
6 Stiff ODE Initial Value Problems

This chapter deals with stiff initial value problems for ODEs

ẋ = F (x), x(0) = x0 .

The discretization of such problems is known to involve the solution of non-
linear systems per each discretization step—in one way or the other.
In Section 6.1, the contractivity theory for linear ODEs is revisited in terms
of affine similarity. Based on an affine similar convergence analysis for a sim-
plified Newton method in function space, a nonlinear contractivity theory for
stiff ODE problems is derived in Section 6.2, which is quite different from
the theory given in usual textbooks on the topic. The key idea is to replace
the Picard iteration in function space, known as a tool to show uniqueness in
nonstiff initial value problems, by a simplified Newton iteration in function
space to characterize stiff initial value problems. From this point of view, lin-
early implicit one-step methods appear as direct realizations of the simplified
Newton iteration in function space. In Section 6.3, exactly the same theo-
retical characterization is shown to apply also to implicit one-step methods,
which require the solution of a nonlinear system by some finite dimensional
Newton-type method at each discretization step.
Finally, in a deliberately longer Section 6.4, we discuss a class of algorithms
called pseudo-transient continuation algorithms, whereby steady state prob-
lems are solved via stiff integration. The latter type of algorithm is particu-
larly useful, when the Jacobian matrix is singular due to hidden dynamical
invariants (such as mass conservation). The affine similar theoretical charac-
terization permits the derivation of an adaptive (pseudo-)time step strategy
and an accuracy matching strategy for a residual based inexact Newton al-
gorithm.

6.1 Affine Similar Linear Contractivity

For the time being, consider a linear ODE system of the kind

ẋ = Ax, x(0) = x0 . (6.1)
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Formally, system (6.1) can be solved in terms of the matrix exponential

x(t) = exp(At)x0 .

In view of affine similarity as discussed in Section 1.2.2, we start from the
(possibly complex) Jordan decomposition

A = TJT−1 ,

wherein J is the Jordan canonical form consisting of elementary Jordan
blocks for each separate eigenvalue λ(A). Then the (possibly complex) trans-
formation

z := T−1(x− x̂)
has been shown in Section 1.2.2 to generate an affine similar coordinate frame.
In what follows we will have to work with norms ‖ · ‖ induced by certain
inner products (·, ·). For simplicity, we may think of the Euclidean norm ‖ · ‖
induced by the (possibly complex) Euclidean inner product (u, v) = u∗v with
u∗ the adjoint. If we phrase our subsequent theoretical statements in terms
of the canonical norm

|u| := ‖T−1u‖ , (6.2)

induced by the canonical inner product

〈u, v〉 = (T−1u, T−1v) ,

then such statements will automatically meet the requirement of affine simi-
larity. In this setting, we may define some constant μ = μ(A), allowed to be
positive, zero, or negative, such that

〈u,Au〉 ≤ μ(A)|u|2 . (6.3)

This definition is obviously equivalent to

(ū, Jū) ≤ μ(A)‖ū‖2 , (6.4)

wherein ū = T−1u. Assuming that the quantity μ is chosen best possible, it
can be shown to satisfy

μ(A) = max
u�=0

〈u,Au〉
|u|2 ≥ max

i
�λi(A) + ε , ε ≥ 0 . (6.5)

Herein ε = 0 and equality holds, if the eigenvalue defining μ(A) is simple. It
is an easy task to show that

μ(BAB−1) = μ(A) (6.6)

for any nonsingular matrix B, which confirms that this quantity is indeed
affine similar. In the canonical norm we may obtain the estimate
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|x(t)| ≤ exp(μt)|x0| .
Whenever

μ ≤ 0 (6.7)

holds, then
|x(t)| ≤ |x(0)| ,

which means that the linear dynamical system (6.1) is contractive.
For computational reasons, the Euclidean product (possibly in a scaled vari-
ant) is preferred to the canonical product. Suppose that we therefore replace
the above definition (6.3) in terms of the canonical inner product by the
analogous definition

ν(A) = max
u�=0

(u,Au)
‖u‖2 (6.8)

in terms of the Euclidean product. The thus defined quantity can be expressed
as

ν(A) = λmax

(
1
2 (A+AT )

)
,

where λmax is the maximum (real) eigenvalue of the symmetric part of the
matrix A. Upon comparison with (6.4) we immediately observe that

μ(A) = ν(J) = λmax

(
1
2 (J + JT )

)
,

which directly leads to the above result (6.5)—see, e.g., [71, Section 3.2]. From
this we see that the quantities ν(A) and μ(A) may be rather different—in
fact, unless A is symmetric, not even the signs may be the same. Moreover,
in contrast to (6.6), we now have the undesirable property

ν(BAB−1) �= ν(A) ,

i.e., this quantity is not affine similar. Consequently, contractivity in the
canonical norm | · | does not imply contractivity in the original norm ‖ · ‖.
Whenever a relation of the kind

|u| ≤ |v|
is transformed back to the original norm, we can only prove that

‖u‖ ≤ cond(T )‖v‖
in terms of the condition number cond(T ) = ‖T−1‖ · ‖T ‖ ≥ 1, which here
arises as an unavoidable geometric distortion factor. This distortion fac-
tor also indicates possible ill-conditioning of the Jordan decomposition as
a whole—which may affect the theoretical presentation in terms of canonical
inner products and norms. Nevertheless, we will stick to a formal notation
in terms of the canonical norm | · | below to make the underlying structure
transparent.
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6.2 Nonstiff versus Stiff Initial Value Problems

Reliable numerical algorithms are, in one way or the other, appropriate im-
plementations of uniqueness theorems of the underlying analytic problem.
The most popular uniqueness theorem for ODEs is the well-known Picard-
Lindelöf theorem: it is based on the Picard fixed point iteration in function
space (Section 6.2.1) and characterizes the growth of the solution by means
of the Lipschitz constant of the right-hand side—a characterization known
to be appropriate for nonstiff ODEs, but inappropriate for stiff ODEs. As
will be shown in this section, an associated uniqueness theorem for stiff ODEs
can be derived on the basis of a simplified Newton iteration in function space,
wherein the above Lipschitz constant is circumvented by virtue of a one-sided
linear contractivity constant. As a natural spin-off, this theory produces some
common nonlinear contractivity concept both for ODEs (Section 6.2.2) and
for implicit one-step discretizations (see Section 6.3 below).

6.2.1 Picard iteration versus Newton iteration

Consider again the nonlinear initial value problem

ẋ = F (x), x(0) = x0 .

For the subsequent presentation, its equivalent formulation as a Volterra op-
erator equation (of the second kind) is preferable:

G(x, τ) := x(τ) − x0 −
τ∫

t=0

F (x(t))dt = 0 . (6.9)

This equation defines a homotopy in terms of the interval length τ ≥ 0. Let Γ
denote some neighborhood of the graph of a solution of (6.9). Then Peano’s
existence theorem requires that

L0 := sup
Γ
‖F (x)‖ <∞

in terms of some pointwise norm ‖ · ‖ in Rn.
In order to prove uniqueness, the standard approach is to construct the so-
called Picard iteration

xi+1(τ) = x0 +

τ∫
t=0

F (xi(t))dt (6.10)

to be started with x0(t) ≡ x0. From this fixed point iteration, one immedi-
ately derives
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‖xi+1(τ) − xi(τ)‖ ≤
τ∫

t=0

‖F (xi(t)) − F (xi−1(t))‖dt .

Hence, in order to study contraction, the most natural theoretical character-
ization is in terms of the Lipschitz constant L1 defined by

‖F (u)− F (v)‖ ≤ L1‖u− v‖ .

With this definition, the sequence {xi} can be shown to converge to some
solution x∗ such that

‖x∗(τ) − x0‖ ≤ L0τϕ(L1τ)

with

ϕ(s) :=
{

(exp(s)− 1)/s s �= 0
1 s = 0 . (6.11)

Moreover, x∗ is unique in Γ . This is the main result of the well-known Picard-
Lindelöf theorem—ignoring for simplicity any distinction between local and
global Lipschitz constants.
A similar term arises in the analysis of one-step discretization methods for
ODE initial value problems. Let p ≥ 1 denote the consistency order of such
a method and τ a selected uniform stepsize assumed to be sufficiently small.
Then the discretization error between the continuous solution x and the dis-
crete solution xτ at some final point T = nτ can be represented in the form
(see, e.g., the ODE textbook by E. Hairer and G. Wanner [114]):

‖xτ (T )− x(T )‖ ≤ Cp · τp · T · ϕ(L̄1T ) .

For explicit one-step methods, the coefficient Cp just depends on some bound
in terms of higher derivatives of F . The above discrete Lipschitz constant
L̄1 ≥ L1 is an analog of the continuous Lipschitz constant L1, this time for
the increment function of the one-step method. In order to assure that the
notion of a consistency order p is meaningful at all, a restriction of the kind

L1τ ≤ C, C = O(1) (6.12)

will be needed. Consequently, this characterization is appropriate only for
nonstiff discretization methods.

Historical Note. Originally, it had first been thought that the use of
implicit discretization methods would be the essential item to overcome the
observed difficulties in the numerical integration of what have been called
stiff ODEs—see, for instance, the early fundamental paper by G. Dahlquist
[47]. For implicit one-step methods, the above coefficient Cp is bounded only,
if the discrete solution can be locally continued over each discretization step
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of length τ . This aspect will be studied in detail in the subsequent Section
6.3. In the next stage of the development of stiff integration, however, it was
recognized that the solution method for the thus arising algebraic equations is
equally important: the early paper of W. Liniger and R.A. Willoughby [145]
pointed out that any fixed point iteration based only on F -evaluations for the
algebraic equations would again bring in restriction (6.12), whereas a Newton-
like iteration could, in principle, avoid the restriction. Much later, so-called
semi-implicit or linearly-implicit discretization methods (such as Rosenbrock
methods, W-methods, or extrapolation methods) were constructed that only
apply one single Newton-like iteration per discretization step. Therefore the
present essence of insight seems to be that nonstiff integration is character-
ized by sampling of F only, whereas stiff integration requires the additional
sampling of F ′(x) or an approximation.
With these preparations, a natural approach towards a uniqueness theorem
covering stiff ODEs as well will be to replace the Picard iteration (6.10) by
a Newton iteration. For the ordinary Newton method we would obtain

G′(xi)Δxi = −G(xi), xi+1 = xi +Δxi

or, in more explicit notation

Δxi(τ) −
τ∫

t=0

F ′(xi(t))Δxi(t)dt = −
⎡⎣xi(τ)− x0 −

τ∫
t=0

F (xi(t))dt

⎤⎦ . (6.13)

However, the above iteration requires global sampling of the Jacobian F ′(x)
rather than just pointwise sampling as in numerical stiff integration. There-
fore, the simplified Newton method will be chosen instead: we just have to
replace

G′(xi)→ G′(x0), x0(t) ≡ x0

or, equivalently,
F ′(xi(t))→ F ′(x0) =: A .

The corresponding replacement in (6.13) then leads to

xi+1(τ) −A
∫ τ

0

xi+1(t)dt = x0 +
∫ τ

0

[F (xi(t))−Axi(t)]dt . (6.14)

Note that this may be interpreted as a Picard iteration associated with the
formally modified ODE

ẋ−Ax = F (x)−Ax, x(0) = x0 ,

which is the basis for linearly-implicit one-step methods.



6.2 Nonstiff versus Stiff Initial Value Problems 291

6.2.2 Newton-type uniqueness theorems

The above simplified Newton-iteration (6.14) is now exploited with the aim
of proving uniqueness theorems for ODE IVP’s that cover stiff ODEs as well.
In order to guarantee affine similarity, we will define coordinates x ∈ Rn in
such a way that any required (possibly approximate) Jacobian A is already
in its Jordan canonical form J . Consequently, the selected vector norm ‖ · ‖
is identical to canonical norm as defined in (6.2)—see also the discussion in
Section 6.1. For the time being, we assume that we have an exact initial
Jacobian

F ′(x0) = A = J .

A discussion of the case of an approximate Jacobian will follow subsequently.

Theorem 6.1 In the above notation let F ∈ C1(D), D ⊆ Rn. For the Jaco-
bian A := F ′(x0) assume a one-sided Lipschitz condition of the form

(u, Ju) ≤ μ‖u‖2 ,
where (·, ·) denotes the inner product that induces the norm ‖·‖. In this norm,
assume that

‖F (x0)‖ ≤ L0 for x0 ∈ D
‖(F ′(x) − F ′(x0))u‖ ≤ L2‖x− x0‖‖u‖ for x, x0, u ∈ D . (6.15)

Then, for D sufficiently large, existence and uniqueness of the solution of the
ODE IVP is guaranteed in [0, τ ] such that

τ unbounded , if μτ̄ ≤ −1 ,

τ ≤ τ̄Ψ(μτ̄ ) , if μτ̄ > −1

with τ̄ := (2L0L2)−1/2 and

Ψ(s) :=
{

ln(1 + s)/s s �= 0
1 s = 0 .

Proof. Upon performing the variation of constants, we rewrite (6.14) as

Δxi(τ) =

τ∫
t=0

exp(A(τ − t))(F (xi(t)) − d

dt
xi(t)

)
dt , (6.16)

where exp(At) denotes the matrix exponential. Within this proof let |·| denote
the standard C0-norm:

|u| := max
t∈[0,τ ]

‖u(t)‖ .

In order to study convergence, we set the initial guess x0(t) ≡ x0 and apply
Theorem 2.5 from Section 2.1.2, which essentially requires that
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|Δx0| ≤ α , (6.17)

|G′(x0)−1(G′(x) −G′(x0))| ≤ ω|x− x0| , (6.18)

αω ≤ 1
2 . (6.19)

The rest of the assumptions holds for D sufficiently large. The task is now
to derive upper bounds α, ω and to assure (6.19). With x0 as set above, the
first Newton correction satisfies—compare (6.16)

Δx0(τ) =

τ∫
t=0

exp(A(τ − t))F (x0)dt .

Hence

‖Δx0(τ)‖ ≤
τ∫

s=0

‖ exp(As)F (x0)‖ds ≤

≤ L0

τ∫
s=0

exp(μs)ds = L0τϕ(μτ) =: α(τ)

with ϕ as introduced in (6.11). In order to derive ω(τ), we introduce the
operator norm in (6.18) by

z := G′(y0)−1(G′(x0 + w) −G′(x0))u ,
|z| ≤ ω · |u| · |w| .

Once more by variation of constants, we obtain

‖z(τ)‖ ≤
τ∫

t=0

‖ exp(A(τ − t))[F ′(x0 + w) − F ′(x0)]u‖dt ,

which, similar as above, yields

|z| ≤ L2 · τ · ϕ(μτ) · |u| · |w| .
Hence, a natural definition is

ω(τ) := L2τϕ(μτ) .

Insertion into the Kantorovich condition (6.19) produces

(τϕ(μτ))2 ≤ (2L0L2)−1 =: τ̄2

or, equivalently,
τϕ(μτ) ≤ τ̄ .

Since μ may have either sign, the main statements of the theorem are an
immediate consequence. �
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A graphical representation of the above monotone decreasing function Ψ is
given below in Figure 6.3.
Remark 6.1 Upon using the same characterizing quantities μ, τ̄ as above,
an improved theorem has been shown by W. Walter [195] using differential
inequalities—compare his book [194]. Since this theorem is nonconstructive
and does not make a difference for the discretizations to be treated in Section
6.3, it is omitted here (details can be found in the paper [66]).

Nonlinear contractivity. As can be seen in Fig. 6.1 below, the above
theorem (as well as the one in [66]) comes up with a pole at s = −1, which
reflects the condition

μτ̄ ≤ −1

for global boundedness of the solution. This condition may be rewritten as

μ+
√

2L0L2 ≤ 0 . (6.20)

As L2 = 0 in the linear case, the above condition is immediately recognized
as a direct generalization of the linear contractivity condition (6.7). In other
words: the above pole represents global nonlinear contractivity, involving local
contractivity via μ and the part from the nonlinearity in well-separated form.

−1 0
Ψ(s)

Fig. 6.1. Nonlinear contractivity: function Ψ as defined in Theorem 6.1 .

If, instead of the exact Jacobian A = F ′(x0), an approximation error

δA = A− F ′(x0)

must be taken into account, then a modification of the above theorem will
be necessary. In view of an affine similar presentation we again assume that

A = J ,

which means that the approximate Jacobian is already in Jordan canonical
form and the norm ‖ · ‖ is identical to the canonical norm.
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Theorem 6.2 Notation and assumptions as in Theorem 6.1. In addition, let
the Jacobian approximation error be bounded as

‖δA‖ ≤ δ0 , δ0 ≥ 0 .

Then the results of Theorem 6.1 hold with τ̄ replaced by

τ̂ := τ̄ /(1 + δoτ̄ ) .

Proof. For the proof we apply Theorem 2.6, the convergence theorem for
Newton-like iterations, with G′(x0) now replaced by M(x0), which means
replacing F ′(x0) by A �= F ′(x0). With μ now associated with the Jacobian
approximation A , the estimates α(τ), ω(τ) carry over. In addition, the as-
sumptions (6.17) up to (6.19) must be extended by

|M(x0)−1(G′(x0)−M(x0))| ≤ δ̄0 < 1 . (6.21)

Upon defining
z := M(x0)−1(G′(x0)−M(x0))u

a similar estimate as in the proof of Theorem 6.1 leads to

‖z(τ)‖ ≤
τ∫

t=0

‖ exp(A(τ − t)) · δA · u‖dt ≤ δ0τϕ(μτ)|u| .

Hence, the above condition (6.21) shows up with the specification

δ̄0 := δ0τϕ(μτ) .

Insertion into the modified Kantorovich condition (2.23)

αω

(1− δ̄0)2 ≤
1
2

then yields
τϕ(μτ) ≤ τ̄ /(1 + δ0τ̄) =: τ̂ .

Note that condition (6.21) is automatically satisfied, since

δ̄0 = δ0τϕ(μτ) ≤ δ0τ̄ /(1 + δ0τ̄) < 1 ,

which completes the proof. �

Finally, we want to emphasize that all above results also hold, if the norm ‖·‖
is not identified with the canonical norm |·|, but allowed to be a general vector
norm. However, as already worked out at the end of Section 6.1, this would
include a tacit deterioration of all results, since then the one-sided Lipschitz
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constant μ may be rather off scale, if not even nonnegative—compare again
the definitions (6.3) and (6.8).
Remark 6.2 The experienced reader will be interested to know whether
these results carry over to differential-algebraic equations (DAEs) as well.
Unfortunately, this causes some difficulty, which can already be seen in the
simple separable DAE of the form

y′ = f(y, z) , 0 = g(y, z) .

In this case, the differential part f and the variable y suggest affine sim-
ilarity, whereas the equality constrained part g would require some affine
covariance or contravariance. For this reason, a common affine invariant the-
oretical framework is hard to get, if at all possible. Up to now, more subtle
estimation techniques use a characterization in terms of perturbation param-
eters ε, which by construction do not allow for any affine invariance concept.

6.3 Uniqueness Theorems for Implicit One-step
Methods

A natural requirement for any discretization π of the above ODE initial value
problem will be that it passes basic symmetries of the underlying continuous
problem on to the generated discrete problem. In particular, we will require
that the diagram in Figure 6.2 commutes, which ensures that yπ = Bxπ

holds whenever y = Bx. Among the discretization methods satisfying this
requirement, we will restrict our attention to implicit and linearly implicit
one-step methods, also called Runge-Kutta methods.

xπ yπ

x y

� �

�

�

�

�

π π

B−1

B

B−1

B

Fig. 6.2. Affine invariance under discretization π
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As an extension of Section 6.1, any affine similar discretization of linear
ODEs can also be treated in affine similar terms. This idea directly leads
to G. Dahlquist’s linear scalar model equation [47]

ẋ = λx, x(0) = 1 .

Therefore, linear contractivity of implicit discretizations as well as of linearly
implicit discretizations can be treated just as described in usual numerical
ODE textbooks—see, e.g., [114, 115].
Things are different with respect to nonlinear contractivity. First, recall from
Section 6.2.1 that the simplified Newton iteration (6.14) for the continuous
ODE problem may also be regarded as a Picard iteration (6.10) for the ODE

ẋ−Ax = F (x)−Ax .
This ODE is the starting point for linearly implicit one-step discretizations
(such as Rosenbrock methods, W-methods, or extrapolation methods), which
just discretize the above left hand side implicitly and the above right hand
side explicitly. Therefore, linearly implicit discretizations may be interpreted
as direct realizations of the simplified Newton iteration in function space. Of
course, they should also observe the local timestep restrictions as worked
out for the continuous problem in Section 6.2.2. For the special case of the
linearly implicit Euler discretization we refer to the residual analysis given in
the subsequent Section 6.4.
Here we concentrate on implicit one-step discretizations. In such discretiza-
tions the discrete system comprises a nonlinear algebraic system, which again
brings up the question of local continuation. We will be interested to see, in
which way some kind of nonlinear contractivity is inherited from the contin-
uous initial value problem to various implicit one-step methods. In order to
permit a comparison with Section 6.2.2, we will again assume that the coor-
dinates have been chosen such that the local Jacobian matrix A ≈ F ′(x0) is
already in Jordan canonical form—which implies that the canonical product
and norm are identical to the Euclidean product and norm. To start with,
we exemplify the formalism at a few simple cases.

Implicit Euler discretization. In each step of this discretization, we must
solve the n algebraic equations

G(x, τ) := x− x0 − τF (x) = 0 , (6.22)

which represent a homotopy in Rn with embedding in terms of the stepsize
τ—say τ ≥ 0. The Newton-like iteration for solving this system is

(I − τA)Δxi = −(xi − x0 − τF (xi)), xi+1 = xi +Δxi , (6.23)

where δA := A− F ′(x0) �= 0 will be assumed.
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Theorem 6.3 Assumptions and notation as in Theorems 6.1 and 6.2 above.
Then the Newton-like iteration (6.23) for the implicit Euler discretization
converges to a unique solution for all stepsizes

τ unbounded , if μτ̂ ≤ −1 ,
τ ≤ τ̂ΨD(μτ̂ ) , if μτ̂ > −1 ,

where
ΨD(s) := (1 + s)−1 .

Proof. Once more, Theorem 2.6 is applied, here to the finite-dimensional
homotopy (6.22). The Jacobian approximation A ≈ F ′(x0) leads to the ap-
proximation

I − τA =:M(x0) ≈ F ′(x0) ,

which is used in the definition of the affine covariant Lipschitz constant

‖M(x0)−1(F ′(u)− F ′(v))‖ ≤ ω(τ)‖u − v‖ ,
the first correction bound

‖Δx0‖ = ‖M(x0)−1F (x0)‖ ≤ α(τ)

and the approximation measure

‖M(x0)−1(M(x0)− F ′(x0))‖ ≤ δ̄0(τ) < 1 .

With these definitions, the modified Kantorovich condition here reads
αω

(1 − δ̄o)2 ≤
1
2 . (6.24)

Upon using similar techniques as in the proof of Theorem 6.2 above, we come
up with the estimates:

α(τ) := τL0/(1− μτ), ω(τ) := hL2/(1− μτ), δ̄0(τ) := τδ0/(1− μτ),
where the quantities L0, L2, δ0 are the same as in Section 6.2.2. Insertion into
condition (6.24) then yields, for μτ < 1:

τ

1− μτ ≤ τ̂

or, equivalently,
τ ≤ τ̂ /(1 + μτ̂ ) .

This is the main statement of the theorem. Finally, note that for μ > 0

μτ ≤ μτ̂/(1 + μτ̂ ) < 1 ,

which assures the above requirement. The case μ ≤ 0 is trivial. �

The intriguing similarity of Theorems 6.2 and 6.3 is illustrated in Figure 6.3.
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−1 0

ΨD(s)
Ψ(s)

Fig. 6.3. Nonlinear contractivity inherited: function Ψ (continuous case)
versus function ΨD (discrete case).

Implicit trapezoidal rule. This discretization requires the solution of the
n in general nonlinear equations

G(x) := x− x0 − 1
2τ (F (x) + F (x0)) = 0 . (6.25)

Standard Newton-like iteration leads to the steplength restriction

a) τ unbounded, if μτ̄ ≤ −
√

2 ,

b) τ ≤ τ̄
√

2ΨD

(
μτ̄√

2

)
.

(6.26)

Observe that the pole of Ψ at s = −1 is not preserved here, so that nonlinear
contractivity is not correctly inherited from the continuous case.

Implicit midpoint rule. This discretization leads to the n equations

G(x) := x− x0 − τF
(
x+ x0

2

)
= 0 , (6.27)

which, along similar lines of derivation, yields the stepsize bounds

a) τ unbounded, if μτ̄ ≤ −1 ,

b) τ ≤ 2τ̄ΨD(μτ̄ ) .
(6.28)

Here the pole is correctly preserved. Moreover, less restrictive bounds appear.
Summarizing, the implicit trapezoidal rule and the implicit midpoint rule
have the same linear contractivity properties, but different nonlinear contrac-
tivity properties. From the nonlinear contractivity point of view, the implicit
midpoint rule is clearly preferable. Both proofs are just along the lines of
the proof for the implicit Euler method and therefore left as Exercise 6.1.
Of course, one would really like to characterize the whole subclass of those
one-step methods that preserve the pole exactly—a question left to future
research.
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6.4 Pseudo-transient Continuation for Steady State
Problems

In this section we consider the case that the solution of a nonlinear system
F (x) = 0 can be interpreted as steady state of a dynamical system of the kind

ẋ = F (x) . (6.29)

Already from mere geometrical insight it is clear that such an approach will
only work, if the fixed point of the dynamical system is attractive in a suf-
ficiently large neighborhood. As an example, stiff integration towards a hy-
perbolic fixed point might come close to the fixed point for a while and run
away afterwards. Exceptions will be possible only for a measure zero set of
starting points x0.

Dynamical invariants. This type of invariants occurs rather frequently in
dynamical systems causing singular Jacobian matrices F ′(x) for all arguments
x—which prohibits the application of standard Newton methods.
Example: mass conservation. Suppose the above ODE (6.29) describes some
reaction kinetic model. Then mass conservation shows up as

eTx(t) = eTx0 ,

where eT = (1, . . . , 1). This implies

eT ẋ = eTF (x) ≡ 0, x ∈ D ⊂ Rn, F (x) �= 0 .

By differentiation with respect to x we obtain

eTF ′(x)F (x) ≡ 0, F (x) �= 0

and hence every Jacobian has a zero eigenvalue with left eigenvector e. If we
define the orthogonal projectors

P⊥ :=
1
n
eeT , P = I − P⊥ ,

then we can write equivalently

P⊥F ′(x) = 0 . (6.30)

Of course, naive application of any standard Newton method would fail in
this situation. In this special case, a modification is possible that makes the
Newton methods nevertheless work—see, e.g., Exercise 6.3.
In the general case, however, more than one dynamical invariant exists, most
of them unspecified or even unknown, so that (6.30) holds again, now for an
unknown projector P such that

P⊥ẋ = P⊥F (x) = 0 =⇒ P⊥F ′(x) = 0 . (6.31)

Clearly, Newton methods cannot be modified to work without full knowledge
about all dynamical invariants and are therefore bound to fail.
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Fixed point iterations. In contrast to the other affine invariance classes
of nonlinear problems, affine similarity also holds for fixed point iterations

Δxk = xk+1 − xk = αF (xk)

with a parameter α to be adapted. From equation (6.31) we see that such an
iteration automatically realizes

P⊥Δx = 0 .

Pseudo-transient continuation. The same property can be shown to hold
for any linear combination of Newton and fixed point iteration. A popular
technique is the so-called pseudo-transient continuation method

(I − τA)Δx = F (x0), x(τ) = x0 + τΔx (6.32)

with timestep τ to be adapted and A = F ′(x0) or a Jacobian approximation.
The above iteration is just a special stiff discretization of the ODE (6.29),
known as the linearly implicit Euler discretization.
Of course, in order to obtain the solution, we may directly solve the time
dependent system (6.29) by any numerical stiff integrator up to the steady
state. In what follows, however, we want to restrict our attention to the simple
case of the linearly implicit Euler discretization.

6.4.1 Exact pseudo-transient continuation

We now want to study an iterative method for the numerical solution of the
nonlinear System F (x) = 0 based on the linearly implicit Euler discretization
(6.32). Throughout this section we will assume that we can evaluate an exact
Jacobian A = F ′(x) and solve the linear system (6.32) by direct elimination
techniques.
As worked out in detail in Section 6.1, the problem itself is invariant under
affine similarity transformation, which would suggest some theoretical treat-
ment in terms of canonical norms and inner products. Usual stiff integration
focuses on the accuracy of the solution which naturally belongs to an affine
covariant setting. For reasons of numerical realization, however, we need to
study the convergence of the iteration in terms of its residual behavior—
which leads to an affine contravariant setting. For that reason, we will need
to replace the canonical norm | · | (see Section 6.1) by some Euclidean norm
‖·‖, possibly scaled. Accordingly (·, ·) will denote the Euclidean inner product,
also possibly scaled.
Let x(τ) denote the homotopy path defined by (6.32) and starting at the
point x(0) = x0. Before we actually study the residual norm ‖F (x(τ))‖, the
following auxiliary result will be helpful.
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Lemma 6.4 Notation as just introduced with A ≈ F ′(x0). Then the residual
along the homotopy path x(τ) starting at x0 satisfies

F (x(τ)) = (I−τA)−1F (x0)+

τ∫
σ=0

(F ′(x(σ)) −A) (I−σA)−2F (x0)dσ . (6.33)

Proof. Taylor’s expansion of the residual yields

F (x(τ)) = F (x0) +

τ∫
σ=0

F ′(x(σ))ẋ(σ)dσ

= F (x0) +A(x(τ) − x0) +

τ∫
σ=0

(F ′(x(σ)) −A) ẋ(σ)dσ .

Upon differentiating the homotopy (6.32) with respect to τ , we obtain

(I − τA)ẋ = F (x0) +A(x(τ) − x0) = F (x0) + τA(I − τA)−1F (x0)

and therefore
ẋ(τ) = (I − τA)−2F (x0) ,

which then readily leads to the result of the lemma. �

Discussion of Lipschitz conditions. With the above representation at
hand, the question is now how to formulate first and second order Lipschitz
conditions in view of theoretical estimates. The switch from the canonical
norms in Sections 6.2 and 6.3 to the Euclidean norm here implies changes
in all our definitions of first and second order Lipschitz constants below.
Needless to mention that we are bound to lose the nice property of affine
similarity in all our characterizing quantities. Instead all of our estimates will
now depend on the scaling of the residual (to be carefully handled).
First order Lipschitz condition: linear contractivity. We may employ (6.8)
to define some one-sided Lipschitz constant ν. Recall, however, that due to
dynamical invariants, zero eigenvalues will occur in the Jacobian, which im-
plies that ν ≥ 0—just apply the definition (6.8) again. Therefore, in order to
take care of dynamical invariants, we will restrict our attention to iterative
corrections in the subspace

SP = {u ∈ Rn | P⊥u = 0} .
Then the inequality

(u,Au) ≤ ν‖u‖2, u ∈ SP

is equivalent to
(Pu, (PAP )Pu) ≤ ν‖Pu‖2 .
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With this modified definition, the case ν < 0 may well happen even in the
presence of dynamical invariants.
Since Δx(τ) ∈ SP , we may insert it into the above definition and obtain

ν̂(τ) =
(Δx,AΔx)
‖Δx‖2 ≤ ν . (6.34)

If we multiply equation (6.32) by Δx from the left, we obtain

‖Δx‖2 = τ(Δx,AΔx) + (Δx,F (x0))

= τ ν̂(τ)‖Δx‖2 + (Δx,F (x0))

≤ τ ν̂(τ)‖Δx‖2 + ‖Δx‖‖F (x0)‖
≤ τν‖Δx‖2 + ‖Δx‖‖F (x0)‖ ,

which then leads to the estimates

‖Δx‖ ≤ ‖F (x0)‖
1− ν̂τ ≤ ‖F (x0)‖

1− ντ . (6.35)

Moreover, since
Δx(τ) = F (x0) +O(τ) ,

we also have

ν̂(0) =
(F (x0), AF (x0))
‖F (x0)‖2 ≤ ν . (6.36)

This quantity can be monitored even before the linear equation (6.32) is
actually solved. It plays a key role in the residual reduction process, as shown
in the following lemma.

Lemma 6.5 Let ν̂(0) < 0 as defined in (6.36). Then there exists some τ∗ > 0
such that

‖F (x(τ))‖ < ‖F (x0)‖ and ν̂(τ) < 0 for all τ ∈ [0, τ∗[ .

Proof. By differentiating the residual norm with respect to τ we obtain

d

dτ
‖F (x(τ))‖2|τ=0 = 2(F ′(·)TF (·), ẋ(τ))|τ=0

= 2(F (x0), AF (x0)) = 2ν̂(0)‖F (x0)‖2 < 0 .

Since both F (x(τ)) and the norm ‖ · ‖ are continuously differentiable, there
exists some nonvoid interval w.r.t. τ , wherein the residual norm decreases—
compare the previous Lemma 3.2. The proof of the statement for ν̂(τ) uses
the same kind of argument. �
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In other words: if at the given starting point x0 the condition ν̂(0) < 0 is not
satisfied, then the pseudo-transient continuation method based on residual
reduction cannot be expected to work at all. Recall, however, the discussion
at the end of Section 6.1 which pointed out that residual reduction is not
coupled to canonical norm reduction.
Second order Lipschitz condition. Here we may start from the affine similar
Lipschitz condition (6.15) and replace the canonical norm | · | therein by the
Euclidean norm ‖ · ‖. Thus we take the fact into account that in the affine
similar setting domain and image space transform in the same way.

Convergence analysis. With these preparations we are now ready to state
our main result.

Theorem 6.6 Notation as in the preceding Lemma 6.4, but with A = F ′(x0)
and partly L0 = ‖F (x0)‖. Let dynamical invariants show up via the properties
F (x) ∈ SP . Assume the one-sided first order Lipschitz condition

(u,Au) ≤ ν‖u‖2 for u ∈ SP , ν < 0

and the second order Lipschitz condition

‖(F ′(x)− F ′(x0)
)
u‖ ≤ L2‖x− x0‖‖u‖ . (6.37)

Then the following estimate holds

‖F (x(τ))‖ ≤
(

1 +
1
2L0L2τ

2

1− ντ
) ‖F (x0)‖

1− ντ . (6.38)

From this, residual monotonicity

‖F (x(τ))‖ ≤ ‖F (x0)‖
is guaranteed for all τ ≥ 0 satisfying the sufficient condition

ν + (1
2L0L2 − ν2)τ ≤ 0 . (6.39)

Moreover, if
L0L2 > ν

2 , (6.40)

then the theoretically optimal pseudo-timestep is

τopt =
|ν|

L0L2 − ν2
(6.41)

leading to a residual reduction

‖F (x(τ))‖ ≤
(

1−
1
2ν

2

L0L2

)
‖F (x0)‖ < ‖F (x0)‖ .
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Proof. We return to the preceding Lemma 6.4. Obviously, the first and the
second right hand terms in equation (6.33) are independent. Upon recalling
(6.35) for the first term, we immediately recognize that, in order to be able
to prove residual reduction, we necessarily need the condition ν < 0, which
means ν = −|ν| throughout the proof. For the second term we may estimate,
again recalling (6.35),

τ∫
σ=0

‖ (F ′(x(σ)) − F ′(x0)) (I − σA)−2F (x0)‖dσ

≤ L2

τ∫
σ=0

‖x(σ) − x0‖‖(I − σA)−2F (x0)‖dσ

≤ L2

τ∫
σ=0

σ‖F (x0)‖2
(1− σν)3 dσ

= 1
2L2‖F (x0)‖2τ2(1− ντ)−2 .

Combination of the two estimates then directly confirms (6.38), which we
here write as

‖F (x(τ))‖ ≤ α(τ)‖F (x0)‖ ,
in terms of

α(τ) =
(
1− ντ + 1

2L0L2τ
2
)
/(1− ντ)2 .

Upon requiring α(τ) ≤ 1, we obtain the equivalent sufficient condition (6.39).
Finally, in order to find the optimal residual reduction, a short calculation
shows that

α̇(τ) =
(
ν +

L0L2τ

1− ντ
)
/(1− ντ)2 .

An interior minimum can arise only for α̇(τ) = 0, which is equivalent to (6.41)
under the condition (6.40). Insertion of τopt into the expression for α(τ) then
completes the proof. �

From the above condition (6.39) we may conclude: if

ν + 1
2

√
2L0L2 ≤ 0 ,

then τ is unbounded for local continuation. Obviously, this is the residual
oriented nonlinear contractivity condition to be compared with the error ori-
ented relation (6.20). (The difference in the prefactor just indicates that there
we needed to show uniqueness in addition.) If

ν + 1
2

√
2L0L2 > 0 , (6.42)
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then the pseudo-timestep is bounded according to

τ ≤ |ν|
1
2L0L2 − |ν|2

.

Note that condition (6.40) is less restrictive than (6.42) so that either un-
bounded or bounded optimal timesteps may occur.

Adaptive (pseudo-)timestep strategy. In the spirit of the whole book
we now want to derive an adaptive strategy based on the theoretical optimal
pseudo-timestep (6.41), which we repeat for convenience

τopt =
|ν|

L0L2 − ν2
.

The above expression can be rewritten in implicit form as

τopt =
|ν|(1− ντopt)

L0L2
. (6.43)

In passing we note that from this representation we roughly obtain

τopt ∼ 1
L0

=
1

‖F (x0)‖ ,

which gives some justification for a quite popular heuristic strategy: new
timesteps are proposed on the basis of successful old ones via

τnew =
‖F (xold)‖
‖F (xnew)‖ τold . (6.44)

For reference see, e.g., the recent paper [133] by C.T. Kelley and D.E. Keyes,
where also a whole class of further heuristics is mentioned. A different ap-
proach is taken by S.B. Hazra, V. Schulz, J. Brezillon, and N. Gauger in [116]
where in a fluid dynamical problem no overall timestep exists; this approach
is not treated here.
Here, however, we want to exploit the structure of (6.43) in a different way
by rewriting it in the form

‖Δx(τopt)‖L2τopt ≤ L0L2

1− ντopt
= |ν| .

On this basis, we replace τopt by the upper bound

τ̄opt =
|ν|

L2‖Δx(τ)‖ ≥ τopt .

So we are left with the task of identifying cheap computational estimates
[ν] ≤ ν < 0, [L2] ≤ L2 to replace the unknown theoretical quantities ν, L2.
Once this is achieved, we can compute the corresponding pseudo-timestep
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[τopt] =
|[ν]|

[L2]‖Δx(τ)‖ ≥ τ̄opt ≥ τopt . (6.45)

As for the estimation of ν, we may exploit (6.34) in a double way: First,
whenever

‖Δx(τ)‖ ≥ ‖F (x0)‖ ,
then we know that ν ≥ [ν] ≥ 0 is guaranteed, which means that we should
terminate the iteration. Second, we may recognize that

[ν]τ = ν̂(τ)τ = τ
(Δx,AΔx)
‖Δx‖2 =

(Δx,Δx − F (x0))
‖Δx‖2 ≤ ντ (6.46)

gives us a quite cheap estimation formula for ν. As for the estimation of L2,
we may rearrange terms in the proof of Theorem 6.6 to obtain

‖F (x(τ)) −Δx(τ)‖ ≤
τ∫

σ=0

‖ (F ′(x(σ)) − F ′(x0)) (I − σA)−2F (x0)‖dσ

≤ L2

τ∫
σ=0

‖x(σ) − x0‖‖(I − σA)−1Δx(σ)‖dσ .

If we approximate the integral by the trapezoidal rule, we arrive at

‖F (x(τ)) −Δx(τ)‖ ≤ 1
2L2‖Δx(τ)‖2τ2/(1− ντ) +O(τ4)

≤ 1
2L2‖Δx(τ)‖2τ2 +O(τ4) .

Note that already the approximation term, ignoring the O(τ4) term, gives
rise to the upper bound

‖F (x(τ)) −Δx(τ)‖ ≤ 1
2L2‖F (x0)‖2τ2/(1− ντ)2 ,

which is the basis of the derivation of Theorem 6.6. Hence, we may well regard

[L2] =
2‖F (x(τ)) −Δx‖

τ2‖Δx‖2 ≤ L2 +O(τ2)

as a suitable computational estimate for L2. Upon collecting all above es-
timates and inserting them into (6.45), we arrive at the following pseudo-
timestep suggestion

[τopt] =
|(Δx(τ), F (x0)−Δx(τ))|

2‖Δx(τ)‖‖F (x(τ)) −Δx(τ)‖ τ .

On this basis, an adaptive τ-strategy can be realized in the usual two modes,
a correction and a prediction strategy: If in the iterative step x0 −→ x(τ) the
residual norm does not decrease, then the actual step size τ is replaced by
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[τopt] < τ ; if the residual norm decreases successfully, then the next step is
started with the trial value [τopt]. Finally, note that the above strategy will
just terminate, if the steady state to be computed is not attractive in the
(residual) sense that [ν] ≥ 0. For [ν] → 0−, the suggested stepsize behaves
like [τopt]→ 0+ - as to be reasonably required.

6.4.2 Inexact pseudo-transient continuation

Suppose the linear system (6.32) is so large that we cannot but solve it
iteratively (i = 0, 1, . . .):

(I − τA)δxi = F (x0)− ri, xi(τ) = x0 + τδxi . (6.47)

Herein ri represents the iterative linear residual, δxi the corresponding inex-
act correction, and xi(τ) the approximate homotopy path instead of the exact
x(τ). To start the iteration, let x0(τ) = x0 so that δx0 = 0 and r0 = F (x0).
If we want to minimize the residuals within each iterative step, we are di-
rectly led to GMRES—see Section 1.4 and the notation therein. In terms of the
Euclidean norm ‖ · ‖ we define the approximation quantities

ηi :=
‖ri‖

‖F (x0)‖ < 1 for i = 1, 2, . . . .

Recall that GMRES assures ηi+1 ≤ ηi, in the generic case even ηi+1 < ηi.
Moreover, due to the residual minimization property and r0 = F (x0), we
have

‖F (x0)− ri‖2 = (1− η2
i )‖F (x0)‖2 .

In the present context of pseudo-transient continuation, we may additionally
observe that GMRES realizes the special structure

δxi(τ) = Vizi(τ) and Hi(τ) = (Ii, 0)T + τĤi .

Herein Vi is just the orthonormal basis of the Krylov space Ki(r0, A) and
Ĥi is a Hessenberg matrix like Hi(τ), but also independent of τ . On this
basis, we see that dynamical invariants are correctly treated throughout the
iteration. The proof of these properties is left as Exercise 6.5. The special
structure permits computational savings when the same system is solved for
different pseudo-timesteps τ .

Convergence analysis. As before, we first analyze the convergence be-
havior theoretically as a basis for the subsequent derivation of an adaptive
algorithm, which here will have to include the matching of inner and outer
iteration. For this purpose we need to modify Lemma 6.4.
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Lemma 6.7 Notation as in Lemma 6.4 with A ≈ F ′(x0). Then the residual
along the approximate homotopy path xi(τ) starting at x0 satisfies

F (x(τ)) − ri = (I − τA)−1 (F (x0)− ri)

+

τ∫
σ=0

(F ′(xi(σ)) −A) (I − σA)−2 (F (x0)− ri) dσ .

Proof. The proof is just an elementary modification of the proof of Lemma
6.4. For example, if we differentiate the homotopy (6.47) with respect to τ ,
we now obtain

ẋi(τ) = (I − τA)−2 (F (x0)− ri) .
Further details can be omitted. �

Theorem 6.8 Notation as in the preceding Lemma 6.7. Let A = F ′(x0) and
partly L̃0 =

√
1− η2

i ‖F (x0)‖. Assume that dynamical invariants show up via
the properties F (x) ∈ SP . Then, with the Lipschitz conditions

(u,Au) ≤ ν‖u‖2, ν < 0, for u ∈ SP

and
‖(F ′(x)− F ′(x0)

)
u‖ ≤ L2‖x− x0‖‖u‖ ,

the estimates

‖F (x(τ)) − ri‖ ≤
(

1 +
1
2 L̃0L2τ

2

1− ντ

)
‖F (x0)− ri‖

1− ντ

and

‖F (x(τ))‖ ≤
(
ηi +

√
1− η2

i

1− ντ

(
1 +

1
2 L̃0L2τ

2

1− ντ

))
‖F (x0)‖

hold. Let

s(ηi) :=
√

1− ηi

1 + ηi
> 1

2 or, equivalently, ηi <
3
5 . (6.48)

Then residual monotonicity

‖F (x(τ))‖ ≤ ‖F (x0)‖

is guaranteed for all τ ≥ 0 satisfying the sufficient condition

1− s(ηi) + (2s(ηi)− 1)ντ +
(

1
2 L̃0L2 − s(ηi)ν2

)
τ2 ≤ 0 . (6.49)

Assume further that
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4
5L0L2 > ν

2 (6.50)

and that GMRES has been continued until

ηi +
√

1− η2
i < 1 +

1
2ν

2

L0L2
. (6.51)

Then the theoretically optimal pseudo-timestep is

τopt =
|ν|

L̃0L2 − ν2
(6.52)

leading to the estimate

‖F (x(τ)) − ri‖ ≤
(

1−
1
2ν

2

L̃0L2

)
‖F (x0)− ri‖ < ‖F (x0)− ri‖

and to the residual reduction

‖F (x(τ))‖ ≤
(
ηi +

√
1− η2

i −
1
2ν

2

L0L2

)
‖F (x0)‖ < ‖F (x0)‖ . (6.53)

Proof. We return to the preceding Lemma 6.7 and modify the proof of
Theorem 6.6 carefully step by step. For example, the second order term may
be estimated as

τ∫
σ=0

‖ (F ′(x(σ)) − F ′(x0)) (I − σA)−2(F (x0)− ri)‖dσ

≤ 1
2L2‖F (x0)− ri‖2τ2(1 − ντ)−2 .

Combination of estimates then directly confirms

‖F (xi(τ)) − ri‖ ≤ ᾱi(τ)‖F (x0)− ri‖

in terms of
ᾱi(τ) =

(
1− ντ + 1

2 L̃0L2τ
2
)
/(1− ντ)2 ,

from which we obtain

‖F (xi(τ))‖ ≤ αi(τ)‖F (x0)‖

with
αi(τ) = ηi +

√
1− η2

i ᾱi(τ) .

Upon requiring α(τ) ≤ 1, we have

ηi +
√

1− η2
i ᾱi(τ) ≤ 1 ,
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which is equivalent to
ᾱi(τ) ≤ s(ηi) ≤ 1 . (6.54)

From this, we immediately verify the sufficient condition (6.49). Note that
2s − 1 > 0, which is just condition (6.48), is necessary to have at least one
negative term in the left hand side of (6.49).
Finally, in order to find the optimal residual reduction, a short calculation
shows that

α̇(τ) =
√

1− η2
i

˙̄α(τ) =

√
1− η2

i

(1 − ντ)2
(
ν +

L̃0L2τ

1− ντ

)
.

For the interior minimum we require ˙̄α(τ) = 0, which is equivalent to (6.52)
under the condition (6.50), where√

1− η2
i ≥

√
1− (3

5 )2 = 4
5

has been used. Insertion of τopt into the expression for α(τ) then leads to

‖F (xi(τ)) − ri‖ ≤
(

1−
1
2ν

2

L̃0L2

)
‖F (x0)− ri‖

and eventually to (6.53). In order to assure an actual residual reduction, con-
dition (6.54) must also hold for τopt, which confirms the necessary condition
(6.51). Note that the scalar function ηi+

√
1− η2

i is monotonically increasing
for ηi <

1
2

√
2 ≈ 0.7, hence also for ηi <

3
5 = 0.6. Therefore GMRES may be

just continued until the relation (6.51) is satisfied. This completes the proof.
�

Adaptive (pseudo-)timestep strategy. We follow the line of the deriva-
tion for the exact pseudo-transient continuation in Section 6.4.1. For conve-
nience, we repeat the expression

τopt =
|ν|

L̃0L2 − ν2
,

which can be rewritten in implicit form as

τopt =
|ν|(1− ντopt)

L̃0L2

.

Recall now that

‖δxi(τ)‖ = ‖(I − τA)−1(F (x0)− ri)‖ ≤ ‖F (x0)− ri‖
1− ντ =

L̃0

1− ντ , (6.55)

which directly implies
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τ̄opt =
|ν|

L2‖δxi(τ)‖ ≥ τopt .

So we need to compute the pseudo-timestep

[τopt] =
|[ν]|

[L2]‖δxi(τ)‖ ≥ τ̄opt ≥ τopt (6.56)

in terms of the appropriate estimates of the unknown theoretical quantities
ν, L2.
As for the estimation of ν, we exploit (6.55). Whenever

‖δxi(τ)‖ ≥ ‖F (x0)− ri‖ ,
then we know that ν ≥ 0 is guaranteed and the iteration must be terminated.
Moreover, the relation

[ν]τ = τ
(δxi, Aδxi)
‖δxi‖2 =

(δxi, δxi − F (x0) + ri)
‖δxi‖2 ≤ ντ

supplies an estimation formula for ν. As for the estimation of L2, we revisit
Lemma 6.7 to obtain

‖F (xi(τ)) − ri − δxi(τ)‖

≤
τ∫

σ=0

‖ (F ′(xi(σ)) − F ′(x0)) (I − σA)−2 (F (x0)− ri) ‖dσ

≤ L2

τ∫
σ=0

‖xi(σ)− x0‖‖(I − σA)−1δxi(σ)‖dσ

≤ 1
2L2τ

2 L̃2
0

(1− ντ)2 .

If we approximate the above integral by the trapezoidal rule (before using the
final estimate), we arrive at

‖F (xi(τ)) − ri − δxi(τ)‖ ≤ 1
2L2‖δxi(τ)‖2τ2/(1− ντ) +O(τ4)

≤ 1
2L2τ

2‖δxi(τ)‖2 +O(τ4) .

Already the first right hand term gives rise to the above upper bound—
compare (6.55). Hence, as in Section 6.4.1, we will pick

[L2] =
2‖F (xi(τ)) − ri − δxi(τ)‖

τ2‖δxi(τ)‖2 ≤ L2 +O(τ2)

as computational estimate for L2. Upon inserting the two derived estimates
into (6.56), we arrive at the pseudo-timestep estimate
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[τopt] =
|(δxi(τ), F (x0)− ri − δxi(τ))|

2‖δxi(τ)‖‖F (xi(τ)) − ri − δxi(τ)‖ τ .

On this basis, an adaptive τ-strategy can again be realized as in the case of
the exact pseudo-transient continuation method.
Finally, we want to mention that the iterative version of the pseudo-transient
continuation method still works in the case of unbounded timestep. To see
this, just rewrite (6.47) in the form(

1
τ
I −A

)
(xi(τ) − x0) = F (x0)− ri .

Herein τ →∞ is possible leaving xi(τ)−x0 well-defined even in the presence
of singular Jacobian A caused by dynamical invariants: This is due to the fact
that GMRES (like any Krylov solver) keeps the nullspace components of the
solution unchanged, so that P⊥(xi(∞) − x0) = 0 is guaranteed throughout
the iteration.

Preconditioning. If we multiply the nonlinear system by means of some
nonsingular matrix M from the left as

Mẋ = MF (x) = 0 ,

then GMRES will have to work on the preconditioned residuals Mri and adap-
tivity must be based on norms ‖M · ‖. Note that it is totally unclear,
whether such a transformation leads to the necessary linear contractivity
result ν(MA) < 0 for the preconditioned system with A ≈ F ′(x0).
Preconditioning from the right will just influence the convergence speed of
GMRES without changing the above derived adaptivity devices.

Matrix-free realization. Sometimes the inexact pseudo-continuation meth-
od is realized in a matrix-free variant using the first order approximation

Aδx ≈ F (x+ δx)− F (x) .

A numerically stable realization will use automatic differentiation as sug-
gested by A. Griewank [112].

Exercises

Exercise 6.1 Prove the results (6.26) for the implicit trapezoidal rule (6.25)
and (6.28) for the implicit midpoint rule (6.27).

Exercise 6.2 Consider the linearly implicit Euler (LIE) discretization for
the ODE system y′ = f(y), which reads (for k = 0, 1, . . .)
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yk+1 = yk + (I − τA)−1f(yk) ,

where A = fy(yk). This scheme is usually monitored to run in some ‘neigh-
borhood’ of the implicit Euler (IE) discretization

F (y) = y − yk − τf(y) = 0 .

For this purpose the LIE is interpreted as the first iterate of IE and local
contraction within that IE scheme is required. Most LIE codes realize this
requirement via an error oriented criterion introduced in [66]. Here we want
to look at a residual based variant due to [120].

a) On the basis of the residual based Newton-Mysovskikh theorem derive a
computational monitor that is cheap to evaluate.

b) Of which order O(τs) is this contraction factor? Derive an adaptive step-
size procedure on that basis.
Hint: Interpret the method as a continuation method with embedding
parameter τ .

c) Compare the error oriented and the residual based variant in terms of
computational amount per discretization step.

d) Optional: Implement the two variants within an adaptive integrator (like
LIMEX) and compare them at several ODE examples.

Exercise 6.3 Consider the system of n nonlinear differential equations
(with time variable t)

ẋ = F (x) , x(0) = x0

modeling some process x(t). Assume that there exists a dynamical invariant
(such as mass conservation) of the form

eTx(t) = eTx0 , eT = (1, . . . , 1) ∈ Rn .

In many cases, one is only interested in a steady state solution x∗ = x(∞)
defined by

F (x∗) = 0 .

Since, in general, x∗ will depend on the initial value x0, uniqueness of the
solution is not guaranteed.

a) Show that the Jacobian F ′(x∗) is singular, which makes a naive applica-
tion of Newton methods impossible.

b) As a remedy, consider the iterative method[
F ′(xk)
eT

]
Δxk = −

[
F (xk)

0

]
, xk+1 := xk +Δxk
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started by some initial guess x0. Show that the thus produced iterates
satisfy

eTxk = eTx0 .

What kind of restriction is necessary for the choice of x0?
c) Develop a program to treat the described problem type—test examples

may come from chemical kinetics, where mass conservation is often tacitly
assumed without explicitly stating it.

Exercise 6.4 Consider the pseudo-transient continuation method with ap-
proximate Jacobian A ≈ F ′(x0). Upon using the notation of Section 6.4.1
and, in addition,

‖(A− F ′(x0))u‖ ≤ δ|ν|‖u‖ , δ < 1 ,

prove a variant of Theorem 6.6, containing results on the residual descent
and the optimal pseudo-timestep.
Check: For ν < 0, the optimal timestep τopt comes out to be

τopt =
(1− δ)|ν|

L0L2 − (1 − δ)ν2

in the terms defined—assuming, of course, that the denominator is positive.

Exercise 6.5 How can the iterative linear solver GMRES be optimally
adapted to pseudo-transient continuation? Design a special version, which
saves computing time and storage.
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