
8 PDE Boundary Value Problems

This chapter deals with Newton methods for boundary value problems
(BVPs) in nonlinear partial differential equations (PDEs). There are two
principal approaches: (a) finite dimensional Newton methods applied to given
systems of already discretized PDEs, also called discrete Newton methods,
and (b) function space oriented inexact Newton methods directly applied to
continuous PDEs, at best in the form of inexact Newton multilevel methods.
Before we discuss the two principal approaches in detail, we study the un-
derlying feature of asymptotic mesh independence that connects the finite
dimensional and the infinite dimensional Newton methods, see Section 8.1.
In Section 8.2, we assume the standard situation in industrial technology
software, where the grid generation module is strictly separated from the
solution module. Consequently, nonlinear PDEs there arise as discrete sys-
tems of nonlinear equations with fixed finite, but usually high dimension n
and large sparse ill-conditioned Jacobian (n, n)-matrix. This is the domain of
applicability of finite dimensional inexact Newton methods. More advanced,
but typically less convenient in a general industrial environment, are func-
tion space oriented inexact Newton methods, which additionally include the
adaptive manipulation of discretization meshes within a multilevel or multi-
grid solution process. This situation is treated in Section 8.3 and compared
there with finite dimensional inexact Newton techniques.
We will not treat ‘multilevel Newton methods’ here (often also called ‘Newton
multilevel methods’), which are in between discrete Newton methods and
inexact Newton methods in function space; they have been extensively treated
in the classical textbook [113] by W. Hackbusch or in the synoptic study [135]
by R. Kornhuber, who uses an affine conjugate Lipschitz condition.

8.1 Asymptotic Mesh Independence

The term ‘mesh independence’ characterizes the observation that finite di-
mensional Newton methods, when applied to a nonlinear PDE on successively
finer discretizations with comparable initial guesses, show roughly the same
convergence behavior on all sufficiently fine discretizations. In this section, we
want to analyze this experimental evidence from an abstract point of view.
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370 8 PDE Boundary Value Problems

Let a general nonlinear operator equation be denoted by

F (x) = 0 , (8.1)

where F : D → Y is defined on a convex domain D ⊂ X of a Banach space
X with values in a Banach space Y . We assume the existence of a unique
solution x∗ of this operator equation. The corresponding ordinary Newton
method in Banach space may then be written as

F ′(xk)Δxk = −F (xk) , xk+1 = xk +Δxk , k = 0, 1, . . . . (8.2)

In each Newton step, the linearized operator equation must be solved, which
is why this approach is often also called quasilinearization. We assume that an
affine covariant version of the classical Newton-Mysovskikh theorem holds—
like Theorem 2.2 for the finite dimensional case. Let ω denote the affine co-
variant Lipschitz constant characterizing the mapping F . Then the quadratic
convergence of Newton’s method is governed by the relation

|xk+1 − xk| ≤ 1
2ω|xk − xk−1|2 ,

where | · | is a norm in the domain space X .
In actual computation, we can only solve discretized nonlinear equations of
finite dimension, at best on a sequence of successively finer mesh levels, say

Fj(xj) = 0 , j = 0, 1, . . . ,

where Fj : Dj → Yj denotes a nonlinear mapping defined on a convex do-
main Dj ⊂ Xj of a finite-dimensional subspace Xj ⊂ X with values in a
finite dimensional subspace Yj . The corresponding finite dimensional ordi-
nary Newton method reads

F ′
j(x

k
j )Δxk

j = −Fj(xk
k) , xk+1

j = xk
j +Δxk

j , k = 0, 1, . . . .

In each Newton step, a system of linear equations must be solved, which may
be a quite challenging task of its own in discretized PDEs. The above New-
ton system can be interpreted as a discretization of the linearized operator
equation (8.2) and, at the same time, as a linearization of the discretization
of the nonlinear operator equation (8.1). Again we assume that Theorem 2.2
holds, this time for the finite dimensional mapping Fj . Let ωj denote the
corresponding affine covariant Lipschitz constant. Then the quadratic con-
vergence of this Newton method is governed by the relation

‖xk+1
j − xk

j ‖ ≤ 1
2ωj‖xk

j − xk−1
j ‖2 , (8.3)

where ‖ · ‖ is a norm in the finite dimensional space Xj .
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Under the assumptions of Theorem 2.2 there exist unique discrete solutions
x∗j on each level j. Of course, we want to choose appropriate discretization
schemes such that

lim
j→∞

x∗j = x∗ .

From the synopsis of discrete and continuous Newton method, we imme-
diately see that any comparison of the convergence behavior on different
discretization levels j will direct us toward a comparison of the affine covari-
ant Lipschitz constants ωj . Of particular interest is the connection with the
Lipschitz constant ω of the underlying operator equation.

Consistent norms. An important issue for any comparison of affine covari-
ant Lipschitz constants ωj on different discretization levels j is the choice of
consistent norms. In the mathematical treatment of Galerkin methods, we
will identify the norm | · | in X with the norm ‖ · ‖ in Xj ⊂ X . Moreover,
the needs of algorithmic adaptivity strongly advise to choose smooth norms.
These considerations bring us to Sobolev Hp-norms to be properly selected
in each particular problem.
For non-Galerkin methods such as finite difference methods, the easiest way
to construct consistent norms is to discretize the function space norm | · |
appropriately, which directs us toward discrete Hp-norms. For example, in
one-dimensional BVPs we may naturally use discrete L2-norms (7.9) to treat
highly nonuniform meshes—see also their application in (7.16). For uniform
one-dimensional meshes, the discrete L2-norms on level j differ from the
Euclidean vector norms in Rnj only by some dividing factor √nj . Insertion of
the discrete L2-norm instead of the Euclidean vector norm into the Lipschitz
condition (8.3) shows that this same factor would now multiply ωj . As long
as merely a single finite dimensional system were to be analyzed, this change
would not make a substantial difference, but only affect the interpretation.
A synoptic analysis of a sequence of nonlinear mappings, however, will be
reasonable only, if consistent discrete norms are used.
In what follows we will consider the phenomenon of mesh independence of
Newton’s method along two lines. First, we will show that the discrete New-
ton sequence tracks the continuous Newton sequence closely, with a maximal
distance bounded in terms of the mesh size; both of the Newton sequences
behave nearly identically until, eventually, a small neighborhood of the solu-
tion is reached. Second, we prove the existence of affine covariant Lipschitz
constants ωj for the discretized problems, which approach the Lipschitz con-
stant ω of the continuous problem in the limit j −→ ∞; again, the distance
can be bounded in terms of the mesh size. Upon combining these two lines,
we finally establish the existence of locally unique discrete solutions x∗j in a
vicinity of the continuous solution x∗.
To begin with, we prove the following nonlinear perturbation lemma.
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Lemma 8.1 Consider two Newton sequences {xk}, {yk} starting at initial
guesses x0, y0 and continuing as

xk+1 = xk +Δxk , yk+1 = yk +Δyk ,

where Δxk, Δyk are the corresponding ordinary Newton corrections. Assume
that an affine covariant Lipschitz condition with Lipschitz constant ω holds.
Then the following propagation result holds:

‖xk+1 − yk+1‖ ≤ ω
(

1
2
‖xk − yk‖+ ‖Δxk‖

)
‖xk − yk‖ . (8.4)

Proof. Dropping the iteration index k we start with

x+Δx− y −Δy
= x− F ′(x)−1F (x) − y + F ′(y)−1F (y)

= x− F ′(x)−1F (x) + F ′(x)−1F (y)− F ′(x)−1F (y)− y + F ′(y)−1F (y)

= x− y − F ′(x)−1(F (x) − F (y)) + F ′(x)−1(F ′(y)− F ′(x))F ′(y)−1F (y)

= F ′(x)−1
(
F ′(x)(x − y)−

1∫
t=0

F ′(y + t(x− y))(x − y) dt
)

+ F ′(x)−1(F ′(y)− F ′(x))Δy.

Upon using the affine covariant Lipschitz condition, we arrive at

‖xk+1 − yk+1‖ ≤
1∫

t=0

‖F ′(xk)−1
(
F ′(xk)− F ′(yk + t(xk − yk))

)
(xk − yk)‖ dt

+ ‖F ′(xk)−1(F ′(yk)− F ′(xk))Δyk‖
≤ ω

2
‖xk − yk‖2 + ω‖xk − yk‖ ‖Δyk‖,

which confirms (8.4). �

With the above auxiliary result, we are now ready to study the relative be-
havior of discrete versus continuous Newton sequences.

Theorem 8.2 Notation as introduced. Let x0 ∈ ⋂Xj ⊂ X denote a given
starting value such that the assumptions of Theorem 2.2 hold including

h0 = ω‖Δx0‖ < 2 .

For the discrete mappings Fj and all arguments xj ∈ S(x0, ρ+
2
ω

)∩Xj define
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F ′
j(xj)Δxj = −Fj(xj) , F ′(xj)Δx = −F (xj) .

Assume that the discretization is fine enough such that

‖Δxj −Δx‖ ≤ δj ≤ 1
2ω

. (8.5)

Then the following cases occur:

I. If h0 ≤ 1−√1− 2ωδj, then

‖xk
j − xk‖ < 2δj ≤ 1

ω
, k = 0, 1, . . . .

II. If 1−√1− 2ωδj < h0 ≤ 1 +
√

1− 2ωδj, then

‖xk
j − xk‖ ≤ 1

ω
(1 +

√
1− 2ωδj) <

2
ω
, k = 0, 1, . . . .

In both cases I and II, the asymptotic result

lim sup
k→∞

‖xk
j − xk‖ ≤ 1

ω
(1−√1− 2ωδj) < 2δj ≤ 1

ω

can be shown to hold.

Proof. In [114, pp. 99, 160], E. Hairer and G. Wanner introduced ‘Lady
Windermere’s fan’ as a tool to prove discretization error results for evolution
problems based on some linear perturbation lemma. We may copy this idea
and exploit our nonlinear perturbation Lemma 8.1 in the present case. The
situation is represented graphically in Figure 8.1.

x2,0

x1,0

x3,0

δj δj δj

x0
j = x0,0 x1

j = x1,1 x2
j = x2,2 x3

j = x3,3

x∗

x2,1 x3,2

Fig. 8.1. Lady Windermere’s fan: continuous versus discrete Newton iterates.

The discrete Newton sequence starting at the given initial point x0
j = x0,0

is written as {xk,k}. The continuous Newton sequence, written as {xk,0},
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starts at the same initial point x0 = x0,0 and runs toward the solution point
x∗. In between we define further continuous Newton sequences, written as
{xi,k}, k = i, i+ 1, . . ., which start at the discrete Newton iterates xi

j = xi,i

and also run toward x∗. Note that the existence or even uniqueness of a
discrete solution point x∗j is not clear yet.
For the purpose of repeated induction, we assume that

‖xk−1
j − x0‖ < ρ+

2
ω
,

which certainly holds for k = 1. In order to characterize the deviation between
discrete and continuous Newton sequences, we introduce the two majorants

ω‖Δxk‖ ≤ hk , ‖xk
j − xk,0‖ ≤ εk .

Recall from Theorem 2.2 that

hk+1 = 1
2h

2
k . (8.6)

For the derivation of a second majorant recursion, we apply the triangle
inequality in the form

‖xk+1,k+1 − xk+1,0‖ ≤ ‖xk+1,k+1 − xk+1,k‖+ ‖xk+1,k − xk+1,0‖.

The first term can be treated using assumption (8.5) so that

‖xk+1,k+1−xk+1,k‖ = ‖xk
j +Δxk

j −
(
xk,k +Δxk,k

) ‖ = ‖Δxk
j −Δxk,k‖ ≤ δj .

For the second term, we may apply our nonlinear perturbation Lemma 8.1
(see the shaded regions in Fig. 8.1) to obtain

‖xk+1,k − xk+1,0‖ ≤ ω
(

1
2‖xk,k − xk,0‖+ ‖Δxk,0‖

)
‖xk,k − xk,0‖ .

Combining these results then leads to

‖xk+1,k+1 − xk+1,0‖ ≤ δj +
ω

2
ε2k + hkεk .

The above right side may be defined to be εk+1. Hence, together with (8.6),
we arrive at the following set of majorant equations

hk+1 =
1
2
h2

k , εk+1 = δj +
ω

2
ε2k + hkεk .

If we introduce the quantities αk = ωεk + hk and δ = ωδj, we may obtain
the decoupled recursion

αk+1 = δ + 1
2α

2
k , (8.7)

which can be started with α0 = h0, since ε0 = 0. Upon solving the equation
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δ = α̂− 1
2 α̂

2 ,

we get the two equilibrium points

α̂1 = 1−√1− 2δ < 1 , α̂2 = 1 +
√

1− 2δ > 1 .

Insertion into the recursion (8.7) then leads to the form

αk+1 − α̂ = 1
2 (αk − α̂)(αk + α̂) .

For αk < α̂2 we see that

1
2 (αk + α̂1) < 1

2 (α̂2 + α̂1) = 1 ,

which implies that
|αk+1 − α̂1| < |αk − α̂1| . (8.8)

Hence, the fixed point α̂1 is attractive, whereas α̂2 is repelling. Moreover,
since αk + α̂1 > 0, we immediately obtain the result

sign(αk+1 − α̂) = sign(αk − α̂) .

Therefore, we have the following cases:

I. α0 ≤ α̂1 =⇒ αk ≤ α̂1 ,

II. α̂1 < α0 < α̂2 =⇒ α̂1 ≤ αk < α̂2 .

Insertion of the expressions for the used quantities then shows that cases I,II
directly correspond to cases I,II of the theorem. Its last asymptotic result is
an immediate consequence of (8.8). Finally, with application of the triangle
inequality

‖xk+1
j − x0‖ ≤ εk+1 + ‖xk+1 − x0‖ < 2

ω
+ ρ

the induction and therefore the whole proof is completed. �

We are, of course, interested whether a discrete solution point x∗j exists. The
above tracking theorem, however, only supplies the following result.

Corollary 8.3 Under the assumptions of Theorem 8.2, there exists at least
one accumulation point

x̂j ∈ S (x∗, 2δj) ∩Xj ⊂ S

(
x∗,

1
ω

)
∩Xj ,

which need not be a solution point of the discrete equations Fj(xj) = 0.
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Proof. This is just the last asymptotic result of Theorem 8.2. �

In order to prove more, Theorem 2.2 directs us to study the question of
whether an affine covariant Lipschitz condition holds for the finite dimen-
sional mapping Fj , too.

Lemma 8.4 Let Theorem 2.2 hold for the mapping F : X → Y . For collinear
xj , yj , yj + vj ∈ Xj, define quantities wj ∈ Xj and w ∈ X according to

F ′
j(xj)wj =

(
F ′

j(yj + vj)− F ′
j(yj)

)
vj , F

′(xj)w = (F ′(yj + vj)− F ′(yj)) vj .

Assume that the discretization method satisfies

‖w − wj‖ ≤ σj‖vj‖2 . (8.9)

Then there exist constants
ωj ≤ ω + σj (8.10)

such that the affine invariant Lipschitz condition

‖wj‖ ≤ ωj‖vj‖2

holds for the discrete Newton process .

Proof. The proof is a simple application of the triangle inequality

‖wj‖ ≤ ‖w‖ + ‖wj − w‖ ≤ ω‖vj‖2 + σj‖vj‖2 = (ω + σj) ‖vj‖2.
�

Finally, the existence of a unique solution x∗j is now an immediate conse-
quence.

Corollary 8.5 Under the assumptions of Theorem 8.2 and Lemma 8.4 the
discrete Newton sequence {xk

j }, k = 0, 1, . . . converges quadratically to a
unique discrete solution point

x∗j ∈ S (x∗, 2δj) ∩Xj ⊂ S

(
x∗,

1
ω

)
∩Xj .

Proof. We just need to apply Theorem 2.2 to the finite dimensional mapping
Fj with the starting value x0

j = x0 and the affine invariant Lipschitz constant
ωj from (8.10). �

Remark 8.1 In the earlier papers [3, 4] two assumptions of the kind

‖F ′
j(xj)−1‖ ≤ βj , ‖F ′

j(xj + vj)− F ′
j(xj)‖ ≤ γj‖vj‖
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have been made in combination with the uniformity requirements

βj ≤ β , γj ≤ γ . (8.11)

Obviously, these assumptions lack any affine invariance. More important,
however, and as a consequence of the noninvariance, these conditions are
phrased in terms of operator norms, which, in turn, depend on the relation
of norms in the domain and the image space of the mappings Fj and F ,
respectively. For typical PDEs and norms we would obtain

lim
j→∞

βj →∞ ,

which clearly contradicts the uniformity assumption (8.11). Consequently, an
analysis in terms of βj and γj would not be applicable to this important case.
The situation is different with the affine covariant Lipschitz constants ωj :
they only depend on the choice of norms in the domain space. It is easy to
verify that

ωj ≤ βjγj .

From the above Lemma 8.4 we see that the ωj remain bounded in the limit
j −→∞, as long as ω is bounded—even if βj or γj blow up. Moreover, even
when the product βjγj remains bounded, the Lipschitz constant ωj may be
considerably lower, i.e.

ωj � βjγj .

For illustration, just compare the simple R2-example in Exercise 2.3.

Summarizing, we come to the following conclusion, at least in terms of upper
bounds: If the asymptotic properties

lim
j→∞

δj = 0 , lim
j→∞

σj = 0

can be shown to hold, then the convergence speed of the discrete ordinary
Newton method is asymptotically just the one for the continuous ordinary
Newton method—compare Exercises 8.3 and 8.4. Moreover, if related initial
guesses x0 and x0

j and a common termination criterion are chosen, then even
the number of iterations will be nearly the same.

Bibliographical Remark. The ‘mesh independence’ principle has been
reported and even exploited for mesh design in papers by E.L. Allgower
and K. Böhmer [3] and S.F. McCormick [148]. Further theoretical investiga-
tions of the phenomenon have been given in the paper [4] by E.L. Allgower,
K. Böhmer, F.A. Potra, and W.C. Rheinboldt; that paper, however, lacked
certain important features, which have been discussed in Remark 8.1 above.
A first affine covariant theoretical study has later been worked out by
P. Deuflhard and F.A. Potra in [82]; from that analysis, the modified term
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‘asymptotic mesh independence’ naturally emerged. The presentation here
follows the much simpler and more intuitive treatment [198] of the topic as
given recently by M. Weiser, A. Schiela, and the author.

8.2 Global Discrete Newton Methods

In the present section we regard BVPs for nonlinear PDEs as given in already
discretized form on a fixed mesh, to be briefly called discrete PDEs here. In
what follows, we report about the comparative performance of exact and
inexact Newton methods in solving such problems. Part of the results are
from a recent paper by P. Deuflhard, U. Nowak, and M. Weiser [80].
In the exact Newton methods, we use either band mode LU -decomposition or
a sparse solver provided by MATLAB. Failure exits in the various numerical
tests are characterized by

• outmax: the Newton iteration (outer iteration in inexact Newton meth-
ods) does not converge within 75 iterations,

• itmax: the inner iteration per inexact Newton step does not converge
within itmax iterations,

• λ-fail: the adaptive damping strategy suggests some ‘too small’ damping
factor λk < 10−4.

8.2.1 General PDEs

This section documents the comparative performance of residual based (or
affine contravariant) Newton methods versus error oriented (or affine covari-
ant) Newton methods, both for the exact and the inexact versions, at a
common set of discrete PDE test problems.
Common test set. We consider a subset of the discrete PDE problems
given in [160]. In order to be able to compare exact and inexact methods, we
selected examples in only two space dimensions. This choice leads to moderate
system dimensions n that still permit a direct solution of the arising linear
equations. Throughout the examples, we use the usual second order, centered
finite differences on tensor product grids. Neumann boundary conditions are
included by simple one-sided differences, as usual.
Example 8.1 Artificial test problem (atp1). This problem comprises the
simple scalar PDE

Δu− (0.9 exp(−q) + 0.1u)(4x2 + 4y2 − 4)− g = 0 ,

where
g = exp(u)− exp(exp(−q)) and q = x2 + y2 ,
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with boundary conditions u|∂Ω = 0 on the domain Ω = [−3, 3]2. The analyt-
ical solution is known to be u(x, y) = exp(−q).

Example 8.2 Driven cavity problems (dcp1000, dcp5000). This problem
involves the steady stream-function/vorticity equations

Δω + Re(ψxωy − ψyωx) = 0 , Δψ + ω = 0 ,

where ψ is the stream-function and ω the vorticity. For the domain Ω = [0, 1]2

the following discrete boundary conditions are imposed (with Δx,Δy the
mesh sizes in x, y-direction)

∂ψ
∂y (x, 1) = −16x2(1 − x)2 ,
ω(x, 0) = − 2

Δy2ψ(x,Δy) ,

ω(x, 1) = − 2
Δy2 [ψ(x, 1 −Δy) +Δy ∂ψ

∂y (x, 1)] ,

ω(0, y) = − 2
Δx2ψ(Δx, y) ,

ω(1, y) = − 2
Δx2ψ(1−Δx, y) .

Problems dcp1000, dcp5000 correspond to Reynolds numbers Re=1000, 5000,
respectively. For both cases the default initial guess is ψ0 = ω0 = 0.
As will be seen below, the residual based Newton strategy was unable to
solve problems dcp1000 and dcp5000 with this initial guess. That is why
we added problems dcp1000a and dcp5000a with the better initial guesses
ω0 = y2 sin(πx), ψ0 = 0.1 sin(πx) sin(πy).

Example 8.3 Supersonic transport problem (sst2). The four model equa-
tions for the chemical species O,O3, NO,NO2, represented by the unknown
functions (u1, u2, u3, u4), are

0 = DΔu1 + k1,1 − k1,2u1 + k1,3u2 + k1,4u4 − k1,5u1u2 − k1,6u1u4 ,

0 = DΔu2 + k2,1u1 − k2,2u2 + k2,3u1u2 − k2,4u2u3 ,

0 = DΔu3 − k3,1u3 + k3,2u4 + k3,3u1u4 − k3,4u2u3 + 800.0 + SST ,

0 = DΔu4 − k4,1u4 + k4,2u2u3 − k4,3u1u4 + 800.0 ,

where D = 0.5 · 10−9,
k1,1, . . . , k1,6 = 4 · 105, 272.443800016, 10−4, 0.007, 3.67 · 10−16, 4.13 · 10−12,
k2,1, . . . , k2,4 = 272.4438, 1.00016 · 10−4, 3.67 · 10−16, 3.57 · 10−15,
k3,1, . . . , k3,4 = 1.6 · 10−8, 0.007, 4.1283 · 10−12, 3.57 · 10−15,
k4,1, . . . , k4,3 = 7.000016 · 10−3, 3.57 · 10−15, 4.1283 · 10−12, and

SST =
{

3250 if (x, y) ∈ [0.5, 0.6]2

360 otherwise.
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Homogeneous Neumann boundary conditions are imposed on the unit square.
For the initial guess we take

u0
1(x, y) = 109 , u0

2(x, y) = 109 , u0
3(x, y) = 1013 , u0

4(x, y) = 107 .

Again we consider better initial guesses to allow for convergence in the resid-
ual based Newton methods:

u0
i → (1 + 100(sin(πx) sin(πy))2)u0

i .

Name Grid Dim n OrdNew

atp1 31 × 31 961 4
dcp1000 31 × 31 1922 outmax
dcp1000a 31 × 31 1922 9
dcp5000 63 × 63 7983 outmax
dcp5000a 63 × 63 7983 outmax
sst2 51 × 51 10404 outmax
sst2a 51 × 51 10404 outmax

Table 8.1. Test set characteristics.

Characteristics of the selected test set are arranged in Table 8.1. In order
to give some idea about the complexity of the individual problems, we first
applied an exact ordinary Newton method (uncontrolled)—see the last col-
umn of the table. All of its failures are due to ‘too many’ Newton (outer)
iterations (recall outmax= 75).
Exact Newton methods. Recall that exact Newton methods require the
direct solution of the arising linear subsystems for the Newton corrections.
Hence, adaptivity only shows up through affine invariant trust region (or
damping) strategies. From the code family NLEQ we compare the following
variants:

• NLEQ-RES requiring monotonicity in the residual norm ‖F‖2, as discussed
in Section 3.2.2,

• NLEQ-RES/L requiring monotonicity in the preconditioned residual norm
‖CLF‖2, also discussed in Section 3.2.2; the preconditioner CL comes from
incomplete LU -decomposition with fill-in only accepted within the block
pentadiagonal structure (compare, e.g., [184]), and

• NLEQ-ERR requiring monotonicity in the natural level function, as discussed
in Section 3.3.3.
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The residual based methods realize the restricted monotonicity test (3.32).
For termination, the (possibly preconditioned) criterion (2.70) with FTOL =
10−8 has been taken, except for the badly scaled problems sst, which required
FTOL = 10−5 to terminate within a tolerable computing time. The error ori-
ented methods realize the restricted monotonicity test (3.47) and the (scaled)
termination criterion (2.14) with XTOL = 10−8.

Name NLEQ-RES NLEQ-RES/L NLEQ-ERR

atp1 4 (0) 4 (0) 4 (0)
dcp1000 outmax 10 (5) 8 (4)
dcp1000a 21 (17) 8 (2) 8 (2)
dcp5000 outmax outmax 11 (7)
dcp5000a 42 (39) λ-fail 8 (2)
sst2 λ-fail 12 (11) 13 (8)
sst2a 38 (33) 15 (13) 19 (14)

Table 8.2. Exact Newton codes: adaptive control via residual norm (NLEQ-RES),
preconditioned residual norm (NLEQ-RES/L), and error norm (NLEQ-ERR).

In Table 8.2 we compare the residual based versus the error oriented exact
Newton codes in terms of Newton steps (in parentheses: damped). As can
be seen, there is striking evidence that the error oriented adaptive Newton
methods are clearly preferable to the residual based ones, at least for the
problem class tested here.
The main reason for this phenomenon is certainly that the arising discrete
Jacobian matrices are bound to be ill-conditioned, the more significant the
finer the mesh is. For this situation, the limitation of residual monotonicity
has been described at the end of Section 3.3.1. Example 3.1 has given an
illustration representative for a class of ODE boundary value problem. The
experimental evidence here seems to indicate that the limitation carries over
to PDE boundary value problems as well.
Inexact Newton methods. Finite dimensional inexact Newton methods
contain some inner iterative solver, which induces the necessity of an ac-
curacy matching between inner and outer iteration. The implemented ILU-
preconditioning [184] is the same as in the exact Newton codes above. In the
code family GIANT, various affine invariant damping and accuracy matching
strategies are realized—according to the selected affine invariance class. The
failure exit itmax was activated at 2000 inner iterations.
Residual based methods. For this type of inexact Newton method, we chose
the codes GIANT-GMRES/R and GIANT-GMRES/L with right (R) or left (L) pre-
conditioning.
As a first test, we selected the standard convergence mode from Sections 2.2.4
and 3.2.3, prescribing ηk ≤ η̄ with threshold values η̄ = 0.1 and η̄ = 0.001.
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Name NLEQ-RES GIANT-GMRES/R/0.001 GIANT-GMRES/R/0.1

atp1 4 (0) 4 (0) 34 4 (1) 28
dcp1000 outmax outmax outmax
dcp1000a 21 (17) 21 (17) 788 28 (23) 605
dcp5000 outmax outmax outmax
dcp5000a 42 (39) 43 (39) 5021 58 (53) 3208
sst2 λ-fail 15 (10) 1376 itmax
sst2a 38 (33) itmax itmax

Table 8.3. Residual based Newton codes: exact version NLEQ-RES versus inexact
version GIANT-GMRES/R for threshold values η̄ = 0.001 and η̄ = 0.1.

Name NLEQ-RES/L GIANT-GMRES/L/0.001 GIANT-GMRES/L/0.1

atp1 4 (0) 4 (0) 31 4 (1) 25
dcp1000 10 (5) 10 (5) 380 16 (10) 309
dcp1000a 8 (2) 8 (1) 279 12 (3) 229
dcp5000 outmax itmax outmax
dcp5000a λ-fail 24 (15) 1700 outmax
sst2 12 (10) 15 (12) 252 outmax
sst2a 15 (13) 18 (15) 465 outmax

Table 8.4. Preconditioned residual based Newton codes: exact version NLEQ-RES/L

versus inexact version GIANT-GMRES/L for threshold values η̄ = 0.001 and η̄ = 0.1.

In Table 8.3, we compare exact versus inexact Newton methods, again at the
common test set, in terms of Newton steps (in parentheses: damped Newton
steps) and inner iterations. For comparison, the first column is identical to the
first one from Table 8.2. In Table 8.4, the performance of two GIANT-GMRES/L
versions is documented. This time, the first column is the second one from
Table 8.2.
As can be seen from both tables, the inexact Newton codes behave very
much like their exact counterparts in terms of outer iterations, with erratic
discrepancies now and then. In view of the anyway poor behavior of the
residual based Newton methods in this problem class, we did not realize the
fully adaptive accuracy matching strategy (linear or quadratic convergence
mode) in the frame of residual based inexact Newton methods.
Error oriented Newton methods. For this type of inexact Newton method, we
chose the codes GIANT-CGNE/L and GIANT-GBIT/L, both with left (L) pre-
conditioning. Adaptive matching strategies as worked out in Sections 2.1.5
and 3.3.4 have been realized. Initial values for the arising inner iterations
were chosen according to the nested suggestions (3.59) and (3.60). Note that
these inexact codes realize a damping strategy and a termination criterion
slightly different from those in NLEQ-ERR. In view of a strict comparison, we
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constructed an exact variant NLEQ-ERR/I, which realizes just these modifica-
tions, i.e. which is an inexact Newton-ERR code with exact inner solution.

Name NLEQ-ERR/I GIANT-CGNE/L GIANT-GBIT/L

atp1 5 (0) 5 (0) 237 5 (0) 122
dcp1000 10 (5) itmax 10 (5) 1388
dcp1000a 9 (3) itmax 9 (3) 2241
dcp5000 13 (8) itmax 14 (8) 5943
dcp5000a 10 (3) itmax 10 (3) 9504
sst2 15 (11) 16 (11) 23084 16 (11) 1549
sst2a 20 (15) 20 (15) 39889 20 (15) 2399

Table 8.5. Error oriented Newton codes: exact version NLEQ-ERR/I versus inexact
versions GIANT-CGNE/L and GIANT-GBIT/L for threshold values δ̄ = 10−3.

In Table 8.5, we give results for the ‘standard convergence mode’, imposing
the (scaled) condition δk ≤ δ̄ for the threshold value δ̄ = 10−3 throughout,
as defined in (2.61) for the local Newton method and (3.55) for the global
Newton method, the latter via ρ = 2δ̄/(1 − 2δ̄). As can be seen, the first
column for NLEQ-ERR/I and the third column of Table 8.2 for NLEQ-ERR
differ only marginally.
From these numerical experiments, we may keep the following information:

• The error estimator (1.31) for CGNE is more reliable than (1.37) for GBIT.
• Nevertheless CGNE is less efficient than GBIT—compare Remark 1.2.
• The code GIANT-GBIT/L essentially reproduces the outer iteration pattern

of the exact Newton code NLEQ-ERR∗.

More insight into GIANT-GBIT/L can be gained from Table 8.6 where we com-
pare the ‘standard convergence mode’ (SM) with the ‘quadratic convergence
mode’ (QM), again in terms of outer (damped) and inner iterations. Different
sets of control parameters are applied. The parameter ρ defines δ̄ = 1

2ρ/(1+ρ)
via (3.55). As a default, the parameter ρ̃ is fixed to ρ̃ = 1

2ρ, which, in turn,
defines ρmax = ρ̃/(1 + ρ̃) via (3.70).
The first column, SM(.025, .05), presents results obtained over our common
test set, when the accuracy matching strategies (3.66) with (3.71) and (3.50)
with (3.55) are implemented; the values (ρ̃, ρ) = (.025, .05) represent the
largest values, for which all problems from the common test set were still
solvable. This column should be compared with the third column in Table 8.5,
where GIANT-GBIT/L has been realized roughly in an SM(.001, .002) variant:
considerable savings are visible.
Detailed examination of the numerical results has revealed that the weakest
point of this algorithm is the rather poor error estimator (1.37) realized
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Name SM(.025, .05) SM∗(1/16, 1/8) QM(.025, .05)

atp1 5 (0) 91 5 (0) 66 5 (0) 97
dcp1000 11 (5) 904 12 (5) 817 10 (5) 852
dcp1000a 11 (3) 1272 12 (4) 1458 9 (3) 1180
dcp5000 19 (11) 3952 16 (8) 3417 16 (11) 3802
dcp5000a 16 (3) 4304 11 (1) 3475 10 (3) 3539
sst2 22 (13) 963 19 (12) 1037 18 (13) 842
sst2a 25 (16) 1429 24 (17) 1597 22 (16) 1365

Table 8.6. Comparison of different variants of error oriented inexact Newton code
GIANT-GBIT/L. Accuracy matching strategies SM(eρ, ρ) and QM(eρ, ρ) for control
parameters (eρ, ρ). SM∗ realizes an exact computation of the inner iteration error.

within GBIT, which is often quite off scale. For an illustration of this effect,
the second column presents results for version SM∗, which realizes a precise
error estimator

εi = ‖δxk
i −Δxk‖

instead of the unsatisfactory estimator (1.37); in this case, the relaxed choice
(ρ̃, ρ) = (1/16, 1/8) appeared to be possible. Consequently, savings of inner
iterations can be observed.
These savings, however, are not too dramatic when compared with the version
QM shown in the third column; here the quadratic accuracy matching rule
(3.56) is realized, which does not differ too much from the rule (2.62). For
the control parameters we again selected (ρ̃, ρ) = (.025, .05) to allow for a
comparison with SM in the first column. Obviously, this column shows the
best comparative numbers.

Summary. From our restricted set of numerical experiments, we may nev-
ertheless draw certain practical conclusions:

• Among the inner iterations for an inexact Newton-ERR method, the al-
gorithm GBIT is the clear ‘winner’—despite the rather poor computational
estimator for the inner iteration error, which is presently realized.

• Linear preconditioning also plays a role in nonlinear preconditioning as
realized in the inexact Newton-ERR codes; in particular, the better the
linear preconditioner, the better the inner iteration error estimator, the
better the performance of the whole inexact Newton-ERR method.

• The ‘quadratic convergence mode’ in the local convergence phase can save
a considerable amount of computing time over the ‘standard convergence
mode’.
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8.2.2 Elliptic PDEs

This section documents the comparative performance of exact versus inexact
affine conjugate Newton methods at a common set of nonlinear BVPs for el-
liptic discrete PDEs. Recall that elliptic PDEs are associated with underlying
convex optimization problems—see Sections 2.3 and 3.4.
Test set. Below three discretized nonlinear elliptic PDE BVPs in two space
dimensions are given. Of course, their corresponding discretized functional
is also at hand. All discretizations are simple finite difference schemes on
uniform meshes.
Example 8.4 Simple elastomechanics problem (elas). For Ω =]0, 1[2, min-
imize the functional (total energy in Ogden material law)∫

Ω

(‖F‖2 + (detF )−1 −M(1/2,−1)u
)
dx with F = I +∇u .

Homogeneous Dirichlet conditions on the boundary part {0}×[0, 1] and natu-
ral boundary conditions on the remaining boundary part are imposed. Phys-
ically speaking, u(x) ∈ R2 is the displacement of an elastic body. The volume
force (1/2,−1)T acting on the body is scaled by M , which can be used to
weight the ‘nonlinearity’ of the problem. As initial value we chose u0 = 0 in
agreement with the Dirichlet conditions.
Detailed examination reveals that the above functional is not globally convex
on the whole domain of definition, but only in a neighborhood of the solution.
Fortunately, for the given initial guesses, our Newton codes did not encounter
any nonpositive second derivatives. The locally unique solution is depicted in
Figure 8.2, right.

Example 8.5 Minimal surface problem over convex domain (msc). Given
Ω =]0, 1[2, minimize the surface area∫

Ω

(1 + |∇u|2)1
2 dx

subject to the Dirichlet boundary conditions

u(x1, x2) = M(x1 + (1− 2x1)x2) on ∂Ω .

Here u(x) ∈ R is the vertical position of the surface parametrized over Ω.
The scaling parameter M of the boundary conditions allows to weight the
‘nonlinearity’ of the problem. The initial value u0 is chosen as the bilinear
interpolation of the boundary conditions. This problem has a unique well-
defined solution depicted in Figure 8.2, left.
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Fig. 8.2. Left: solution of problem msc (M = 10, h = 1/63). Right: solution of
problem elas (M = 2, h = 1/31).

Example 8.6 Minimal surface problem over nonconvex domain (msnc).
Given the domain Ω =]0, 2[2\]1, 2[2, minimize the surface area∫

Ω

(1 + |∇u|2)1
2 dx

subject to the Dirichlet boundary conditions

u = 0 on [0, 2]× {0} ∪ {0} × [0, 2] , u = M on [1, 2]× {1} ∪ {1} × [1, 2] .

On the remaining boundary parts, [0, 1] × {2} ∪ {2} × [0, 1], homogeneous
Neumann boundary conditions ∂nu = 0 are imposed. Here u(x) ∈ R is the
vertical position of the surface parameterized over Ω. The scaling parameter
M plays the same role as in problem msc. The initial value u0 is chosen to
be the linear interpolation of the Dirichlet boundary conditions on [0, 1] ×
[1, 2]∪[1, 2]×[0, 1] and the bilinear interpolation of the thus defined boundary
values on [0, 1]2.
This problem has been deliberately constructed such that the underlying
PDE does not have a unique continuous solution. Indeed, function space
Newton multilevel methods (to be presented in Section 8.3 below) are able
to detect this nonexistence: even though there exists a finite dimensional
‘pseudosolution’ on each mesh with size h, the local convergence domain of
Newton’s method shrinks when h → 0. In the present setting of discrete
PDEs, however, Newton’s method will just supply a discrete solution on
each of the meshes. As shown in Figure 8.3, these discrete solutions exhibit
an interior ‘discrete discontinuity’, which is the sharper, the finer the mesh
is.
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Fig. 8.3. Discrete solutions of problem msnc. Left: M = 2, h = 1/8, right:
M = 2, h = 1/32.

Table 8.7 gives some ‘measure’ of the problem complexity for selected problem
sizes of low dimension n: the value Mmax in the last column indicates the
maximal nonlinearity weight factor, for which the ordinary Newton method
(uncontrolled) had still converged in our tests.

Name Grid Dim n Mmax

msc 32 × 32 1024 6.2
elas 32 × 32 2048 1.0
msnc 32 × 32 3072 1.9

Table 8.7. Test set characteristics for special 2D grid.

Incidentally, below we also treat much larger problems, where dimensions up
to n ≈ 200.000 arise.
Exact versus inexact Newton methods. For the exact as well as the
inexact Newton iteration, the energy error termination criterion (2.110) with
ETOL = 10−8 is taken. For Newton-PCG methods, we use the inner iteration
termination criterion (1.25) and the accuracy matching strategy as worked
out in Sections 2.3.3 and 3.4.3. As preconditioners we tested both the Jacobi
and the incomplete Cholesky preconditioner (ICC) provided by MATLAB
(with droptol = 10−3). The failure exit itmax was activated at more than
500 inner iterations.
Local versus global Newton methods. In Table 8.8, we give comparative re-
sults for varying weight factor M at problem msc. Among the local New-
ton methods, we deliberately included the rather popular simplified Newton
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method (with initial Jacobian throughout the iteration)—see Section 2.3.2.
The Newton-PCG algorithms are run in the quadratic convergence mode—see
Section 2.3.3. The following features can be clearly observed:

• The local Newton methods converge only for the mildly nonlinear case
(here: small M).

• Among the local Newton methods, the simplified variant behaves poorest.
• Exact and inexact Newton methods realize nearly the same number of

(outer) Newton iterations, both local and global.

local global
M simplified exact inexact exact inexact

2 21 5 5 9 9
5 DIV 7 7 10 9

10 DIV DIV DIV 10 10

Table 8.8. Problem msc: comparative Newton steps (DIV: divergence).

Asymptotic mesh independence. In Table 8.9, we test different discrete New-
ton algorithms over the whole test set for decreasing mesh sizes. Asymptotic
mesh independence as studied in Section 8.1 (see also Exercise 8.4) is clearly
visible in problems msc and elas, but not in problem msnc, which does not
have a unique continuous solution (see also Table 8.11 in Section 8.3.2 be-
low). In the latter problem failures occur on the finest meshes—in agreement
with the subsequent Example 8.9. The missing entries indicate the fact that
the inexact codes were able to tackle much larger problems than the exact
ones—both due to time and, even more pronounced, memory requirements
of the direct solver on the finer meshes.

msc(M = 10) elas(M = 2) msnc(M = 2)
N exact inexact exact inexact exact inexact

4 9 8 10 9 9 8
8 10 9 10 10 9 9

16 10 9 10 10 10 10
32 10 10 10 10 10 11
64 10 10 11 13

128 10 λ-fail
256 10 itmax

Table 8.9. Test set: Newton steps for decreasing mesh sizes h = 1/N .
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Different preconditioners. In Table 8.10, the Jacobi preconditioner (Jac) and
the incomplete Cholesky preconditioner (ICC) are compared for the quadratic
and the linear convergence mode. For the linear convergence mode, Θ̄ = 0.5
has been chosen. As can be seen, Jac is insufficient for fine meshes. ICC is
more effective, at least for small up to moderate size meshes. The linear con-
vergence mode is comparable to the quadratic convergence mode—as opposed
to the behavior in the function space Newton method presented in Section
8.3 below.

quadratic linear
n ICC Jac ICC Jac

msc 4 7 (16) 7 (39) 7 (14) 8 (30)
(M=3.5) 8 6 (15) 6 (134) 6 (12) 15 (120)

16 6 (19) 7 (385) 6 (12) Θ ≥ 1
32 6 (25) 8 (921) 7 (16) Θ ≥ 1
64 6 (35) itmax 9 (24) Θ ≥ 1

128 6 (57) itmax 12 (52) Θ ≥ 1
256 6 (103) itmax 15 (96) Θ ≥ 1
512 6 (210) itmax 19 (235) Θ ≥ 1

elas 4 6 (18) 6 (174) 6 (12) Θ ≥ 1
(M=0.2) 8 5 (19) 6 (479) 6 (12) Θ ≥ 1

16 5 (29) itmax 7 (18) Θ ≥ 1
32 5 (44) itmax 9 (36) Θ ≥ 1
64 5 (80) itmax 11 (67) Θ ≥ 1

128 6 (176) itmax 14 (144) itmax

Table 8.10. Local inexact Newton-PCG method: comparative outer (inner)
iterations. Quadratic versus linear convergence mode, Jacobi (Jac) versus incom-
plete Cholesky (ICC) preconditioning.

Summary. For elliptic discrete nonlinear PDEs both the exact and the
inexact affine conjugate Newton methods perform efficiently and reliably, in
close connection with the associated convergence theory. The inexact Newton
code GIANT-PCG with ICC preconditioning seems to be a real competitor
to so-called nonlinear PCG methods (for references see Section 2.3.3).

8.3 Inexact Newton Multilevel FEM for Elliptic PDEs

In this section we consider minimization problems of the kind

f(x) = min ,
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wherein f : D ⊂ X → R is assumed to be a strictly convex C2-functional
defined on an open convex subset D of a Banach space X . Let X be en-
dowed with a norm ‖ · ‖. In order to assure the existence of a minimum point
x∗ ∈ D, we assume thatX is reflexive; in view of the subsequent finite element
method (FEM), we choose X = W 1,p for 1 < p <∞. Moreover, for given ini-
tial guess x0 ∈ D, we assume that the level set L0 := {x ∈ D|f(x) ≤ f(x0)}
is nonempty, closed, and bounded. Under these assumptions the existence of
a unique minimum point x∗ is guaranteed. In this case the nonlinear mini-
mization problem is equivalent to the nonlinear operator equation

F (x) := f ′(x) = 0 , x ∈ D . (8.12)

In the present section, this equation is understood to be a nonlinear elliptic
PDE problem. In order to guarantee the feasibility of Newton’s method, we
further assume that the PDE problem is strictly elliptic, which means that
its symmetric Frechét-derivative F ′(x) = f ′′(x) is strictly positive.
In abstract notation, the ordinary Newton method for the mapping F reads
(k = 0, 1, . . .)

F ′(xk)Δxk = −F (xk) , xk+1 = xk +Δxk ,

which just describes the successive linearization, often also called quasilin-
earization, of the above nonlinear operator equation. Since equation (8.12) is a
nonlinear elliptic PDE in the Banach spaceW 1,p, the above Newton sequence
consists of solutions of linear elliptic PDEs in some Hilbert space, say Hk,
associated with each iterate xk ∈ W 1,p. For reasonable arguments x, there
exist energy products 〈·, F ′(x)·〉, which induce energy norms 〈·, F ′(x)·〉1/2.
The question of whether these energy norms are bounded for all arguments
of interest needs to be discussed inside the proofs of the theorems to be stated
below.
In the subsequent analysis, we will ‘lift’ these energy products and energy
norms from H to W 1,p (in the sense of dual pairing) defining the corre-
sponding local energy products 〈·, F ′(x)·〉 as symmetric bilinear forms and
the induced local energy norms 〈·, F ′(x)·〉1/2 for arguments x in appropriate
subsets ofW 1,p. Moreover, motivated by the notation in Hilbert space, where
the operator F ′(x)1/2 is readily defined, we also adopt the shorthand notation

‖F ′(x)1/2 · ‖ ≡ 〈·, F ′(x)·〉1/2

to be only used in connection with the local energy norms.
As already mentioned for space-like ODE BVPs in Section 7.4.2, quasilin-
earization, here for BVPs in more than one space dimension, cannot be real-
ized without approximation errors. This means that we need to study inexact
Newton methods

F ′(xk) δxk = −F (xk) + rk ,
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equivalently written as

F ′(xk)
(
δxk −Δxk

)
= rk .

Here the discretization errors show up either as residuals rk or as the dis-
crepancy between the inexact Newton corrections δxk and the exact Newton
correctionsΔxk. Among the discretization methods, we will focus on Galerkin
methods, known to satisfy the Galerkin condition

〈δxk, F ′(xk)(δxk −Δxk)〉 = 〈δxk, rk〉 = 0 . (8.13)

Such a condition also holds in the finite dimensional inexact Newton-PCG
method, where the residuals originate from the use of PCG as inner iterative
solver—just look up condition (2.98) in Section 2.3.3. Recall that Newton-PCG
methods are relevant for the discrete PDE situation, as presented in Section
8.2.2. Here, however, we want to treat the infinite dimensional exact New-
ton method approximated by an adaptive finite dimensional inexact Newton
method. The benefit to be gained from adaptivity will become apparent in
the following.

8.3.1 Local Newton-Galerkin methods

In this section we study the ordinary Newton-Galerkin method

xk+1 = xk + δxk ,

where the iterates xk are in W 1,p and the inexact Newton corrections δxk

satisfy (8.13). With the above theoretical considerations we are ready to just
modify the local convergence theorem for Newton-PCG methods (Theorem
2.20) in such a way that it covers the present infinite dimensional setting.

Theorem 8.6 Let f : D → R be a strictly convex C2-functional to be mini-
mized over some open convex domain D ⊂W 1,p endowed with the norm ‖ ·‖.
Let F ′(x) = f ′′(x) be strictly positive. For collinear x, y, z ∈ D, assume the
affine conjugate Lipschitz condition∥∥F ′(z)−1/2

(
F ′(y)− F ′(x)

)
v
∥∥ ≤ ω∥∥F ′(x)1/2(y − x)∥∥ · ∥∥F ′(x)1/2v

∥∥
for some 0 ≤ ω < ∞. Consider an ordinary Newton-Galerkin method satis-
fying (8.13) with approximation errors bounded by

δk :=
‖F ′(xk)1/2(δxk −Δxk)‖

‖F ′(xk)1/2δxk‖ .

At any well-defined iterate xk, define the exact and inexact energy error
norms by
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εk = ‖F ′(xk)1/2Δxk‖2 , εδk = ‖F ′(xk)1/2δxk‖2 =
εk

1 + δ2k
and the associated Kantorovich quantities as

hk = ω ‖F ′(xk)1/2Δxk‖ , hδ
k = ω ‖F ′(xk)1/2δxk‖ =

hk√
1 + δ2k

.

For given initial guess x0 ∈ D assume that the level set

L0 := {x ∈ D | f(x) ≤ f(x0)}
is nonempty, closed, and bounded. Then the following results hold:

I. Linear convergence mode. Assume that x0 satisfies

h0 ≤ 2Θ < 2 (8.14)

for some Θ < 1. Let δk+1 ≥ δk throughout the inexact Newton iteration.
Moreover, let the Galerkin approximation be controlled such that

ϑ(hδ
k, δk) =

hδ
k + δk

(
hδ

k +
√

4 + (hδ
k)2
)

2
√

1 + δ2k
≤ Θ . (8.15)

Then the iterates xk remain in L0 and converge at least linearly to the min-
imum point x∗ ∈ L0 such that

‖F ′(xk+1)1/2Δxk+1‖ ≤ Θ ‖F ′(xk)1/2Δxk‖ (8.16)

and
‖F ′(xk+1)1/2δxk+1‖ ≤ Θ ‖F ′(xk)1/2δxk‖ . (8.17)

II. Quadratic convergence mode. Let, for some ρ > 0, the initial guess
x0 satisfy

h0 <
2

1 + ρ
(8.18)

and the Galerkin approximation be controlled such that

δk ≤ ρhδ
k

hδ
k +

√
4 + (hδ

k)2
. (8.19)

Then the inexact Newton iterates xk remain in L0 and converge quadratically
to the minimum point x∗ ∈ L0 such that

‖F ′(xk+1)1/2Δxk+1‖ ≤ (1 + ρ)
ω

2
‖F ′(xk)1/2Δxk‖2 (8.20)

and
‖F ′(xk+1)1/2δxk+1‖ ≤ (1 + ρ)

ω

2
‖F ′(xk)1/2δxk‖2 . (8.21)
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III. Functional descent. The convergence in terms of the functional can
be estimated by

− 1
6h

δ
kε

δ
k ≤ f(xk)− f(xk+1)− 1

2ε
δ
k ≤ 1

6h
δ
kε

δ
k .

The proof in the general Newton-Galerkin case is—mutatis mutandis—the
same as the one for the more special Newton-PCG case in Theorem 2.20. In
passing we mention that the above discussed boundedness of the local en-
ergy norms and, via the Cauchy-Schwarz inequality, also of the local energy
products is actually guaranteed by (8.14), (8.16), and (8.17) in the linear con-
vergence mode or by (8.18), (8.20), and (8.21) in the quadratic convergence
mode.
For linear elliptic PDEs, we have computational approximation error esti-
mates available, typically incorporated within adaptive multilevel FEM (Sec-
tion 1.4.5), which are a special case of Galerkin methods. Hence, we may
readily satisfy the above threshold criteria (8.15) or (8.19), respectively. Thus
we are only left with the decision of whether to use the linear or the quadratic
convergence mode in such a setting—an important algorithmic question that
deserves special attention.
Computational complexity model. In order to get some insight, we study
a rather simple, but nevertheless meaningful complexity model. It starts from
the fact that at the final iterate, say xq, we want to meet the prescribed energy
error tolerance criterion (2.110), i.e.,

εq
.= ETOL2 .

If we replace the absolute error parameter ETOL2 � ε0 by a relative error
parameter EREL � 1 with ETOL2 = EREL2 ·ε0, then we may rewrite the
above final accuracy requirement as

Θ0 ·Θ1 · · ·Θq−1
.= EREL ,

which is equivalent to

q−1∑
k=0

log
1
Θk

.= log
1

EREL
. (8.22)

The number q of Newton steps is unknown in advance. Let Ak denote the
amount of work for step k. Then we will want to minimize the total amount
of work, i.e.,

Atotal =
q∑

k=0

Ak = min

subject to the constraint (8.22). For the solution of this discrete optimiza-
tion problem, there exists a quite efficient established heuristics, the popular
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greedy algorithm—see, e.g., Chapter 9.3 in the introductory textbook [2] by
M. Aigner. From this, we obtain the prescription that, at Newton step k, the
algorithm should maximize the information gain per unit work, i.e.,

Ik =
1
Ak

log
1
Θk

= max . (8.23)

In order to maximize this quantity with respect to the variable δk, the general
relation (2.109) is applicable, which reads

Θk ≤ ϑ(hδ
k, δk) .

To simplify matters, we study the case hk → 0 here. Thus we arrive at the
rough model

Θk
.= ϑ(0, δk) =

δk√
1 + δ2k

,

which, in view of (8.23), is equivalent to

log
1
Θk
∼ log

(
1 +

1
δ2k

)
.

Next we compare two variants of Newton-Galerkin methods, the finite di-
mensional case (PCG) and the infinite dimensional case (FEM), which differ
in the amount of work Ak as a function of δk.
Inexact Newton-PCG method for discrete PDEs. Assume that we attack a
nonlinear discrete elliptic PDE by some inexact Newton method with PCG as
inner iteration—as in the algorithm GIANT-PCG. This is exactly the situation
treated in Section 8.2.2. For system dimension n, we have to consider

• the evaluation of the Jacobian matrix J = F ′(xk), which is typically sparse,
so that an amount O(n) needs to be counted,

• the work per PCG step (evaluation of inner products), which for the sparse
Jacobian J is also O(n),

• the number mk of PCG iterations at Newton step k: with preconditioner
B we have (compare, e.g., Corollary 8.18 in the textbook [77])

mk ∼
√
κ(BJ) log 2

(
1 + 1/δ2k

)
.

Summing up, we arrive at the rough estimate

Ak ∼
(
c1 + c2 log

(
1 + 1/δ2k

))
n ∼ const + log

(
1 + 1/δ2k

)
,

where ‘const’ represents some positive constant. So we finally end up with

Ik ∼ log(1 + 1/δ2k)
const + log(1 + 1/δ2k)

= max .
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The right hand side is a monotone decreasing function of δk, which directs us
towards the smallest possible value of δk, i.e., to the quadratic convergence
mode. It may be worth noting that the above analysis would lead to the same
decision, if PCG were replaced by some linear multigrid method.
Inexact Newton multilevel FEM for continuous PDEs. For the inner iteration
we now take an adaptive multilevel method for linear elliptic PDEs (such as
the multiplicative multigrid algorithm UG by G. Wittum, P. Bastian et al. [22]
or the additive multigrid algorithm KASKADE by P. Deuflhard, H. Yserentant
et al. [78, 36, 23]). An example of such an algorithm is implemented in our
code Newton-KASKADE. As a consequence of the adaptivity, the dimension
n of subproblems to be solved at step k depends on δk. Let d denote the
underlying spatial dimension. At iteration step k on refinement level j of
the multilevel discretization, let nj

k be the number of nodes and εjk the local
energy. With l = lk we mean the final discretization level, at which the
prescribed final accuracy δk is achieved. On energy equilibrated meshes for
linear elliptic PDEs, we have the following asymptotic theoretical result (see
I. Babuška et al. [13]) (

n0
k

nl
k

)2/d

∼ ε
∞
k − εlk
ε∞k

≤ δ2k
1 + δ2k

.

Any decent multigrid solver for linear elliptic PDEs will require an amount
of work proportional to the number of nodes, i.e.

Ak ∼ nl
k ∼ n0

k

(
1 + 1/δ2k

)d/2
.

Inserting this result into Ik, we arrive at the rough estimate

Ik ∼
(
1 + 1/δ2k

)−d/2
log
(
1 + 1/δ2k

)
= max .

For variable space dimension d this scalar function has its maximum at

δk = 1/
√

exp(2/d)− 1 ,

which, with the help of (2.113), then leads to the choice

Θ = exp(−1/d) .

We thus have the approximate values

d = 2 : δk = 0.76, Θ = 0.61 , d = 3 : δk = 1.03, Θ = 0.72 .

Even though our rough complexity model might not cover such large values of
δk, these results may nevertheless be taken as a clear indication to favor the
linear over the quadratic convergence mode in an adaptive multilevel setting.
Empirical tests actually suggested to use δk ≈ 1 corresponding to Θ ≈ 0.7 as
default values.
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Example 8.7 By modification of a problem given by R. Rannacher [175], we
consider the convex functional in two space dimensions (with x, y Euclidean
coordinates here)

f(u) =
∫
Ω

(
1 + |∇u|2)p/2 − gu dx , p > 1 , x ∈ Ω ⊂ R2 , u ∈W 1,p(Ω)

for the specification p = 1.4, g ≡ 0. The functional gives rise to the first and
second order expressions

〈F (u), v〉 =
∫
Ω

(
p(1 + |∇u|2)p/2−1〈∇u,∇v〉 − gv) dx ,

〈w,F ′(u)v〉 =
∫
Ω

p
(

(p− 2)(1 + |∇u|2)p/2−2〈∇w,∇u〉〈∇u,∇v〉
+(1 + |∇u|2)p/2−1〈∇w,∇v〉) dx .

With 〈·, ·〉 the Euclidean inner product in R2, the term 〈v, F ′(u)v〉 is strictly
positive for p ≥ 1.

Fig. 8.4. Example 8.7. Newton-KASKADE iterates: Top: initial guess u0

on initial coarse grid, bottom: iterate u3 on automatically refined grid. Thick lines:
homogeneous Dirichlet boundary conditions and level lines, thin lines: Neumann
boundary conditions.

In order to solve this problem, we used the linear convergence mode in an
adaptive Newton multilevel FEM with KASKADE to solve the arising linear
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elliptic PDEs. Figure 8.4 compares the starting guess u0 on its coarse mesh
(j = 1) with the inexact Newton iterate u3 on its fine mesh (j = 14). The
coarse mesh consists of n1 = 17 nodes, the fine mesh of n14 = 2054 nodes;
for comparison, a uniformly refined mesh at level j = 14 would have about
n14 ≈ 136000 nodes. Note that—in the setting of multigrid methods, which
requireO(n) operations—the total amount of work would be essentially blown
up by the factor n14/n14 ≈ 65. Apart from this clear computational saving,
adaptivity also nicely models the two critical points on the boundary, the
re-entrant corner and the discontinuity point.

8.3.2 Global Newton-Galerkin methods

In this section we study the inexact global Newton-Galerkin method

xk+1 = xk + λkδx
k

in terms of iterates xk ∈ W 1,p, inexact Newton corrections δxk satisfying
(8.13), and damping factors λk to be chosen appropriately. As the most
prominent representatives of such methods we will take adaptive Newton
multilevel FEMs, whenever it comes to numerical examples.
In Section 3.4.3 we had already discussed the finite dimensional analogue, the
global inexact Newton-PCG method. With the theoretical considerations at
the beginning of Section 8.3, we are prepared to modify the global convergence
theorems for the Newton-PCG methods in such a way that they apply to the
more general Newton-Galerkin case. In what follows, we just combine and
modify our previous Theorems 3.23 and 3.26.

Theorem 8.7 Notation as introduced above. Let f : D → R1 be a strictly
convex C2-functional to be minimized over some open convex domain D ⊂
W 1,p and F ′(x) = f ′′(x) be strictly positive. For x, y ∈ D, assume the affine
conjugate Lipschitz condition

‖F ′(x)−1/2(F ′(y)− F ′(x))(y − x)‖ ≤ ω‖F ′(x)1/2(y − x)‖2

with 0 ≤ ω < ∞. Let Δxk denote the exact and δxk the inexact Newton
correction. For each well-defined iterate xk ∈ D, define the quantities

εk = ‖F ′(xk)1/2Δxk‖2 , εδk = ‖F ′(xk)1/2δxk‖2 =
εk

1 + δ2k
,

hk = ω‖F ′(xk)1/2Δxk‖ , hδ
k = ω‖F ′(xk)1/2δxk‖ =

hk√
1 + δ2k

.

Moreover, let xk + λδxk ∈ D for 0 ≤ λ ≤ λk
max with
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λk
max :=

4

1 +
√

1 + 8hδ
k/3

≤ 2 .

Then
f(xk + λΔxk) ≤ f(xk)− tk(λ)εδk

where
tk(λ) = λ− 1

2λ
2 − 1

6λ
3hδ

k .

The optimal choice of damping factor is

λk =
2

1 +
√

1 + 2hδ
k

≤ 1 .

As in the local convergence case, hk is the Kantorovich quantity and δk the
relative Galerkin approximation error.
Adaptive damping and accuracy matching. Following our usual para-
digm, the unknown theoretical quantities hk and δk are replaced by com-
putationally available estimates [hk] and [δk]. For [hk] we just use the terms
E1,2,3(λ) as given in Section 3.4.2 for the exact Newton method and in Section
3.4.3 for the inexact Newton-PCG method. On this basis we realize the correc-
tion strategy (3.88) with hk replaced by the a-posteriori estimate [hδ

k] and the
prediction strategy (3.89) with hk+1 replaced by the a-priori estimate [hδ

k+1].
Unless stated otherwise, we choose the approximation error bound δk = 1 as
a default throughout the Newton-Galerkin iteration, thus eventually merging
into the linear local convergence mode.
Example 8.8 Good versus bad initial coarse grid. We return to our
previous Example 8.7, but this time for the critical value p = 1, which char-
acterizes the (parametric) minimal surface problem. This value is critical,
since then u ∈ W 1,1, a nonreflexive Banach space, which implies that the
existence of a unique solution is no longer guaranteed. For special boundary
conditions and inhomogeneities g, however, a unique solution can be shown
to exist, even in C0,1 (see, e.g., the textbooks by E. Zeidler [205]). Such a
situation occurs, e.g., for

Ω =
[
−π

2
, 0
]
×
[
−π

2
,
π

2

]
, u|∂Ω = s cosx cos y , g ≡ 0 .

Taking the Z2-symmetry along the x-axis into account, we may halve Ω and
impose homogeneous Neumann boundary conditions at y = 0. The parameter
s is set to s = 3.5. From a quick rough examination of the problem, we expect
a boundary layer at x = 0. As initial guess u0 we take the prescribed values
on the Dirichlet boundary part and otherwise just zero.
Again we solve the problem by Newton-KASKADE. As good initial coarse grid
we select the grid in Figure 8.5, left, which takes the expected boundary layer
into account. As bad initial coarse grid we choose the one in Figure 8.5, right,
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Fig. 8.5. Example 8.8. Good (left) and bad (right) initial coarse grid.
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Fig. 8.6. Example 8.8. Comparative damping strategies for good and bad initial
coarse grids.

which deliberately ignores any knowledge about the occurrence of a boundary
layer.
In Figure 8.6, the comparative performance of our global Newton-KASKADE
algorithm is documented in terms of the obtained damping factors for both
initial grids. As expected from reports in the engineering literature, the bad
coarse grid requires many more iterations to eventually capture the nonlin-
earity.

Example 8.9 Function space versus finite dimensional approach.
Once again, we return to Example 8.7, this time for the critical value p = 1.
In Figure 8.7, we show two settings: On the left (Example 8.9a), a unique
solution exists, which has been computed, but is not documented here; this
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example serves for comparison only, see Table 8.11 below. Our main interest
focuses on Example 8.9b, where no (physical) solution exists. For the initial
guess u0 we take the prescribed values on the Dirichlet boundary and zero
otherwise.

u
n
=0

u
n
=0

u
n
=0

u
n
=0

u= ycos

u=0

u=1

u=0
u=0

u=0

Fig. 8.7. Example 8.9. Domains and initial coarse grids. Black lines: Dirichlet
boundary conditions, grey lines: Neumann boundary conditions. Left: Example 8.9a,
unique solution exists. Right: Example 8.9b, no solution exists.

At Example 8.9b, we want to compare the algorithmic behavior of two dif-
ferent Newton-FEM approaches:

• our function space oriented approach, as presented in this section, and
• the finite dimensional approach, which is typically implemented in classical

Newton-multigrid FEMs.

In the finite dimensional approach, the discrete FE problem is solved suc-
cessively on each of the mesh levels so that there the damping factors will
repeatedly run up to values λ = 1. In contrast to that behavior, our function
space approach aims at directly solving the continuous problem by exploiting
information available from the whole mesh refinement history. Consequently,
if a unique solution exists, this approach will reach the local convergence
phase in accordance with the mesh refinement process. Such a behavior has
already been shown for our preceding Example 8.8 in Figure 8.6.
Figure 8.8 gives an account for Example 8.9b. In the finite dimensional op-
tion, damping factors λ = 1 arise repeatedly on each of the mesh refinement
levels. After more than 60 Newton-FEM iterations, this approach gives the
impression of a unique solvability of the problem—on the basis of the local
convergence of the Newton-FEM algorithm on each of the successive meshes.
Our function space option, however, terminates already after 20 Newton it-
erations for λ < λmin = 0.01.
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function space Newton

finite dimensional Newton

0.01

0.1

1

0 10 20 30 40 50 60

Fig. 8.8. Example 8.9b. Iterative damping factors for two Newton-FEM algo-
rithms. To be compared with Figure 8.9.

To understand this discrepancy, we simultaneously look at the local energy
norms εk, which measure the exact Newton corrections Δxk, see Figure 8.9.
The finite dimensional method ends up with ‘sufficiently small’ Newton cor-
rections on each of the refinement levels, pretending some local pseudocon-
vergence. Our function space Newton method, however, stays with ‘moderate
size’ corrections throughout the iteration.

function space Newton

finite dimensional Newton

1e-05

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60

Fig. 8.9. Example 8.9b. Iterative energy norms ε
1/2
k for two Newton-FEM algo-

rithms. To be compared with Figure 8.8.
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Asymptotic mesh dependence. Table 8.11 (from [198]) compares the
actually computed affine conjugate Lipschitz estimates [ωj] as obtained from
Newton-KASKADE in Example 8.9a and in Example 8.9b. Obviously, Example
8.9a, which has a unique solution, exhibits asymptotic mesh independence as
studied in Section 8.1. Things are totally different in Example 8.9b, where
the Lipschitz estimates clearly increase. Note that the blow-up of the lower
bounds [ωj ] in Table 8.11 implies a blow-up of the Lipschitz constants ωj—for
this purpose the bounds are on the rigorous side.

Example 8.9a Example 8.9b
j 
 unknowns [ωj ] 
 unknowns [ωj ]

0 4 1.32 5 7.5
1 7 1.17 10 4.2
2 18 4.55 17 7.3
3 50 6.11 26 9.6
4 123 5.25 51 22.5
5 158 20.19 87 50.3
6 278 19.97 105 1486.2
7 356 9.69 139 2715.6
8 487 8.47 196 5178.6
9 632 11.73 241 6837.2

10 787 44.21 421 12040.2
11 981 49.24 523 167636.0
12 1239 20.10 635 1405910.0
13 1610 32.93
14 2054 37.22

Table 8.11. Computational Lipschitz estimates [ωj ] on levels j. Example
8.9a: unique solution exists, Example 8.9b: no solution exists.

Interpretation. Putting all pieces of available information together, we now
understand that on each of the levels j this problem has a finite dimensional
solution x∗j , unique within the finite dimensional Kantorovich ball with radius
ρj ∼ 1/ωj; however, these balls shrink from radius ρ1 ∼ 1 down to ρ22 ∼ 10−6.
Frank extrapolation of this effect suggests that

lim
j→∞

ρj = 0 .

Obviously, the algorithm insinuates that a unique continuous solution of the
stated PDE problem does not exist. This feature would certainly be desirable
for any numerical PDE solver.
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Exercises

Exercise 8.1 In Section 8.3.1, a rough computational complexity model of
adaptive multilevel FEM for nonlinear elliptic PDEs leads to the problem
(dropping the index k)

I ∼ (1 + 1/δ2
)−d/2

log
(
1 + 1/δ2

)
= max ,

where d is the spatial dimension.

a) Calculate the maximum point δ and evaluate it for d = 2 and d = 3.
b) How would the rough model need to be changed, if the situation h �= 0

were to be modeled?

Exercise 8.2 Consider the finite dimensional Newton sequence

xk+1 = xk +Δxk ,

where x0 is given and Δxk is the solution of a linear system. In sufficiently
large scale computations, rounding errors caused by direct elimination or
truncation errors from iterative linear solvers will generate a different se-
quence

yk+1 = yk +Δyk + εk ,

where y0 = x0 is given, Δyk is understood to be the exact Newton correction
at yk, and

‖εk‖ ≤ δ‖Δyk‖ ,
Upon using analytical tools of Section 8.1, derive iterative error bounds for
‖yk − xk‖ and ‖yk − x∗‖.

Exercise 8.3 Consider the nonlinear ODE boundary value problem

ẋ = f(x) , Ax(a) +Bx(b) = 0

with linear separable boundary conditions. We want to study asymptotic
mesh independence for Gauss collocation methods of order s ≥ 1 (compare
Section 7.4). For the approximating space we select X = W 1,∞ and impose
the assumptions from Section 8.1. Let Xj ⊂ X denote a finite dimensional
subspace characterizing the collocation discretization with maximum mesh
size τj . Assume that f is sufficiently smooth and the BVP is well-conditioned
for all required arguments.

a) In view of (8.5), derive upper bounds δj such that

‖Δxj −Δx‖W 1,∞ ≤ δj
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with the asymptotic property

δj → 0.

Hint: Compare the exact solution w of

ẇ + fx(xj)w = −fx(xj)xj + f(xj) , Aw(a) +Bw(b) = 0

and its approximation wj using the error estimate (as given in [180, 49])

‖w − wj‖W 1,∞ ≤ Cτj‖ẅ‖∞ ,

where C is a bounded generic constant, which is independent of j.
b) Under the assumptions of Theorem 2.2 derive some bound

‖w − wj‖ ≤ σj‖vj‖2

with the asymptotic property

σj → 0 .

Exercise 8.4 We consider linear finite element approximations on quasi-
uniform triangulations for semilinear elliptic boundary value problems

F (x) = −div∇x− f(x) = 0, x ∈ H1
0 (Ω)

on convex polygonal domains Ω ⊂ Rd, d ≤ 3. For this setting, we want to
study asymptotic mesh independence. The notation is as in Section 8.1.
In view of (8.5) and (8.9), derive upper bounds δj such that

‖Δxj −Δx‖ ≤ δj
and σj such that

‖w − wj‖ ≤ σj‖vj‖2 ,
Assume that the above right hand term f : R→ R is globally Lipschitz con-
tinuously differentiable. In particular, show that for the process of successive
refinement the asymptotic properties

lim
j→∞

δj = 0 , lim
j→∞

σj = 0

hold.
Hint: Exploit the H2-regularity of xj +Δx and use the embedding H1 ↪→ L4.
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