
5 Parameter Dependent Systems:

Continuation Methods

In typical scientific and engineering problems not only a single isolated non-
linear system is to be solved, but a family of problems depending on one or
more parameters λ ∈ Rp, p ≥ 1. The subsequent presentation will be mainly
restricted to the case p = 1 (with the exception of Section 4.4). In fact,
parameter dependent systems of nonlinear equations

F (x, λ) = 0, x ∈ D ⊆ Rn, λ ∈ [0, L] (5.1)

are the basis for parameter studies in systems analysis and systems design,
but can also be deliberately exploited for the globalization of local Newton or
Gauss-Newton methods, if only poor initial guesses are available.
In order to understand the structure of this type of problem, assume that
(5.1) has a locally unique solution (x∗, λ∗) ∈ D× [0, L]. Let the (n, n)-matrix
Fx(x, λ) be regular in some neighborhood of this point. Then, by the implicit
function theorem, there exists a unique homotopy path x defined by virtue of
the homotopy

F
(
x(λ), λ

)
≡ 0 , λ ∈ [0, L]

or, equivalently, by the linearly implicit ODE, often called the Davidenko
differential equation (in memory of the early paper [48] by D. Davidenko),

Fxẋ+ Fλ = 0 (5.2)

with a selected solution x∗ on the homotopy path as initial value, say

x(λ∗) := x∗ .

Note that the ODE (5.2) uniquely defines the direction field ẋ in terms of
the λ-parametrization.
In order to avoid the specification of the parametrization, one may introduce
the augmented variable

y := (x, λ) ∈ Rn+1

and rewrite the above mapping (5.1) as

F (y) = 0
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and the direction field (5.2) as

F ′(y) t(y) = 0 .

Whenever the condition
rankF ′(y) = n

or, equivalently,
dimkerF ′(y) = 1 ,

then t(y) is uniquely defined up to some normalization, which might be fixed
as

‖t‖2 = 1 .

In general, whenever the local condition

rank F ′(y) = n− k
or, equivalently

dim kerF ′(y) = k + 1

holds, then a singularity of order k occurs. A special role is played by turning
points, which, with respect to the selected parameter λ, can be characterized
by k = 0 and

rank F ′(y∗) = n , rank Fx(x∗, λ∗) = n− 1 ,

so that they are, formally speaking, singularities of order k = 0. For k > 0 the
local direction field is not unique, its actual structure depending on properties
of higher derivatives up to order k + 1. For k = 1 simple bifurcation points
may occur, which require, however, some second derivative discriminant D to
be positive: in this case, two distinct branch directions are defined; if D = 0,
a so-called isola occurs. For k > 1 there exists a hierarchy of critical points,
which we cannot treat here in full beauty. The complete solution structure
of parameter dependent mappings, usually represented within a bifurcation
diagram, may turn out to be rather complicated. Here we will restrict our
attention to turning points and simple bifurcation points.
Every now and then, the scientific literature contains the suggestion to just
integrate the Davidenko differential equation (5.1) numerically, which is not
recommended here for the following reasons:

• In most applications only approximations of the Jacobian (n, n)-matrix
Fx(x, λ) are available.

• The numerical integration of (5.1) requires some implicit or at least lin-
early implicit discretization, which, in turn, requires the solution of linear
equations of the kind(

Fx(y)− βΔλFλx(y)
)
Δx+ βΔλFxx[ẋ, Δx] = −ΔλFλ(y) ,
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obviously requiring second order derivative information. Even though any
stiff integrators will solve the ODE, they will not assure the basic condition
F = 0 up to sufficient accuracy due to global error propagation—this is
the well-known ‘drift’ of the global discretization error.

Rather so-called discrete continuation methods are the methods of choice:
they concentrate on the solution of F = 0 directly and only require suf-
ficiently accurate evaluation of the mapping F and approximations of F ′.
Such methods consist of two essential parts:

• a prediction method that, from given solution points (xν , λν) on the ho-
motopy path, produces some ‘new’ point (x̂ν+1, λ̂ν+1) assumed to be ‘suf-
ficiently close’ to the homotopy path,

• an iterative correction method that, from a given starting point (x̂ν , λ̂ν),
supplies some solution point (xν , λν) on the homotopy path.

For the prediction step, classical or tangent continuation are the canonical
choices—see below. Needless to say that, for the iterative correction steps, we
here concentrate on local Newton and quasi-Newton methods (see Sections
2.1.1 and 2.1.4 above) as well as (rank-deficient) Gauss-Newton methods (see
Section 4.4.1 above).

Bibliographical Note. The principle of local continuation has been sug-
gested in 1892 by H. Poincaré [168] in the context of analytical continuation.
The idea of discrete continuation seems to date back to E. Lahaye [142] in
1934. As for the analysis of higher order singular points, the interested reader
may want to look up, e.g., the textbooks [109, 110, 111] of M. Golubitsky and
coauthors.
Since the underlying homotopy path is a mathematical object in the domain
space of the nonlinear mapping F , we select the affine covariant framework.
In Section 5.1 below, we derive an adaptive pathfollowing algorithm as a
Newton continuation method, which terminates locally in the presence of
critical points including turning points. In the next Section 5.2, based on the
preceding Section 4.4, we treat an adaptive quasi-Gauss-Newton continuation
method. This method is able to follow the path beyond turning points, but
still terminates in the neighborhood of any other critical point. In order to
overcome such points as well, we exemplify a scheme to construct augmented
systems, whose solutions are just selected critical points of higher order—
see Section 5.3. This scheme is an appropriate combination of Lyapunov-
Schmidt reduction and topological universal unfolding. Details of numerical
realization are only worked out for the computation of diagrams including
simple bifurcation points.
Before we begin with a presentation of any algorithmic details, we want to
point out that, quite often, there is a choice of embedding to be made in view
of computational complexity.
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Example 5.1 Choice of embedding. Consider the problem from [99]

G(x) := x− φ(x) = 0,

with

φi(x) := exp(cos(i ·
10∑

j=1

xj)), i = 1, . . . , 10.

In [99], K. Georg treated the unspecific embedding

F (x, λ) = λF (x) + (1− λ)x = x− λφ(x) . (5.3)

Assume that we know the solution at λ = 0, which is x0
i = 0, i = 1, . . . , 10,

and want to find the solution at λ = 1. The solution structure x(λ) is given
in Figure 5.1, left.
Alternatively, we might choose the more problem-oriented embedding (com-
pare also [77, Section 4.4])

F̃i(x, λ) := xi − exp(λ · cos(i ·
10∑

j=1

xj)), i = 1, . . . , 10 . (5.4)

The solution at λ = 0 is now given by x0
i = 1, i = 1, . . . , 10. The corresponding

solution structure as given in Figure 5.1, right, is obviously much simpler.
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Fig. 5.1. Example 5.1. Left: unspecific embedding (5.3). Right: problem-oriented
embedding (5.4).

All computations have been performed by the Gauss-Newton continuation
code ALCON1 to be described in Section 5.2 below. The dots in Figure 5.1
indicate the number of discrete continuation points as obtained from ALCON1:
Observe that the computational complexity on the left is much higher than
on the right. Look also at the quite different number of turning points. The
cross-points arise from the projection x9(λ), not from bifurcations.
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5.1 Newton Continuation Methods

This section deals with the situation that there exists a unique homotopy path
x that can be explicitly parametrized with respect to λ over a finite interval
of interest. A confirmation of this structure may often come directly from
expert insight into the scientific or engineering problem to be solved. In this
case the Jacobian (n, n)-matrix Fx(x, λ) is known to be nonsingular, which
excludes the occurrence of any type of critical points. As a consequence, local
Newton algorithms may well serve as iterative correction methods within any
discrete continuation method.
In order to treat the problem family (5.1), a sequence of problems

F (x, λν) = 0 , ν = 0, 1 . . . , (5.5)

is solved instead, where the interval [0.L] is replaced by the subdivision

0 = λ0 < λ1 < · · · < λN = L .

In order to solve each of the problems (5.5) by a local Newton method,
‘sufficiently good’ starting points are required, which should be supplied by
some suitable prediction method. Formally speaking, any starting points will
lie on some prediction path x̂(λ) for λ = λν . The task therefore involves the
choice of the prediction method (Section 5.1.1), the theoretical analysis of
the coupling between prediction and Newton method (Section 5.1.2), which
leads to a characterization of feasible stepsizes, and, on this theoretical basis,
the adaptive choice of the stepsizes Δλν = λν+1 − λν in actual computation
(Section 5.1.3). Since paths as mathematical objects live in the domain space
of the mapping F , the affine covariant setting for both theory and algorithms
is selected throughout Section 5.1.

5.1.1 Classification of continuation methods

As the first idea to choose a suitable starting point x̂(λν+1) one will just take
the previous solution point x(λν). This so-called classical continuation method
is represented schematically in Figure 5.2. For this continuation method the
prediction path is defined as

x̂(λ) = x(λν) , λ ≥ λν .

A refinement of the above idea is to proceed along the tangent of the homo-
topy path in λν . This is the so-called tangent continuation method, sometimes
also called method of incremental load or Euler continuation, since it realizes
the explicit Euler discretization of the ODE (5.2). The corresponding scheme
is depicted in Figure 5.3. The associated prediction path is defined by

x̂(λ) = x(λν) + (λ− λν) ẋ(λν) , λ ≥ λν ,
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wherein
ẋ(λν) = −Fx

(
x(λν), λν

)−1

Fλ

(
x(λν), λν

)
.

Note that both the classical and the tangent prediction paths are given in
affine covariant terms, which suggests that a theoretical classification of pre-
diction methods should also be formulated in such terms that match with the
error oriented local convergence analysis of Newton’s method from Section
2.1 above.

Definition. Let Δλ := λ− λν . A continuation method defined via the pre-
diction path x̂(λ) is said to be of order p, if a constant ηp exists such that

‖x(λ)− x̂(λ)‖ ≤ ηp ·Δλp . (5.6)

In order to illustrate this definition, a few examples are given first. For sim-
plicity, let λν := 0 and λ = Δλ.

Classical continuation method. For the method represented in Figure 5.2
one immediately derives

‖x(λ) − x̂(λ)‖ = ‖x(λ) − x(0)‖ ≤ λ · max
s∈[0,L]

∥∥ẋ(s)∥∥ .
Hence, this method is of the order p = 1 with order coefficient

η1 := max
s∈[0,L]

∥∥ẋ(s)∥∥ .
Actually, both H. Poincaré [168] and E. Lahaye [142] had just thought of this
simplest type of continuation.

x

λ

x(λν)

λν λν+1

x̂

x̂(λν+1)

x(λν+1)

x

Fig. 5.2. Classical continuation method.
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Tangent continuation method. For the method represented in Figure 5.3
one obtains

‖x(λ) − x̂(λ)‖ =
∥∥x(λ) − x(0)− λẋ(0)

∥∥ ≤ 1
2λ

2 max
s∈[0,L]

∥∥ẍ(s)∥∥ . (5.7)

So, this method is of the order p = 2 with order coefficient

η2 := 1
2 max

s∈[0,L]

∥∥ẍ(s)∥∥ . (5.8)

x

λ

x(λν)

λν λν+1

x̂

x̂(λν+1)

x(λν+1)

x

Fig. 5.3. Tangent continuation method.

Standard embedding. The simple embedding

F0(x, λ) := F (x)− (1− λ)F (x0)

is rather popular. Note, however, that this homotopy ‘freezes’ the information
of the starting point x0. The least improvement, which can easily be realized,
is to turn to a damping or trust region strategy (see Chapter 3), which may
be understood as being formally based on the homotopy chain (k = 0, 1, . . .)

Fk(x, λ) := F (x)− (1 − λ)F (xk) ,

which brings in the information about the ‘newest’ iterate xk. Observe, how-
ever, that this generally applicable homotopy does not exploit any special
structure of the mapping.
Partial standard embedding. In the experience of the author the only
sometimes successful variant has been the selection of only one component
of the mapping, which leads to the so-called partial standard embedding

F 0(x, λ) := PF (x) + P⊥
(
F (x)− (1 − λ)F (x0)

)
, (5.9)



240 5 Parameter Dependent Systems: Continuation Methods

where P is an orthogonal projector and P⊥ its complement. In what fol-
lows we give some comparative results on the classical versus the tangent
continuation method for this special kind of embedding.

Lemma 5.1 Consider the partial standard embedding (5.9). Notations as
introduced in this section. Then, with the Lipschitz condition∥∥∥∥F ′

(
x̂(λ)

)−1(
F ′(x)− F ′(x̂(λ))

)∥∥∥∥ ≤ ω̂0‖x− x̂(λ)‖ ,
x, x̂(λ) ∈ D , 0 ≤ λ ≤ L ,

the order coefficient for the classical continuation method is

η1 = sup
λ∈[0,λ̄]

∥∥∥∥F ′
(
x(λ)

)−1

P⊥F (x0)
∥∥∥∥ , (5.10)

the one for the tangent continuation is closely related as

η2 := 1
2 ω̂0η

2
1 . (5.11)

Proof. The extremely simple form of the embedding (5.9) leads to

∂

∂x
F 0(x, λ) =

∂

∂x
F (x) = F ′(x) ,

∂

∂λ
F 0(x, λ) = P⊥F (x0) ,

which implies
ẋ(λ) = −F ′(x)−1P⊥F (x0)

and therefore (5.10). For the estimation of η2, we must start with a Lipschitz
condition for the directions∥∥ẋ(λ) − ẋ(0)

∥∥ =
∥∥∥∥(F ′(x(λ)

)−1

− F ′
(
x(0)

)−1

)P⊥F (x0)
∥∥∥∥

≤
∥∥∥∥F ′

(
x̂(0)

)−1(
F ′(x(λ)) − F ′(x(0))

)∥∥∥∥∥∥ẋ(λ)∥∥
≤ ω̂0 ‖x(λ)− x(0)‖ η1 ≤ ω̂0η

2
1λ .

Hence, with (5.8), one has the second result (5.11), which completes the proof.
�

As for the consequence of this Lemma for the feasible stepsizes see Lemma
5.6 below.
It is an easy exercise to construct further refinements of prediction methods
beyond the tangent continuation method, just based on higher derivative
information of F . In view of complex real life problems, however, this is not
very promising, since this would also require accurate higher order derivative
information, which may be rarely available.
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Polynomial continuation In order to classify such methods, the monomials
Δλp in (5.6) must be replaced by some strictly monotone increasing function
ϕ(Δλ) with ϕ(0) = 0 such that

‖x(λ) − x̂(λ)‖ ≤ η · ϕ(Δλ) . (5.12)

In order to illustrate this definition, we consider two extrapolation methods
(once more λν := 0 and λ := Δλ).
Standard polynomial extrapolation. Based on the data

x(λ−q), . . . , x(λ−1) , x(0)

a prediction path can be defined as (with λ0 := 0)

x̂q(λ) :=
0∑

m=−q

x(λm)Lm
q (λ)

in terms of Lagrange polynomials L(·). Application of standard approxima-
tion error estimates then leads to

‖x(λ) − x̂(λ)‖ ≤ Cq+1 · λ(λ − λ−1) · . . . · (λ− λ−q) ,

which naturally defines

ϕ(λ) := λ(λ− λ−1) · · · · · (λ− λ−q) . (5.13)

The numerical evaluation of the prediction path is, of course, done by the
Aitken-Neville algorithm.
Hermite extrapolation. This type of polynomial extrapolation is based on the
data

x(λ−q) , ẋ(λ−q), . . . , x(0) , ẋ(0) .

Evaluation of the prediction path x̂q(λ) is done here by a variant of the
Aitken-Neville algorithm for pairwise confluent nodes. Proceeding as above
leads to

‖x(λ) − x̂(λ)‖ ≤ Cq+1 · λ2(λ− λ−1)2 · · · · · (λ− λ−q)2 ,

which defines the monotone function

ϕ(λ) := λ2(λ− λ−1)2 · · · · · (λ − λ−q)2 .

Note, however, that this prediction method requires quite accurate derivative
information, which restricts its applicability.

Bibliographical Note. An affine contravariant definition of the order of
a continuation method based on the residual F has been given in 1976 by
R. Menzel and H. Schwetlick [150]. The here presented affine covariant al-
ternative is due to the author [61] from 1979. Its extension to polynomial
extrapolation is due to H.G. Bock [32]. For the standard embedding, conver-
gence proofs were given by H.B. Keller [131] or M.W. Hirsch and S. Smale
[119]; a general code has been implemented by A.P. Morgan et al. [154].
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5.1.2 Affine covariant feasible stepsizes

Any of the discrete continuation methods are efficient only for ‘sufficiently’
small local stepsizes

Δλν := λν+1 − λν ,

which must be chosen such that the local Newton method starting at the
predicted value x0 = x̂(λν+1) can be expected to converge to the value x∗ =
x(λν+1) on the homotopy path. In what follows, a theoretical analysis of
feasible stepsizes is worked out, which will serve as the basis for an adaptive
stepsize control to be presented in Section 5.1.3.
Among the local Newton methods to be discussed as correction methods are

• the ordinary Newton method with a new Jacobian at each iterate (cf.
Section 2.1.1),

• the simplified Newton method with the initial Jacobian throughout (cf.
Section 2.1.2), and

• the quasi-Newton method starting with an initial Jacobian based on ‘good’
Broyden Jacobian updates (cf. Section 2.1.4).

Ordinary Newton method. We begin with the ordinary Newton method
as correction method within any discrete continuation method. The simplest
theoretical framework is certainly given by Theorem 2.3.

Theorem 5.2 Notation as introduced in this Section. Let Fx(x, λ) be non-
singular for all (x, λ) ∈ D × [0, L]. Let a unique homotopy path x(λ) exist
in a sufficiently large local domain. Assume the affine covariant Lipschitz
condition

‖Fx(x, λ)−1 (Fx(y, λ)− Fx(x, λ)) (y − x)‖ ≤ ω‖y − x‖2 . (5.14)

Let x̂(λ) denote a prediction method of order p as defined in (5.6) based on
the previous solution point x(λν). Then the ordinary Newton method with
starting point x̂(λν+1) converges towards the solution point x(λν+1) for all
stepsizes

Δλν ≤ Δλmax :=
(

2
ωηp

)1/p

(5.15)

within the interval [0, L].

Proof. Upon skipping any fine structure of the local domains assumed to
be sufficiently large, we must merely check the hypothesis of Theorem 2.3
for the ordinary Newton method with starting point x0 = x̂(λ) and solution
point x∗ = x(λ). In view of the local contractivity condition (2.9), we will
estimate
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‖x∗ − x0‖ = ‖x(λ) − x̂(λ)‖ ≤ ηpΔλ
p .

Upon inserting the upper bound into (2.9), we arrive at the sufficient condi-
tion

ηpΔλ
p < 2/ω ,

which is essentially (5.15). �

The above theorem requires some knowledge about the ‘rather global’ Lip-
schitz constant ω. In order to permit a finer tuning within the automatic
stepsize control to be derived in Section 5.1.3, we next apply the affine co-
variant Newton-Kantorovich theorem (Theorem 2.1), which requires ‘more
local’ Lipschitz information.

Theorem 5.3 Notation and assumptions essentially as just introduced. Com-
pared to the preceding theorem replace the Lipschitz condition (5.14) by the
condition∥∥∥Fx (x̂(λ), λ)−1

(
Fx(y, λ)− Fx(x, λ)

)∥∥∥ ≤ ω̂0 ‖y − x‖ , x, y ∈ D . (5.16)

Then the ordinary Newton method with starting point x̂(λν+1) converges to-
wards the solution point x(λν+1) for all stepsizes

Δλν ≤ Δλmax :=

(√
2− 1
ω̂0ηp

)1/p

. (5.17)

Proof. The above Lipschitz condition (5.16) permits the application of The-
orem 2.1, which (with λ = Δλ) requires that

α(λ)ω̂0 ≤ 1
2 . (5.18)

So an upper bound ‖Δx0(λ)‖ ≤ α(λ) for the first Newton correction needs
to be derived. To obtain this, we estimate

‖Δx0(λ)‖ =
∥∥∥Fx (x̂(λ), λ)−1

F (x̂(λ), λ)
∥∥∥ =

∥∥Fx(x̂, λ)−1 (F (x̂, λ)− F (x, λ))
∥∥

=
∥∥∥ Fx(x̂, λ)−1

1∫
s=0

Fx(x+ s(x̂ − x), λ)(x̂ − x)ds
∥∥∥

≤ ‖x̂− x‖ (1 + 1
2 ω̂0‖x̂− x‖

)
.

The application of the triangle inequality in the last step appears to be un-
avoidable.
With the definition of the order of a prediction method we are now able to
derive the upper bound
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‖Δx0(λ)‖ ≤ ηp · λp
(
1 + 1

2 ω̂0ηpλ
p
)

=: α(λ) . (5.19)

Finally, combination of (5.18) and (5.19) yields

ω̂0ηpλ
p
(
1 + 1

2 ω̂0ηpλ
p
) ≤ 1

2

or, equivalently
ω̂0ηpλ

p ≤
√

2− 1 ,

which confirms the result (5.17). �

Corollary 5.4 If the characterization (5.6) of a prediction method is re-
placed by the generalization (5.12) in terms of a strictly monotone increasing
function ϕ(Δλ), then the maximum feasible stepsize (5.17) is replaced by

Δλmax := ϕ−1

(√
2− 1
ω̂0η

)
(5.20)

with ϕ−1 the mapping inverse to ϕ.

Proof. Instead of (5.19), we now come up with (once again λ := Δλ)

α(λ) := ηϕ(λ)
(
1 + 1

2 ω̂0ηϕ(λ)
)
,

which directly leads to
ω̂0ηϕ(λ) ≤

√
2− 1

thus confirming (5.20). �

Simplified Newton method. In most applications, the simplified Newton
method rather than the ordinary Newton method will be realized. For this
specification, the following slight modifications hold.

Corollary 5.5 Notation and assumptions as in Theorem 5.3 or Corollary 5.4,
respectively. Let the ordinary Newton method therein be replaced by the sim-
plified Newton method with the same starting point. Then, with the mere
replacement of the Lipschitz constant ω̂0 via the slightly modified condition∥∥∥Fx (x̂(λ), λ)−1

(
Fx(x, λ) − Fx(x̂(λ), λ)

)∥∥∥ ≤ ω̂0 ‖x− x̂(λ)‖ ,

the maximum feasible stepsizes (5.17) and (5.20) still hold.

Proof. The above two proofs can be essentially copied: the contraction con-
dition (2.3) of Theorem 2.1 needs to be formally replaced by condition (2.17)
of Theorem 2.5, which means the mere replacement of the Lipschitz condition
(2.2) by (2.16). �
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Partial standard embedding. In order to illustrate what has been said
at the end of Section 5.1.1 about the embedding (5.9), we now study the
consequences of Lemma 5.1 for the associated feasible stepsizes.

Lemma 5.6 Notation and assumptions as in Lemma 5.1. Let Δλ(1,2)
max denote

the maximum feasible stepsizes for the classical continuation method (p = 1)
and for the tangent continuation method (p = 2). Then the following results
hold:

Δλ(2)
max =

√
2(
√

2 + 1)Δλ(1)
max ≈ 2.2Δλ(1)

max .

Proof. We merely insert the results (5.10) for p = 1 and (5.11) for p = 2 into
the maximum stepsize formula (5.17) to verify the above results. �

Obviously, in this rather unspecific embedding, tangent continuation seems
to require roughly double the number of continuation steps compared to clas-
sical continuation. This theoretically backed expectation has actually been
observed in large scale problems. At the same time, however, an efficient im-
plementation of the tangent continuation method will roughly require double
the amount of work per step (see Section 5.1.3). Hence, there is no clear
advantage on either side. In sensitive examples, however, smaller stepsizes
increase robustness and reliability of the numerical pathfollowing procedure.
That is why for this type of embedding classical continuation is generally
recommended.

5.1.3 Adaptive pathfollowing algorithms

In the preceding section we analyzed discrete continuation methods with the
simplified Newton method as correction method. In its actual realization in
the code CONTI1, this is extended to some quasi-Newton correction method.

Simplified Newton method. This method keeps the Jacobian matrix
F ′(x0) fixed for all iterative steps, which implies that a single matrix de-
composition at the beginning is sufficient throughout the iteration. As a
convergence monitor, the contraction factors Θk in terms of the simplified
Newton corrections are used. From (2.21) we require the local convergence
criterion

Θ0 ≤ Θ = 1
4 ,

which is easily tested after the first Newton step.

Quasi-Newton method. After the first iterative step, we substitute the
simplified Newton iteration by the quasi-Newton method based on ‘good’
Broyden updates, as documented by algorithm QNERR in Section 2.1.4. Let
Θk denote the corresponding contraction factors in terms of the quasi-Newton
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corrections. In agreement with the convergence analysis in Theorem 2.7 we
require that Θk ≤ 1/2. Hence, whenever the condition

Θk >
1
2 (5.21)

occurs, then the continuation step λν → λν +Δλν is repeated with reduced
stepsize Δλν .

Discrete continuation method. The classical continuation method is cer-
tainly most simple to realize and needs no further elaboration. The tangent
continuation method additionally requires the numerical solution of a linear
system of the kind

Fx(x(λν), λν)ẋ(λν) = −Fλ(x(λν), λν) ,

which has the same structure as the systems arising in Newton’s method.
Note, however, that in order to realize a continuation method of actual order
p = 2, sufficiently accurate Jacobian approximations (Fx, Fλ) need to be
evaluated not only at the starting points x̂, but also at the solution points x.
In large scale problems, this requirement may roughly double the amount of
work per continuation step compared to the classical method (p = 1).

Adaptive stepsize control. In the globalization of local Newton methods
by continuation, adaptive trust region strategies come up as adaptive step-
size strategies. Colloquially, the construction principle is as follows: choose
stepsizes such that the initial guess x̂(λν) stays within the ‘Newton contrac-
tion tube’ around the homotopy path—see the theoretical stepsize results like
(5.17) containing the unavailable theoretical quantities ω̂0 and ηp.
Following once more our paradigm of Section 1.2.3, we replace the unavailable
theoretical quantities by computationally available estimates [ω̂0] ≤ ω̂0 and
[ηp] ≤ ηp—thus arriving at stepsize estimates

[Δλmax] :=

(√
2− 1

[ω̂0][ηp]

)1/p

≥ Δλmax . (5.22)

Again both a prediction strategy and a correction strategy will be needed.
Of course, all formulas will be invariant under rescaling or shifting of the
continuation parameter.
Suppose that, for given λν+1, the value Θ0 has already been computed. From
the convergence analysis of the simplified Newton method we know that

Θ0(λ) ≤ 1
2 ω̂0‖Δx0

(λ)‖ ≤ 1
2 ω̂0α(λ) . (5.23)

Insertion of α(λ) from (5.19) yields

Θ0 ≤ 1
2 ω̂0ηpΔλ

p
(
1 + 1

2 ω̂0ηpΔλ
p
)
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or, equivalently,
ω̂0ηpΔλ

p ≥ g(Θ0)

in terms of the monotone increasing function

g(Θ) :=
√

1 + 4Θ − 1 .

From this, we may obtain the a-posteriori estimate

[ω̂0ηp] :=
g
(
Θ0(λ)

)
Δλp

≤ ω̂0ηp

and the associated stepsize estimate

[Δλmax] :=

(
g
(
Θ
)

[ω̂0ηp]

)1/p

.

Note that g
(
Θ
)

=
√

2 − 1 as in formula (5.17)—a mere consequence of the
fact that both formulas are based on the Kantorovich condition. Let Δλ′ν
denote some desirable stepsize corresponding to Θ0 = Θ, whereas the actual
stepsize Δλν corresponds to the actually computed value of Θ0. Then the
above derivation leads to the stepsize correction formula

Δλ′ν :=

(
g
(
Θ
)

g(Θ0)

)1/p

Δλν . (5.24)

For Θ0 < Θ the actual stepsize Δλν is acceptable, since Δλ′ν > Δλν . If,
however, the termination criterion (5.21) is activated by some Θk > 1/2,
then the last continuation step should be repeated with stepsize

Δλ′ν :=

(
g
(
Θ
)

g(Θk)

)1/p

Δλν ,

which is a clear reduction, since

Δλ′ν <

(√
2− 1√
3− 1

)1/p

Δλν ≈ 0.571/pΔλν .

In order to derive a-priori estimates, we may exploit (5.23) again to obtain

[ω̂0] :=
2Θ0(λν)

‖Δx0
(λν)‖

≤ ω̂0

and just use the definition of the order of a prediction method in the form
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[ηp] :=
‖x̂(λν)− x(λν)‖
|Δλν−1|p ≤ ηp .

Upon inserting these quantities into (5.22), a stepsize prediction strategy is
defined via

Δλ0
ν :=

(
‖Δx0

(λν)‖
‖x̂(λν)− x(λν)‖ ·

g
(
Θ
)

2Θ0

)1/p

Δλν−1 . (5.25)

Note that this estimate is not sensitive to the computational accuracy of x.
Even if only a single Newton step is performed, which means that

x→ x̃ := x̂(λν) +Δx
0
(λν) ,

then the predicted value degenerates to

Δλ0
ν :=

(
g
(
Θ
)

2Θ0

)1/p

Δλν−1 ,

which, compared with (5.24), is seen to be still a reasonable estimate. Pre-
caution must be taken in the nearly linear case, characterized by

Θ0 ≤ Θmin � 1 .

In this case, the stepsize estimate (5.25) should be replaced by

Δλ0
ν :=

(
g
(
Θ
)

2Θmin

)1/p

Δλν−1 .

to avoid exponential overflow.

Polynomial continuation. Both the correction and the prediction strategy
carry over to the more general case of continuation by polynomial extrapola-
tion. Upon recalling definition (5.12), formula (5.24) must be modified such
that

Δλ′ν = ϕ−1

(
g
(
Θ
)

g (Θ0)
ϕ(Δλν)

)
.

A comparable formula holds instead of (5.25). The above required evaluation
of ϕ−1 is easily performed: since the typically arising functions ϕ are convex
(see, e.g., (5.13)), both the ordinary and the simplified Newton method in
R1 converge certainly monotonically; good starting guesses are available from
the dominant monomial so that the methods converge even fast.
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Graphical output. The automatically selected points typically give a really
good representation on the basis of comparably few data—which is a nice side
effect of any efficient stepsize control.
Classical continuation. In this case the data x(λν) are available, so that in the
interactive mode only linear interpolation is possible, whereas in the batch
mode cubic spline interpolation will be preferable. For details the reader may
check, e.g., Section 7.4 in the textbook [77].
Tangent continuation. In this case both the nodal values x(λν) and the as-
sociated tangents ẋ(λν) are available data so that Hermite interpolation will
be the method of choice—compare, e.g., Section 7.1.2 in [77].

Detection of critical points. Any critical point (x∗, λ∗) is characterized
by the fact that Fx(x∗, λ∗) is singular, which will show up as a convergence
failure of the local Newton method for iterates sufficiently close to (x∗, λ∗). As
a consequence, turning points with respect to λ are safely detected: beyond
these points, the local Newton iteration will repeatedly activate the termi-
nation criterion (5.21). Generally speaking, the feasible stepsizes Δλmax will
shrink as (x, λ) → (x∗, λ∗). On the other hand, due to [Δλmax] ≥ Δλmax,
an equivalent behavior for the computational estimates cannot be guaran-
teed: since these estimates are only based on pointwise sampling of F and F ′

possible ‘jumps beyond critical points without notice’ cannot be excluded.
Fortunately, extensive computational experience has demonstrated that the
stepsize control derived herein is quite sensitive, typically exhibiting marked
stepsize reductions in the neighborhood of critical points. Summarizing, crit-
ical points of order k > 0 are rather often, but not safely detected in contin-
uation methods with explicit parametrization.
Jacobian ill-conditioning. When approaching a critical point on the homo-
topy path, the Jacobian condition number is known to increase, which might
support the idea of estimating it along the continuation process. In connec-
tion with QR-decomposition, the subcondition number sc(Fx) is cheaply at
hand [83]. Further condition number estimates may be found within Matlab.
In the experience of the author, the most reliable technique for general linear
equations has been found to be based on iterative refinement with the same
mantissa length (cf. I. Jankowsky/H. Woźniakowski [122]): Let δx denote the
correction computed from the linear residual equation and let ε denote the
relative machine precision. Then a rough estimate of the condition number is

cond (Fx) .= cd (Fx) =
‖δx‖∞
ε‖x‖∞ .

Bibliographical Note. The stepsize control presented here is based on
the author’s habilitation thesis [61], there in the context of optimal control
problems attacked by multiple shooting techniques—compare [71, Section
8.6.2]. In Section 7.1.3 below, the success of these methods is documented at
a space shuttle problem (Example 7.1).
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Explicit reparametrization beyond turning points. The mathematical
reason, why turning points with respect to the parameter λ cannot be com-
puted via Newton continuation is that in the neighborhood of these points
the parametrization with respect to λ breaks down. In order to be able to
pass beyond turning points, W.C. Rheinboldt and J.V. Burkardt [178] sug-
gested a technique that selects any of the components x1, . . . , xn+1 (identi-
fying λ = xn+1) for local parametrization, if only the curve can be locally
parametrized by that component. This approach is rather popular in compu-
tational science and engineering, whenever the basic structure of a bifurcation
diagram is known from insight into the problem at hand.
In the absence of such insight, explicit parametrization can also be auto-
mated: the selection may be based on the occurrence of ‘small’ pivots within
Jacobian LU -decompositions during the Newton continuation process. If QR-
decomposition with column permutation is realized, then the last column will
be selected. Apart from the choice of a corresponding single component of x,
any norm of x can be chosen likewise. The selected artificial parameter will
then be used for discrete continuation, while the local Newton method runs
over the remaining n components (code PITCON, which realizes the strategy
of [178]).
Note, however, that this approach requires some switching between com-
ponents of x, which introduces an element of nondifferentiability into the
algorithm and, as a consequence, may cause some lack of robustness.

5.2 Gauss-Newton Continuation Method

In this section we again study the numerical solution of parameter dependent
systems of nonlinear equations

F (y) = 0

in terms of the extended variable y = (x, λ), x ∈ Rn, λ ∈ R1. In contrast
to Section 5.1, however, local Newton methods are now replaced by local
Gauss-Newton methods (see Section 4.4.1), which open the possibility to
some smooth pathfollowing beyond turning points—as will be shown next.

5.2.1 Discrete tangent continuation beyond turning points

Throughout the present section we assume that a numerical solution y∗ =
(x∗, λ∗) is at hand—either gained directly from insight into the problem or
computed via a local or global Gauss-Newton method for underdetermined
equations (see Section 4.4). As already discussed earlier, Newton methods
with explicit λ-parameterization are bound to fail in the neighborhood of
turning points, since there this parameterization breaks down.
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Pseudo-arclength continuation. As a first idea to overcome this difficulty
we may resort to differential geometry, where the smooth parametrization
with respect to the arclength s is usually recommended: in addition to the n
equations

F (y(s)) = 0

this parameterization includes the normalizing condition∥∥∥∥dyds
∥∥∥∥2

2

=
∥∥∥∥dxds

∥∥∥∥2

2

+
(
dλ

ds

)2

= 1 ,

which after discretization eventually leads to the pseudo-arclength parametri-
zation

‖Δy‖22 −Δs2 = 0

as normalizing condition.

Bibliographical Note. The idea of pseudo-arclength continuation has
been suggested and worked out in first details by H.B. Keller in [130]. Its most
mature and popular implementation is in the code AUTO due to E. Doedel [89],
a code known to be rather robust and reliable. Since a sound theoretically
backed control of the above stepsize parameter Δs is hard to design, the code
realizes some empirical stepsize control. From the invariance point of view,
the concept of arclength is not even invariant under rescaling of the parameter
λ—see Exercise 5.1, where an interesting limiting case is discussed.

Gauss-Newton continuation idea. Here we will follow an alternative
idea: at any point y ∈ Rn+1 including turning points, the local tangent is
well-defined via the underdetermined system of equations

F ′(y)t(y) = 0 .

As long as rank F ′(y) = n, the mapping t(y) is known to vary smoothly along
the parameter curve also beyond turning points. Suppose now we parame-
terize the curve y locally with respect to some coordinate s > 0 along the
unique tangent direction t starting at the previous solution point yν = y(0).
Continuation along t then defines some prediction path (for ν = 0, 1, . . .)

ŷν+1(s) = yν + sνt(yν), sν > 0 . (5.26)

The prediction path supplies possible starting points y0 = ŷν+1 for the local
quasi-Gauss-Newton iteration towards the next solution point yν+1.
As derived in Section 4.4.1, we may construct a quasi-Gauss-Newton method,
equivalent to a local quasi-Newton method in the n-dimensional hyperplane

H := ŷ(s)⊕N⊥
(
F ′(ŷ(s))

)
.
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y(0)
s · y(0)

H

y(s)

ŷ(s)

t(ŷ(s))

t(y(s))

Fig. 5.4. Discrete tangent continuation in y = (x, λ).

The geometric situation is represented in Figure 5.4. Observe that yν+1 is just
defined as the intersection of H with the solution curve. A natural coordinate
frame for this setting is y = ŷ(s) + (u, σ), u ∈ H(s) = Rn, σ ∈ R1.
In view of the straightforward estimate

‖yν(s)− ŷν(s)‖ ≤ 1
2 max

δ∈[0,s]
‖ÿν(δ)‖s2 (5.27)

the discrete tangent continuation method is seen to be of order 2—compare
(5.7) and definition (5.6). In order to implement the actual order p = 2,
tangent continuation requires a sufficiently accurate approximation of the
Jacobian both at each solution point yν and at each starting point ŷν .

Tangent computation via QR-decomposition. Assume that we real-
ize the rank-deficient pseudoinverse J+ of the Jacobian (n, n + 1)-matrix J
through the QR-Cholesky algorithm (4.77) as given in Section 4.4.1. Then,
using the vector w = R−1S and the permutation Π as defined therein, we
can compute the normalized kernel vector t as

t := ±Π
( −w

1

) / √
1 + wTw .

One method of fixing the arbitrary sign is to require the last component of
t(yν), say tξ, to have the same sign as ξ̂ν − ξν−1—thus defining a natural
orientation also around turning points.

Tangent computation via LU-decomposition. In large sparse problems
a direct sparse solver based on LU -decomposition will be applied. During the
actual decomposition of the (n, n + 1)-matrix J , the pivoting strategy with
possible column permutations Π will give rise to a zero pivot. Upon dropping
the associated column of J and setting the corresponding component to zero,
say z̃ξ = 0, a particular solution z̃ satisfying
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Jz̃ = −F (5.28)

can be computed. In order to solve Jt = 0 for some (unnormalized) kernel
vector t, we may set the component of t associated with the zero pivot column
to some nonzero value, say tξ = 1. Upon using the relations

z := −J+F = J+Jz̃ =
(
I − t t

T

tT t

)
z̃

we arrive at the computationally attractive representation

z = z̃ − (t, z̃)
(t, t)

t (5.29)

in terms of the Euclidean inner product (·, ·).

Computation of quasi-Gauss-Newton corrections. The actual compu-
tation of the quasi-Gauss-Newton corrections

Δyk = −J+
k F (yk)

requires the computation of the Moore-Penrose pseudo-inverse of the Ja-
cobian updates Jk. Since this quasi-Gauss-Newton update preserves the
nullspace component, we can use a simple variant of the recursive quasi-
Newton method, given as algorithm QNERR in Section 2.1.4: with J0 = F ′(y0),
we only need to formally replace J−1

0 by J+
0 , wherever this term arises.

5.2.2 Affine covariant feasible stepsizes

In order to develop an adaptive stepsize control (see Section 5.2.3 below),
theoretical feasible stepsizes are studied first. As in the case of the Newton
continuation method, an affine covariant setting appears to be natural, since
the path concept is the dominating one in continuation. Since the local quasi-
Gauss-Newton iteration has been shown to be equivalent to a quasi-Newton
iteration in H (see Figure 5.4), we may proceed as in the simpler Newton
continuation method (Section 5.1.2) and model the situation just by the
simplified Newton iteration in H .

Theorem 5.7 Consider the discrete tangent continuation method (5.26) in
combination with the simplified local Gauss-Newton iteration starting at
y0 := ŷ(s) = ŷν and with Jacobian approximations Jk := F ′(y0) for k ≥ 0.
Let F : D ⊂ Rn+1 → Rn denote some C1-mapping with D open, convex,
and sufficiently large. Then, under the assumption of the affine covariant
Lipschitz conditions∥∥∥F ′(y0)+

(
F ′(y)− F ′(y0)

)∥∥∥ ≤ ωH‖y − y0‖ , y, y0 ∈ H
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and ∥∥∥F ′(y)+
(
F ′(u+ δ2t(u), −F ′(u)

)
t(u)

∥∥∥
2
≤ δ2ωt‖t(u), ‖22

with the (normalized) kernel vector t(u) = kerF ′(u) and

y, u+ δ2t(u) ∈ D , 0 ≤ δ2 ≤ 1 ,

the simplified Gauss-Newton iteration converges for all

s ≤ smax := 1/
√
ωHωt . (5.30)

Proof. For the simplified Newton iteration in H we may apply Theorem 2.5,
which here requires the verification of the sufficient condition

‖Δy0(s)‖ωH ≤ α0(s)ωH ≤ 1
2 . (5.31)

For simplification, we introduce the notation

J(s) := F ′(ŷ(s)) , F (s) := F (ŷ(s)) , t(s) := t(ŷ(s))

so that
F (0) = 0 , J(0)t(0) = 0 .

Then the derivation of an appropriate α0(s) may proceed as follows:∥∥Δy0(s)
∥∥ = ‖J(s)+F (s)‖ =

∥∥∥J(s)+
(
F (s)− F (0)

)∥∥∥
=
∥∥∥ J(s)+

s∫
δ=0

J(δ)t(0)dδ
∥∥∥≤ s∫

δ=0

∥∥∥ J(s)+J(δ)t(0)
∥∥∥ dδ

=

s∫
δ=0

∥∥∥ J(s)+
(
J(δ)− J(0)

)
t(0)

∥∥∥ dδ ≤ 1
2ωts

2 .

Hence
α0(s) := 1

2ωts
2 , (5.32)

which inserted above directly leads to the maximum feasible stepsize smax.
�

As an extension of the simpler Newton continuation case treated in Section
5.1.2 we next study the ‘movement’ of H along the parameter curve.

Theorem 5.8 Assumptions and notation as in the preceding Theorem 5.7.
Let

ŷ(s) := y(0) + st
(
y(0)

)
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denote a short-hand notation for the discrete tangent continuation (5.26). Let
t := t(s) = t

(
ŷ(s)

)
, s fixed. Define y(s) as the intersection of H(s) with the

solution curve and let
cs := t(s)T t

(
y(s)

)
.

Then, for cs �= 0, one has ∥∥ÿ(s)∥∥
2
≤ ωt

c20
|cs|3 . (5.33)

Proof. For simplification we introduce

z(s) := y(s)− ŷ(s)
so that

ż(s) = ẏ(s)− t(0) , (5.34)
z̈(s) = ÿ(s) . (5.35)

For fixed s and t(s) = t(ŷ), we obtain

t(s)T z(s) ≡ 0 ,
t(s)T ż(s) ≡ 0 , (5.36)
t(s)T z̈(s) ≡ 0 (5.37)

for 0 ≤ s ≤ s. Variation of s defines y(s) by virtue of

F
(
y(s)

)
≡ 0 ,

which implies

F ′
(
y(s)

)
ẏ(s) ≡ 0 , (5.38)

F ′′
(
y(s)

) [
ẏ(s)

]2
+ F ′(y(s))ÿ(s) ≡ 0 .

Next, from rank F ′(y) = n for all y ∈ D and (5.38), we may write

ẏ(s) = γ(s)t
(
y(s)

)
in terms of some coefficient γ to be determined. From this we obtain

z̈(s) = β(s)t
(
y(s)

)
− η(s) (5.39)

in terms of some coefficient β and some vector

η ⊥ t
(
y(s)

)
.
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Upon collecting these relations, we arrive at the expression

η(s) = F ′
(
y(s)

)+

F ′′
(
y(s)

) [
γ(s)t

(
y(s)

)]2
. (5.40)

The determination of β(s), γ(s) starts from

‖z̈(s)‖22 = ‖η(s)‖22 + β2(s) ,

since t is normalized. Upon combining (5.34) and (5.36) we obtain

0 = tT ż(s) = tT
(
γ(s)t(y(s))− t(0)

)
,

from which
γ(s) =

c0
cs

for cs �= 0 .

Application of the same procedure with (5.35), (5.39) and (5.37) yields

0 = tT z̈(s) = tT
(
β(s)t(y(s)) − η(s)

)
or, equivalently

β(s) =
tT η(s)
cs

for cs �= 0 . (5.41)

As t = t
(
ŷ(s)

)
, we may continue

t
(
ŷ(s)

)T

η(s) = 0 .

Hence
|tT η(s)| =

∣∣∣ tT η(s) − cst(y(s))T

η(s)
∣∣∣

=
∣∣∣ tT η(s) − tT t(y(s))t(y(s))T

η(s)
∣∣∣

=
∣∣∣ tT(I − t(y(s))tT (y(s))

)
η(s)

∣∣∣
≤

∥∥∥(I − t(y(s))tT (y(s))
)
t
∥∥∥

2
· ‖η(s)‖2

=
√

1− c2s ‖η(s)‖2 .
Insertion into (5.41) yields∣∣∣ β(s)

∣∣∣≤ √1− c2s
|cs|

∥∥∥ η(s) ∥∥∥
2
,

which leads to
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‖z̈(s)‖22 ≤ ‖η(s)‖22 +
1− c2s
c2s

‖η(s)‖22 =
‖η(s)‖22
c2s

.

Finally, estimation of ‖η(s)‖ in (5.40) supplies

‖η(s)‖2 ≤ ωt(γ(s))2

and, therefore

‖z̈(s)‖2 ≤ ωt ·
(
c0
cs

)2

· 1
|cs| ,

which with (5.35) completes the proof. �

The result (5.33) shows that the Lipschitz constant ωt just measures the
local curvature ÿ(s) of the parameter curve. Insertion into (5.27) specifies the
second order coefficient. In view of actual computation we may eliminate the
variation of cs via the additional turning angle restriction

c0 = min
δ∈[0,s̄]

cδ > 0 ,

which, in turn, yields a stepsize restriction, of course. Then the bound (5.33)
can be replaced by the corresponding expression∥∥ÿ(s)∥∥

2
≤ ωt/c0 . (5.42)

For an affine contravariant derivation of feasible stepsizes see Exercise 5.2.

5.2.3 Adaptive stepsize control

On the basis of the theoretical results above, we are now ready to derive
computational estimates for feasible stepsizes sν according to (5.26). Recall
again that the first quasi-Gauss-Newton step may be interpreted as an ordi-
nary Newton step in H , whereas further quasi-Gauss-Newton steps are just
quasi-Newton steps in H . Let Δy

1
denote the first simplified Gauss-Newton

correction, which is cheaply available in the course of the computation of the
first quasi-Gauss-Newton correction. Then a first contraction factor Θ0 must
satisfy

Θ0 :=
‖Δy 1‖
‖Δy0‖ ≤

1
2ωHα0 , (5.43)

which with (5.31) implies that

Θ0 ≤ Θ := 1
4 .

In the spirit of our paradigm in Section 1.2.3, we construct computational
stepsize estimates [·] on the basis of the theoretical stepsizes (5.30) as
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[smax] := 1/
√

[ωH ] [ωt] . (5.44)

As usual, since
[smax] ≥ smax

both a prediction and a correction strategy need to be designed.

Correction strategy. From (5.43) we may obtain

[ωH ] :=
2Θ0

‖Δy0‖ ≤ ωH (5.45)

and similarly from (5.32)

[ωt] :=
2 ‖Δy0‖
s2

≤ ωt .

Upon inserting these estimates into (5.44), we are led to the stepsize sugges-
tion

s′ν :=

√
Θ

Θ0
sν .

This estimate requires the knowledge of an actual stepsize sν , which means
that it may only serve within a correction strategy. Whenever the termination
criterion (for k ≥ 0)

Θk >
1
2

holds, then the quasi-Gauss-Newton iteration is terminated and the previous
continuation step (5.26) is repeated supplying the new starting point

ŷ′ν+1 = yν + s′νt(yν) ,

wherein roughly
s′ν < 0.7sν

is guaranteed.

Prediction strategy. For the construction of a prediction strategy, we may
combine the relations (5.42) and (5.27) to obtain

‖yν − ŷν‖ ≤ 1
2ωts

2
ν−1

1
c0
.

This naturally defines the computational estimate

[ωt] :=
2c0‖yν − ŷν‖2

s2ν−1

≤ ωt .

Together with [ωH ] from (5.45), the general formula (5.44) leads to the step-
size suggestion
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s0ν :=
( ‖Δy0‖
‖yν − ŷν‖

Θ

Θ0

1
c0

)1/2

sν−1 . (5.46)

Clearly, this is a direct extension of the prediction formula (5.25) for the
Newton continuation method. Recalling that g(Θ) ≈ 2Θ, the main new item
appears to be the trigonometric factor

c0 = tT (ŷν)t
(
yν−1

)
,

which roughly measures the ‘turning angle’ of the hyperplane Hν−1 ⊃ yν−1

to Hν ⊃ yν—see again Figure 5.4.
Finally, as in the Newton continuation scheme, precaution must be taken for
the nearly linear case

Θ0 ≤ Θmin � 1 ,

in which case Θ0 → Θmin in (5.46).

Detection of critical points. In the described tangent continuation turning
points (as critical points of order k = 0) do not play any exceptional role. The
occurrence of critical points of order k ≥ 1, however, needs to be carefully
monitored. For this purpose, we define by

dλ := det (Fx)

the determinant of the (n, n)-submatrix of the Jacobian F ′(y) that is obtained
by dropping the λ-column, which is Fx, of course. Similarly, let dξ denote the
determinant of the submatrix, where the last column has been dropped—
which corresponds to the internal parameter ξ, in general different from the
external parameter λ, when column permutations based on pivoting are in-
volved. For the safe detection of critical points, we compute the determinant
pair (dξ, dλ) along the solution curve. The computation of dξ is easily done via
det(R)—with a possible sign correction, by (−1)n for n Householder reflec-
tions or for the actually performed permutations in the LU-decomposition. If
λ �= ξ, then the computation of dλ requires the evaluation of the determinant
of a Hessenberg matrix, which means O(n2) operations only. Sign changes of
this pair clearly indicate the occurrence of both turning points and simple
(possibly unfolded) bifurcation points—see Figure 5.5 for an illustration of
the typical situations. This device has a high degree of reliability in detecting
turning and simple bifurcation points and a good chance of detecting higher
order critical points. Safety,of course, cannot be guaranteed as long as only
pointwise sampling is used.

Computation of turning points. Assume that the discrete continuation
method has supplied some internal embedding parameter ξ (associated with
the last column in the matrix decomposition) and some interval

[
ξ, ξ
]

sup-
posed to contain a turning point, say ξ∗. Then the implicit mapping λ(ξ) will
have a minimum or maximum value within that interval so that
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Fig. 5.5. Sign structure of determinant pair (dξ, dλ). Upper left: turning point,
upper right: detected simple bifurcation and unfoldings, lower left: pair of turning
and bifurcation point or pitchfork bifurcation, lower right: possibly undetected bi-
furcation point due to too small branch angle.

λ̇(ξ∗) = 0 . (5.47)

On this basis, the following algorithm for the determination of turning points
is recommended:

(I) Construct the cubic Hermite polynomial p(ξ), ξ ∈ [ξ, ξ] such that

p
(
ξ
)

= λ
(
ξ
)
, p

(
ξ
)

= λ
(
ξ
)
,

ṗ
(
ξ
)

= λ̇
(
ξ
)
, ṗ

(
ξ
)

= λ̇
(
ξ
)
.

As an approximation of the unknown implicit equation (5.47), we solve
the quadratic equation

ṗ(ξ) = 0 . (5.48)

The usual bisection assumption

λ̇
(
ξ
)
λ̇
(
ξ
) ≤ 0 , (5.49)

then assures that equation (5.48) has a real root ξ̂ ∈ [ξ, ξ].
(II) Perform a Gauss-Newton iteration of standard type with starting point

y0 = ŷ
(
ξ̂
)

=
(
x
(
ξ̂
)
, ξ̂
)
. Let ŷ∗ denote the point obtained on the solu-

tion curve.
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(III) As soon as
‖ŷ − ŷ∗‖ ≤ ε

holds for some prescribed (relative) accuracy ε, then ŷ∗ is accepted as
turning point approximation. Otherwise, ξ̂∗ replaces either ξ or ξ such
that (5.49) holds and step (I) is repeated.

The above algorithm fits into the frame of a class of algorithms, for which
superlinear convergence has been proved by H. Schwetlick [183].

Graphical output. Here both nodal data {yν} and their local tangents
t({yν}) are usually given in different parametrizations corresponding to the
different internal parameters ξν . As a consequence, Bezier-Hermite splines
appear to be the method of choice for the graphical output—compare, e.g.,
Section 7.3 in the textbook [77] or any book on computer aided design.
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Fig. 5.6. Chemical reaction problem: x2(λ). Crosspoint just by projection.

Example 5.2 Chemical reaction problem. This model due to M. Kubiček
[137] reads (see Figure 5.6):

λ(1 − x3) exp(10x1/(1 + 0.01x1))− x3 = 0

22λ(1− x3) exp(10x1/(1 + 0.01x1))− 30x1 = 0

x3 − x4 + λ(1− x4) exp(10x2/(1 + 0.01x2)) = 0

10x1 − 30x2 + 22λ(1− x4) exp(10x2/(1 + 0.01x2)) = 0 .
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Example 5.3 Aircraft stability problem. In [149] R.G. Melhem and
W.C. Rheinboldt presented the following problem:

−3.933x1 + 0.107x2 + 0.126x3 − 9.99x5 − 45.83λ

−0.727x2x3 + 8.39x3x4 − 684.4x4x5 + 63.5x4λ = 0

−0.987x2 − 22.95x4 − 28.37u+ 0.949x1x3 + 0.173x1x5 = 0

0.002x1 − 0.235x3 + 5.67x5 − 0.921λ− 0.713x1x2

−1.578x1x4 + 1.132x4λ = 0

x2 − x4 − 0.168u− x1x5 = 0

−x3 − 0.196x5 − 0.0071λ+ x1x4 = 0 .

Herein x1, x2, x3 are the roll rate, pitch rate, and yaw rate, respectively, x4 is
the incremental angle of attack, and x5 the sideslip angle. The variable u is
the control for the elevator, λ the one for the aileron. The rudder deflection
is set to zero. For u = 0 this problem is symmetric: F (x, λ) = F (x,−λ). For
u = −0.008 the perturbed symmetry is still visible, see Figure 5.7.
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Fig. 5.7. Aircraft stability problem: x4(λ), perturbed symmetry.

Bibliographical Note. The adaptive pathfollowing algorithm, as worked
out here, has been implemented in the code ALCON1 due to P. Deuflhard,
B. Fiedler, and P. Kunkel [72].
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5.3 Computation of Simple Bifurcations

Suppose that the numerical pathfollowing procedure described in Section
5.2 has produced some guess y0 of an expected close-by simple bifurcation
point y∗—see, e.g., the double determinant detection device presented in Sec-
tion 5.2.3. Then the task is to either compute a bifurcation point y∗ iteratively
from the starting point y0 or to decide that there is none in the neighbor-
hood of y0. In Section 5.3.1, we will first study the basic construction of
augmented systems that have certain critical points of order k > 0 as locally
unique solutions—excluding turning points (k = 0), which can be computed
easier as shown in the preceding section. The general construction scheme
for augmented systems will be based on the theory of universal unfolding of
singularities, which in the case of simple bifurcations specifies to the system
of G. Moore. In Section 5.3.2, certain Newton-like algorithms for an efficient
solution of that augmented system will be worked out in some detail. On the
basis of structure preserving block elimination techniques for each Newton
step, details of the branching-off algorithm are elaborated in Section 5.3.3—
involving the computation of entering and emanating semi-branches as well
as the restart of discrete tangent continuation on the new semi-branches.

5.3.1 Augmented systems for critical points

Let y∗ denote a perfect or unperturbed singularity of order k ≥ 1 with

F (y∗) = 0

and
rankF ′(y∗) = n− k . (5.50)

Even though we will later only work out an algorithm for simple bifurcations
(k = 1), we include the more general case k > 1 here as well—to make the
general construction of augmented systems transparent.

Lyapunov-Schmidt reduction. In the notation from above, let A :=
F ′(y∗), N (A) = ker(A) its (k + 1)-dimensional nullspace, and R⊥(A)
its k-dimensional corange. If we again introduce the orthogonal projectors
P := A+A , P := AA+, we have that P⊥ projects onto N (A) and P

⊥
onto

R⊥(A). With this notation we may define the natural splitting

y = y∗ + v + w , w := P (y − y∗) , v := P⊥(y − y∗)

in the space of the unknowns. From assumption (5.50) and the implicit func-
tion theorem, we know that there exists a function w∗ such that

PF (y∗ + v + w) = 0⇐⇒ w = w∗(v) .
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Replacement of the variable w by the function w∗ then leads to a reduced
system of k equations in k + 1 unknowns

f(v) := P
⊥
F (y∗ + v + w∗(v)) = 0 . (5.51)

This is the well-known Lyapunov-Schmidt reduction, which stands at the
beginning of every mathematical treatment of singularities—see, e.g., the
classical book edited by P.H. Rabinowitz [173]. For actual computation we
need to define orthogonal bases for both N and R⊥ as

N (A) =: 〈t1, . . . , tk+1〉 R⊥(A) =: 〈z1, . . . , zk〉
or, in equivalent matrix notation, as

t := [t1, . . . , tk+1] , z := [z1, . . . , zk] ,

so that
At = 0, tT t = Ik+1, P

⊥ = ttT ,

AT z = 0, zT z = Ik, P
⊥

:= zzT .
(5.52)

Note that t and z are only specified up to orthogonal transformations—which
leaves dimO(k + 1) = 1

2k(k + 1) degrees of freedom for t and dimO(k) =
1
2k(k − 1) degrees of freedom for z.
Upon introducing local coordinates ξ ∈ Rk+1, γ ∈ Rk by virtue of

v =
k+1∑
i=1

ξiti = tξ , f(v) =
k∑

j=1

γjzj = zγ ,

the reduced equations (5.51) can be rewritten in the form

γ(ξ) := zTf(tξ) = zTF (y∗ + tξ + w∗(tξ)) = 0 . (5.53)

For the actual determination of singularities, higher order derivatives of both
sides will play an important role.

Lemma 5.9 Assumptions as just introduced. Let y∗ := 0 for convenience
and ai ∈ Rk+1. Then the following relations hold:

γ̇(0)a1 = 0 (5.54)

γ̈(0)[a1, a2] = zTF ′′[ta1, ta2] (5.55)
...
γ (0)[a1, a2, a3] = zTF ′′′[ta1, ta2, ta3]

−ztF ′′[ta1, A
+F ′′[ta2, ta3]] (5.56)

−zTF ′′[ta2, A
+F ′′[ta3, ta1]]

−zTF ′′[ta3, A
+F ′′[ta1, ta2]]
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Proof. As a consequence of y∗ = 0 we have v∗ = 0, w∗(0) = 0 and ξ∗ = 0.
We start from

γ(ξ) = zTF (tξ + w∗(tξ)) (5.57)

and
PF (tξ + w∗(tξ)) ≡ 0 . (5.58)

Differentiation of (5.57) with respect to ξ yields

γ̇(ξ)a1 = zTF ′(tξ + w∗(tξ))(ta1 + w∗
ξ (tξ)a1)

and, after insertion of zTA = 0

γ̇(0)a1 = zTA(ta1 + w∗
ξ (0)a1) = 0 ,

which confirms (5.54). Differentiation of (5.58) yields

PA(ta1 + w∗
ξ (0)a1) = 0 .

which, with PA = A, At = 0 and w∗
ξ (0)a1 ∈ N⊥, can be solved by

w∗
ξ (0)a1 = 0 . (5.59)

Upon differentiating (5.57) once more and inserting the expression above we
obtain

γ̈(0)[a1, a2[= zTF ′′(0)[ta1, ta2] ,

which confirms (5.55). Differentiation of (5.58) once more leads to

PF ′′(0)[ta1, ta2] + PAw∗
ξξ(0)[a1, a2] = 0 .

With arguments as just used before, the latter equation can be solved to yield

w∗
ξξ(0)[a1, a2] = −A+F ′′(0)[ta1, ta2] . (5.60)

Upon differentiating (5.57) for a third time, we eventually arrive at

···
γ (0)[a1, a2, a3] = zTF ′′′(0)[ta1, ta2, ta3]

+zTF ′′(0)[ta1, w
∗
ξξ(0)[a2, a3]]

+zTF ′′(0)[ta2, w
∗
ξξ(0)[a3, a1]]

+zTF ′′(0)[ta3, w
∗
ξξ(0)[a1, a2]] .

Insertion of w∗
ξξ(0) then finally confirms (5.56). �
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Universal unfolding. It is clear from the above derivation that the function
γ : Rk+1 → Rk contains all essential information needed to classify the local
structure of a singularity. Since only derivatives of γ up to a certain order are
required, it suffices to study simple polynomial germs g(ξ), which then may
stand for the whole function class

Γ (g) := {γ(ξ) = β(ξ)g(h(ξ)) | β, h C∞-diffeomorphism, h(0) = 0}
called the contact equivalence class. From a geometrical point of view all
germs within one equivalence class show a similar solution structure around
ξ = 0. We may say that the reduced mapping γ is contact equivalent to a
representative germ g ∈ Γ (γ) or, vice versa, γ ∈ Γ (g). As examples, the germ

gs(ξ) := ξ21 − ξ22 (k = 1)

represents a simple bifurcation, whereas the germ

gc(ξ) := ξ21 − ξ32 (k = 1)

characterizes an asymmetric cusp. We then obtain

β(ξ)g(h(ξ)) = zTF (y∗ + tξ + w∗(tξ)) = 0

in terms of certain diffeomorphisms β, h.
Up to now, our analytical presentation has only covered perfect singularities.
An efficient algorithm will have to deal with imperfect or unfolded singularities
y∗ as well—even without knowing in advance about the structure of the
perturbations. As an immediate consequence, we will encounter γ(0) �= 0
and the associated Jacobian matrix F ′(y∗) may no longer be exactly rank-
deficient, but still ‘close to’ a rank-deficient matrix. In this situation, the
structure of topological perturbations is important, which are known to lead
to an unfolding of nongeneric singularities. In the just introduced framework,
such perturbations may be written as polynomial perturbations p(ξ, α) of the
germs g replacing them by the perturbed germs

G(ξ, α) := g(ξ) + p(ξ, α) , (5.61)

wherein p(ξ, 0) ≡ 0 and the parameters α denote the unfolding parameters.
The minimal number of unfolding parameters is a characteristic of each type
of singularity and is called its codimension q. In case of this minimal param-
eterization, the representation (5.61) is called universal unfolding. A special
feature of any universal unfolding is that monomials arising in p are at least
2 orders less than corresponding monomials arising in g. As examples again,
gs for the simple bifurcation is replaced by

Gs(ξ, α) := ξ21 − ξ22 + α , (k = 1, q = 1) ,

whereas gc for the asymmetric cusp is replaced by

Gc(ξ, α1, α2) := ξ21 − ξ32 + α1 + α2ξ2 , (k = 1, q = 2) . (5.62)
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Bibliographical Note. For a general thorough treatment of unfolded
singularities, the reader may refer to M. Golubitsky and D. Schaeffer [109]
and their textbooks [110, 111]. Since these authors treat dynamical systems
ẋ = F (x, λ) with state variables x, they give the explicit parameter λ an
extra role—in contrast to the present section here, which treats all n + 1
components of y = (x, λ) the same.

Construction of augmented systems. Summarizing, we may assume that
specific diffeomorphisms β, h exist such that

β(ξ)G(h(ξ), α) = zTF (y∗ + tξ + w∗(tξ)) (5.63)

with, in general,

G(h(0), α) = G(0, α) = p(0, α) �= 0 .

Therefore, for perturbed singularities, the reduced system (5.53) must be
replaced by

zTF (y∗) = p(0, α) .

These k equations, together with the n − k equations PF = 0, then lead to
the n equations

F (y∗) = z p(0, α)

in terms of the (k + 1)n+ q + 1 unknowns (y, z, α).

Simple bifurcation. Let us now return to the special case k = 1, q = 1.
Here we arrive at the augmented system of G. Moore [103]:

F ′(y)T z = 0 , (5.64)

F (y) + αz = 0 , (5.65)

1
2 (zT z − 1) = 0 . (5.66)

It comprises (2n+2) nonlinear equations for the (2n+2) unknowns (y, z, α).
The Jacobian J(y, z, α) of this mapping is nonsingular for sufficiently small
perturbation parameter α. The proof of this fact is postponed to Section 5.3.2
below, since it stimulates an algorithmic idea for the iterative solution of the
above augmented system.
In order to make sure that a geometrical bifurcation really exists locally, we
must impose the additional second derivative condition

zTF ′′(y∗)[t, t] nondegenerate, indefinite . (5.67)

This condition assures the existence of two local branch directions as will
be shown next. In most of the established analysis treatise—compare, e.g.,
M.G. Crandall and P.H. Rabinowitz [46]—one of the intersecting branches is
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assumed to be the trivial one—which is acceptable for a merely analytical
treatment, but unsatisfactory for the construction of efficient numerical al-
gorithms. Therefore we here include a theorem that treats both branches as
indistinguishable.

Theorem 5.10 Assumptions and notation as just introduced. Let F ∈ Ck,
k ≥ 3. Then, in a neighborhood of y∗, the solution set F +αz = 0 consists of
two one-dimensional Ck−2-branches γ1(s), γ2(s) such that

γi(0) = y∗ , i = 1, 2 ,

N = 〈γ̇1(0), γ̇2(0)〉 ,
zTF ′′(y∗)

[
γ̇i(0), γ̇i(0)

]
= 0 .

Proof. (Sketch) For convenience, assume again that y∗ = 0. Let a standard
Lyapunov-Schmidt reduction have been performed in terms of a paramet-
rization of the two-dimensional nullspace N . It is then sufficient to study
the mapping F = P

⊥
F : N → R. Introducing polar coordinates, define a

blow-up version of F by

Φ(r,Θ) :=

⎧⎪⎨⎪⎩
2F
(
r e(Θ)

) /
r2 r > 0

F
′′
(0)
[
e(Θ), e(Θ)

]
r = 0 ,

where e(Θ) := (cos Θ, sin Θ) denotes the unit vector in the direction
Θ ∈ [0, π]. Obviously, Φ = 0 holds if F = 0. Moreover, F ∈ Ck implies
Φ ∈ Ck−2 and Φ can also be formally continued to r < 0. By assumption
(5.67) there exist directions Θi(i = 1, 2) such that

Φ(0,±Θi) = 0 ,

ΦΘ(0,±Θi) = F ′′(0)
[
eΘ(Θi), eΘ(Θi)

]
�= 0 .

Hence, by the implicit function theorem, there are four Ck−2–semi-branches

γ±i (r) = r e(Θ±
i (r)) , i = 1, 2 r ≥ 0

for sufficiently small r. At r = 0, the functions γ+
i (r) and γ−i (−r) have the

same derivatives up to order k− 2. Therefore, combining γ+
i (r) and γ−i (−r),

i = 1, 2, yields two Ck−2-branches, which completes the proof. �

From this result, the desired local tangent directions

t∗i = γ̇i(y∗) , i = 1, 2 ,

are seen to be defined from the quadratic equation

zTF ′′(y∗) [t∗i , t
∗
i ] = 0 ,

which, under the assumption (5.67) has the two distinct real roots t∗1, t∗2.
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Asymmetric cusp. This possibly unfolded singularity has also rank-defi-
ciency k = 1, but codimension q = 2. Recall the perturbed germ Gc = G
from (5.62) to derive the characterization (with h(0) = 0):

G(0, α) = α1 , (5.68)

Gξ1(0, α) = 0 ,
Gξ2(0, α) = α2 , (5.69)

Gξ2ξ2(0, α) = 0 ,
Gξ1ξ2(0, α) = 0 . (5.70)

Note that all nonvanishing derivatives beyond (5.69) and (5.70) such as

Gξ1ξ1(0, α) = 2

do not show up, since they are arbitrary due to the arbitrary C∞-diffeomor-
phic transformation β(ξ) in (5.63). Upon differentiating the right-hand side
of (5.63) with h(ξ) = ξ and β(ξ) = 1, we may obtain (as in the simple
bifurcation)

zTF (y∗) = α1

from (5.68), which leads to

F (y∗) = α1z . (5.71)

From (5.69) and (5.59) we may verify that

F ′(y∗)t1 = 0 , F ′(y∗)t2 = α2z . (5.72)

Finally, from (5.70), (5.60) and zTP
⊥

= zT we arrive at

zTF ′′(y∗)[t2, t2] = 0 ,

zTF ′′(y∗)[t1, t2] = 0 .

Of course, we will add the perturbed corange condition

F ′(y∗)T z = α2t2 (5.73)

to be compatible with (5.72). For normalization we will choose the four equa-
tions

zT z = 1 , tT1 t1 = tT2 t2 = 1 , tT1 t2 = 0 . (5.74)

Upon combining (5.71) up to (5.74) we would arrive at an overdetermined
system, 4n+ 8 equations in 4n+ 5 unknowns. Careful examination for gen-
eral h(ξ) (with still β(ξ) = 1 w.l.o.g) leads to a replacement of (5.72) and
(5.73) by the perturbed Lyapunov-Schmidt reduction (originally suggested by
R. Menzel)
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F ′(y∗)T z = γ11t1 + γ21t2 ,

F ′(y∗)t1 = β11z ,

F ′(y∗)t2 = β21z .

(5.75)

Thus we end up with the following augmented system for the asymmetric
cusp

F (y) = αz ,

F ′(y)T z = γ11t1 + γ21t2 ,

F ′(y)t1 = β11z1 ,

F ′(y)t2 = β21z2 ,

zTF ′′(y)[t2, t2] = 0 ,

zTF ′′(y)[t1, t2] = 0 ,

zT z = 1 ,

tT1 t1 = tT2 t2 = 1, tT1 t2 = 0 .

This system comprises 4n+ 7 equations in the 4n+ 8 unknowns y, z, t1, t2,
α1, γ11, γ21, β11, β21—which means that the system is underdetermined.
The associated augmented Jacobian can be shown to have full row rank for
sufficiently small perturbation parameters α1, γ11, γ21, β11, β21.

Higher order critical points. The perturbed system (5.75) is a special case
of the general perturbed Lyapunov-Schmidt reduction, wherein A = F ′(y∗)
has rank-deficiency k > 0:

AT zj =
k+1∑
i=1

γjiti ,

Ati =
k∑

j=1

βijzj ,

zjzl = δj,l , l ≤ j = 1, . . . , k ,

titm = δi,m , m ≤ i = 1, . . . , k + 1 .

(5.76)

This underdetermined system comprises (2k+1)(n+k+1)−k2 equations in
(2k+1)(n+k+1) unknowns. It has been suggested by P. Kunkel in his thesis
[138, 139, 140] and worked out using tree structures in [141]. The extended
Jacobian has full row rank at a perfect singularity, where

β∗ij = γ∗ij = 0 .

Note that, also for an imperfect singularity y∗, we can verify that

γij = βij = zT
j Ati , i = 1, . . . k, j = 1, . . . , k + 1 .



5.3 Computation of Simple Bifurcations 271

However, had we identified γij = βij from the start, then the system would
no longer be uniquely solvable.
The missing k2 degrees of freedom come from 1

2k(k− 1) arbitrary degrees in
z and 1

2k(k + 1) arbitrary degrees in t due to orthogonal transformation—
compare (5.76) and (5.52) and the discussion thereafter.
Generally speaking, for higher order singularities the number of equations and
of dependent variables does not agree as nicely as in the simple bifurcation
case. Consequently, quite complicated augmented systems may arise, usually
underdetermined as in the cusp case. Part of such systems are still under
investigation including the problem of their automatic generation by means
of computer algebra systems—see, e.g., D. Armbruster [6]. In principle, a
general bifurcation algorithm would need to represent a whole hierarchy of
augmented systems—which, however, will be limited for obvious reasons.

5.3.2 Newton-like algorithm for simple bifurcations

We return to the augmented system (5.64) of G. Moore. The associated ex-
tended Jacobian has the block structure

J(y, z, α) :=

⎡⎣ C AT 0
A αIn z
0 zT 0

⎤⎦
in terms of the submatrices

C :=
(
F ′(y)T z

)′
=

n∑
i=1

f ′′i (y)zi , A := F ′(y) .

Note that C and therefore J are symmetric matrices.

Theorem 5.11 At a simple (possibly perturbed) bifurcation point y∗ with
sufficiently small perturbation parameter α∗ the extended Jacobian J(y∗, z∗, α∗)
is nonsingular.

Proof. First J(y, z, 0) is shown to be nonsingular. We start with applying
the singular value decomposition

A = U
∑
V T ,

∑
=
[ ∑′ 0

0 0

]
,

U : orthogonal (n, n)-matrix,
V T : orthogonal (n+ 1, n+ 1)-matrix,∑′ = diag (σ1, . . . , σn−1) , σi > 0 .

Inserting this decomposition into J(y, z, 0) yields after proper transformation
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J =

⎡⎣ C AT 0
A 0 z
0 zT 0

⎤⎦→
⎡⎣ C

∑T 0∑
0 z

0 zT 0

⎤⎦ =: J

with z := UT z, C := V CV T = C
T
. In the above notation, the equations

F ′(y)T z = 0 now read
ΣT z = 0 ,

which implies that z T = (0, . . . , 0, 1). If, in addition, we introduce the corre-
sponding partitioning

C =

[
C11 C12

C
T

12 C22

]
, C22 = C

T

22 (2, 2)-matrix ,

then

J =

⎡⎢⎢⎢⎢⎣
C11 C12

∑′ 0 0
C12 C22 0 0 0∑′ 0 0 0 0
0 0 0 0 1
0 0 0 1 0

⎤⎥⎥⎥⎥⎦ .
Hence

rank(J) = rank
(
J
)

= 2n+ rank
(
C22

)
.

Upon recalling assumption (5.67), we obtain here(
zTF ′)′ [t, t] = C22 ,

which assures that C22 is certainly nonsingular and

rank
(
J(y∗, z∗, 0)

)
= 2n+ 2 .

Finally, by the usual perturbation lemma for symmetric matrices with sym-
metric perturbation, J(y∗, z∗, α∗) is nonsingular for α∗ ‘sufficiently small’,
which completes the proof. �

The above Theorem 5.11 assures that the ordinary Newton method (dropping
the iteration index)⎡⎣ C AT 0

A αI z
0 zT 0

⎤⎦ ⎡⎣ Δy
Δz
Δα

⎤⎦ = −
⎡⎣ F

′T z
F + αz

1
2 (zT z − 1)

⎤⎦
is well-defined in a neighborhood of the simple bifurcation point. In the special
situation a Newton-like method characterized by the replacement
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J(y, z, α) → J(y, z, 0) ,
A = F ′(y) → Ã ≈ F ′(y∗)

seems to be preferable, since the associated linear block system (again drop-
ping the iteration index)⎡⎣ C ÃT 0

Ã 0 z
0 zT 0

⎤⎦ ⎡⎣ Δy
Δz
Δα

⎤⎦ = −
⎡⎣ AT z

F + αz
1
2 (zT z − 1)

⎤⎦ (5.77)

is easier to solve. On the basis of the theory of Section 2.1, the thus de-
fined iteration will converge superlinearly for perfect bifurcations (α∗ = 0),
but only linearly for imperfect bifurcations. Since excellent starting points
are available in the present setting, one may even keep the initial Jaco-
bian approximation—thus implementing a variant of the simplified Newton
method. This method permits even further computational savings per itera-
tion step.

Distinction between perfect and imperfect bifurcations. Whenever
a perfect bifurcation arises, then the Newton-like iterates {αk} will approach
zero superlinearly so that the criterion∣∣αk+1

∣∣ ≤ 1
4

∣∣αk
∣∣

will be passed. Otherwise, leading digits of α∗ will show up.
In order to compute the two branch directions t∗1, t∗2 easily, the above extended
Jacobian matrix needs to be decomposed in some structure preserving way.
We work out two possibilities.

Implementation based on QR-decomposition. Let A = F ′(y) denote
the Jacobian (n, n+ 1)-matrix to be decomposed according to

A = Q

[
R S

0 εT

]
ΠT ,where

Q : orthogonal (n, n)-matrix,
Π : permutation (n+ 1, n+ 1)-matrix,
R : upper triangular (n− 1, n− 1)-matrix,
S : (n− 1, 2)-matrix,
ε : 2-vector.

For y ‘close to’ y∗, R will be nonsingular and ε ‘small’. Hence, the approxi-
mation

Ã := Q

[
R S
0 0

]
ΠT

will be appropriate within a Newton-like iteration.
Starting points for Newton-like iteration. A starting guess y0 is available from
the path-following procedure, typically from linear interpolation between the
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two points y1, y2 on the solution curve (see Figure 5.8) that had activated the
device for the detection of critical points (see Figure 5.5). A starting guess
z0 can be obtained from solving

ÃT z = 0 , ‖z‖22 = 1 ,

which, upon inserting the QR-decomposition directly leads to

z0 = Qen , en = (0, . . . , 0, 1) .

From this, a natural choice of α0 can be seen to be

α0 = −
(
QTF (y0)

)
n
.

Block elimination. Insertion of the above QR-decomposition into the block
system (5.77) suggests the following partitioning

Ĉ := ΠTCΠ =
(
C11 C12

C12 C22

)
, C22 : (2, 2)-matrix ,

z := QT z =
(
w
ζ

)
, w ∈ Rn−1 , ζ ∈ R ,

ΠTΔy =
(
Δu
Δv

)
, Δu ∈ Rn−1 , Δv ∈ R2 ,

Δz = QTΔz =
(
Δw
Δζ

)
, Δw ∈ Rn+1 , Δζ ∈ R ,

ΠTAT z =
(
f1
f2

)
, f1 ∈ Rn−1 , f2 ∈ R2

QT (F + αz) =
(
g1
g2

)
, g1 ∈ Rn−1 , g2 ∈ R

h := 1
2 (zT z − 1) .

In this notation, (5.77) now reads⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 RT 0 0

CT
12 C22 ST 0 0

R S 0 0 w

0 0 0 0 ζ

0 0 wT ζ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δu

Δv

Δw

Δζ

Δα

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

f2

g1

g2

h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Simplified Newton iteration. The initial guess z0 is equivalent to

w0 = 0 , ζ0 = 1 ,
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which may be used to decouple the last two equations. In this simplified
Newton method the last two equations then yield (dropping the index k):

Δα = −g2 , Δζ = −h .

In order to solve the remaining three equations, we compute once

RS = S , (5.78)

C22 := C22 − (CT
12S + S

T
C12) + S

T
C11S (5.79)

and repeatedly for each new right-hand side

Rg1 = g1 ,

C22Δv = −f2 +
(
CT

12 − S
T
C11

)
g1 + S

T
f1 ,

Δu = −g1 − SΔv ,
RTΔw = −f1 − C11Δu− C12Δv .

Note that the symmetric (2, 2)-matrix C22 is just the one used in the proof
of Theorem 5.11—which means that C22 may be assumed to be nonsingular
in a neighborhood of a simple bifurcation point. If it appears to be singular
when decomposed, then there will be no bifurcation point locally. Finally,
back substitution yields

Δy = Π

(
Δu
Δv

)
, Δz = Q

(
Δw
Δζ

)
.

Implementation based on LU-decomposition. Assume that we start
with the decomposition

A(ε) := L

[
R S
0 εT

]
ΠT ,

where L is a lower triangular matrix obtained from some sparse elimination
technique. Due to conditional pivoting within a sparse solver, say, the entries
ε may be ‘small’. Then A may be replaced according to

Ã := A(0) .

For reasons to be understood below, it is advisable to modify the normalizing
condition zT z = 1 such that

h := 1
2 (‖LT z‖22 − 1) = 0 .

Starting points for Newton-like iteration. With y0 given, initial guesses z0 are
easily derived from
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ÃT z = 0 ,
‖LT z‖22 = 1 .

which, with L = (lij), leads to

LT z0 := en ,
α0 := (F (y0))n/lnn .

Block elimination. The above LU -decomposition is now inserted into the
block system (5.77) with the slight change of normalization as just described.
In comparison with the QR-variant we can keep the notation for Ĉ, Δu, Δv,
f1, f2 unchanged and introduce the following modified quantities:

ẑ := L−1z =
(
ŵ

ζ̂

)
, ŵ ∈ Rn−1 , ζ̂ ∈ R ,

z := LT z =
(
w
ζ

)
, w ∈ Rn−1 , ζ ∈ R ,

LTΔz =
(
Δw
Δζ

)
, Δw ∈ Rn+1 , Δζ ∈ R ,

L−1(F + αz) =
(
g1
g2

)
, g1 ∈ Rn−1 , g2 ∈ R .

In this notation, (5.77) now reads⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 RT 0 0

CT
12 C22 ST 0 0

R S 0 0 ŵ

0 0 0 0 ζ̂

0 0 wT ζ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δu

Δv

Δw

Δζ

Δα

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

f2

g1

g2

h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Simplified Newton iteration. In order to implement this variant, just verify
that the choice of z0 is again equivalent to

w0 = 0 , ζ0 = 1 ,

which once more implies that

Δα = −g2 , Δζ = −h .
With S and C11 from equations (5.78) and (5.79) the remaining system can
be solved as follows

Rg1 = g1 + ŵΔα ,

C22Δv = −f2 +
(
CT

12 − S
T
C11

)
g1 + S

T
f1 ,

Δu = −g1 − SΔv ,
RTΔw = −f1 − C11Δu− C12Δv .
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Finally, back substitution yields

Δy = Π

(
Δu
Δv

)
LTΔz =

(
Δw
Δζ

)
.

5.3.3 Branching-off algorithm

Suppose that a simple bifurcation point y∗ has been computed. Then y∗ is
the intersection of exactly two solution branches associated with the mapping
F+αz. In order to continue the numerical pathfollowing beyond bifurcations,
one will need to first compute the directions of these branches and second to
design an efficient restart strategy along each new semi-branch.

Computation of branch directions. As described above, the local tangent
directions t∗i , i = 1, 2 are computed from the quadratic equation (5.67). Start-
ing from any of the two presented decompositions, the following parametriza-
tion of N is natural:

t∗i := Π
( − S ei

ei

)
, ei := (cos Θi, sin Θi)

with S as defined by (5.78). In the present notation this equation can be
rewritten as

t∗T
i C t∗i = 0 ,

which reduces to
eTi C22ei = 0

in terms of the symmetric (2, 2)-matrix C22 known to be nonsingular when
a simple bifurcation point exists locally. This is again a quadratic equation
in either tan Θi or cot Θi with two different real roots under the assumption
(5.67). In case C22 turns out to be semi-definite or degenerate, then a non-
simple bifurcation point is seen to occur. Complex conjugate roots indicate
an isola (which, however, would be hard to detect by just pathfollowing with
respect to one parameter!).

Stepsize control restart. Suppose we have the situation of one entering
semi-branch (already computed) and three emanating semi-branches (to be
computed next) as depicted in Figure 5.8.
Let, formally, t∗3 := −t∗2. In order to start the path-following procedure along
each emanating semi-branch, one is required to define starting points ŷ for
the quasi-Gauss-Newton iteration (i = 1, 2, 3):

ŷi(s) := y∗ + s · t∗i .
Herein an efficient control of the stepsize s requires some care. Two antago-
nistic conditions are to be matched:
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y1

y2

y∗

Fig. 5.8. Simple bifurcation point: branch situation.

• The Jacobian F ′(ŷ(s)) must have full (numerical) rank, which leads to a
lower bound s > smin.

• The local quasi-Gauss-Newton iteration starting at ŷ(s) should converge
sufficiently fast, which leads to an upper bound s ≤ smax.

Prediction strategy. If we use the fact that the Gauss-Newton iteration had
converged on the entering semi-branch towards some point yold, we are led
to the choice

s0 := ρ
‖y∗ − yold‖
‖t∗1‖

, ρ < 1

with some safety factor ρ. With ŷ(s0), the Jacobian F ′(ŷ(s0)) and the contrac-
tion factors Θ(s0) are available in the course of the Gauss-Newton iteration.
Therefore, numerical estimates [smin], [smax] can be computed.
In view of (I) above, we require that

ε cond
(
F ′(ŷ(s))

)
< 1

with some prescribed ε > eps, the relative machine precision. Near y∗ all
determinants (such as dξ, dλ) are O(s). So we have

cond
(
F ′(ŷ(s))

)
>
γ

s
,

which leads to
s > εγ =: smin .

As γ is unknown, a numerical condition number estimate [cond (·)] is required
to derive the estimate

[smin] := ε
[
cond

(
F ′(ŷ(s0))

)]
· s0 .

In view of (II) above, a careful analysis shows that the contraction factor

Θ0(s) = O(s)

close to y∗ instead of O(s2) in the neighborhood of a regular point y. As a
consequence of the Newton-Kantorovich theorem, we require
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Θ0 ≤ Θ = 1
4 ,

which leads to the stepsize estimate

[smax] =
Θ

Θ0(s0)
· s0 .

In case we had obtained
[smin] > [smax]

the computation would have to be terminated suggesting higher precision
arithmetic—thus lowering [smin].
In the author’s experience, such a situation has never occurred up to now. In
the standard situation

[smin]� [smax]

some initial steplength s0 can be selected. A typical choice will be

s0 := ρ · [smax]

for some sufficiently large ρ < 1.

Construction of complete bifurcation diagrams. The implementation
of the whole algorithm—as described in the previous Section 5.2 and the
present Section 5.3—requires careful book-keeping of critical points and of
entering and emanating semi-branches to avoid endless cycling. As an exam-
ple, before actually iterating towards some conjectured bifurcation point y∗,
the corresponding starting point y0 should be tested: if it is within the Kan-
torovich neighborhood of some formerly computed bifurcation point, then
identity of old and new bifurcation point can be assumed; as usual, the test
is based on the local contraction factor criterion Θ0 ≤ 1/4 in agreement
with the sufficient Kantorovich condition (h0 ≤ 1/2). Whenever Θ0 > 1/4,
i.e., when the Kantorovich condition is locally violated, then a possible local
nonuniqueness of a solution is indicated.

Bibliographical Note. The computation of simple bifurcations via the
QR-implementation of Moore’s extended system has been worked out in the
paper [72] by P. Deuflhard, B. Fiedler, and P. Kunkel. The here presented al-
gorithm with quasi-Gauss-Newton method, adaptive stepsize control, compu-
tation of turning points and simple bifurcation points has been implemented
in the code ALCON2. An advanced descendant of ALCON2 is the code SYMCON
due to K. Gatermann and A. Hohmann [95] for equivariant parameter depen-
dent nonlinear systems. In this algorithm, symmetries are exploited such that
along each branch symmetry transformations are performed based on Schur’s
lemma. As a consequence, symmetry breaking or symmetry preserving higher
order bifurcations often just show up as simple generic or non-generic bifur-
cations and can be treated as such. Due to this property the algorithm is
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considerably more robust than its predecessor ALCON2. In passing, dynamical
stability of the solutions along each branch can be identified. In order to il-
lustrate the kind of additional results available from SYMCON, we give a rather
challenging illustrative example.
Example 5.4 Hexagonal lattice dome. This well-known challenging equiv-
ariant bifurcation problem from continuum mechanics is due to T.J. Healey
[117]. It is known to contain a large number of all kinds of higher order singu-
larities connected with symmetries of the mechanical construction, the most
dominant of which is the symmetry D6. The problem has been tackled by
SYMCON [95] and is documented in detail in [94]. Figure 5.9 gives parts of the
rather complex total bifurcation diagram associated with two different sub-
symmetries. As it turned out, the bifurcation diagram computed by SYMCON
revealed hitherto unknown parts.
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Fig. 5.9. Hexagonal lattice dome: Bifurcation subdiagrams associated with
partial symmetries. Left: Kleinian group and D6. Right: D3 and Z4

2 .

Exercises

Exercise 5.1 Consider the pseudo-arclength continuation method as dis-
cussed at the beginning of Section 5.2.1. Study the effect of rescaling of the
parameter

λ −→ σ = λκ .

What kind of continuation method is obtained in the limiting case κ→ 0?

Exercise 5.2 Derive feasible stepsize bounds for the classical and the tan-
gent Newton-continuation method using
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a) the affine contravariant Newton-Mysovskikh theorem for the ordinary
Newton method (Theorem 2.12),

b) the affine contravariant Newton-Kantorovich theorem for the simplified
Newton method (Theorem 2.13).

c) On this theoretical basis, design computational estimates for use within
an adaptive stepsize control strategy.

Exercise 5.3 Classical continuation method for nonlinear least squares
problems. For given real parameter λ, let the prediction path be x̂(λ) = x(0).
In the residual based formulation of the Gauss–Newton method as given in
Section 4.2, we write the homotopy for the path x(λ) as

P (x(λ), λ)F (x(λ), λ) ≡ 0 ,

where

P (x, λ) = F ′(x, λ)F ′(x, λ)− , P
⊥

(x, λ) = Im − P (x, λ)

are the corresponding projectors, assumed to be orthogonal.

a) Show that the classical continuation method is of order p = 1.
b) Derive an affine contravariant formula for the feasible stepsize.
c) Design an affine contravariant computational estimate for the order co-

efficient and consider details for the corresponding adaptive continuation
algorithm.

Exercise 5.4 Tangent continuation method for nonlinear least squares
problems. The notation is the same as in Exercise 5.3. The only new aspect
is that the prediction path now reads

x̂(λ) = x(0) + λẋ(0) .

a) We need an expression for the local path direction ẋ(0). Verify the result

F ′(x(0), 0)ẋ(0) + F ′(x(0), 0)−TF ′′(x(0), 0)[P
⊥

(x(0), 0)F (x(0), 0), ẋ(0)] =

−
(
P (x(0), 0)Fλ(x(0), 0) + F ′(x(0), 0)−TF ′

λ(x(0), 0)[P
⊥

(x(0), 0)F (x(0), 0)
)
.

Hint: For the symmetric projector P = AA− in terms of the generalized
(inner) inverse A− apply the formula

DP = P
⊥

(DA)A− +
(
P

⊥
(DA)A−

)T

and, in addition, use special properties at (x(0), 0).
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b) Show that under the assumption

P
⊥

(x(λ), λ)F (x(λ), λ) ≡ 0

the above equation shrinks to

‖F ′(x(0), 0)ẋ(0) + P (x(0), 0)Fλ(x(0), 0)‖ = min ,

which can be satisfied by

ẋ(0) = −F ′(x(0), 0)−Fλ(x(0), 0) .

c) Discuss the necessary steps to be taken toward an adaptive tangent con-
tinuation algorithm.
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