
7 ODE Boundary Value Problems

In this chapter, we consider two-point boundary value problems (BVPs) for
ordinary differential equations (ODEs)

y′ = f(y) , f ∈ C2 , r(y(a), y(b)) = 0 , r ∈ C2 ,

wherein both the right side f (autonomous for ease of writing) and the bound-
ary conditions r are of dimension n and may be nonlinear. Algorithms for
the solution of such problems can be grouped in two classes: initial value
methods and global discretization methods. The presentation and notation
here closely relates to Chapter 8 in the textbook [71].

Initial value methods. This kind of methods transforms the BVP into
a sequence of initial value problems (IVPs), which are solved by means of
numerical integrators. The most prominent method of this type is the multiple
shooting method, which is a good choice only for problems, wherein a well-
conditioned IVP direction exists, i.e. for so-called timelike BVPs. The name
comes from the fact that in this problem class the independent variable t
typically represents a time (or time related) variable. As a rule, there exists
no generalization to boundary value problems for partial differential equations
(PDEs).

Global discretization methods. Conceptually, this kind of BVP methods
does not depend on any preferable direction and is therefore also applicable to
cases, where a well-conditioned IVP direction does not exist, i.e. to so-called
spacelike boundary value problems. In this type of BVP the independent vari-
able t typically represents a space (or space related) variable, which implies
that a generalization to BVPs for PDEs is possible. Such methods include,
e.g., finite difference and collocation methods.
In Section 7.1, the realization of Newton and discrete continuation methods
within the standard multiple shooting approach is elaborated. Gauss-Newton
methods for parameter identification in ODEs are discussed in Section 7.2.
For periodic orbit computation, Section 7.3 presents Gauss-Newton methods,
both in the shooting approach (Sections 7.3.1 and 7.3.2) and in a collocation
approach based on Fourier series (Galerkin-Urabe method in Section 7.3.3).
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In Section 7.4 we concentrate on polynomial collocation methods, which have
reached a rather mature status including affine covariant Newton methods. In
Section 7.4.1, the possible discrepancy between discrete and continuous solu-
tions is studied including the possible occurrence of so-called ‘ghost solutions’
in the nonlinear case. On this basis, the realization of quasilinearization seems
to be preferable in combination with collocation. The following Section 7.4.2
is then devoted to the key issue that quasilinearization can be interpreted
as an inexact Newton method in function space: the approximation errors in
the infinite dimensional setting just replace the inner iteration errors arising
in the finite dimensional setting. With this insight, an adaptive multilevel
control of the collocation errors can be realized to yield an adaptive inexact
Newton method in function space—which is the bridge to adaptive Newton
multilevel methods for PDEs (compare Section 8.3).

Bibliographical Note. Affine invariant global Newton methods—now
called affine covariant Newton methods—have first been developed in the
frame of multiple shooting techniques by P. Deuflhard [60, 62, 61]. Therein
they have turned out to be of crucial importance for the overall performance,
especially in challenging real life optimal control problems. These Newton
techniques have then quickly been adopted by U.M. Ascher and R.D. Russell
within their adaptive collocation methods [8]—with comparable success, see
also their textbook [9]. They have also played an important role within pa-
rameter identification algorithms and their convergence analysis as worked
out by H.G. Bock [29, 31, 32] since 1981.

7.1 Multiple Shooting for Timelike BVPs

In this approach the interval [a, b] is subdivided into a partition

Δ = {a = t1 < t2 < · · · < tm = b}, m > 2 .

Let xj ∈ Rn, j = 1, . . . ,m denote estimates of the unknown values at the
nodes tj . Then, in terms of the flow Φ, we may define those m − 1 sub-
trajectories

yj(t) = Φt,tjxj , t ∈ [tj , tj+1] , j = 1, . . . ,m− 1

that solve (m−1) independent IVPs. The situation is illustrated in Figure 7.1.
For the solution of the problem the sub-trajectories have to be joined contin-
uously and hence at the intermediate nodes the n continuity conditions

Fj(xj , xj+1) = Φtj+1,tjxj − xj+1 = 0, j = 1, . . . ,m− 1

have to hold.
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In addition, we have to satisfy the n boundary conditions

Fm(x1, xm) = r(x1, xm) = 0.

ξ1

ξ2

ξ3

Φt2t1ξ1

Φt3t2ξ2

Φt4t3ξ3

t1 = a t2 t3 b = t4

t

y(t)

Fig. 7.1. Multiple shooting (m = 4).

The overall full nm-dimensional system is written in the form

x =

⎛⎜⎝ x1

...
xm

⎞⎟⎠ ∈ Rn·m, F (x) =

⎛⎜⎝ F1(x1, x2)
...

Fm(x1, xm)

⎞⎟⎠ = 0. (7.1)

This nonlinear system has a cyclic block structure as indicated in Figure 7.2.
For the solution of the above cyclic nonlinear system (7.1) we compute the
ordinary Newton correction as usual by solving the linear system

F ′(xk)Δxk = −F (xk) , xk+1 = xk +Δxk , k = 0, 1, . . . .

The corresponding Jacobian matrix has the cyclic block structure

J = F ′(x) =

⎡⎢⎢⎢⎣
G1 −I

. . . . . .
Gm−1 −I

A B

⎤⎥⎥⎥⎦ .
Herein the matrices A, B are the derivatives of the boundary conditions r
with respect to the boundary values (x(a), x(b)) = (x1, xm). The propagation
matrices Gj on each of the sub-intervals, also called Wronskian matrices, read

Gj =
∂Φtj+1,tjxj

∂xj
, j = 1, . . . ,m− 1 .
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ξ1 ξ2

ξ3ξm

ξm−1

F1

F2Fm = r

Fm−1

Fig. 7.2. Cyclic system of nonlinear equations

7.1.1 Cyclic linear systems

The block structure of the Jacobian matrix gives rise to a block cyclic linear
system of the following kind:

G1Δx1 −Δx2 = −F1

. . . . . .

Gm−1Δxm−1 −Δxm = −Fm−1

AΔx1 +BΔxm = −Fm = −r .
If this linear system were just solved by some (sparse) direct elimination
method, then global Newton methods as described in the preceding sections
could be directly taken off the shelf.
For timelike BVPs, however, there exists an efficient alternative option, which
opens the door to the construction of interesting specific Gauss-Newton meth-
ods. This option dates back to a suggestion of J. Stoer and R. Bulirsch [187].
It is often called condensing algorithm, since it requires only the decompo-
sition of a ‘condensed’ (n, n)-matrix E instead of that of the total Jacobian
(nm, nm)-matrix J . In order to convey the idea, we present the idea first for
the case m = 3:

(1) G1Δx1 −Δx2 = −F1

(2) G2Δx2 −Δx3 = −F2

(3) AΔx1 +BΔx3 = −r .
First we multiply (1) by G2 from the left and add the result

G2G1Δx1 −G2Δx2 = −G2F1
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to equation (2). This gives

G2G1Δx1 −Δx3 = −(F2 −G2F1) ,

which after multiplication by B yields

BG2G1Δx1 −BΔx3 = −B(f2 −G2F1).

Finally, by addition of equation (3) it follows that

(A+BG2G1)︸ ︷︷ ︸
=E

Δx1 = −r −B(F2 −G2F1)︸ ︷︷ ︸
=−u

.

Hence, in the general case m ≥ 2 we obtain the following algorithm:

a) Evaluate by recursion over j = 1, . . . ,m− 1

E := A+BGm−1 · · ·G1,

u := r +B [Fm−1 +Gm−1Fm−2 + · · ·+Gm−1 . . . G2F1] .

b) Solve the linear (n, n)− system

EΔx1 = −u.
c ) Execute the explicit recursion

Δxj+1 := GjΔxj + Fj , j = 1, . . . ,m− 1.

(7.2)

The memory required by this algorithm is essentially m · n2. The computa-
tional cost is dominated by the accumulation of the matrix E as an (m− 1)-
fold product of (n, n)-matrices. Together with the decomposition of E this
results in a cost of O(m · n3) operations, where terms of order O(n2) have
been neglected as usual.
The large sparse Jacobian matrix J and the small matrix E are closely con-
nected as can be seen by the following lemma.

Lemma 7.1 Notation as just introduced. Define Wj = Gm−1 · · ·Gj and
E := A+BW1. Then

det(J) = det(E) . (7.3)

Moreover, if E is nonsingular, one has the decomposition

LJR = S, J−1 = RS−1L (7.4)

in terms of the block matrices
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L :=

⎡⎢⎢⎢⎢⎢⎢⎣
BW2 . . . B, I

−I
. . .

−I, 0

⎤⎥⎥⎥⎥⎥⎥⎦ , R−1 :=

⎡⎢⎢⎢⎢⎢⎢⎣
I

−G1, I

. . . . . .

−Gm−1, I

⎤⎥⎥⎥⎥⎥⎥⎦ ,

S := diag(E, I, . . . , I), S−1 = diag(E−1, I, . . . , I) .

Proof. The decomposition (7.4) is a direct formalization of the above block
Gaussian elimination. The determinant relation (7.3) follows from

det(L) = det(R) = det(R−1) = 1 .

With
det(J) = det(S)

the proof is completed. �

Interpretation. The matrix E is an approximation of the special sensitivity
matrix

E(a) =
∂r

∂ya
= A+BW (b, a)

corresponding to the BVP as a whole. HereinW (·, ·) denotes the propagation
matrix of the variational equation. Generically this means that, whenever the
underlying BVP has a locally uniqueness solution, a locally unique solution
x∗ = (x∗1, . . . , x

∗
m) is guaranteed—independent of the partitioning Δ.

Separable linear boundary conditions. This case arises when part of the
boundary conditions fix part of the components of x1 at t = a and part of
the components of xm at t = b. The situation can be conveniently described
in terms of certain projection matrices Pa, P̄a, Pb, P̄b such that

P̄aA = Pa, P̄aB = 0 ,

rank(P̄a) = rank(Pa) = na < n ,

P̄bB = Pb, P̄bA = 0 ,

rank(P̄b) = rank(Pb) = nb < n

with na + nb ≤ n. Of course, we will choose initial guesses x0
1, x

0
m for the

Newton iteration so that the separable boundary conditions

P̄ar = 0 , P̄br = 0
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automatically hold. Then the linearization of these conditions

AΔx1 +BΔxm = −r
directly implies

PaΔx1 = 0 , PbΔxm = 0 .

Consequently, the variables Pax1 and Pbxm can be seen to satisfy

Pax1 = Pax
0
1 , Pbxm = Pbx

0
m

throughout the iteration. This part can be realized independent of any elim-
ination method by carefully analyzing the sparsity pattern of the matrices A
and B within the algorithm. As a consequence, the sensitivity matrix E also
has the projection properties

P̄aE = 0, P̄bE = 0, EPa = 0, EPb = 0 .

Iterative refinement sweeps. The block Gaussian elimination technique
(7.2) seems to be highly efficient in terms of memory and computational cost.
A closer look on its numerical stability, however, shows that the method
becomes sufficiently robust only with the addition of some special itera-
tive refinement called iterative refinement sweeps. We will briefly sketch
this technique and work out its consequences for the construction of New-
ton and Gauss-Newton methods—for details see the original paper [70] by
P. Deuflhard and G. Bader.
Let ν = 0, 1, . . . be the indices of the iterative refinement steps. In lieu
of the exact Newton corrections Δxj the block Gaussian elimination will
supply certain error carrying corrections Δx̃ν

j so that iterative refinement
will produce nonvanishing differences

dxν
j ≈ Δx̃ν+1

j −Δx̃ν
j .

In the present framework we might first consider the following algorithm:

(a) duν = drν +B
[
dF ν

m−1 +Gm−1dF
ν
m−2 + · · ·+Gm−1 · · ·G2dF

ν
1

]
,

(b) Edxν
1 = −duν ,

(c) dxν
j+1 = Gjdx

ν
j + dF ν

j j = 1, . . . ,m.

However, as shown by the detailed componentwise round-off error analysis in
[70], this type of iterative refinement is only guaranteed to converge under
the sufficient condition

ε(m− 1)(2n+m− 1)κ[a, b]� 1 ,

wherein ε denotes the relative machine precision and κ[a, b] the IVP condition
number over the whole interval [a, b]—to be associated with single instead



322 7 ODE Boundary Value Problems

of multiple shooting. This too restrictive error growth can be avoided by a
modification called iterative refinement sweeps. As before, this modification
also begins with an implementation of iterative refinement for the ‘condensed’
linear system

EΔx̃1 + u ≈ 0 .

Suppose, for the time being, that

‖dx̃1‖ ≤ eps,

where eps is the relative tolerance prescribed for the Newton iteration. Then
some sweep-index jν ≥ 1 can be defined such that

‖dx̃ν
j ‖ ≤ eps, j = 1, . . . , jν .

If we now set part of the residuals deliberately to machine-zero, say,

dF ν
j = 0, j = 1, . . . , jν − 1 ,

then this modified iterative refinements process can be shown to converge
under the less restrictive sufficient condition

ε(m− 1)(2n+m− 1)κΔ[a, b] < 1 ,

wherein now the quantity κΔ[a, b] enters, which denotes the maximum of the
IVP condition numbers on each of the subintervals of the partitioning Δ.
Obviously, this quantity reflects the IVP condition number to be naturally
associated with multiple shooting. Under this condition it can be shown that

jν+1 ≥ jν + 1 ,

hence the process terminates, at the latest, after m− 1 refinement sweeps.
Whenever the above excluded case j0 = 0 occurs, the iterative refinement
cannot even start. This occurrence does not necessarily imply that the BVP
as such is ill-conditioned—for a detailed discussion of this aspect see again
the textbook [71].

Rank reduction. The iterative refinement sweeps cheaply supply a condi-
tion number estimate for the sensitivity matrix E via

cd(E) =
‖dx̃0

1‖
‖Δx̃0

1‖ε
≤ cond(E) .

Even without iterative refinement sweeps a cheap condition number estimate
may be available: Assume that separable boundary conditions have been
split off via the above described projection. Let E denote the remaining part
of the sensitivity matrix which is then treated by QR-decomposition with
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column pivoting—for details see, e.g., [77, Section 3.2.2]. In this setting the
subcondition number

sc(E) ≤ cond(E)

is easily computable.
If either

ε cd(E) ≥ 1
2 ⇐⇒ ‖dx̃0

1‖ ≥ 1
2‖Δx̃0

1‖,
which is equivalent to j0 = 0 or

ε sc(E) ≥ 1
2 ,

then
ε cond(E) ≥ 1

2 .

In other words: in either case E is rank-deficient and the condensed system
is ill-conditioned. In this situation we may replace the condensed equation

EΔx1 = −u
by the underdetermined linear least squares problem

‖EΔx1 + u‖2 = min .

This linear system may be ‘solved’ by means of the Moore-Penrose pseudo-
inverse as

Δx1 = −E+u .

Upon leaving the remaining part of the condensing algorithm unaltered, the
thus modified elimination process can be formally described by some gener-
alized inverse

J− = RS+L (7.5)

with R,S,L as defined in Lemma 7.1 and

S+ =

⎡⎢⎢⎢⎣
E+

I
. . .

I

⎤⎥⎥⎥⎦ .
As can be easily verified (see Exercise 4.7), this generalized inverse is an outer
inverse and can be uniquely defined by the set of four axioms

(J−J)T = (RRT )−1J−J(RRT ) ,

(JJ−)T = (LTL)JJ−(LTL)−1 ,

J−JJ− = J− ,

JJ−J = J .

(7.6)

This type of generalized inverse plays a role in a variety of more general
BVPs, some of which are given in the subsequent Sections 7.2 and 7.3.
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7.1.2 Realization of Newton methods

On the basis of the preceding sections we are now ready to discuss the actual
realization of global Newton methods within multiple shooting techniques for
timelike BVPs.

Jacobian matrix approximations. In order to establish the total Jacobian
J , we must approximate the boundary derivative matrices A, B and the
propagation matrices G1, . . . , Gm−1.
Boundary derivatives. Either an analytic derivation of r (not too rare case)
or a finite difference approximation

A
.=
δr

δx1
, B

.=
δr

δxm

will be realized.
Propagation matrices. The propagation matricesGj are also called Wronskian
matrices. Whenever the derivative matrix fy(y) of the right side is analytically
available, then numerical integration of the n variational equations

G′
j = fy(y(t))Gj , Gj(tj) = In (7.7)

might be the method of choice to compute them. If fy is not available analyt-
ically, then some internal differentiation as suggested by H.G. Bock [31, 32]
should be applied—see also [71, Section 8.2.1]. Its essence is a numerical
differencing of the form

fy(y)
.=
δf(y)
δy

,

which then enters into the numerical solution of discrete variational equations
instead of (7.7). The actual realization of this idea requires special variants
of standard integration software [112, 31, 32]. Note that any such approach
involves, of course, the simultaneous numerical integration of y′ = f(y(t)) to
obtain the argument y(t) in fy.

Scaling. Formally speaking, each variable xj will be transformed as

xj −→ D−1
j xj ,

wherein the diagonal matricesDj > 0 represent some carefully chosen scaling.
Formal consequences are then

Fj −→ D−1
j+1Fj ,

Gj −→ D−1
j+1GjDj =: Ĝj .

(7.8)

In actual computation, this means replacing

‖Fj‖ −→ ‖D−1
j+1Fj‖ ,

‖Δxj‖ −→ ‖D−1
j Δxj‖ .
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Inner products and norms. In view of the underlying BVP we may
want to modify the Euclidean inner product and norm by including infor-
mation about the mesh Δ = {t1, . . . , tm}. For example, let (·, ·) denote some
(possibly scaled) Euclidean inner product for the vectors u = (u1, . . . , um),
v = (u1, . . . , vm), uj , vj ∈ Rn. Then we may define some discrete L2-product
by virtue of

|b− a|(u, v)Δ = (u1, v1)|t2 − t1|+ (um, vm)|tm − tm−1|
+
∑m−1

j=2 (uj , vj)|tj+1 − tj−1|
(7.9)

and its induced discrete L2-norm as

(u, u)Δ ≡ ‖u‖2Δ .

Quasi-Newton updates. Any approximation of the Wronskian matrices
Gj requires a computational cost of ∼ n trajectory evaluations. In order to
save computing time per Wronskian evaluation, we may apply rank-1 updates
as long as the iterates remain within the Kantorovich domain around the
solution point—i.e., when the damping strategies in Section 2.1.4 supply

λk = λk−1 = 1 .

Of course, the sparse structure of the total Jacobian J must be taken into
account. We assume the boundary derivative approximations A and B as
fixed. Then the secant condition (1.17) for the total Jacobian

(Jk+1 − Jk)Δxk = F (xk+1)

splits into the separate block secant conditions

(Gk+1
j −Gk

j )Δxk
j = Fj(xk+1

j , xk+1
j+1 ) , j = 1, . . . ,m− 1 .

Upon applying the ideas of Section 2.1.4, we arrive at the following rank-1
update formula:

Gk+1
j = Gk

j + Fj(xk+1
j , xk+1

j+1 )
(Δxk

j )T

‖Δxk
j ‖22

, j = 1, . . . ,m− 1 . (7.10)

In a scaled version of the update formula (7.10), we will either update the Ĝj

from (7.8) directly or, equivalently, update Gj replacing

ΔxT
j

‖Δxj‖22
−→ (D−2

j Δxj)T

‖D−1
j Δxj‖22

in the representation (7.10). As worked out in detail in Section 2.1.4 above,
scaling definitely influences the convergence of the corresponding quasi-
Newton iteration (compare also [59, Section 4.2]).
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Adaptive rank strategy. Assume that the condensed matrix E has been
indicated as being ‘rank-deficient’. In this case we need not terminate the
Newton iteration, but may continue by an intermediate Gauss-Newton step
with a correction of the form

Δxk = −F ′(xk)−F (xk) .

Upon recalling Section 4.1.1, the generalized inverse F ′(x)− can be seen to
be an outer inverse. Therefore Theorem 4.7 guarantees that the thus defined
ordinary Gauss-Newton iteration converges locally to a solution of the system

Fj(xj , xj+1) = 0 , j = 1, . . . ,m− 1 ,

‖r(x1, xm)‖2 = min .
(7.11)

The modified trust region strategies of Section 4.3.5 can be adapted for the
special projector

P := J−J .

Note, however, that intermediate rank reductions in this context will not
guarantee an increase of the feasible damping factors (compare Lemma 4.17 or
Lemma 4.18), since P is generically not orthogonal (for m > 2). Nevertheless
a significant increase of the damping factors has been observed in numerical
experiments.
Obviously, the thus constructed Gauss-Newton method is associated with an
underdetermined least squares BVP of the kind

y′ = f(y) ,

‖r(y(a), y(b))‖2 = min .

Level functions. In the rank-deficient case, the residual level function

T (x|I) = ‖F (x)‖2 =
m∑

j=1

‖Fj(x)‖2

no longer has the Gauss-Newton correction Δx = −F ′(x)−F (x) as a descent
direction. Among the practically interesting level functions, this property still
holds for the above used natural level function T (x|J−) or for the hybrid level
function

T (x|R−1J−) = ‖R−1J−F (x)‖2 = ‖Δx1‖2 +
m−1∑
j=1

‖Fj(x)‖2 .

The proof of these statements is left as Exercise 7.4.
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Bibliographical Note. The affine covariant Newton method as described
here is realized, e.g., in the multiple shooting code BVPSOL due to P. Deuflhard
and G. Bader [70] and the optimal control code BOUNDSCO due to J. Oberle
[162]. Among these only BVPSOL realizes the Gaussian block elimination (Sec-
tion 7.1.1) including the rank-deficient option with possible intermediate
Gauss-Newton steps. Global sparse solution of the cyclic linear Newton sys-
tems is implemented in the code BOUNDSCO and as one of two options in
BVPSOL; a rank-strategy is not incorporated within global elimination.

7.1.3 Realization of continuation methods

Throughout this section we consider parameter dependent two-point bound-
ary value problems of the kind

y′ = f(y, τ) ,

r(y(a), y(b), τ) = 0 ,

which give rise to some parameter dependent cyclic system of nonlinear equa-
tions

F (x, τ) = 0 .

Typical situations are that either the τ -family of BVP solutions needs to
be studied or a continuation method is applied to globalize a local New-
ton method. Generally speaking, the parameter dependent mapping F is
exactly the case treated in Section 5. Hence, any of the continuation meth-
ods described there can be transferred—including the automatic control of
the parameter stepsizes Δτ .

Newton continuation methods. Assume the BVP under consideration
has no turning or bifurcation points—known either from external insight
into the given scientific problem or from an a-priori analysis. Then Newton
continuation methods as presented in Section 5.1 are applicable.
Classical continuation method. This algorithm (of order p = 1) deserves no
further explanation. All the details of Section 5.1 carry over immediately.
Tangent continuation method. For this algorithm (of order p = 2) we need to
solve the linear system

Fx(x, τ) ˙̄x(τ) = Fτ (x, τ) ,

which is the same type of block cyclic linear system as for the Newton cor-
rections. The above right hand term Fτ (x, τ) can be computed by numerical
integration of the associated variational equations or by internal numerical
differentiation (cf. [31, 32] or [71, Section 8.2.1]).
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Continuation via trivial BVP extension. A rather popular trick is to
just extend the standard BVP such that

y′ = f(y, τ), τ ′ = 0 ,

r(y(0), y(T ), τ) = 0, h(τ) = 0
(7.12)

with h′(τ) �= 0. Any BVP solver applied to this extended BVP then defines
some extended mapping

F (x, τ) = 0, h(τ) = 0 . (7.13)

Let Δxk denote the Newton correction for the equations with fixed τ . Then
the Newton correction (Δzk, Δτ) for (7.13) turns out to be

Δzk = Δxk +Δτk ˙̄x(τk), Δτk = − h(τ
k)

h′(τk)
. (7.14)

The proof of this connection is left as Exercise 7.1. If one selects τ0 such
that h(τ0) �= 0, then the extension (7.12) realizes a mixture of continuation
methods of order p = 1 and p = 2. An adaptive control of the stepsizes Δτ
here arises indirectly via the damping strategy of Newton’s method.
Example 7.1 Space shuttle problem. This optimal control problem stands
for a class of highly sensitive BVPs from space flight engineering. The un-
derlying physical model (very close to realistic) is due to E.D. Dickmanns
[87]. The full mathematical model has been documented in [81]. The stated
mathematical problem is to find an optimal trajectory of the second stage of
a Space Shuttle such that a prescribed maximum permitted skin temperature
of the front shield is not exceeded. The real problem of interest is a study with
respect to the temperature parameter, say τ . For technological reasons, the
aim is to drive down the temperature as far as possible. This problem gave
rise to a well-documented success story for error oriented Newton methods
(earlier called affine ‘invariant’ instead of affine covariant).
The unconstrained trajectory goes with a temperature level of 2850◦F (equiv-
alent to τ = 0.072). The original technological objective of NASA had been
optimal flight trajectories at temperature level 2000◦F (equivalent to τ = 0.).
However, the applied continuation methods just failed to continue to temper-
atures lower than 2850◦F ! One reason for that failure can already be seen in
the sensitivity matrix: the early optimal control code OPTSOL of R. Bulirsch
[42], improved 1972 by P. Deuflhard [59] (essentially in the direction of error
oriented Newton methods), revealed a subcondition number

sc(E) = 0.2 · 1010

at that temperature. As a consequence, any traditional residual based Newton
methods, which had actually been used at NASA within the frame of classical
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continuation, are bound to fail. The reasons for such an expectation have been
discussed in Sections 3.3.1 and 3.3.2.
In 1973, H.-J. Pesch attacked this problem by means of OPTSOL, which in
those days still contained classical continuation with empirical stepsize con-
trol, but already error oriented Newton methods [59] with empirical damp-
ing strategy. With these techniques at hand, the first successful continuation
steps to τ < 0.072 were at all possible—nicely illustrating the geometric
insight from Section 3.3.2. However, computing times had been above any
tolerable level, so that H.-J. Pesch eventually terminated the continuation
process at τ = 0.0080 with a final empirical stepsize Δτ = −0.0005. Further
improvements were possible by replacing

• the classical Newton damping strategy by an adaptive one [63], similar to
the adaptive trust region predictor given in Section 3.3.3 and

• the classical continuation method with empirical stepsize selection by their
adaptive counterparts as presented in Section 5.1.

For the last continuation step performed by H.-J. Pesch, Table 7.1 shows
the comparative computational amount for different continuation methods
(counting full trajectories to be computed within the multiple shooting ap-
proach).

Continuation method Newton method work

classical residual based failure

classical error oriented, ∼ 340
empirical damping

classical error oriented, 114
adaptive trust region

trivial BVP error oriented, 48
extension adaptive trust region

tangent error oriented, 18
adaptive trust region

Table 7.1. Space Shuttle problem: Fixed continuation step from τ = 0.0085 to
τ = 0.0080. Comparative computational amount for different Newton continuation
methods.

In 1975, an adaptive error oriented Newton method [81] in connection with
the trivial BVP extension made it, for the first time, possible to solve the
original NASA problem for temperature level 2000◦F (τ = 0.). Results of
technical interest have been published by E.D. Dickmanns and H.-J. Pesch
[88]. The performance of this computational technique for temperatures even
below the NASA objective value is documented in Table 7.2. As can be seen,
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this kind of continuation technique, even though it succeeds to solve the
problem, still performs a bit rough.

Continuation sequence work Remarks

0.0 → -0.0050 60 fail switching structure totally disturbed
0.0 → -0.0010 60 fail negative argument in log-function
0.0 → -0.0005 80
-0.0005 → -0.0010 63
-0.0010 → -0.0020 50
-0.0020 → -0.0050 65
-0.0050 → -0.0200 30 fail switching structure totally disturbed
-0.0050 → -0.0100 30 fail as above
-0.0050 → -0.0100 67 fail Newton method fails to converge
0.0050 → -0.0080 66 prescribed final parameter

0.0 → -0.0080 571 overall amount

Table 7.2. Space Shuttle problem: Adaptive continuation method [81] via triv-
ial BVP extension (7.12).

A much smoother and faster behavior occurs when adaptive tangent contin-
uation as worked out in Section 5.1 is applied—just see Table 7.3. With this
method the temperature could be lowered even down to 1700◦F . Starting
from these data, H.G. Bock [30] computed an achievable temperature of only
890◦C from the multiple shooting solution of a Chebyshev problem assuming
that all state constraints of the problem are to be observed.

Continuation sequence work Remarks

0.0 → -0.0035 47 ordinary Newton method
-0.0035 → -0.0057 32 throughout the computation;
-0.0057 → -0.0080a 31 switching structure never disturbed

0.0 → -0.0080 110 overall amount
a stepsize cut off to prescribed final value τ = −0.0080.

Table 7.3. Space Shuttle problem: Adaptive tangent continuation [61]. See also
Section 5.1 here.

Remark 7.1 It may be interesting to hear that none of these ‘cooler’ space
shuttle trajectories has been realized up to now. In fact, the author of this
book has presented the optimal 2000◦F trajectories in 1977 within a seminar
at NASA, Johnson Space Flight Center, Houston; the response there had
been that the countdown for the launching of the first space shuttle (several
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years ahead) had already gone too far to make any substantial changes. The
second chance came when Europe thought about launching its own space
shuttle HERMES; in fact, the maximum skin temperature assumed therein
turned out to be the same as for the present NASA flights! Sooner or later, a
newcomer in the space flight business (and this is big business!) will exploit
this kind of knowledge which permits him (or her) to build a space shuttle
in a much cheaper technology.

Gauss-Newton continuation method. As soon as turning or bifurcation
points might arise, any Newton continuation method is known to be inef-
ficient and Gauss-Newton techniques come into play—compare Section 5.2.
The basic idea behind these techniques is to treat the parameter dependent
nonlinear equations as an underdetermined system in terms of the extended
variable z = (x, τ) = (x1, . . . , xm, τ). In addition to the Wronskian approxi-
mations Gj we therefore need the derivatives

gj :=
∂Φtj+1,tj (τ)xj

∂τ
, j = 1, . . . ,m .

With these definitions the Jacobian (nm, nm+ 1)-matrix now has the block
structure

J =

⎡⎢⎢⎢⎣
G1 −I g1

. . . . . .
...

Gm−1 −I gm−1

A B gm

⎤⎥⎥⎥⎦ .
Based on this structure, Gaussian block elimination offers a convenient way
to compute a Gauss-Newton correction

Δ̂z = −J−F

in terms of the outer inverse J− already introduced in (7.5). The computation
of Δ̂z can be conveniently based on a QR-decomposition of the (n, n + 1)-
matrix [E, g], where

E := A+BGm−1 · · · · ·G1 ,
g := gm +B(gm−1 + · · ·+Gm−1 · · · · ·G2g1) .

With this we obtain a variant of the condensing algorithm(
Δ̂x1

Δ̂τ

)
= −[E, g]+u ,

Δ̂xj+1 = GjΔ̂xj + gjΔ̂τ + Fj , j = 1, . . . ,m− 1 .

(7.15)

Of course, iterative refinement sweeps must be properly added, see Section
7.1.1. This kind of Gauss-Newton continuation would need to be coupled by
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some extra step-size control in the continuation parameter τ—which is not
worked out here.
Instead we advocate a realization of the standard Gauss-Newton continuation
method as developed in Section 5.2. In the spirit of (5.28) and (5.29), a Gauss-
Newton correction in terms of the Moore-Penrose pseudo-inverse can be easily
computed via

Δz = −J+F = Δ̂z − (t, Δ̂z)
(t, t)

t , (7.16)

wherein t now denotes any kernel vector satisfying Jt = 0. Let t =
(t1, . . . , tm, tτ ) denote the partitioning of a kernel vector. Then components
(t1, tτ ) can be computed from the (n, n+ 1)-system

Et1 + gtτ = 0

again via the QR-decomposition. The remaining components are once more
obtained via explicit recursion as

tj+1 = Gjtj + gjtτ , j = 1, . . . ,m− 1 .

Insertion of the particular correction Δ̂z and the kernel vector t finally yields
the Gauss-Newton correction Δz. The local convergence analysis as well as
the corresponding step-size control in τ can then be copied from Section 5.2
without further modification.
As for the inner products arising in the above formula, the discrete L2-product
(·, ·)Δ defined in (7.9) looks most promising, since it implicitly reflects the
structure of the BVP.

Detection of critical points. Just as in Section 5.2.3, certain determinant
pairs need to be computed. This is especially simple in the context of the
QR-decomposition of the matrix [E, g] in (7.15).

Bibliographical Note. More details are given in the original paper [73]
by P. Deuflhard, B. Fiedler, and P. Kunkel. There also a performance com-
parison of MULCON, a multiple shooting code with Gauss-Newton continuation
as presented here, and AUTO, a collocation code with pseudo-arclength con-
tinuation due to E. Doedel [89] is presented: the given numerical example
nicely shows that the empirical pseudo-arclength continuation is robust and
reliable, but too cautious and therefore slower, whereas the adaptive Gauss-
Newton continuation is also robust and reliable, but much faster. Moreover,
continuous analogs of the augmented system of G. Moore for the characteri-
zation of bifurcations are worked out therein.
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7.2 Parameter Identification in ODEs

This section deals with the inverse problem in ordinary differential equations
(ODEs): given a system of n nonlinear ODEs

y′ = f(y, p) , y(0) given , p ∈ Rq ,

determine the unknown parameter vector p such that the solution y(t, p) ‘fits’
given experimental data

(τj , zj) zj ∈ Rn , j = 1, . . . ,M .

Let
δy(τj , p) := y(τj , p)− zj , j = 1, . . . ,M .

denote the pointwise deviations between model and data with prescribed
statistical tolerances δzj , j = 1, . . . ,M . If some of the components of zj are
not available, this formally means that the corresponding components of δzj
are infinite. In nonlinear least squares, the deviations are measured via a
discrete (weighted) l2-product (·, ·), which leads to the problem

(δy, δy) =
1
M

M∑
j=1

‖D−1
j δy(τj , p)‖22 = min

with diagonal weighting matrices

Dj := diag(δzj1, . . . , δzjn) , j = 1, . . . ,M .

If we define some nonlinear mapping F by

F (p) :=

⎡⎢⎣ D−1
1 δy(τ1, p)

...
D−1

M δy(τM , p)

⎤⎥⎦ ,
then our least squares problem reads

‖F (p)‖22 ≡ (δy, δy) = min .

If all components at every data point τj have been measured (rare case), then
F : Rq −→ RL with L = nM . Otherwise some L < nM occurs.
We are thus guided to some constrained nonlinear least squares problem

y′ = f(y, p), (δy, δy) = min ,

where the ODEs represent the equality constraints. This problem type leads
to a modification of the standard multiple shooting method.
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The associated Jacobian (L, q)-matrix F ′(p) must also be computed exploit-
ing its structure numerically

F ′(p) =

⎡⎢⎣ D−1
1 yp(τ1)

...
D−1

l yp(τl)

⎤⎥⎦ . (7.17)

Herein the sensitivity matrices yp each satisfy the variational equation

y′p = fy(y, p)yp + fp(y, p)

with initial values yp(tj) = 0, tj ∈ Δ. Of course, we will naturally pick m
multiple shooting nodes out of the set ofM measurement nodes, which means
that

Δ := {t1, . . . , tm} ⊆ {τ1, . . . , τM}
with, in general, m � M . As before, sub-trajectories Φt,tj (p)xj are defined
per each subinterval t ∈ [tj , tj+1] via the initial value problem

y′ = f(y, p) , y(tj) = xj .

Figure 7.3 gives a graphical illustration of the situation for the special case
M = 13, m = 4.

ξ1

ξ2

ξ3

Φt2t1ξ1

Φt3t2ξ2

Φt4t3ξ3

t1 =τ1 =a t2 =τ5 t3 =τ9 t4 =τ13 =b
t

y(t)

τ2 τ3 τ4 τ6 τ7 τ8 τ2 τ3 τ4

Fig. 7.3. Multiple shooting for parameter identification (M = 13, m = 4).

Unknowns to be determined are (x, p) = (x1, . . . , xm, p). If we introduce the
convenient notation

r(x1, . . . , xm, p) :=

⎡⎢⎢⎢⎣
D−1

1 (Φτ1,t1(p)x1 − z1)
...

D−1
M−1(Φ

τM−1,tm−1(p)xm−1 − zM−1)
D−1

M (xm − zM )

⎤⎥⎥⎥⎦ ,
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we arrive at the parameter identification problem in its multiple shooting
version

Fj(xj , xj+1, p) := Φtj+1,tj(p)xj − xj+1 = 0 , j = 1, . . . ,m− 1 ,

‖r(x1, . . . , xm, p)‖22 = min .

Obviously, this is a constrained nonlinear least squares problem with the
continuity equations as nonlinear constraints, an overdetermined extension
of (7.11).
For ease of notation we write the whole mapping as

F (x, p) =

⎡⎢⎢⎢⎣
F1(x1, x1, p)

...
Fm−1(xm−1, xm, p)
r(x1, . . . , xm, p)

⎤⎥⎥⎥⎦
and its block structured Jacobian matrix (ignoring weighting matrices for
simplicity) as

J =

⎡⎢⎢⎢⎣
G1 −I P1

. . . . . .
...

Gm−1 −I Pm−1

B1 . . . Bm−1 Bm Pm

⎤⎥⎥⎥⎦ .
The above matrices Pj , j = 1, . . . ,m represent the parameter derivatives
of the mapping F consisting just as in (7.17) of sensitivity matrices; their
length and initial values depend on the available measurement data and on
the selection of the multiple shooting nodes out of the measurement modes—
details are omitted here, since they require clumsy notation.
Upon recalling (7.11) and (7.5), the corresponding constrained Gauss-Newton
corrections are defined as

(Δxk, Δpk) = −J(xk, pk)−F (xk, pk)

or, more explicitly, via the block system

GjΔxj −Δxj+1 + PjΔp = −Fj , j = 1, . . . , ,m− 1 ,

‖B1Δx1 + · · ·+BmΔxm + PmΔp+ r‖22 = min .

Gaussian block elimination. Proceeding as in the simpler BVP case, we
here obtain (

Δx1

Δp

)
= −[E,P ]+u ,

wherein the quantities E,P, u are computed recursively from
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P̄m := Pm, B̄m := Bm ,

j = m− 1, . . . , 1 : P̄j := P̄j+1 + B̄j+1Pj , B̄j := Bj + B̄j+1Gj ,

E := B̄1 , P := P̄1 ,

u := r +Bm[Fm−1 + · · ·+Gm−1 · · · · ·G2F1] .

The remaining correction components follow from

Δxj+1 = GjΔxj + PjΔp+ Fj , j = 1, . . . ,m− 1 .

In analogy with (7.5) and with the notation for the block matrices L, R
introduced there, the generalized inverse J− can be formally written as

J− = RS−L, S− = diag ([E,P ]+, I, · · · , I).

Bibliographical Note. Since 1981, this version of the multiple shooting
method for parameter identification in differential equations has been sug-
gested and driven to impressive perfection by H.G. Bock [29, 31, 32] and his
coworkers. It is implemented in the program PARFIT. A single shooting vari-
ant especially designed for parameter identification in large chemical reaction
kinetic networks has been worked out in detail by U. Nowak and the author
[158, 159] in the code PARKIN.

Iterative refinement sweeps. In order to start the iterative refinement
sweeps, we require some iterative correction of the above condensed least-
squares system. A naive iterative correction approach, however, would not
be suitable for large residuals

r̄ = EΔx1 + PΔp+ u .

Thus we recommend an algorithm proposed by Å. Bjørck [25] to be adapted
to the present situation. In this approach the above linear least-squares prob-
lem is first written in the form of the augmented linear system of equations

−r̄ + EΔx1 + PΔp+ u = 0 ,
[E,P ]T r̄ = 0

in the variables Δx1, Δp, r̄. The iterative correction is then applied to this
system. If it converges—which means that the condensed linear least-squares
problem is regarded as well-posed—then, without any changes, the iterative
refinement sweeps for the explicit recursion can be applied in the same form
as presented in the standard situation treated in Section 7.1.1.
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7.3 Periodic Orbit Computation

In this section we are interested in continuous solutions of periodic boundary
value problems:

y′ = f(y) ,

r(y(0), y(T )) := y(T )− y(0) = 0
(7.18)

with (hidden) time variable t and (unknown) period T . Here we treat only
the situation that f is autonomous, the nonautonomous case is essentially
standard. In this case f satisfies the variational equation

f ′ = fy · f ,
which can be formally solved as

f(y(t)) = W (t, 0) f(y(0)) , (7.19)

wherein W (·, ·) is once more the propagation matrix of the variational equa-
tion. Insertion of the periodicity condition y(T ) = y(0) then yields

f(y(T )) = f(y(0)) =W (T, 0)f(y(0)) ,

or, equivalently, with E = E(0) = W (T, 0)− I inserted:

Ef(y(0)) = 0 .

Obviously, the sensitivity matrix E is singular and f(y(0)) is a right eigen-
vector associated with eigenvalue zero, if only f(y(0)) �= 0. The singularity
of E reflects the fact that the phase or time origin is undetermined, causing
a special nonuniqueness of solutions: whenever y(t), t ∈ [0, T ] is a periodic
solution, then y(t + t0), t ∈ [0, T ], t0 �= 0, is a different periodic solution,
even though it is represented by the same orbit. Obviously, there exists a
continuous solution set generated by S1-symmetry. In this situation, we will
naturally aim at computing the orbit directly, which means computing any
trajectory y(t+ t0), t ∈ [0, T ] without fixing the phase t0.
In what follows we will assume that the eigenvalue zero of E is simple, which
then implies that

rank[E, f(y(0))] = n

and
ker[E, f ] = (f, 0) . (7.20)

7.3.1 Single orbit computation

First we treat the case when a single periodic orbit is wanted. In order to
convey the main idea, we start with the derivation of a special Gauss-Newton
method in the framework of single shooting (m = 2).
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Single Shooting. In this approach one obtains the underdetermined system
of n equations

F (z) = ΦTx− x = 0

in the n + 1 unknowns z = (x, T ) is generated. The corresponding Jacobian
(n, n+ 1)-matrix has the form

F ′(z) = [rx, rT ] = [E, f(x(T ))] ,

or, after substituting a periodic solution,

F ′(z) = [E, f(x(0))] .

Under the assumption made above the Jacobian matrix has full row rank and
its Moore-Penrose pseudoinverse F ′(z)+ has full column rank. Hence, instead
of a Newton method we can construct the Gauss-Newton iteration

Δzk = −F ′(zk)+F (z), zk+1 = zk +Δzk, k = 0, 1, . . . .

Also under the full rank assumption this iteration will converge locally
quadratically to some solution z∗ in the ‘neighborhood’ of a starting point
z0, i.e., to an arbitrary point on the orbit. This point determines the whole
orbit uniquely.

Multiple shooting. In multiple shooting we need to have fixed nodes. So
we introduce the dimensionless independent variable

s :=
t

T
∈ [0, 1] . (7.21)

Let
Δ := {0 = s1 < s2 < · · · < sm = 1}

denote the given partitioning with mesh sizes

Δsj := sj+1 − sj , j = 1, . . . ,m− 1 .

Then the following conditions must hold

Fj(xj , xj+1, T ) := ΦTΔsjxj − xj+1 = 0 , j = 1, . . . ,m− 1 ,

r(x1, xm) := xm − x1 = 0 .

The subtrajectories can be formally represented by

ΦTΔsjxj = xj +

TΔsj∫
s=0

f(y(s))ds .

With the Wronskian (n, n)-matrices
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Gj :=
∂ΦTΔsjxj

∂xj
= W (sj+1, sj)

∣∣∣
ΦT (s−sj)xj)

and the n-vectors

gj :=
∂ΦTΔsjxj

∂T
= Δsjf(ΦTΔsjxj)

the underdetermined linear system to be solved in each Gauss-Newton step
has the form

G1Δx1−Δx2 +g1ΔT = −F1

. . . . . .
...

...
Gm−1Δxm−1−Δxm+gm−1ΔT = −Fm−1

−Δx1 +Δxm = 0 .

Gaussian block elimination. The ‘condensing’ algorithm as described in Sec-
tion 7.1.1 will here lead to the small underdetermined linear system

EΔx1 + gΔT + u = 0 ,

where
E = Gm−1 · · · · ·G1 − I ,
g := gm−1 + · · ·+Gm−1 · · · · ·G2g1 ,

u := Fm−1 + · · ·+Gm−1 · · · · ·G2F1 .

At a solution point z∗ = (x∗1, . . . , x
∗
m, T

∗) we obtain

E∗ =W (1, 0)− I , g∗ = f(x∗1) ,

just recalling that

f(x∗m) =W (sm, sj)f(x∗j ) = f(x∗1),

Δs1 + · · ·+Δsm−1 = 1 .

Hence, the (n, n+ 1)-matrix

[E∗, g∗] = [E(0), f(y(0))]

has again full row rank n. Consequently, an extension of the single shooting
rank-deficient Gauss-Newton method realizing the Jacobian outer inverse J−

can be envisioned.
Better convergence properties, however, are expected by the standard Gauss-
Newton method which requires the Moore-Penrose pseudoinverse J+ of the
total block Jacobian. As in the case of parameter dependent BVPs, we again
compute a kernel vector t = (t1, . . . , tm, tT ), here according to
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[E, g]
(
t1
tT

)
= 0 ,

tj+1 = Gjtj + gjtT , j = 1, . . . ,m− 1

and combine it with iterative refinement sweeps, of course. The computation
of the actual Gauss-Newton correction then follows from

Δz = Δ̂z − (t, Δ̂z)
(t, t)

t ,

where Δ̂z is an arbitrary particular correction vector satisfying

F ′(zk)Δ̂z + F (zk) = 0 .

Simplified Gauss-Newton method. At the solution point z∗, the above
equations lead (up to some normalization factor) to the known solution

(t1, tT ) = (f(x∗1), 0) .

Upon inserting this result into (7.19), we immediately arrive at

tj = f(x∗j ) , j = 2, . . . ,m .

This inspires an intriguing modification of the above Gauss-Newton method:
we may insert the ‘iterative’ kernel vector

tkT = 0, tkj = f(xk
j ) j = 1, . . . ,m

into the expression (7.16). In this way we again obtain some pseudo-inverse
and, in turn, thus define some associated Gauss-Newton method.

Bibliographical Note. The multiple shooting version realizing the Jaco-
bian outer inverse J− has been suggested in 1984 by P. Deuflhard [64] and
implemented in the code PERIOD. The improvement realizing J+ has been
proposed in 1994 by C. Wulff, A. Hohmann, and P. Deuflhard[199] and re-
alized in the orbit continuation code PERHOM—for details see the subsequent
Section 7.3.2. The same paper also contains a possible exploitation of sym-
metry for equivariant orbit problems, following up the work of K. Gatermann
and A. Hohmann [95] for equivariant steady state problems.

7.3.2 Orbit continuation methods

In this section we consider the computation of families of orbits for the pa-
rameter dependent periodic boundary value problem

y′ = f(y, λ) ,

r(y(0), y(T )) := y(T )− y(0) = 0 ,
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where λ is the embedding parameter and T the unknown period. Note that
the S1-symmetry now only holds for fixed λ, so that the orbits can be explic-
itly parametrized with respect to λ. Throughout this section, let {λν} denote
the parameter sequence and

Δλν := λν+1 − λν

the corresponding continuation step sizes to be automatically selected.

Single shooting. In order to convey the main geometrical idea, we again
start with this simpler case. There we must solve the sequence of problems

F (x, T, λ) := ΦT (λ)x − x = 0

for the parameters λ ∈ {λν}.
Classical continuation method. This continuation method, where the previous
orbit just serves as starting guess for the Gauss-Newton iteration to compute
the next orbit, can be implemented without any further discussion, essentially
as described in Section 5.1.
Tangent continuation method. The realization of this method deserves some
special consideration. The Jacobian (n, n+ 2)-matrix has the following sub-
structure

[Fx, FT , Fλ] = [E, f, p]

with E, f as introduced above and p defined as

p :=
∂ΦT (λ)x
∂λ

.

Let t = (tx, tT , tλ) denote any kernel vector satisfying

Etx + f · tT + p · tλ = 0 .

Under the above assumption that [E, f ] has full row rank n, we here know
that

dim ker[E, f, p] = 2 .

A natural basis for the kernel will be {t1, t2} such that

t1 := ker[E, f ] , t2 ⊥ t1 , (7.22)

wherein
ti = (tix, t

i
T , t

i
λ) , i = 1, 2 .

From (7.20) and (7.22) we are directly led to the representations (ignoring
any normalization)

t1x = f , t1T = 0 , t1λ = 0

and
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t2x
t2T

)
= −[E, f ]+p , t2λ := 1 .

Upon recalling that t1 reflects the S1-symmetry of each orbit, tangent con-
tinuation will mean to continue along t2. In the notation of Section 5 this
means that guesses (x̂, T̂ ) can be predicted as(

x̂(λν+1)− x̄(λν)
T̂ (λν+1)− t(λν)

)
=
(
t2x
t2T

)∣∣∣∣
λν

·Δλν .

These guesses are used as starting points for the Gauss-Newton iteration as
described in Section 7.3.1. Since t1T = t1λ = 0, the property t1 ⊥ t2 also
implies t1x ⊥ t2x, which means that

x̂(λν+1)− x̄(λν) ⊥ f(x̄(λν)) . (7.23)

The geometric situation is represented schematically in Figure 7.4.

x̂(τν+1)

f(x̄(τν))

x̄(τν)

H

τν-orbit

Fig. 7.4. Orbit continuation: H Hopf bifurcation point, — stable steady states,
- - - unstable steady states.

Multiple Shooting. As in (7.21) we again deal with fixed nodes

Δ := {0 = s1 < s2 < · · · < sm = 1}

instead of variable nodes tj = sjT, j = 1, . . . ,m.



7.3 Periodic Orbit Computation 343

Switching notation, let now t = (t1, . . . , tm, tT , tλ) denote a selected kernel
vector satisfying

Gjtj − tj+1 + gj · tT + pjtλ = 0 , j = 1, . . . ,m− 1 ,

tm = t1 ,

wherein Gj , gj , and pj are essentially defined as in single shooting (m = 2).
For m > 2, the Jacobian nullspace is still two-dimensional. For continuation
we again choose the tangent vector

t = (f(x1), . . . , f(xm), 0, 0), x = x̄(λν) .

Gaussian block elimination. In this setting, we will compute(
Δ̂x1

Δ̂T

)
:= −[E, f ]+p ·Δλν

with
p := pm−1 + · · ·+Gm−1 · · · · ·G2p1

and, recursively, for j = 1, . . . ,m− 2:

Δ̂xj+1 = GjΔ̂xj + gjΔ̂T + pjΔλν .

As a straightforward consequence, we may verify that

Δ̂xm = Δ̂x1 .

The thus defined continuation

x̂j(λν+1)− x̄j(λν) = Δ̂xj , j = 1, . . . ,m, T̂ (λν+1)− t(λν) = Δ̂T

clearly satisfies the local orthogonality property

x̂1(λν+1)− x̄1(λν) ⊥ f(x̄1(λν)) ,

which is biased towards the node s1 = 0. Therefore, already from a geomet-
rical point of view, the above continuation method should be modified such
that the global orthogonality

x̂(λν+1)− x̄(λν) ⊥ f(x̄(λν))

holds as a natural extension of (7.23). This directly leads us to the following
orbit continuation method

x̂(λν+1)− x̄(λν) = Δ̂x− (fν , Δ̂x)
(fν , fν)

fν

with fν = f(x̄(λν)). Once more, the periodicity condition

x̂m(λν+1) = x̂1(λν+1)

can be shown to hold.
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Hopf bifurcations. The detection of Hopf bifurcation points H is an easy
computational task. First, orbit continuation beyond H is impossible, as long
as we come from the side of the periodic orbits, which we here do—see Fig-
ure 7.4. Second, at H , the condition f = 0 leads to rank[E, f ] < n—a be-
havior that already shows up in a neighborhood of H . Third, the automatic
stepsize control will lead to a significant reduction of the stepsizes Δλν . As
soon as a Hopf bifurcation point seems to close by, its precise computation
can be done switching to the augmented system suggested by A.D. Jepson
[124].

Bibliographical Note. The above orbit continuation has been worked
out in 1994 by C. Wulff, A. Hohmann, and P. Deuflhard [199] and realized in
the code PERHOM. The same paper also covers the detection and computation
of Hopf bifurcations and period doublings. Particular attention is paid to the
computational exploitation of symmetries following up work of M. Dellnitz
and B. Werner [50] and of K. Gatermann and A. Hohmann [95], the latter for
steady state problems only, the former including Hopf bifurcations as well.

7.3.3 Fourier collocation method

In quite a number of application fields the desired periodic solution y to
period T = 2π/ω is just expanded into a Fourier series according to

y(t) = 1
2a0 +

∑
j

(aj cos(jωt) + bj sin(jωt)) .

Such a solution living in the infinite dimensional function space L2 cannot be
directly computed from the periodic BVP (7.18). Instead one aims at com-
puting some Fourier-Galerkin approximation ym out of the finite dimensional
subspace Um ⊂ L2 according to the finite Fourier series ansatz

ym(t) = 1
2a0 +

m∑
j=1

(aj cos(jωt) + bj sin(jωt)) , (7.24)

where aj , bj ∈ Rn. Insertion into the approximate periodic BVP

y′m = f(ym) , ym(T ) = ym(0)

will require the coefficients of the derivative defined via

y′m(t) =
m∑

j=1

(
a′j cos(jωt) + b′j sin(jωt)

)
with

a′j = jωbj , b′j = −jωaj
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as well as those of the right side defined via

f(ym(t)) =
m∑

j=1

(αj cos(jωt) + βj sin(jωt)) . (7.25)

Upon inserting the two expansions into the BVP (7.24), we arrive at the
system of N = 2m+ 1 relations

jωbj = αj , j = 0, . . . ,m , −jωaj = βj , j = 1, . . . ,m .

From the theory of Fourier transforms we know that the right side coefficients
can be computed via

αj =
2
T

T∫
t=0

f(ym(t)) cos(jωt) dt , βj =
2
T

T∫
t=0

f(ym(t)) sin(jωt) dt . (7.26)

Obviously, this Galerkin approach involves a continuous Fourier transform
which inhibits the construction of an approximation scheme for ym.
Therefore, already in 1965, M. Urabe [188] suggested to replace the continu-
ous Fourier transform by a discrete Fourier transform, i.e., by trigonometric
interpolation over equidistant nodes

tk = T
k

N
, k = 0, 1, . . . , N .

Formally speaking, the integrals in (7.26) are then approximated by their
trapezoidal sums defined over the selected set of nodes. As a consequence, we
now substitute the Galerkin approximation ym by a Galerkin-Urabe approx-
imation defined via the modified Fourier series expansion

ŷm(t) = 1
2 â0 +

m∑
j=1

(
âj cos(jωt) + b̂j sin(jωt)

)
(7.27)

and the corresponding expansion for its derivative ŷ′m(t). Instead of (7.25)
we now have a modified expansion

f(ŷm(t)) =
m∑

j=1

(
α̂j cos(jωt) + β̂j sin(jωt)

)
and instead of the representation (7.26) we obtain the well-known trigono-
metric expressions

α̂j =
2
N

N−1∑
k=0

f(ŷm(tk)) cos(jωtk) , β̂j =
2
N

N−1∑
k=0

f(ŷm(tk)) sin(jωtk) .

(7.28)
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We again require the N = 2m+ 1 relations

jωb̂j = α̂j , j = 0, . . . ,m , −jωâj = β̂j , j = 1, . . . ,m . (7.29)

As before, we insert the expansion for ŷm into the formal representation
(7.28) so that the coefficients α̂j , β̂j drop out and we arrive at a system
of nN equations, in general nonlinear. Originally, Urabe had suggested this
approach, also called harmonic balance method, for nonautonomous periodic
BVPs where T (or ω, respectively) is given in the problem so that the nN
unknown coefficients (â0, â1, b̂1, . . . , âm, b̂m) can, in principle, be computed.
For autonomous periodic BVPs as treated here, system (7.29) turns out to
be underdetermined with nN + 1 unknowns (â0, â1, b̂1, . . . , âm, b̂m, ω) to be
computed. We observe that in this kind of approximation local nonunique-
ness shows up just as in the stated original problem: given a solution with
computed coefficients âj , b̂j , then any trajectory defined by the modified co-
efficients

ã0 = â0 , ãj = âj cos(jωτ) + b̂j sin(jωτ) , b̃j = b̂j cos(jωτ)− âj sin(jωτ) ,

is also a solution, shifted by τ . Therefore we may simply transfer the Gauss-
Newton methods for single orbit computation or for orbit continuation (see
the preceding sections) to the nonlinear mapping as just defined.
Numerical realization of Gauss-Newton method. For ease of writing,
we here ignore the difference between ym and ŷm and skip all ‘hats’ in the
coefficients. Then the underdetermined system has the form

F (z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
N

N−1∑
k=0

f(ym(tk))

...
2
N

N−1∑
k=0

f(ym(tk)) cos(jωtk) + jωbj

2
N

N−1∑
k=0

f(ym(tk)) sin(jωtk)− jωaj

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 , z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

...
aj

bj
...
ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

in terms of a mapping F : RnN+1 −→ RnN . Herein z additionally enters via
the expression (7.27) understood to be inserted for ym. For the corresponding
Jacobian (nN, nN + 1)-matrix we may write block columnwise

F ′(z) = (Fa0(z), Fa1(z), Fb1(z), . . . , Fam(z), Fbm(z), Fω(z)) .

Assume we have already computed the Fourier series expansion of the (n, n)-
matrix fy(ym), say with coefficients
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Aj =
2
N

N−1∑
k=0

fy(ym(tk)) cos(jωtk) , Bj =
2
N

N−1∑
k=0

fy(ym(tk)) sin(jωtk) .

Then a straightforward calculation reveals that

Fω(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
...
jaj

−jbj
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Fa0(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2A0

...
1
2Bj

1
2Aj

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and, for l = 1, . . . ,m:

Fal
(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Al

...
1
2 (Bl+j −Bl−j) + jωδjlIn

1
2 (Al+j +Al−j)

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

Fbl
(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bl

...
1
2 (−BAl+j +Al−j)

1
2 (Bl+j +Bl−j)− jωδjlIn

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In this representation, certain indices run out of the permitted index set:
whenever an index l > m appears, then replace Al by AN−l and Bl by
−BN−l; whenever l < 0, then replace Al by A−l and Bl by −B−l. In this
way all computations can be performed using the FFT algorithm for f and fy,
assuming that an iterate ym is at hand—which it is during the Gauss-Newton
iterations for single orbit computation or orbit continuation (see preceding
sections).
Adaptivity device. Up to now, we have not discussed the number m of
terms necessary to obtain an approximations to prescribed accuracy. Let | · |
denote the L2[0, T ]-norm then we have

εm = |y − ym| =
⎛⎝ ∞∑

j=m+1

(
a2

j + b2j
)⎞⎠

1
2

.
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If we repeat the Galerkin-Urabe procedure with m replaced by M � m then
we may choose the computationally available term

[εm] = |yM − ym| =
⎛⎝ M∑

j=m+1

(
a2

j + b2j
)⎞⎠

1
2

≤ εm

as a reasonable error estimate. Upon again ignoring the difference between
the Fourier coefficients ym and ŷm, we may apply a well-known approximation
result from Fourier analysis: assume that the unknown function y and all its
approximations ym are analytic, then the coefficients obey some exponential
decay law, which we write in the form

εm
.= Ce−γm ,

where the coefficients C, γ are unknown a-priori and need to be estimated.
For this purpose, let the optimal number m∗ be such that

εm∗
.= TOL

and assume that this is not yet achieved for the actual index m. Then a
short calculation (see also Exercise 7.6 for more details) shows that m∗ can
be estimated by the adaptive rule (with some further index l� m)

m∗ .= m+ (m− l) log([εm]/TOL)
log([εl]/[εm])

. (7.30)

Only with such an adaptivity device added, the Galerkin-Urabe (also: har-
monic balance) method can be expected to supply reliable computational
results.
From (7.28) and (7.29) we may readily observe that in the Galerkin-Urabe
approach the BVP (7.24) has been tacitly replaced by the discrete boundary
value problem

ŷ′m(tk) = f (ŷm(tk)) , k = 0, 1, . . . , N , ŷm(T ) = ŷm(0) ,

wherein t0 = 0, tN = T by definition. The boundary conditions are implicitly
taken into account by the Fourier ansatz. One of the conditions, at t = 0 or
at t = T , can be dropped due to periodicity so that there are nN so-called
collocation conditions left. By construction, the method inherits the symme-
try of the BVP with respect of an interchange of the boundaries t = 0 and
t = T—indicating that this computational approach treats periodic BVPs as
spacelike BVPs—as opposed to the preceding Sections 7.3.1 and 7.3.2 where
multiple shooting approaches for timelike BVPs have been discussed. The
following Section 7.4 is fully devoted to collocation methods for spacelike
BVPs—there, however, in connection with polynomial approximation.
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7.4 Polynomial Collocation for Spacelike BVPs

In the collocation approach the interval [a, b] is subdivided into a partition

Δ = {a = t1 < t2 < · · · < tm = b}, m > 2 ,

where each subinterval Ij = [tj , tj+1] of length τj = tj+1 − tj is further
subdivided by s internal nodes, the so-called collocation points

tji = tj + ciτj , i = 1, . . . , s , 0 ≤ c1 < · · · < cs ≤ 1

corresponding to some quadrature rule of order p with nodes ci. LetΔ∗ denote
the union of all collocation points—to be distinguished from the above defined
coarse mesh Δ.
Let u denote the collocation polynomial to be computed for the given BVP.
The collocation polynomial is defined via the n boundary conditions

Fm = r(u(a), u(b)) = 0

typically assumed to be linear separated (cf. [9, 71])

Fm = Au(a) +Bu(b)− d = 0 , (7.31)

so that all components arising therein can be fixed. At the ‘internal’ nodes
we require the (m− 1)sn ‘local’ collocation conditions

Fji = u′(tji)− f(u(tji)) = 0, tji ∈ Δ∗ (7.32)

often in the scaling invariant form (i.e. invariant under rescaling of the vari-
able t)

Fji = τj (u′(tji)− f(u(tji))) = 0, tji ∈ Δ∗ .

Finally, the (m− 1)n ‘global’ collocation conditions

Fj = u(tj+1)− u(tj)− τj
s∑

l=1

blf(u(tjl)) = 0 , tj ∈ Δ (7.33)

must hold, wherein the quadrature rule implies the relation
s∑

l=1

bl = 1 .

By construction, the collocation approach is invariant under a↔ b whenever
a symmetric quadrature rule with

ci = 1− cs+1−i , bi = bs+1−i , i = 1, . . . , s

is selected. In fact, symmetric collocation methods are realized in nearly
all public domain codes, since they permit the highest possible convergence
orders p by one out of the following two options:
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• Gauss methods. Here collocation points are selected as the nodes of Gauss-
Legendre quadrature. This leads to the highest possible order p = 2s. The
simplest case with s = 1 is just the implicit midpoint rule. Since c0 > 0
and cs < 1, the nodes of the coarse mesh are not collocation points, i.e.,
Δ∗ ∩Δ = ∅, and hence only u ∈ C0[a, b] is obtained.

• Lobatto methods. Here the collocation points are selected as the nodes of
Lobatto quadrature. The attainable order is p = 2s− 2. The simplest case
is the implicit trapezoidal rule with p = s = 2. Since c0 = 0 and cs = 1,
the nodes of the coarse mesh are included in the set of collocation points,
i.e., Δ∗ ∩ Δ = Δ. The lower order (compared with the Gauss methods)
comes with better global smoothness, since here u ∈ C1[a, b].

In algorithmic implementations, Gauss methods are usually preferred due to
their more robust behavior in nonsmooth BVPs.

Bibliographical Note. Efficient collocation methods have been imple-
mented in the classical code COLSYS of U.M. Ascher, J. Christiansen, and
R.D. Russell and its more recent variant COLNEW by G. Bader and U.M. Ascher
[16]. An adaptive Gauss-Newton continuation method (as described in Sec-
tion 5.2) has been implemented in the code COLCON by G. Bader and P. Kunkel
[17]. An advanced residual based inexact Gauss-Newton continuation method
has been designed for collocation by A. Hohmann [120] and realized in the
rather robust research code COCON. Unfortunately, that line of development
has not continued toward a fully satisfactory general purpose collocation
code. We will resume the topic, in Section 7.4.2 below, in the frame of error
oriented inexact Newton methods. Recently, this concept has regained impor-
tance in a novel multilevel algorithm for optimal control problems based on
function space complementarity methods—a topic beyond the present scope,
for details see M. Weiser and P. Deuflhard [197].

7.4.1 Discrete versus continuous solutions

From multiple shooting techniques we are accustomed to the fact that, when-
ever the underlying BVP has a locally unique solution, the discrete system
also has a locally unique solution—just look up Lemma 7.1 and the interpre-
tation thereafter. This need not be the case for global discretization methods.
Here additional ‘spurious’ discrete solutions may occur that have nothing
to do with the unique continuous BVP solution. In [71, Section 8.4.1] this
situation has been analyzed for the special method based on the implicit
trapezoidal rule, the simplest Lobatto method already mentioned above. In
what follows we want to give the associated analysis for the whole class of
collocation methods. We will mainly focus on Gauss collocation methods,
which are the ones actually realized in the most efficient collocation codes.
Our results do, however, also apply to other collocation schemes.



7.4 Polynomial Collocation for Spacelike BVPs 351

Throughout this section we assume—without proof—that the BVP has a
unique solution y ∈ Cp+1[a, b] and that the collocation polynomial u is glob-
ally continuous, i.e., u ∈ C0[a, b], but only piecewise sufficiently differentiable,
u ∈ Cp+1[tj , tj+1], which we denote by u ∈ Cp+1

Δ [a, b]. In what follows we
restrict our attention to Gauss methods, which means p = 2s. Consequently,
the discretization error ε(t) = u(t) − y(t), t ∈ [a, b] satisfies ε ∈ Cp+1

Δ [a, b].
In order to study its behavior, we introduce norms over the grids Δ,Δ∗, for
example

|ε|Δ = max
t∈Δ

‖ε(t)‖

in terms of some vector norm ‖ · ‖. Let

τ = max
j=1,...,m−1

τj

denote the maximum mesh size on the coarse grid Δ. With these prepara-
tions we are now ready to state a convergence theorem for Gauss collocation
methods.

Theorem 7.2 Notation as just introduced. Consider a BVP on [a, b] with
linear separated boundary conditions and a right side f that is p-times dif-
ferentiable with respect to its argument. Assume that the BVP has a unique
solution y ∈ Cp+1[a, b]. Let this solution be well-conditioned with bounded
interval condition number ρ̄. Define a global Lipschitz constant ω via

‖fy(v) − fy(w)‖ ≤ ω‖v − w‖ . (7.34)

Consider a Gauss collocation scheme based on a quadrature rule of order
p = 2s. Let the discrete BVP have a collocation solution u ∈ Cp+1

Δ [a, b]
that is consistent with the BVP solution y. Let γ, γ∗ denote error coefficients
corresponding to the Gauss quadrature rule and depending on the smoothness
of the right hand side f . Then, for

τ ≤ (2ωγ∗(ρ̄|b− a|)2)− 1
s+1 , (7.35)

the following results hold:

(I) At the local (internal) nodes the pointwise approximation satisfies

|u− y |Δ∗ ≤ 2ρ̄|b− a|γ∗τs+1 . (7.36)

(II) At the global nodes superconvergence holds in the sense that

|u− y |Δ ≤ ρ̄|b− a|
(
2ω(ρ̄|b− a|γ∗τ)2 + γ

)
τ2s . (7.37)

Proof. I. We begin with deriving a perturbed variational equation for the
discretization error ε ∈ Cp+1

Δ [a, b]. For t ∈ Ij = [tj , tj+1] we may write
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ε′(t)− fy(y(t))ε(t) = δf(t) + δϕ(t) , (7.38)

where
δf(t) = u′(t)− f(u(t))

and
δϕ(t) = f(u(t))− f(y(t))− fy(y(t))ε(t)

=

1∫
Θ=0

(
fy(y(t) +Θε(t))− fy(y(t))

)
ε(t) dΘ .

The above first term δf vanishes at the collocation points and gives rise to
the local upper bound for the interpolation error (see, e.g., [71, Thm. 7.16])

max
σ∈Ij

‖δf(σ)‖ ≤ γτs
j . (7.39)

The second term δϕ contains the nonlinear contribution and satisfies the
pointwise estimate

‖δϕ(t)‖ ≤ 1
2ω‖ε(t)‖2 . (7.40)

By variation of constants (see Exercise 7.7) the differential equation (7.38)
can be formally solved for t ∈ [tj , tj+1] to yield

ε(t) = W (t, tj)ε(tj) +

t∫
σ=tj

W (t, σ) (δf(σ) + δϕ(σ)) dσ ,

whereW (·, ·) denotes the (Wronskian) propagation matrix, the solution of the
unperturbed variational equation—see [71, Section 3.1.1]. This, however, is
just a representation of the solution of the IVP on each subinterval. Therefore,
any estimates based on this formula would bring in the IVP condition number,
which we want to avoid for spacelike BVPs.
For this reason, we need to include the boundary conditions, known to be
linear separated, so that

δr = Aε(t1) +Bε(tm) = 0 .

Upon combining these results, we obtain the formal global representation

ε(t) =

b∫
σ=a

G(t, σ) (δf(σ) + δϕ(σ)) dσ ,

where G(·, ·) denotes the Green’s function of the (linear) variational BVP.
Its global upper bound is the condition number of the (nonlinear) BVP (as
defined in [71, Section 8.1.2]):
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ρ̄ = max
t,t̄∈[a,b]

‖G(t, t̄)‖ .

Since the BVP is assumed to be well-conditioned, the above condition number
is bounded. Note that, by definition, the Green’s function has a jump at t = t̄
such that

G(t, t+)−G(t, t−) = I .

For the subsequent derivation we decompose the integral into subintegrals
over each of the subintervals such that

ε(t) =
m−1∑
k=1

tk+1∫
σ=tk

G(t, σ) (δf(σ) + δϕ(σ)) dσ .

II. We are now ready to derive upper bounds for the discretization error.
For tj ∈ Δ, we may directly apply the corresponding Gauss quadrature rule,
since the above jumps occur only at the boundaries of each of the subintegrals.
Along this line we obtain

ε(tj) =
m−1∑
k=1

τk

( s∑
l=1

blG(tj , tkl)δϕ(tkl) + Γk(·)τ2s
k

)
.

The argument in the remainder term Γk(·) is dropped, since we are only
interested in its global upper bound, say

‖Γk(·)‖ ≤ ρ̄γ .
Introducing pointwise norms on the coarse grid Δ, and exploiting (7.40) and
(7.36), we are then led to

‖ε(tj)‖ ≤ ρ̄|b− a|
(|δϕ|Δ∗ + γτ2s

)
,

which yields
|ε|Δ ≤ ρ̄|b− a|

(
1
2ω|ε|2Δ∗ + γτ2s

)
. (7.41)

Next we consider arguments t = tji ∈ Δ∗. In this case the jumps do occur
inside one of the subintegrals. Hence, we have to be more careful in our
estimate. We start with

‖ε(t)‖ ≤
m−1∑
k=1

∥∥∥ tk+1∫
σ=tk

G(t, σ) (δf(σ) + δϕ(σ)) dσ
∥∥∥

from which we immediately see that the integrals over Ik for k �= j can be
treated as before

∥∥∥ tk+1∫
σ=tk

G(t, σ) (δf(σ) + δϕ(σ)) dσ
∥∥∥ ≤ ρ̄τk (γτ2s

k + 1
2ω|ε|2Δ∗

)
.
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For k = j, however, we just obtain

∥∥∥ tj+1∫
σ=tj

G(t, σ) (δf(σ) + δϕ(σ)) dσ
∥∥∥≤ ρ̄τj (max

σ∈Ij

‖δf(σ)‖+ 1
2ω|ε|2Δ∗

)
.

If we recall (7.39) and define the quantity

γ∗τ = (γτs + γ
τ

|b− a| ) ,

we end up with the quadratic inequality

|ε|Δ∗ ≤ ρ̄|b− a|(1
2ω|ε|2Δ∗ + γ∗τs+1) . (7.42)

For the solution of this inequality, we introduce the majorant |ε|Δ∗ ≤ ε̄ gen-
erating the quadratic equation

ε̄ = ρ̄|b− a|(1
2ωε̄

2 + γ∗τs+1) .

For the discriminant to be nonnegative we need to require

τs+1 ≤ 1
2ωγ∗(ρ̄|b− a|)2 ,

which is just statement (7.35) of the theorem. This situation is represented
graphically in Figure 7.5.

ε̄

ε̄1 ε̄2

Fig. 7.5. Left and right side of quadratic inequality (7.42).

With the notations

α =
1

ρ̄|b− a|ω , τc =
(
2ωγ∗(ρ̄|b− a|)2)− 1

s+1

we obtain the two majorant roots
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ε̄1 =
α(τ/τc)s+1

1 +
√

1− (τ/τc)s+1
, ε̄2 = α

(
1 +

√
1− (τ/τc)s+1

)
= 2α− ε̄1 .

For τ ∈ [0, τc[ we obtain the bounds

0 ≤ ε̄1 ≤ α− , 2α ≥ ε̄2 ≥ α+ .

The situation is depicted in Figure 7.6.

τ

τc

α

2α

ε̄

ε̄1

ε̄2

Fig. 7.6. Error bounds for consistent discrete solution (ε̄ ≤ ε̄1) and spurious or
‘ghost’ solutions (ε̄ ≥ ε̄2).

First we pick ε̄1, the root consistent with the continuous BVP, and are led to
the approximation result

|ε|Δ∗ ≤ ε̄1 ≤ 2ρ̄|b− a|γ∗τs+1 ,

which verifies statement (7.36). Second we study the root ε̄2. Again under
the meshsize constraint (7.35), the quadratic inequality can be seen to char-
acterize a further discrete solution branch by

|ε|Δ∗ ≥ ε̄2 .
Obviously, the proof permits the existence of inconsistent discrete solutions.
However, if such solutions exist, they are well-separated from the consistent
ones as long as τ < τc.
As a final step of the proof, we may just insert the upper bound (7.36) into
(7.41) and arrive at

|ε|Δ ≤ ρ̄|b− a|
(

1
2ω(ρ̄|b− a|γ∗τs+1)2 + γτ2s

)
≤ ρ̄|b− a| ( 1

2ω(ρ̄|b− a|γ∗τ)2 + γ
)
τ2s .

This is the desired superconvergence result (7.37) and thus completes the
proof.
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Of course, the theorem does not state anything about the situation when the
meshsize restriction (7.35) does not hold, i.e. for τ > τc. �

The above discussed possible occurrence of ‘ghost’ solutions, i.e. of inconsis-
tent discrete solutions, which have nothing to do with the continuous solu-
tion, has been experienced by computational scientists, both in ODEs and
in PDEs. In words, the above theorem states that a computed collocation
solution u is a valid approximation of the BVP solution y only, if the applied
mesh is ‘sufficiently fine’ and if this solution ‘essentially is preserved’ on suc-
cessively finer meshes. This means that the actual uniqueness structure of a
collocation solution cannot be revealed by solving just one finite-dimensional
problem. Rather, successive mesh refinement is additionally needed as an al-
gorithmic device to decide about uniqueness. This paves the way to Newton
methods in function space, also called quasilinearization—to be treated in
the next section.

7.4.2 Quasilinearization as inexact Newton method

Instead of a Newton method for the discrete nonlinear system (7.31), (7.32),
and (7.33), the popular collocation codes realize some quasilinearization tech-
nique, i.e., a Newton method in function space. Of course, approximation
errors are unavoidable, which is why inexact Newton methods in function
space are the correct conceptual frame.
We start with the exact ordinary Newton iteration in function space

yk+1(t) = yk(t) + δyk(t) , k = 0, 1, . . . .

Herein the Newton corrections δyk satisfy the linearized BVP, which is the
perturbed variational equation with linear separated boundary conditions:

δy′k − fy(yk(t))δyk = − (y′k(t)− f(yk(t))) , t ∈ [a, b] ,

Aδyk(a) +Bδyk(b) = 0 .

Newton’s method in the infinite dimensional function space can rarely be
realized, apart from toy problems. Instead we study here the corresponding
exact Newton method in finite dimensional space, i.e., the space spanned by
the collocation polynomials on the grids Δ and Δ∗ (as introduced in the
preceding section). Formally, this method replaces y, δy by their polynomial
representations u, δu, where

δu′k(tji)− fy(uk(tji))δuk(tji) = −δfk(tji) = − (u′k(tji)− f(uk(tji))) ,

Aδuk(a) +Bδuk(b) = 0 .
(7.43)

If we include a damping factor λk to expand the local domain of convergence
of the ordinary Newton method, we arrive at
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uk+1(t) = uk(t) + λkδuk(t) . (7.44)

Note that here Theorem 7.2 applies with global Lipschitz constant ω = 0. As a
consequence there are no spurious solutions δu to be expected—which clearly
justifies the use of quasilinearization. Nevertheless, the chosen mesh might
be not ‘fine enough’ to represent the solution correctly—see the discussion
on mesh selection below.

Linear band system. Within each iteration, dropping the index k, we
have to solve the finite-dimensional linear system consisting of the (scaling
invariant) local collocation conditions

Fji = τj (δu′(tji)− fy(u(tji))δu(tji) + δf(tji)) = 0 ,

the global collocation conditions

Fj = δu(tj+1)− δu(tj)− τj
s∑

l=1

bl (fy(u(tjl))δu(tjl)− δf(tjl)) = 0 (7.45)

and the boundary conditions

Fm = Aδx1 +Bδxm = 0 .

In most implementations, the local collocation conditions are realized in the
equivalent initial value problem form

Fji = δu(tji)− δu(tj)− τj
s∑

l=1

ail (fy(u(tjl))δu(tjl)− δf(tji)) . (7.46)

In this case, the local variables u(tj1), . . . , u(tjs) can be condensed—which
means expressed in terms of the global variables u(tj). However, unlike the
equations (7.45) and (7.43), the part (7.46) is not symmetric with respect
to a ↔ b. The separated boundary conditions can be dropped by fixing the
proper components of the boundary values.
The remaining linear system has block tridiagonal structure. It is usually
solved by some global direct elimination method such as the modified band
solver due to J.M. Varah [191].
In the already mentioned Gauss-Newton continuation method for parame-
ter dependent BVPs (cf. [17]), the discretized linear system is just enhanced
by a further column, which requires a slight modification of the elimina-
tion method; the corresponding rank-deficient Moore-Penrose pseudoinverse
is then simply realized via the representation (5.29) as presented in Section
5.2.
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Norms. As in Section 7.4.1 above we here also write ‖ · ‖ for a local vector
norm. With | · | we will mean the canonical C0-norm defined as

|ε|0,[a,b] = max
t∈[a,b]

‖ε(t)‖ ,

whose discretization is
|ε|0,Δ = max

t∈Δ
‖ε(t)‖ .

If we scale the L2-norm appropriately, we find that

|ε|2,[a,b] =

⎛⎝ 1
b− a

b∫
a

‖ε(t)‖2dt
⎞⎠

1
2

≤ |ε|0,[a,b] .

From this, we may turn to the corresponding discretization

|ε|2,Δ =

⎛⎝ 1
b− a

m−1∑
j=1

τj

s∑
l=1

bl‖ε(tjl)‖2
⎞⎠

1
2

and obtain the corresponding relation

|ε|2,Δ ≤ |ε|0,Δ∗ .

Note that, due to Gaussian quadrature, we have the approximation property

|ε|2,Δ = |ε|2,[a,b] +O(τ2s) ≤ |ε|0,[a,b] +O(τ2s) .

Below we will not distinguish between any of these essentially equivalent
norms and write subscripts only where necessary.

Discretization error estimates. The above exact finite dimensional New-
ton method can also be viewed as an inexact Newton method in function
space, if we include the discretization errors into a unified mathematical
frame. In fact, any adaptive collocation method will need to control the aris-
ing discretization error

ε(t) = δu(t)− δy(t)
at least via some estimate of it, in some suitable norm (see above). For con-
venience, we again use the notation Ij = [tj , tj+1] for the subintervals of the
coarse mesh Δ.
Before we start, let us draw a useful consequence of Theorem 7.2: we inter-
pret the Gaussian collocation method as an implicit Runge-Kutta method
(compare, e.g., [115, 71]) and thus immediately obtain (for k < s)

δu(k)(t)−δy(k)(t) = δy(s+1)(tj)τs+1
j P (k)

s (
t− tj
τj

)(1+O(τj))+O(τ2s
j ) , (7.47)
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where P is a polynomial of degree s—see, e.g., [9, Section 9.3]. Since the
local collocation polynomials are of order s, their derivative δu(s) is piecewise
constant, i.e.,

δu(s)(t) = constj , , δu(s+1)(t) = 0 , t ∈ Ij .
At first glance, we do not seem to have a reasonable approximation of δy(s+1)

that could be used to estimate the error bound (7.47). However, we may
overcome this lack of information by defining piecewise linear functions δzs
via the interpolation conditions at the subinterval midpoints t̄j = tj + 1

2 τj
such that

δzs(t̄j) = δu(s)(t̄j) .

The situation is depicted schematically in Figure 7.7. The derivative δz′s is
piecewise constant with jumps at the subinterval midpoints t̄j .

t̄1 t̄2 t̄3

Fig. 7.7. Piecewise linear approximation δzs of piecewise constant function δu(s)

Since P (s)
s (1

2 ) = 0, (7.47) implies the superconvergence result

δu(s)(t̄j)− δy(s)(t̄j) = O(τ2s
j ) ,

from which we obtain the approximation property

δz′s(t) = δy(s+1)(tj) +O(τj) , t ∈ Ij .
Hence, in first order of the local mesh size τj , we obtain the componentwise
estimate

|δu(t)− δy(t)| .= |δz′s(tj)|τs+1
j , t ∈ Ij .

If we average according to the rule

|δz′s(t̄1)| = |δz′s(t1)| , |δz′s(t̄m)| = |δz′s(tm)| ,
|δz′s(t̄j)| = 1

2 (|δz′s(tj)|+ |δz′s(tj+1)|) , j = 2, . . . ,m− 1 ,

we arrive at the cheaply computable local discretization error estimates

max
t∈Ij

|δu(t)− δy(t)| .= εj = |δz′s(t̄j)|τs+1
j . (7.48)

In [120], A. Hohmann has suggested a realization with variable order pj = 2sj
in different subintervals Ij ; for such an h − p-strategy, the above estimation
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technique will no longer be applicable. Instead, the Gauss interpolation poly-
nomial is extended by the additional boundary nodes tj, tj+1. This kind of
collocation polynomial is of order sj + 2. Its difference to the computed so-
lution can then serve as an estimate of order sj + 1 replacing (7.48).

Global mesh selection. This issue is crucial in every global discretization
method, at least when the numerical solution of really challenging spacelike
BVPs is envisioned, including the possible occurrence of internal or boundary
layers. Typically, a starting mesh Δ will be defined at the beginning of the
discretization process, which may already contain some information about
the expected behavior of the solution. Within each quasilinearization step
the componentwise global discretization error estimate

|ε| = max
j=1,..,m−1

εj

can be computed as indicated above. In order to minimize this maximum
subject to the constraint

m−1∑
j=1

τj = b− a ,

the well-known greedy algorithm leads to the requirement of equidistribution
of the local discretization errors. Therefore, any reasonable mesh selection
device will aim, at least asymptotically, at

εj = Cjτ
s+1
j ≈ const , j = 1, . . . ,m− 1

with coefficients Cj as defined above; an equivalent formulation is

εj ≈ ε =
1

m− 1

m−1∑
l=1

εl .

There are various options to realize this equidistribution principle. In the
code family COLSYS the number m of nodes is adapted such that the global
error estimate eventually satisfies

|ε| ≤ TOL

in terms of the user prescribed error tolerance TOL. Some codes also permit
nonnested successive meshes.
In view of the theoretical approximation results (as given, e.g., in the previous
section), COLSYS uses a further global mesh refinement criterion based on an
affine covariant Newton method including a damping strategy [60, 63, 9].
Whenever the damping factor turns out to be ‘too small’, i.e., whenever
λk < λmin occurs, for some prescribed threshold value λmin � 1, then a new
mesh with precisely halved local stepsizes is generated. Note that in Newton
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methods, which are not affine covariant, such a criterion may be activated
in the wrong situation: not caused by the nonlinearity of the problem, but
by the ill-conditioning of the discrete equations—which automatically comes
with the fact that the BVP operator is noncompact.

Local mesh refinement. Instead of the mesh selection devices realized
within COLSYS we here want to work out an alternative option in the spirit
of adaptive multilevel methods for partial differential equations (to be treated
in Section 8.3 below). Let

Δ0 ⊂ Δ1 ⊂ · · · ⊂ Δd

denote a sequence of nested meshes. By construction, the mesh Δ0 is just
the given initial mesh, while the mesh Δ1 is obtained by halving of all subin-
tervals. All further meshes can be obtained using an adaptivity device based
on local extrapolation—a technique that has been suggested by I. Babuška
and W.C. Rheinboldt [12] already in 1978, there for finite element methods
in partial differential equations. For details we here recur to Section 9.7.1 of
the elementary textbook [77], where this technique is explained in the simple
context of numerical quadrature. Assume we have already computed local er-
ror estimates on two consecutive meshes, on the given mesh Δ and its coarser
predecessor Δ−. Let I := (tl, tm, tr) ∈ Δ− denote an interval bisected into
subintervals Il, Ir ∈ Δ, where

Il :=
(
tl,

1
2 (tl + tm), tm

)
and Ir :=

(
tm,

1
2 (tr + tm), tr

)
.

Repeated refinement leads to a recursive binary tree—see Figure 7.8.
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Ill Ilr Irl Irr

Fig. 7.8. Double refinement of subinterval I := (tl, tm, tr)

In contrast to our above approximation results, we make the following more
general assumption for the local discretization error
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ε(Ij)
.= Cτγ

j (7.49)

with a local order γ and a local problem dependent constant C to be roughly
identified; note that above we derived γ = s in the upper bounds, which
may be unrealistic in a specific example. Let I be a subinterval obtained by
refinement; then we denote the starting interval from the previous mesh by
I−, i.e., I−r = I−l = I. Dropping the local index j, assumption (7.49) then
implies

ε(I−) .= C(2τ)γ = 2γCτγ .= 2γε(I) ,

from which we conclude that

ε(Il)
.= Cτγ2−γ .= ε(I)ε(I)/ε(I−) .

Thus, through local extrapolation, we have obtained a local error prediction

ε+(I) :=
ε2(I)
ε(I−)

≈ ε(Il) .

a b

κ(Δ)

ε(I)

ε+(I)

Fig. 7.9. Error distributions: before refinement: ε(I), prediction after global
refinement: ε+(I), prediction after adaptive refinement: bold line.

We can therefore estimate in advance, what effect a refinement of an interval
I ∈ Δ would have. We only have to fix a threshold value for the local errors,
above which we refine an interval. In order to do this, we take the maximal
local error, which we would obtain from a global refinement , i.e., refinement
of all subintervals I ∈ Δ, and define

κ(Δ) := max
I∈Δ

ε+(I) .

In order to illustrate the situation, we plot the computed estimated errors
ε(I) together with the predicted errors ε+(I) in a smoothed histogram, see
Figure 7.9.
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Following the aim of local error equidistribution, we do not need to refine
near the left and right boundary; rather, refinement will pay off only in the
center region. We thus arrive at the following refinement rule: Refine only
those intervals I ∈ Δ, for which

ε(I) ≥ κ(Δ) .

This yields the error distribution displayed in bold line in Figure 7.9, which
is narrower than both the original distribution and the one to be expected
from global refinement.
Clearly, repeated refinement will ultimately generate some rough error equidis-
tribution, provided the local error estimation technique is reliable, which here
means that the finest meshes need to be ‘fine enough’ to activate the super-
convergence properties of Gauss collocation methods.

Error matching. If we view quasilinearization as an inexact Newton
method in function space, we need to match the Newton corrections δuk and
the discretization errors δuk − δyk. In his dissertation [120], A. Hohmann
worked out a residual based inexact Newton method using a Fredholm basis
for the local representation of the collocation polynomials and obtained some
rather robust algorithm. Here, however, we want to realize the error oriented
local (Section 2.1.5) and global Newton methods (Section 3.3.4) within the
collocation code COLSYS—transferring the finite dimensional case therein to
the present infinite dimensional one.
At each iteration index k, identify uk = yk—as a common starting point,
say—and define the two Newton corrections in function space

F ′(uk)δuk = −F (uk) + rk , F ′(uk)δyk = −F (uk) . (7.50)

In contrast to the setting in finite dimensional inexact Newton methods (see
Chapters 2 and 3), here the residual rk is not generated by some inner iter-
ation, but by the discretization error such that

F ′(uk)(δuk − δyk) = rk .

In collocation, the situation is characterized by the fact that we have cheap
computational estimates of the relative discretization error

δk =
|δuk − δyk|
|δuk|

available in some (approximate) norm | · |—compare (3.50). This quantity
essentially depends on the selected mesh. For successively fine meshes, this
quantity will approach zero, which is part of the asymptotic mesh indepen-
dence to be discussed in detail in Section 8.1 below (see also Exercise 8.3).
The iteration (7.44) is realized as a finite dimensional Newton iteration with
adaptive trust region (or damping) strategy—as long as the mesh is kept
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unchanged. However, in order to really solve the BVP and not just some dis-
crete substitute system with unclear approximation quality, the mesh should
be adapted along with the iteration: the idea advocated here is to aim at
some asymptotic confluence with an exact Newton iteration based on the
correction δyk. In view of (3.55) and the analysis in Section 3.3.4, we will
require that, for some ρ ≤ 1,

δk ≤ ρ

2(1 + ρ)
≤ 1

4 for λk < 1 . (7.51)

As soon as the iteration swivels in the ordinary Newton phase with λ = 1
throughout, then a more careful consideration is needed, which can be based
on the following theoretical estimates.

Theorem 7.3 Let δuk and δyk denote the inexact and exact Newton cor-
rections as defined in (7.50). Let ω be the affine covariant Lipschitz constant
defined via

|F ′(u)−1 (F ′(v)− F ′(w)) | ≤ ω|v − w| .
Then, with the notation of the present section, we obtain

(I) for the ordinary exact Newton method in finite dimension the quadratic
convergence result

|δuk+1| ≤ 1
2h

δ
k|δuk|

with hδ
k = ω|δuk|,

(II) for the stepwise ‘parallel’ ordinary inexact Newton method in function
space, as defined in (7.50), the mixed convergence results

|δyk+1| ≤
1
2h

δ
k + (1 + hδ

k)δk
1− δk |δyk|

and, under the additional matching assumption for some safety factor
ρ ≤ 1,

δk ≤ 1
2ρ

hδ
k

1 + hδ
k

, (7.52)

the modified quadratic convergence results

|δyk+1| ≤ 1
2 (1 + ρ)

hδ
k

1− δk |δyk| ,

where contraction is realized, if hδ
0 <

2 (1− δ0)
1 + ρ

.

Proof. Part (I) of the theorem is standard. Part (II) is a slight modification
of Theorem 2.11 in Section 2.1.5, there derived for the inner iterative solver
GBIT, which does not satisfy any orthogonality properties. The definition of
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hδ
k is different here; it can be directly inserted into the intermediate result

(2.54). �

Clearly, we will select the same value of ρ in both (7.51) for the damped
Newton method and (7.52) for the ordinary Newton method.
Recall that the derivation of (7.51) required that λk needs to be chosen ac-
cording to an adaptive trust region strategy based on computationally avail-
able Kantorovich estimates [hδ

k] ≤ hδ
k. We are still left with the construction

of such estimates. Since the right hand upper bound in (7.52) is a mono-
tone increasing function of hδ

k, we may then construct an adaptive matching
strategy just replacing hδ

k by its lower bound [hδ
k]. From the above lemma we

directly obtain the a-posteriori estimates

[hδ
k]1 = 2Θk ≤ hδ

k , where Θk =
|δuk+1|
|δuk|

and the a-priori estimate

[hδ
k] = 2Θ2

k−1 ≤ hδ
k .

With these preparations we are led to the following informal

Error matching algorithm. As long as the finite dimensional global New-
ton method is still damped, we realize δk ≤ 1/4 via appropriate mesh selection
as given above. Let the index k = 0 characterize the beginning of the local
Newton method with λ0 = 1. Then the following steps are required (skipping
emergency exits to avoid infinite loops):

1. k = 0: Given u0, compute δu0 and its norm |δu0|. Compute the discretiza-
tion error estimate δ0, e.g., via the suggestion (7.48).

2. If δ0 > 1
4 , then refine the mesh and goto 1,

else u1 = u0 + δu0.
3. k ≥ 1: Given uk, compute δuk, its norm |δuk| and the contraction factor

Θk−1 =
|δuk|
|δuk−1| .

If Θk−1 > 1, then realize an adaptive trust region strategy with λ < 1 as
described in Section 3.3.4,
else compute the discretization error estimate δk.

4. If

δk > min
(

ρ

2(1 + ρ)
,
ρΘ2

k−1

1 +Θ2
k−1

)
,

then refine the mesh and goto 3,
else uk+1 = uk + δuk → uk and goto 3.
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If the adaptive collocation algorithm is performed including the matching
strategy as described here, the amount of work will clearly increase from step
to step, since the required discretization error estimate will ask for finer and
finer (adaptive) meshes. Of course, the process may be modified such that at
some iterate the value of δk is frozen—with the effect of eventually obtaining
unreasonably accurate results uk.
Remark 7.2 An adaptive collocation method as sketched here has not been
implemented so far. However, this kind of ideas has entered into the adaptive
multilevel collocation method used within a function space complementarity
approach to constrained optimal control problems that has recently been
suggested and worked out by M. Weiser and P. Deuflhard [197].

Exercises

Exercise 7.1 Given the extended mapping (7.12), derive the expressions
(7.14) for the associated Newton corrections. Sketch details of the corre-
sponding adaptive trust region method. In which way is a control of the ac-
tual parameter stepsize performed? Why should the initial iterate τ0 satisfy
h(τ0) �= 0?

Exercise 7.2 In order to compute a periodic orbit, one may apply a gra-
dient method [156] as an alternative to the Gauss-Newton method described
in Section 7.3. Let, in a single shooting approach, the functional

ϕ := 1
2‖r‖22

be minimized. Then

gradϕ = [E(0), f(y(T ))]T r

in the autonomous case. Show that

ET r = u(0)− u(T )

for some u satisfying

u′ = −fy(y)Tu , u(T ) = r .

Discuss the computational consequences of this relation. Why is, nevertheless,
such a gradient method unsatisfactory?

Exercise 7.3 In multiple shooting techniques, assume that local rank re-
duction leads to a replacement of the Jacobian inverse J−1 by the generalized
inverse J− defined in (7.5).
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a) Verify the four axioms (7.6) using the Penrose axioms for the Moore-
Penrose pseudo-inverse.

b) In the notation of Section 4.3.5, let λk ∼ [ωk]−1 denote a damping fac-
tor estimate associated with the Jacobian inverse J−1

k and λ′k ∼ [ω′
k]−1

the analog estimate associated with the generalized inverse J−
k . Give a

computationally economic expression for λ′k. Show that, in general, the
relation λ′k > λk need not hold, unless m = 2.

Exercise 7.4 Consider a local rank reduction in multiple shooting tech-
niques as defined by J− in (7.5) and the axioms (7.6). Show that for the
Gauss-Newton direction

Δx = −J−F .

the residual level function

T (x|I) := ‖r‖22 +
m−1∑
j=1

‖Fj‖22

is, in general, no longer an appropriate descent function in the sense of Lemma
3.11, whereas both the natural level function T (x|J−) and the hybrid level
function T (x|R−1J−) still are.

Exercise 7.5 Consider a singular perturbation problem of the type

εy′′ + f(t)y′ + g(t)y = h(t) , y(0) = y0 , y(T ) = yT

having one internal layer at some τ ∈]0, T [ with f(τ) = 0. Assume that the
initial value problem is well-conditioned from τ to 0 and from τ to T so that
numerical integration in these directions can be conveniently performed. Con-
sider a multiple shooting approach with m = 3 nodes {0, τ, T } that involves
numerical integration in the well-conditioned directions. Study the associated
Newton method in detail with respect to necessary Jacobian approximations,
condensed linear system solver, and iterative refinement sweeps. Discuss ex-
tensions for m > 3, where the above 3 nodes are among the selected multiple
shooting nodes. Interpret this approach in the light of Lemma 7.1.

Exercise 7.6 Consider the Fourier collocation method (also: Urabe or
harmonic balance method) as presented in Section 7.3.3.

a) Given the asymptotic decay law

εm
.= Ce−γm ,

verify the computationally available estimate (7.30) for the optimal num-
ber m∗ of terms needed in the Fourier series expansion (7.24). How many
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different Galerkin-Urabe approximations are at least required for this
estimate?

b) In the derivation of Section 7.3.3 we ignored the difference between the
Galerkin approximation ym with Fourier coefficients aj , bj and the ac-
tually computed Galerkin-Urabe approximation with coefficients am

j , b
m
j

depending on the truncation index m. Modify the error estimates so that
this feature is taken into account.

Exercise 7.7 Given a perturbed variational equation in the form

ε′(t)− fy(y(t))ε(t) = δf(t) , t ∈ [a, b] ,

prove the closed analytic expression

ε(t) = W (t, a)ε(a) +

t∫
σ=a

W (t, σ)δf(t)dσ .

Hint: Apply the variation of constants method recalling that the propagation
matrix W (t, a) is a solution of the unperturbed variational equation.
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