
3 Systems of Equations: Global Newton

Methods

As in the preceding chapter, the discussion here is also restricted to systems
of n nonlinear equations, say

F (x) = 0 ,

where F ∈ C1(D), D ⊆ Rn, F : D −→ Rn with Jacobian (n, n)-matrix F ′(x).
In contrast to the preceding chapter, however, available initial guesses x0 of
the solution point x∗ are no longer assumed to be ‘sufficiently close’ to x∗.
In order to specify the colloquial term ‘sufficiently close’, we recur to any of
the local convergence conditions of the preceding chapter. Let ω denote an
affine covariant Lipschitz constant. Then Theorem 2.3 presents an appropri-
ate local convergence condition of the form

‖x∗ − x0‖ < 2/ω .

In the error oriented framework, Theorem 2.2 yields a characterization in
terms of the Kantorovich quantity

h0 := ‖Δx0‖ω < 2 ,

which restricts the ordinary Newton correction Δx0. Under any of these con-
ditions local Newton methods are guaranteed to converge. Such problems
are sometimes called mildly nonlinear. Their computational complexity is a
priori bounded in terms of the computational complexity of solving linear
problems of the same structure—see, for example, the bound (2.71).
In contrast to that, under a condition of the type h0 � 1, which is equivalent
to

‖Δx0‖ � 2/ω (3.1)

local Newton methods will not exhibit guaranteed convergence. In this situ-
ation, the computational complexity cannot be bounded a priori. Such prob-
lems are often called highly nonlinear. Nevertheless, local Newton methods
may actually converge for some of these problems even in the situation of
condition (3.1). A guaranteed convergence, however, will only occur, if addi-
tional global structure on F can be exploited: as an example, we treat convex
nonlinear mappings in Section 3.1.1 below.
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110 3 Systems of Equations: Global Newton Methods

For general mapping F , a globalization of local Newton methods must be
constructed. In Section 3.1 we survey globalization concepts such as

• steepest descent methods,
• trust region methods,
• the Levenberg-Marquardt method, and
• the Newton method with damping strategy.

In Section 3.1.4, a rather general geometric approach is taken: the idea is to
derive a globalization concept without pre-occupation to any of the known
iterative methods, just starting from the requirement of affine covariance as
a ‘first principle’. Surprisingly, this general approach leads to the derivation
of Newton’s method with damping strategy.

Monotonicity tests. Monotonicity tests serve the purpose to accept or
reject a new iterate. We study different such tests, according to different
affine invariance requirements:

• the most popular residual monotonicity test, which is based on affine con-
travariance (Section 3.2),

• the error oriented so-called natural monotonicity test, which is based on
affine covariance (Section 3.3), and

• the convex functional test as the natural requirement in convex optimiza-
tion, which reflects affine conjugacy (Section 3.4).

For each of these three affine invariance classes, adaptive trust region strategies
are designed in view of an efficient choice of damping factors in Newton’s
method. They are all based on the paradigm already mentioned at the end
of Section 1.2. On a theoretical basis, details of algorithmic realization in
combination with either direct or iterative linear solvers are worked out. As
it turns out, an efficient determination of the steplength factor in global
Newton methods is intimately linked with the accuracy matching for affine
invariant combinations of inner and outer iteration within various inexact
Newton methods.

3.1 Globalization Concepts

Efficient iterative methods should be able to cope with ‘bad’ guesses x0. In
this section we survey methods that permit rather general initial guesses x0,
not only those sufficiently close to the solution point x∗. Of course, such
methods should merge into local Newton techniques as soon as the iterates
xk come ‘close to’ the solution point x∗—to exploit the local quadratic or
superlinear convergence property.
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Parameter continuation methods. The simplest way of globalization of
local Newton methods is to embed the given problem F (x) = 0 into a one-
parameter family of problems, a so-called homotopy

F (x, τ) = 0 , τ ∈ [0, 1] ,

such that the starting point x0 is the solution for τ = 0 and the desired
solution point x∗ is the solution point for τ = 1. If we choose sufficiently
many intermediate problems in the discrete homotopy

F (x, τν) = 0 , 0 = τ0 < · · · < τν < · · · < τN = 1 ,

then the solution point of one problem can serve as initial guess in a local
Newton method for the next problem. In this way, global convergence can
be assured under the assumption that existence and uniqueness of the solu-
tion along the homotopy path is guaranteed. In this context, questions like
the adaptive choice of the stepsizes Δτν or the computation of bifurcation
diagrams are of interest. An efficient choice of the embedding will exploit
specific features of the given problem to be solved—with consequences for
the local uniqueness of the solution along the homotopy path and for the
computational speed of the discrete continuation process. The discussion of
these and many related topics is postponed to Chapter 5.

Pseudo-transient continuation methods. Another continuation method
uses the embedding of the algebraic equation into an initial value problem of
the type

x′ = F (x) , x(0) = x0 .

Discretization of this problem with respect to a timestep τ by the explicit
Euler method leads to the fixed point iteration

xk+1 − xk = Δxk = τF (xk)

or, by the linearly implicit Euler method to the iteration scheme(
I − τF ′(xk)

)
Δxk = τF (xk) .

Note that for τ → ∞ the latter scheme merges into the ordinary Newton
method. The scheme reflects affine similarity as described in Section 1.2 and
will be treated in detail in Section 6.4 in the context of so-called pseudo-
transient continuation methods, which are a special realization of stiff inte-
grators for ordinary differential equations.

3.1.1 Componentwise convex mappings

The Newton-Raphson method for scalar equations (see Figure 1.1) may be
geometrically interpreted as taking the intersection of the local tangent with
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the axis—and repeating this process until sufficient accuracy is achieved. In
this interpretation, the simplified Newton method just means to keep the
initial tangent throughout the whole iterative process. From this it can be
directly seen that both the ordinary and the simplified Newton method con-
verge globally for convex (or concave) scalar functions. The convergence is
monotone, i.e., the iterates xk approach the solution point x∗ from one side
only. On the basis of this insight we are now interested in a generalization
of such a monotonicity property to systems. General convex minimization
problems, which lead to gradient mappings F , will be treated in the subse-
quent Section 3.4. Here we concentrate on some componentwise convexity as
discussed in the textbook of J.M. Ortega and W.C. Rheinboldt [163].
Such componentwise convex mappings F may be characterized by one of the
following equivalent properties (let x, y ∈ D ⊆ Rn, D convex, λ ∈ [0, 1]):

F
(
λx+ (1 − λ)y) ≤ λF (x) + (1 − λ)F (y) , (3.2)
F (y)− F (x) ≥ F ′(x)(y − x) ,(

F ′(y)− F ′(x)
)
(y − x) ≥ 0 . (3.3)

Herein, the inequalities are understood componentwise. Since the objects of
interest will be the iterates, we miss affine covariance in the above formu-
lation. In fact, Ortega and Rheinboldt show monotone convergence of the
ordinary Newton method under the additional assumption

F ′(z)−1 ≥ 0 , z ∈ D , (3.4)

which is essentially a global M -matrix property (cf. R.S. Varga [192]) for the
Jacobian. Upon combining the above three equivalent convexity characteriza-
tions with (3.4), we obtain the three equivalent affine covariant formulations

F ′(z)−1F
(
λx+ (1− λ)y) ≤ F ′(z)−1

(
λF (x) + (1 − λ)F (y)

)
(3.5)

F ′(x)−1
(
F (y)− F (x)

) ≥ y − x (3.6)

F ′(z)−1
(
F ′(y)− F ′(x)

)
(y − x) ≥ 0 . (3.7)

Note that these conditions cover any mapping F such that (3.2) up to (3.3)
together with (3.4) hold for AF and AF ′ with some A ∈ GL(n).

Lemma 3.1 Let F : D −→ Rn be a continuously differentiable mapping
with D ⊆ Rn open and convex. Let this mapping satisfy one of the convexity
characterizations (3.5)-(3.7). Then the ordinary Newton iteration starting at
some x0 ∈ D converges monotonically and globally such that componentwise

x∗ ≤ xk+1 ≤ xk , k = 1, 2, . . . . (3.8)
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Proof. For the ordinary Newton iteration, one obtains:

xk+1 − xk = −F ′(xk)−1
(
F (xk)− F (xk−1)− F ′(xk−1)(xk − xk−1)

)
= −F ′(xk)−1

1∫
δ=0

[
F ′(xk−1 + δ(xk − xk−1)

)− F ′(xk−1)
]
(xk − xk−1)dδ .

Insertion of (3.7) for

z = xk, x = xk−1, y = xk−1 + δ(xk − xk−1), xk − xk−1 = (y − x)/δ
leads to

xk+1 − xk ≤ 0 for k ≥ 1 .

In a similar way, one derives

xk+1 − x∗ = (xk+1 − xk) + (xk − x∗) = F ′(xk)−1
(
F (x∗)− F (xk)

)
+ xk − x∗ ,

which, by application of (3.6), supplies

xk+1 − x∗ ≥ 0 , k ≥ 0 .

The rest of the proof can be found in [163], p. 453. �

Remark 3.1 An immediate generalization of this lemma is obtained by
allowing different inequalities for different components in (3.5) to (3.7)—
which directly leads to the corresponding inequalities in (3.8).
Note that the above results do not apply to the simplified Newton iteration,
unless n = 1: following the lines of the above proof, the application of (3.7)
here would lead to

xk+1 − xk ≤ −F ′(x0)−1
(
F ′(xk−1)− F ′(x0)

)
(xk − xk−1) .

In order to apply (3.7) once more, a relation of the kind

xk−1 − x0 = Θ · (xk − xk−1)

for some Θ > 0 would be required—which will only hold in R1.
In actual computation, the global monotone convergence property does not
require any control in terms of some monotonicity test. Only reasonable com-
ponentwise termination criteria need to be implemented. It is worth mention-
ing that this special type of convergence of the ordinary Newton method does
not mean global quadratic convergence: rather this type of convergence may
be arbitrarily slow, as can be verified in simple scalar problems—see Exercise
1.3. Not even an a-priori estimation for the number of iterations needed to
achieve a prescribed accuracy may be possible.



114 3 Systems of Equations: Global Newton Methods

Bibliographical Note. The above componentwise monotonicity results
are discussed in detail in the classical monograph [163] by J.M. Ortega and
W.C. Rheinboldt, there in not affine invariant form. In 1987, F.A. Potra and
W.C. Rheinboldt proved affine invariant conditions, under which the simpli-
fied Newton method and other Newton-like methods converge, see [172, 170].

3.1.2 Steepest descent methods

A desirable requirement for any iterative methods would be that the iterates
xk successively approach the solution point x∗—which may be written as

‖xk+1 − x∗‖ < ‖xk − x∗‖ , if xk �= x∗ .

Local Newton techniques implicitly realize such a criterion under affine co-
variant theoretical assumptions, as has been shown in detail in the preceding
chapter. Global methods, however, require a substitute approach criterion,
which may be based on the residual level function

T (x) := 1
2

∥∥ F (x)
∥∥2

2
≡ 1

2F (x)TF (x) . (3.9)

Such a function has the property

T (x) = 0⇐⇒ x = x∗ ,
T (x) > 0⇐⇒ x �= x∗ . (3.10)

In terms of this level function, the approach criterion may be formulated as
a monotonicity criterion

T (xk+1) < T (xk) , if T (xk) �= 0 .

Associated with the level function are the so-called level sets

G(z) := {x ∈ D ⊆ Rn| T (x) ≤ T (z)} .

Let
◦
G denote the interior of G. Then property (3.10) implies

x∗ ∈ G(x) , x ∈ D

and the monotonicity criterion may be written in geometric terms as

xk+1 ∈
◦
G(xk) , if

◦
G(xk) �= ∅ .

An intuitive approach based on this geometrical insight, which dates back
even to A. Cauchy [44] in 1847, is to choose the steepest descent direction as
the direction of the iterative correction—see Figure 3.1.
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xk

xk+1

x∗

Fig. 3.1. Geometric interpretation: level set and steepest descent direction.

This idea leads to the following iterative method:

Δxk := − gradT (xk) = −F ′(xk)TF (xk) (3.11)
xk+1 := xk + skΔxk (3.12)
sk > 0 : steplength parameter.

Figure 3.1 also nicely shows the so-called downhill property.

Lemma 3.2 Let F : D −→ Rn be a continuously differentiable mapping with
D ⊆ Rn. Dropping the iterative index k in the notation of (3.11), let Δx �= 0.
Then there exists a μ > 0 such that

T (x+ sΔx) < T (x) , 0 < s < μ . (3.13)

Proof. Define ϕ(s) := T (x + sΔx). As F ∈ C1(D), one has ϕ ∈ C1(D1),
D1 ⊆ R1. Then

ϕ′(0) =
(
gradT (x+ s ·Δx)TΔx

) ∣∣
s=0

= −‖Δx‖22 < 0 .

With ϕ ∈ C1, the result (3.13) is established. �

Steplength strategy. This result is the theoretical basis for a strategy to
select the steplength in method (3.12). It necessarily consists of two parts: a
reduction strategy and a prediction strategy. The reduction strategy applies
whenever

T (xk + s0kΔx
k) > T (xk)

for some given parameter s0k. In this case, the above monotonicity test is
repeated with some

si+1
k := κ · sik , i = 0, 1, . . . , κ < 1 (typically κ = 1/2) .
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Lemma 3.2 assures that a finite number i∗ of reductions will ultimately lead to
a feasible steplength factor s∗k > 0. The prediction strategy applies, when s0k+1

must be selected—usually based on an ad-hoc rule that takes the steplength
history into account such as

s0k+1 :=
{

min (smax, s
∗
k/κ) , if s∗k−1 ≤ s∗k

s∗k else . (3.14)

The possible increase from sk to sk+1 helps to avoid inefficiency coming
from ‘too small’ local corrections. One may also aim at implementing an
optimal choice of sk out of a sequence of sample values—a strategy, which is
often called optimal line search. However, since sk may range from 0 to ∞, a
reasonable set of values to be sampled may be hard to define, if a sufficiently
large class of problems is to be considered.

Convergence properties. An elementary convergence analysis shows that
the iterative scheme (3.12) with steplength strategies like (3.14) converges
linearly even for rather bad initial guesses x0—however, possibly arbitrarily
slow. Moreover, so-called ‘pseudo-convergence’ characterized by

‖F ′(x)TF (x)‖ ‘small’

may occur far from the solution point due to local ill-conditioning of the
Jacobian matrix.

General level functions. In a large class of problems, the described dif-
ficulties are a consequence of the fact that the whole scheme is not affine
covariant so that the choice of T (x) as a level function appears to be rather
arbitrary. In principle, any level function

T (x|A) := 1
2

∥∥ AF (x)
∥∥2

2
(3.15)

with arbitrary nonsingular (n, n)-matrix A could be used in the place of T (x)
above. To make things worse, even though the direction of steepest descent
Δx is ‘downhill’ with respect to T (x), there nearly always exists a matrix
A such that Δx is ‘uphill’ with respect to T (x|A), as will be shown in the
following lemma.

Lemma 3.3 Let Δx = − gradT (x) denote the direction of steepest descent
with respect to the level function T (x) as defined in (3.9). Then, unless

F ′(x)Δx = χ · F (x) , for some χ < 0 , (3.16)

there exists a class of nonsingular matrices A such that

T (x+ sΔx|A) > T (x|A) , 0 < s < ν ,

for some ν > 0.
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Proof. Let F = F (x), J = F ′(x), J = JJT , A = ATA. Then

ΔxT gradT (x|A) = −FTJ AF .

Now, choose
A := J + μyyT

with some μ > 0 to be specified later and y ∈ Rn such that

FT (J + I)y = 0 , but FT y �= 0 .

Here the assumption (3.16) enters for any χ ∈ R1. By definition, however,
the choice χ ≥ 0 is impossible, since (3.16) implies that

χ = −‖J
TF‖2
‖F‖2 < 0 .

Hence, for the above choice of A, we obtain

ΔxT gradT (x|A) = −‖JF‖22 + μ(FT y)2 .

Then the specification
μ > ‖AF‖22 /(FT y)2

leads to
ΔxT gradT (x|A) > 0 ,

which, in turn, implies the statement of the lemma. �

Summarizing, even though the underlying geometrical idea of steepest de-
scent methods is intriguing, the technical details of implementation cannot
be handled in a theoretically satisfactory manner, let alone in an affine co-
variant setting.

3.1.3 Trust region concepts

As already shown in Section 1.1, the ordinary Newton method can be alge-
braically derived by linearization of the nonlinear equation around the solu-
tion point x∗. This kind of derivation supports the interpretation that the
Newton correction is useful only in a close neighborhood of x∗. Far away from
x∗, such a linearization might still be trusted in some ‘trust region’ around
the current iterate xk. In what follows we will present several models defining
such a region. For a general survey of trust region methods in optimization
see, e.g., the book [45] by A.R. Conn, N.I.M. Gould, and P.L. Toint.
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Levenberg-Marquardt model. The above type of elementary considera-
tion led K.A. Levenberg [143] and later D.W. Marquardt [147]) to suggest a
modification of Newton’s method for ‘bad’ initial guesses that merges into
the ordinary Newton method close to the solution point. Following the pre-
sentation by J.J. Moré in [152] we define a correction vector Δx (dropping
the iteration index k) by the constrained quadratic minimization problem:

‖F (x) + F ′(x)Δx‖2 = min

subject to the constraint
‖Δx‖2 ≤ δ

in terms of some prescribed parameter δ > 0, which may be understood to
quantify the trust region in this approach.
The trust region constraint may be treated by the introduction of a Lagrange
multiplier p ≥ 0 subject to

p
(‖Δx‖22 − δ2) = 0,

which yields the equivalent unconstrained quadratic optimization problem

‖F (x0) + F ′(x0)Δx‖22 + p‖Δx‖22 = min .

After a short calculation and re-introduction of the iteration index k, we then
end up with the Levenberg-Marquardt method:(
F ′(xk)TF ′(xk) + pI

)
Δxk = −F ′(xk)TF (xk) , xk+1 := xk +Δxk . (3.17)

The correction vector Δxk(p) has two interesting limiting cases:

p→ 0+ : Δxk(0) = −F ′(xk)−1F (xk) , if F ′(xk) nonsingular

p→∞ : Δxk(p)→ −1
p

gradT (xk) .

In other words: Close to the solution point, the method merges into the
ordinary Newton method; far from the solution point, it turns into a steepest
descent method with steplength parameter 1/p.

Trust region strategies for the Levenberg-Marquardt method. All
strategies to choose the parameter p or, equivalently, the parameter δ are
based on the following simple lemma.

Lemma 3.4 Under the usual assumptions of this section let Δx(p) �= 0 de-
note the Levenberg-Marquardt correction defined in (3.17). Then there exists
a pmin ≥ 0 such that

T
(
x+Δx(p)

)
< T (x) , p > pmin .
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Proof. Substitute q := 1/p , 0 ≤ q ≤ ∞ , and define

ϕ(q) := T
(
x+Δx(1/q)

)
, ϕ(0) = T (x) .

Then
ϕ′(0) = 0 , ϕ′′(0) < 0 .

Hence, there exists a qmax = 1/pmin such that

ϕ(q) < ϕ(0) , 0 < q < qmax .

�

The method looks rather robust, since for any p > 0 the matrix JTJ + pI is
nonsingular, even when the Jacobian J itself is singular. Nevertheless, similar
as the steepest descent method, the above iteration may also terminate at
‘small’ gradients, since for singular J the right-hand side of (3.17) also de-
generates. This latter property is often overlooked both in the literature and
by users of the method. Since the Levenberg-Marquardt method lacks affine
invariance, special scaling methods are often recommended.

Bibliographical Note. Empirical trust region strategies for the Levenberg-
Marquardt method have been worked out, e.g., by M.D. Hebden [118], by
J.J. Moré [152], or by J.E. Dennis, D.M. Gay, and R. Welsch [54]. The asso-
ciated codes are rather popular and included in several mathematical software
libraries. However, as already stated above, these algorithms may terminate
at a wrong solution with small gradient. When more than one solution exists
locally, these algorithms might not indicate that. The latter feature is par-
ticularly undesirable in the application of the Levenberg-Marquardt method
to nonlinear least squares problems—for details see Chapter 4 below.

Affine covariant trust region model. A straightforward affine covari-
ant reformulation of the Levenberg-Marquardt model would be the following
constrained quadratic optimization problem:

‖F ′(x0)−1
(
F (x0) + F ′(x0)Δx

)‖2 = min

subject to the constraint
‖Δx‖2 ≤ δ0 . (3.18)

This problem can easily be solved geometrically—as shown in Figure 3.2,
where the constraint (3.18) is represented by a sphere around the current
iterate x0 with radius δ0. Whenever δ0 exceeds the length of the ordinary
Newton correction, which means that the constraint is not active, then Δx is
just the ordinary Newton correction—and the quadratic functional vanishes.
Whenever the constraint is active, then the direction ofΔx still is the Newton
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direction, but now with reduced steplength. This leads to the Newton method
with so-called damping

F ′(xk)Δxk = −F (xk) , xk+1 := xk + λkΔx
k ,

wherein the damping factor varies in the range 0 < λk ≤ 1.

x0 − J(x0)−1F (x0)
x0

δ0

Fig. 3.2. Geometric interpretation: affine covariant trust region model.

Affine contravariant trust region model. An affine contravariant re-
formulation of the Levenberg-Marquardt model would lead to a constrained
quadratic optimization problem of the form:

‖F (x0) + F ′(x0)Δx‖ = min

subject to the constraint

‖F ′(x0)Δx‖2 ≤ δ0 .
Once again, the problem can be solved geometrically by Figure 3.2: only the
terms of the domain space of F must be reinterpreted by the appropriate
terms in the image space of F . As a consequence, the Newton method with
damping is obtained again.

Damping strategies for Newton method. All strategies for choosing the
above damping factors λk are based on the following insight.

Lemma 3.5 Under the usual assumptions of this section let F ′(x) be non-
singular and F �= 0. With Δx defined to be the Newton direction there exists
some μ > 0 such that

T (x+ λΔx) < T (x) , 0 < λ < μ .

Proof. As before, let F = F (x), J = F ′(x) and define ϕ(λ) := T (x+ λΔx),
which then yields

ϕ(0) = T (x) , ϕ′(0) = (JTF )TΔx = −FTF = −2T (x) < 0 .

�

Among the most popular empirical damping strategies is the
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Armijo strategy [7]. Let Λk ⊂
{
1, 1

2 ,
1
4 , . . . , λmin

}
denote a sequence such

that
T (xk + λkΔx

k) ≤ (1− 1
2λk

)
T (xk) , λ ∈ Λk (3.19)

holds and define an optimal damping factor via

T (xk + λkΔx
k) = min

λ∈Λk

T (xk + λΔxk) .

In order to avoid overflow in critical examples, the above evaluation of T will
be sampled from the side of small values λ. In a neighborhood of x∗, this
strategy will produce λ = 1. If λ < λmin would be required, the iteration
should be terminated with a warning. Unfortunately, the latter occurrence
appears quite frequently in realistic problems of scientific computing, espe-
cially when the arising Jacobian matrices are ill-conditioned. This failure is
a consequence of the fact that the choice T (x) for the level function destroys
the affine covariance of the local Newton methods—a consequence that will
be analyzed in detail in Section 3.3 below.

3.1.4 Newton path

All globalization techniques described up to now were based on the re-
quirement of local monotonicity with respect to the standard level function
T (x) = T (x|I) as defined in (3.9). In this section we will follow a more general
approach, which covers general level functions T (x|A) for arbitrary nonsin-
gular matrix A as defined in (3.15). The associated level sets are written
as

G(z|A) :=
{
x ∈ D ⊆ Rn| T (x|A) ≤ T (z|A)

}
. (3.20)

With this notation, iterative monotonicity with respect to T (x|A) can be
written in the form

xk+1 ∈
◦
G(xk|A) , if

◦
G(xk|A) �= ∅ .

We start from the observation that each choice of the matrix A could equally
well serve within an iterative method. With the aim of getting rid of this
somewhat arbitrary choice, we now focus on the intersection of all corre-
sponding level sets:

G(x) :=
⋂

A∈GL(n)

G(x|A) . (3.21)

By definition, the thus defined geometric object is affine covariant. Its nature
will be revealed by the following theorem.

Theorem 3.6 Let F ∈ C1(D), D ⊆ Rn, F ′(x) nonsingular for all x ∈ D.
For some Â ∈ GL(n), let the path-connected component of G(x0|Â) in x0 be
compact and contained in D. Then the path-connected component of G(x0)
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as defined in (3.21) is a topological path x : [0, 2]→ Rn, the so-called Newton
path, which satisfies

F
(
x(λ)

)
= (1− λ)F (x0) , (3.22)

T
(
x(λ)|A) = (1− λ)2T (x0|A) , (3.23)

dx

dλ
= −F ′(x)−1F (x0) , (3.24)

x(0) = x0 , x(1) = x∗ ,

dx

dλ

∣∣∣∣
λ=0

= −F ′(x0)−1F (x0) ≡ Δx0 , (3.25)

where Δx0 is the ordinary Newton correction.

Proof. Let F0 = F (x0). In a first stage of the proof, level sets and their
intersection are defined in the image space of F using the notation

H(x0|A) :=
{
y ∈ Rn| ‖Ay‖22 ≤ ‖AF0‖22

}
,

H(x0) :=
⋂

A∈GL(n)

H(x0|A) .

Let σi denote the singular values of A and qi the eigenvectors of ATA such
that

ATA =
n∑

i=1

σ2
i qiq

T
i .

Select those A with q1 := F0/‖F0‖2, which defines the matrix set:

A :=
{
A ∈ GL(n)|ATA =

n∑
i=1

σ2
i qiq

T
i , q1 = F0/‖F0‖2

}
.

Then every y ∈ Rn can be represented by

y =
n∑

j=1

bjqj , bj ∈ R .

Hence

‖Ay‖22 = yTATAy =
n∑

i=1

σ2
i b

2
i ,

‖AF0‖22 = σ2
1‖F0‖22 ,

which, for A ∈ A, yields
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H(x0|A) =

{
y
∣∣ n∑

i=1

σ2
i b

2
i ≤ σ2

1‖F0‖22
}
,

or, equivalently, the n-dimensional ellipsoids

1
‖F0‖22

b21 +
(

σ2

σ1‖F0‖2

)2

b22 + · · ·+
(

σn

σ1‖F0‖2

)2

b2n ≤ 1 .

For A ∈ A, all corresponding ellipsoids have a common b1-axis of length
‖F0‖2—see Figure 3.3. The other axes are arbitrary.

b2, . . . , bn

b1

Fig. 3.3. Intersection of ellipsoids H(x0|A) for A ∈ A.

Figure 3.3 directly shows that

Ĥ(x0) :=
⋂

A∈A
H(x0|A) =

{
y = b1q1

∣∣ |b1| ≤ ‖F0‖2
}

=
{
y ∈ Rn|y = (1− λ)F0 , λ ∈ [0, 2]

}
=

{
y ∈ Rn|Ay = (1 − λ)AF0 , λ ∈ [0, 2] , A ∈ GL(n)

}
.

As A ⊂ GL(n) : H(x0) ⊆ Ĥ(x0). On the other hand, for y ∈ Ĥ(x0), A ∈
GL(n), one has

‖Ay‖22 = (1− λ)2‖AF0‖22 ≤ ‖AF0‖22 ,

which implies Ĥ(x0) ⊆ H(x0) and, in turn, confirms

Ĥ(x0) = H(x0) .

The second stage of the proof now involves ‘lifting’ of the path H(x0) to
G(x0). This is done by means of the homotopy
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Φ(x, λ) := F (x) − (1− λ)F (x0) .

Note that
Φx = F ′(x) , Φλ = F (x0) .

Hence, Φx is nonsingular for x ∈ D. As D ⊃ G(x0|Â ), local continuation
starting at x(0) = x0 by means of the implicit function theorem finally es-
tablishes the existence of the path

x ⊂ G(x0|Â ) ⊂ D ,

which is defined by (3.22) from Φ ≡ 0. The differentiability of x follows, since
F ∈ C1(D), which confirms (3.24) and (3.25). �

The above theorem deserves some contemplation. The constructed Newton
path x̄ is outstanding in the respect that all level functions T (x|A) decrease
along x̄—this is the result (3.22). Therefore, a rather natural approach would
be to just follow that path computationally—say, by numerical integration of
the initial value problem (3.24). Arguments, why this is not a recommended
method of choice, will be presented in Section 5 in a more general context.
Rather, the local information about the tangent direction

Δx0

‖Δx0‖
should be used—which is just the Newton direction. In other words:
Even ‘far away’ from the solution point x∗, the Newton direction is an out-
standing direction, only its length may be ‘too large’ for highly nonlinear
problems.
Such an insight could not have been gained from the merely algebraic local
linearization approach that had led to the ordinary Newton method.
The assumptions in the above theorem deliberately excluded the case that
the Jacobian may be singular at some x̂ close to x0. This case, however, may
and will occur in practice. Application of the implicit function theorem in
a more general situation shows that all Newton paths starting at points x0

will end at one of the following three classes of points—see the schematic
Figure 3.4:

• at the ‘nearest’ solution point x∗, or
• at some sufficiently close critical point x̂ with singular Jacobian, or
• at some point on the boundary ∂D of the domain of F .

The situation is also illustrated in the rather simple, but intuitive Example
3.2, see Figure 3.10 below.
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∂D

Fig. 3.4. Newton paths starting at initial points x0 (•) will end at a solution
point x∗ (◦), at a critical point bx (�), or on the domain boundary ∂D.

Bibliographical Note. Standard derivations of the Newton path as a
mathematical object had started from the so–called continuous analog of
Newton’s method, which is the ODE initial value problem (3.23)—see, e.g.,
the 1953 paper [48] by D. Davidenko. The geometric derivation of the Newton
path from affine covariance as a ‘first principle’ dates back to the author’s
dissertation [59, 60] in 1972.

3.2 Residual Based Descent

In this section we study the damped Newton iteration

F ′(xk)Δxk = −F (xk), xk+1 = xk + λkΔx
k, λk ∈]0, 1]

under the requirement of residual contraction

‖F (xk+1)‖ < ‖F (xk)‖ ,

which is certainly the most popular and the most widely used global conver-
gence measure.
From Section 3.1.4 we perceive this iterative method as the tangent devia-
tion from the Newton path, which connects the given initial guess x0 to the
unknown solution point x∗—under sufficient regularity assumptions on the
Jacobian matrix, of course. The deviation is theoretically characterized by
means of affine contravariant Lipschitz conditions as defined in the conver-
gence theory for residual based local Newton methods in Section 2.2.
In what follows, we derive theoretically optimal iterative damping factors and
prove global convergence within some range around these optimal factors



126 3 Systems of Equations: Global Newton Methods

(Section 3.2.1). On this basis we then develop residual based trust region
strategies for the algorithmic choice of the damping factors. This is first done
for the exact Newton correction Δx as defined above (Section 3.2.2) and
second for an inexact variant using the iterative solver GMRES for the inner
iteration (Section 3.2.3).

3.2.1 Affine contravariant convergence analysis

From Lemma 3.5 above we already know that the Newton correction Δxk

points downhill with respect to the residual level function

T (x) := 1
2‖F (x)‖22

and therefore into the interior of the associated residual level set

G(x) := {y ∈ D|T (y) ≤ T (x)} .
At a given iterate xk, we are certainly interested to determine some steplength
(defined by the associated damping factor λk) along the Newton direction
such that the residual reduction is in some sense optimal.

Theorem 3.7 Let F ∈ C1(D) with D ⊂ Rn open convex and F ′(x) non-
singular for all x ∈ D. Assume the special affine contravariant Lipschitz
condition

‖(F ′(y)− F ′(x)
)
(y − x)‖ ≤ ω‖F ′(x)(y − x)‖2 for x, y ∈ D .

Then, with the convenient notation

hk := ω‖F (xk)‖ ,
and λ ∈ [0,min (1, 2/hk)] we have:

‖F (xk + λΔxk)‖2 ≤ tk(λ)‖F (xk)‖2 ,
where

tk(λ) := 1− λ+ 1
2λ

2hk . (3.26)

The optimal choice of damping factor in terms of this local estimate is

λk := min (1 , 1/hk) . (3.27)

Proof. Dropping the superscript index k we may derive

‖F (x+ λΔx)‖ = ‖F (x+ λΔx) − F (x)− F ′(x)Δx‖

=
∥∥∥ λ∫

s=0

(
F ′(x+ s ·Δx)− F ′(x)

)
Δxds− (1− λ)F ′(x)Δx

∥∥∥
≤ (1− λ)‖F (x)‖ +O(λ2) for λ ∈ [0, 1] .
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The arising O(λ2)-term obviously characterizes the deviation from the New-
ton path and can be estimated as:

∥∥∥ λ∫
s=0

(
F ′(x+ s ·Δx)−F ′(x)

)
Δxds

∥∥∥≤ ω · 12λ2‖F ′(x)Δx‖2 = 1
2λ

2hk · ‖F (x)‖ .

Minimization of the above defined parabola tk then directly yields λk with
the a-priori restriction to the unit interval due to the underlying Newton path
concept. �

We are now ready to derive a global convergence theorem on the basis of this
local descent result.

Theorem 3.8 Notation and assumptions as in the preceding Theorem 3.7.
In addition, let D0 denote the path-connected component of G(x0) in x0 and
assume that D0 ⊆ D is compact. Let the Jacobian F ′(x) be nonsingular for
all x ∈ D0. Then the damped Newton iteration (k = 0, 1, . . .) with damping
factors in the range

λk ∈
[
ε , 2λk − ε

]
and sufficiently small ε > 0, which depends on D0, converges to some solution
point x∗.

Proof. The proof is by induction using the local results of the preceding
theorem. In Figure 3.5, the estimation parabola tk defined in (3.26) is depicted
as a function of the damping factor λ together with the polygonal upper
bound

tk(λ) ≤

⎧⎪⎪⎨⎪⎪⎩
1− 1

2λ , 0 ≤ λ ≤ 1
hk
,

1 + 1
2λ−

1
hk

,
1
hk
≤ λ ≤ 2

hk
.

Upon restricting λ to the range indicated in the present theorem, we imme-
diately have

tk(λ) ≤ 1− 1
2ε , 0 < ε ≤ 1

hk
, (3.28)

which induces strict reduction of the residual level function T (x) in each
iteration step k. In view of a proof of global convergence, a question left to
discuss is whether there exists some global ε > 0. This follows from the fact
that

max
x∈D0

‖F (x)‖ <∞

under the compactness assumption on D0. Hence, whenever G(xk) ⊆ D0,
then (3.28) assures that
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tk
1

λ
ε 1

hk

2
hk

Fig. 3.5. Local reduction parabola tk together with polygonal upper bounds.

G
(
xk+1(λ)

) ⊂ G(xk) ⊆ D0 .

With arguments similar as in the proof of Theorem 2.12, we finally conclude
by induction that the defined damped Newton iteration converges towards
some limit point x∗ with F (x∗) = 0, which completes the proof. �

3.2.2 Adaptive trust region strategies

The above derived theoretical damping strategy (3.27) cannot be imple-
mented directly, since the arising Kantorovich quantities hk are computa-
tionally unavailable due to the arising Lipschitz constant ω. The obtained
theoretical results can nevertheless be exploited for the construction of com-
putational strategies. Following the paradigm of Section 1.2.3, we may de-
termine damping factors in the course of the iteration as close to the con-
vergence analysis as possible replacing the unavailable Lipschitz constants ω
by computational estimates [ω] and the unavailable Kantorovich quantities
hk = ω‖F (xk)‖ by computational estimates [hk] = [ω]‖F (xk)‖. Such esti-
mates can only be obtained by pointwise sampling of the domain dependent
Lipschitz constants, which immediately implies that

[ω] ≤ ω , [hk] ≤ hk . (3.29)

By definition, the estimates [·] will inherit the affine contravariant structure.
As soon as we have iterative estimates [hk] at hand, associated estimates of
the optimal damping factors may be naturally defined:[

λk

]
:= min (1, 1/[hk]) . (3.30)

The relation (3.29) induces the equivalent relation

[λk] ≥ λk .
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This means that the estimated damping factors might be ‘too large’—
obviously an unavoidable gap between analysis and algorithm. As a con-
sequence, repeated reductions might be necessary, which implies that any
damping strategy to be derived will have to split into a prediction strategy
and a correction strategy.

Bit counting lemma. As for the required accuracy of the computational
estimates, the following lemma is important.

Lemma 3.9 Notation as just introduced. Assume that the damped Newton
method with damping factors as defined in (3.30) is realized. As for the ac-
curacy of the computational estimates let

0 ≤ hk − [hk] < σmax
(
1, [hk]

)
for some σ < 1 . (3.31)

Then the residual monotonicity test will yield

‖F (xk+1)‖ ≤ (1− 1
2 (1 − σ)λ) ‖F (xk)‖ .

Proof. We reformulate the relation (3.31) as

[hk] ≤ hk < (1 + σ)max
(
1, [hk]

)
.

Then the above notation directly leads to the estimation

‖F (xk+1)‖
‖F (xk)‖ ≤ [

1− λ+ 1
2λ

2hk

]
λ=[λk]

<
[
1− λ+ 1

2 (1 + σ)λ2[hk]
]
λ=[λk] ≤ 1− 1

2 (1 − σ)λk .

�

For σ < 1, any computational estimates [hk] are just required to catch the
leading binary digit of hk, in order to assure residual monotonicity. For σ ≤ 1

2 ,
we arrive at the restricted residual monotonicity test

‖F (xk+1)‖ ≤ (1− 1
4λ
) ‖F (xk)‖. (3.32)

This test nicely compares with the Armijo strategy (3.19), though derived by
a different argument.

Computational estimates. After these preliminary considerations, we
now proceed to identify affine contravariant computational estimates [·]—
preferably those, which are cheap to evaluate in the course of the damped
Newton iteration. In order to derive such estimates, we first recall from Sec-
tion 3.1.4 that the damped Newton method may be interpreted as a deviation
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from the associated Newton path. Measuring the deviation in an affine con-
travariant setting leads us to the bound

‖F (xk+1)− (1− λ)F (xk)‖ ≤ 1
2λ

2ω‖F (xk)‖2 ,
which, in turn, leads to the following lower bound for the affine contravariant
Kantorovich quantity:

[hk] :=
2‖F (xk+1)− (1− λ)F (xk)‖

λ2‖F (xk)‖ ≤ hk .

This estimate requires at least one trial value xk+1 = xk + λ0
kΔx

k so that
it can only be exploited for the design of a correction strategy of the kind
(i = 0, 1, . . .):

λi+1
k := min

(
1
2λ

i
k, 1/[h

i+1
k ]
)
. (3.33)

In order to construct a theoretically backed initial estimate λ0
k, we may apply

the relation

hk+1 =
‖F (xk+1)‖
‖F (xk)‖ hk,

which directly inspires estimates of the kind

[h0
k+1] =

‖F (xk+1)‖
‖F (xk)‖ [hi∗

k ] < [hi∗
k ] ,

wherein i∗ indicates the final computable index within estimate (3.33) for the
previous iterative step k. Thus we are led to the following prediction strategy
for k ≥ 0:

λ0
k+1 := min

(
1, 1/[h0

k+1]
)
.

As can be seen, the only empirical choice left to be made is the starting value
λ0

0. It is recommended to set λ0
0 = 1 for ‘mildly nonlinear’ problems and

λ0
0 = λmin � 1 for ‘highly nonlinear’ problems in a definition to be put in

the hands of the users.

Intermediate quasi-Newton steps. Whenever λk = 1 and the residual
monotonicity test yields

Θk =
‖F (xk+1)‖
‖F (xk)‖ ≤ Θmax < 1

for some default value Θmax, then the residual based quasi-Newton method
of Section 2.2.3 may be applied—compare Theorem 2.14. This means that
Jacobian evaluations are replaced by residual rank-1 updates. As for a possible
switch back from quasi-Newton steps to Newton steps just look into the
details of the informal quasi-Newton algorithm QNRES, also in Section 2.2.3.
The just described adaptive trust region strategy is realized in
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Algorithm NLEQ-RES. Set a required residual accuracy ε sufficiently above
the machine precision.
Guess an initial iterate x0. Evaluate F (x0).
Set an initial damping factor either λ0 := 1 or λ0 � 1.
Norms are tacitly understood to be scaled smooth norms, such as ‖D̄−1 · ‖2,
where D̄ is a diagonal scaling matrix, constant throughout the iteration.
For iteration index k = 0, 1, . . . do:

1. Step k:
Convergence test: If ‖F (xk)‖ ≤ ε: stop. Solution found x∗ := xk.
Else: Evaluate Jacobian matrix F ′(xk). Solve linear system

F ′(xk)Δxk = −F (xk)

For k > 0: compute a prediction value for the damping factor

λk := min(1, μk), μk :=
‖F (xk−1)‖
‖F (xk)‖ μ

′
k−1 .

Regularity test: If λk < λmin: stop. Convergence failure.
2. Else: compute the trial iterate xk+1 := xk +λkΔx

k and evaluate F (xk+1).
3. Compute the monitoring quantities

Θk :=
‖F (xk+1)‖
‖F (xk)‖ , μ′k :=

1
2‖F (xk)‖ · λ2

k

‖F (xk+1)− (1− λk)F (xk)‖
If Θk ≥ 1 (or, if restricted: Θk > 1− λk/4):

then replace λk by λ′k := min(μ′k,
1
2λk). Go to Regularity test.

Else: let λ′k := min(1, μ′k) .

If λ′k = λk = 1 and Θk < Θmax: switch to QNRES.

Else: If λ′k ≥ 4λk: replace λk by λ′k and goto 2.

Else: accept xk+1 as new iterate. Goto 1 with k → k + 1.

3.2.3 Inexact Newton-RES method

In this section we discuss the inexact global Newton method

xk+1 = xk + λkδx
k , 0 < λk ≤ 1

realized by means of GMRES such that (dropping the inner iteration index i)

F ′(xk)δxk = −F (xk) + rk .

Let δxk
0 = 0 and thus rk0 = F (xk). The notation here follows Section 2.2.4 on

local Newton-RES methods.
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Convergence analysis. Before going into details of the analysis, we want
to point out that the inexact Newton method with damping can be viewed
as a tangent step in xk for the inexact Newton path

F (x̃(λ)) − rk = (1 − λ) (F (xk)− rk)
or, equivalently,

F (x̃(λ)) = (1− λ)F (xk) + λrk , (3.34)

wherein x̃(0) = xk , ˙̃x(0) = δxk, but x̃(1) �= x∗. Hence, when approaching
x∗, we will have to assure that rk → 0. With this geometric interpretation in
mind, we are now prepared to derive the following convergence statements.

Theorem 3.10 Under the assumptions of Theorem 3.7 for the exact Newton
iteration with damping, the inexact Newton-GMRES iteration can be shown to
satisfy

Θk :=
‖F (xk+1)‖
‖F (xk)‖ ≤ tk(λk, ηk) (3.35)

with

tk(λ, η) = 1− (1− η)λ + 1
2λ

2(1 − η2)hk , ηk =
‖rk‖2
‖F (xk)‖2 < 1 .

The optimal choice of damping factor is

λk := min
(

1,
1

(1 + ηk)hk

)
. (3.36)

Proof. Recall from Section 2.1.5 that for GMRES

‖F (xk)− rk‖22 = ‖F (xk)‖22 − ‖rk‖22 = (1− η2
k)‖F (xk)‖22

for well-defined ηk < 1. Along the line xk + λδxk the descent behavior can
be estimated using

F (xk +λδxk) = (1−λ)F (xk)+λrk +λ

1∫
s=0

(
F ′(xk + sλδxk)− F ′(xk)

)
δxkds .

The last right hand term is directly comparable to the exact case: in the
application of the affine contravariant Lipschitz condition we merely have to
replace Δxk by δxk and, accordingly,

‖F ′(xk)Δxk‖2 = ‖F (xk)‖2

by
‖F ′(xk)δxk‖2 = (1− η2

k)‖F (xk)‖2 .
With this modification, the result (3.35) is readily verified. The optimal
damping factor follows from setting t′k(λ) = 0. With λk ≤ 1 as restriction,
we have (3.36). �
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Adaptive trust region method. In order to exploit the above convergence
analysis for the construction of an inexact Newton-GMRES algorithm, we will
follow the usual paradigm and certainly aim at defining certain damping
factors [

λk

]
:= min

(
1,

1
(1 + ηk)[hk]

)
in terms of affine contravariant computationally available estimates. First, if
we once again apply the ‘bit counting’ Lemma 3.9, we arrive at the inexact
variant of the restricted residual monotonicity test

‖F (xk+1)‖2 ≤
(

1− 1− ηk

4
λk

)
‖F (xk)‖2 ,

which here replaces (3.32). Next, upon returning to the above proof of The-
orem 3.10, we readily observe that

‖F (xk+1)− (1 − λk)F (xk)− λkr
k‖2 ≤ λ2

k

2
(1− η2

k)hk‖F (xk)‖2 .

On this basis, we may simply define the a-posteriori estimates

[hk](λ) :=
2‖F (xk+1(λ)

)− (1 − λ)F (xk)− λrk‖2
λ2(1− η2

k)‖F (xk)‖2 ≤ hk ,

which give rise to the correction strategy (i = 0, 1, . . . , i∗k)

λi+1
k = min

(
1
2λ

i
k ,

1
(1 + ηk)[hi

k]

)
,

and the associated a-priori estimates

[h0
k+1] := Θk[hi∗

k ] ≤ hk+1 ,

which induce the prediction strategy (k = 0, 1, . . .)

λ0
k+1 := min

(
1,

1
(1 + ηk+1)[h0

k+1]

)
.

As for the choice of ηk, we already have a strategy for λk = λk−1 = 1—see
Section 2.1.5. For λk < 1, some constant value ηk ≤ η with some sufficiently
small threshold value η can be selected (and handed over to the local Newton
method, see Section 2.2.4). Then only λ0

0 remains to be set externally.
The just described residual based adaptive trust region strategy in combina-
tion with the strategy to match inner and outer iteration is realized in the
code GIANT-GMRES.
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Bibliographical Note. Residual based inexact Newton methods date
back to R.S. Dembo, S.C. Eisenstat, and T. Steihaug [51]. Quite popular
algorithmic heuristics have been worked out by R.E. Bank and D.J. Rose
in [19] and are applied in a number of published algorithms. A different
global convergence analysis has been given in [90, 91] by S.C. Eisenstat and
H.F. Walker. Their strategies are implemented in the code NITSOL due to
M. Pernice and H.F. Walker [166]. They differ from the ones presented here.

3.3 Error Oriented Descent

In this section we study the damped Newton iteration

F ′(xk)Δxk = −F (xk), xk+1 = xk + λkΔx
k, λk ∈]0, 1]

in an error oriented framework, which aims at overcoming certain difficul-
ties that are known to arise in the residual based framework, especially in
situations where the Jacobian matrices are ill-conditioned—such as in dis-
cretized nonlinear partial differential equations. Once again, we treat the
damped Newton method as a deviation from the Newton path, but this time
we characterize the deviation by means of affine covariant Lipschitz condi-
tions such as those used in the convergence theory for error oriented local
Newton methods in Section 2.1.
The construction of an error oriented globalization of local Newton methods
is slightly more complicated than in the residual based approach. For this
reason, we first recur to the concept of general level functions T (x|A) as al-
ready introduced in (3.15) for arbitrary nonsingular matrix A and study the
descent behavior of the damped Newton method for the whole class of such
functions in an affine covariant theoretical framework (Section 3.3.1). As it
turns out, the obtained theoretically optimal damping factors actually reflect
the observed difficulties of the residual based variants. Moreover, the analysis
directly leads to the specific choice A = F ′(xk)−1, which defines the so-called
natural level function (Section 3.3.2). As a consequence for actual computa-
tion, the iterates are required to satisfy the so-called natural monotonicity
test

‖Δxk+1‖ < ‖Δxk‖,
wherein the simplified Newton correction Δx

k+1
defined by

F ′(xk)Δx
k+1

= −F (xk+1)

is only computed to evaluate this test (and later also for an adaptive trust
region method). As for a proof of global convergence, only a theorem covering
a slightly different situation is available up to now—despite the convincing
global convergence properties of the thus derived algorithm! From the asso-
ciated theoretically optimal damping factors we develop computational trust
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region strategies—first for the exact damped Newton method as defined above
(Section 3.3.3) and second for inexact variants using error reducing linear it-
erative solvers for the inner iteration (Section 3.3.4).

3.3.1 General level functions

In order to derive an affine covariant or error oriented variant of the damped
Newton method we first recur to general level functions, which have been
already defined in (3.15) as

T (x|A) := 1
2‖AF (x)‖22 .

Local descent. It is an easy task to verify that the Newton direction points
‘downhill’ with respect to all such level functions.

Lemma 3.11 Let F ∈ C1(D) and let Δx denote the ordinary Newton cor-
rection (dropping the iteration index k). Then, for all A ∈ GL(n),

ΔxT gradT (x|A) = −2T (x|A) < 0 .

This is certainly a distinguishing feature to any other descent directions—
compare Lemma 3.3. Hence, on the basis of first order information only,
all monotonicity criteria look equally well-suited for the damped Newton
method. The selection of a specific level function will therefore require second
order information.

Theorem 3.12 Let F ∈ C1(D) with D ⊂ Rn convex and F ′(x) = F ′(x)
nonsingular for all x ∈ D . For a given current iterate xk ∈ D let G(xk|A)
⊂ D for some A ∈ GL(n). For x, y ∈ D assume that

‖F ′(x)−1
(
F ′(y)− F ′(x)

)
(y − x)‖ ≤ ω‖y − x‖2 .

Then, with the convenient notation

hk := ‖Δxk‖ω , hk := hk cond
(
AF ′(xk)

)
one obtains for λ ∈ [0,min

(
1, 2/hk

)]
:

‖AF (xk + λΔxk)‖ ≤ tk(λ|A)‖AF (xk)‖ , (3.37)

where
tk(λ|A) := 1− λ+ 1

2λ
2hk . (3.38)

The optimal choice of damping factor in terms of this local estimate is

λk(A) := min
(
1 , 1/hk

)
.
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Proof. Dropping the superscript index k we may derive

‖AF (x+ λΔx)‖ = ‖A(F (x+ λΔx) − F (x)− F ′(x)Δx
)‖

=
∥∥∥A
⎛⎝ λ∫

δ=0

(
F ′(x + δΔx)− F ′(x)

)
Δxdδ − (1− λ)F ′(x)Δx

⎞⎠∥∥∥
≤ (1− λ)‖AF (x)‖ +O(λ2) for λ ∈ [0, 1] .

The arising O(λ2)-term obviously characterizes the deviation from the New-
ton path and can be estimated as:

∥∥ AF ′(x)

λ∫
δ=0

F ′(x)−1
(
F ′(x+ δΔx) − F ′(x)

)
Δxdδ

∥∥
≤ ‖AF ′(x)‖ω 1

2λ
2‖Δx‖2 = 1

2λ
2‖AF ′(x)‖hk‖

(
AF ′(x)

)−1
AF (x)‖

≤ 1
2λ

2hk‖AF ′(x)‖‖(AF ′(x)
)−1‖‖AF (x)‖ = 1

2λ
2hk‖AF (x)‖ .

Minimization of the parabola tk then directly yields λk(A) with the a-priori
restriction to the unit interval due to the underlying Newton path concept.
�

Global convergence. The above local descent result may now serve as a
basis for the following global convergence theorem.

Theorem 3.13 Notation and assumptions as in the preceding Theorem 3.12.
In addition, let D0 denote the path-connected component of G(x0|A) in x0

and assume that D0 ⊆ D is compact. Let the Jacobian F ′(x) be nonsingular
for all x ∈ D0. Then the damped Newton iteration (k = 0, 1, . . .) with damping
factors in the range

λk ∈
[
ε , 2λk(A)− ε]

and sufficiently small ε > 0, which depends on D0, converges to some solution
point x∗.

Proof. The proof is by induction using the local results of the preceding
theorem. Moreover, it is just a slight modification of the proof of Theorem
3.8 for the residual level function. In particular, Figure 3.5 shows the same
type of estimation parabola tk as defined here in (3.38): once again, the proper
polygonal upper bound supplies the global upper bound

tk(λ|A) ≤ 1− 1
2ε , 0 < ε ≤ 1

hk

, (3.39)
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which induces strict reduction of the general level function T (x|A) in each
iteration step k. We are now just left to discuss whether there exists some
global ε > 0. This follows from the fact that

max
x∈D0

‖F ′(x)−1F (x)‖ · cond2

(
AF ′(x)

)
<∞

under the compactness assumption on D0. Hence, whenever G(xk|A) ⊆ D0,
then (3.39) assures that

G
(
xk+1(λ)|A) ⊂ G(xk|A) ⊆ D0 .

We therefore conclude by induction that

lim
k→∞

xk = x∗ ,

which completes the proof. �

Algorithmic limitation of residual monotonicity. The above theorem
offers an intriguing explanation, why the damped Newton method endowed
with the traditional residual monotonicity criterion

T (xk+1|I) ≤ T (xk|I)

may fail in practical computation despite its proven global convergence prop-
erty (compare Theorem 3.8): in fact, whenever the Jacobian is ill-conditioned,
then the ‘optimal’ damping factors are bound to satisfy

λk(I) =
(
hkcond2

(
F ′(xk)

))−1

< λmin � 1 . (3.40)

Therefore, in worst cases, also any computational damping strategies (no
matter, how sophisticated they might be) will lead to a practical termination
of the iteration, since then xk+1 ≈ xk, which means that the iteration ‘stands
still’. For illustration of this effect see Example 3.1 below, especially Fig. 3.9.
Another side of the same medal is the quite often reported observation that
for ‘well-chosen’ initial guesses x0 residual monotonicity may be violated
over several initial iterative steps even though the ordinary Newton iteration
converges when allowed to do so by skipping the residual monotonicity test.
In fact, from the error oriented local convergence analysis of Section 2.1, one
would expect to obtain the optimal value λk = 1 roughly as soon as the
iterates are contained in the ‘neighborhood’ of the solution x∗—say, as soon
as for some iterate hk < 1. A comparison with the above theorem, however,
shows that a condition of the kind hk = hkcond2

(
F ′(xk)

)
< 1 would be

required in the residual framework. The effect is illustrated by Example 3.1
at the end of Section 3.3.2.
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Summarizing, we have the following situation:
Combining any damping strategy with the residual monotonicity criterion
may have the consequence that mildly nonlinear problems actually ‘look like’
highly nonlinear problems, especially in the situation (3.40); as a consequence,
especially in the presence of ill-conditioned Jacobians, the Newton iteration
with damping tends to terminate without the desired result—despite an un-
derlying global convergence theorem like Theorem 3.13 for A = I.

3.3.2 Natural level function

The preceding section seemed to indicate that ‘all level functions are equal’;
here we want to point out that ‘some animals are more equal than others’
(compare George Orwell, Animal Farm).
As has been shown, the condition number cond2

(
AF ′(xk)

)
plays a central

role in the preceding analysis, at least in the worst case situation. Therefore,
due to the well-known property

cond2

(
AF ′(xk)

) ≥ 1 = cond2

(
I
)
,

the special choice
Ak := F ′(xk)−1

seems to be locally optimal as a specification of the matrix in the general level
function. The associated level function T

(
x|F ′(xk)−1

)
is called natural level

function and the associated natural monotonicity test requires that

‖Δxk+1‖2 ≤ ‖Δxk‖2 (3.41)

in terms of the ordinary Newton correction Δxk and the simplified Newton
correction defined by

Δx
k+1

:= −F ′(xk)−1F (xk+1) .

This specification gives rise to several outstanding properties.

Extremal properties. For A ∈ GL(n) the reduction factors tk(λ|A) and
the theoretical optimal damping factors λk(A) satisfy:

tk(λ|Ak) = 1− λ+ 1
2λ

2hk ≤ tk(λ|A)

λk(Ak) = min (1 , 1/hk) ≥ λk(A) .

An associated graphical representation is given in Figure 3.6.
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tk

λ

Fig. 3.6. Extremal properties of natural level function: reduction factors
tk(λ|A) and optimal damping factors λk(A).

Steepest descent property. The steepest descent direction for T (x|A) in
xk is

− gradT (xk|A) = −(AF ′(xk)
)T
AF (xk) .

With the specification A = Ak this leads to

Δxk = − gradT (xk|Ak) ,

which means that the damped Newton method in xk is a method of steepest
descent for the natural level function T (x|Ak).

Merging property. The locally optimal damping factors nicely reflect the
expected behavior in the contraction domain of the ordinary Newton method:
in fact, we have

hk ≤ 1 =⇒ λk(Ak) = 1 .

Hence, quadratic convergence is asymptotically achieved by the damping
strategy based on λk.

Asymptotic distance function. For F ∈ C2(D), we easily verify that

T
(
x|F ′(x∗)−1

)
= 1

2‖x− x∗‖22 +O(‖x− x∗‖3) .

Hence, for xk → x∗, the natural monotonicity criterion asymptotically merges
into a desirable distance criterion of the form

‖xk+1 − x∗‖2 ≤̇ ‖xk − x∗‖2 ,

which is exact for linear problems. The situation is represented graphically in
Figure 3.7. Far away from the solution point, this nice geometrical property
survives in the form that the osculating ellipsoid to the level surface at the
current iterate turns out to be an osculating sphere.
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x∗

Fig. 3.7. Natural level sets: asymptotic distance spheres.

In the linear case, the Jacobian condition number represents the quotient
of the largest over the smallest half-axis of the level ellipsoid. In the non-
linear case, too, Jacobian ill-conditioning gives rise to cigar-shaped residual
level sets, which, in general, are distorted ellipsoids. Therefore, geometrically
speaking, the natural level function realizes some nonlinear preconditioning.

Local descent. Any damping strategy based on the natural monotonicity
test is sufficiently characterized by Theorem 3.12: just insert A = Ak into
(3.37) and (3.38), which then yields

‖Δxk+1‖ ≤ (1− λ+ 1
2λ

2hk

) ‖Δxk‖ .

Global convergence. In the present situation, the above global convergence
theorem for general level functions, Theorem 3.13, does not apply, since the
choice Ak varies from step to step. In order to obtain an affine covariant
global convergence theorem, the locally optimal choice A = F ′(xk)−1 will
now be modelled by the fixed choice A = F ′(x∗)−1—in view of the asymptotic
distance function property.

Theorem 3.14 Let F : D −→ Rn be a continuously differentiable mapping
with D ⊆ Rn open convex. Assume that x0, x∗ ∈ D with x∗ unique solution
of F in D and the Jacobian F ′(x∗) nonsingular. Furthermore, assume that

(I) F ′(x) is nonsingular for all x ∈ D,
(II) the path-connected component D0 of G

(
x0|F ′(x∗)−1

)
in x0 is compact

and contained in D,
(III) the following affine covariant Lipschitz condition holds∥∥ F ′(x∗)−1

(
F ′(y)− F ′(x)

)
(y − x) ∥∥≤ ω∗‖y − x‖2 for y, x ∈ D ,

(IV) for any iterate xk ∈ D let h∗k := ω∗‖Δxk‖ · ‖F ′(xk)−1F ′(x∗)‖ <∞.
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As the locally optimal damping strategy we obtain

λ∗k := min (1 , 1/h∗k) .

Then any damped Newton iteration with iterative damping factors in the
range

λk ∈
[
ε , 2λ∗k − ε

)]
for 0 < ε < 1/h∗k

converges globally to x∗.

Proof. In the proof of Theorem 3.12 we had for x = xk:

‖AF (x+ λΔx)‖ ≤ (1 − λ)‖AF (x)‖ +O(λ2) .

For A = F ′(x∗)−1 the O(λ2)-term may now be treated differently as follows:

∥∥ F ′(x∗)−1

λ∫
δ=0

(
F ′(x+ δΔx)− F ′(x)

)
Δxdδ

∥∥ ≤ λ∫
δ=0

ω∗ · δ‖Δx‖2dδ

≤ ω∗ · 1
2λ

2‖Δx‖ · ‖F ′(x)−1F ′(x∗)‖ · ‖F ′(x∗)−1F (x)‖

= 1
2λ

2h∗k‖F ′(x∗)−1F (x)‖ .

On the basis of the thus modified local reduction property, global convergence
in terms of the above specified level function can be shown along the same
lines of argumentation as in Theorem 3.13. The above statements are just
the proper copies of the statements of that theorem. �

Corollary 3.15 Under the assumptions of the preceding theorem with the
replacement of x∗ by an arbitrary z ∈ D0 in the Jacobian inverse and the
associated affine covariant Lipschitz condition∥∥ F ′(z)−1

(
F ′(y)− F ′(x)

)
(y − x) ∥∥ ≤ ω(z) ‖y − x‖2for x, y, z ∈ D0 ,

a local level function reduction of the form

T
(
xk + λΔxk|F ′(z)−1

) ≤ (1− λ+ 1
2λ

2hk(z)
)2
T
(
xk|F ′(z)−1

)
in terms of

hk(z) := ‖Δxk‖ ω(z) ‖F ′(xk)−1F ′(z)‖
and a locally optimal damping factor

λk(z) := min (1, 1/hk(z))

can be shown to hold. Assuming further that the used matrix norm is sub-
multiplicative, then we obtain for best possible estimates ω(z) the extremal
properties
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‖F ′(xk)−1F ′(z)‖ω(z) ≥ ω(xk)

and
hk(xk) ≤ hk(z) , λk ≥ λk(z) , z ∈ D0 .

The corollary states that the locally optimal damping factors in terms of
the locally defined natural level function are outstanding among all possi-
ble globally optimal damping factors in terms of any globally defined affine
covariant level function. Our theoretical convergence analysis shows that we
may substitute the global affine covariant Lipschitz constant ω by its more
local counterpart ωk = ω(xk) defined via∥∥ F ′(xk)−1

(
F ′(x)−F ′(xk)

)
(x−xk)

∥∥≤ ωk‖x−xk‖2 for x, xk ∈ D0 . (3.42)

We have thus arrived at the following theoretically optimal damping strategy
for the exact Newton method

xk+1 = xk + λkΔx
k, λk := min(1, 1/hk), hk = ωk‖Δxk‖ . (3.43)

We must state again that this Newton method with damping based on the
natural monotonicity test does not have the comfort of an accompanying
global convergence theorem. In fact, U.M. Ascher and M.R. Osborne in [10]
constructed a simple example, which exhibits a 2–cycle in the Newton method
when monitored by the natural level function. Details are left as Exercise 3.3.
However, as shown in [33] by H.G. Bock, E.A. Kostina, and J.P. Schlöder,
such 2–cycles can be generally avoided, if the theoretical optimal steplength
λk is restricted such that λhk ≤ η < 1. Details are left as Exercise 3.4.
This restriction does not avoid m–cycles for m > 2—which still makes the
derivation of a global convergence theorem solely based on natural mono-
tonicity impossible. Numerical experience advises not to implement this kind
of restriction—generically it would just increase the number of Newton iter-
ations required.

Geometrical interpretation. This strategy has a nice geometrical inter-
pretation, which is useful for a deeper understanding of the computational
strategies to be developed in the sequel. Recalling the derivation in Section
3.3.1, the damped Newton method at some iterate xk continues along the
tangent of the Newton path G(xk) with effective correction length

‖xk+1 − xk‖ = λk‖Δxk‖ ≤ ρk := 1/ωk .

Obviously, the radius ρk characterizes the local trust region of the linear
Newton model around xk. The situation is represented schematically in Fig-
ure 3.8.
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xk

xk+1

ρk

x∗

G(xk+1)

G(xk)

Fig. 3.8. Geometrical interpretation: Newton path G(xk), trust region around
xk, and Newton step with locally optimal damping factor λk.

Interpretation via Jacobian information. In terms of a relative change
of the Jacobian matrix we may write∥∥ F ′(xk)−1

(
F ′(xk+1)− F ′(xk)

)
Δxk

∥∥/ ‖Δxk‖ ≤ λkhk ≤ 1 .

This relation suggests the interpretation that Jacobian information at the
center xk of the trust region ball is valid along the Newton direction up to the
surface of the ball, which is xk+1. Of course, such an interpretation implicitly
assumes that the maximum change actually occurs at the most distant point
on the surface—this property certainly holds for the derived upper bounds.
Beyond the trust region the Jacobian information from the center xk is no
longer useful, which then implies the construction of a new Newton path
G(xk+1) and the subsequent continuation along the new tangent—see once
again Figure 3.8.

Behavior near critical points. Finally, we want to discuss the expected
behavior of the Newton method with damping in the presence of some close-
by critical point, say x̂ with singular Jacobian F ′(x̂). In this situation, the
Newton path and, accordingly, the Newton iteration with optimal damping
will be attracted by x̂. Examples of such a behavior have been observed fairly
often—in particular, when multiple solutions are separated by manifolds with
singular Jacobian, compare, e.g., Figure 3.10. Nevertheless, even in such a sit-
uation, a structural advantage of the natural level function approach may play
a role: whereas points x̂ represent local minima of T (x|I), which will attract
iterative methods based on the residual monotonicity test, they show up as
local maxima of the natural level functions since T

(
x̂|F ′(x̂)−1

)
is unbounded.

For this reason, the above theoretical damped Newton method tends to avoid
local minima of T (x) whenever they correspond to locally isolated critical
points.
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Deliberate rank reduction. In rare emergency cases only, a deliberate
reduction of the Jacobian rank (the so-called rank-strategy) turns out to be
helpful—which means the application of intermediate damped Gauss-Newton
steps. For details, see Section 4.3.5 below.
At the end of Section 3.3.1, we described the limitations of residual mono-
tonicity in connection with Newton’s method for systems of equations with
ill–conditioned Jacobian. This effect can be neutralized by requiring natural
monotonicity instead, as can be seen from the following illustrative example.
Example 3.1 Optimal orbit plane change of a satellite around Mars.
This optimal control problem has been modeled by the space engineer
E.D. Dickmanns [86] at NASA. The obtained ODE boundary value prob-
lem has been treated by multiple shooting techniques (see [71, Sect. 8.6.2.]
and Section 7.1 below). This led to a system of n = 72 nonlinear equations
with a Jacobian known to be ill–conditioned. The results given here are taken
from the author’s dissertation [59, 60]. The problem is a typical representative
out of a large class of problems that ‘look highly nonlinear’, but are indeed
essentially ‘mildly nonlinear’ as discussed at the end of Section 3.3.1.
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Fig. 3.9. Mars satellite orbit problem. Left: no convergence in residual norms
‖F (xk)‖2

2 (◦) or scaled residual norms ‖D−1
k F (xk)‖2

2 (•). Right: convergence in nat-
ural level function, ordinary Newton corrections ‖D−1

k Δxk‖2
2 (•) versus simplified

Newton corrections ‖D−1
k Δx

k+1‖2
2 (◦).

Figure 3.9 documents the comparative behavior of residual level functions
(with and without diagonal scaling) and natural level functions. The Newton
iteration has been controlled by scaled natural monotonicity tests

‖D−1
k Δx

k+1‖22 ≤ ‖D−1
k Δxk‖22 , k = 0, 1, . . . ,
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as shown on the right; in passing, we note that the second Newton step has
been performed using ‘deliberate rank reduction’ as described just above. On
the left, the iterative values of the traditional residual level functions, both
unscaled and scaled, are seen to increase drastically for the accepted Newton
steps. Obviously, only the natural level functions reflect the ‘approach’ of the
iterates xk toward the solution x∗.

Bibliographical Note. The algorithmic concept of natural level functions
has been suggested in 1972 by P. Deuflhard [59] for highly nonlinear problems
with ill-conditioned Jacobian. In the same year, linear preconditioning has
been suggested by O. Axelsson (see [11]) on a comparable geometrical basis,
but for the purpose of speeding up the convergence of iterative solvers.

3.3.3 Adaptive trust region strategies

The above derived theoretical damping strategy (3.43) cannot be imple-
mented directly, since the arising Kantorovich quantities hk contain the com-
putationally unavailable Lipschitz constants ωk, which are defined over some
domain D0—in view of Figure 3.8, even a definition over some local trust
region would be enough. The obtained theoretical results can nevertheless
be exploited for the construction of computational strategies. Following our
paradigm in Section 1.2.3 again, we determine damping factors in the course
of the iteration as close to the convergence analysis as possible by introduc-
ing computationally available estimates [ωk] and [hk] = [ωk]‖Δxk‖ for the
unavailable theoretical quantities ωk and hk = ωk‖Δxk‖.
Such estimates can only be obtained by pointwise sampling of the domain
dependent Lipschitz constants, which immediately implies that

[ωk] ≤ ωk ≤ ωk(z) , [hk] ≤ hk ≤ hk(z) (3.44)

compare Corollary 3.15. By definition, the estimates [·] will inherit the affine
covariant structure. Suppose now that we have certain estimates [hk] at hand.
Then associated estimates of the optimal damping factors may be naturally
defined as [

λk

]
:= min (1, 1/[hk]) . (3.45)

The above relation (3.44) gives rise to the equivalent relation

[λk] ≥ λk .

Clearly, any computed estimated damping factors may be ‘too large’—which,
in turn, means that repeated reductions might be necessary. Therefore, any
damping strategy to be derived will have to split into a prediction strategy
and a correction strategy.
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Bit counting lemma. The efficiency of such damping strategies will depend
on the required accuracy of the computational estimates—a question, which
is studied in the following lemma.

Lemma 3.16 Notation as just introduced. Assume that the damped New-
ton method with damping factors as defined in (3.45) is realized. As for the
accuracy of the computational estimates, let

O ≤ hk − [hk] < σmax
(
1, [hk]

)
for some σ < 1. (3.46)

Then the natural monotonicity test will yield

‖Δxk+1‖ ≤ (1− 1
2 (1 − σ)λ) ‖Δxk‖ .

Proof. We reformulate the relation (3.46) as

[hk] ≤ hk < (1 + σ)max
(
1, [hk]

)
.

For [hk] ≥ 1, the above notation directly leads to the estimation

‖Δx k+1‖
‖Δxk‖ ≤ [

1− λ+ 1
2λ

2hk

]
λ=[λk]

<
[
1− λ+ 1

2 (1 + σ)λ2[hk]
]
λ=[λk] ≤ 1− 1

2 (1 − σ)λk .

The case [hk] < 1 follows similarly. �

The above lemma states that, for σ < 1, the computational estimates [hk]
are just required to catch the leading binary digit of hk, in order to assure
natural monotonicity. For σ ≤ 1

2 , we arrive at the following restricted natural
monotonicity test

‖Δx k+1‖2 ≤
(
1− 1

4λ
) ‖Δxk‖2, (3.47)

which might be useful in actual computation to control the whole iterative
process more closely—compare also the residual based restricted monotonic-
ity test (3.32) and the Armijo strategy (3.19).

Correction strategy. After these abstract considerations, we now pro-
ceed to derive specific affine covariant computational estimates [·]—preferably
those, which are cheap to evaluate in the course of the damped Newton it-
eration. For this purpose, we first recall the interpretation of the damped
Newton method as the tangent continuation along the Newton path as given
in Section 3.1.4. Upon measuring the deviation in an affine covariant setting,
we are led to the upper bound

‖Δxk+1
(λ) − (1− λ)Δxk‖ ≤ 1

2λ
2ωk‖Δxk‖2 ,
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which leads to estimates for the Kantorovich quantities

[hk] = [ωk]‖Δxk‖ :=
2‖Δxk+1

(λ)− (1− λ)Δxk‖
λ2‖Δxk‖ ≤ hk .

The evaluation of such an estimate requires at least one trial value λ0
k (or

xk+1, respectively). As a consequence, it can only be helpful in the design of
a correction strategy for the damping factor :

λj+1
k := min

(
1
2λ, 1/[h

j
k]
) ∣∣

λ=λj
k

(3.48)

for repetition index j = 0, 1, . . . .

Prediction strategy. We are therefore still left with the task of constructing
an efficient initial estimate λ0

k. As it turns out, such an estimate can only be
gained by switching from the above defined Lipschitz constant ωk to some
slightly different definition:

‖F ′(xk)−1
(
F ′(x) − F ′(xk)

)
v‖ ≤ ωk‖x− xk‖‖v‖ ,

wherein the direction v is understood to be ‘not too far away from’ the
direction x − xk in order to mimic the above definition (3.42). With this
modified Lipschitz condition we may proceed to derive the following bounds:

‖Δxk −Δxk‖ =
∥∥ (F ′(xk−1)−1 − F ′(xk)−1

)
F (xk)

∥∥=
=
∥∥ F ′(xk)−1

(
F ′(xk)− F ′(xk−1)

)
Δx

k ∥∥ ≤ ωkλk−1‖Δxk−1‖ · ‖Δxk‖.
This bound inspires the local estimate

[ωk] :=
‖Δxk −Δxk‖

λk−1‖Δxk−1‖ · ‖Δxk‖
≤ ωk ,

wherein, as required in the definition above, the direction Δx
k

is ‘not too
far away from’ the direction Δxk−1. In any case, the above computational
estimate exploits the ‘newest’ information that is available in the course of
the algorithm just before deciding about the initial damping factor. We have
thus constructed a prediction strategy for k > 0:

λ0
k := min(1, μk) , μk :=

‖Δxk−1‖
‖Δxk −Δxk‖

· ‖Δx
k‖

‖Δxk‖ · λk−1 . (3.49)

The only empirical choice left to be made is the starting value λ0
0. In the public

domain code NLEQ1 (see [161]) this value is made an input parameter: if the
user classifies the problem as ‘mildly nonlinear’, then λ0

0 = 1 is set internally;
otherwise the problem is regarded as ‘highly nonlinear’ and λ0

0 = λmin � 1
is set internally.
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Intermediate quasi-Newton steps. Whenever λk = 1 and the natural
monotonicity test yields

Θk =
‖Δxk+1‖
‖Δxk‖ < 1

2 ,

then the error oriented quasi-Newton method of Section 2.1.4 may be ap-
plied in the present context—compare Theorem 2.9. In this case, Jacobian
evaluations are replaced by Broyden rank-1 updates. As for a possible switch
back from quasi-Newton steps to Newton steps just look into the details of
the informal quasi-Newton algorithm QNERR.

Termination criterion. Instead of the termination criterion (2.14) we may
here use its cheaper substitute

‖Δxk+1‖ ≤ XTOL .

Recall that then xk+2 = xk+1 +Δx
k+1

is cheaply available with an accuracy
of O(XTOL2).
The here described adaptive trust region strategy leads to the global Newton
algorithm NLEQ-ERR, which is a slight modification of the quite popular code
NLEQ1 [161].

Algorithm NLEQ-ERR. Set a required error accuracy ε sufficiently above the
machine precision.
Guess an initial iterate x0. Evaluate F (x0).
Set a damping factor either λ0 := 1 or λ0 � 1.
All norms of corrections below are understood to be scaled smooth norms such
as ‖D−1 · ‖2, where D is a diagonal scaling matrix, which can be iteratively
adapted together with the Jacobian matrix.
For iteration index k = 0, 1, . . . do:

1. Step k: Evaluate Jacobian matrix F ′(xk). Solve linear system

F ′(xk)Δxk = −F (xk) .

Convergence test: If ‖Δxk‖ ≤ ε: stop. Solution found x∗ := xk +Δxk.
For k > 0: compute a prediction value for the damping factor

λk := min(1, μk), μk :=
‖Δxk−1‖ · ‖Δxk‖

‖Δxk −Δxk‖ · ‖Δxk‖
· λk−1 .

Regularity test: If λk < λmin: stop. Convergence failure.
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2. Else: compute the trial iterate xk+1 := xk +λkΔx
k and evaluate F (xk+1).

Solve linear system (‘old’ Jacobian, ‘new’ right hand side):

F ′(xk)Δx
k+1

= −F (xk+1) .

3. Compute the monitoring quantities

Θk :=
‖Δxk+1‖
‖Δxk‖ , μ′k :=

1
2‖Δxk‖ · λ2

k

‖Δxk+1 − (1− λk)Δxk‖
.

If Θk ≥ 1 (or, if restricted: Θk > 1− λk/4):

then replace λk by λ′k := min(μ′k,
1
2λk). Go to Regularity test.

Else: let λ′k := min(1, μ′k) .

If λ′k = λk = 1:

If ‖Δxk+1‖ ≤ ε : stop.

Solution found x∗ := xk+1 +Δx
k+1

.

If Θk <
1
2 : switch to QNERR

Else: If λ′k ≥ 4λk: replace λk by λ′k and goto 2.

Else: accept xk+1 as new iterate.
Goto 1 with k → k + 1.

In what follows we want to demonstrate the main feature of this algorithm
at a rather simple, but very illustrative example for n = 2.
Example 3.2 [161]. The equations to be solved are

exp(x2 + y2)− 3 = 0 ,
x+ y − sin

(
3(x+ y)

)
= 0 .

For this simple problem, critical interfaces with singular Jacobian can be
calculated to be the straight line

y = x

and the family of parallels

y = −x± 1
3 arccos

(
1
3

)± 2
3π · j , j = 0, 1, 2 . . . .

For illustration, the quadratic domain

−1.5 ≤ x , y ≤ 1.5

is picked out. This domain contains the six different solution points and five
critical interfaces.
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Computation of Newton paths. As derived in Section 3.1.4, the Newton
path x(λ), λ ∈ [0, 1] may be defined either by the homotopy

F
(
x(λ)

)− (1 − λ)F (xk) = 0

or by the initial value problem

F ′ (x)
dx

dλ
= −F (xk) , x(0) = xk .

This implicit ordinary differential equation can be solved numerically, say,
by implicit BDF codes [98] like DASSL [167] due to L. Petzold or by linearly
implicit extrapolation codes like LIMEX [75, 79]. In any such discretization,
linear subsystems of the kind

F ′(x)Δx − βΔλF ′′(x)[F ′(xk)−1F (xk), Δx] = −ΔλF (xk)

must be solved. Apparently, this algorithmic approach involves second or-
der derivative information in tensor form—to be compared with the above
described global Newton methods, which involve second order derivative in-
formation only in scalar form (Lipschitz constant estimates [ω] entering into
the adaptive trust region strategies). Note, however, that the Newton path
should be understood as an underlying geometric concept rather than an
object to be actually computed.

Fig. 3.10. Example 3.2: Newton paths (· · · ) versus Newton sequences (—).

Newton paths versus Newton sequences. Figure 3.10 shows the various
Newton paths (left upper part) and sequences of Newton iterates (right lower
part) as obtained by systematic variation of the initial guesses x0—separated
by the symmetry line y = x. The Newton paths have been integrated by
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LIMEX, whereas the Newton sequences have been computed by NLEQ1 [161].
As predicted by theory—compare Section 3.1.4 and Figure 3.4 therein—each
Newton path either ends at a solution point or at a critical point with singular
Jacobian. The figure clearly documents that this same structure is mimicked
by the sequence of Newton iterates as selected by the error oriented trust
region strategy.

Attraction basins. An adjacent question of interest is the connectivity
structure of the different attraction basins for the global Newton iteration
around the different solution points. In order to visualize these structures, a
rectangular grid of starting points (with grid size Δ = 0.06) has been defined
and the associated global Newton iteration performed.

Fig. 3.11. Example 3.2: attraction basins. Left: Global Newton method, code
NLEQ1 [161]. Right: hybrid method, code HYBRJ1 [153]. Outliers are indicated as
bullets (•).

The results are represented in Figure 3.11: apart from very few exceptional
‘corner points’, the attraction basins nicely model the theoretical connectiv-
ity structure, which is essentially defined by the critical interfaces—a highly
satisfactory performance of the herein advocated global Newton algorithm
(code NLEQ1 due to [161]). For comparison, the attraction basins for a hybrid
method (code HYBRJ1 in MINPACK due to [153]) are given as well. There are
still some people who prefer the rather chaotic convergence pattern of such
algorithms. However, in most scientific and engineering problems, a crossing
beyond critical interfaces is undesirable, because this means an unnoticed
switching between different solutions—an important aspect especially in the
parameter dependent case.
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3.3.4 Inexact Newton-ERR methods

Suppose that, instead of the exact Newton corrections Δxk, we are only
able to compute inexact Newton corrections δxk from (dropping the inner
iteration index i)

F ′(xk)
(
δxk −Δxk

)
= rk , xk+1 = xk + λkδx

k , 0 < λk ≤ 1 , k = 0, 1, . . . .

As for local inexact Newton-ERR methods (Section 2.1.5), we characterize
the inner iteration errors by the quantity

δk =
‖δxk −Δxk‖
‖δxk‖ . (3.50)

Inner iterative solvers treated here are either CGNE or GBIT. As a guiding
principle for global convergence, we will focus on natural monotonicity (3.41)
subject to the perturbation coming from the truncation of the inner iteration.

Accuracy matching: inexact Newton corrections. First, we study the
contraction factors

Θk(λ) =
‖Δxk+1‖
‖Δxk‖

in terms of the exact Newton correctionsΔxk and the exact simplified Newton
corrections Δx

k+1
defined via

F ′(xk)Δx
k+1

= −F (xk + λδxk) .

Note that the inexact Newton correction arises in the argument on the right.
Of course, none of the above exact Newton corrections will be actually com-
puted.

Lemma 3.17 We consider the inexact Newton iteration with CGNE or GBIT
as inner iteration. Assume δk < 1

2 . Then, with hδ
k = ω‖δxk‖, we obtain the

estimate

Θk(λ) ≤ 1−
(

1− δk
1− δk

)
λ+ 1

2λ
2 hδ

k

1− δk . (3.51)

The optimal damping factor is

λk = min
(

1,
1− 2δk
hδ

k

)
. (3.52)

If we impose
δk =

ρ

2
λhδ

k , ρ ≤ 1 , (3.53)

we are led to the optimal damping factor

λk = min
(

1,
1

(1 + ρ)hδ
k

)
. (3.54)
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Proof. First, we derive the identity

Δx
k+1

(λ) = Δxk − λδxk − F ′(xk)−1

λ∫
s=0

(
F ′(xk + sδxk)− F ′(xk)

)
δxk ds.

Upon inserting definition (3.50) and using the triangle inequality

‖δxk −Δxk‖
‖Δxk‖ ≤ δk

1− δk , ‖δxk‖ ≤ ‖Δx
k‖

1− δk ,

the above estimate (3.51) follows directly. The optimal damping factors λk in
the two different forms arise by minimization of the upper bound parabola,
as usual. �

Condition (3.53) is motivated by the idea that the O(λ) perturbation due to
the inner iteration should not dominate the O(λ2) term, which characterizes
the nonlinearity of the problem.
Accuracy matching strategy. Upon inserting λ = λk into (3.53) and selecting
some ρ ≤ 1, we are led to

δk ≤ δ̄ =
ρ

2(1 + ρ)
≤ 1

4 for λk < 1 (3.55)

and
δk ≤ ρ

2
hδ

k for λk = 1 .

Of course, the realization of the latter rule will be done via computational
Kantorovich estimates [hδ

k] ≤ hδ
k such that

δk ≤ ρ

2
[hδ

k] for λk = 1 . (3.56)

Obviously, the relation (3.55) reflects the ‘fight for the first binary digit’ as
discussed in the preceding section; under this condition the optimal damping
factors (3.52) and (3.54) are identical. In passing we note that requirement
(3.56) nicely agrees with the ’quadratic convergence mode’ (2.62) in the local
Newton-ERR methods. (The slight difference reflects the different contraction
factors in the local and the global case.) The condition (3.56) is a simple
nonlinear scalar equation for an upper bound of δk.
As already mentioned at the beginning of this section, the exact natural
monotonicity test cannot be directly implemented within our present algo-
rithmic setting. We will, however, use this test and the corresponding optimal
damping factor as a guideline.
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Accuracy matching: inexact simplified Newton corrections. In order
to construct an appropriate substitute for the nonrealizable Θk, we recur to
the inexact Newton path x̃(λ), λ ∈ [0, 1], from (3.34), which satisfies

F (x̃(λ)) = (1− λ)F (xk) + λrk .

Recall that the local inexact Newton correction δxk can be interpreted as
the tangent direction ˙̃x(0) in xk. On this background, we are led to define a
perturbed (exact) simplified Newton correction via

F ′(xk)Δ̃x
k+1

= −F (xk+1) + rk . (3.57)

Lemma 3.18 With the notation and definitions of this section the following
estimate holds:

‖Δ̃xk+1 − (1− λ)δxk‖ ≤ 1
2λ

2hδ
k‖δxk‖ . (3.58)

Proof. It is easy to verify the identity

Δ̃x
k+1

(λ) − (1− λ)δxk = −F ′(xk)−1

λ∫
s=0

(
F ′(xk + sδxk)− F ′(xk)

)
δxkds .

From this identity, the above estimate can be immediately derived in the
usual manner. �

Of course, the linear equation (3.57) can only be solved iteratively. This
means the computation of an inexact simplified Newton correction satisfying

F ′(xk)δ̃xi

k+1
=
(−F (xk+1) + rk

)
+ r̃k+1

i

for inner iteration index i = 0, 1, . . .. (In what follows, we will drop this index
wherever convenient.)
Initial values for inner iterations. In view of (3.58) we set the initial value

δ̃x
k+1

0 = (1− λ)δxk . (3.59)

This means that the inner iteration has to recover only second order infor-
mation. The same idea also supplies an initial guess for the inner iteration of
the inexact ordinary Newton corrections:

δxk
0 = δ̃x

k
. (3.60)

This cross-over of initial values has proven to be really important in the
realization of any Newton-ERR method.
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In what follows, we replace the nonrealizable contraction factor Θk(λ) by its
realizable inexact counterpart

Θ̃k(λ) =
‖δ̃xk+1‖
‖δxk‖ (3.61)

and study its dependence on the damping factor λ.
We start with CGNE as inner iterative solver.

Lemma 3.19 Notation as just introduced. Assume that the inner CGNE iter-
ation with initial guess (3.59) has been continued up to some iteration index
i > 0 such that

ρ̃i =
‖Δ̃xk+1 − δ̃xk+1

i ‖
‖Δ̃xk+1 − δ̃xk+1

0 ‖
< 1 . (3.62)

Then we obtain the estimate

‖δ̃xk+1

i − (1 − λ)δxk‖ ≤ 1
2

√
1− ρ̃2iλ2hδ

k‖δxk‖ . (3.63)

Proof. In our context, the orthogonal decomposition (1.28) reads

‖Δ̃xk+1 − δ̃xk+1

0 ‖2 = ‖Δ̃xk+1 − δ̃xk+1

i ‖2 + ‖δ̃xk+1

i − δ̃xk+1

0 ‖2 . (3.64)

Insertion of (3.62) then leads to

(1− ρ̃2i )‖Δ̃x
k+1 − δ̃xk+1

0 ‖2 = ‖δ̃xk+1

i − δ̃xk+1

0 ‖2 . (3.65)

With the insertion of (3.65) into (3.58) the proof is complete. �

Observe that in CGNE the condition ρ̃i < 1 arises by construction. The pa-
rameter ρ̃i, however, is not directly computable from (3.62): the denominator

cannot be evaluated, since we do not have Δ̃x
k+1

, but for the numerator a
rough estimate

ε̃i ≈ ‖Δ̃x
k+1 − δ̃xk+1

i ‖
is available (see Section 1.4.3). Therefore we may define the computable pa-
rameter

ρi =
‖Δ̃xk+1 − δ̃xk+1

i ‖
‖δ̃xk+1

i − δ̃xk+1

0 ‖
≈ ε̃i

‖δ̃xk+1

i − δ̃xk+1

0 ‖
. (3.66)

By means of (3.65), we then get

‖Δ̃xk+1 − δ̃xk+1

i ‖ = ρi‖δ̃x
k+1

i − δ̃xk+1

0 ‖ = ρi

√
1− ρ̃2i ‖Δ̃x

k+1 − δ̃xk+1

0 ‖ .

This result can be compared with (3.62) to supply the identification
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ρi = ρ̃i/
√

1− ρ̃2i or ρ̃i = ρi/
√

1 + ρ2i . (3.67)

For GBIT as inner iterative solver, we also use ρi from (3.66), but in combi-
nation with a slightly different estimate.

Lemma 3.20 Notation as in the preceding lemma. Let ρ̃i < 1 according to
(3.62). Then, for GBIT as inner iteration, we obtain

‖δ̃xk+1

i − (1 − λ)δxk‖ ≤ 1 + ρ̃i

2
λ2hδ

k‖δxk‖ . (3.68)

Proof. We drop the iteration index i. For GBIT, we cannot do better than
apply the triangle inequality

‖δ̃xk+1 − (1− λ)δxk‖ ≤ ‖Δ̃xk+1 − (1− λ)δxk‖+ ‖δ̃xk+1 − Δ̃xk+1‖ .

With the requirement (3.62) we get

‖δ̃xk+1 − (1− λ)δxk‖ ≤ (1 + ρ̃)‖Δ̃xk+1 − (1 − λ)δxk‖ . (3.69)

Application of Lemma 3.18 then directly verifies the estimate (3.68). �

Note that in GBIT the condition ρ̃i < 1 is not automatically fulfilled, but
must be assured by the implementation. In order to actually estimate ρ̃i, we
again recur to ρi from (3.66). If we combine (3.66) with (3.69), we now arrive
at

‖Δ̃xk+1 − δ̃xk+1

i ‖ ≤ ρi(1 + ρ̃i)‖Δ̃x
k+1 − δ̃xk+1

0 ‖ .
Comparison with (3.62) then supplies the identification

ρi = ρ̃i/(1 + ρ̃i) or ρ̃i = ρi/(1− ρi) for ρi < 1 . (3.70)

Accuracy matching strategy. On the basis of the presented convergence anal-
ysis, we might suggest to run the inner iteration until

ρ̃i ≤ ρ̃max with ρ̃max ≤ 1
4

for both CGNE and GBIT. By means of the transformations (3.67) or (3.70),
respectively, this idea can be transferred to the realizable strategy

ρi ≤ ρmax . (3.71)

Affine covariant Kantorovich estimates. Upon applying our algorithmic
paradigm from Section 1.2.3, we will replace the optimal damping factor λk

by computational estimates
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[λk] = min
(

1,
1− 2δk

[hδ
k]

)
= min

(
1,

1
(1 + ρ)[hδ

k]

)
, (3.72)

where [hδ
k] = [ω]‖δxk‖ ≤ hδ

k are Kantorovich estimates to be carefully se-
lected.
For CGNE, we will exploit (3.63) thus obtaining the a-posteriori estimates

[hδ
k]i =

2‖δ̃xk+1

i − δ̃xk+1

0 ‖2√
1− ρ̃2iλ2‖δxk‖2

≤ hδ
k .

Note that (3.64) assures the saturation property

[hδ
k]i ≤ [hδ

k]i+1 ≤ hδ
k .

Replacing ρ̃i by ρi then gives rise to the computable a-posteriori estimate

[hδ
k]i ≈ 2

√
1 + ρ2i ‖δ̃x

k+1

i − δ̃xk+1

0 ‖2
λ2‖δxk‖2 . (3.73)

For GBIT, we will exploit (3.68) and obtain the a-posteriori estimates

[hδ
k]i =

2‖δ̃xk+1

i − δ̃xk+1

0 ‖
(1 + ρ̃i)λ2‖δxk‖ ≤ hδ

k .

Here a saturation property does not hold. Replacement of ρ̃i by ρi leads to
the computable a-posteriori estimates

[hδ
k]i ≈ 2(1− ρi)‖δ̃x

k+1

i − δ̃xk+1

0 ‖
λ2‖δxk‖ . (3.74)

As for the construction of computational a-priori Kantorovich estimates, we
suggest to simply go back to the definitions and realize the estimate

[hδ
k+1] =

‖δxk+1‖
‖δxk‖ [hδ

k]∗ , (3.75)

where [hδ
k]∗ denotes the final estimate [hδ

k]i from either (3.73) for CGNE or
(3.74) for GBIT, i.e. the estimate obtained at the final inner iteration step
i = ĩk of the previous outer iteration step k.

Bit counting lemma. Once computational estimates [hδ
k] are available, we

may realize the damping strategy (3.72). In analogy to Lemma 3.16, we now
study the influence of the accuracy of the Kantorovich estimates.
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Lemma 3.21 Notation as just introduced. Let an inexact Newton-ERR
method with damping factors λ = [λk] due to (3.72) be realized. Assume
that

0 ≤ hδ
k − [hδ

k] < σmax
( 1
1 + ρ

, [hδ
k]
)

for some σ < 1. (3.76)

Then the exact natural contraction factor satisfies

Θk(λ) =
‖Δxk+1‖
‖Δxk‖ < 1− 1

2 + ρ
(1− σ)λ .

For CGNE, the inexact natural contraction factor is bounded by

Θ̃k =
‖δ̃xk+1‖
‖δxk‖ < 1−

(
1− 1

2

1 + σ
1 + ρ

)
λ .

For GBIT, the inexact natural contraction factor is bounded by

Θ̃k =
‖δ̃xk+1‖
‖δxk‖ < 1−

(
1− 1

2

(1 + ρ̃)(1 + σ)
1 + ρ

)
λ .

Proof. Throughout this proof, we will omit any results for λ = 1, since
these can be directly verified by mere insertion. This means that we assume
λ = [λk] < 1 in the following.
For the exact natural monotonicity test we return to the inequality (3.51),
which reads

Θ̃k ≤ 1− 1− 2δk
2(1− δk)

λ+ 1
2λ

2 hδ
k

2(1− δk)
.

Insertion of λ = [λk] < 1 then yields

λhδ
k = (1− 2δk)

hδ
k

[hδ
k]
<

1 + σ
1 + ρ

.

Inserting this into the above upper bound and switching from the parameter
δk to ρ via (3.55) then verifies the first statement of the lemma.
For the inexact natural monotonicity test with CGNE as inner iterative solver,
we go back to (3.63), which yields

Θ̃k(λ) ≤ 1− λ+ 1
2

√
1− ρ̃2iλ2hδ

k < 1− λ+ 1
2λ

2hδ
k .

If we again insert the above upper bound λhδ
k, we arrive at

Θ̃k < 1− λ+ 1
2λ

1 + σ
1 + ρ

,

which is equivalent to the second statement of the lemma.
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For the inexact natural monotonicity test with GBIT as inner iterative solver,
we recur to (3.68), which yields

Θ̃k(λ) ≤ 1− λ+
1 + ρ̃

2
λ2hδ

k .

Following the same lines as for CGNE now supplies the upper bound

Θ̃k < 1− λ+
1 + ρ̃

2
λ

1 + σ
1 + ρ

,

which finally confirms the third statement of the lemma. �

Inexact natural monotonicity tests. Suppose now that we require at
least one binary digit in the Kantorovich estimate, i.e., σ < 1 in Lemma 3.21.
In this case, exact natural monotonicity

Θk(λ) =
‖Δxk+1‖
‖Δxk‖ < 1

would hold—which, however, is not realizable in the present algorithmic set-
ting.
For CGNE, a computable substitute is the inexact natural monotonicity test

Θ̃k =
‖δ̃xk+1‖
‖δxk‖ < 1− ρ

1 + ρ
λ . (3.77)

For GBIT, we similarly get

Θ̃k =
‖δ̃xk+1‖
‖δxk‖ < 1− ρ− ρ̃

1 + ρ
λ . (3.78)

The latter result seems to suggest the setting ρ̃ ≤ ρ to assure Θ̃k < 1;
otherwise inexact natural monotonicity need not hold.

Correction strategy. This part of the adaptive trust region strategy ap-
plies, if inexact natural monotonicity, (3.77) for CGNE or (3.78) for GBIT, is
violated. Then the damping strategy can be based on the a-posteriori Kan-
torovich estimates (3.73) for CGNE or (3.74) for GBIT, respectively, again writ-
ten as [hδ

k]∗. In view of the exact correction strategy (3.48) with repetition
index j = 0, 1, . . ., we set

λj+1
k := min

(
1
2λ,

1
(1 + ρ)[hδ

k]∗

) ∣∣∣
λ=λj

k

.
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Prediction strategy. This part of the trust region strategy is based on the
a-priori Kantorovich estimates (3.75). On the basis of information from outer
iteration step k − 1, we obtain

λ0
k = min

(
1,

1
(1 + ρ)[hδ

k]

)
, k > 0 .

For k = 0, we can only start with some prescribed initial value λ0
0 to be

chosen by the user.
If λ < λmin for some threshold value λmin � 1 arises in the prediction or the
correction strategy, then the outer iteration must be terminated—indicating
some critical point with ill-conditioned Jacobian.
The described inexact Newton-ERR methods are realized in the programs
GIANT-CGNE and GIANT-GBIT with error oriented adaptive trust region strat-
egy and corresponding matching between inner and outer iteration. The re-
alization of the local Newton part here is slightly different from the one
suggested in the previous Section 2.1.5, since here we have the additional
information of the inexact simplified Newton correction δ̃x available.

Algorithms GIANT-CGNE and GIANT-GBIT.

1. Step k Evaluate F ′(xk).
Solve linear system

F ′(xk)δxk
i = −F (xk) + rki for i = 0, 1, . . . , ik

iteratively by CGNE or GBIT. Control of ik via accuracy matching strategy
(3.55) or (3.56).

If ‖δxk‖ ≤ XTOL: Solution: x∗ = xk + δxk.

Else: For k = 0: select λ0 ad hoc.

For k > 0: determine λk = min
(

1,
1

(1 + ρ)[hδ
k]

)
from the prediction

strategy.

Regularity test. If λk < λmin: stop

2. Else: compute trial iterate xk+1 := xk + λkδx
k and evaluate F (xk+1).

Solve linear system

F ′(xk)δ̃x
k+1

i =
(−F (xk+1) + rk

)
+ r̃k+1

i for i = 0, 1, . . . , ĩk

iteratively by CGNE or GBIT. Control of ĩk via accuracy matching strategy
(3.71).
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Computation of Kantorovich estimates [hδ
k].

3. Evaluate the monitor

Θ̃k :=
‖δ̃xk+1‖2
‖δxk‖2 .

If monotonicity test (3.77) for CGNE or (3.78) for GBIT violated, then
refine λk according to correction strategy and go to regularity test.

Else go to 1.

As soon as the global Newton-ERR method approaches the solution point,
one may either directly switch to the local Newton-ERR methods presented
in Section 2.1.5 or merge the Kantorovich estimates from here with the ‘stan-
dard’, ‘linear’, or ‘quadratic’ convergence mode as described there.
Remark 3.2 The residual based algorithm GIANT-GMRES as presented in
Section 3.2.3 above seems to represent an easier implementable alternative to
the here elaborated error oriented algorithms GIANT-CGNE and GIANT-GBIT.
This is only true, if a ‘good’ left preconditioner CL is available. Indeed, if
spectral equivalence CLA ∼ I holds, then the preconditioned initial resid-
ual satisfies CLr0 ∼ x0 − x∗. Otherwise, the here presented error oriented
algorithms realize some nonlinear preconditioning.

A numerical comparison of GIANT-CGNE, GIANT-GBIT, and NLEQ-ERR in the
context of discretized nonlinear PDEs is given in Section 8.2.1 below.

Bibliographical Note. The first affine covariant convergence proof for lo-
cal inexact Newton methods has been given by T.J. Ypma [203]. A first error
oriented global inexact Newton algorithm has been suggested by P. Deuflhard
[67] on the basis of some slightly differing affine covariant convergence anal-
ysis. These suggestions led to the code GIANT by U. Nowak and coworkers
[160], wherein the inner iteration has been realized by an earlier version of
GBIT.

3.4 Convex Functional Descent

In the present section we want to minimize a general convex function f or,
equivalently, solve the nonlinear system F (x) = f ′T (x) = 0 with F ′(x) =
f ′′(x) symmetric positive definite. It is not at all clear whether for general
functional the damped Newton method still is an efficient globalization. As
the damped Newton method can be interpreted as a tangent continuation
along the Newton path, we first study the behavior of an arbitrary convex
functional f along the Newton path x(λ) as a function of λ.



162 3 Systems of Equations: Global Newton Methods

Lemma 3.22 Let f ∈ C2(D) denote some strictly convex functional to be
minimized over some convex domain D ∈ Rn. Let F ′(x) = f ′′(x) be sym-
metric positive definite in D and let x : [0, 1] → D denote the Newton path
starting at some iterate x(0) = xk and ending at the solution point x(1) = x∗

with F (x∗) = f ′T (x∗) = 0. Then f(x(λ)) is a strictly monotone decreasing
function of λ.

Proof. In the usual way we just verify that

f(x(λ)) − f(xk) =

λ∫
σ=0

〈F (x(σ)), ẋ(σ)〉 dσ .

Insertion of (3.22) and (3.24) then leads to

f(x(λ))− f(xk) = −
λ∫

σ=0

(1 − σ)‖F ′(x(σ))−1/2F (xk)‖22dσ

with a strictly positive definite integrand. Therefore, for 0 ≤ λ2 < λ1 ≤ 1:

f(x(λ1))− f(x(λ2)) = −
λ1∫

σ=λ2

(1− σ)‖F ′(x(σ))−1/2F (xk)‖22dσ < 0 .

�

Obviously, this result is the desired generalization of the monotone level func-
tion decrease (3.23). We are now ready to analyze the damped Newton itera-
tion (k = 0, 1, . . .)

F ′(xk)Δxk = −F (xk), xk+1 = xk + λkΔx
k, λk ∈]0, 1]

under the requirement of iterative functional decrease f(xk+1) < f(xk).

3.4.1 Affine conjugate convergence analysis

As in the preceding sections, we first study the local reduction properties
of the damped Newton method within one iterative step from iterate xk to
iterate xk+1.

Theorem 3.23 Let f : D → R1 be a strictly convex C2-functional to be
minimized over some open convex domain D ⊂ Rn. Let F (x) = f ′(x)T and
F ′(x) = f ′′(x) symmetric and strictly positive definite. For x, y ∈ D, assume
the special affine conjugate Lipschitz condition
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‖F ′(x)−1/2(F ′(y)− F ′(x))(y − x)‖ ≤ ω‖F ′(x)1/2(y − x)‖2 (3.79)

with 0 ≤ ω <∞. For some iterate xk ∈ D, define the quantities

εk := ‖F ′(xk)1/2Δxk‖22 , hk := ω‖F ′(xk)1/2Δxk‖2 .

Moreover, let xk + λΔxk ∈ D for 0 ≤ λ ≤ λk
max with

λk
max :=

4
1 +

√
1 + 8hk/3

≤ 2 .

Then
f(xk + λΔxk) ≤ f(xk)− tk(λ)εk , (3.80)

where
tk(λ) = λ− 1

2λ
2 − 1

6λ
3hk . (3.81)

The optimal choice of damping factor is

λk =
2

1 +
√

1 + 2hk

≤ 1 . (3.82)

Proof. Dropping the iteration index k, we apply the usual mean value the-
orem to obtain

f(x+ λΔx) − f(x) =

−λε+ 1
2λ

2ε+ λ2
1∫

s=0

1∫
t=0

s
〈
Δx,

(
F ′(x+ stλΔx) − F ′(x)

)
Δx
〉
dtds .

Upon recalling the Lipschitz condition (3.79), the Cauchy-Schwarz inequality
yields

f(x+ λΔx)− f(x) +
(
λ− 1

2λ
2
)
ε

≤ λ3
1∫

s=0

1∫
t=0

s2t‖F ′(x)1/2Δx‖3dtds = 1
6λ

3h · ε ,
(3.83)

which confirms (3.80) and the cubic parabola (3.81). Maximization of tk by
t′k = 0 and solving the arising quadratic equation then yields λk as in (3.84).
Moreover, by observing that

tk = λ
(
1− 1

2λ− 1
6λ

2hk

)
= 0

has only one positive root λk
max, the remaining statements are readily verified.

�

From these local results, we may easily proceed to obtain the following global
convergence theorem.
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Theorem 3.24 General assumptions as before. Let the path-connected com-
ponent of the level set L0 := {x ∈ D | f(x) ≤ f(x0)} be compact. Let
F ′(x) = f ′′(x) be symmetric positive definite for all x ∈ L0. Then the damped
Newton iteration (k = 0, 1, . . .) with damping factors in the range

λk ∈ [ε , min(1, λk
max − ε)]

and sufficiently small ε > 0, which depends on L0, converges to the solution
point x∗.

Proof. The proof just applies the local reduction results of the preceding
Theorem 3.23. The essential remaining task to show is that there is a common
minimal reduction factor for all possible arguments xk ∈ L0. For this purpose,
just construct a polygonal upper bound for tk(λ) comparable to the polygon
in Figure 3.5. We then merely have to select ε such that

ε < min(λk, λ
k
max − λk)

for all possible iterates xk. Omitting the technical details, Figure 3.5 then
directly helps to verify that

f(xk + λΔxk) ≤ (1− γε)f(xk)

for λ in the above indicated range with some global γ > 0, which yields the
desired strict global reduction of the functional. �

Summarizing, we have thus established the theoretical optimal damping strat-
egy (3.82) in terms of the computationally unavailable Kantorovich quantities
hk.
Remark 3.3 It may be worth noting that the above analysis is nicely
connected with the local Newton methods (i.e., with λ = 1) as discussed in
Section 2.3.1. If we require that

λk
max =

4
1 +

√
1 + 8hk/3

≥ 1,

then we arrive at the local contraction condition

hk ≤ 3.

This is exactly the condition that would have been obtained in the proof
of Theorem 2.18, if the requirement f(xk+1) ≤ f(xk) had been made for
the ordinary Newton method—just compare (2.94). However, just as in the
framework of that section, the condition hk+1 ≤ hk also cannot be guaranteed
here, so that λk+1

max ≥ 1 is not assured. In order to assure such a condition,
the more stringent assumption hk < 2 as in (2.92) would be required.
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3.4.2 Adaptive trust region strategies

Following our algorithmic paradigm from Section 1.2.3, we construct com-
putational damping strategies on the basis of the above derived theoreti-
cally optimal damping strategy. This strategy contains the unavailable Kan-
torovich quantity hk, which we want to replace by some computational esti-
mate [hk] ≤ hk and, consequently, the theoretical damping factor λk defined
in (3.82) by some computationally available value

[λk] :=
2

1 +
√

1 + 2[hk]
≤ 1 . (3.84)

Since [hk] ≤ hk, we have
[λk] ≥ λk

so that both a prediction strategy and a correction strategy need to be devel-
oped.

Bit counting lemma. As already observed in the comparable earlier cases,
the efficiency of such strategies depends on the required accuracy of the com-
putational estimate, which we now analyze.

Lemma 3.25 Standard assumptions and notation of this section. Let

0 ≤ hk − [hk] ≤ σ[hk] for some σ < 1 . (3.85)

Then, for λ = [λk], the following functional decrease is guaranteed:

f(xk + λΔxk) ≤ f(xk)− 1
6λ(λ+ 2)εk . (3.86)

Proof. With hk ≤ (1 + σ)[hk] and (3.83) we have (dropping the index k)

f(x+ λΔx)− f(x) ≤ −tk(λ)εk =
(−λ+ 1

2λ
2 + 1

6λ
3hk

)
εk

≤ (−λ+ 1
2λ

2 + 1
6λ

3(1 + σ)[hk]
)
εk .

At this point, recall that λk is a root of t′k = 0 so that [λk] is a root of

1− λ− 1
2λ

2[hk] = 0 .

Insertion of the above quadratic term into the estimate then yields

f(x+ λΔx) − f(x) ≤ (−λ+ 1
2λ

2 + 1
3λ(1 + σ)(1 − λ)) εk . (3.87)

Upon using σ < 1 (3.86) is confirmed. �

The above functional monotonicity test (3.86) is suggested for use in actual
computation. If we further impose σ = 1/2 in (3.85), i.e., if we require at least
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one exact binary digit in the Kantorovich quantity estimate, then (3.87) leads
to the restricted functional monotonicity test

f(xk + λΔxk)− f(xk) ≤ − 1
2λεk .

We are now ready to discuss specific computational estimates [hk] of the
Kantorovich quantities hk. Careful examination shows that we have three
basic cheap options. From (3.83) we have the third order bound

E3(λ) := f(xk + λΔxk)− f(xk) + λ
(
1− 1

2λ
)
εk ≤ 1

6λ
3hkεk ,

which, in turn, naturally inspires the computational estimate

[hk] :=
6|E3(λ)|
λ3εk

≤ hk .

If E3(λ) < 0, this means that the Newton method performs locally better
than for the mere quadratic model of f (equivalent to hk = 0). Therefore, we
decide to set

[λk] = 1 , if E3(λ) < 0 .

On the level of the first derivative we have the second order bound

E2(λ) :=
〈
Δxk , F (xk + λΔxk)− (1 − λ)F (xk)

〉 ≤ 1
2λ

2hkεk ,

which inspires the associated estimate

[hk] :=
2|E2(λ)|
λ2εk

≤ hk .

On the second derivative level we may derive the first order bound

E1(λ) :=
〈
Δxk ,

(
F ′(xk + λΔxk)− F ′(xk)

)
Δxk

〉 ≤ λhkεk ,

which leads to the associated estimate

[hk] :=
|E1(λ)|
λεk

≤ hk .

Cancellation of leading digits in the terms Ei, i = 1, 2, 3 should be carefully
monitored—see Figure 3.12, where a snapshot at some iterate in a not further
specified illustrative example is taken. Even though the third order expression
is the most sensitive, it is also the most attractive one from the point of view
of simplicity. Hence, one should first try E3 and monitor rounding errors
carefully.
In principle, any of the above three estimates can be inserted into (3.84) for
[λk] requiring at least one trial value of λ (or, respectively, xk+1). We have
therefore only designed a possible correction strategy
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Fig. 3.12. Computational Kantorovich estimates [hk]: cancellation of leading
digits in |E3|, |E2|, |E1|, respectively.

λi+1
k :=

2
1 +

√
1 + 2[hk(λ)]

∣∣∣
λ=λi

k

. (3.88)

In order to construct a theoretically backed initial estimate λ0
k, we may recall

that hk+1 = Θkhk, where

Θk :=
‖F ′(xk+1)−

1
2F (xk+1)‖2

‖F ′(xk)−
1
2F (xk)‖2

.

This relation directly inspires the estimate

[h0
k+1] := Θk[hi∗

k , ]

wherein i∗ indicates the final computable index within estimate (3.88) for the
previous iterative step k. Thus we are led to the following prediction strategy
for k ≥ 0:

λ0
k+1 :=

2

1 +
√

1 + 2[h0
k+1]

≤ 1 . (3.89)

As in the earlier discussed approaches, the starting value λ0
0 needs to be set

ad hoc—say, as λ0
0 = 1 for ‘mildly nonlinear’ problems and as λ0

0 = λmin � 1
for ‘highly nonlinear’ problems.
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3.4.3 Inexact Newton-PCG method

On the basis of the above results for the exact Newton iteration, we may
directly proceed to obtain comparable results for the inexact Newton iteration
with damping (k = 0, 1, . . ., dropping the inner iteration index i)

F ′(xk)
(
δxk −Δxk

)
= rk, xk+1 = xk + λkδx

k, λk ∈ ]0, 1].

The inner PCG iteration is formally represented by the introduction of the in-
ner residuals rk, which are known to satisfy the Galerkin condition (compare
Section 1.4).

〈δxk, rk〉 = 0 . (3.90)

The relative PCG error is denoted by

δk :=
‖F ′(xk)1/2(Δxk − δxk)‖

‖F ′(xk)1/2δxk‖ .

We start the inner iteration with δxk
0 = 0 so that (1.26) can be applied.

Convergence analysis. With this specification, we immediately verify the
following result.

Theorem 3.26 The statements of Theorem 3.23 hold for the inexact Newton-
PCG method as well, if only the exact Newton corrections Δxk are replaced by
the inexact Newton corrections δxk and the quantities εk, hk are replaced by

εδk := ‖F ′(xk)1/2δxk‖2 =
εk

1 + δ2k
,

hδ
k := ω‖F ′(xk)1/2δxk‖ =

hk√
1 + δ2k

.

Proof. Dropping the iteration index k, the first line of the proof of Theo-
rem 3.23 may be rewritten as

f(x+ λδx) − f(x) =

−λεδ + 1
2λ

2εδ + λ2
1∫

s=0

s
1∫

t=0

〈
δx,
(
F ′(x+ stλδx) − F ′(x)

)
δx
〉
dtds+ 〈δx, r〉 ,

wherein the last right hand term vanishes due to the Galerkin condition (3.90)
so that merely the replacement of Δx by δx needs to be performed. �

With these local results established, we are now ready to formulate the asso-
ciated global convergence theorem.
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Theorem 3.27 General assumptions as Theorem 3.23 or Theorem 3.26,
respectively (in the latter case δk is formally assumed to be bounded). Let
the level set L0 := {x ∈ D | f(x) ≤ f(x0)} be closed and bounded. Let
F ′(x) = f ′′(x) be symmetric strongly positive for all x ∈ L0. Then the damped
(inexact) Newton iteration (for k = 0, 1, . . .) with damping factors in the
range

λk ∈ [ε , min(1, λk
max − ε)]

and sufficiently small ε > 0 depending on L0 converges to the solution point
x∗.

Proof. The proof just applies the local reduction results of the preceding
Theorem 3.23 or Theorem 3.26. The essential remaining task to show is that
there is a common minimal reduction factor for all possible arguments xk ∈
L0. For this purpose, we simply construct a polygonal upper bound for tk(λ)
such that (omitting technical details)

f(xk + λΔxk) ≤ f(xk)− 1
2εεk

for λ in the above indicated range and all possible iterates xk with some

ε < min(λk, λ
k
max − λk) .

This implies a strict reduction of the functional in each iterative step as
long as εk > 0 and therefore global convergence in the compact level set L0

towards the minimum point x∗ with ε∗ = 0. �

Adaptive trust region strategy. The strategy as worked out in Sec-
tion 3.4.2 can be directly copied, just replacing Δxk by δxk, εk by εδk, and hk

by hδ
k; details are left to Exercise 3.5. In actual computation the orthogonality

condition (3.90) may be perturbed by rounding errors from scalar products
in PCG. Therefore the terms E3 and E2 should be evaluated in the special
form

E3(λ) := f(xk + λδxk)− f(xk)− λ〈F (xk), δxk〉 − 1
2λ

2εδk

and
E2(λ) := 〈δxk, F (xk + λδxk)− F (xk)〉 − λεδk

with the local energy computed as εδk = 〈δxk, F ′(xk)δxk〉 .
As for the choice of accuracies δk arising from the inner PCG iteration, we
once again require

δk ≤ 1
4

in the damping phase (λ < 1) and the appropriate settings as worked out
in Section 2.3.3 for the local Newton-PCG (λ = 1)—merging either into the
linear or the quadratic convergence mode.
The affine conjugate inexact Newton method with adaptive trust region
method and corresponding matching of the inner PCG iteration and outer
iteration is realized in the code GIANT-PCG.
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Bibliographical Note. The first affine conjugate global Newton method
has been derived and implemented by P. Deuflhard and M. Weiser [85], there
even in the more complicated context of an adaptive multilevel finite element
method for nonlinear elliptic PDEs—compare Section 8.3. The strategy pre-
sented here is just a finite dimensional analog of the strategy worked out
there.

Exercises

Exercise 3.1 Multipoint homotopy. Let F (x) = 0 denote a system of non-
linear equations to be solved and x∗ its solution. Let x0, . . . , xp be a se-
quence of iterates produced by some iterative process. Consider the homotopy
(λ ∈ R1)

Hp(x, λ) := F (x) −
p−1∑
k=0

Lk(λ)F (xk) , p ≥ 1

with Lk being the fundamental Lagrangian polynomials defined over a set of
nodes 0 = λ0 < λ1 < · · · < λp = 1.

a) Show that, under the standard assumptions of the implicit function the-
orem, there exists a homotopy path x(λ) such that

x(λk) = xk , k = 0, . . . , p− 1 , x(1) = x∗ .

Derive the associated Davidenko differential equation.
b) Construct an iterative process for successively increasing p = 1, 2, . . . by

appropriate discretization. What would be a reasonable assignment of the
nodes λ1, . . . , λp−1? Consider the local convergence properties of such a
process.

c) Write a program for p = 1, 2 and experiment with λ1 over a set of test
problems.

Exercise 3.2 An obstacle on the way toward a proof of global convergence
for error oriented global Newton methods, controlled only by the natural
monotonicity test

‖F ′(xk)−1F (xk+1)‖ ≤ ‖F ′(xk)−1F (xk)‖ ,

is the fact that a desirable property like

‖F ′(xk+1)−1F (xk+1)‖ ≤ ‖F ′(xk)−1F (xk)‖ (3.91)

does not hold.
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a) For xk+1 = xk + λΔxk, upon applying Theorem 3.12, verify that

‖F ′(xk+1)−1F (xk+1)‖ ≤ 1− λ+ 1
2λ

2hk

1− λhk
‖F ′(xk)−1F (xk)‖ .

b) Show that only under the Kantorovich-type assumption hk < 1 the re-
duction (3.91) can be guaranteed for certain λ > 0.

Exercise 3.3 2–cycle example [10]. Consider a system F (x) = 0 of two
equations in two unknowns. Let

F (0) = − 1
10

(
4
√

3− 3
−4
√

3− 3

)
=: −a , F ′(0) = I ,

F (a) = 1
5

(
4
−3

)
, F ′(a) =

(
17
√

3 −1/
√

3
1 1

)
.

Starting a Newton method with x0 := 0, we want to verify the occurrence of
a 2–cycle, if only natural monotonicity is required.

a) Show that in the first Newton step λ0 = 1 is acceptable, since the natural
monotonicity criterion is passed, which leads to x1 = a.

b) Show that in the second Newton step λ1 = 1 is acceptable yielding x2 =
x0.

Exercise 3.4 Avoidance of 2–cycles [33]. We study the possible occurrence
of 2–cycles for a damped Newton iteration with natural monotonicity test and
damping factor λ. A special example is given in Exercise 3.3. By definition,
such a 2–cycle is characterized by the inequalities

‖F ′(xk)−1F (xk+1)‖ ≤ ‖F ′(xk)−1F (xk)‖ ,
‖F ′(xk+1)−1F (xk+2)‖ ≤ ‖F ′(xk+1)−1F (xk+1)‖

with xk+2 = xk.

a) Upon applying Theorem 3.12 verify that

‖F ′(xk+1)−1F (xk+1)‖ ≤
(

1− λ+ 1
2λ

2hk
1 + λhk

1− λhk

)
‖F ′(xk+1)−1F (xk)‖ .

b) Show that under the restriction

λhk ≤ η < 1
2 (
√

17− 3)

the occurrence of 2–cycles is impossible.



172 3 Systems of Equations: Global Newton Methods

c) By a proper adaptation of the bit counting Lemma 3.16, modify the
damping strategy (3.45) and the restricted monotonicity test (3.47) such
that 2–cycles are also algorithmically excluded.

Exercise 3.5 Consider an inexact Newton method for convex optimization,
where the inner iteration does not satisfy the Galerkin condition (3.90). The
aim here is to prove an affine conjugate global convergence theorem as a
substitute of Theorem 3.26. Define

σk = −〈F (xk), δxk〉
εδk

.

(a) Show that one obtains the upper bound

tk(λ) = σkλ− 1
2λ

2 − 1
6λ

3hδ
k ,

so that σk > 0 is required to assert functional decrease.
(b) On the basis of the optimal damping factor

λk =
2σk

1 +
√

1 + 2σkhδ
k

≤ 1

prove a global convergence theorem.

How can this theorem also be exploited for the design of an adaptive inexact
Newton method?

Exercise 3.6 Usual GMRES codes require the user to formulate the linear
equation Ay = b as AΔy = r(y0) with Δy = y − y0 and r(y0) = b − Ay0 so
that Δy0 = 0. Reformulate the linear system

F ′(xk)Δ̃x
k+1

= −F (xk+1) + rk

to be solved by the GMRES iteration for an initial guess

δ̃x
k+1

0 = (1− λ)δxk .
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