete a round. In the first clock cycle, only bits of the internal
state affecting the first half of the round output are provided to the input of R/2.
In the second clock cycle, the remaining bits of the internal state are processed.
The first output is stored in an auxiliary register of the size of s/2 bits. This
output is concatenated with the output from the second iteration to form a new
internal state.

The clock period of this architecture is approximately equal to the clock pe-
riod of the basic iterative architecture, T/2(v) ≈ T . As a result, the block pro-
cessing time, increases approximately by a factor of two compared to the basic
architecture, as shown in the equation below:

Tblock−/2(v) = (2 · r + f) · T/2(v) ≈ (2r + f) · T. (6)

The area reduction is also smaller than in case of horizontal folding, because of
the need for an extra s/2-bit register and multiplexer. As a result the throughput

Throughput vs. Area Trade-offs in High-Speed Architectures 495

to area ratio is likely to go down. In general, vertical folding by a factor of k
might be possible, and the corresponding architecture will be denoted by /k(v).

Out of five final SHA-3 candidates, BLAKE and Groestl are most suitable
for vertical folding. JH can be folded, but the gain in area is not expected to be
substantial, because the round of JH is very simple, and does not dominate the
total area of the circuit. For Skein and Keccak, the internal round symmetry,
necessary for implementation of vertical folding, is missing.

In order to increase the throughput of a hash function, different architectures
must be applied. The three common approaches are unrolling, pipelining, and
parallel processing. Unrolling is suitable for increasing throughput of a single
long message. Pipelining and parallel processing increase the combined data
throughput in case of processing multiple messages (e.g., multiple packets) at
the same time.

In Fig. 2a, architecture with unrolling by a factor of two is demonstrated. We
will denote this architecture by x2. The datapath width stays the same as in the
basic iterative architecture. The combinational logic of a round is replicated, so
now two rounds are performed per clock cycle. Since the total number of clock
cycles is reduced approximately by a factor of two, and the clock period increases
by a factor less than two (due to optimizations on the boundaries of two rounds,
and the smaller relative contributions of the multiplexer delay, the register delay,
and the register setup time), the total throughput increases. Unfortunately, at
the same time, the area of the circuit is likely to increase by a factor close to
the unrolling factor. As a result, in most cases, the throughput to area ratio
decreases substantially compared to the basic iterative architecture. As such,
architectures with unrolling are typically used only when throughput for single
long messages is of the utmost concern, and area is abundant. Nevertheless, there
are exceptions to this rule. Unrolling can improve the throughput to area ratio
when rounds used by an algorithm in subsequent iterations are not the same.
Among the five final SHA-3 finalists, this situation happens only for Skein.

In majority of practical applications of hash functions, the messages that are
processed are relatively short (typically smaller than 1500 bytes), and multiple
messages (packets) are available for processing by a hashing unit at the same
time. For example, in the most widespread Internet security protocols, such
as IPSec, SSL, and WLAN (802.11), the inputs to a hash unit are packets.
The maximum size of a packet for Internet is limited by so called Maximum
Transmission Unit (MTU). The typical size of MTU for Ethernet based networks
is 1500 bytes. The Maximum Transmission Unit for the Internet IPv4 path is
even smaller, and set at 576 bytes. As a result, in a typical internet node, up to
80% of packets processed have the size of 576 bytes or less, and 100% of packets
have sizes equal or smaller than 1500 bytes. Such small sizes of packets mean
that hundreds of packets could be easily buffered in the processing nodes, in the
form of packet queues, without introducing any significant latency to the total
packet travel time from the source to destination. In this paper, we will assume
that the number of messages available in parallel is large (at least 10), and we
will look at the combined throughput for all available streams of data.

496 E. Homsirikamol, M. Rogawski, and K. Gaj

a)
0 1
s

R

s

s

R
s

0 1
s

s R

s

R

s

s

s

b)
0 1
s

s

R/2

R/2

s

s

s

s

c)s

Fig. 2. Three hardware architectures of a hash function a) unrolled by a factor of 2:
x2, b) unrolled by a factor of 2 with 2 pipeline stages: x2-PPL2, c) basic iterative with
2 pipeline stages: x1-PPL2

The easiest way to implement pipelining in hash functions is to first unroll,
and then introduce pipeline registers between adjacent rounds. The simplest
case is the architecture that is two times unrolled, and has two pipeline stages,
as shown in Fig. 2b. We will denote this architecture as x2-PPL2. The clock
period of this architecture is approximately equal to the clock period of the
basic iterative architecture, T . Processing a single block takes the same number
of clock cycles as in the basic iterative architecture. However, since two blocks
belonging to two different messages are processed simultaneously, the combined
throughput increases by a factor of two. The throughput to area ratio remains
roughly the same, and may be either larger or smaller than in the basic iterative
architecture, depending on a particular algorithm.

The more challenging way of using pipelining is to introduce pipeline registers
inside of a hash function round. The improvement in throughput compared to
the basic iterative architecture is than equal (either exactly or at least approxi-
mately) to the ratio of the new clock frequency to the original clock frequency.
Since the critical path is reduced, the increase in throughput is guaranteed, but
its level depends on how well the critical path has been divided by pipeline reg-
isters into shorter paths with approximately equal delays. At the same time,
the area of the circuit increases by the area of pipeline registers, plus any logic
required for simultaneous processing of multiple streams of data. The through-
put to area ratio may increase, but the improvement is not guaranteed for all
algorithms, and all FPGA families, and may be small or negative in case the
basic iterative architecture operates already at the clock frequency close to the
maximum clock frequency supported by the given FPGA family.

The formulas for the block processing time and the throughput of all afore-
mentioned architectures are summarized in Table 1.

5 Design Methodology and Design Environment

Our designs for the basic, folded, and unrolled architectures use the interface
and the communication protocol proposed in [8]. Our designs for the pipelined
architectures, use the interface and surrounding logic shown in Fig. 3.

Throughput vs. Area Trade-offs in High-Speed Architectures 497

Table 1. Formulas for the time required to process a single message block, Tblock, and
the Throughput, Tp, for all investigated architectures. Notation: b – block size, r –
number of rounds, f – number of clock cycles required to finalize computations for a
block (f = 0 for Keccak and Groestl (P + Q), f = 1 for all remaining algorithms), k –
folding factor or unrolling factor, n – number of pipeline stages, T – clock period.

Architecture Time required to process Throughput
a single message block

Basic iterative, x1 Tblock = (r + f) · T Tp = b/Tblock

Folded by a factor of k, /k Tblock = (k · r + f) · T Tp = b/Tblock

Unrolled by a factor of k, xk Tblock = (r/k + f) · T Tp = b/Tblock

Basic iterative with n pipeline Tblock = (n · r + f) · T Tp = n · b/Tblock

stages, x1-PPLn

Folded by a factor of k with Tblock = (n · k · r + f) · T Tp = n · b/Tblock

n pipeline stages, /k-PPLn

Unrolled by a factor of k with Tblock = (n · r/k + f) · T Tp = n · b/Tblock

n pipeline stages, xk-PPLn

HASH UNIT

SIPO

FSM1

SIPO

FSM1

SIPO

0

1

2

3

PISO

PISO

PISO

PISO

FSM1
0

1

2

3

FIFO
FIFO_CTRL

FIFO

FIFO
FIFO_CTRL

FIFO
FIFO_CTRL

FIFO

FSM2 FSM3

FIFO_CTRL

FIFO_CTRL

DATAPATH

FSM1

SIPO
b

w

w

b

b

b

b

w

w

w

b b

b
w

b w

b

w

w

w

w

w

ww

Fig. 3. Interface, high-level block diagram, and surrounding logic of the Hash Unit
for the pipelined architecture with four pipeline stages. Notation: SIPO – Serial-In
Parallel-Out unit, PISO – Parallel-In Serial-Out unit, w – input/output bus width,
w = 64 for all investigated algorithms, except SHA-2-256, where w = 32.

Input FIFOs serve as packet queues. Each FIFO communicates with the cor-
responding Serial-In Parallel-Out (SIPO) unit and the associated Finite State
Machine 1 (FSM1). FSM 1 is responsible for reading in the next block of data,
using b/w clock cycles, possibly in parallel with the Datapath processing the
previous block under the control of FSM2. Outputs corresponding to four in-
dependent packets are first stored in the corresponding Parallel-In Serial-Out
Units, and then multiplexed to the output FIFO.

All architectures have been modeled in VHDL-93. All VHDL codes have been
thoroughly verified using a universal testbench, capable of testing an arbitrary
hash function core. A special padding script was developed in Perl in order to

498 E. Homsirikamol, M. Rogawski, and K. Gaj

pad messages included in the Known Answer Test (KAT) files, distributed as a
part of each candidates submission package.

For synthesis and implementation, we have used tools developed by FPGA
vendors themselves:

• for Xilinx: Xilinx ISE Design Suite v. 12.4, including Xilinx XST,
• for Altera: Quartus II v. 10.1 Subscription Edition Software.

The generation of a large number of results was facilitated by an open source
benchmarking environment, ATHENa (Automated Tool for Hardware Evalua-
tioN) [3][9]. The details of results and selected source codes are available at [3].

6 Results

The results of our implementations are summarized in Figs. 4-8, and in Tables
2 and 3. In Fig. 4, we present the detailed throughput vs. area graphs for all
implemented architectures of the 256-bit variants of six investigated algorithms
in Xilinx Virtex 5 FPGAs.

For BLAKE (see Fig. 4a), the two best architectures in terms of the through-
put to area ratio are: /4(h)/4(v), i.e., architecture with horizontal folding by a
factor of 4, combined with vertical folding by a factor of 4; and x1-PPL2, i.e.,
basic architecture with two pipeline stages. The good performance of the former
of these two architectures is associated with the significant reduction of the com-
plexity of the BLAKE PERMUTE function as a result of vertical folding by 4.
The good performance of the latter is associated with the perfectly symmetric
structure of the round, which makes it easy to divide the datapath into two
well-balanced pipeline stages. The two less successful architectures include x1
and /2(h)-PPL4. These architectures are not included in our combined graphs
shown in Figs. 5-8.

For Groestl (see Fig. 4b), we consider two major architectures: a) parallel
architecture, denoted (P+Q), in which Groestl permutations P and Q are im-
plemented using two independent units, working in parallel, and b) quasi-pipeline
architecture, denoted (P/Q), in which, the same unit is used to implement both
P and Q, and the computations belonging to these two permutations are inter-
leaved [16]. The best architecture overall appears to be the parallel architecture
(P+Q) in the basic version, with two pipeline stages, x1-PPL2. Vertical folding
by 2 provides quite substantial reduction in area, but at the price of an even
greater reduction in throughput. An attempt to pipeline Groestl using 7 pipeline
stages (x1-PPL7), using logic-only implementation of S-boxes, appeared to be
rather unsuccessful.

For JH (see Fig. 4c), we consider two major types of architectures: a) with
round constants stored in memory, JH (MEM), and b) with round constants
calculated on the fly, JH (OTF). Both approaches seem to result in a very
similar performance for the basic iterative architectures, x1. Neither vertical
folding nor pipelining seem to be efficient when applied directly to the basic
architecture. Vertical folding, somewhat unexpectedly, increases area, and the

Throughput vs. Area Trade-offs in High-Speed Architectures 499

(a) BLAKE-256 (b) Groestl-256

(c) JH-256 (d) Keccak-256

(e) Skein-256 (f) SHA-256

Fig. 4. Throughput vs. Area graphs for multiple architectures of a) BLAKE-256, b)
Groestl-256, c) JH-256, d) Keccak-256, e) Skein-256, and f) SHA-256, implemented in
Xilinx Virtex 5 FPGAs. Notation: x1 – basic iterative architecture, /k(h) – horizontally
folded by a factor of k, /k(v) - folded vertically by a factor of k, xk – unrolled by a
factor of k, PPLn – pipelined with n pipeline stages, (P + Q) – parallel architecture
of Groestl, P/Q – quasi-pipelined architecture of Groestl, MEM – architecture of JH
with round constants stored in memory, OTF – architecture of JH with round constants
calculated on the fly, MU – multi-unit architecture.

basic architecture with two pipeline stages does not improve throughput. Both
undesired effects can be tracked back to the simplicity of the main round. Folding
does not reduce area, because of extra registers and multiplexers introduced to
a very simple round. Pipelining does not increase throughput, because a simple
basic round is hard to divide into two well balanced pipeline stages. As a result,
the basic iterative architecture remains most efficient in terms of the throughput
to area ratio.

500 E. Homsirikamol, M. Rogawski, and K. Gaj

For Keccak (see Fig. 4d), neither horizontal nor vertical folding applies. Two
pipeline stages increase throughput, but by a factor smaller than the increase in
the circuit area.

For Skein (see Fig. 4e), the unrolled by 4 architecture, x4, appears to be signif-
icantly more efficient than the basic architecture, x1. At the same time, unrolling
by 8 does not give any additional improvement. The best results are obtained
by first unrolling basic architecture by a factor of four, and then pipelining the
obtained circuit using two pipeline stages. Five pipeline stages have been at-
tempted as well because of an extra addition executed every fourth round, but
did not improve the overall throughput to area ratio.

For SHA-2 (see Fig. 4f), none of the discussed techniques applies. The imple-
mentation of this function is already small, so reducing area is not necessary.
The best way to speed up this function is by using multiple independent units
of SHA-2 working in parallel. We denote this architecture by MUn, where n
denotes the number of hash units.

The combined graphs for the 256-bit variants and the 512-bit variants of all
algorithms, implemented using Xilinx Virtex 5 FPGAs, are presented in Figs. 5
and 6. Individual dots placed in regular intervals on the dashed lines represent
multi-unit architectures. Algorithms can be ranked first in terms of the through-
put to area ratio of their best architecture (as identified above). This is because
this architecture can be easily replicated, allowing for processing n streams of
data in parallel. Both throughput and area will increase by a factor of n.

The secondary criterion is the area of the best architecture. The smaller the
area, the denser is the graph representing possible locations of a given function
on the throughput vs. area graph.

The results for the 256-bit variants of hash functions, shown in Fig. 5, indicate
that the order of the SHA-3 candidates in terms of throughput, for implementa-
tions using 1500 or more CLB slices is: 1) Keccak, 2) JH, 3) Groestl, 4) Skein, and
5) BLAKE. Keccak and JH clearly outperform SHA-2, while Groestl becomes
faster only with more than 3000 CLB slices. At the same time, only BLAKE
and SHA-2 have implementations based on basic iterative architecture and/or
folding, with area below 500 CLB slices.

The results for the 512-bit variants of hash functions, shown in Fig. 6, are
quite similar, with the exception that JH performs almost equally well as Keccak
(because of the decrease in the Keccak message block size from 1088 to 576
bits), SHA-2 is ranked third, Skein slightly outperforms Groestl (because of the
increase in the number of rounds of Groestl from 10 to 14), and BLAKE is a
distant sixth.

The performance for Altera devices, shown in Figs. 7 and 8 is somewhat dif-
ferent. For the 256-bit versions of the algorithms, Keccak is the only function
that outperforms SHA-2 in terms of the throughput to area ratio. JH is the third
in ranking, with two architectures offering the similar ratio as SHA-2. BLAKE,
Groestl, and Skein are in tie with each, with Groestl being somewhat disadvan-
taged by approximately twice as large area of its most efficient architecture. For
the 512-bit versions of the algorithms (see Fig. 8), Keccak and JH outperform

Throughput vs. Area Trade-offs in High-Speed Architectures 501

Fig. 5. Combined Throughput vs. Area graph for multiple hardware architectures of
the 256-bit variants of BLAKE, Groestl, JH, Keccak, Skein, and SHA-2, implemented
in Xilinx Virtex 5 FPGAs

Fig. 6. Combined Throughput vs. Area graph for multiple hardware architectures of
the 512-bit variants of BLAKE, Groestl, JH, Keccak, Skein, and SHA-2, implemented
in Xilinx Virtex 5 FPGAs

SHA-2, Skein is in tie with SHA-2, Groestl and BLAKE fall significantly behind
the current standard.

The numerical results for all our implementations are summarized in Tables 2
and 3. The best values of the throughput to area ratios and the best architectures
for each hash function are listed in bold in these tables.

Additionally, we have also performed an initial study on the influence of
padding units on the ranking of the candidates. Based on this study, the largest

502 E. Homsirikamol, M. Rogawski, and K. Gaj

Table 2. Results for the 256-bit variants of the Round 3 SHA-3 candidates and SHA-
2, implemented using all investigated architectures and four FPGA families: Virtex 5
and Virtex 6 from Xilinx, and Stratix III and Stratix IV from Altera. Notation: Tp –
throughput, A – area, Tp/A – Throughput to Area Ratio.

Arch Virtex 5 Virtex 6 Stratix III Stratix IV
Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-256

/4(h)/4(v) 381 215 1.77 412 181 2.28 370 915 0.40 378 915 0.41

/4(h) 1770 1547 1.14 1784 888 2.01 1708 3153 0.54 1747 3157 0.55

/2(h) 2253 1691 1.33 1956 1247 1.57 2151 3603 0.60 2302 3605 0.64

/2(h)-PPL2 3346 2083 1.61 3069 1792 1.71 3149 4571 0.69 3471 4570 0.76

x1 2561 2306 1.11 2388 1721 1.39 2195 4745 0.46 2305 4742 0.49

/2(h)-PPL4 4609 3261 1.41 5002 2516 1.99 4894 5080 0.96 5312 5049 1.05

x1-PPL2 4714 2666 1.77 5156 2206 2.34 4487 5420 0.83 4704 5431 0.87

x1-PPL4 6596 3784 1.74 7937 2616 3.03 7524 6273 1.20 8186 6278 1.30

Groestl-256 (P+Q)

/8(v) 1042 1197 0.87 1161 980 1.18 1103 2716 0.41 1094 2736 0.40

/4(v) 1948 1287 1.51 2289 1134 2.02 2129 4079 0.52 2058 4093 0.50

/2(v) 4014 1598 2.51 4890 1560 3.13 4623 6130 0.75 4349 6073 0.72

x1 8081 2591 3.12 9340 2630 3.55 9608 11122 0.86 9122 11154 0.82

x1-PPL2 13894 3057 4.55 17084 3034 5.63 13793 11727 1.18 13749 11727 1.17

x1-PPL7 11167 5582 2.00 N/A N/A N/A 13964 14487 0.96 14392 14470 0.99

Groestl-256 (P/Q)

/8(v) 691 973 0.71 808 813 0.99 812 2141 0.38 791 2141 0.37

/4(v) 1322 1477 0.89 1687 996 1.69 1401 3660 0.38 1378 3658 0.38

/2(v) 3136 1270 2.47 3301 1074 3.07 3198 4208 0.76 3209 4216 0.76

x1 6072 1912 3.18 4621 1737 2.66 6041 7498 0.81 5586 7287 0.77

JH-256 (MEM)

/2(v) 2088 1010 2.07 2202 861 2.56 2104 3365 0.63 2066 3377 0.61

x1 4624 909 5.09 5700 847 6.73 5146 3207 1.60 4868 3209 1.52

x1-PPL2 6000 1600 3.75 7093 1328 5.34 6225 5607 1.11 6001 5574 1.08

x2 4728 1891 2.50 4986 1613 3.09 5314 4254 1.25 5378 4262 1.26

x2-PPL2 8487 1851 4.58 8846 1934 4.57 9816 6303 1.56 9522 6259 1.52

JH-256 (OTF)

/2(v) 1981 1064 1.86 2219 915 2.42 2039 3464 0.59 2010 3469 0.58

x1 4725 914 5.17 5306 1039 5.11 5028 3380 1.49 4965 3383 1.47

x2 6297 1661 3.79 6983 1441 4.85 6141 6079 1.01 5620 6043 0.93

Keccak-256

x1 12777 1395 9.16 11843 1165 10.17 12971 3909 3.32 13159 4129 3.19

x1-PPL2 15362 1980 7.76 16236 1446 11.23 19193 4955 3.87 18610 4953 3.76

x1-PPL4 12652 3849 3.29 13201 2785 4.74 16019 5391 2.97 17913 5402 3.32

Skein-256

x1 1307 1364 0.96 1382 1127 1.23 1108 3538 0.31 1247 3539 0.35

x4 2937 1476 1.99 3523 1216 2.90 2455 3965 0.62 2621 3968 0.66

x8 2931 1728 1.70 3275 1510 2.17 3178 5586 0.57 3372 5493 0.61

x4-PPL2 4950 2154 2.30 5858 1860 3.15 4273 4421 0.97 4596 4423 1.04

x4-PPL5 7240 3532 2.05 7465 2839 2.63 6772 5920 1.14 7693 5935 1.30

x8-PPL10 12602 8065 1.56 N/A N/A N/A 12283 10994 1.12 11378 10996 1.03

SHA-256

x1 1675 418 4.01 2273 286 7.95 1654 988 1.67 1744 988 1.77

Throughput vs. Area Trade-offs in High-Speed Architectures 503

Table 3. Results for the 512-bit variants of the Round 3 SHA-3 candidates and SHA-
2, implemented using all investigated architectures and four FPGA families: Virtex 5
and Virtex 6 from Xilinx, and Stratix III and Stratix IV from Altera. Notation: Tp –
throughput, A – area, Tp/A – Throughput to Area Ratio.

Arch Virtex 5 Virtex 6 Stratix III Stratix IV
Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-512

/4(h)/4(v) 563 406 1.39 612 324 1.89 485 1664 0.29 546 1675 0.33

/4(h) 2287 2935 0.78 2709 1936 1.40 2230 6137 0.36 2477 6161 0.40

/2(h) 3159 3337 0.95 3187 2628 1.21 2905 7127 0.41 3288 7128 0.46

/2(h)-PPL2 4544 3912 1.16 4821 3642 1.32 4033 8960 0.45 4780 8962 0.53

x1 3401 3984 0.85 3273 3823 0.86 2947 9251 0.32 3310 9268 0.36

/2(h)-PPL4 6035 5911 1.02 6948 4922 1.41 5535 9698 0.57 7521 9703 0.78

x1-PPL2 6405 5730 1.12 6426 4922 1.31 5549 10616 0.52 6222 10627 0.59

x1-PPL4 3825 7497 0.51 3607 6234 0.58 4952 12100 0.41 5594 12100 0.46

Groestl-512 (P+Q)

/8(v) 1351 2249 0.60 1484 1837 0.81 1496 5312 0.28 1367 5303 0.26

/4(v) 2533 2263 1.12 2933 2237 1.31 2902 8031 0.36 2692 7945 0.34

/2(v) 4914 3079 1.60 6257 3154 1.98 5985 12295 0.49 5851 12216 0.48

x1 10124 5254 1.93 11566 5106 2.27 12393 21854 0.57 12164 21847 0.56

x1-PPL2 13628 6258 2.18 N/A N/A N/A 17050 22570 0.76 17196 22412 0.77

x1-PPL7 12669 11194 1.13 N/A N/A N/A 17635 29320 0.60 18395 28976 0.63

Groestl-512 (P/Q)

/8(v) 984 1908 0.52 1037 1406 0.74 1052 4749 0.22 1010 4744 0.21

/4(v) 1783 2516 0.71 2145 1787 1.20 1855 6000 0.31 1945 6301 0.31

/2(v) 4139 2161 1.92 4442 2172 2.04 4550 7417 0.61 4352 7426 0.59

x1 7819 3821 2.05 8468 3658 2.31 8029 14445 0.56 7944 14461 0.55

JH-512 (MEM)

/2(v) 2187 1102 1.98 2392 1002 2.39 2199 3621 0.61 2076 3620 0.57

x1 4624 909 5.09 5700 847 6.73 5146 3207 1.60 4868 3209 1.52

x1-PPL2 4610 1973 2.34 5007 1745 2.87 5208 4514 1.15 5261 4527 1.16

x2 5792 1506 3.85 7018 1405 5.00 6309 5769 1.09 6176 5806 1.06

x2-PPL2 8523 2148 3.97 8321 1895 4.39 9704 6335 1.53 9328 6307 1.48

JH-512 (OTF)

/2(v) 2068 1041 1.99 2287 955 2.39 2099 3701 0.57 2134 3816 0.56

x1 4725 914 5.17 5306 1039 5.11 4912 3548 1.38 4860 3549 1.37

x2 6043 1554 3.89 6827 1515 4.51 6270 6320 0.99 5752 6261 0.92

Keccak-512

x1 6556 1220 5.37 7225 1231 5.87 6859 3477 1.97 6805 3470 1.96

x1-PPL2 8056 1498 5.38 8853 1470 6.02 9836 4431 2.22 9490 4418 2.15

x1-PPL4 7095 3756 1.89 7202 2650 2.72 9440 5175 1.82 9328 5201 1.79

Skein-512

x1 1325 1457 0.91 1356 1155 1.17 1082 3632 0.30 1229 3631 0.34

x4 2999 1537 1.95 3321 1258 2.64 2398 4074 0.59 2619 4093 0.64

x8 2810 1658 1.70 3113 1591 1.96 3111 5571 0.56 3296 5573 0.59

x4-PPL2 5013 2314 2.17 5649 1818 3.11 4236 4677 0.91 4607 4680 0.98

x4-PPL5 6141 3942 1.56 7664 3209 2.39 6378 6189 1.03 6977 6179 1.13

x8-PPL10 10973 8831 1.24 11982 7323 1.64 10839 11204 0.97 10945 11203 0.98

SHA-512

x1 2267 818 2.77 3081 592 5.20 2146 2072 1.04 2399 2073 1.16

504 E. Homsirikamol, M. Rogawski, and K. Gaj

Fig. 7. Combined Throughput vs. Area graph for multiple hardware architectures of
the 256-bit variants of BLAKE, Groestl, JH, Keccak, Skein, and SHA-2, implemented
in Altera Stratix III FPGAs

Fig. 8. Combined Throughput vs. Area graph for multiple hardware architectures of
the 512-bit variants of BLAKE, Groestl, JH, Keccak, Skein, and SHA-2, implemented
in Altera Stratix III FPGAs

decrease in the throughput to area ratio caused by adding a padding unit to the
basic architecture of a SHA-3 candidate has not exceeded 16%. So small varia-
tions in this ratio are not likely to affect the overall ranking of the candidates.

7 Conclusions

In this paper, we have performed a systematic investigation of high-speed
hardware architectures for the five final SHA-3 candidates. The investigated

Throughput vs. Area Trade-offs in High-Speed Architectures 505

architectures were based on the concepts of the basic iterative architecture, hori-
zontal folding, vertical folding, unrolling, pipelining, and parallel processing using
multiple independent units. Each architecture was implemented using four high-
performance FPGA families: Virtex 5 and Virtex 6 from Xilinx, and Stratix III
and Stratix IV from Altera. Based on the obtained results, we have identified the
most efficient hardware architecture for each of the investigated algorithm, based
on the best throughput to area ratio.

In case of four out of five candidates (all except JH), the most efficient ar-
chitecture appeared to be a pipelined architecture. The optimum number of
pipeline stages was specific to the algorithm, and was equal to two for Keccak
and Groestl, and four for BLAKE. The optimum pipelined architecture for Skein
was the architecture with four rounds unrolled, and n pipeline stages, where the
optimum value of n was equal to two for Xilinx high-performance FPGAs, and
five for Altera high-performance FPGAs.

The results for all investigated functions, and the most successful architectures
have been then summarized on the comprehensive throughput vs. area graphs.
These graphs have revealed that Keccak is the only candidate that consistently
outperforms SHA-2 for all considered FPGA families and two hash function
variants (with 256-bit and 512-bit output). The only drawback of this function
appears to be that it is not suitable for any kind of folding, and thus requires a
quite substantial minimum area (in the range of 1400 CLB slices in Virtex 5) to
be implemented in its basic iterative version.

JH performed better than SHA-2 in three out of four scenarios. It was outper-
formed by SHA-2 only for the 256-bit function variants implemented using Altera
FPGAs. Interestingly, JH is most efficient in its basic iterative architecture, and
is not suitable for either folding or inner-round pipelining.

Groestl was the only other candidate outperforming SHA-2 in at least one
scenario, for the 256-bit variants implemented using Virtex 5. However this ad-
vantage was reached only for the relatively large area of about 3000 CLB slices.
Although Groestl appeared to be very suitable for vertical folding, the very na-
ture of this technique caused that the decrease in area was accompanied by the
very significant decrease in speed.

Skein is the only finalist that can substantially benefit from unrolling. It is also
the fastest for the pipelined versions of the 4x unrolled architecture, and is the
only algorithm that can be pipelined up to 10 times. It performs particularly
well compared to other algorithms for the 512-bit variants of hash functions
implemented using Altera.

BLAKE is the algorithm with the highest flexibility, and the largest number
of potential architectures. It can be easily folded horizontally and vertically by
factors of two and four. It can also be easily pipelined even in the folded archi-
tectures. It is also the only algorithm that has a relatively efficient architecture
that is smaller than the basic iterative architecture of SHA-2.

Our future work will include experimental testing of all developed high-speed
architectures of the SHA-3 finalists, using high-performance FPGA boards based

506 E. Homsirikamol, M. Rogawski, and K. Gaj

on Xilinx and Altera FPGAs, equipped with high-speed communication inter-
face, such as PCI Express.

Acknowledgments. The authors would like to thank Ambarish Vyas for pre-
liminary results regarding hash cores with padding units, and Rajesh Velegalati
for extensive help with multiple ATHENa runs.

References

1. Cryptographic Hash Algorithm Competition, http://csrc.nist.gov/groups/ST/
hash/sha-3

2. SHA-3 Hardware Implementations, http://ehash.iaik.tugraz.at/wiki/SHA-3_
Hardware_Implementations

3. ATHENa Project Website, http://cryptography.gmu.edu/athena
4. Akin, A., Aysu, A., Ulusel, O.C., Savas, E.: Efficient Hardware Implementation of

High Throughput SHA-3 Candidates Keccak, Luffa and Blue Midnight Wish for
Single- and Multi-Message Hashing. In: 2nd SHA-3 Candidate Conf. (2010)

5. Baldwin, B., et al.: FPGA Implementations of the Round Two SHA-3 Candidates.
In: 2nd SHA-3 Candidate Conf. (2010)

6. Beuchat, J.-L., Okamoto, E., Yamazaki, T.: A Compact FPGA Implementation of
the SHA-3 Candidate ECHO. Cryptology ePrint Archive, Report 2010/364 (2010)

7. Detrey, J., Gaudry, P., Khalfallah, K.: A Low-Area yet Performant FPGA Imple-
mentation of Shabal. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010.
LNCS, vol. 6544, pp. 99–113. Springer, Heidelberg (2011)

8. Gaj, K., Homsirikamol, E., Rogawski, M.: Fair and Comprehensive Methodology for
Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates Us-
ing FPGAs. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 264–278. Springer, Heidelberg (2010)

9. Gaj, K., Kaps, et al.: ATHENa – Automated Tool for Hardware EvaluatioN: To-
ward Fair and Comprehensive Benchmarking of Cryptographic Hardware using
FPGAs. In: Proc. FPL 2010 (2010)

10. Guo, X., Huang, S., Nazhandali, L., Schaumont, P.: Fair and Comprehensive Per-
formance Evaluation of 14 Second Round SHA-3 ASIC Implementations. In: 2nd
SHA-3 Candidate Conf. (2010)

11. Henzen, L., Gendotti, P., Guillet, P., Pargaetzi, E., Zoller, M., Gürkaynak, F.K.:
Developing a Hardware Evaluation Method for SHA-3 Candidates. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 248–263. Springer,
Heidelberg (2010)

12. Homsirikamol, E., Rogawski, M., Gaj, K.: Comparing Hardware Performance of
Fourteen Round Two SHA-3 Candidates Using FPGAs. Cryptology ePrint Archive,
Report 2010/445 (2010)

13. Matsuo, S., et al.: How Can We Conduct “Fair and Consistent” Hardware Evalu-
ation for SHA-3 Candidate? In: 2nd SHA-3 Candidate Conf. (2010)

14. Nechvatal, J., et al.: Report on the Development of the Advanced Encryption
Standard (AES), http://csrc.nist.gov/archive/aes/round2/r2report.pdf

15. Sklavos, N., Kitsos, P.: BLAKE HASH Function Family on FPGA: From the
Fastest to the Smallest. In: Proc. ISVLSI 2010 (2010)

16. Tilich, S., et al.: High-speed Hardware Implementations of Blake, Blue Mid-
night Wish, Cubehash, ECHO, Fugue, Groestl, Hamsi, JH, Keccak, Luffa, Shabal,
Shavite-3, SIMD, and Skein, Cryptology ePrint Archive, Report 2009/510 (2009)

http://csrc.nist.gov/groups/ST/hash/sha-3
http://csrc.nist.gov/groups/ST/hash/sha-3
http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations
http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations
http://cryptography.gmu.edu/athena
http://csrc.nist.gov/archive/aes/round2/r2report.pdf

Efficient Hashing Using the AES Instruction Set

Joppe W. Bos1, Onur Özen1, and Martijn Stam2

1 Laboratory for Cryptologic Algorithms, EPFL, Station 14, CH-1015 Lausanne, Switzerland
{joppe.bos,onur.ozen}@epfl.ch

2 Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, United Kingdom

stam@cs.bris.ac.uk

Abstract. In this work, we provide a software benchmark for a large range of
256-bit blockcipher-based hash functions. We instantiate the underlying blockci-
pher with AES, which allows us to exploit the recent AES instruction set (AES-
NI). Since AES itself only outputs 128 bits, we consider double-block-length
constructions, as well as (single-block-length) constructions based on RIJNDAEL-
256. Although we primarily target architectures supporting AES-NI, our frame-
work has much broader applications by estimating the performance of these hash
functions on any (micro-)architecture given AES-benchmark results. As far as
we are aware, this is the first comprehensive performance comparison of multi-
block-length hash functions in software.

1 Introduction

Historically, the most popular way of constructing a hash function is to iterate a com-
pression function that itself is based on a blockcipher (this idea dates back to Ra-
bin [49]). This approach has the practical advantage—especially on resource-constrained
devices—that only a single primitive is needed to implement two functionalities (namely
encrypting and hashing). Moreover, trust in the blockcipher can be conferred to the cor-
responding hash function. The wisdom of blockcipher-based hashing is still valid today.
Indeed, the current cryptographic hash function standard SHA-2 and some of the SHA-
3 candidates are, or can be regarded as, blockcipher-based designs. In the 1980s, several
methods were proposed with an eye towards using the then-standard Data Encryption
Standard (DES) as the underlying primitive [40,28,14]. At present, the contemporary
Advanced Encryption Standard (AES [41]) is a more obvious choice instead.

A well-studied class of blockcipher-based hash functions are the PGV hash functions
(after Preneel, Govaerts and Vandewalle [48]), encompassing Davies–Meyer (DM) and
Matyas–Meyer–Oseas (MMO) as special cases. When based on a blockcipher operating
on n-bit blocks with k-bit keys, these functions compress k bits per blockcipher call
and they output an n-bit digest. The PGV hash functions are simple (low overhead)
and are provably secure in the ideal-cipher model [10]. Yet they suffer from one major
drawback: in order to achieve an acceptable level of collision resistance, one needs a
primitive operating on more than 160 bits. This rules out most existing blockciphers,
including AES (which operates on 128-bit blocks only).

As a remedy, double-block-length and more generally multi-block-length compres-
sion and hash functions were introduced. These are compression functions outputting

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 507–522, 2011.
c© International Association for Cryptologic Research 2011

508 J.W. Bos, O. Özen, and M. Stam

an rn-bit digest (for an integer r ≥ 2, r = 2 for the double-block-length case), even
though they are based on a primitive operating only on n-bit blocks. The longer digest
size opens up the possibility of collision resistance of 2n time (primitive evaluations)
even when using a relatively small primitive. Today, there is truly a wealth of suitable
blockcipher-based constructions to choose from and Table 1 gives an overview of the
constructions we consider. We do not consider all possibilities, for instance we omit
versions of GRØSTL, JH or SPONGE based on RIJNDAEL-256. As can be seen, we
instantiate the underlying blockcipher with either AES-128, AES-256 or RIJNDAEL-
256. The latter option allows us to consider single-block-length constructions achieving
a 256-bit digest (using an AES-related primitive).

Our choice of constructions includes several different design ideas and paradigms.
For years, most cryptographic hash function designs revolved around the same princi-
ple [49,40,14]: the Merkle-Damgård paradigm. In this cascaded mode of operation, the
main focus is to construct a secure and efficient compression function; these properties
are then inherited by the overall hash function. Later constructions started to deviate
from this paradigm, for instance by some form of strengthening [35,7] or by only tar-
geting security in the iteration [10,6].

A more fundamental design shift occurred in the way the blockcipher itself is used.
A blockcipher, operating on n bits with a k-bit key, can already be regarded as a com-
pressing primitive itself. This facilitates the transformation into a proper compression
function, but a disadvantage of using a blockcipher this way is that it requires frequent
re-keying, which tends to be expensive (see Section 2 for details). For this reason, there
have been substantial efforts in recent years to design permutation-based compression
functions. Obviously, given a blockcipher one can construct a permutation by simply
fixing the key (we focus on permutations with either n = 128 or 256 bits).

While the design and analysis of multi-block-length compression functions have gar-
nered significant attention, the focus in the literature seems squarely at security evalu-
ation and theoretical notions of efficiency (expressed as the ratio of message blocks
compressed per blockcipher call). Although the latter is known to give only a coarse
indication of real-life efficiency, actual performance benchmarks, in hard- or software,
are normally left as future work. (A notable exception is the work by Bogdanov et
al. [11], who provide hardware benchmarks for some multi-block-length compression
functions in hardware using the lightweight blockcipher PRESENT as the underlying
building block.)

Our Contribution. In this work we bring together the mainly theoretical world of
compression function designs with the practical demand of fast implementations. In-
stantiating the blockcipher-based primitives with AES-128, AES-256, respectively
RIJNDAEL-256 (and their fixed-key versions to build permutations), we obtain hash
functions with a fixed 256-bit digest size. Apart from three constructions (LANE�,
LUFFA� and KNUDSEN–PRENEEL) all constructions have known proofs of security in
the ideal-cipher model (we refer to the full version of this work [12] for a more detailed
discussion on the security of our target constructions). The former SHA-3 candidates
LANE� and LUFFA� do not have security proofs, neither for collision resistance nor for
preimage resistance. We include them in our benchmark (with different building blocks)

Efficient Hashing Using the AES Instruction Set 509

Table 1. A brief taxonomy of the schemes considered. The number of rounds Nr is 10 for AES-
128 and 14 for AES-256 and RIJNDAEL-256.

Blockcipher Variable-key Fixed-key
(dimensions) Constructions Constructions

AES-128 MDC-2, MJH, LP362
(k = 128, n = 128) PEYRIN ET AL.(I)

AES-256 ABREAST-DM, HIROSE-DBL,
(k = 256, n = 128) KNUDSEN–PRENEEL, MJH-DOUBLE, n.a.

QPB-DBL, PEYRIN ET AL.(II)

RIJNDAEL-256 DAVIES–MEYER LANE�, LUFFA�, LP231,
(k = 256, n = 256) SHRIMPTON–STAM

to illustrate their performance capabilities; KNUDSEN–PRENEEL is another exception
where a good collision resistance lower bound is still an open problem.

To the best of our knowledge, this is the first overview of software implementations
of the most studied and influential blockcipher- and permutation-based compression
and hash functions. The target designs (see also Table 1) have been implemented and
measured on an Intel Core i5 650 (3.20GHz) using C intrinsics to implement the var-
ious SS(S)E{2,3,4} and the recent AES instruction set (AES-NI) extensions [18,19].
Although measured on a single Intel architecture with AES-NI we expect the rela-
tive performance obtained to be representative for other Intel architecture families with
AES-NI support as well. The Intel compiler version 12.0.0 and GNU Compiler Collec-
tion (gcc) version 4.4.3 were used for code compilation. For each design we performed
specific optimizations to fully exploit AES-NI. The details are discussed in Section 3,
with Table 3 providing a summary of our findings.

The Choice for AES. Our choice for AES (and RIJNDAEL-256) is a natural one: it is
the official US and de facto world standard blockcipher. AES’ prime position has led
to a large body of research on AES, both on its security and implementation. Conse-
quently, AES runs very fast in hard- and software, making AES an obvious choice from
a performance perspective. The deal is sweetened further by the recent introduction of
AES-NI. Indeed, as reported in [19], one can achieve significant speed using the new in-
struction set (e.g. up to 1.3 cycles/byte on a single core Intel Core i7-980X for AES-128
in parallel modes). To benefit from synergy with AES and AES-NI in particular, several
SHA-3 candidates were instantiated by using some of AES’ components as well (e.g.
the AES round function), which was later demonstrated to indeed lead to fast hash-
ing [2]. Our goal here is to investigate the potential of AES-NI for fast hashing even
further by focusing on well-known blockcipher- and permutation-based (compression
function) designs that can be instantiated with AES (or more generally RIJNDAEL).

From a security perspective, AES remains unbroken as a blockcipher in the stan-
dard setting. It has survived many years of cryptanalysis and a practical break of this
cipher would have a significant impact on the cryptographic landscape. Nonetheless,
our choice for AES will not be without detractors as a consequence of recent related-
key attacks on AES [8,9]. The theoretical ramifications of a related-key attack to hash-
function security are still unclear. Any serious related-key attack undermines the

510 J.W. Bos, O. Özen, and M. Stam

assumption that the blockcipher behaves ‘ideally’, but this need not lead to any deviant
behaviour of the hash function itself (especially if its proof uses the weaker unforgeable-
cipher model). Of course, in practice a related-key attack is often underpinned by some
other (well-defined) weakness and exploiting this weakness directly (ignoring the de-
rived related-key attack) might be more fruitful when attacking the hash function. For
instance, Khovratovich [24, Corollary 2] states unambiguously that “AES-256 in the
Davies–Meyer hashing mode leads to an insecure hash function” but later provides so-
lace by remarking that it is not known how the techniques used against AES-256 in
Davies–Meyer mode can be modified to attack double-block-length constructions (the
focus of this paper).

As a final remark, the timings we obtain evidently depend strongly on the number
of rounds used by AES. While one can argue that the number of rounds used should
be fine-tuned for each of the hash functions (increasing or decreasing, depending on
the perceived security margin), we believe that using AES as is will give the cleanest
comparison (and any changes might be considered contentious).

2 Preliminaries

The Blockciphers AES-128, AES-256 and RIJNDAEL-256. AES is a member of the
RIJNDAEL blockcipher suite [41]. It was standardized by the US National Institute of
Standards and Technology (NIST) after a public competition similar to the one currently
ongoing for SHA-3 [43]. AES operates on an internal state of 128 bits while supporting
128-, 192-, and 256-bit keys. The internal state is organized in a 4×4 array of 16 bytes,
which is transformed by a round function Nr times. The number of rounds is Nr = 10
for the 128-bit key, Nr = 12 for the 192-bit key, and Nr = 14 for the 256-bit key
variants. In order to encrypt, the internal state is initialized, then the first 128-bits of the
key are XORed into the state, after which the state is modified Nr−1 times according to
the round function, followed by a slightly different final round (for the exact details see
the AES specification [41]). The larger state variant of AES, RIJNDAEL-256, operates
almost in the same way with a state size of 256 bits, a 256-bit key and Nr = 14 rounds.

Nine years after becoming the symmetric encryption standard, the only theoretical
attack on the full AES is restricted to the related key scenario and even then applies
only to the 192-bit [8] and 256-bit key versions [8,9]. So far no theoretical attacks on all
rounds of AES-128 are known. More cryptanalytic success has been achieved by using
the characteristics from the actual implementation of AES, e.g. cache attacks [60,3] can
recover an AES key in only 65 milliseconds (Tromer et al. [60] give a more detailed
survey of side-channel attacks against AES). However, side-channel analysis is far less
of a concern for hash functions (except for MACs based on hash functions, such as
HMAC) and we will blithely ignore the issue in this paper.

The AES Instruction Set (AES-NI). In the last decade, use of the single instruction,
multiple data (SIMD) paradigm has become a general trend in computer architecture
design. It enhances the speed of software implementations by offloading the compu-
tational work to special units which operate on larger data types, improving overall
throughput. In 1999, Intel introduced the streaming SIMD extensions (SSE), a SIMD
instruction set extension to the x86 architecture. One of the latest additions to these

Efficient Hashing Using the AES Instruction Set 511

extensions is the AES instruction set [18,19] available in the 2010 Intel Core processor
family based on the 32nm Intel micro-architecture named Westmere. This instruction
set will also be supported by AMD in their next-generation CPU “Bulldozer”. (Note
that previously several instruction set extensions have been suggested towards improv-
ing the performance of AES [58,5,59].) AES-NI does not only increase the performance
of AES (as well as any version of RIJNDAEL) but also runs in data-independent time and
by avoiding the use of any table lookups the aforementioned cache attacks are avoided.
This instruction set consists of six new instructions. At the same time, a new instruc-
tion for performing carry-less multiplication is released in the CLMUL instruction set
extension. We can summarize the new instructions as follows [18,19,20]:

• AESENC and AESDEC perform a single round of encryption, resp. decryption.
• AESENCLAST and AESDECLAST perform the last round of encryption resp. de-

cryption.
• AESKEYGENASSIST is used for generating the round keys used for encryption.
• AESIMC is used for converting the encryption round keys to a form usable for

decryption using the Equivalent Inverse Cipher.
• PCLMULQDQ performs carry-less multiplication of two 64-bit operands to an 128-

bit output.

Many of the constructions targeted in this paper require the computation of more than
one call to a blockcipher (with or without a fixed-key). If these two or more calls can be
run concurrently (while possibly sharing the key expansion), a performance gain can be
expected as AES round instructions are pipelined and can be dispatched theoretically
every 1-2 CPU clock cycles, provided that all data is available on time and there is no
dependency between such subsequent calls [18]. Since the latency of a single round
instruction is 5 cycles [17], running multiple independent blockciphers increases the
overall throughput. The same reasoning holds when implementing a single RIJNDAEL-
256 component. This sibling of AES works on an internal state of 256 bits and it is
implemented using two data-independent calls to AESENC.

In the context of encryption, several performance results of AES exploiting AES-NI
have been presented [19,20,37]. These works show that using AES-NI tends to give
very fast implementations when multiple blockcipher calls can be made in parallel (in-
cidentally, they also show that the optimal way to interleave the instructions is hard
to pin down). However, they are of limited use to predict the runtimes of AES-based
hash functions as re-keying tends to be far more frequent in the hashing scenario than
in the encryption one. Indeed, for blockcipher-based compression functions considered
in this paper, the key-scheduling needs to be performed for every compression function
evaluation and that results in a significant overhead. For this reason, we start with a
detailed performance overview of AES and RIJNDAEL-256 that takes re-keying into
account. Table 2 contains performance details when running multiple key expansions,
encryptions or a combination of the two. In order to conduct these experiments we
created a code generator which, when given a number of x key expansions and y en-
cryptions, tries different strategies to implement these functionalities. The performance
numbers presented in Table 2 are an average over millions of runs. For comparison, we
also included timings from Gueron’s hand-crafted assembly code [19,20] as used in the
Intel AES-NI sample library. (Note that, roughly speaking, our measure 1E coincides

512 J.W. Bos, O. Özen, and M. Stam

Table 2. Our experimental results on the encryption and key expansion routines for AES-128
(A128), AES-256 (A256) and RIJNDAEL-256 (R256). The entries show the results in cycles
per operation together with the compiler, icc (i) or gcc (g), resulting in the fastest code. In the
table K and E denote the key expansion and the encryption respectively. The upper part of the
table shows the results of several independent key expansions and encryption operations that are
called in parallel. In the lower part, xKyE denotes x independent key schedules followed by y
independent encryptions. If x = 1 all encryptions use the same expanded key, if x = y all
encryptions use a different expanded key. For comparison, the performance details of the Intel
AES-NI sample library on our platform are stated as well.

Operation
1K 2K 3K 4K 1E 2E 3E 4E

A128 97.7 (g) 126.1 (g) 163.4 (g) 226.7 (i) 60.2 (i) 60.6 (i) 67.7 (i) 84.7 (i)
A256 125.5 (g) 147.2 (g) 202.6 (i) 287.2 (i) 82.0 (i) 83.0 (i) 93.6 (i) 113.9 (i)
R256 291.6 (g) 316.6 (g) 412.6 (g) 570.3 (i) 182.9 (i) 219.2 (g) 281.4 (i) 352.6 (g)

1K1E 2K2E 3K3E 4K4E 1K2E 1K3E 1K4E
A128 107.4 (g) 149.2 (g) 200.0 (g) 269.9 (g) 120.1 (g) 135.3 (g) 137.8 (g)
A256 152.8 (g) 178.1 (g) 249.7 (g) 337.9 (g) 154.0 (g) 158.4 (g) 164.9 (g)
R256 285.3 (i) 407.5 (i) 620.5 (i) 867.3 (i) 312.0 (g) 373.3 (i) 463.7 (g)

Intel AES-NI Sample Library
1K 1E 4E 1K 1E 4E

A128 98.8 62.1 79.6 A256 124.4 84.6 108.8

with AES run in a chaining mode such as CBC or CFB, whereas AES run in a parallel
mode such as CTR or ECB is closer to the best time we get for xE, see Table 2 for the
performance details).

Finite Field Arithmetic (�2m Full/Scalar Multiplication). Some of the compression
function designs we consider require finite field multiplication, in particular in F2128 and
F2256 . There is some freedom in how to represent the fields—the security proofs for the
hash functions are independent of this choice—so we opt for the usual representation
of elements in �2m as polynomials over�2 reduced modulo an irreducible polynomial
of degree m. We use x128 + x7 + x2 + x + 1 as irreducible polynomial for m = 128
and x256 + x10 + x5 + x2 + 1 for m = 256.

Multiplication in F2128 is implemented using the code examples as described in [20]
in the setting of implementing the Galois counter mode. This is realized by using the
new instruction PCLMULQDQ to implement the multiplication; this instruction calcu-
lates the carry-less product of the two 64-bit input to an 128-bit output. Note that this
instruction has a latency of 12 cycles and can be dispatched every 8 cycles [17]. Hence,
compared to other SSE instructions, some of which can be dispatched in pairs of three
every clock cycle, this instruction might not always be the optimal choice from a perfor-
mance perspective. An example where the usage of the PCLMULQDQ instruction might
not lead to a speed-up is in the case of (field) multiplication by x. This can be com-
puted by shifting the input one position to the left (the polynomial multiplication by x)
and performing a conditional XOR with the reduction polynomial (depending on the bit
shifted out). Unfortunately, the SSE instruction set has no bit shift operation shifting the

Efficient Hashing Using the AES Instruction Set 513

full 128-bit vector. Shifting the two 64-bit, four 32-bit or eight 16-bit in SIMD fashion
is possible but the bits shifted out locally are lost. We outline a novel approach (with
the SSE instruction in parentheses) to obtain the desired result in the setting of F2128

where we exploit the fact that the second largest exponent of the reduction polynomial
is < 32 (which also holds in the setting of F2256). Given an input A we

1. swap the two 64 bit halves of A to t (PSHUFD),
2. create a mask m (either all ones or zeros in each 64-bit half) depending if bits 63

and 127 of t are set (PCMPGTQ),
3. use m to extract the correct 64-bit parts of a precomputed constant [1, R] in t

(PAND),
4. shift both 64-bit parts of A left by one bit and store this in s (PSLLQ),
5. perform the reduction plus restoring the local carry bit by combining s and t (PXOR).

Here R denotes the hexadecimal representation of the reduction polynomial, excluding
the term with the highest exponent, stored in a 64-bit word. Note that this computation
might be sped up, depending on the setting, in the following way. Replace step 1 by a
byte shuffle (PSHUFD) which moves bits 63 and 127 to bit position 95 and 31 respec-
tively and set the other 14 bytes to zero. The resulting vector, viewed as four 32-bit
signed integers, contains two 32-bit words where only the sign bit may be set. Now step
2 can be replaced by using an arithmetic right shift of 31 positions (PSRAD) creating
the mask by using the fact that this instruction shifts in the sign bit. In order to over-
come this instruction set limitation (no 128-bit single-bit shift instruction) we tried if
field multiplication by x8 is faster. Now the input needs to be shifted eight bits, which
can be performed using a single byte-shuffle instruction. The reduction, a subtraction
by i · R, where 0 ≤ i < 28, depends on the eight bits shifted out. Since the reduction
polynomial is constant we can precompute the 256 multiples and use the shifted-out
byte as in index for this look-up table. We found that, using our implementation of both
approaches, the performance of both field multiplications, by x and x8, are comparable
with a slight advantage when multiplying by x.

3 Implementations of the Target Algorithms

Table 3 contains an overview of the benchmarks we obtained. The measurements have
been carried out analogously to [19]; i.e. with the help of the time stamp counter which
is read using the RDTSC instruction. The presented performance results are an average
over thousands of times compressing a random 4KB message. In the sequel, we pro-
vide separate treatments for constructions based on a (variable-key) blockcipher versus
a permutation (in which case we fix the key of the blockcipher). Due to space limita-
tions, we refer to the original works for exact specifications of the various algorithms
(references, including those relevant for security results, are given in Table 3; see also
the full version [12] for a more detailed analysis and illustrated specifications).

Two of the designs considered are based on past SHA-3 candidates. For those, we
instantiate the underlying permutation by (fixed-key) RIJNDAEL-256, rather than the
originally submitted permutation. For compression functions supporting more than 256-
bit output (e.g. KNUDSEN–PRENEEL and LUFFA�) an output transformation (after
MD-iteration) can be used to reduce the final output to 256-bit, however we neither
implemented nor timed this.

514 J.W. Bos, O. Özen, and M. Stam

Table 3. The achieved speeds (in cycles per byte) using the AES-NI for the designs considered
in this work. Also mentioned are the number of b bytes which are absorbed per compression
function call and how many unique key scheduling calls are made (see Table 1 for the primitives
employed). Predicted speed estimates are based on the results from Table 2. The last column
provides additional references.

Algorithm b
Key

Scheduling
Predicted

Speed Range
Achieved

Speed
Security

Reference
ABREAST-DM [28] 16 two 11.1 + ε 11.21 [16,29,33]
DM [39] 32 one [6.8, 10.2] 8.69 [48,10]
HIROSE-DBL [21] 16 one, shared 9.6 9.82 [21,27]
KNUDSEN–PRENEEL [26] 32 four 10.6 10.58 [44,46]
LANE� (Sec. 3) 64 fixed 11.7 11.71 [22]
LP231 [51,52] 32 fixed 12.6 + ε 13.04 [51,52,30]
LP362 [51,52] 16 fixed 11.8 + ε 12.09 [51,52,31]
LUFFA� (Sec. 3) 32 fixed 8.8 + ε 10.22 [15]
MDC-2 [13] 16 two [9.3, 11.7] + ε 10.00 [57,25]
MJH [32] 16 one, shared 6.6 + ε 7.45 [32]
MJH-DOUBLE [32] 32 one, shared 4.1 + ε 4.82 [32]
QPB-DBL [55] 16 one 9.5 + ε 14.12 [55]
PEYRIN ET AL.(I) [47] 16 three, shared [12.5, 16.3] 15.09 [53]
PEYRIN ET AL.(II) [47] 32 three, shared [7.8, 10.7] 8.75 [53]
SHRIMPTON–STAM [54] 32 fixed 12.6 12.39 [54]

3.1 Blockcipher-Based Constructions

Davies–Meyer (DM). Davies–Meyer (DM) [39] is a single-block-length compression
function design. It is one of the most popular ways of creating a secure hash func-
tion using a blockcipher: many cryptographic hash functions, including MD5 [50] (for
n = 128, k = 512) and SHA-256 [42] (for n = 256, k = 512), follow the DM de-
sign philosophy. DM is one of the most efficient PGV-type compression functions as
it allows to run several key schedules independently in the MD-iteration. In our im-
plementations, we exploit this feature; yet we also study other possible optimizations.
Namely, these are the three flavors of DM that we have considered in our benchmark:

1. Standard iterative approach: compression function calls are made sequentially for
each step in the MD-iteration. The compression function evaluation starts with the
key schedule and continues with the encryption call. Independent key schedule and
encryption rounds are interleaved to get more efficient results.

2. Partially pipelined: the encryption call of the current round and the key schedule of
the next round are being processed concurrently.

3. Fully pipelined: j key schedules are called in parallel for some (integer) j > 1
followed by j iterative encryption calls . Several experiments were run for varying j
and the best result is obtained for j = 4. Note that this approach allows to interleave
the first encryption round calls with the key scheduling stage to hide latencies and
obtain faster results.

Among the three approaches the fully pipelined version gives the best result and is the
one reported in Table 3. We included a prediction of the performance of DM based on

Efficient Hashing Using the AES Instruction Set 515

the vanilla timings of RIJNDAEL-256 provided in Section 2. Here the timing for 4K4E
serves as a lower bound, as it makes the encryption calls in parallel. The timing for
4K plus four times 1E serves as an upper bound for DM because the first encryption
can be scheduled during the four key scheduling stages hiding the instruction depen-
dencies in the encryption improving the overall throughput. (Similar strategies are used
for the constructions discussed subsequently. If the predictions in Table 3 include an ε,
this indicates that certain computations, for instance finite field multiplications, are not
considered in the prediction.)

ABREAST-DM. ABREAST-DM and its sister design TANDEM-DM, both proposed in
the early 90s [28], are two of the classical examples of double-block-length compres-
sion/hash function designs. We only consider ABREAST-DM instantiated with AES-
256 for our benchmark. We expect that TANDEM-DM has a slightly worse performance
compared to ABREAST-DM due to its sequential structure. In our implementations, we
make extensive use of the parallelism inside the ABREAST-DM compression function
by calling two key schedules in parallel followed by two concurrent encryption calls
(where the ‘follow’ is on a fine-grained per AES-round basis). Hence, the prediction
for ABREAST-DM is based on the performance numbers for AES-256 in the 2K2E
setting (see also [12] for the discussion on another alternative yet slower method to
implement ABREAST-DM).

HIROSE-DBL. ABREAST-DM suffers from a performance drawback that, although
run in parallel, the underlying blockciphers require separate key schedule routines.
Hirose’s construction [21] overcomes this problem by sharing the key scheduling for
the two blockcipher calls. In our implementations, we apply the same approach as for
ABREAST-DM to HIROSE-DBL and our results are in accordance with the predicted
speed based on the 1K2E setting for AES-256. Our timings also demonstrate that Hi-
rose’s scheme is indeed faster than ABREAST-DM.

MDC-2. MDC-2 [13] is one of the oldest double-block-length hash functions available
and it has been specified in the ANSI X9.31 and ISO/IEC 10118-2 standards [1,23].
Although originally designed for use with DES, we consider the obvious generalization
where one can use two calls to a single-key blockcipher (where k = n with AES-
128). Since MDC-2 is based on MMO, it is difficult to pipeline multiple MDC-2
compression function calls in the MD-iteration (as we did for DM). Yet, one can benefit
from the parallelism naturally present within a single compression function evaluation
by making the two blockcipher calls concurrently (corresponding to 2K2E). This is
indeed how we have achieved our best result, matching the predicted speed.

MJH. Recently, an alternative construction called MJH was proposed by Lee and
Stam [32]. It is inspired by the compression function of JH [61] (one of the SHA-3 final-
ists). The main design rationale behind MJH is to reduce the number of key-schedules
required in a single compression function evaluation—as in HIROSE-DBL—and call
several key schedules in parallel in multiple iterations—as in DM. Obviously, this re-
sults in an efficient design. More interestingly, the security of the construction still holds
once the message block (size) to the compression function is doubled (this is what we
call MJH-DOUBLE). This leads to a significantly more efficient scheme, although the
cost of key set-up increases. We investigate the performance of MJH in accordance

516 J.W. Bos, O. Özen, and M. Stam

with our optimizations on DM and HIROSE-DBL. Based on our results, we note that
MJH-DOUBLE has achieved the best cycle count in our benchmark. We implemented
different strategies when interleaving 1 ≤ i ≤ 8 iterations of the compression function,
the best results are obtained with i = 2. Hence, the predictions are based on the setting
2K2E+2E, ignoring the cost of the finite field (scalar) multiplications.

KNUDSEN–PRENEEL. One of the classical examples of multi-block-length compres-
sion functions is provided by Knudsen and Preneel [26] who proposed several construc-
tions with multiple blockcipher calls in parallel using the generator matrices of various
linear error correcting codes. We consider one of their proposals, which is based on a
[4, 2, 3] linear code over�23 , to show its performance capabilities with AES-NI. When
based on AES-256, this gives rise to a 6n → 4n bit compression function with secu-
rity expected to be at least that of a 2n-bit compression function. We base our exact
specification on the later analysis by Özen et al. [44]. One of the nice features of this
construction is that one can call four independent key schedules followed by four in-
dependent encryptions where one can interleave the rounds of both operations to hide
latencies. This makes it much easier to give an accurate performance estimate since this
scenario is exactly the 4K4E case for AES-256.

PEYRIN ET AL.-DBL. All the designs considered so far follow a very similar ap-
proach: there exist linear pre- and post-processing functions that operate on the blocks
of data, interacting with the underlying primitives. Based on this general model, Peyrin
et al. [47] determined, under a very general attack-based approach (i.e. only consid-
ering time-complexity upper bounds), necessary conditions to have a secure compres-
sion function (where they used smaller ideal 2n → n and 3n → n bits compression
functions as underlying primitives which are replaced by single-key, resp. double-key,
blockciphers in DM mode in our framework). To investigate the performance using
AES-NI, we consider their two concrete proposals: one uses five AES-128 calls and
leads to a 3n → 2n bit compression function, the other uses five AES-256 calls
for a 4n → 2n bit compression function. In our implementations, we make use of
the high parallelism inside a single compression function evaluation by calling sev-
eral shared key-schedules. In both scenarios the predicted time corresponds to 3K5E,
since among the five encryptions two keys are used twice. This case is not considered
in Table 2 and we estimate the performance by considering the performance interval
[3K3E, 3K3E+2E] for AES-128 and AES-256 instead.

QPB-DBL. We finish this section with the interesting scenario of constructing a 2n-
bit digest while making only a single call to the blockcipher (theoretically, this would
provide optimal efficiency). Lucks [36] provided the first construction of this type, al-
though it is secure only in the iteration (see [45] for a detailed discussion of the security
of Lucks’ construction). The main practical overhead in Lucks’ construction are the
costly finite field multiplications that are bound to be performed sequentially. Later,
Stam [55] gave another, more practical, construction in the public random function
model using a quadratic-polynomial based design (hence the name QPB-DBL). This
construction was generalized [56,34] to the ideal cipher model by replacing the random
function with a double-length-key blockcipher running in DM mode. For our bench-
marks, we use a slightly modified compression function, in that we shuffle the inputs

Efficient Hashing Using the AES Instruction Set 517

A′ =

⎛

⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
1 2 1 1 0
1 1 2 4 2

⎞

⎟
⎟
⎠, Ã =

⎛

⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
1 1 1 1 0
1 0 1 0 1

⎞

⎟
⎟
⎠ and A′′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 1
1 2 4 1 2 4 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fig. 1. The matrices used for LP231, LP362 and SS. The field elements denoted 1, 2 and 4
correspond to polynomials 1, x and x2, respectively (see Section 2).

slightly. This allows us to benefit from increased parallelism in the iteration, without
violating the security proof. As already argued, in the QPB-DBL compression func-
tion the main overhead consists of costly finite field multiplications (which we try to
minimize by using the features of the new PCLMULQDQ instruction). Our tweak allows
us to interleave the key-scheduling of round i + 1 with the two (sequential) finite field
multiplications of round i. The predicted performance of QPB-DBL is based on the
1K1E setting for AES-256 and ignores the relatively high cost of the two (full) finite
field multiplications.

3.2 Permutation-Based Constructions

Rogaway and Steinberger’s LP and SHRIMPTON–STAM. Rogaway and Steinberger
introduced a class of linearly-determined, permutation-based compression functions
{0, 1}mn → {0, 1}rn making k calls to the different permutations πi for i ∈ {1, . . . , k}
(hence the notation LPmkr throughout). Let (xi, yi) denote the input-output pair cor-
responding to the permutation πi. The main ingredient of Rogaway and Steinberger’s
LP design is a (k + r) × (k + m) matrix A over �2n . This matrix determines the
block-wise interaction between the inputs to the compression function (V, M), (xi, yi)
pairs and the output Z of the compression function in the following way: for the row
vector ai (of A), the inputs to the underlying permutations are determined by the
scalar product xi = ai · (V1, . . . , Vr, M1, . . . , Mm−r, y1, . . . , yi−1, 0k−i) whereas the
output Z (which is treated as a concatenation of r n-bit blocks Zi) is computed by
Zi = ak+i · (V1, . . . , Vr, M1, . . . , Mm−r, y1, . . . , yk). There is considerable choice for
the matrices A, as long as a certain independence criterion is satisfied [51,52]). For op-
timal performance, we use the matrices A′ over �2256 (suggested in [30]), and A′′ over
�2128 (taken from [31]) as given in Fig. 1 for LP231, respectively LP362.

In independent work, Shrimpton and Stam [54] proved security for a compression
function (SS) that can be regarded as an LP231 scheme (based on matrix Ã), even
though their matrix does not satisfy the independence criterion imposed by Rogaway
and Steinberger.

There are multiple ways how one can implement these constructions in practice. We
chose to implement LP231 in three stages where we first run two permutations and a
field multiplication by x in parallel, followed by one permutation and field multiplica-
tion by x and x2 and finally the remaining multiplication by x2. This corresponds to

518 J.W. Bos, O. Özen, and M. Stam

the setting 2E+1E + ε for RIJNDAEL-256 on which we base our performance predic-
tion. After experimenting with different strategies we settled on the following regarding
LP362. Again three stages are used where we do three, two and one permutation in par-
allel in every stage. The multiplications are calculated in the last two stages in order to
hide the relatively high latencies of especially the single permutation. Hence, the pre-
dicted performance is based on the 3E+2E+1E+ε setting for AES-128. The implemen-
tation of SS is straightforward corresponding to the setting 2E+1E for RIJNDAEL-256,
note that this is the only case where the actual construction (slightly) outperforms the
predicted speed. This anomaly might be explained by the fact that SS has to load (store)
the input (output) only once for both operations while in the performance benchmark
setting this has to be done twice.

LANE�. LANE [22] is a permutation-based hash function design submitted to the SHA-
3 competition by Indesteege (supported by the COSIC research group). For our pur-
poses, we consider the LANE compression function with 256-bit digest size which is
instantiated by eight calls to the fixed-key RIJNDAEL-256 and denoted by LANE�. Al-
though some weaknesses have been exploited [38] for the original proposal, it is not
immediate that the attacks carry over to LANE� as the attacks exploit weaknesses in
the original permutations (in particular the relatively low number of rounds). In our
implementations, we exploit the high parallelism inside a single compression function
evaluation by running several permutation calls in parallel. Although possible, we did
not investigate further pipelining options along the MD-iteration due to sufficient num-
ber of independent permutation calls in a single compression function evaluation. The
predicted speed for LANE� is based on the setting of 6E+2E for RIJNDAEL-256. Note
that the original version of LANE, performs significantly faster (4.3 cycles per byte) on
our platform due to the relatively light permutations given in the submitted version.

LUFFA�. LUFFA [15] is a second round permutation-based SHA-3 candidate designed
by De Cannière and Watanabe which can possibly benefit from the AES-NI once the
underlying permutations are modified accordingly. To this end, we instantiate the three
underlying permutations of LUFFA-256 with fixed-key RIJNDAEL-256 and denote this
version by LUFFA�. In the implementation of LUFFA�, we follow a standard approach:
first the multiplications required in the message injection step are computed (see [15]
for a description of how to implement these efficiently), followed by the computation
of the three independent permutations. The predicted performance results (3E+ ε using
RIJNDAEL-256) is too optimistic, the ε incorporates the cost of the multiple polynomial
multiplications. Note that our implementation is slightly faster then the original version
of LUFFA (which runs at 10.49 cycles per byte) using the fastest implementation (called
SSSE3-PS-2) submitted to eBASH [4].

4 Discussion and Conclusion

In this work, we presented the first comprehensive performance comparison of many
multi-block-length hash functions (old and new alike) in software on a modern archi-
tecture supporting AES-NI. Our results are summarized in Table 3 in conjunction with
speed predictions based on the vanilla AES timings from Table 2. Based on these re-
sults, we can draw the following conclusions:

Efficient Hashing Using the AES Instruction Set 519

1. Our major conclusion is that, when assuming that the underlying primitives behave
ideally, one can obtain fast and provably secure blockcipher-based hash functions
on soon to be mainstream architectures supporting AES-NI. Indeed, the algorithms
studied provide reasonable collision and preimage resistance and require between 4
and 15 cycles per byte on our target platform, so in this sense almost all of them out-
perform SHA-256 while several of them are faster than SHA-512.1 As discussed
in the introductions, our results are obtained with the original number of rounds
for AES and RIJNDAEL-256. Relative performance results follow by increasing or
decreasing the number of rounds, depending on the security margin.

2. Among the blockcipher-based compression functions, DM is the fastest algorithm
when optimal security (in terms of proven collision resistance lower bound) is de-
sired. For practical security levels, MJH-DOUBLE significantly outperforms the
others (including the permutation-based designs). Note that both constructions re-
quire only one key schedule call inside a single compression function evaluation.

3. In the permutation-based setting, the LUFFA� compression function is the fastest,
but it is being outperformed by many blockcipher-based constructions. This is
partly due to the higher number of primitive calls, but one can argue that our
methodology (use AES as is) results in a relatively more conservative security mar-
gin for fixed-key constructions. Among the provably secure constructions LP362
performs the best, showing the possibility of achieving higher speed despite the
increased number of primitive calls.

Finally, we remark that all the constructions we consider are generic in the sense that
they can be instantiated with any secure blockcipher (or permutation, where relevant).
Hence, it is well possible that one can achieve better performance with different block-
ciphers or permutations. In particular, any AES-inspired yet more efficient primitive,
for instance a round-reduced version or a tweaked version with more secure and effi-
cient key-scheduling, would result in a faster scheme on our target platform. We be-
lieve that our benchmark provides a valuable toolbox to see the relative performance
figures for a majority of blockcipher- and permutation-based compression and hash
functions.

Acknowledgements. This work was supported by the Swiss National Science Foun-
dation under grant numbers 200020-132160, 200021-119776, and 200021-122162 and
by the European Commission through the ICT programme under contract ICT-2007-
216676 ECRYPT II. We gratefully acknowledge Çağdaş Çalık and Institute of Applied
Mathematics at Middle East Technical University for granting us access to the Intel i5
with AES-NI to benchmark our programs and Thorsten Kleinjung for useful discus-
sions on how to optimize the SSE field multiplication by x. We would like to thank the
anonymous reviewers for their useful comments and suggestions.

1 Compared SHA-256 and SHA-512 speeds (13.90 and 10.47 respectively) are based on the
fastest publicly available implementation on eBACS [4] run on Intel Core i5 M 520 (2.4 GHz
with AES-NI).

520 J.W. Bos, O. Özen, and M. Stam

References

1. American National Standards Institute: Public key cryptography using reversible algorithms
for the financial services industry. American National Standards Institute (1998)

2. Benadjila, R., Billet, O., Gueron, S., Robshaw, M.J.B.: The Intel AES instructions set and the
SHA-3 candidates. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 162–178.
Springer, Heidelberg (2009)

3. Bernstein, D.J.: Cache-timing attacks on AES (2005), http://cr.yp.to/papers.
html#cachetiming

4. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of Cryptographic Systems
(2010), http://bench.cr.yp.to

5. Bertoni, G., Breveglieri, L., Farina, R., Regazzoni, F.: Speeding up AES by extending a 32
bit processor instruction set. In: Application-specific Systems, Architectures and Processors,
pp. 275–282. IEEE Computer Society, Los Alamitos (2006)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge
construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197.
Springer, Heidelberg (2008)

7. Biham, E., Dunkelman, O.: A framework for iterative hash functions – HAIFA. Presented at
Second NIST Cryptographic Hash Workshop, Santa Barbara, USA (2006)

8. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-
256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidel-
berg (2009)

9. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on the full
AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer, Hei-
delberg (2009)

10. Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the blockcipher-based hash
functions from PGV. Journal of Cryptology 23(4), 519–545 (2010)

11. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash
functions and RFID tags: Mind the gap. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS,
vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

12. Bos, J.W., Özen, O., Stam, M.: Efficient hashing using the AES instruction set. Cryptology
ePrint Archive, Report 2010/576 (2010)

13. Brachtl, B., Coppersmith, D., Hyden, M., Matyas Jr., S., Meyer, C., Oseas, J., Pilpel, S.,
Schilling, M.: Data authentication using modification detection codes based on a public one-
way encryption function. U.S. Patent No 4,908,861 (1990)

14. Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

15. De Cannière, C., Sato, H., Watanabe, D.: Hash function Luffa: Supporting document. Sub-
mission to NIST (Round 2) (2009), http://www.sdl.hitachi.co.jp/crypto/
luffa/Luffa_v2_SupportingDocument_20090915.pdf

16. Fleischmann, E., Gorski, M., Lucks, S.: Security of cyclic double block length hash func-
tions. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 153–175.
Springer, Heidelberg (2009)

17. Fog, A.: Instruction tables, lists of instruction latencies, throughputs and microopera-
tion breakdowns for Intel, AMD and VIA CPUs (2010), http://www.agner.org/
optimize/

18. Gueron, S.: Intel’s new AES instructions for enhanced performance and security. In: Dunkel-
man, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 51–66. Springer, Heidelberg (2009)

19. Gueron, S.: Intel advanced encryption standard (AES) instructions set. Tech. rep., Intel
(2010), http://software.intel.com/file/24917

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
http://bench.cr.yp.to
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_SupportingDocument_20090915.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_SupportingDocument_20090915.pdf
http://www.agner.org/optimize/
http://www.agner.org/optimize/
http://software.intel.com/file/24917

Efficient Hashing Using the AES Instruction Set 521

20. Gueron, S., Kounavis, M.E.: Intel carry-less multiplication instruction and its usage for
computing the GCM mode. Tech. rep., Intel (2010), http://software.intel.com/
file/24918

21. Hirose, S.: Some plausible constructions of double-block-length hash functions. In: Rob-
shaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006)

22. Indesteege, S.: The LANE hash function. Submission to NIST (2008), http://www.
cosic.esat.kuleuven.be/publications/article-1181.pdf

23. International Organization for Standardization: ISO/IEC 10118-2: hash functions using an
n-bit block cipher (2010)

24. Khovratovich, D.: New Approaches to the Cryptanalysis of Symmetric Primitives. Ph.D.
thesis, University of Luxembourg (2010)

25. Knudsen, L.R., Mendel, F., Rechberger, C., Thomsen, S.S.: Cryptanalysis of MDC-2. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 106–120. Springer, Heidelberg
(2009)

26. Knudsen, L.R., Preneel, B.: Construction of secure and fast hash functions using nonbinary
error-correcting codes. IEEE Transactions on Information Theory 48(9), 2524–2539 (2002)

27. Krause, M., Armknecht, F., Fleischmann, E.: Preimage resistance beyond the birthday barrier
– the case of blockcipher based hashing. Cryptology ePrint Archive, Report 2010/519 (2010)

28. Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R. (ed.) EURO-
CRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

29. Lee, J., Kwon, D.: The security of Abreast-DM in the ideal cipher model. Cryptology ePrint
Archive, Report 2009/225 (2009)

30. Lee, J., Park, J.H.: Adaptive preimage resistance and permutation-based hash functions.
Cryptology ePrint Archive, Report 2009/066 (2009)

31. Lee, J., Park, J.H.: Preimage resistance of LPmkr with r = m − 1. Information Processing
Letters 110(14-15), 602–608 (2010)

32. Lee, J., Stam, M.: MJH: A faster alternative to MDC-2. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 213–236. Springer, Heidelberg (2011)

33. Lee, J., Stam, M., Steinberger, J.: The collision security of Tandem-DM in the ideal cipher
model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 561–568. Springer, Hei-
delberg (2011)

34. Lee, J., Steinberger, J.P.: Multi-property-preserving domain extension using polynomial-
based modes of operation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
573–596. Springer, Heidelberg (2010)

35. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

36. Lucks, S.: A collision-resistant rate-1 double-block-length hash function. In: Symmetric
Cryptography. No. 07021 in Dagstuhl Seminar Proceedings, Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

37. Manley, R., Magrath, P., Gregg, D.: Code generation for hardware accelerated AES. In: 21st
IEEE International Conference on Application-specific Systems Architectures and Proces-
sors (ASAP), pp. 345–348 (2010)

38. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound attack
on the full LANE compression function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 106–125. Springer, Heidelberg (2009)

39. Menezes, A.J., van Oorschot, P.C., Vanstone, S.: CRC-Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

40. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

41. NIST: FIPS-197: Advanced encryption standard (AES) (2001), http://www.csrc.
nist.gov/publications/fips/fips197/fips-197.pdf

http://software.intel.com/file/24918
http://software.intel.com/file/24918
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

522 J.W. Bos, O. Özen, and M. Stam

42. NIST: Secure hash standard. FIPS 180-2, NIST (August 2002), http://www.itl.
nist.gov/fipspubs/fip180-2.htm

43. NIST: Cryptographic hash algorithm competition (2008), http://csrc.nist.gov/
groups/ST/hash/sha-3/index.html

44. Özen, O., Shrimpton, T., Stam, M.: Attacking the Knudsen-Preneel compression functions.
In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 94–115. Springer, Heidelberg
(2010)

45. Özen, O., Stam, M.: Another glance at double-length hashing. In: Parker, M. (ed.) Cryptog-
raphy and Coding 2009. LNCS, vol. 5921, pp. 176–201. Springer, Heidelberg (2009)

46. Özen, O., Stam, M.: Collision attacks against the Knudsen-Preneel compression functions.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 76–93. Springer, Heidelberg
(2010)

47. Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.J.B.: Combining compression functions and
block cipher-based hash functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 315–331. Springer, Heidelberg (2006)

48. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic
approach. In: Stinson, D. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Hei-
delberg (1994)

49. Rabin, M.O.: Digitalized signatures. In: Foundations of Secure Computations, pp. 155–166.
Academic Press, London (1978)

50. Rivest, R.: The MD5 message-digest algorithm, request for comments (RFC) 1320. Tech.
rep., Internet Activities Board, Internet Privacy Task Force (1992)

51. Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based hashing. In:
Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236. Springer, Heidelberg
(2008)

52. Rogaway, P., Steinberger, J.P.: Constructing cryptographic hash functions from fixed-key
blockciphers. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 433–450. Springer,
Heidelberg (2008)

53. Seurin, Y., Peyrin, T.: Security analysis of constructions combining FIL random oracles. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 119–136. Springer, Heidelberg (2007)

54. Shrimpton, T., Stam, M.: Building a collision-resistant compression function from non-
compressing primitives. In: Aceto, L., Damgård, I., Goldberg, L., Halldórsson, M., Ingólfs-
dóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 643–654.
Springer, Heidelberg (2008)

55. Stam, M.: Better security/efficiency tradeoffs for compression functions. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 397–412. Springer, Heidelberg (2008)

56. Stam, M.: Blockcipher-based hashing revisited. In: Dunkelman, O. (ed.) FSE 2009. LNCS,
vol. 5665, pp. 67–83. Springer, Heidelberg (2009)

57. Steinberger, J.P.: The collision intractability of MDC-2 in the ideal-cipher model. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer, Heidelberg (2007)

58. Tillich, S., Großschädl, J.: Instruction set extensions for efficient AES implementation on 32-
bit processors. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 270–284.
Springer, Heidelberg (2006)

59. Tillich, S., Herbst, C.: Boosting AES performance on a tiny processor core. In: Malkin, T.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 170–186. Springer, Heidelberg (2008)

60. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and countermeasures.
Journal of Cryptology 23, 37–71 (2010)

61. Wu, H.: The hash function JH. Submission to NIST (updated) (2009), http://icsd.
i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf

http://www.itl.nist.gov/fipspubs/fip180-2.htm
http://www.itl.nist.gov/fipspubs/fip180-2.htm
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf
http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf

Author Index

Akishita, Toru 342
Aranha, Diego F. 108

Bernstein, Daniel J. 124
Bhunia, Swarup 407
Bogdanov, Andrey 312
Bos, Joppe W. 507
Brier, Éric 192
Buchmann, Johannes 176
Bulygin, Stanislav 475

Cheng, Chen-Mou 176
Cheung, Ray C.C. 421
Clavier, Christophe 49

Dagdelen, Özgür 176
Das, Abhijit 442
Derbez, Patrick 274
Devadas, Srinivas 17, 358
Duif, Niels 124
Duquesne, Sylvain 421

Fan, Junfeng 143, 421
Faz-Hernández, Armando 108
Feix, Benoit 49
Flandre, Denis 223
Fouque, Pierre-Alain 274

Gagnerot, Georges 49
Gaj, Kris 491
Genelle, Laurie 240
Ghosh, Santosh 442
Gierlichs, Benedikt 143
Göttert, Norman 160
Goubin, Louis 79
Grabher, Philipp 1
Großschädl, Johann 1
Guillermin, Nicolas 421
Güneysu, Tim 33
Guo, Jian 326

Hankerson, Darrel 108
Hiwatari, Harunaga 342
Hoerder, Simon 1
Homsirikamol, Ekawat 491

Hong, Seokhie 95
Hutter, Michael 459

Isobe, Takanori 342
Itoh, Kouichi 390
Iwamoto, Mitsugu 390

Järvinen, Kimmo 1

Kamel, Dina 223
Katzenbeisser, Stefan 374
Kim, HeeSeok 95
Knežević, Miroslav 312
Koçabas, Ünal 374
Koushanfar, Farinaz 17
Krishna, Aswin Raghav 407
Kuo, Po-Chun 176

Lange, Tanja 124
Leander, Gregor 312
Leresteux, Delphine 274
Li, Yang 292
Lim, Jongin 95
López, Julio 108

Majzoobi, Mehrdad 17
Martinelli, Ange 79
Medwed, Marcel 256
Mischke, Oliver 292
Mitsuda, Atsushi 342
Moradi, Amir 33, 292
M’Raihi, David 358

Naccache, David 192
Narasimhan, Seetharam 407
Nguyen, Phong Q. 192

Ochiai, Takao 390
Ohta, Kazuo 292, 390
Oswald, David 207
Özen, Onur 507

Paar, Christof 207, 292
Page, Dan 1
Petzoldt, Albrecht 475
Peyrin, Thomas 326

524 Author Index

Poschmann, Axel 326
Prouff, Emmanuel 63, 240

Quisquater, Michaël 240

Reichelt, Jan 176
Renauld, Mathieu 223
Robshaw, Matt 326
Roche, Thomas 63
Rodŕıguez-Henŕıquez, Francisco 108
Rogawski, Marcin 491
Roussellet, Mylène 49
Roy Chowdhury, Dipanwita 442

Sadeghi, Ahmad-Reza 374
Sakiyama, Kazuo 292, 390
Schneider, Michael 160, 176
Schrijen, Geert-Jan 374
Schröder, Heike 374
Schwabe, Peter 124
Shibutani, Kyoji 342
Shirai, Taizo 342
Sowell, Richard 358
Stam, Martijn 507
Standaert, François-Xavier 223, 256

Takenaka, Masahiko 390
Taverne, Jonathan 108
Thomae, Enrico 475
Tibouchi, Mehdi 192
Tillich, Stefan 1
Tominaga, Tetsuya 273
Toz, Deniz 312

van der Leest, Vincent 374
Varıcı, Kerem 312
Verbauwhede, Ingrid 312, 421
Vercauteren, Frederik 143
Verneuil, Vincent 49

Wachsmann, Christian 374
Wang, Xinmu 407
Wenger, Erich 459
Wójcik, Marcin 1
Wolf, Christopher 475

Yamamoto, Dai 390
Yang, Bo-Yin 124, 176
Yao, Gavin Xiaoxu 421
Yu, Meng-Day (Mandel) 358

	Title
	Preface
	CHES 2011
	Table of Contents
	FPGA Implementation
	An Exploration of Mechanisms for Dynamic Cryptographic Instruction Set Extension
	Introduction
	Background and Analysis
	PREON: A LEON3-Based Experimental Prototype
	Re-configurable Fabric
	Instruction Register File

	Evaluation of Cryptographic Workloads
	Re-configurable Fabric
	Instruction Register File
	Combined Utilisation

	Issues Relating to Practical Deployment
	Conclusions
	References

	FPGA-Based True Random Number Generation Using Circuit Metastability with Adaptive Feedback Control
	Introduction
	Related Work
	Programmable Delay Lines
	Metastability
	TRNG System Design
	Experimental Results
	Conclusion
	References

	Generic Side-Channel Countermeasures for Reconfigurable Devices
	Introduction
	Generic Countermeasures for FPGAs
	Generating Gaussian Noise
	Clock Randomization (CR)
	Preventing Clock Frequency Manipulations (PCM)
	Block Memory Content Scrambling (BMS)

	Case Study
	Reference Architecture
	Measurement Setup and Attack Model

	Evaluation and Results
	Noise Generators
	Clock Randomizing
	Block Memory Content Scrambling
	Combining Countermeasures

	Conclusion
	References

	AES
	Improved Collision-Correlation Power Analysis on First Order Protected AES
	Introduction
	Targeted Implementations
	Blinded Lookup Table
	Blinded Inversion Calculation
	Measurements and Validation of Implementations

	Description of Our Attacks
	The Collision-Correlation Method
	Attack on the Blinded Lookup Table Implementation
	Attack on the Blinded Inversion Implementation

	Comparison with Second Order Analysis
	Countermeasures
	Conclusion
	References

	Higher-Order Glitches Free Implementation of the AES Using Secure Multi-party Computation Protocols
	Introduction
	Related Works
	Our Contribution

	Preliminaries and Multi-party Circuits
	Computation and Adversary Models
	Security in the Probing Adversary Model
	Security in the Gliches Adversary Model

	Secure Multi-party Computation
	Shamir's Secret Sharing Scheme and BGW's Protocol
	SMC Protocol and Multi-party Circuits
	Complexity of the Scheme and Comparison

	Glitches Free HO-Masking of the AES
	Conclusion
	References

	Protecting AES with Shamir’s Secret Sharing Scheme
	Introduction
	Shamir's Secret Sharing Scheme
	Higher Order Masking of AES
	Masking Field Operations
	Complexity of the Operations
	Masking the Full S-Box
	Masking the Whole AES

	Security Analysis
	Information Theoretic Analysis
	Higher-Order DPA Evaluation
	Attack Simulations

	Conclusion
	References

	A Fast and Provably Secure Higher-Order Masking of AES S-Box
	Introduction
	Preliminaries
	Advanced Encryption Standard (AES)
	Higher-Order Masking of AES
	The Inversion Operation over a Composite Field

	A Fast and Provably Secure Higher-Order Masking of AES S-Box
	Security Analysis
	Performance Analysis and Implementation Results
	Conclusion
	References

	Elliptic Curve Cryptosystems
	Software Implementation of Binary Elliptic Curves: Impact of the Carry-Less Multiplier on Scalar Multiplication
	Introduction
	Binary Field Arithmetic
	Multiplication
	Squaring, Square-Root and Multi-squaring
	Inversion
	Half-Trace

	Random Binary Elliptic Curves
	Sequential Algorithms for Random Binary Curves
	Parallel Scalar Multiplication on Random Binary Curves
	Side-Channel Resistant Multiplication on Random Binary Curves

	Koblitz Elliptic Curves
	Sequential Algorithms for Koblitz Curves
	Parallel Algorithm for Koblitz Curves

	Experimental Results
	Conclusion and Future Work
	References

	High-Speed High-Security Signatures
	Introduction
	The Signature System
	Fast Arithmetic Modulo 2255-19
	Signing Messages
	Verifying Signatures
	References

	To Infinity and Beyond: Combined Attack on ECC Using Points of Low Order
	Introduction
	Background on Elliptic Curves
	Group Law
	Scalar Multiplication

	Elliptic Curve Points with Low Order Neighbours
	Constructing Points of Given Order
	Constructing Points with Low Order Neighbours

	Combined Attack Using Low Order Neighbours
	Full Domain Correctness
	Partial Domain Correctness

	Analysis of the Attack
	Analysis of Assumptions
	Scalar Multiplication
	Common DSCA and FA Countermeasures
	Curves over Finite Fields of Characteristic Two

	Conclusions
	References

	Lattices
	Random Sampling for Short Lattice Vectors on Graphics Cards
	Introduction
	Previous Results
	Our Contribution
	Organization of the Paper

	Preliminaries
	Random Sampling
	GPU Computation

	GPU Algorithm CUDA-SSR
	Parallel Implementation of Subroutine Sample

	Experimental Results
	Comparison of CUDA-SSR and BKZ
	Comparison of GPU and CPU Variant of SSR

	Conclusion and Further Work
	References

	Extreme Enumeration on GPU and in Clouds - How Many Dollars You Need to Break SVP Challenges -
	Introduction
	Preliminaries
	Lattices, Algorithms, and SVP
	Enumeration and Extreme Pruning
	Cloud Computing, Amazon EC2, and GPU

	Implementation
	Bounding Function
	Parallelization of Extreme Pruning Using GPU and Clouds

	Experimental Results
	GPU Implementation
	MapReduce Implementation
	Final Pricing

	Concluding Remarks and Further Work
	References

	Modulus Fault Attacks against RSA-CRT Signatures
	Introduction
	RSA-CRT Signatures
	Fault Attacks on RSA-CRT Signatures
	Our Contribution
	Related Work
	Roadmap

	The New Attack
	Overview
	Applying Orthogonal Lattice Techniques
	Attack Summary
	Simulation Results

	Extending the Attack to Unknown Faulty Moduli
	Single Byte Faults
	Faults on Many Least Significant Bits

	Practical Experiments
	First Scenario: Known Modulus
	Second Scenario: Unknown Single Byte Fault
	Third Scenario: Unknown Least Significant Bytes Faults

	Countermeasures and Further Research
	References

	Side Channel Attacks
	Breaking Mifare DESFire MF3ICD40: Power Analysis and Templates in the Real World
	Introduction
	Related Work
	Contribution of this Paper

	Demodulation for SCA of Contactless Smartcards
	Measurement Setup
	Practical Results: Profiling of Mifare DESFire MF3ICD40
	Practical Attack: CPA of the 3DES Engine
	Full Key-Recovery

	Practical Attack: Template Attack on the Key Transfer
	Conclusion
	References

	Information Theoretic and Security Analysis of a 65-Nanometer DDSLL AES S-Box
	Introduction
	Previous Works
	Performance Analysis
	Side-Channel Attacks
	Notations, Metrics and Tools
	Leakage Traces
	Information Theoretic Analysis
	Security Analysis

	Discussion and Open Questions
	References

	Thwarting Higher-Order Side Channel Analysis with Additive and Multiplicative Maskings
	Introduction
	Related Works
	Our Results
	Road Map

	Basics and Notations
	Notations
	Basics on Masking

	Higher-Order Masking
	Core Idea
	Issue 1: Mapping Elements of GF(2n)m Into (GF(2n))m
	Issue 2: Conversion Functions
	Full Scheme

	Application to the AES
	Conclusion
	References

	Extractors against Side-Channel Attacks: Weak or Strong?
	Introduction
	Low Complexity Extractor
	Hardware Implementation
	Adversarial Capabilities and Leakage Assumptions
	Information Theoretic Analysis
	Single Sample Attacks, Serial Implementation
	Multi-sample Attacks, Serial Implementation
	Decreasing the Leakage by Reducing t

	Security Analysis
	Identifying Multiple Samples
	Attacking the Masking

	Conclusions
	References

	Invited Talk
	Standardization Works for Security Regarding the Electromagnetic Environment

	Fault Attacks
	Meet-in-the-Middle and Impossible Differential Fault Analysis on AES
	Introduction
	Backgrounds and Previous Attacks
	Description of the AES
	Previous Differential Fault Analysis

	Meet-in-the-Middle Fault Analysis on AES-128
	From Fault Path to Differential Fault Equations
	Recovery K10
	Cost and Complexity
	Reduction of Memory Requirement

	Impossible Differential Fault Attack on AES-128
	From Impossible Differential to Inequation System
	Recovery Steps
	Property of Recombination
	Theoretical and Simulation Results

	Extension to AES-192 and AES-256
	Meet-in-the-Middle Fault Analysis on AES-192 and AES-256
	Impossible Differential Fault Analysis on AES-192 and AES-256

	Conclusion
	References

	On the Power of Fault Sensitivity Analysis and Collision Side-Channel Attacks in a Combined Setting
	Introduction
	Preliminaries
	Fault Sensitivity Analysis
	Correlation Collision Attack
	Combinations
	Experimental Setup

	Option 1: Colliding Faulty Ciphertext Distributions
	Model and Attack Concept
	Attack Scheme
	Practical Results
	Observations

	Option 2: Colliding Timing Characteristics
	How to Measure the Timing
	Definitions
	Attack Scheme
	Practical Results

	Conclusions
	References

	Lightweight Symmetric Algorithms
	spongent: A Lightweight Hash Function
	Introduction
	Motivation
	Design Considerations for a Lightweight Hash Function
	Organization of the Paper

	The Design of spongent
	Permutation-Based Sponge Construction
	Parameters
	present-type Permutation
	Design Rationale

	Security Analysis
	Resistance against Differential Cryptanalysis
	Collision Attacks
	Linear Attacks

	Hardware Implementations
	Conclusion
	References

	The LED Block Cipher
	Introduction
	Design Approach and Specifications
	Specification of LED

	Security Analysis
	The Key Schedule
	Differential/Linear Cryptanalysis
	Cube Testers and Algebraic Attacks
	Other Cryptanalysis
	LED in a Hash Function Setting

	Performance and Comparison
	Hardware Implementation
	Software Implementation

	Conclusion
	References

	Piccolo: An Ultra-Lightweight Blockcipher
	Introduction
	Specification
	Notations
	Data Processing Part
	Key Scheduling Part

	Design Rationale
	Security Analysis
	Implementation Aspects
	Optimization in Key Scheduling Part
	Optimization in Data Processing Part
	Hardware Performance
	Security against Side Channel Attacks

	Conclusion
	References

	PUFs
	Lightweight and Secure PUF Key Storage Using Limits of Machine Learning
	Introduction
	Contributions
	Related Works
	Organization

	PUFs with Lightweight Error Correction
	Empirical Viability of Lightweight Error Correction
	Implementation Complexity
	Stability

	Secure Constructions
	Unlearnable Bits
	Leaked Bits (LB)
	Secure Construction Examples

	Conclusions
	References

	Recyclable PUFs: Logically Reconfigurable PUFs
	Introduction
	Background: Physically Unclonable Functions (PUFs)
	Logically Reconfigurable PUFs
	System Model
	Assumptions and Adversary Model
	Security Objectives

	Constructions
	Speed-Optimized LR-PUF Construction
	Area-Optimized LR-PUF Construction.

	Implementation and Performance Evaluation
	Security Definitions and Evaluation
	Applications
	LR-PUF-Based Authentication Tokens
	Other Applications Envisaged

	Conclusion
	References

	Uniqueness Enhancement of PUF Responses Based on the Locations of Random Outputting RS Latches
	Introduction
	Conventional Methods
	Conv. Mtd (1): Generation of Responses from a BPUF
	Conv. Mtd (2): Implementation of RS Latches on FPGAs

	Proposed Methods
	Proposed Mtd (1): Use of the Locations of Random Latches
	Proposed Mtd (2): Increasing the Number of Random Latches

	Performance Evaluation
	Experimental Environment
	Experimental Results

	Conclusion
	References

	MECCA: A Robust Low-Overhead PUF Using Embedded Memory Array
	Introduction
	Related Work
	MECCA PUF
	Simulation Results and Analysis
	Conclusion
	References

	Public-Key Cryptosystems
	FPGA Implementation of Pairings Using Residue Number System and Lazy Reduction
	Introduction and Motivation
	Optimal Ate Pairings
	Pairings on Barreto-Naehrig Curves
	Pairing Computation and Parameter Selection

	Residue Number System
	RNS Montgomery Reduction
	Base Extension

	Design I: A Scalable Architecture
	Cox-Rower Architecture
	Cox-Rower Parametrization for Pairing
	Pipeline Architecture

	Design II: Hardware/Algorithm Co-optimization
	Base Selection Revisited
	A Fine-tuned Rower for Pairing Computation

	Scheduling the Pairing Algorithm
	Arithmetic in Fp2: Back to the Schoolbook Method
	Arithmetic in Fp12: Interpolation with Parsimony
	 Fp Inversion
	Higher Level Scheduling

	Implementation Results and Analysis
	Area
	Performance
	Comparison and Discussion

	Conclusions
	References

	High Speed Cryptoprocessor for ηT Pairing on 128-bit Secure Supersingular Elliptic Curves over Characteristic Two Fields
	Introduction
	The F21223-Multiplier
	Serial Use of 306-bit Parallel Multiplier

	The T Pairing Cryptoprocessor over F21223
	Computation of Miller's Loop
	Computation of Final Exponentiation

	Results
	Comparison with Existing Designs

	Conclusion
	References

	Fast Multi-precision Multiplication for Public-Key Cryptography on Embedded Microprocessors
	Introduction
	Related Work
	Multi-precision Multiplication Techniques
	Operand-Scanning Method
	Product-Scanning Method
	Hybrid Method
	Operand-Caching Method

	Results
	Conclusions
	References

	Small Public Keys and Fast Verification for Multivariate Quadratic Public Key Systems
	Introduction
	Achievement
	Organization

	Multivariate Quadratic Cryptography
	Notation
	Unbalanced Oil and Vinegar

	Reviewing Cyclic Keys
	Security of UOV
	The New Construction
	Message Recovery Attacks
	Choice of B
	Ordering of Monomials
	Efficiency of the Verification Process
	Security of 0/1 UOV
	Parameters and Implementation

	Conclusion
	References

	Hash Functions
	Throughput vs. Area Trade-offs in High-Speed Architectures of Five Round 3 SHA-3 Candidates Implemented Using Xilinx and Altera FPGAs
	Introduction
	Previous Work
	Performance Metrics
	Investigated Hardware Architectures
	Design Methodology and Design Environment
	Results
	Conclusions
	References

	Efficient Hashing Using the AES Instruction Set
	Introduction
	Preliminaries
	Implementations of the Target Algorithms
	Blockcipher-Based Constructions
	Permutation-Based Constructions

	Discussion and Conclusion
	References

	Author Index

