
2 Systems of Equations: Local Newton

Methods

This chapter deals with the numerical solution of systems of nonlinear equa-
tions with finite, possibly large dimension n. The term local Newton meth-
ods refers to the situation that—only throughout this chapter—‘sufficiently
good’ initial guesses of the solution are assumed to be at hand. Special at-
tention is paid to the issue of how to recognize—in a computationally cheap
way—whether a given initial guess x0 is ‘sufficiently good’. As it turns out,
different affine invariant Lipschitz conditions, which have been introduced in
Section 1.2.2, lead to different characterizations of local convergence domains
in terms of error oriented norms, residual norms, or energy norms and con-
vex functionals, which, in turn, give rise to corresponding variants of Newton
algorithms.
We give three different, strictly affine invariant convergence analyses for the
cases of affine covariant (error oriented) Newton methods (Section 2.1), affine
contravariant (residual based) Newton methods (Section 2.2), and affine con-
jugate Newton methods for convex optimization (Section 2.3). Details are
worked out for ordinary Newton algorithms, simplified Newton algorithms,
and inexact Newton algorithms—synoptically for the three affine invariance
classes. Moreover, affine covariance appears as associated with Broyden’s
‘good’ quasi-Newton method, whereas affine contravariance corresponds to
Broyden’s ‘bad’ quasi-Newton method.

2.1 Error Oriented Algorithms

A convergence analysis for any error oriented algorithm of Newton type will
start from affine covariant Lipschitz conditions of the kind (1.7) and lead to
results in the space of the iterates only. The behavior of the residuals will
be ignored. For actual computation, scaling of any arising norms of Newton
corrections is tacitly assumed.

2.1.1 Ordinary Newton method

Consider the ordinary Newton method in the notation
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46 2 Systems of Equations: Local Newton Methods

F ′(xk)Δxk = −F (xk) , xk+1 = xk +Δxk , k = 0, 1, . . . . (2.1)

Convergence analysis. Because of its fundamental importance, we begin
with an affine covariant version of the classical ‘Newton-Kantorovich theo-
rem’. Only at this early stage we state the theorem in Banach spaces—well
aware of the fact that a Banach space formulation is not directly applicable to
numerical methods: in the numerical solution of nonlinear operator equations
both function and derivative approximations must be taken into account. As
a consequence, inexact Newton methods in Banach spaces are the correct
theoretical frame to study convergence of algorithms—to be treated below in
Sections 7.4, 8.1, and 8.3.

Theorem 2.1 Let F : D → Y be a continuously Fréchet differentiable map-
ping with D ⊆ X open and convex. For a starting point x0 ∈ D let F ′(x0) be
invertible. Assume that

‖F ′(x0)−1F (x0)‖ ≤ α ,∥∥ F ′(x0)−1 (F ′(y)− F ′(x))
∥∥≤ ω0‖y − x‖ x, y ∈ D , (2.2)

h0 := αω0 ≤ 1
2 , (2.3)

S(x0, ρ−) ⊂ D, ρ− :=
(
1−

√
1− 2h0

) /
ω0 .

Then the sequence {xk} obtained from the ordinary Newton iteration is well-
defined, remains in S(x0, ρ−), and converges to some x∗ with F (x∗) = 0.
For h0 <

1
2 , the convergence is quadratic.

Proof. Rather than giving the classical 1948 proof [126] of L.V. Kantorovich,
we here sketch an alternative affine covariant proof, which dates back to
T. Yamamoto [202] in 1985.
The proof is by induction starting with k = 0. At iterate xk, let the Fréchet
derivative F ′(xk) be invertible. Hence we may require the affine covariant
Lipschitz condition∥∥ F ′(xk)−1

(
F ′(y)− F ′(x)

) ∥∥≤ ωk‖y − x‖

and define an associated first majorant

ωk‖Δxk‖ ≤ hk .

As a preparation to show that with F ′(xk) also the Fréchet derivative
F ′(xk+1) is invertible, we define the operators

Bk+1 := F ′(xk)−1F ′(xk+1)

and the associated second majorant
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‖B−1
k+1‖ ≤ βk+1 .

Consequently, for k > 0 we have the upper bound

ωk ≤ βkωk−1 .

By means of the operator perturbation lemma, we easily obtain

βk+1 = 1/(1− hk) . (2.4)

Next, in order to exploit the above Lipschitz condition, we apply standard
analytical techniques to obtain

‖xk+1 − xk‖ =
∥∥F ′(xk)−1

1∫
s=0

[
F ′(xk−1 + sΔxk−1)− F ′(xk−1)

]
Δxk−1ds

∥∥ ,
which implies

ωk‖xk+1 − xk‖ ≤ 1
2β

2
kh

2
k−1 =: hk . (2.5)

Combination of the two relations (2.5) and (2.4) then yields the single recur-
sive equation

hk =
1
2h

2
k−1

(1− hk−1)2
.

Herein contraction occurs, if
1
2h0

(1 − h0)2
< 1 ,

which directly leads to h0 <
1
2 . Under this assumption, the convergence is

quadratic.
Things are more complicated for the limiting case h0 = 1

2 , which requires
extra consideration. In this case, we obtain hk = 1

2 , k = 1, 2, . . ., which
implies

βk = 2 , ωk ≤ 2kω0 .

Insertion into the majorant inequality (2.5) then leads to

lim
k→∞

ωk‖xk+1 − xk‖ ≤ lim
k→∞

2kω0‖xk+1 − xk‖ ≤ 1
2 ,

which verifies that

lim
k→∞

‖xk+1 − xk‖ ≤ lim
k→∞

1
2k−1ω0

= 0 .

In the latter case, the convergence is linear. �

Remark 2.1 If we define t∗∗ = 1 +
√

1− 2h0, ρ+ = t∗∗/ω0, and assume
that S̄(x0, ρ+) ⊂ D, the solution x∗ can be shown to be unique in S(x0, ρ+).
The corresponding proof is omitted here.
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Bibliographical Note. The name ‘Newton-Kantorovich theorem’ has
been coined, since historically L.V. Kantorovich was probably the first to
prove convergence for Newton’s method in Banach spaces. In 1939, he actu-
ally showed linear convergence (see [125]), but not earlier than 1948 he pub-
lished his famous proof of quadratic convergence (see [126]). Even though this
early theorem has already been phrased in affine covariant terms, nearly all
(with few exceptions) of his later published versions lack this desirable prop-
erty (see, e.g., the book by L.V. Kantorovich and G. Akhilov [127]). In 1949,
I. Mysovskikh [155] presented an alternative meanwhile classical convergence
theorem, which today is called ‘Newton-Mysovskikh theorem’. That theorem
was not affine invariant in any sense; the following Theorem 2.2 is an affine
covariant version of it. In 1970, an interesting theorem for local convergence
of Newton’s method, already in affine covariant formulation, has been proved
by H.B. Keller in [129], under the relaxed assumption of Hölder continuity
of F ′(x)—see Exercise 2.4. Since then a huge literature concerning different
aspects of the classical theorems has unfolded, typically in not affine invariant
form—compare, e.g., the monograph of F.A. Potra and V. Pták [171].
Not earlier than 1979, affine invariance as a subject of its own right within
convergence analysis has been emphasized by P. Deuflhard and G. Heindl
in [76]; this paper included an affine covariant (then called affine invari-
ant) rephrasing of the classical Newton-Kantorovich and Newton-Mysovskikh
theorem and permitted a new local convergence theorem for Gauss-Newton
methods for nonlinear least squares problems—see Section 4.3.1. Also around
that time H.G. Bock [29, 31, 32] adopted affine invariance and slightly weak-
ened the Lipschitz condition in the affine covariant Newton-Mysovskikh the-
orem that had been given in [76]. Following the affine invariance message of
[76], T. Yamamoto has introduced affine covariance into his subtle conver-
gence estimates for Newton’s method—see, e.g., his starting paper [202] and
work thereafter. Later on, the earlier convergence theorem due to L.B. Rall
[174], proved under the assumptions

‖F ′(x∗)−1‖ ≤ β∗ , ‖F ′(x) − F ′(y)‖ ≤ γ‖x− y‖
has been put into an affine covariant form by G. Bader [15]. For the improved
variant of Rall’s theorem due to W.C. Rheinboldt [176] see Exercise 2.5.
Throughout the subsequent convergence analysis for local Newton-type meth-
ods, we will mostly study extensions of the Newton-Mysovskikh theorem
[155], which have turned out to be an extremely useful basis for the con-
struction of algorithms. The subsequent Theorem 2.3 is the ‘refined Newton-
Mysovskikh theorem’ due to P. Deuflhard and F.A. Potra [82], which has no
classical predecessor, since it relies on affine covariance in its proof.
Next, we present an affine covariant Newton-Mysovskikh theorem. In what
follows, we will return to the case of finite dimensional nonlinear equations,
i.e. to F : D ⊂ Rn → Rn.
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Theorem 2.2 Let F : D → Rn be a continuously differentiable mapping with
D ⊂ Rn convex. Suppose that F ′(x) is invertible for each x ∈ D. Assume that
the following affine covariant Lipschitz condition holds:∥∥F ′(z)−1

(
F ′(y)− F ′(x)

)
(y − x)∥∥ ≤ ω‖y − x‖2

for collinear x, y, z ∈ D. For the initial guess x0 assume that

h0 := ω‖Δx0‖ < 2 (2.6)

and that S̄(x0, ρ) ⊂ D for ρ =
‖Δx0‖
1− 1

2h0

.

Then the sequence {xk} of ordinary Newton iterates remains in S(x0, ρ) and
converges to a solution x∗ ∈ S(x0, ρ). Moreover, the following error estimates
hold

‖xk+1 − xk‖ ≤ 1
2ω‖xk − xk−1‖2 , (2.7)

‖xk − x∗‖ ≤ ‖xk − xk+1‖
1− 1

2ω‖xk − xk+1‖ . (2.8)

Proof. First, the ordinary Newton iteration is used for k and k − 1:

‖Δxk‖ =
∥∥F ′(xk)−1

[
F (xk)− (F (xk−1) + F ′(xk−1)Δxk−1

)]∥∥ .
Application of the above Lipschitz condition yields

‖Δxk‖ ≤ 1
2ω‖Δxk−1‖2 ,

which is (2.7). For the purpose of repeated induction, introduce the following
notation:

hk := ω
∥∥Δxk

∥∥ .
Multiplication of (2.7) by ω then leads to

hk ≤ 1
2h

2
k−1 .

Contraction of the {hk} is obtained, if h0 < 2 is assumed, which is just (2.6).
From this, as in the proofs of the preceding theorems, we have hk < hk−1 <
h0 < 2 so that there exists

lim
k→∞

hk = 0 .

A straightforward induction argument shows that

‖Δxl‖ ≤ ( 1
2hk

)l−k ‖Δxk‖ for l ≥ k .

Hence
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‖xl+1 − xk‖ ≤ ‖Δxl‖+ · · ·+ ‖Δxk‖ ≤ ‖Δxk‖
∞∑

j=0

(
1
2hk

)j =
‖Δxk‖
1− 1

2hk

.

The special case k = 0 implies that all Newton iterates remain in S(x0, ρ).
Moreover, the results above show that {xk} is a Cauchy sequence, so it con-
verges to some x∗ ∈ S(x0, ρ). Taking the limit l→∞ on the previous estimate
yields (2.8). Finally, with ω < ∞ from (2.6) we have that x∗ is a solution
point. �

The following theorem has been named ‘refined Newton-Mysovskikh theorem’
in [82].

Theorem 2.3 Let F : D → Rn be a continuously differentiable mapping with
D ⊂ Rn open and convex. Suppose that F ′(x) is invertible for each x ∈ D.
Assume that the following affine covariant Lipschitz condition holds∥∥F ′(x)−1

(
F ′(y)− F ′(x)

)
(y − x)∥∥ ≤ ω‖y − x‖2

for x, y, ∈ D. Let F (x) = 0 have a solution x∗.
For the initial guess x0 assume that S̄(x∗, ‖x0 − x∗‖) ⊂ D and that

ω‖x0 − x∗‖ < 2 . (2.9)

Then the ordinary Newton iterates defined by (2.1) remain in the open ball
S(x∗, ‖x0 − x∗‖) and converge to x∗ at an estimated rate

‖xk+1 − x∗‖ ≤ 1
2ω‖xk − x∗‖2 . (2.10)

Moreover, the solution x∗ is unique in the open ball S(x∗, 2/ω).

Proof. We define ek := xk − x∗ and proceed for λ ∈ [0, 1] as follows:

‖xk + λΔxk − x∗‖=‖ek − λF ′(xk)−1
(
F (xk)− F (x∗)

) ‖
=‖F ′(xk)−1

(
λ
(
F (x∗)− F (xk)

)
+ F ′(xk)ek

)‖
=‖(1− λ)ek + λF ′(xk)−1

1∫
s=0

(F ′(xk + sek)− F ′(xk))ekds‖
≤(1 − λ)‖ek‖+ λ

2ω‖ek‖2 .
For the purpose of repeated induction assume that ω‖ek‖ ≤ ω‖e0‖ < 2 so
that xk ∈ D is guaranteed. Then the above estimate can be continued to
supply

‖xk + λΔxk − x∗‖ < (1− λ)‖ek‖+ λ‖ek‖ = ‖ek‖ ≤ ‖e0‖ .
From this, any statement xk + λΔxk �∈S(x∗, ‖x0 − x∗‖) would lead to a con-
tradiction. Hence, xk+1 ∈ D and
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‖ek+1‖ ≤ 1
2ω‖ek‖2 ,

which is just (2.10). In order to prove uniqueness in S(x∗, 2/ω), let x0 := x∗∗

for some x∗∗ �= x∗ with F (x∗∗) = 0, which implies x1 = x∗∗ as well. Insertion
into (2.10) finally yields the contradiction

‖x∗∗ − x∗‖ ≤ ω/2 ‖x∗∗ − x∗‖2 < ‖x∗∗ − x∗‖ .
This completes the proof. �

In view of actual computation, we may combine the results of Theorem 2.2
and 2.3: if we require hk ≤ 1, then contraction towards x∗ shows up, since

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ 1

2ω‖xk − x∗‖ ≤
1
2hk

1− 1
2hk

≤ 1 .

Convergence monitor. We are now ready to exploit both convergence
theorems for actual implementation of Newton’s method. First, we define the
contraction factors

Θk :=
‖Δxk+1‖
‖Δxk‖ ,

which in terms of the unknown theoretical quantities hk are known to satisfy

Θk =
hk+1

hk
≤ 1

2hk < 1 . (2.11)

Whenever Θk ≥ 1, then the ordinary Newton iteration is classified as ‘not
convergent’.

Computational Kantorovich estimates. Obviously, the assumption h0 ≤
1 implies Θ0 ≤ 1/2. We define the computationally available a-posteriori
estimates

[hk]1 = 2Θk ≤ hk , k = 0, 1, . . .

and, recalling hk+1 = Θkhk and shifting the index k + 1 → k, also corre-
sponding a-priori estimates

[hk] := Θk−1[hk−1]1 = 2Θ2
k−1 ≤ hk , k = 1, 2, . . . .

Bit counting lemma. The relative accuracy of these estimates is considered
in the following lemma, the type of which will appear repeatedly in different
context.

Lemma 2.4 Assume that the just introduced Kantorovich estimates [hk] sat-
isfy the relative accuracy requirement

0 ≤ hk − [hk]
[hk]

≤ σ < 1 , k = 0, 1, . . . .

Then
Θk+1 ≤ (1 + σ)Θ2

k , k = 0, 1, . . . .
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Proof. We collect the above relations to obtain

Θk+1 ≤ 1
2hk+1 ≤ 1

2 (1 + σ)[hk+1] = (1 + σ)Θ2
k .

�

Restricted convergence monitor. With σ → 1 we then end up with

Θk ≤ 2Θ2
k−1 , k = 0, 1, . . . ,

which leads us to the requirement

Θk ≤ 1
2 , k = 0, 1, . . . , (2.12)

a convergence criterion more restrictive than (2.11) above. Otherwise we di-
agnose divergence of the ordinary Newton iteration.

Termination criterion. A desirable criterion to terminate the iteration
would be

‖xk − x∗‖ ≤ XTOL , (2.13)

with XTOL a user prescribed error tolerance. In view of (2.8) and with
hk → [hk] = 2Θ2

k−1 we will replace this condition by its cheaply computable
substitute

‖Δxk‖
1−Θ2

k−1

≤ XTOL . (2.14)

Note that XTOL can be chosen quite relaxed here, since xk+1 = xk +Δxk is
cheaply available with an accuracy of O(XTOL2).

2.1.2 Simplified Newton method

Consider the simplified Newton iteration as introduced above:

F ′(x0)Δx
k

= −F (xk) , xk+1 = xk +Δx
k
, k = 0, 1, . . . . (2.15)

Convergence analysis. We study the influence of the fixed initial Jaco-
bian on the convergence behavior. The theorems to be derived are slight im-
provements of well-known theorems of J.M. Ortega and W.C. Rheinboldt—
see [163].

Theorem 2.5 Let F : D → Rn be a continuously differentiable mapping
with D ⊂ Rn open and convex. Let x0 ∈ D denote a given starting point so
that F ′(x0) is invertible. Assume the affine covariant Lipschitz condition

‖F ′(x0)−1
(
F ′(x)− F ′(x0)

)‖ ≤ ω0‖x− x0‖ (2.16)
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for all x ∈ D. Let
h0 := ω0‖Δx0‖ ≤ 1

2 (2.17)

and define

t∗ = 1−
√

1− 2h0 , ρ =
t∗

ω0
.

Moreover, assume that S̄(x0, ρ) ⊂ D. Then the simplified Newton iterates
(2.15) remain in S̄(x0, ρ) and converge to some x∗ with F (x∗) = 0. The
convergence rate can be estimated by

‖xk+1 − xk‖
‖xk − xk−1‖ ≤

1
2

(
tk + tk−1

)
, k = 1, 2, . . . (2.18)

and
‖xk − x∗‖ ≤ t∗ − tk

ω0
, k = 0, 1, . . . (2.19)

with t0 = 0 and
tk+1 = h0 + 1

2 t
2
k , k = 0, 1, . . . .

Proof. We follow the line of the proofs in [163] and use (2.16) to obtain

‖xk+1 − xk‖ ≤ 1
2ω0‖xk − xk−1‖(‖xk−1 − x0‖+ ‖xk − x0‖) . (2.20)

The result is slightly more complicated than for the ordinary Newton itera-
tion. We therefore turn to a slightly more sophisticated proof technique by
introducing the majorants

ω0‖xk+1 − xk‖ ≤ hk , ω0‖xk − x0‖ ≤ tk
with initial values t0 = 0, h0 ≤ 1

2 . Because of

‖xk+1 − x0‖ ≤ ‖xk − x0‖+ ‖xk+1 − xk‖

and
ω0‖xk+1 − xk‖ ≤ 1

2hk−1(tk + tk−1) =: hk

we select the two majorant equations

tk+1 = tk + hk , hk = 1
2hk−1

(
tk + tk−1

)
,

which can be combined to a single equation of the form

tk+1 − tk = (tk − tk−1)
(
tk−1 + 1

2 (tk − tk−1)
)

= 1
2 (t2k − t2k−1) .

Rearrangement of this equation leads to

tk+1 − 1
2 t

2
k = tk − 1

2 t
2
k−1 .
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Since here the right hand side is just an index shift (downward) of the left
hand side, we can apply the so-called Ortega trick to obtain

tk+1 − 1
2 t

2
k = t1 − 1

2 t
2
0 = h0 ,

which may be rewritten as the simplified Newton iteration

tk+1 − tk = − g(tk)
g′(t0)

= g(tk)

for the scalar equation

g(t) = h0 − t+ 1
2 t

2 = 0 .

g

h0

tt∗ 1 t∗∗

Fig. 2.1. Ortega trick: simplified Newton iteration.

As can be seen from Figure 2.1, the iteration starting at t = 0 will converge to
the root t∗, which exists, if the above quadratic equation has two real roots.
This implies the necessary condition h0 ≤ 1/2, which has been imposed
above. Also from Figure 2.1 we immediately see that g(tk+1) < g(tk), which
is equivalent to hk+1 < hk. Moreover with

tk ≤ t∗ = 1−
√

1− 2h0 ,

we immediately have
xk ∈ S̄(x0, ρ) ⊂ D .

Hence, for the solution x∗ we also get x∗ ∈ S̄(x0, ρ). As for the convergence
rates, just observe that

ω0‖xk − x∗‖ ≤
∞∑

i=k

hi = t∗ − tk

and use (2.20) to verify the remaining statements of the theorem. �
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Convergence monitor. From Theorem 2.5 we derive that

Θk =
‖Δxk+1‖
‖Δxk‖

≤ hk+1

hk
= 1

2 (tk+1 + tk) .

With t0 = 0, t1 = h0, the condition h0 ≤ 1/2 induces the condition

Θ0 =
‖Δx1‖
‖Δx0‖

≤ 1
2h0 ≤ 1

4 , (2.21)

which characterizes the local convergence domain of the simplified Newton
method. In comparison with Θ0 < 1 for the ordinary Newton method, where
a new Jacobian is used at each step, this is a clear reduction. The above
result also shows that the convergence rate may slow down to

Θk < t
∗ = 1−

√
1− 2h0 .

We may replace the theoretical quantity t∗ by its computationally available
bounds

[t∗] = 1−
√

1− 4Θ0 ≤ 1−
√

1− 2h0 = t∗ ≤ 1 .

Then divergence of the simplified Newton iteration will be defined to occur
when Θk ≥ [t∗].

Termination criterion. From (2.19) we may derive the upper bound

‖xk − x∗‖ ≤ t∗ − tk
ω0

.

This line is just a different form of the repeated triangle inequality used in
the proof so that

‖xk − x∗‖ ≤
∞∑

j=k

‖Δxj‖ .

This gives rise to the upper bound

‖xk − x∗‖ ≤ ‖Δxk‖ (1 +Θk +Θk+1Θk + . . .) ≤ ‖Δx
k‖

1− t∗ .

Upon insertion of the estimate [t∗] ≤ t∗ from above, we are led to the ap-
proximate termination criterion

‖Δxk‖√
1− 4Θ0

≤ XTOL ,

where XTOL is the user prescribed final error tolerance. Of course, the ap-
plication of such a criterion will require to start with some Θ0 <

1
4 .
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2.1.3 Newton-like methods

Consider a rather general Newton-like iteration of the form

M(xk)δxk = −F (xk) , xk+1 = xk + δxk , k = 0, 1, . . . . (2.22)

Convergence analysis. From the basic construction idea, such an iteration
will converge, if M(x) is a ‘sufficiently accurate’ approximation of F ′(x). The
question will be how to measure the approximation quality and to quantify
the vague term ‘sufficiently accurate’.

Theorem 2.6 Let F : D → Rn be a continuously differentiable mapping with
D ⊂ Rn open and convex. Let M denote an approximation of F ′. Assume
that one can find a starting point x0 ∈ D with M(x0) invertible and constants
α, ω0, δ0, δ1, δ2 ≥ 0 such that for all x, y ∈ D∥∥M(x0)−1F (x0)

∥∥ ≤ α ,∥∥M(x0)−1
(
F ′(y)− F ′(x)

)∥∥ ≤ ω0‖y − x‖ ,∥∥M(x0)−1
(
F ′(x)−M(x)

)∥∥ ≤ δ0 + δ1‖x− x0‖ ,∥∥M(x0)−1
(
M(x)−M(x0)

)∥∥ ≤ δ2‖x− x0‖ ,

δ0 < 1, σ := max(ω0, δ1 + δ2), h :=
2ασ

(1− δ0)2 ≤ 1 , (2.23)

S(x0, ρ) ⊂ D with ρ :=
2α

1− δ0
/ (

1 +
√

1− h
)
.

Then the sequence {xk} generated from the Newton-like iteration (2.22) is
well-defined, remains in S(x0, ρ) and converges to a solution point x∗ with
F (x∗) = 0. With the notation

h :=
ω0

σ
h, ρ± =

2α
1− δ0

/ (
1∓

√
1− h )

the solution x∗ ∈ S(x0, ρ−) is unique in

S(x0, ρ) ∪ (D ∩ S(x0, ρ+)
)
.

Proof. For the usual induction proof, the following majorants are convenient

ω0‖δxk‖ ≤ hk , h0 := αω0 ,
ω0‖xk − x0‖ ≤ tk , t0 := 0 ,

together with
tk+1 = tk + hk . (2.24)
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Proceeding as in the proofs of the preceding theorems, one obtains

‖xk+1 − xk‖ = ‖M(xk)−1F (xk)‖

=
∥∥M(xk)−1

[
F (xk)− (F (xk−1) +M(xk−1)(xk − xk−1)

)]∥∥
≤ ∥∥M(xk)−1

[
F (xk)− F (xk−1)− F ′(xk−1)(xk − xk−1)

]∥∥
+
∥∥M(xk)−1

[
F ′(xk−1)−M(xk−1)

]
(xk − xk−1)

∥∥ .
The perturbation lemma yields:

‖M(xk)−1M(x0)‖ ≤ 1
/

(1− δ2‖xk − x0‖) .

Combining these intermediate results and using δi := δi/ω0, i = 1, 2, then
supplies

ω0‖xk+1 − xk‖ ≤ 1
1− δ2tk

[
1
2h

2
k−1 +

(
δ0 + δ1tk−1

)
hk−1

]
.

Thus one ends up with the second majorant equation

hk =
[(
δ0 + δ1tk−1

)
hk−1 + 1

2h
2
k−1

] / (
1− δ2tk

)
.

Reformulation in view of a possible application of the Ortega technique leads
to (

1− δ2tk
)
hk −

(
1− δ2tk−1

)
hk−1

= 1
2

(
t2k − t2k−1

)− (1− δ0) (tk − tk−1)

+
(
δ1 + δ2 − 1

) (
tktk−1 − t2k−1

)
.

(2.25)

Obviously, this technique is only applicable, if one requires that

δ1 + δ2 = 1 , i.e., δ1 + δ2 = ω0 ,

which will not be the case in general. However, by defining σ as in assumption
(2.23) and redefining

σ‖δxk‖ ≤ hk , h0 := ασ ,

σ‖xk − x0‖ ≤ tk , t0 := 0 ,

δi := δi/σ , i = 1, 2

the disturbing term in (2.25) will vanish. Insertion of (2.24) then gives(
1− δ2tk

)
(tk+1 − tk) + (1− δ0) tk − 1

2 t
2
k = t1 = ασ ,

which can be rewritten in the form
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tk+1 − tk =
h0 − (1− δ0)tk + 1

2 t
2
k

1− δ2tk
.

This iteration can be interpreted as a Newton-like iteration in R1 for the
solution of

g(t) := h0 − (1 − δ0)t+ 1
2 t

2 = 0 .

The associated two roots

t∗ = (1− δ0)
(

1−
√

1− 2ασ
(1− δ0)2

)
,

t∗∗ = (1− δ0)
(

1 +

√
1− 2ασ

(1− δ0)2
)

are real if
2ασ

(1− δ0)2 ≤ 1 .

This is just assumption (2.23). The remaining part of the proof essentially
follows the lines of the proof of Theorem 2.5 and is therefore omitted here. �

The above theorem does not supply any direct advice towards algorithmic
realization. In practical applications, however, additional structure on the
approximations M(x) will be given—often as a dependence on an additional
parameter, which can be manipulated in such a way that convergence crite-
ria can be met. A typical version of Newton-like methods is the deliberate
dropping of ‘weak couplings’ in the derivative, which can be neglected on
the basis of insight into the specific underlying problem. In finite dimensions,
deliberate ‘sparsing’ can be used, which means dropping of ‘small’ entries in
a large Jacobian matrix; this technique works efficiently, if the vague term
‘small’ can be made sufficiently precise from the application context. Needless
to say that ‘sparsing’ nicely goes with sparse matrix techniques.

2.1.4 Broyden’s ‘good’ rank-1 updates

In order to derive an error oriented quasi-Newton method, we start by rewrit-
ing the secant condition (1.17) strictly in affine covariant terms of quantities
in the domain space of F . This leads to

Ek(J) δxk = δxk+1 = −J−1
k Fk+1

in terms of the affine covariant update change matrix

Ek(J) := I − J−1
k J .

Any Jacobian rank-1 update of the kind
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J̃k+1 = Jk

(
I − δxk+1v

T

vT δxk

)
, v ∈ Rn , v �= 0

with v some vector in the domain space of F will both satisfy the secant
condition and exhibit the here desired affine covariance property. The update
with v = δxk is known in the literature as ‘good Broyden update’ [40].

Auxiliary results. The following theorem will collect a bunch of useful
results for a single iterative step of the thus defined quasi-Newton method.

Theorem 2.7 In the notation just introduced, let

Jk+1 = Jk

(
I − δxk+1δx

T
k

‖δxk‖22

)
(2.26)

denote an affine covariant Jacobian rank-1 update and assume the local con-
traction condition

Θk =
‖δxk+1‖2
‖δxk‖2 < 1

2 .

Then:

(I) The update matrix Jk+1 is a least change update in the sense that

‖Ek(Jk+1)‖2 ≤ ‖Ek(J)‖2 , ∀ J ∈ Sk ,

‖Ek(Jk+1)‖2 ≤ Θk .

(II) The update matrix Jk+1 is nonsingular whenever Jk is nonsingular, and
its inverse can be represented in the form

J−1
k+1 =

(
I +

δxk+1δx
T
k

(1− αk+1)‖δxk‖22

)
J−1

k (2.27)

with

αk+1 =
δxT

k δxk+1

‖δxk‖22
< 1

2 .

(III) The next quasi-Newton correction is

δxk+1 = −J−1
k+1Fk+1 =

δxk+1

1− αk+1
.

(IV) Iterative contraction in terms of quasi-Newton corrections shows up as

‖δxk+1‖2
‖δxk‖2 =

Θk

1− αk+1
< 1 .
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Proof. For the rank-1 update we directly have

Ek(Jk+1) =
δxk+1δx

T
k

‖δxk‖22
=⇒ ‖Ek(Jk+1)‖2 ≤ Θk .

As for the least change update property, we obtain

‖Ek(Jk+1)‖2 =
∥∥∥∥δxk+1δx

T
k

‖δxk‖22

∥∥∥∥
2

=
∥∥∥∥Ek(J)

δxkδx
T
k

‖δxk‖22

∥∥∥∥
2

≤ ‖Ek(J)‖2 ,

which confirms statement I. By application of the Sherman-Morrison formula
(see, for instance, the book of A.S. Householder [121]), we directly verify the
statements II and III. In order to show IV, we apply the Cauchy-Schwarz
inequality to see that

|αk+1| ≤ Θk,

which, for Θk < 1/2, implies

‖δxk+1‖
‖δxk‖ =

Θk

1− αk+1
≤ Θk

1−Θk
< 1 .

�

Algorithmic realization. The result (2.27) may be rewritten as

J−1
k+1 =

(
I +

δxk+1δx
T
k

‖δxk‖22

)
J−1

k .

This recursion cannot be used directly for the computation of δxk+1. However,
the product representation

J−1
k =

(
I +

δxkδx
T
k−1

‖δxk−1‖22

)
· · · · ·

(
I +

δx1δx
T
0

‖δx0‖22

)
J−1

0 .

can be applied up to the correction δxk. This consideration leads to a rather
economic recursive ‘good’ Broyden algorithm, which has been used for quite
a while in the public domain code NLEQ1 [161]. It essentially requires the
kmax + 1 quasi-Newton corrections δx0, . . . , δxk as extra array storage.

Discrete norms for differential equations. Inner products 〈u, v〉 other
than the Euclidean inner product uT v may be used in view of the underlying
problem—such as (discrete) Sobolev inner products for discretized differential
equations. By all means, scaling in the domain space of F should be carefully
considered. This means that any corrections δx arising in the above inner
products should actually be implemented asD−1δx with appropriate diagonal
scaling matrix D. If D is chosen in agreement with a relative error concept,
then in this way scaling invariance of the algorithm can be assured.
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Condition number monitor. Recursive implementations based on the
above rank-1 factorization have often been outruled with the argument that
some hidden ill-conditioning in the arising Jacobian updates might occur. In
order to derive a some monitor, we may use

cond2(Jk+1) ≤ cond2

(
I +

δxk+1δx
T
k

‖δxk‖22

)
cond2(Jk) .

In this context, the following technical lemma may be helpful.

Lemma 2.8 Given a rank-1 matrix

A = I − uv
T

vT v
with Θ :=

‖u‖2
‖v‖2 < 1 ,

its condition number can be bounded as

cond2(A) ≤ 1 +Θ
1−Θ .

Proof. We just use the two bounds

‖A‖ ≤ 1 +
∥∥∥∥uvT

vT v

∥∥∥∥ ≤ 1 +Θ, ‖A−1‖ ≤
(

1−
∥∥∥∥uvT

vT v

∥∥∥∥)−1

≤ (1−Θ)−1

and insert into the definition cond2(A) = ‖A‖ ‖A−1‖ . �

With this result and Θk < 1/2 we are certainly able to assure that

cond2(Jk+1) ≤ 1 +Θk

1−Θk
cond2(Jk) < 3 cond2(Jk) .

Convergence monitor. In accordance with the above theoretical results,
we impose the condition Θk < 1/2 throughout the whole iteration. Note
that this is an extension of the local convergence domain compared with the
simplified Newton method where Θ0 ≤ 1/4 has to be required. With these
preparations we are now ready to state the ‘good Broyden algorithm’ QNERR
(for ERRor oriented Quasi-Newton method) in the usual informal manner.

Algorithm QNERR.

For given x0: F0 = F (x0) evaluation and store

J0δx0 = −F0 linear system solve

σ0 = ‖δx0‖22 store δx0, σ0



62 2 Systems of Equations: Local Newton Methods

For k = 0, . . . , kmax:

I. xk+1 = xk + δxk new iterate

Fk+1 = F (xk+1) evaluation

J0v = −Fk+1 linear system solve

II. If k > 0: for i = 1, . . . , k

α :=
vT δxi−1

σi−1
,

v := v + αδxi

III. Compute

αk+1 :=
vT δxk

σk
, Θk =

(
vT v

σk

)1/2

store

If Θk >
1
2 : stop, no convergence

IV. δxk+1 =
v

1− αk+1
, store

σk+1 = ‖δxk+1‖22 store

If √σk+1 ≤ XTOL:

solution x∗ = xk+1 + δxk+1

Else: no convergence within kmax iterations.

Convergence analysis. The above Theorem 2.7 does not give conditions,
under which the contraction condition Θk < 1/2 is assured throughout the
whole iteration. This will be the topic of the next theorem.

Theorem 2.9 For F : D −→ Rn be a continuously differentiable mapping
with D open and convex. Let x∗ ∈ D denote a unique solution point of F
with F ′(x∗) nonsingular. Assume that the following affine covariant Lipschitz
condition holds:

‖F ′(x∗)−1
(
F ′(x)− F ′(x∗)

)
v‖ ≤ ω‖x− x∗‖ · ‖v‖

for x, x + v ∈ D and 0 ≤ ω < ∞. Consider the quasi-Newton iteration as
defined in Theorem 2.7. For some Θ in the range 0 < Θ < 1 assume that:

(I) the initial approximate Jacobian J0 satisfies

δ0 :=
∥∥F ′(x∗)−1

(
J0 − F ′(x0)

)∥∥ < Θ/(1 +Θ) , (2.28)
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(II) the initial guess x0 satisfies

t0 := ω‖x0 − x∗‖ ≤ 1−Θ
2−Θ

(
Θ

1 +Θ
− δ0

)
. (2.29)

Then the quasi-Newton iterates {xk} converge to x∗ in terms of errors as

‖xk+1 − x∗‖ < Θ‖xk − x∗‖ , (2.30)

or, in terms of corrections as

‖δxk+1‖ ≤ Θ‖δxk‖ . (2.31)

The convergence is superlinear with

lim
k→∞

‖δxk+1‖
‖δxk‖ = 0 .

As for the Jacobian rank-1 updates, the ‘bounded deterioration property’ holds
in the form

‖Ek‖ := ‖F ′(x∗)−1Jk − I‖ ≤ Θ

1 + Θ
< 1

2 (2.32)

together with the asymptotic property

lim
k→∞

‖Ekδxk‖
‖δxk‖ = 0 . (2.33)

Proof. Let ‖ · ‖ be ‖ · ‖2 throughout. For ease of writing we characterize the
Jacobian update approximation by

ηk =
‖Ekδxk‖
‖δxk‖ , ηk = ‖Ek‖ = ‖ET

k ‖ = max
v �=0

‖E(T )
k v‖
‖v‖ .

By definition, ηk ≤ ηk. For the convergence analysis we introduce

tk = ω‖ek‖ , ek := xk − x∗ .
As usual [57], the proof is performed in two basic steps: first linear conver-
gence, then superlinear convergence.

I. To begin with, exploit the Lipschitz condition in the form

‖F ′(x∗)−1F (xk+1)‖ ≤
1∫

s=0

∥∥F ′(x∗)−1
(
F ′(xk + sδxk)− F ′(x∗)

)
δxk

∥∥ ds
+‖Ekδxk‖

≤ (
1
2 (tk+1 + tk) + ηk

) ‖δxk‖ .
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Under the assumption ηk+1 < 1 we may estimate

‖F ′(x∗)−1F (xk+1)‖ = ‖(I + Ek+1)δxk+1‖ ≥ (1− ηk+1)‖δxk+1‖
so that

‖δxk+1‖
‖δxk‖ ≤ ηk + tk

1− ηk+1
, where tk := 1

2 (tk + tk+1) . (2.34)

As for the iterative errors ek, we may derive the relation

ek+1 = ek − J−1
k F (xk)

= (I + Ek)−1

(
Ekek − F ′(x∗)−1

1∫
s=0

(
F ′(x∗ + sek)− F ′(x∗)

)
ekds

)
,

from which we obtain the estimate ( let ηk < 1)

tk+1 ≤
ηk + 1

2 tk

1− ηk

tk . (2.35)

Upon comparing the right hand upper bounds in (2.35) and (2.34) we are led
to define the majorant

Θ :=
ηk + tk
1− ηk

, (2.36)

which implies that
tk+1 < Θtk . (2.37)

II. Next, we study the approximation properties of the Jacobian updates.
With Ek as defined, the above rank-1 update may be rewritten in the form

Ek+1 = Ek + F ′(x∗)−1Fk+1δx
T
k

‖δxk‖22
.

If we insert
F ′(x∗)−1Fk+1 = (Dk+1 − Ek)δxk ,

wherein

Dk+1 := F ′(x∗)−1

1∫
s=0

(
F ′(xk + sδxk)− F ′(x∗)

)
ds

and introduce the orthogonal projections

Q⊥
k = I −Qk =

δxkδx
T
k

‖δxk‖2 ,

then we arrive at the decomposition

Ek+1 = EkQk +Dk+1Q
⊥
k
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and its transpose (v �= 0 arbitrary)

ET
k+1v = QkE

T
k v +Q⊥

k D
T
k+1v . (2.38)

Note that ‖Ek+1δxk‖
‖δxk‖ =

‖Dk+1δxk‖
‖δxk‖ ≤ tk . (2.39)

III. In order to prove linear convergence, equation (2.38) is used for the quite
rough estimate

ηk+1 = max
v �=0

‖ET
k+1v‖
‖v‖ ≤ max

v �=0

‖ET
k v‖
‖v‖ +max

v �=0

|〈Dk+1δxk, v〉|
‖δxk‖‖v‖ ≤ ηk+tk . (2.40)

Assume now that we have uniform upper bounds

Θ ≤ Θ < 1 , ηk ≤ η < 1 .

Then (2.37) can be replaced by

tk+1 < Θtk < tk

and (2.36) leads to the natural definition

Θ ≤ η + t0
1− η =: Θ . (2.41)

As for the definition of η, we apply (2.40) to obtain

ηk+1 < η0 +
k∑

l=0

tl < η0 +
t0

1−Θ =: η . (2.42)

Insertion of η into (2.41) then eventually yields after some calculation:

t0 ≤ (1−Θ)
(

Θ

1 +Θ
− η0

)
, (2.43)

which obviously requires

η0 <
Θ

1 +Θ
< 1

2 for Θ < 1 .

Observe now that by mere triangle inequality, with δ0 as defined in (2.28), we
have η0 ≤ t0 + δ0. Therefore, the assumption (2.43) can finally be replaced
by the above two assumptions (2.28) and (2.29). Once such a Θ < 1 exists,
we have (2.30) directly from tk+1 < Θtk and (2.31) from inserting η into
(2.34). The bounded deterioration property (2.32) follows by construction
and insertion of (2.29) into (2.42).
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IV. In order to show superlinear convergence, we use (2.38) in a more subtle
manner. In terms of the Euclidean inner product 〈·, ·〉, some short calculation
supplies the equation

‖ET
k+1v‖2 = ‖ET

k v‖2 −
〈Ekδxk, v〉2
‖δxk‖2 +

〈Dk+1δxk, v〉2
‖δxk‖2 .

Summing over the indices k, we arrive at

l∑
k=0

〈Ekδxk, v〉2
‖v‖2‖δxk‖2 =

‖ET
0 v‖2
‖v‖2 − ‖E

T
l+1v‖2
‖v‖2 +

l∑
k=0

〈Dk+1δxk, v〉2
‖δxk‖2‖v‖2 .

Upon dropping the negative right hand term, letting l →∞, and using (2.39)
with tk+1 < Θ · tk, we end up with the estimate

∞∑
k=0

〈Ekδxk, v〉2
‖v‖2‖δxk‖2 ≤ η

2
0 + 1

2

1 +Θ
1−Θt

2
0 .

Since the right hand side is bounded, we immediately conclude that

lim
k→∞

〈Ekδxk, v〉2
‖δxk‖2‖v‖2 = 0 ∀ v ∈ Rn .

As a consequence, with

ξk :=
δxk

‖δxk‖ ,

we must have
lim

k→∞
Ekξk = 0

from which statement (2.33) follows. Finally, with (2.34), we have proved
superlinear convergence. �

Bibliographical Note. Quasi-Newton methods are described, e.g., in the
classical optimization book [57] by J.E. Dennis and R.B. Schnabel or, more
recently, in the textbook [132] by C.T. Kelley. These methods essentially
started with the pioneering paper [40] by C.G. Broyden. For quite a time,
the convergence of the ‘good’ Broyden method was not at all clear. A break-
through in its convergence analysis came by the paper [41] of C.G. Broyden,
J.E. Dennis, and J.J. Moré, where local and superlinear convergence has been
shown on the basis of condition (2.33), the meanwhile so-called Dennis-Moré
condition (see [55]). To the most part, the present section is an affine covari-
ant reformulation of well-known material spread over a huge literature—see,
e.g., the original papers [56] by J.E. Dennis and R.B. Schnabel or [58] by
J.E. Dennis and H.F. Walker.
The above quasi–Newton algorithm is realized within the earlier code NLEQ1
and its update NLEQ-ERR.
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2.1.5 Inexact Newton-ERR methods

Inexact Newton methods consist of a combination of an outer iteration, the
Newton iteration, and an inner iteration such that (dropping the inner iter-
ation index i)

F ′(xk)(δxk −Δxk) = rk , xk+1 = xk + δxk , k = 0, 1, . . . .

Here the inner residual rk gives rise to the difference between the exact New-
ton correction Δxk and the inexact Newton correction δxk. Among the pos-
sible inner iterative solvers we will concentrate on those that reduce the Eu-
clidean error norms ‖δxk −Δxk‖, which leads us to CGNE (compare Section
1.4.3) and to GBIT (compare Section 1.4.4). In both cases, the perturbation
will be measured by the relative difference between the exact Newton correc-
tion Δxk and the inexact Newton correction δxk via

δk =
‖δxk −Δxk‖
‖δxk‖ , k = 0, 1, . . . . (2.44)

As a guiding principle for convergence, we will focus on contraction in terms
of the (not actually computed) exact Newton corrections

Θk =
‖Δxk+1‖
‖Δxk‖ ,

subject to the perturbation coming from the truncation of the inner iteration.

Convergence analysis—CGNE. First we work out details for the error min-
imizing case, exemplified by CGNE specifying the norm ‖·‖ to be the Euclidean
norm ‖ · ‖2. Upon recalling (1.28), the starting value δxk

0 = 0 for the CGNE
iteration implies that

‖Δxk‖ = ‖δxk‖
√

1 + δ2k ≥ ‖δxk‖ .

Moreover, from (1.29) and (1.30) we conclude that δk is monotonically de-
creasing in the course of the inner iteration so that eventually any threshold
condition of the type δk ≤ δ̄ can be met. With this preparation, we are now
ready to state our convergence result.

Theorem 2.10 Let F : D −→ Rn be a continuously differentiable mapping
with D ⊂ Rn open, convex, and sufficiently large. Suppose that F ′(x) is
invertible for each x ∈ D. Assume that the following affine covariant Lipschitz
condition holds:

‖F ′(z)−1
(
F ′(y)− F (x)

)
v‖ ≤ ω‖y − x‖ · ‖v‖

for collinear x, y, z ∈ D .
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Let x0 ∈ D denote a given starting point for a Newton-CGNE iteration. At an
iterate xk, let δk as defined in (2.44) denote the relative error of the inexact
Newton correction δxk. Let the inner CGNE iteration be started with δxk

0 = 0,
which gives rise to the following relations between the Kantorovich quantities

hk := ω‖Δxk‖ and hδ
k := ω‖δxk‖ =

hk√
1 + δ2k

.

Let x∗ ∈ D be the unique solution point.

I. Linear convergence mode. Assume that an initial guess x0 has been
chosen such that

h0 < 2Θ < 2

for some Θ < 1. Let δk+1 ≥ δk be realized throughout the inexact Newton
iteration and control the inner iteration such that

ϑ(hk, δk) =
1
2h

δ
k + δk(1 + hδ

k)√
1 + δ2k

≤ Θ ,

which assures that

δk ≤ Θ√
1−Θ2

. (2.45)

Then this implies the exact monotonicity

‖Δxk+1‖
‖Δxk‖ ≤ Θ

and the inexact monotonicity

‖δxk+1‖
‖δxk‖ ≤

√
1 + δ2k

1 + δ2k+1

Θ ≤ Θ .

The iterates {xk} remain in S(x0, ρ) with ρ = ‖δx0‖/(1 − Θ) and converge
at least linearly to x∗.

II. Quadratic convergence mode. For some ρ > 0, let the initial guess
x0 satisfy

h0 <
2

1 + ρ
(2.46)

and control the inner iteration such that

δk ≤ ρ2
hδ

k

1 + hδ
k

, (2.47)

which requires that
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ρ >
3δ0

1− δ0 (2.48)

be chosen. Then the inexact Newton iterates remain in S(x0, ρ) with

ρ = ‖δx0‖/
(

1− 1 + ρ
2
h0

)
and converge quadratically to x∗ with

‖Δxk+1‖ ≤ 1 + ρ
2
ω‖Δxk‖2

and
‖δxk+1‖ ≤ 1 + ρ

2
ω‖δxk‖2 .

Proof. First we show that

‖Δxk+1‖ ≤
1∫

t=0

∥∥F ′(xk+1)−1
(
F ′(xk+tδxk)−F ′(xk)

)
δxk
∥∥dt+‖F ′(xk+1)−1rk‖ .

For the first term we just apply the Lipschitz condition in standard form. For
the second term we may use the same condition plus the triangle inequality
to obtain

‖F ′(xk+1)−1rk‖ = ‖F ′(xk+1)−1F ′(xk)(δxk −Δxk)‖ ≤ (1 + hδ
k)‖δxk −Δxk‖ .

With definition (2.44), this gives

‖Δxk+1‖
‖δxk‖ ≤ 1

2h
δ
k + δk(1 + hδ

k) . (2.49)

With hδ
k = hk/

√
1 + δ2k we then arrive at

‖Δxk+1‖
‖Δxk‖ ≤ ϑ(hk, δk)) =

1
2h

δ
k + δk(1 + hδ

k)√
1 + δ2k

.

In order to prove linear convergence, we might require ϑ(hk, δk) = Θ < 1,
which implies that δk monotonically increases as hk monotonically decreases—
which would automatically lead to δk+1 ≥ δk when hk+1 ≤ hk. However, since
strict equality cannot be realized within CGNE, we have to assume the two
separate inequalities ϑ ≤ Θ and δk+1 ≥ δk, as done in the theorem. Note that
a necessary condition for ϑ(hk, δk) ≤ Θ with some δk > 0 is that it holds at
least for δk = 0, which yields h0 < 2Θ, the assumption made in the theorem.
As for the contraction in terms of the inexact Newton corrections, we then
obtain
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‖δxk+1‖
‖δxk‖ =

√
1 + δ2k

1 + δ2k+1

‖Δxk+1‖
‖Δxk‖ ≤

√
1 + δ2k

1 + δ2k+1

Θ ≤ Θ .

Usual linear convergence results then imply that {xk} remains in S(x0, ρ)
with ρ = ‖δx0‖/(1−Θ), if only S(x0, ρ) ⊂ D, which we assumed by D to be
‘sufficiently large’. Asymptotically we thus assure that ϑ(0, δk) ≤ Θ, which is
equivalent to (2.45).
For the quadratic convergence case we require that the first term in ϑ(hk, δk)
originating from the outer iteration exceeds the second term, which brings
us to (2.47). Note that now hk+1 ≤ hk implies δk+1 ≤ δk and hk → 0 also
δk → 0—a behavior that differs from the linear convergence case. Insertion
of (2.47) into ϑ(hk, δk) then directly leads to

‖Δxk+1‖
‖Δxk‖ ≤ 1 + ρ

2
hk

1 + δ2k
≤ 1 + ρ

2
hk

and to
‖δxk+1‖
‖δxk‖ ≤ 1 + ρ

2
hδ

k√
1 + δ2k+1

≤ 1 + ρ
2
hδ

k .

Upon applying the usual quadratic convergence results, we have to require
the sufficient condition

1 + ρ
2
hδ

0 ≤
1 + ρ

2
h0 < 1

and then, assuming that D is ‘sufficiently large’, obtain convergence within
the ball

S(x0, ρ) , ρ =
‖δx0‖(

1− 1 + ρ
2
h0

)
as stated above. Finally, upon inserting (2.46) into (2.47) and using hδ

0 ≤ h0,
the result (2.48) is readily confirmed. �

Convergence analysis—GBIT. By a slight modification of Theorem 2.10,
the Newton-GBIT iteration can also be shown to converge.

Theorem 2.11 Let δk < 1
2 in (2.44) and replace the Kantorovich quantities

hδ
k in Theorem 2.10 by their upper bounds such that

hδ
k =

hk

1− δk .

Then we obtain the results:
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I. Linear convergence mode. Let δk in each inner iteration be controlled
such that

ϑ(hk, δk) =
1
2h

δ
k + δk(1 + hδ

k)
1− δk ≤ Θ ,

which assures that

δk ≤ Θ

1 +Θ
. (2.50)

Then this implies the inexact monotonicity test

‖δxk+1‖
‖δxk‖ ≤ 1− δk

1− δk+1
Θ (2.51)

and the exact monotonicity test

‖Δxk+1‖
‖Δxk‖ ≤ Θ .

II. Quadratic convergence mode. Let the inner iteration be controlled
according to (2.47) and

h0 <
2(1− δ0)2

1 + ρ
. (2.52)

Then (2.48) needs to be replaced by

ρ >
δ0(3− 2δ0)

1− 2δ0
. (2.53)

The exact Newton corrections behave like

‖Δxk+1‖ ≤ 1
2

1 + ρ
(1− δk)2

ω‖Δxk‖2

and the inexact Newton corrections like

‖δxk+1‖ ≤ 1
2

1 + ρ
1− δk+1

ω‖δxk‖2 .

Proof. The main difference to the previous theorem is that now we can only
apply the triangle inequality

| ‖Δxk‖ − ‖δxk −Δxk‖ | ≤ ‖δxk‖ ≤ ‖δxk −Δxk‖+ ‖Δxk‖ .
Assuming δk < 1 in definition (2.44), we obtain

‖Δxk‖
1 + δk

≤ ‖δxk‖ ≤ ‖Δx
k‖

1− δk ,

which motivates the majorant ω‖δxk‖ ≤ hδ
k as stated in the theorem. Upon

revisiting the proof of Theorem 2.10, the result (2.49) is seen to still hold,
which is
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‖Δxk+1‖
‖δxk‖ ≤ 1

2h
δ
k + δk(1 + hδ

k) . (2.54)

From this, we obtain the modified estimate for the exact Newton corrections

‖Δxk+1‖
‖Δxk‖ ≤

1
2h

δ
k + δk(1 + hδ

k)
1− δk =

1
2hk + δk(1− δk + hk)

(1− δk)2
= ϑ(hk, δk) .

In a similar way, we obtain for the inexact Newton corrections

‖δxk+1‖
‖δxk‖ ≤

1
2h

δ
k + δk(1 + hδ

k)
1− δk+1

=
1− δk

1− δk+1
ϑ(hk, δk) .

For the linear convergence mode, we adapt δk such that

ϑ(hk, δk) ≤ Θ .
Asymptotically we thus assure that ϑ(0, δk) ≤ Θ, equivalent to (2.50).
For the quadratic convergence mode, we again require (2.47) (with hδ

k in the
present meaning, of course), i.e.

δk ≤ 1
2ρ

hδ
k

1 + hδ
k

.

With this choice we arrive at

‖Δxk+1‖
‖Δxk‖ ≤ 1

2

1 + ρ
1− δk h

δ
k = 1

2

1 + ρ
(1− δk)2

ω‖Δxk‖

for the exact Newton contraction, which requires (2.52) as a necessary con-
dition. Upon combining (2.47) and (2.52), we obtain

δ0 ≤ 1
2ρ

hδ
0

1 + hδ
0

<
ρ(1− δ0)

1 + ρ+ 2(1− δ0) .

Given ρ, this condition would lead to some uneasy quadratic root. Given δ0,
we merely have the linear inequality

ρ >
δ0(3− 2δ0)

1− 2δ0
,

which is (2.53); it necessarily requires δ0 < 1/2 in agreement with the as-
sumption δk < 1/2 of the theorem.
The corresponding bound for the inexact Newton corrections is

‖δxk+1‖
‖δxk‖ ≤ 1

2

1 + ρ
1− δk+1

ω‖δxk‖ ,

which completes the proof. �
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Convergence monitor. Assume that the quantity Θ < 1 in the linear
convergence mode or the quadratic convergence mode have been specified;
in view of (2.12), we may require that Θ ≤ 1/2. The desirable convergence
criterion would be

Θk :=
‖Δxk+1‖2
‖Δxk‖2 ≤ Θ .

Since this criterion cannot be directly implemented, Θk needs to be substi-
tuted by a computationally available Θ̃k ≈ Θk.
For CGNE with δxk

0 = 0, this leads to the inexact monotonicity test

Θ̃k =

√
1 + δ̄2k+1

1 + δ̄2k
· ‖δx

k+1‖2
‖δxk‖2 ≤ Θ , (2.55)

where the quantities δ̄k, δ̄k+1 are the computationally available estimates for
the otherwise unavailable quantities δk, δk+1 as given in (1.32).
For GBIT, the result (2.51) suggests the following inexact monotonicity test

Θ̃k =
1− δ̄k+1

1− δ̄k · ‖δx
k+1‖

‖δxk‖ ≤ Θ . (2.56)

As an alternative, we may also consider the weaker necessary condition

Θ̃k =
1− δ̄k+1

1 + δ̄k
· ‖δx

k+1‖
‖δxk‖ ≤ Θk ≤ Θ (2.57)

or the stronger sufficient condition

Θk ≤ Θ̃k =
1 + δ̄k+1

1− δ̄k · ‖δx
k+1‖

‖δxk‖ ≤ Θ (2.58)

for use within the convergence monitor.

Preconditioning. In order to speed up the inner iteration, preconditioning
from the left or/and from the right may be used. This means solving(

CLF
′(xk)CR

)
C−1

R

(
δxk −Δxk

)
= CLr

k .

In such a case, we will define

δk =
‖C−1

R (Δxk − δxk)‖
‖C−1

R δxk‖ .

Of course, in this case the preconditioned error norm is reduced by the inner
iteration, whereas CL only affects its rate of convergence. Consequently, any
adaptive strategy should then, in principle, be based upon the contraction
factors

Θk =
‖C−1

R Δxk+1‖
‖C−1

R Δxk‖
and its corresponding scaled estimate Θ̃k ≈ Θk as in (2.55) for CGNE or any
choice between (2.56), (2.57), and (2.58) for GBIT.
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Termination criterion. In the same spirit as above, we mimic the termi-
nation criterion (2.14) for the exact Newton iteration by requiring for CGNE
the substitute condition √

1 + δ̄2k

1− Θ̃2
k−1

‖δxk‖2 ≤ XTOL

and for GBIT the sufficient condition

1 + δ̄k
1− Θ̃2

k−1

‖δxk‖ ≤ XTOL ,

each for the finally accepted iterate xk+1, where XTOL is a user prescribed
absolute error tolerance (to be replaced by some relative or some scaled error
criterion).

Estimation of Kantorovich quantities. In order to deal successfully with
the question of how to match inner and outer iterations, the above theory
obviously requires the theoretical quantities hδ

k = ω‖δxk‖—which, however,
are not directly available. In the spirit of the whole book we aim at replacing
these quantities by computational estimates [hδ

k]. Recalling Section 2.1.1, we
aim at estimating the a-priori estimates [hk] = 2Θ2

k−1 ≤ hk for k ≥ 1.

For CGNE with initial correction δxk
0 = 0, we replace the relative errors δk by

their estimates δ̃k from Section 1.4.3 and thus arrive at the a-priori estimates

[hδ
k] = [hk]/

√
1 + δ̄2k , [hk] = 2Θ̃2

k−1 ≤ hk , k = 1, 2, . . . , (2.59)

where Θ̃k−1 from (2.55) is inserted.
For GBIT, we get the a-priori estimates

[hδ
k] =

[hk]
(1− δ̄k)

, [hk] = 2Θ̃2
k−1 ≤ hk , k = 1, 2, . . . , (2.60)

where Θ̃k−1 from (2.57) is inserted.
In both CGNE and GBIT, we may alternatively use the a-posteriori estimates

[hk−1]1 = 2Θ̃k−1

and insert them either into (2.59) or into (2.60), respectively, to obtain
[hδ

k−1]1. From this, we may construct the a-priori estimates (for k ≥ 1)

[hδ
k] = [hδ

k−1]1
‖δxk‖
‖δxk−1‖ .

Note that in CGNE this formula inherits the saturation property.
For k = 0, we cannot but choose any ‘sufficiently small’ δ0—as stated in the
quadratic convergence mode to follow next.
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Standard convergence mode. In this mode the inner iteration is termi-
nated whenever

δk ≤ δ̄ (2.61)

for some default value δ̄ < 1 to be chosen. In this case, asymptotic linear
convergence is obtained.
For CGNE, Theorem 2.10 requires

δ̄/
√

1 + δ̄2 < Θ ,

which for Θ = 1
2 leads to the restriction δ̄ <

√
3/3 ≈ 0.577. For GBIT,

Theorem 2.11 requires
δ̄/(1− δ̄) < Θ ,

which leads to δ̄ < 1/3. In any case, we recommend to choose δ̄ ≤ 1/4 to
assure at least two binary digits.

Quadratic convergence mode. In CGNE, we set δ0 = 1
4 in (2.48) and

obtain ρ > 1—thus assuring at least the first binary digit. In GBIT, we also
set δ0 = 1

4 and apply the inequality (2.53) thus arriving at ρ > 5
4 .

As for the adaptive termination of the inner iteration, we want to satisfy
condition (2.47) for k ≥ 1. Following our paradigm, we will replace the com-
putationally unavailable quantity hδ

k therein by its computational estimate
[hδ

k], which yields, for both CGNE and GBIT, the substitute condition

δ̄k ≤ 1
2ρ ·

[hδ
k]

1 + [hδ
k]
. (2.62)

Whenever δk ≤ δ̄k, the above monotone increasing right side as a function of
[hδ

k] and the relation [hδ
k] ≤ hδ

k imply that the theoretical condition (2.47) is
actually assured with (2.62). Based on the a-priori estimates (2.59) or (2.60),
respectively, we obtain a simple nonlinear scalar equation for an upper bound
of δk.
Note that δk → 0 is enforced when k → ∞, which means: the closer the
iterates come to the solution point, the more work needs to be done in the
inner iteration to assure quadratic convergence of the outer iteration.

Linear convergence mode. Once the approximated contraction factor Θ̃k

is sufficiently below some prescribed threshold value Θ ≤ 1/2, we may switch
to the linear convergence mode described in either of the above two conver-
gence theorems. As for the termination of the inner iteration, we recall the
theoretical condition

ϑ(hk, δk) ≤ Θ .
Since the quantity ϑ is unavailable, we will replace it by the computationally
available estimate
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[ϑ(hk, δk)] = ϑ([hk], δk) ≤ ϑ(hk, δk) .

As this mode occurs only for k > 0, we can just insert the a-priori estimates
(2.59) or (2.60), respectively. Since the above right hand side is a monotone
increasing function of hk and [hk] ≤ hk, this estimate may be ‘too small’
and therefore lead to some δk, which is ‘too large’. Fortunately, the differ-
ence between computational estimate and theoretical quantity can be ignored
asymptotically. In any case, we require the monotonicity (2.55) for CGNE or
(2.56), (2.57), or (2.58) for GBIT and run the inner iteration at each step k
until either the actual value of δk obtained in the course of the inner iteration
satisfies the condition above or divergence occurs with Θ̃k > 2Θ.
In CGNE, we observe that in this mode the closer the iterates come to the
solution point, the less work is necessary within the inner iteration to assure
linear convergence of the outer iteration. In GBIT, this process continues only
until the upper bound (2.50) for δk has been reached.
The here described error oriented local inexact Newton algorithms are self–
contained and similar in spirit, but not identical with the local parts of the
global inexact Newton codes GIANT-CGNE and GIANT-GBIT, which are worked
out in detail in Section 3.3.4 below.

Bibliographical Note. A first affine covariant convergence analysis of
a local inexact Newton method has been given by T.J. Ypma [203]. The
first affine covariant inexact Newton code has been GIANT, developed by
P. Deuflhard and U. Nowak [67, 160] in 1990. That code had also used a
former version of GBIT for the inner iteration.

2.2 Residual Based Algorithms

In most algorithmic realizations of Newton’s method iterative values of the
residual norms are used for a check of convergence. An associated convergence
analysis will start from affine contravariant Lipschitz conditions of the type
(1.8) and lead to results in terms of residual norms only, which are tacitly
assumed to be scaled. As explained in Section 1.2.2 above, such an analysis
will not touch upon the question of local uniqueness of the solution.

2.2.1 Ordinary Newton method

Recall the notation of the ordinary Newton method

F ′(xk)Δxk = −F (xk) , xk+1 = xk +Δxk , k = 0, 1, . . . . (2.63)
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Convergence analysis. Analyzing the iterative residuals leads to an affine
contravariant version of the well-known Newton-Mysovskikh theorem.

Theorem 2.12 Let F : D → Rn be a differentiable mapping with D ⊂ Rn

open and convex. Let F ′(x) be invertible for all x ∈ D. Assume that the
following affine contravariant Lipschitz condition holds:∥∥(F ′(y)− F ′(x)

)
(y − x)∥∥ ≤ ω‖F ′(x)(y − x)‖2 for x, y ∈ D .

Define the open level set Lω =
{
x ∈ D| ‖F (x)‖ < 2

ω

}
and let Lω ⊂ D be

bounded. For a given initial guess x0 of an unknown solution x∗ let

h0 := ω‖F (x0)‖ < 2 , i.e. x0 ∈ Lω . (2.64)

Then the ordinary Newton iterates {xk} defined by (2.63) remain in Lω and
converge to some solution point x∗ ∈ Lω with F (x∗) = 0. The iterative
residuals {F (xk)} converge to zero at an estimated rate

‖F (xk+1)‖ ≤ 1
2ω‖F (xk)‖2 . (2.65)

Proof. To show that xk+1 ∈ D we apply the integral form of the mean value
theorem and the above Lipschitz condition and obtain

‖F (xk + λΔxk)‖ = ‖F (xk) +
λ∫

t=0

F ′(xk + tΔxk)Δxk dt‖

= ‖
λ∫

t=0

(
F ′(xk + tΔxk)− F ′(xk)

)
Δxk

+(1− λ)F (xk) dt‖

≤
λ∫

t=0

‖(F ′(xk + tΔxk)− F ′(xk)
)
Δxk‖ dt

+(1− λ)‖F (xk)‖

≤ ω
λ∫

t=0

‖F ′(xk)Δxk‖2t dt+ (1− λ)‖F (xk)‖
=

(
1− λ+ 1

2ωλ
2‖F (xk)‖) ‖F (xk)‖

for each λ ∈ [0, 1] such that xk + tΔxk ∈ Lω for t ∈ [0, λ]. Now assume that
xk+1 /∈ Lω. Then there exists a minimal λ̄ ∈ ]0, 1] with xk + λ̄Δxk ∈ ∂Lω

and ‖F (xk + λ̄Δxk)‖ < (1− λ̄+ λ̄2)‖F (xk)‖ < 2/ω, which is a contradiction.
For λ = 1 we get relation (2.65). In terms of the residual oriented so-called
Kantorovich quantities

hk := ω‖F (xk)‖ (2.66)

we may obtain the quadratic recursion

hk+1 ≤ 1
2h

2
k = (1

2hk)hk . (2.67)
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With assumption (2.64), h0 < 2, we obtain h1 < h0 < 2 for k = 0 and, by
repeated induction over k, then

hk+1 < hk < 2 , k = 0, 1, . . . ⇒ lim
k→∞

hk = 0 .

This can be also written in terms of the residuals as

‖F (xk+1)‖ < ‖F (xk)‖ < 2
ω

⇒ lim
k→∞

‖F (xk)‖ = 0 .

In terms of the iterates we have

{xk} ⊂ Lω ⊂ D .

Since Lw is bounded, there exists an accumulation point x∗ of {xk} with
F (x∗) = 0, i.e. x∗ is a solution point, but not necessarily unique in Lω . �

This theorem also holds for underdetermined nonlinear systems—compare
Exercise 4.10.

Convergence monitor. We now want to exploit Theorem 2.12 for actual
computation. For this purpose, we introduce the contraction factors

Θk :=
‖F (xk+1)‖
‖F (xk)‖

and write (2.67) in the equivalent form

Θk =
hk+1

hk
≤ 1

2hk . (2.68)

For k = 0, assumption (2.64) assures residual monotonicity

Θ0 < 1 . (2.69)

Whenever Θ0 ≥ 1, the assumption (2.64) is certainly violated, which means
that the initial guess x0 is not ‘sufficiently close’ to the solution point x∗

in the sense of the above theorem. Suppose now that the test Θ0 < 1 has
been passed. For the construction of a quadratic convergence monitor we in-
troduce computationally available estimates [hk] for the unknown theoretical
quantities hk from (2.66). In view of (2.68) we may define the computational
a-posteriori estimate

[hk]1 = 2Θk ≤ hk

and, since hk+1 = Θkhk, also the a-priori estimate

[hk+1] = Θk[hk]1 = 2Θ2
k ≤ hk+1 .
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Upon roughly identifying [hk+1]1 ≈ [hk+1], we arrive at the approximate
recursion (k = 0, 1, . . .):

Θk+1 ≈ Θ2
k ≤ Θ0 < 1 .

Violation of this recursion at least in the mild sense

Θk+1 > Θ0

or the stricter sense
Θk+1 ≥ 2Θ2

k

may be used to terminate the ordinary Newton iteration as ‘not convergent’.

Termination criterion. This affine contravariant theory agrees with a ter-
mination criterion of the form

‖F (x̂)‖ ≤ FTOL , (2.70)

where FTOL is a user prescribed residual error tolerance.

Computational complexity. A short calculation shows that, for a given
starting point x0, the number q of iterations such that x̂ = xq+1 meets the
above termination requirement satisfies roughly

q ≈ ld
log(FTOL /‖F (x0)‖)

logΘ0
. (2.71)

The proof is left as Exercise 2.1. In other words, with ‘sufficiently good’ initial
guesses x0 of the solution x∗ at hand, the computational complexity of the
nonlinear problem is comparable to the one of the linearized problem. Such
problems are sometimes called mildly nonlinear .

2.2.2 Simplified Newton method

Recall the notation of the simplified Newton iteration

F ′(x0)Δx
k

= −F (xk) , xk+1 = xk +Δx
k
, k = 0, 1, . . . . (2.72)

Convergence analysis. Here we study convergence in terms of iterative
residuals obtaining an affine contravariant variant of the Newton-Kantorovich
theorem—without any uniqueness results, of course.

Theorem 2.13 Let F : D → Rn be C1(D) for D ⊂ Rn convex. Moreover,
let x0 ∈ D denote a given starting point for the simplified Newton iteration
(2.72). Assume that the following affine contravariant Lipschitz condition
holds:
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)
v
∥∥ ≤ ω‖F ′(x0)(x − x0)‖ · ‖F ′(x0)v‖ (2.73)

for x, x0 ∈ D, v ∈ Rn and 0 ≤ ω <∞. Define the level set

Lω :=
{
x ∈ Rn|‖F (x)‖ ≤ 1

2ω
}

and let Lω ⊆ D be bounded. Assume that x0 ∈ Lω, which is

h0 := ω‖F (x0)‖ ≤ 1
2 . (2.74)

Then the iterates remain in Lω and converge to a solution point x∗. The
iterative residual norms converge to zero at an estimated rate

‖F (xk+1)‖
‖F (xk)‖ ≤ 1

2 (tk + tk+1) < 1−
√

1− 2ho ,

wherein the {tk} are defined by t0 = 0 and

tk+1 = h0 + 1
2 t

2
k , k = 0, 1, . . . .

Proof. We apply the Lipschitz condition (2.73) to obtain

‖F (xk+1)‖ =
∥∥ 1∫
t=0

(
F ′(xk + tΔx

k
)− F ′(x0)

)
Δx

k
dt
∥∥

≤ ω‖F ′(x0)Δx
k‖ ·

1∫
t=0

‖F ′(x0)(xk − x0 + tΔx
k
)‖dt

and, by triangle inequality:

‖F (xk+1)‖ ≤ ω‖F (xk)‖(‖F ′(x0)(xk − x0)‖+ 1
2‖F (xk)‖) . (2.75)

We therefore introduce the majorants

ω‖F ′(x0)(xk − x0)‖ ≤ tk
ω‖F ′(x0)(xk+1 − xk)‖ = ω‖F (xk)‖ ≤ hk

with initial values t0 = 0, h0 ≤ 1
2 . Because of

‖F ′(x0)(xk+1 − x0)‖ ≤ ‖F ′(x0)(xk − x0)‖+ ‖F ′(x0)(xk+1 − xk)‖

and the above relation (2.75), we obtain the same two majorant equations as
in Section 2.1.2

tk+1 = tk + hk , hk = hk−1

(
tk−1 + 1

2hk−1

)
and from these a single equation of the form
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tk+1 − tk = (tk − tk−1)
(
tk−1 + 1

2 (tk − tk−1)
)

= 1
2 (t2k − t2k−1) .

Rearrangement of this equation permits the application of the Ortega trick

tk+1 − 1
2 t

2
k = t1 − 1

2 t
2
0 = h0 ,

which once again may be interpreted as the simplified Newton iteration

tk+1 − tk = − g(tk)
g′(t0)

= g(tk)

for the scalar equation

g(t) = h0 − t+ 1
2 t

2 = 0 .

As can be seen from the above Figure 2.1, here also we obtain g(tk+1) < g(tk),
which is equivalent to hk+1 < hk and therefore

‖F (xk+1)‖ < ‖F (xk)‖ ≤ 1
2ω
.

This assures that all simplified Newton iterates remain in Lω ⊂ D. As for the
convergence to some (not necessarily unique) solution point x∗ ∈ Lω ⊂ D,
arguments similar to the ones used for Theorem 2.12 can be applied. As for
the convergence rate, we go back to (2.75) and derive

‖F (xk+1)‖
‖F (xk)‖ ≤ tk + 1

2hk = 1
2 (tk + tk+1) < t∗ = 1−

√
1− 2h0 ,

which completes the proof. �

Convergence monitor. In order to exploit this theorem for actual imple-
mentation, we define the residual contraction factors (k = 0, 1, . . .)

Θk :=
‖F (xk+1)‖
‖F (xk)‖ ≤ 1

2 (tk + tk+1) .

For k = 0, the local convergence domain is characterized by

Θ0 ≤ 1
2h0 ≤ 1

4 , (2.76)

which is clearly more restrictive than the comparable condition Θ0 < 1 for
the ordinary Newton method—compare (2.69).

2.2.3 Broyden’s ‘bad’ rank-1 updates

In this section, we deal with a quasi-Newton update already discussed by
C.G. Broyden in his seminal paper [40] and classified there, on the basis



82 2 Systems of Equations: Local Newton Methods

of his numerical experiments, as being ‘bad’. This method can actually be
derived in terms of affine contravariance. As stated before, only image space
quantities like the residuals Fk := F (xk) are of interest in this frame. With
δFk+1 = Fk+1 − Fk, we rewrite the secant condition (1.17) here as

Ek(J)δFk+1 = Fk+1 (2.77)

in terms of the affine contravariant update change matrix

Ek(J) := I − JkJ
−1 .

Any Jacobian rank-1 update satisfying

J−1
k+1 = J−1

k

(
I − Fk+1v

T

vT δFk+1

)
, v ∈ Rn , v �= 0

with v some vector in the image space of F will both satisfy the secant
condition and reflect affine contravariance. As an example, the so-called ‘bad’
Broyden method is characterized by setting v = δFk+1.

Convergence analysis. We start with an analysis of one quasi–Newton
step of this kind.

Theorem 2.14 Let

J−1
k+1 = J−1

k

(
I − Fk+1δF

T
k+1

‖δFk+1‖2
)

(2.78)

denote the affine contravariant ‘bad’ Broyden rank-1 update and assume resid-
ual contraction

Θk :=
‖Fk+1‖
‖Fk‖ < 1 .

Then:

1. The update matrix Jk+1 is a least change update in the sense that

‖Ek(Jk+1)‖ ≤ ‖Ek(J)‖ ∀J ∈ Sk

‖Ek(Jk+1)‖ ≤ Θk

1−Θk
.

2. The update matrix Jk+1 is nonsingular whenever Jk is nonsingular and
can be represented by

Jk+1 =

(
I − Fk+1δF

T
k+1

δFT
k+1Fk

)
Jk .
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3. With δxk+1 = −J−1
k Fk+1, the next quasi-Newton correction is

δxk+1 = −J−1
k+1Fk+1 =

(
1− δF

T
k+1Fk+1

‖δFk+1‖2
)
δxk+1 .

Proof. For the above rank-1 update we have

Ek(Jk+1) =
Fk+1δF

T
k+1

‖δFk+1‖2

and therefore

‖Ek(Jk+1)‖ =
‖Ek(Jk+1)δFk+1‖

‖δFk+1‖ =
‖Fk+1‖
‖δFk+1‖ =

‖Ek(J)δFk+1‖
‖δFk+1‖ ≤ ‖Ek(J)‖

for all J satisfying the secant condition (2.77). Further, for Θk < 1, we obtain

‖Ek(Jk+1)‖ =
‖Fk+1‖
‖δFk+1‖ ≤

Θk

1−Θk
,

which confirms the above statement 1. Statements 2 and 3 are direct conse-
quences of the Sherman-Morrison formula.

�

The above Theorem 2.14 only deals with the situation within one iterative
step. The iteration as a whole is studied next.

Theorem 2.15 For F ∈ C1(D), F : D ⊂ Rn → Rn, D convex, let x∗ denote
a unique solution point of F with F ′(x∗) nonsingular. Assume that for some
ω <∞ the affine contravariant Lipschitz condition

‖(F ′(x)− F ′(x∗))(y − x)‖ ≤ ω ‖F ′(x∗)(x − x∗)‖ ‖F ′(x∗)(y − x)‖ (2.79)

holds for x, y ∈ D. Consider the quasi-Newton iteration as defined in Theo-
rem 2.14. For some Θ in the range 0 < Θ < 1 assume that:

1. in terms of the affine contravariant deterioration matrix

Ek := I − F ′(x∗)J−1
k

the initial approximate Jacobian satisfies

η0 := ‖E0‖ < Θ ,

2. the initial guess x0 satisfies

t0 := ω ‖F ′(x∗)(x0 − x∗)‖ ≤ Θ − η0

1 + η0 + 4
3 (1 −Θ)−1

.
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Then the quasi-Newton iterates xk converge to x∗ in terms of errors as

‖F ′(x∗)(xk+1 − x∗)‖ ≤ Θ ‖F ′(x∗)(xk − x∗)‖

or, in terms of residuals as

‖Fk+1‖ ≤ Θ ‖Fk‖ .

The convergence is superlinear with

lim
k→∞

‖Fk+1‖
‖Fk‖ = 0 . (2.80)

As for the Jacobian rank-1 updates, the ‘bounded deterioration property’ holds
in the form

‖Ek‖ ≤ η0 +
t0

(1− t0)(1−Θ)
≤ Θ

together with the asymptotic property

lim
k→∞

‖EkδFk+1‖
‖δFk+1‖ = 0 .

Proof. For ease of writing we characterize the Jacobian update approxima-
tion by

ηk :=
‖EkδFk+1‖
‖δFk+1‖ , ηk := ‖Ek‖ ≥ ηk .

For the convergence analysis we introduce

fk := F ′(x∗)(xk − x∗) and tk := ω ‖fk‖ .

I. To begin with, we analyze the behavior of the iterative residuals:

Fk+1 = Fk +

1∫
s=0

F ′(xk + sδxk)δxk ds

=

1∫
s=0

(F ′(xk + sδxk)− F ′(x∗))δxk ds+ (F ′(x∗)− Jk)δxk .

Applying the Lipschitz condition (2.79) yields
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‖Fk+1‖ ≤
1∫

s=0

‖(F ′(xk + sδxk)− F ′(x∗))δxk‖ ds+ ‖(F ′(x∗)J−1
k − I)Fk‖

≤
1∫

s=0

ω‖F ′(x∗)(xk + sδxk − x∗)‖ ‖F ′(x∗)δxk‖ ds+ ‖EkFk‖

≤
1∫

s=0

ω
( ‖F ′(x∗)(1− s)(xk − x∗)‖
+‖F ′(x∗)s(xk+1 − x∗)‖) ‖F ′(x∗)δxk‖ ds+ ηk‖Fk‖

= 1
2 (tk + tk+1)‖F ′(x∗)δxk‖+ ηk‖Fk‖ .

Defining t̄k := 1
2 (tk + tk+1), we get

‖Fk+1‖ ≤ t̄k‖(Ek − I)Fk‖+ ηk‖Fk‖
≤ (t̄k(1 + ηk) + ηk)‖Fk‖ . (2.81)

As for the iterative errors fk, we may derive the relation

fk+1 = fk − F ′(x∗)J−1
k Fk = F ′(x∗)(xk − x∗)− Fk + EkFk

=

1∫
s=0

(
F ′(x∗)− F ′(x∗ + s(xk − x∗))) (xk − x∗) ds+ EkFk ,

from which we obtain the estimate

‖fk+1‖ ≤
1∫

s=0

sω ‖F ′(x∗)(xk − x∗)‖ ‖F ′(x∗)(xk − x∗)‖ ds+ ηk‖Fk‖

≤ ω

2
‖fk‖2 + ηk(‖fk − Fk‖+ ‖fk‖) .

By multiplication with ω and proceeding as above, this can be further reduced
to yield

tk+1 ≤ 1
2 t

2
k + ηk

(
1
2 t

2
k + tk

)
=
(
ηk +

1 + ηk

2
tk

)
tk . (2.82)

II. Next, we study the approximation properties of the Jacobian updates.
Introducing the orthogonal projection

Qk :=
δFk+1δF

T
k+1

‖δFk+1‖2

onto the secant direction δFk+1, the deterioration matrix may be written as

Ek+1 = EkQ
⊥
k + Ek+1Qk , (2.83)
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yielding, as in the ‘good’ Broyden proof,

ηk+1 = ‖Ek+1‖ ≤ ‖EkQ
⊥
k ‖+ ‖Ek+1Qk‖ ≤ ‖Ek‖+

‖Ek+1δFk+1‖
‖δFk+1‖ .

Using the secant condition (2.77), we get for the numerator of the second
right hand term:

Ek+1δFk+1 = δFk+1 − F ′(x∗)J−1
k+1δFk+1 = δFk+1 − F ′(x∗)δxk

=

1∫
s=0

(F ′(xk + sδxk)− F ′(x∗))δxk .

This can be estimated as above as follows

‖Ek+1δFk+1‖ ≤ t̄k‖F ′(x∗)δxk‖
= t̄k‖Ek+1δFk+1 − δFk+1‖
≤ t̄k(‖Ek+1δFk+1‖+ ‖δFk+1‖)

in order to get

‖Ek+1δFk+1‖ ≤ t̄k
1− t̄k ‖δFk+1‖ . (2.84)

Inserting this estimate into (2.83) yields the quite rough estimate

ηk+1 ≤ ηk +
t̄k

1− t̄k .

III. For the purpose of repeated induction assume that we have

ηk ≤ η0 +
∑k−1

i=0 Θ
i
t0

1− t0 ≤ η

with
η := η0 +

t0

(1 − t0)(1−Θ)

and
tk ≤ Θk

t0 .

Then by (2.82) and by the subsequent technical Lemma 2.16 below

tk+1 ≤ (η + (1 + η)t0)tk ≤ Θtk ≤ Θk+1
t0

and thus

ηk+1 ≤ ηk +
tk

1− t0 ≤ η0 +
∑k−1

i=0 Θ
i
t0

1− t0 +
Θ

k+1
t0

1− t0 ≤ η0 +
∑k

i=0Θ
i
t0

1− t0 ≤ η .
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By induction we have the ‘bounded deterioration property’

ηk ≤ η
and the error contraction

tk+1 ≤ tk
for any k. Obviously, by (2.81) and the subsequent technical Lemma 2.16 we
also have contraction of the residuals:

‖Fk+1‖ ≤ Θ‖Fk‖

IV. In order to show superlinear convergence, we use the orthogonal splitting
provided by (2.83) in a more subtle manner. Since

QkE
T
k v = δFk+1

〈δFk+1, E
T
k v〉

‖δFk+1‖2 = δFk+1
〈EkδFk+1, v〉
‖δFk+1‖2 ,

some short calculation supplies the equation

‖ET
k+1v‖2 = ‖Q⊥

k E
T
k v‖2 + ‖QkE

T
k+1v‖2

= ‖ET
k v‖2 − ‖QkE

T
k v‖2 + ‖QkE

T
k+1v‖2

= ‖ET
k v‖2 −

〈EkδFk+1, v〉2
‖δFk+1‖2 +

〈Ek+1δFk+1, v〉2
‖δFk+1‖2 .

Summing over the indices k, we arrive at

l∑
k=0

〈EkδFk+1, v〉2
‖δFk+1‖2‖v‖2 =

‖ET
0 v‖2
‖v‖2 − ‖E

T
l+1v‖
‖v‖2 +

l∑
k=0

〈Ek+1δFk+1, v〉2
‖δFk+1‖2‖v‖2 .

Upon dropping the negative right hand term, letting l →∞, and using (2.84),
we end up with the estimate

l∑
k=0

〈EkδFk+1, v〉2
‖δFk+1‖2‖v‖2 ≤ η

2
0 +

l∑
k=0

(
tk

1− tk

)2

≤ η2
0 +

t20

(1− t0)2(1− Θ2
)
.

Since the right hand side is bounded, we immediately conclude that

lim
k→∞

〈EkδFk+1, v〉2
‖δFk+1‖2‖v‖2 = 0

for all v ∈ Rn. As a consequence, we must have

lim
k→∞

ηk = 0 .

In order to prove the superlinear convergence statement (2.80), we may collect
some estimates from above and proceed as
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‖F ′(x∗)J−1
k Fk+1‖ = ‖Ek+1δFk+1 − EkδFk+1‖

≤ t̄k(1 + ηk)‖Fk‖+ ηk‖δFk+1‖
≤ (t̄k(1 + ηk) + ηk(1 +Θ))‖Fk‖ .

Finally, with

‖Fk+1‖ − ‖F ′(x∗)J−1
k Fk+1‖ ≤ ‖EkFk+1‖ ≤ ηk‖Fk+1‖

⇒ ‖Fk+1‖ ≤ ‖F ′(x∗)J−1
k Fk+1‖

1− ηk

,

we get

‖Fk+1‖ ≤ t̄k(1 + ηk) + ηk(1 +Θ)
1− ηηk

‖Fk‖ .

Since t̄k → 0 and ηk → 0, superlinear convergence is easily verified. �

For ease of the above derivation, the following technical lemma has been
postponed.

Lemma 2.16 Assume 0 < Θ < 1, 0 ≤ η0 < Θ and

t ≤ Θ − η0
1 + η0 + 4

3 (1−Θ)−1
.

Then, with η = η0 +
t

(1− t)(1 −Θ)
, we have

η + (1 + η)t ≤ Θ .

Proof. Under the given assumptions, a short calculation shows that t < 1
7 .

Therefore we can proceed as

Θ ≥ η0 +
(
1 + η0 + 4

3 (1−Θ)−1
)
t

= η0 +
7
6 t

1−Θ +
(
1 + η0 + 1

6 (1−Θ)−1
)
t

≥ η0 +
t

(1− t)(1 −Θ)
+
(

1 + η0 +
t

(1 − t)(1−Θ)

)
t

= η + (1 + η)t .

�
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Algorithmic realization. From representation (2.78) we again have a prod-
uct form for the Jacobian update inverses. As a condition number monitor
for the possible occurrence of ill-conditioning of the recursive Jacobian rank-1
updates, Lemma 2.8 may once more be applied, here to:

cond2(Jk+1) ≤ cond2

(
I − Fk+1δF

T
k+1

‖δFk+1‖2
)

cond2(Jk).

In the present context, we obtain for Θk < 1/2:

cond2(Jk+1) ≤ 1
1− 2Θk

cond2(Jk) .

As a consequence, a restriction such as

Θk ≤ Θmax <
1
2

with, say Θmax = 1/4, will be necessary. With these preparations, we are now
ready to present the ‘bad Broyden’ algorithm QNRES (the acronym stands for
RESidual based Quasi-Newton algorithm).

Algorithm QNRES.

F0 := F (x0) evaluation and store

σ0 := ‖F0‖2 store

J0δx0 = −F0 linear system solve

κ := 1

For k := 0, 1, . . . , kmax:

xk+1 := xk + δxk

Fk+1 := F (xk+1)

δFk+1 := Fk+1 − Fk

σk+1 := ‖Fk+1‖2
If σk+1 ≤ FTOL2:

solution found: x∗ = xk+1

Θk :=
√
σk+1/σk

If Θk ≥ Θmax:

stop: no convergence

w := δFk+1

γk := ‖w‖2
κ := κ/(1− 2Θk)
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If κ ≥ κmax:

stop: ill-conditioned update

v := (1− 〈w,Fk+1〉/γk)Fk+1

For j = k − 1, . . . , 0:

β := 〈δFj+1, v〉/γj

v = v − βFj+1

J0δxk+1 = −v
stop: no convergence within kmax iterations

The above algorithm merely requires to store the residuals F0, . . . , Fk+1, and
the differences δF1, . . . , δFk+1, which means an extra array storage of up
to 2(kmax + 2) vectors of length n. Note that there is a probably machine-
dependent tradeoff between computation and storage: the vectors δFj+1 can
be either stored or recomputed. Moreover, careful considerations about resid-
ual scaling in the inner product 〈·, ·〉 are recommended.

2.2.4 Inexact Newton-RES method

Recall inexact Newton methods with inner and outer iteration formally writ-
ten as (dropping the inner iteration index i)

F ′(xk)δxk = −F (xk) + rk , xk+1 = xk + δxk , k = 0, 1, . . . . (2.85)

In what follows, we will work out details for GMRES as inner iteration (see
Section 1.4.1). For ease of presentation, we fix the initial values

δxk
0 = 0 and rk0 = F (xk) ,

which, during the inner iteration (i = 0, 1, . . .), implies in the generic case
that

ηi =
‖rki ‖
‖F (xk)‖ ≤ 1 and ηi+1 < ηi , if ηi �= 0 .

In what follows, we will denote the final value obtained from the inner itera-
tion in each outer iteration step k by ηk, again dropping the inner iteration
index i.

Convergence analysis. For the inexact Newton-GMRES iteration, we may
state the following convergence theorem.

Theorem 2.17 Let F : D → Rn, F ∈ C1(D), D ⊂ Rn convex. Let x0 ∈ D
denote a given starting point for an inexact Newton iteration (2.85). Assume
the affine contravariant Lipschitz condition
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)
(y − x)∥∥ ≤ ω‖F ′(x)(y − x)‖2

for 0 ≤ ω <∞ , and x, y ∈ D .

Let the level set L0 :=
{
x ∈ Rn| ‖F (x)‖ ≤ ‖F (x0)‖} ⊆ D be compact. For

each well-defined iterate xk ∈ D define hk := ω‖F (xk)‖. Then the outer
residual norms can be bounded as

‖F (xk+1)‖ ≤ (ηk + 1
2 (1− η2

k)hk

) ‖F (xk)‖ . (2.86)

The convergence rate can be estimated as follows:

I. Linear convergence mode. Assume that the initial guess xo gives rise
to

h0 < 2 .

Then some Θ in the range h0/2 < Θ < 1 can be chosen. Let the inner GMRES
iteration be controlled such that

ηk ≤ Θ − 1
2hk . (2.87)

Then the Newton-GMRES iterates {xk} converge at least linearly to some so-
lution point x∗ ∈ L0 at an estimated rate

‖F (xk+1)‖ ≤ Θ‖F (xk)‖ .

II. Quadratic convergence mode. If, for some ρ > 0, the initial guess x0

guarantees that
h0 < 2/(1 + ρ)

and the inner iteration is controlled such that
ηk

1− η2
k

≤ 1
2ρhk , (2.88)

then the convergence is quadratic at an estimated rate

‖F (xk+1)‖ ≤ 1
2ω(1 + ρ)(1 − η2

k)‖F (xk)‖2 . (2.89)

Proof. Proceeding as in earlier proofs, we obtain

‖F (xk+1)‖ = ‖
1∫
0

(
F ′(xk + tδxk)− F ′(xk)

)
δxkdt+ rk‖

≤
1∫
0

∥∥(F ′(xk + tδxk)− F ′(xk)
)
δxk
∥∥dt+ ‖rk‖

≤ 1
2ω‖F (xk)− rk‖2 + ‖rk‖ .

By use of (1.20), this is seen to be just (2.86). Under the assumption (2.87)
with Θ < 1 and ηk < 1 from GMRES, we obtain
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‖F (xk+1)‖ ≤ Θ‖F (xk)‖
and by repeated induction

{xk} ⊂ L0 ⊂ D ,
from which the convergence to x∗ ∈ L0 is concluded. Quadratic convergence
as in (2.89) is shown by mere insertion of (2.88) into (2.86). �

Convergence monitor. Throughout the inexact Newton iteration we will
check for residual monotonicity

Θk :=
‖F (xk+1)‖
‖F (xk)‖ ≤ Θ < 1 , k = 0, 1, . . . ,

introducing certain default parameters Θ in accordance with the above The-
orem 2.17. We will regard an iteration as divergent, whenever Θk ≥ Θ holds.

Termination criterion. As in the exact Newton iteration, the finally ac-
cepted iterate x̂ is required to satisfy

‖F (x̂)‖ ≤ FTOL

with FTOL a user prescribed residual error tolerance.

Standard convergence mode. If ηk ≤ η̄ < 1 is prescribed by the user,
then (2.86) implies that Θk → η̄ and asymptotic linear convergence occurs—
as already shown in the early pioneering paper [51].

Quadratic convergence mode. Assume that for k = 0 some value η0 is
prescribed; from numerical experiments, we know that this value should be
sufficiently small—compare, e.g., Table 8.3 in Section 8.2 below. For k ≥ 0,
(2.89) suggests the a-posteriori estimate

[hk]2 :=
2Θk

(1 + ρ)(1 − η2
k)
≤ hk

and, since hk+1 = Θkhk, also the a-priori estimate:

[hk+1] := Θk[hk]2 ≤ hk+1 .

For k > 0, shifting the index k + 1 now back to k, we therefore require that

ηk

1− η2
k

≤ 1
2ρ[hk] ≤ 1

2ρhk , (2.90)

which can be assured in the course of the iterative computation of δxk and
rk. For the parameter ρ some value ρ ≈ 1 seems to be appropriate. Note that
asymptotically this choice leads to ηk → ρ[hk]→ 0.
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Linear convergence mode. Once the local contraction factor Θk is suffi-
ciently below some prescribed value Θ, we may switch to the linear conver-
gence mode described in the above Theorem 2.17. Careful examination of the
proof shows that

‖F (xk+1)− rk‖ ≤ ω
2
‖F (xk)− rk‖2 = 1

2 (1− η2
k)hk‖F (xk)‖ .

From this we may derive the a-posteriori estimate

[hk]1 :=
2‖F (xk+1)− rk‖
(1− η2

k)‖F (xk)‖ ≤ hk

and, since hk+1 = Θkhk, also the a-priori estimate

[hk+1] := Θk[hk]1 ≤ hk+1 .

As a preparation of the next Newton step, we define

ηk+1 = Θ − 1
2 [hk+1]

in terms of the above a-priori estimate. If this value is smaller than the
value obtained from (2.90), then we continue the iteration in the quadratic
convergence mode. Else, we realize the linear convergence mode in Newton
step k + 1 with some

ηk+1 ≤ ηk+1 .

Asymptotically, this strategy leads to ηk+1 → Θ.

Preconditioning. In order to speed up the inner iteration, preconditioning
from the left or/and from the right may be used. This means solving(

CLF
′(xk)CR

) (
C−1

R δxk
)

= CL

(−F (xk) + rk
)

instead of (2.85). In such a case, the norm of the preconditioned residuals r̄k =
CLr

k is minimized in GMRES, whereas CR only affects the rate of convergence
via the Krylov subspace

Ki(r̄0, A) with A = CLF
′(xk)CR .

Consequently, the above strategy should be based on the contraction factors

Θk =
‖CLF (xk+1)‖2
‖CLF (xk)‖2

for the outer iteration. Note, however, that CL should not depend on the
iterate xk in this theoretical setting.
If strict residual minimization is aimed at, then only right preconditioning
should be implemented (i.e., CL = I).
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The here described local Newton-GMRES algorithm is part of the global New-
ton code GIANT-GMRES, which will be described in Section 3.2.3 below.
Remark 2.2 If GMRES were replaced by some other residual norm reducing
(but not minimizing) iterative linear solver, then a similar accuracy matching
strategy can be worked out (left as Exercise 2.9).

Bibliographical Note. The concept of local inexact Newton methods—
sometimes also called truncated Newton methods—seems to have first been
published in 1982 by R.S. Dembo, S.C. Eisenstat, and T. Steihaug [51]; they
presented an asymptotic analysis in terms of the residuals. In 1981, R.E. Bank
and D.J. Rose [19] worked out details of an inexact Newton algorithm on the
basis of residual control including certain algorithmic heuristics. In 1996,
S.C. Eisenstat and H.F. Walker [91] suggested a further strategy to choose
the ηk, which they call ‘forcing terms’; their strategy is also based on conver-
gence analysis results, but different from the one presented here.

2.3 Convex Optimization

In this section we consider the problem of minimizing a strictly convex func-
tional f : D ⊂ Rn −→ R1. Then F (x) = f ′(x)T is a gradient mapping and
F ′(x) = f ′′(x) is symmetric positive definite. We want to solve F (x) = 0, a
system of n nonlinear equations, by local Newton methods. The convergence
analysis will start from affine conjugate Lipschitz conditions of the type (1.9)
and lead to results in terms of iterative functional values and energy norms
of corrections or errors.

2.3.1 Ordinary Newton method

Recall the ordinary Newton method in the notation (k = 0, 1, . . .)

F ′(xk)Δxk = −F (xk) , xk+1 = xk +Δxk .

Convergence analysis. We analyze its convergence behavior in terms of
iterative values of the functional to be minimized and energy norms of the
Newton corrections. Thus we arrive at an affine conjugate variant of the
Newton-Mysovskikh theorem.

Theorem 2.18 Let f : D → R1 be a strictly convex C2-functional to be
minimized over some open and convex domain D ⊂ Rn. Let F (x) = f ′(x)T

and F ′(x) = f ′′(x), which is symmetric and assumed to be strictly positive
definite. Assume that the following affine conjugate Lipschitz condition holds:
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(
F ′(y)− F ′(x)

)
(y − x)∥∥ ≤ ω‖F ′(x)1/2(y − x)‖2 (2.91)

for collinear x, y, z ∈ D with 0 ≤ ω < ∞. For the initial guess x0 assume
that

h0 = ω‖F ′(x0)1/2Δx0‖ < 2 (2.92)

and that the level set L0 := {x ∈ D |f(x) ≤ f(x0)} is compact. Then the
ordinary Newton iterates remain in L0 and converge to the minimum point
x∗ at a rate estimated by

‖F ′(xk+1)1/2Δxk+1‖ ≤ 1
2ω‖F ′(xk)1/2Δxk‖2 (2.93)

or, with εk := ‖F ′(xk)1/2Δxk‖2 and hk := ω‖F ′(xk)1/2Δxk‖, by

− 1
6hkεk ≤ f(xk)− f(xk+1)− 1

2εk ≤ 1
6hkεk

1
6εk ≤ f(xk)− f(xk+1) ≤ 5

6εk .
(2.94)

The distance to the minimum can be bounded as

f(x0)− f(x∗) ≤
5
6ε0

1− h0/2
.

Proof. With the Lipschitz condition (2.91) for z = xk+1, y = xk + tΔxk,
x = xk, the result (2.93), which is equivalent to hk+1 ≤ h2

k/2, is proven just
as before in Theorem 2.2. The fact that xk+1 ∈ L0 can be seen by applying
the same technique as in the proof of Theorem 2.12 above. To derive (2.94),
we verify that

f(xk+1)− f(xk) + 1
2‖F ′(xk)1/2Δxk‖2 =

1∫
s=0

s
1∫

t=0

〈
Δxk, w

〉
dtds ,

where w =
(
F ′(xk + stΔxk)− F ′(xk)

)
Δxk

(2.95)

with 〈·, ·〉 the Euclidean inner product. The integrand term is estimated as

〈Δxk , w 〉 ≤ |〈F ′(xk)1/2Δxk , F ′(xk)−1/2w 〉|
≤ ‖F ′(xk)1/2Δxk‖ · ωst‖F ′(xk)1/2Δxk‖2

by the Cauchy-Schwarz inequality and (2.91) with x = z = xk, y = xk +
stΔxk. With hk < 2 this is the left side of (2.94). Consequently, the iterates
converge to x∗. Note that x∗ is anyway unique in D under the assumptions
made.
In order to obtain the right hand side of (2.94), we go up to (2.95), but this
time apply Cauchy-Schwarz in the other direction, which yields:

0 ≤ f(xk)− f(xk+1) ≤ ( 1
2 + 1

6hk

) ‖F ′(xk)1/2Δxk‖2 < 5
6εk .
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Summing over all k = 0, 1, . . . we get

0 ≤ ω2
(
f(x0)− f(x∗)) ≤ ∞∑

k=0

(
1
2h

2
k + 1

6h
3
k

)
< 5

6

∞∑
k=0

h2
k .

By using
1
2hk+1 ≤

(
1
2hk

)2 ≤ 1
2hk < 1

the right hand upper bound can be further treated to obtain

(1
2h0)2 + (1

2h1)2 + · · · ≤ (1
2h0)2 + (1

2h0)4 + (1
2h1)4 + · · ·

< 1
4h

2
0

∞∑
k=0

(1
2h0)k =

1
4h

2
0

1− 1
2h0

,

so that

ω2
(
f(x0)− f(x∗)) < 5

6h
2
0

1− 1
2h0

.

This is the last statement of the theorem. �

Convergence monitor. We now study the consequences of the above con-
vergence theorem for actual implementation. Let εk, Θk be defined as

εk = ‖F ′(xk)1/2Δxk‖22 = |〈F (xk), Δxk〉| , Θk =
(
εk+1

εk

)1/2

.

Then the basic convergence result is

Θk =
hk+1

hk
≤ 1

2hk < 1

and
f(xk+1)− f(xk) < − 1

6εk .

For k = 0, we must have
Θ0 < 1

to assure that x0 is within the local convergence domain. For k > 0, in a
similar way as in the two cases before, we derive the approximate recursion
(k = 0, 1, . . .)

Θk+1 ≈ Θ2
k < Θ0 < 1 .

From this, we may terminate the iteration as ‘divergent’ whenever

f(xk+1)− f(xk) ≥ − 1
6εk

or, since this criterion is prone to suffer from rounding errors, either

Θk ≥ Θ0 (k > 0),

or

Θk+1 ≥ Θ2
k

Θ0
.
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Termination criterion. We may terminate the iteration whenever either

εk ≤ ETOL2

or, recalling that asymptotically

f(xk+1)− f(xk) .= − 1
2εk ,

whenever
f(xk)− f(xk+1) ≤ 1

2 ETOL2

with ETOL a user prescribed energy error tolerance.

2.3.2 Simplified Newton method

Recall the notation of the simplified Newton iteration

F ′(x0)Δx
k

= −F (xk) , xk+1 = xk +Δx
k
, k = 0, 1, . . . .

Convergence analysis. We now want to study its functional minimiza-
tion properties, when the Jacobian matrix is kept throughout the Newton
iteration.

Theorem 2.19 Let f : D → R1 be a strictly convex C2-functional to be
minimized over some convex domain D ⊂ Rn. Let F (x) = f ′(x)T and
F ′(x) = f ′′(x), which is then symmetric positive definite. Let x0 ∈ D be
some given starting point for a simplified Newton iteration. Assume that the
following affine conjugate Lipschitz condition holds:

‖F ′(x0)−1/2(F ′(z)− F ′(x0))v‖ ≤ ω‖F ′(x0)1/2(z − x0)‖ · ‖F ′(x0)1/2v‖
for z ∈ D. Let

h0 := ω‖F ′(x0)1/2Δx
0‖ ≤ 1

2

and define t∗ = 1 − √1− 2h0. Then, with εk := ‖F ′(x0)1/2Δx
k‖2, the sim-

plified Newton iteration converges to some x∗ with

ω‖x∗ − x0‖ ≤ t∗ .
The convergence rate can be estimated in terms of the functional by

− 1
6εk(tk+1 + 2tk) ≤ f(xk)− f(xk+1)− 1

2εk ≤ 1
6εk(tk+1 + 2tk) (2.96)

or in terms of energy norms of the simplified Newton corrections by

Θk =
(
εk+1

εk

)1/2

≤ 1
2 (tk+1 + tk) ,

wherein {tk} is defined from t0 = 0 and

tk+1 = h0 + 1
2 t

2
k < t

∗ , k = 0, 1, . . . .
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Proof. The proof is similar to the previous proofs of Theorem 2.5 and The-
orem 2.13 and will therefore only be sketched here. With the definition for
εk and the majorants

ω‖F ′(x0)1/2(xk − x0)‖ ≤ tk , ω‖F ′(x0)1/2Δx
k‖ ≤ hk

we obtain for the functional decrease

f(xk+1)− f(xk) + 1
2εk =

=
1∫

s=0

s
1∫

t=0

〈
Δx

k
,
(
F ′(xk + tsΔx

k
)− F ′(x0)

)
Δx

k
〉
dtds

≤ ωεk
1∫

s=0

s
1∫

t=0

(
(1− ts)‖F (x0)1/2(xk − x0)‖ +

+ ts‖F ′(x0)1/2(xk+1 − x0)‖) dtds
≤ 1

6εk(tk+1 + 2tk) .

This is the basis for (2.96). The energy norm contraction factor arises as

Θk =
(
εk+1

εk

)1/2

≤ 1
2 (tk + tk+1) =:

hk+1

hk
.

With t0 = 0, tk+1 = tk + hk and the usual ‘Ortega trick’ the results above
are essentially established. �

Convergence monitor. For actual computation, we also have

Θ0 ≤ 1
2h0 ≤ 1

4 .

Note that for the simplified Newton iteration, the asymptotic property
f(x∗) − f(xk) ≈ 1

2 εk does not hold—compare (2.96). Mutatis mutandis, es-
sentially just replacing norms by energy norms in the contraction factors Θk,
the techniques already worked out in Section 2.1.2 carry over.

Termination criterion. This also can be directly copied from Section 2.1.2
with the proper replacement of norms by energy norms.

2.3.3 Inexact Newton-PCG method

We next study inexact Newton methods (dropping, as usual, the inner iter-
ation index i)

F ′(xk)(δxk −Δxk) = rk , xk+1 = xk + δxk , k = 0, 1, . . . . (2.97)

In the context of (strictly) convex optimization the Jacobian matrices can be
assumed to be symmetric positive definite, so that the outstanding candidate
for an inner iteration will be the preconditioned conjugate gradient (PCG).
Throughout this section we set δxk

0 = 0.
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Convergence analysis. For the purpose of our analysis below, we recall
the following orthogonality condition, which is equivalent to condition (1.21)
independent of the selected preconditioner:

〈δxk, F ′(xk)(δxk −Δxk)〉 = 〈δxk, rk〉 = 0 . (2.98)

As before, Δxk denotes the associated exact Newton correction. After these
preparations, we are now ready to derive a Newton-Mysovskikh type theorem,
which meets our above affine conjugacy requirements.

Theorem 2.20 Let f : D → R be a strictly convex C2-functional to be
minimized over some open and convex domain D ⊂ Rn. Let F ′(x) := f ′′(x)
be symmetric positive definite and let ‖ · ‖ denote the Euclidean vector norm.
In the above introduced notation assume the existence of some ω < ∞ such
that the following affine conjugate Lipschitz condition holds for collinear x,
y, z ∈ D:∥∥F ′(z)−1/2

(
F ′(y)− F ′(x)

)
v
∥∥ ≤ ω∥∥F ′(x)1/2(y − x)∥∥ · ∥∥F ′(x)1/2v

∥∥ .
Consider an inexact Newton-PCG iteration (2.97) satisfying (2.98) and started
with δxk

0 = 0. At any well-defined iterate xk, define the exact Newton terms

εk := ‖F ′(xk)1/2Δxk‖2 and hk := ω ‖F ′(xk)1/2Δxk‖
and, subject to inner iteration errors characterized by

δk :=
‖F ′(xk)1/2(δxk −Δxk)‖

‖F ′(xk)1/2δxk‖ ,

the associated inexact Newton terms

εδk := ‖F ′(xk)1/2δxk‖2 =
εk

1 + δ2k
and hδ

k := ω ‖F ′(xk)1/2δxk‖ =
hk√
1 + δ2k

.

For a given initial guess x0 ∈ D assume that the level set L0 :=
{x ∈ D | f(x) ≤ f(x0)} is closed and bounded. Then the following results
hold:

I. Linear convergence mode. Assume that x0 satisfies

h0 < 2Θ < 2 (2.99)

for some Θ < 1. Let δk+1 ≥ δk throughout the inexact Newton iteration.
Moreover, let the inner iteration be controlled such that

ϑ(hδ
k, δk) :=

hδ
k + δk

(
hδ

k +
√

4 + (hδ
k)2
)

2
√

1 + δ2k
≤ Θ , (2.100)
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which assures that

δk ≤ Θ/
√

1−Θ2
. (2.101)

Then the iterates xk remain in L0 and converge at least linearly to the min-
imum point x∗ ∈ L0 such that

‖F ′(xk+1)1/2Δxk+1‖ ≤ Θ ‖F ′(xk)1/2Δxk‖ (2.102)

and
‖F ′(xk+1)1/2δxk+1‖ ≤ Θ ‖F ′(xk)1/2δxk‖ .

II. Quadratic convergence mode. Let for some ρ > 0 the initial iterate
x0 satisfy

hδ
0 <

2
1 + ρ

(2.103)

and the inner iteration be controlled such that

δk ≤ ρhδ
k

hδ
k +

√
4 + (hδ

k)2
, (2.104)

which requires that
δ0 <

ρ

1 +
√

1 + (1 + ρ)2
. (2.105)

Then the inexact Newton iterates xk remain in L0 and converge quadratically
to the minimum point x∗ ∈ L0 such that

‖F ′(xk+1)1/2Δxk+1‖ ≤ (1 + ρ)
ω

2
‖F ′(xk)1/2Δx‖2 (2.106)

and
‖F ′(xk+1)1/2δxk+1‖ ≤ (1 + ρ)

ω

2
‖F ′(xk)1/2δx‖2 . (2.107)

III. Functional descent. The convergence in terms of the functional can
be estimated by

− 1
6h

δ
kε

δ
k ≤ f(xk)− f(xk+1)− 1

2ε
δ
k ≤ 1

6h
δ
kε

δ
k . (2.108)

Proof. For the purpose of repeated induction, let Lk denote the level set
defined in analogy to L0. First, in order to show that xk+1 ∈ Lk, we start
from the identity

f(xk + λδxk)− f(xk) +
(
λ− 1

2λ
2
)
εδk

=

λ∫
s=0

s

λ∫
t=0

〈
δxk, (F ′(xk + stδxk)− F ′(xk)) δxk

〉
dt ds+ 〈δxk, rk〉 .
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The second right hand term vanishes due to (2.98). The energy product in
the first term can be bounded as

〈δxk, . . . 〉 ≤ ‖F ′(xk)1/2δxk‖ ωst‖F ′(xk)1/2δxk‖2 = sthδ
kε

δ
k .

For the purpose of repeated induction, let hk < 2 and εk �= 0, which then
implies that

f(xk + λδxk) ≤ f(xk) +
(

1
3λ

3 + 1
2λ

2 − λ) εδk < f(xk) for λ ∈ ]0, 1] .

Therefore, the assumption xk + δxk /∈ Lk would lead to a contradiction for
some λ ∈ ]0, 1].
For λ = 1, we get the left hand side of (2.108). Applying the Cauchy-Schwarz
inequality in the other direction also yields the right hand side.
In order to monitor the behavior of the Kantorovich type quantities hk, we
estimate the local energy norms as

‖F ′(xk+1)1/2Δxk+1‖
≤
∥∥∥∥F ′(xk+1)−1/2

(
1∫

t=0

(
F ′(xk + tδxk)− F ′(xk)

)
δxkdt+ rk

)∥∥∥∥
≤ 1

2ω
∥∥F ′(xk)1/2δxk‖2 + ‖F ′(xk+1)−1/2rk‖ .

With z = δxk−Δxk, the second right hand term can be estimated implicitly
by

‖F ′(xk+1)−1/2rk‖2 ≤ ‖F ′(xk)1/2z‖2 + hδ
k‖F ′(xk)1/2z‖ ‖F ′(xk+1)−1/2rk‖ ,

which leads to the explicit bound

‖F ′(xk+1)−1/2rk‖ ≤ 1
2

(
hδ

k +
√

4 +
(
hδ

k

)2) ‖F ′(xk)1/2z‖ .

Summarizing, we obtain the contraction factor bound

Θk :=
‖F ′(xk+1)1/2Δxk+1‖
‖F ′(xk)1/2Δxk‖ ≤ ϑ(hδ

k, δk) . (2.109)

Herein linear convergence shows up via (2.100) and (2.102). The result (2.101)
is obtained with hk = 0. Obviously, hk < 2Θ is necessary to obtain Θk ≤ Θ
for some Θ < 1. As for the contraction of the inexact corrections, we apply
δk+1 ≥ δk and (1.26) to show that

‖F ′(xk+1)1/2δxk+1‖
‖F ′(xk)1/2δxk‖ =

√
1 + δ2k

1 + δ2k+1

Θk ≤ Θk ≤ Θ .

Hence, we may complete the induction and conclude that the iterates xk

converge to x∗.
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As for quadratic convergence, we impose condition (2.104) within (2.109) to
obtain

‖F (xk+1)1/2Δxk+1‖
‖F ′(xk)1/2Δxk‖ ≤ 1

2
√

1 + δ2k

(
hδ

k + δk(hδ
k +

√
4 + (hδ

k)2
)

≤ 1
2 (1 + ρ)hδ

k ,

which, for hδ
k ≤ hk ≤ h0 assures the convergence relations (2.106) under the

assumption (2.99). Upon inserting (2.103) into (2.104) we immediately verify
(2.105). For the inexact corrections, we have equivalently

‖F (xk+1)1/2δxk+1‖
‖F ′(xk)1/2δxk‖ ≤ 1

2
√

1 + δ2k+1

(
hδ

k + δk(hδ
k +

√
4 + (hδ

k)2
)

≤ 1
2 (1 + ρ)hδ

k < 1 ,

which then assures the convergence relations (2.107). This finally completes
the proof. �

Convergence monitor. Assume now that we have a reasonable (and cheap)
estimate of the relative energy norm errors δk available from the inner PCG
iteration. A new iterate xk+1 might be accepted whenever either

f(xk+1)− f(xk) ≤ − 1
6εk = − 1

6 (1 + δ2k)εδk .

or, as a slight generalization of the situation of Theorem 2.20, the inexact
monotonicity criterion

Θk :=
(
εk+1

εk

)1/2

=

(
(1 + δ2k+1)ε

δ
k+1

(1 + δ2k)εδk

)1/2

≤ Θk < 1

holds. We will regard the outer iteration as divergent, if none of the above
criteria is met.

Termination criteria. We will terminate the iteration whenever

εk = (1 + δ2k)εδk ≤ ETOL2 or f(xk)− f(xk+1) ≤ 1
2 ETOL2 . (2.110)

Standard convergence mode. If we just impose the inner iteration termi-
nation criterion δk ≤ δ̄ for some fixed default value δ̄, we obtain asymptotic
linear convergence. If we set Θ = 1

2 , then (2.101) induces δ̄ <
√

3/3. As in the
other two cases, we recommend δ̄ = 1/4 to assure at least two binary digits.
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Quadratic convergence mode. Assume that [h0] < 2/(1 + ρ) for ρ = 1.
Let δ0 be given, say δ0 = 1/4 in agreement with (2.105). As for the adaptive
termination of the inner iteration within the inexact local Newton method,
we want to satisfy condition (2.104). Following our general paradigm, we will
replace the unavailable upper bound therein by the computationally available
condition in terms of computational estimates [hk] such that

δk ≤ ρ [hδ
k]

[hδ
k] +

√
4 + [hδ

k]2
. (2.111)

Since the above right hand side is a monotone increasing function of [hk], the
relation [hk] ≤ hk implies that the theoretical condition (2.104) is actually as-
sured whenever (2.111) holds. Following our basic paradigm (compare Section
1.2), we apply (2.108) and define the computational a-posteriori estimates

[hδ
k]2 =

6
εδk
|f(xk+1)− f(xk) + 1

2 ε
δ
k| , [hk]2 =

√
1 + δ2k[hδ

k]2 .

From this, shifting the index k + 1 back to k, we may define the a-priori
estimate

[hk] = Θk−1[hk−1]2, (2.112)

which we insert into (2.111) to obtain a simple implicit scalar equation for
δk.
Note that δk → 0 is forced when k →∞. In words: the closer the iterates come
to the solution point, the more work needs to be done in the inner iteration
to assure quadratic convergence of the outer iteration.

Linear convergence mode. Once the local contraction factor Θk is suffi-
ciently below some prescribed value Θ, we may switch to the linear conver-
gence mode described by the above Theorem 2.20. As for the termination of
the inner iteration, we would like to assure condition (2.100), briefly recalled
as

ϑ(hδ
k, δk) ≤ Θ .

Since the above quantity ϑ is unavailable, we will replace it by the computa-
tionally available estimate

[ϑ(hδ
k, δk)] := ϑ([hδ

k], δk) ≤ ϑ(hδ
k, δk) .

For k > 0, we may again insert the a-priori estimate (2.112) above. In any
case, we will run the inner iteration until the actual δk satisfies either con-
dition (2.100) for the linear convergence mode or condition (2.111) for the
quadratic convergence mode. Whenever Θk ≥ 1 occurs, then we switch to
some global variant of this local inexact Newton method—see Section 3.4.3.
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Note that asymptotically

δk → Θ/

√
1−Θ2

as k →∞ . (2.113)

In other words: the closer the iterates come to the solution point, the less
work is necessary within the inner iteration to assure linear convergence of
the outer iteration.
The here described local inexact Newton algorithm for convex optimization
is part of the global inexact Newton code GIANT-PCG worked out in detail in
Section 3.4.3 below.

Bibliographical Note. The presentation in this chapter is a finite di-
mensional restriction of the affine conjugate convergence theory and the cor-
responding algorithmic concepts given by P. Deuflhard and M. Weiser [84]
for nonlinear elliptic PDEs. Our here developed inexact Newton-PCG algo-
rithm may be regarded as a competitor to nonlinear CG methods—both to
the variant [93] due to R. Fletcher and C.M. Reeves and to the one due to
E. Polak and R. Ribière [169, Section 2.3]. For the application of nonlinear
CG to discrete partial differential equations see, e.g., the lecture notes [102] by
R. Glowinski; from this perspective, our Newton-PCG method may be viewed
as a nonlinear CG variant with Jacobian savings in a firm theoretical frame.

Exercises

Exercise 2.1 Derive the computational complexity bounds (2.71) in terms
of number of iterations from Theorem 2.12.

Exercise 2.2 Let M(x) denote a perturbed Jacobian matrix of the form
M(xk) = F ′(xk) + δM(xk). Derive a convergence theorem for a Newton-like
method based on Theorem 2.10.

Exercise 2.3 As an illustration of the not affine covariant classical Newton-
Mysovskikh theorem take X = Y = R2 and define

F (x) :=
(

x1 − x2

(x1 − 8)x2

)
.

Verify that here hF = αFβFγF < 2. The simple affine transformation

F → G :=
(

1 1
0 1

2

)
F

induces the associated quantities αG, βG, γG, hG. Once more, give best possi-
ble bounds and verify that now hG > 2! Finally, prove that the affine invariant
characterization from Theorem 2.2 yields h0 = αω � 2. Interpretation?



Exercises 105

Hint: One obtains hF = 0.762, hG = 2.159, h0 = 0.127.

Exercise 2.4 Theorem of H.B. Keller. Let F : D → Rn be a continuously
differentiable mapping with D ⊂ Rn convex. Suppose that F ′(x) is invertible
for each x ∈ D and satisfies the affine invariant Hölder continuity∥∥F ′(z)−1

(
F ′(y)− F ′(x)

)∥∥ ≤ ω‖y − x‖γ ,

where 0 < γ ≤ 1.

a) Prove a variant of the affine covariant Newton-Mysovskikh theorem
(Theorem 2.2).

b) Prove a variant of the affine covariant Newton-Kantorovich theorem
(Theorem 2.1).

Exercise 2.5 Theorem of L.B. Rall (improved by W.C. Rheinboldt). Let
F : D ⊆ Rn → Rn, D open convex. Assume that there exists a unique
solution x∗ ∈ D and that F ′(x∗) is invertible. Let∥∥F ′(x∗)−1

(
F ′(y)− F ′(x)

)∥∥ ≤ ω∗‖y − x‖ for x , y ∈ D
denote a special affine covariant Lipschitz condition. Let

S(x∗, ρ) := {x ∈ X | ‖x− x∗‖ < ρ} ⊂ D .
By introduction of the majorants

ω∗
∥∥xk − x∗∥∥ ≤ tk

prove that for any starting point x0 ∈ S(x∗, ρ) with ρ :=
2

3ω∗
, the ordinary

Newton iteration remains in S and converges to x∗. Give a convergence rate
estimate.

Exercise 2.6 For convex optimization there are three popular symmetric
Jacobian rank-2 updates

• Broyden-Fletcher-Goldfarb-Shanno (BFGS):

Jk+1 = Jk − FkF
T
k

δxT
k Jkδxk

+
(Fk+1 − Fk)(Fk+1 − Fk)T

(Fk+1 − Fk)T δxk
,

• Davidon-Fletcher-Powell (DFP):

Jk+1 = Jk +
Fk+1(Fk+1 − Fk)T + (Fk+1 − Fk)FT

k+1

(Fk+1 − Fk)T δxk
−

− FT
k+1δxk

((Fk+1 − Fk)T δxk)2
(Fk+1 − Fk)(Fk+1 − Fk)T ,
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• Powell’s symmetric Broyden (PSB):

Jk+1 = Jk +
Fk+1δx

T
k + δxkF

T
k+1

δxT
k δxk

− FT
k+1δxk

(δxT
k δxk)2

δxkδx
T
k .

a) Show that all updates satisfy the classical secant condition.
b) Which of these updates are defined in an affine conjugate way? For not

affine conjugate updates: design an appropriate scaling so that at least
scaling invariance is achieved.

c) Which of these updates can be interpreted as a least change secant up-
date? Derive the associated error concept.

Exercise 2.7 Rank-2 update formulas for convex optimization. We consider
several update formulas for convex optimization. Common basis for all these
updates is the classical secant condition

Jδxk = F (xk + δxk)− F (xk) = Fk+1 − Fk = δFk+1 .

a) Show that u and v in the general symmetric positive definite update
formula

J = (I − uvT )Jk(I − vuT )

cannot be specified such that both the secant condition is satisfied and
the update is of full rank 2.

b) Verify that this can be achieved by the comparable representation, the
DFP update:

Jk+1 =

(
I − δFk+1δx

T
k

(δFT
k+1δxk)

)
Jk

(
I − δxkδF

T
k+1

(δFT
k+1δxk)

)
+
δFk+1δF

T
k+1

(δFT
k+1δxk)

.

c) Verify that this can be also achieved by the inverse representation, the
BFGS update:

J−1
k+1 =

(
I − δxkδF

T
k+1

(δFT
k+1δxk)

)
J−1

k

(
I − δFk+1δx

T
k

(δFT
k+1δxk)

)
+

δxδxT
k

δFT
k+1δxk

.

Exercise 2.8 Recall the notation for quasi-Newton methods as given in
Section 2.1.4. With the majorant definitions

‖Δxk+1‖
‖Δxk‖ ≤ Θk <

1
2 , ‖Δxk‖ ≤ ek ,∥∥J−1

k

[
F ′(xk)− Jk

]∥∥ ≤ δk ,∥∥J−1
k [F ′(u)− F ′(v)]

∥∥ ≤ ωk ‖u− v‖ ,
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verify the following set of recursions:

δk+1 = [δk +Θk + ωkek]
/ (

1−Θk

)
,

ek+1 =
Θk

1−Θk
ek ,

ωk+1 =
ωk

1−Θk
,

Θk+1 = δk+1 + 1
2ωk+1ek+1 .

Under the additional assumption of ‘bounded deterioration’ in the form

δk ≤ δ
derive a Kantorovich-type local convergence theorem. Why is such a theorem
unsatisfactory?

Exercise 2.9 Consider a residual based inexact Newton method, where the
inner iteration is done by some residual norm reducing, but not minimizing,
iterative solver—like the ‘bad’ Broyden algorithm BB for linear systems as
described in [74]. Then the contraction results (2.86), which hold for the
residual minimizer GMRES, must be replaced.

a) Show the alternative contraction result

Θk ≤ ηk + 1
2 (1 + ηk)2hk .

b) For the Kantorovich quantities hk, find cheap and reliable a-posteriori
and a-priori computational estimates [hk] ≤ hk.

c) Design accuracy matching strategies (standard, linear, and quadratic con-
vergence mode) similar to those worked out for GMRES in Section 2.2.4.

Exercise 2.10 Consider two Newton sequences {xk}, {yk} starting at dif-
ferent initial guesses x0, y0 and continuing as

xk+1 = xk +Δxk , yk+1 = yk +Δyk ,

where Δxk, Δyk are the corresponding ordinary Newton corrections. Upon
using the affine covariant Lipschitz condition

‖F ′(u)−1 (F ′(v) − F ′(w)) u‖ ≤ ω‖v − w‖‖u‖
verify the nonlinear perturbation result

‖xk+1 − yk+1‖ ≤ ω ( 1
2‖xk − yk‖+ ‖Δxk‖) ‖xk − yk‖ .

Is the result invariant under x↔ y?
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