
1 Introduction

This chapter is an elementary introduction into the general theme of this
book. We start from the historical root, Newton’s method for scalar equations
(Section 1.1): the method can be derived either algebraically, which leads to
local Newton methods only (see Chapter 2), or geometrically, which leads to
global Newton methods via the topological Newton path (see Chapter 3).
Section 1.2 contains the key to the basic understanding of this monograph.
First, four affine invariance classes are worked out, which represent the four
basic strands of this treatise:

• affine covariance, which leads to error norm controlled algorithms,
• affine contravariance, which leads to residual norm controlled algorithms,
• affine conjugacy, which leads to energy norm controlled algorithms, and
• affine similarity, which may lead to time step controlled algorithms.

Second, the affine invariant local estimation of affine invariant Lipschitz con-
stants is set as the central paradigm for the construction of adaptive Newton
algorithms.
In Section 1.3, we fix terms for various Newton-type methods to be named
throughout the book: ordinary and simplified Newton method, Newton-like
methods, inexact Newton methods, quasi-Newton methods, quasilineariza-
tion, and inexact Newton multilevel methods.
In Section 1.4, details are given for the iterative linear solvers GMRES, PCG,
CGNE, and GBIT to an extent necessary to match them with finite dimensional
inexact Newton algorithms. In view of function space oriented inexact Newton
algorithms, we also revisit multiplicative, additive, and cascadic multigrid
methods emphasizing the role of adaptive error control therein.

1.1 Newton-Raphson Method for Scalar Equations

Assume we have to solve the scalar equation

f(x) = 0

with an appropriate guess x0 of the unknown solution x∗ at hand.

7P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance
lgorithms, Springer Series in Computational Mathematics 35,

DOI 10.1007/978-3-642-23899-4_1, © Springer-Verlag Berlin Heidelberg 201
and Adaptive A

1

8 1 Introduction

Algebraic approach. We use the perturbation

Δx = x∗ − x0

for Taylor’s expansion

0 = f(x0 +Δx) = f(x0) + f ′(x0)Δx+ O(|Δx|2).

Upon dropping terms of order higher than linear in the perturbation, we
arrive at the approximate equation

f ′(x0)Δx ≈ −f(x0),

which, assuming f ′(x0) �= 0, leads to the precise equation

x1 − x0 = Δx0 = − f(x
0)

f ′(x0)

for a first correction of the starting guess. From this, an iterative scheme is
constructed by repetition

xk+1 = Φ(xk) = xk − f(xk)
f ′(xk)

, k = 0, 1,

If we study the contraction mapping Φ in terms of a contraction factor Θ, we
arrive at

Θ = max
x∈I

Φ′(x) = max
x∈I

f(x)f
′′
(x)

(f ′(x))2

with I an appropriate interval containing x∗. From this, we have at least
linear convergence

|xk+1 − x∗| ≤ Θ|xk − x∗|
in a neighborhood of x∗, whereΘ < 1. In passing we note that this contraction
factor Θ remains unchanged, if we rescale the equation according to

αf(βy) = 0 , αβ �= 0 , x = βy .

An extension of this kind of observation to rather general nonlinear problems
will lead to fruitful theoretical and algorithmical consequences below. For
starting guesses x0 ‘sufficiently close’ to x∗ even quadratic convergence of the
iterates can be shown in the sense that

|xk+1 − x∗| ≤ C|xk − x∗|2 , k = 0, 1, 2

The algebraic derivation in terms of the linear perturbation treatment carries
over to rather general nonlinear problems up to operator equations such as
boundary value problems for ordinary or partial differential equations.

1.1 Newton-Raphson Method for Scalar Equations 9

Geometric approach. Looking at the graph of f(x)—as depicted in Fig-
ure 1.1—any root can be interpreted as the intersection of this graph with the
real axis. Since this intersection cannot be constructed other than by tedious
sampling of f , the graph of f(x) is replaced by its tangent p(x) in x0 and the
first iterate x1 is defined as the intersection of the tangent with the real axis.
Upon repeating this geometric process, the close-by solution point x∗ can be
constructed up to any desired accuracy. By geometric insight, the iterative
process will converge globally for convex (or concave) f—which includes the
case of arbitrarily ‘bad’ initial guesses as well! At first glance, this geometric
derivation seems to be restricted to the scalar case, since the graph of f(x)
is a typically one-dimensional concept. A careful examination of the subject
in more than one dimension, however, naturally leads to a topological path
called Newton path—see Section 3.1.4 below.

f

0

f(x0)

x0

x∗ x

Fig. 1.1. Geometric interpretation: Newton’s method for a scalar equation.

Historical Note. Strictly speaking, Newton’s method could as well be
named as Newton-Raphson-Simpson method—as elaborated in recent arti-
cles by N. Kollerstrom [134] or T.J. Ypma [203]. According to these careful
historical studies, the following facts seem to be agreed upon among the
experts:

• In the year 1600, Francois Vieta (1540–1603) had (first?) designed a per-
turbation technique for the solution of the scalar polynomial equations,
which supplied one decimal place of the unknown solution per step via the
explicit calculation of successive polynomials of the successive perturba-
tions. It seems that this method had also been detected independently by
al-Kāsh̄ı and simplified around 1647 by Oughtred.

• Isaac Newton (1643–1727) got to know Vieta’s method in 1664. Up to
1669 he had improved it by linearizing these successive polynomials. As an
example, he discussed the numerical solution of the cubic polynomial

f(x) := x3 − 2x− 5 = 0 .

10 1 Introduction

Newton first noted that the integer part of the root is 2 setting x0 = 2.
Next, by means of x = 2 + p, he obtained the polynomial equation

p3 + 6p2 + 10p− 1 = 0 .

Herein he neglected terms higher than first order and thus put p ≈ 0.1. He
inserted p = 0.1 + q and constructed the polynomial equation

q3 + 6.3q2 + 11.23q+ 0.061 = 0 .

Again he neglected terms higher than linear and found q ≈ −0.0054. Con-
tinuation of the process one more step led him to r ≈ 0.00004853 and
therefore to the third iterate

x3 = x0 + p+ q + r = 2.09455147 .

Note that the relations 10p − 1 = 0 and 11.23q + 0.061 = 0 given above
correspond precisely to

p = x1 − x0 = −f(x0)/f ′(x0)

and to
q = x2 − x1 = −f(x1)/f ′(x1) .

As the example shows, he had also observed that by keeping all deci-
mal places of the corrections, the number of accurate places would double
per each step—i.e., quadratic convergence. In 1687 (Philosophiae Naturalis
Principia Mathematica), the first nonpolynomial equation showed up: it is
the well-known equation from astronomy

x− e sin(x) = M

between the mean anomaly M and the eccentric anomaly x. Here Newton
used his already developed polynomial techniques via the series expansion
of sin and cos. However, no hint on the derivative concept is incorporated!

• In 1690, Joseph Raphson (1648–1715) managed to avoid the tedious com-
putation of the successive polynomials, playing the computational scheme
back to the original polynomial; in this now fully iterative scheme, he
also kept all decimal places of the corrections. He had the feeling that
his method differed from Newton’s method at least by its derivation.

• In 1740, Thomas Simpson (1710–1761) actually introduced derivatives
(‘fluxiones’) in his book ‘Essays on Several Curious and Useful Subjects
in Speculative and Mix’d Mathematicks, Illustrated by a Variety of Exam-
ples’. He wrote down the true iteration for one (nonpolynomial) equation
and for a system of two equations in two unknowns thus making the correct
extension to systems for the first time. His notation is already quite close
to our present one (which seems to go back to J. Fourier).

1.2 Newton’s Method for General Nonlinear Problems 11

Throughout this book, we will use the name ‘Newton-Raphson method’ only
for scalar equations. For general equations we will use the name ‘Newton
method’—even though the name ‘Newton-Simpson method’ would be more
appropriate in view of the just described historical background.

1.2 Newton’s Method for General Nonlinear Problems

In contrast to the preceding section, we now approach the general case. As-
sume we have to solve a nonlinear operator equation

F (x) = 0 ,

wherein F : D ⊂ X → Y for Banach spaces X, Y endowed with norms
‖ · ‖X and ‖ · ‖Y . Let F be at least once continuously differentiable. Suppose
we have a starting guess x0 of the unknown solutions x∗ at hand. Then
successive linearization leads to the general Newton method

F ′(xk)Δxk = −F (xk) , xk+1 = xk +Δxk , k = 0, 1, (1.1)

Obviously, this method attacks the solution of a nonlinear problem by solving
a sequence of linear problems of the same kind.

1.2.1 Classical convergence theorems revisited

A necessary assumption for the solvability of the above linear problems is
that the derivatives F ′(x) are invertible for all occurring arguments. For this
reason, standard convergence theorems typically require a-priori that the
inverse F ′(x)−1 exists and is bounded

‖F ′(x)−1‖Y →X ≤ β <∞ , x ∈ D , (1.2)

where‖ · ‖Y →X denotes an operator norm. From a computational point of
view, such a theoretical quantity β defined over the domain D seems to be
hard to get, apart from rather simple examples. Sampling of local estimates
like

‖F ′(x0)−1‖Y →X ≤ β0 (1.3)

seems to be preferable, but is still quite expensive. Moreover, a well-known
rule in Numerical Analysis states that the actual computation of inverses
should be avoided. Rather, such a condition should be monitored implicitly
in the course of solving linear systems with specific right hand sides.
In order to study the convergence properties of the above Newton iteration,
some second derivative information is needed, as already stated in the scalar
equation case (Section 1.1 above). The classical standard form to include this
information is via a Lipschitz condition of the type

12 1 Introduction

‖F ′(x)− F ′(x̄)‖X→Y ≤ γ‖x− x̄‖X , x, x̄ ∈ D . (1.4)

With this additional assumption, the operator perturbation lemma (some-
times also called Banach perturbation lemma) proves the existence of some
upper bound β such that

‖F ′(x)−1‖Y →X ≤ β ≤ β0

1− β0γ‖x− x0‖X

for
‖x− x0‖X <

1
β0γ

, x ∈ D .

The proof is left as Exercise 1.1. Classical convergence theorems for Newton’s
method use certain combinations of these assumptions.

Newton-Kantorovich theorem. This first classical convergence theorem
for Newton’s method in abstract spaces (see [127, 163]) requires assumptions
(1.3) and (1.4) to show existence and uniqueness of a solution x∗ as well as
quadratic convergence of the Newton iterates within a neighborhood charac-
terized by a so-called Kantorovich quantity

h0 := ‖Δx0‖X β0γ <
1
2

and a corresponding convergence ball around x0 with radius ρ0 ∼ 1/β0γ.
This theorem is also the standard tool to prove the classical implicit function
theorem—compare Exercise 1.2.

Newton-Mysovskikh theorem. This second classical convergence theo-
rem (see [155, 163]) requires assumptions (1.2) and (1.4) to show uniqueness
(not existence!) and quadratic convergence within a neighborhood character-
ized by the slightly different quantity

h0 := ‖Δx0‖X βγ < 2

and a corresponding convergence ball around x0 with radius ρ ∼ 1/βγ.
Both theorems seem to require the actual computation of the Lipschitz con-
stant γ. However, such a quantity is certainly hard if not hopeless to compute
in realistic nonlinear problems. Moreover, even computational local estimates
of β and γ are typically far off any use in practical applications. That is why,
for quite a time, people believed that convergence results are of theoretical
interest only, but not of any value for the actual implementation of Newton
algorithms. An illustrating simple example is given as Exercise 2.3.
This undesirable gap between convergence analysis and algorithm construc-
tion has been the motivation for the present book. As will become apparent,
the key to closing this gap is supplied by affine invariance in both convergence
theory and algorithmic realization.

1.2 Newton’s Method for General Nonlinear Problems 13

1.2.2 Affine invariance and Lipschitz conditions

In order to make the essential point clear enough, it is sufficient to regard
simply systems of nonlinear equations, which means that X = Y = Rn for
fixed dimension n > 1 and the same norm in X and Y . Recall Newton’s
method in the form

F ′(xk)Δxk = −F (xk), xk+1 = xk +Δxk k = 0, 1,

Scaling. In sufficiently complex problems, scaling or re-gauging of variables
(say, from km to miles) needs to be carefully considered. Formally speaking,
with preselected nonsingular diagonal scaling matrices DL, DR for left and
right scaling, we may write

(DLF
′(xk)DR)(D−1

R Δxk) = −DLF (xk)

for the scaled linear system. Despite its formal equivalence with (1.1), all
standard norms used in Newton algorithms must now be replaced by scaled
norms such that (dropping the iteration index k)

‖Δx‖ , ‖F‖ , ‖F +F ′(x)Δx‖ −→ ‖D−1
R Δx‖ , ‖DLF‖ , ‖DL(F +F ′(x)Δx)‖ .

With the change of norms comes a change of the criteria for the acceptance or
rejection of new iterates. The effect of scaling on the iterative performance of
Newton-type methods is a sheet lightning of the more general effects caused
by affine invariance, which are the topic of this book.

Affine transformation. Let A, B ∈ Rn×n be arbitrary nonsingular matri-
ces and study the affine transformations of the nonlinear system as

G(y) = AF (By) = 0 , x = By .

Then Newton’s method applied to G(y) reads

G′(yk)Δyk = −G(yk), yk+1 = yk +Δyk k = 0, 1,

With the relation
G′(yk) = AF ′(xk)B

and starting guess y0 = B−1x0 we immediately obtain

xk = Byk , k = 0, 1,

Obviously, the iterates are invariant under transformation of the image space
(by A)—an invariance property described by affine covariance. Moreover,
they are transformed just as the whole original space (by B)—a property
denoted by affine contravariance.
It is only natural to require that the above affine invariance properties are
inherited by any theoretical characterization. As it turns out, the inheritance
of the full invariance property is impossible. That is why we restrict our study
to four special invariance classes.

14 1 Introduction

Affine covariance. In this setting, we keep the domain space of F fixed
(B = I) and look at the whole class of problems

G(x) = AF (x) = 0

that is generated by the class GL(n) of nonsingular matrices A. The Newton
iterates are the same all over the whole class of nonlinear problems. For this
reason, an affine covariant theory about their convergence must be possible.
Upon revisiting the above theoretical assumptions (1.2), (1.3), and (1.4) we
now obtain

‖G′(x)−1‖ ≤ β(A) , ‖G′(x0)−1‖ ≤ β0(A) , ‖G′(x)−G′(x̄)‖ ≤ γ(A)‖x− x̄‖ .

Application of the classical convergence theorems then yields convergence
balls with radius, say

ρ(A) ∼ 1/β(A)γ(A) .

Compared with β(I), γ(I) we obtain (assuming best possible theoretical
bounds)

β(A) ≤ β(I)‖A−1‖ , γ(A) ≤ γ(I)‖A‖
and therefore

β(A)γ(A) ≤ β(I)γ(I) cond(A) . (1.5)

For n > 1 we have cond(A) ≥ 1, even unbounded for A ∈ GL(n). Obviously,
by a mean choice of A we can make the classical convergence balls shrink to
nearly zero!
Fortunately, careful examination of the proof of the Newton-Kantorovich the-
orem shows that assumptions (1.3) and (1.4) can be telescoped to the require-
ment

‖F ′(x0)−1
(
F ′(x)− F ′(x̄)

)‖ ≤ ω0‖x− x̄‖ , x, x̄, x0 ∈ D . (1.6)

The thus defined Lipschitz constant ω0 is affine covariant, since

G′(x0)−1
(
G′(x)−G′(x̄)

)
=

(
AF ′(x0)

)−1
A
(
F ′(x)− F ′(x̄)

)
= F ′(x0)−1

(
F ′(x) − F ′(x̄)

)
so that both sides of (1.6) are independent of A. This definition of ω0 (as-
sumed best possible) still has the disadvantage of containing an operator
norm on the left side—which, however, is unavoidable, because the operator
perturbation lemma is required in the proof. Examination of the Newton-
Mysovskikh theorem shows that assumptions (1.2) and (1.4) can also be
telescoped to an affine covariant Lipschitz condition, which this time only
contains vector norms (and directional derivatives):∥∥F ′(x)−1

(
F ′(x̄)− F ′(x)

)
(x̄− x)∥∥ ≤ ω‖x̄− x‖2 , x, x̄ ∈ D . (1.7)

1.2 Newton’s Method for General Nonlinear Problems 15

This assumption allows a clean affine covariant theory about the local
quadratic convergence of the Newton iterates including local uniqueness of
the solution x∗—see Section 2.1 below. Moreover, this type of theorem will
be the stem from which a variety of computationally useful convergence the-
orems branch off.
Summarizing, any affine covariant convergence theorems will lead to results
in terms of iterates {xk}, correction norms ‖Δxk‖ or error norms ‖xk − x∗‖.

Bibliographical Note. For quite a while, affine covariance held only in
very few convergence theorems for local Newton methods, among which are
Theorem 6. (1.XVIII) in the book of Kantorovich/Akhilov [127] from 1959,
part of the theoretical results by J.E. Dennis [52, 53], or an interesting early
paper by H.B. Keller [129] from 1970 (under the weak assumption of just
Hölder continuity of F ′(x)). None of these authors, however, seems to have
been fully aware of the importance of this invariance property, since all of
them neglected this aspect in their later work.
A systematic approach toward affine covariance, then simply called affine
invariance, has been started in 1972 by the author in his dissertation [59],
published two years later in [60]. His initial motivation had been to overcome
severe difficulties in the actual application of Newton’s method within mul-
tiple shooting—compare Section 7.1 below. In 1979, this approach has been
transferred to convergence theory in a paper by P. Deuflhard and G. Heindl
[76]. Following the latter paper, T. Yamamoto has preserved affine covariance
in his subtle convergence estimates for Newton’s method—see, e.g., his start-
ing paper [202] and work thereafter. Around that time H.G. Bock [29, 31, 32]
also joined the affine invariance crew and slightly improved the theoretical
characterization from [76]. The first affine covariant convergence proof for
inexact Newton methods is due to T.J. Ypma [203].

Affine contravariance. This setting is dual to the preceding one: we keep
the image space of F fixed (A = I) and consider the whole class of problems

G(y) = F (By) , x = By , B ∈ GL(n)

that is generated by the class GL(n) of nonsingular matrices B. Consequently,
a common convergence theory for the whole problem class will not lead to
statements about the Newton iterates {yk}, but only about the residuals
{F (xk)}, which are independent of any choice of B. Once more, the classical
conditions (1.2) and (1.4) can be telescoped, this time in image space terms
only: ∥∥(F ′(x̄)− F ′(x)

)
(x̄− x)∥∥ ≤ ω‖F ′(x)(x̄ − x)‖2 . (1.8)

Observe that both sides are independent of B, since, for example

G′(y)(ȳ − y) = F ′(x)B(ȳ − y) = F ′(x)(x̄ − x) .

16 1 Introduction

A Newton-Mysovskikh type theorem on the basis of such a Lipschitz condition
will lead to convergence results in terms of residual norms ‖F (xk)‖.

Bibliographical Note. The door to affine contravariance in the Lipschitz
condition has been opened by A. Hohmann in his dissertation [120] , wherein
he exploited it for the construction of a residual based inexact Newton method
within an adaptive collocation method for ODE boundary value problems—
compare Section 7.4 below.
At first glance, the above dual affine invariance classes seem to be the only
ones that might be observed in actual computation. At second glance, how-
ever, certain couplings between the linear transformationsA and B may arise,
which are discussed next.

Affine conjugacy. Assume that we have to solve the minimization problem

f(x) = min , f : D ⊂ Rn → R

for a functional f , which is convex in a neighborhood D of the minimum
point x∗. Then this problem is equivalent to solving the nonlinear equations

F (x) = gradf(x) = f ′(x)T = 0 , x ∈ D .
For such a gradient mapping F the Jacobian F ′(x) = f ′′(x) is symmetric
and certainly positive semi-definite. Moreover, assume that F ′(x) is strictly
positive definite so that F ′(x)1/2 can be defined. This also implies that f is
strictly convex. Upon transforming the minimization problem to

g(y) = f(By) = min , x = By ,

we arrive at the transformed equations

G(y) = BTF (By) = 0

and the transformed Jacobian

G′(y) = BTF ′(x)B , x = By .

The Jacobian transformation is conjugate, which motivates the name of this
special affine invariance. Due to Sylvester’s theorem (compare [151]), it con-
serves the index of inertia, so that all G′ are symmetric and strictly positive
definite. Affine conjugate theoretical terms are, of course, functional values
f(x) and, in addition, so–called local energy products

(u, v) = uTF ′(x)v , u, v, x ∈ D .
Just note that energy products are invariant under this kind of affine trans-
formation, since

1.2 Newton’s Method for General Nonlinear Problems 17

u, v, x→ ū = Bu, v̄ = Bv, x = By

implies
uTG′(y)v = ūTF ′(x)v̄ .

Local energy products induce local energy norms

‖F ′(x)1/2u‖2 = (u, u) = uTF ′(x)u , u, x ∈ D .
In this framework, telescoping the theoretical assumptions (1.2) and (1.4)
leads to an affine conjugate Lipschitz condition

‖F ′(x)−1/2
(
F ′(x̄)− F ′(x)

)
(x̄ − x)‖ ≤ ω‖F ′(x)1/2(x̄− x)‖2 . (1.9)

Affine conjugate convergence theorems will lead to results in terms of func-
tional values f(x) and energy norms of corrections ‖F ′(z)1/2Δxk‖ or errors
‖F ′(z)1/2(xk − x∗)‖.

Bibliographical Note. The concept of affine conjugacy dates back to
P. Deuflhard and M. Weiser, who, in 1997, defined and exploited it for the
construction of an adaptive Newton multilevel FEM for nonlinear elliptic
PDEs—see [84, 85] and Section 8.3.

Affine similarity. This invariance principle is more or less common in the
differential equation community—apart perhaps from the name given here.
Consider the case that the solution of the nonlinear system F (x) = 0 can be
interpreted as steady state or equilibrium point of the dynamical system

ẋ = F (x) . (1.10)

Arbitrary affine transformation

Aẋ = AF (x) = 0

here affects both the domain and the image space of F in the same way—
of course, differentiability with respect to time differs. The corresponding
problem class to be studied is then

G(y) = AF (A−1y) = 0 , y = Ax ,

which gives rise to the Jacobian transformation

G′(y) = AF ′(x)A−1 .

This similarity transformation (which motivates the name affine similarity) is
known to leave the Jacobian eigenvalues λ invariant. Note that a theoretical
characterization of stability of the equilibrium point involves their real parts
�(λ). In fact, an upper bound of these real parts, called the one-sided Lip-
schitz constant, will serve as a substitute of the Lipschitz constant of F , which

18 1 Introduction

is known to restrict the analysis to nonstiff differential equations. As an affine
similar representative, we may formally pick the (possibly complex) Jordan
canonical form J , known to consist of elementary Jordan blocks for each
separate eigenvalue. Let the Jacobian at any selected point x̂ be decomposed
such that

F ′(x̂) = T (x̂)J(x̂)T (x̂)−1 = TJT−1 ,

which implies
G′(ŷ) = AF ′(x)A−1 = (AT)J(AT)−1 .

Consequently, any theoretical results phrased in terms of the canonical norm

| · | := ‖T−1 · ‖

will meet the requirement of affine similarity. We must, however, remain aware
of the fact that numerical Jordan decomposition may be ill-conditioned ,
whenever eigenvalue clusters arise—a property, which is reflected in the size
of cond(T). With this precaution, an affine similar approach will be helpful
in the analysis of stiff initial value problems for ODE’s (see Chapter 6).
In contrast to the other invariance classes, note that here not only Newton’s
iteration exhibits the correct affine similar pattern, but also any fixed point
iteration of the type

xk+1 = xk + αkF (xk) ,

assuming the parameters αk are chosen by some affine similar criterion.
Hence, any linear combination of Newton and fixed point iteration may be
considered as well: this leads to an iteration of the type(

I − τF ′(xk)
)
(xk+1 − xk) = τF (xk) ,

which is nothing else than a linearly implicit Euler discretization of the above
ordinary differential equation (1.10) with timestep τ to be adapted. As worked
out in Section 6.4, such a pseudo-transient continuation method can be safely
applied only, if the equilibrium point is dynamically stable—a condition any-
way expected from geometrical insight. As a ‘first choice’, we then arrive at
the following Lipschitz condition

| (F ′(x̄)− F ′(x)) u| ≤ ω|x̄− x||u| .

Unfortunately, the canonical norm is computationally not easily available
and at the same time may suffer from ill-conditioning—reflected in the size
of cond(T). Therefore, upon keeping in mind that in affine similar problems
domain and image space of F have the same transformation behavior, we are
led to realize a ‘second best’ choice: we may switch from the canonical norm
| · | to the standard norm ‖ · ‖ thus obtaining a Lipschitz condition of the
structure

‖ (F ′(x̄)− F ′(x)) u‖ ≤ ω‖x̄− x‖ · ‖u‖ .

1.2 Newton’s Method for General Nonlinear Problems 19

However, in this way we lose the affine similarity property in the definition of
ω, which means we have to apply careful scaling at least. In passing, we note
that here the classical Lipschitz condition (1.4) arises directly from affine
invariance considerations; however, a bounded inverse assumption like (1.2)
is not needed in this context, but replaced by other conditions.

Scaling invariance. Scaling as discussed at the beginning of this section is
a special affine transformation. In general, we will want to realize a scaling
invariant algorithm, i.e. an algorithm that is invariant under the choice of
units in the given problem. Closer examination shows that the four different
affine invariance classes must be treated differently.
In an affine covariant setting, the formal assumption B = I will certainly
cover any fixed scaling transformation of the type B = D so that ‘dimension-
less’ variables

y = D−1x , D = diag(α1, . . . , αn) , αi > 0

are used at least inside the codes (internal scaling). For example, with com-
ponents x = (x1, . . . , xn), relative scaling could mean any a-priori choice like

αi = |x0
i | , if |x0

i | �= 0

or an iterative adaptation like

αk+1
i = max

{|xk
i | , |xk+1

i |} .
Whenever these choices guarantee αi > 0, then scaling invariance is assured:
to see this, just re-scale the components of x according to

xi −→ x̂i = βixi ,

which implies
αi −→ α̂i = βiαi

and leaves
yi =

x̂i

α̂i
=
xi

αi

unchanged. In reality, however, absolute threshold values αmin > 0 have to be
imposed in the form, say

ᾱi = max{αi, αmin}

to avoid overflow for values close to zero. By construction, such threshold
values spoil the nice scaling invariance property, unless they are defined for
dimensionless components of the variable y.

20 1 Introduction

In an affine contravariant setting, scaling should be applied in the image
space of F , which means for the residual components

F → G = D−1F

with appropriately chosen diagonal matrix D.
For affine similarity, simultaneous scaling should be applied in both domain
and image space

x , F → y = D−1x , G = D−1F .

Finally, the affine conjugate energy products can be verified to be scaling
invariant already by construction.

Further affine invariance classes. The four affine invariance classes men-
tioned so far actually represent the dominant classes of interest. Beyond these,
certain combinations of these classes play a role in problems with appropri-
ate substructures, each of which gives rise to one of the ‘grand four’. As
an example take optimization with equality constraints, which may require
affine covariance or contravariance in the constraints, but affine conjugacy
in the functional—see, e.g., the recent discussion [193] by S. Volkwein and
M. Weiser.

1.2.3 The algorithmic paradigm

The key question treated in this book is how theoretical results from con-
vergence analysis can be exploited for the construction of adaptive Newton
algorithms. The key answer to this question is to realize affine invariant com-
putational estimates of affine invariant Lipschitz constants that are cheaply
available in the course of the algorithms. The realization is done as follows:
We identify some theoretical local Lipschitz constant ω defined over a nonempty
domain D such that

ω = sup
x,y,z∈D

g(x, y, z) (1.11)

in terms of some scalar expression g(x, y, z) that will only contain affine
invariant terms. For ease of writing, we will mostly just write

g(x, y, z) ≤ ω for all x, y, z ∈ D ,
even though we mean the best possible estimates (1.11) to characterize non-
linearity by virtue of Lipschitz constants. Once such a g has been selected,
we exploit it by defining some corresponding computational local estimate
according to

[ω] = g(x̂, ŷ, ẑ) for specific x̂, ŷ, ẑ ∈ D .
By construction, [ω] and ω share the same affine invariance property and
satisfy the relation

[ω] ≤ ω .

1.3 A Roadmap of Newton-type Methods 21

Illustrating example. For the affine covariant Lipschitz condition (1.6) we
have

ω0 = sup
x,y∈D

g(x, y, x0) =
‖F ′(x0)−1 (F ′(x) − F ′(y)) ‖

‖x− y‖ . (1.12)

As a local affine covariant estimate, we may choose

[ω0] = g(x1, x0, x0) =
‖F ′(x0)−1

(
F ′(x1)− F ′(x0)

) ‖
‖x1 − x0‖ (1.13)

in terms of the anyway computed Newton iterates x0, x1. In actual implemen-
tation, we will apply estimates different from (1.12) and (1.13), but preferable
in the algorithmic context. The art in this kind of approach is to find out,
among many possible theoretical characterizations, those ones that give rise
to ‘cheap and suitable’ computational estimates and, in turn, lead to the
construction of efficient algorithms.
There remains some gap ω − [ω] ≥ 0, which can be reduced by appropriate
reduction of the domain D. As will turn out, efficient adaptive Newton al-
gorithms can be constructed, if [ω] catches at least one leading binary digit
of ω—for details see the various bit counting lemmas scattered all over the
book.
Remark 1.1 If the paradigm were realized without a strict observation
of affine invariance of Lipschitz constants and estimates, then undesirable
geometrical distortion effects (like those described in detail in (1.5)) would
lead to totally unrealistic estimates and thus could not be expected to be a
useful basis for any efficient algorithm.

Bibliographical Note. The general paradigm described here was, in an
intuitive sense, already employed by P. Deuflhard in his 1975 paper on adap-
tive damping for Newton’s method [63]. In 1979, the author formalized the
whole approach introducing the notation [·] for computational estimates and
exploited it for the construction of adaptive continuation methods [61]. Early
on, H.G. Bock also took up the paradigm in his work on multiple shoot-
ing techniques for parameter identification and optimal control problems
[29, 31, 32].

1.3 A Roadmap of Newton-type Methods

There is a large variety of Newton-type methods, which will be discussed in
the book and therefore named and briefly sketched here.

22 1 Introduction

Ordinary Newton method. For general nonlinear problems, the classical
ordinary Newton method reads

F ′(xk)Δxk = −F (xk) , xk+1 = xk +Δxk , k = 0, 1, (1.14)

For F : D ⊂ Rn → Rn a Jacobian (n, n)-matrix is required. Sufficiently accu-
rate Jacobian approximations can be computed by symbolic differentiation
or by numerical differencing—see, for example, the automatic differentiation
due to A. Griewank [112].
The above form of the linear system deliberately reflects the actual sequence
of computation: first, compute the Newton corrections Δxk, then improve
the iterates xk to obtain xk+1—to avoid possible cancellation of significant
digits, which might occur, if we solve for the new iterates xk+1 directly.

Simplified Newton method. This variant of Newton’s method is charac-
terized by keeping the initial derivative throughout the whole iteration:

F ′(x0)Δx
k

= −F (xk) , xk+1 = xk +Δx
k
, k = 0, 1,

Compared to the ordinary Newton method, computational cost per iteration
is saved—at the possible expense of increasing the number of iterations and
possibly decreasing the convergence domain of the thus defined iteration.

Newton-like methods. This type of Newton method is characterized by
the fact that, in finite dimension, the Jacobian matrices are either replaced by
some fixed ‘close by’ Jacobian F ′(z) with z �= x0, or by some approximation
so that

M(xk)δxk = −F (xk) , xk+1 = xk + δxk , k = 0, 1,

As an example, deliberate ‘sparsing’ of a large Jacobian, which means drop-
ping of ‘weak couplings’, will permit the use of a direct sparse solver for the
Newton-like corrections and therefore possibly help to reduce the work per
iteration; if really only weak couplings are dropped, then the total iteration
pattern will not deteriorate significantly.

Exact Newton methods. Any of the finite dimensional Newton-type meth-
ods requires the numerical solution of the linear equations

F ′(xk)Δxk = −F (xk) .

Whenever direct elimination methods are applicable, we speak of exact New-
ton methods. However, naive application of direct elimination methods may
cause serious trouble, if scaling issues are ignored.

1.3 A Roadmap of Newton-type Methods 23

Bibliographical Note. There are numerous excellent books on the nu-
merical solution of linear systems—see, e.g., the classic by G.H. Golub and
C.F. van Loan [107]. Programs for direct elimination in full or sparse mode
can be found in the packages LAPACK [5], SPARSPAK [100], or [27]. As a rule,
these codes leave the scaling issue to the user—for good reasons, since the
user will typically know the specifications behind the problem that define the
necessary scaling.

Local versus global Newton methods. Local Newton methods require
‘sufficiently good’ initial guesses. Global Newton methods are able to com-
pensate for bad initial guesses by virtue of damping or adaptive trust region
strategies. Exact global Newton codes for the solution of nonlinear equations
are named NLEQ plus a characterizing suffix. We give details about

• NLEQ-RES for the residual based approach,
• NLEQ-ERR for the error oriented approach, or
• NLEQ-OPT for convex optimization.

Inexact Newton methods. For extremely large scale nonlinear problems
the arising linear systems for the Newton corrections can no longer be solved
directly (‘exactly’), but must be solved iteratively (‘inexactly’)—which gives
the name inexact Newton methods. The whole scheme then consists of an
inner iteration (at Newton step k)

F ′(xk) δxk
i = −F (xk) + rki , k = 0, 1, . . . ,

xk+1
i = xk + δxk

i , i = 0, 1, . . . , ikmax

(1.15)

in terms of residuals rki and an outer iteration where, given x0, the iterates
are defined as

xk+1 = xk+1
i for i = ikmax, k = 0, 1,

Compared with the exact Newton corrections in (1.14), errors δxk
i − Δxk

arise. Throughout the book, we will mostly drop the inner iteration index i
for ease of notation.
In an adaptive inexact Newton method, the accuracy of the inner iteration
should be matched to the outer iteration, preferably such that the Newton
convergence pattern is essentially unperturbed—which means an appropriate
control of imax above. Criteria for the choice of the truncation index imax

depend on affine invariance, as will be worked out in detail. With this aspect
in mind, inexact Newton methods are sometimes also called truncated Newton
methods.
Inexact global Newton codes for the solution of large scale nonlinear equations
are named GIANT plus a suffix characterizing the combination with an inner
iterative solver. The name GIANT stands for Global Inexact Affine invariant
Newton Techniques. We will work out details for

24 1 Introduction

• GIANT-GMRES for the residual based approach,
• GIANT-CGNE and GIANT-GBIT for the error oriented approach, or
• GIANT-PCG for convex optimization.

As for the applied iterative solvers, see Section 1.4 below.

Preconditioning. A compromise between direct and iterative solution of
the arising linear Newton correction equations is obtained by direct elimina-
tion of ‘similar’ linear systems, which can be used in a wider sense than just
scaling as mentioned above. For its characterization we write

CLF
′(xk)CRC

−1
R δxk

i = −CL

(
F (xk)− rki

)
, i = 0, 1, . . . imax (1.16)

or, equivalently, also

CLF
′(xk)CRC

−1
R

(
δxk

i −Δxk
i

)
= CLr

k
i , i = 0, 1, . . . imax .

Consequently, within the algorithms any residual or error norms need to be
replaced by their preconditioned counterparts

‖rki ‖ , ‖δxk
i −Δxk

i ‖ −→ ‖CLr
k
i ‖ , ‖C−1

R

(
δxk

i −Δxk
i

) ‖ .
Matrix-free Newton methods. Linear iterative solvers within inexact
Newton methods only require the evaluation of Jacobian matrix vector prod-
ucts so that numerical difference approximations

F ′(x)v .=
F (x+ δv)− F (x)

δ

can be conveniently realized. Note, however, that the quality of such direc-
tional difference approximations will heavily depend on the choice of the
relative deviation parameter δ and the mantissa length of the used arith-
metic. A numerically stable realization will use automatic differentiation as
suggested by A. Griewank [112].

Secant method. For scalar equations, say f(x) = 0, this type of method is
derived from Newton’s method by substituting the tangent by the secant

f ′(xk + δxk) −→ f(xk + δxk)− f(xk)
δxk

= jk+1

and computing the correction as

δxk+1 = −f(x
k+1)

jk+1
, xk+1 = xk + δxk .

The thus constructed secant method is known to converge locally superlin-
early.

1.3 A Roadmap of Newton-type Methods 25

Quasi-Newton methods. This class of methods extends the secant idea
to systems of equations. In this case only a so-called secant condition

Jδxk = F (xk+1)− F (xk) (1.17)

can be imposed, wherein J represents some Jacobian approximation to be
specified. The above condition does not determine a unique J , but a whole
class of matrices. If we recur to the previous quasi-Newton step as

Jkδxk = −F (xk) ,

we may select special Jacobian rank-1 updates as

Jk+1 = Jk +
F (xk+1)zT

zT δxk
, z ∈ Rn , z �= 0 ,

where the vector z is arbitrary, in principle. As will be shown below in detail,
the specification of z is intimately linked with affine invariance. Once z has
been specified, the next quasi-Newton step

Jk+1δxk+1 = −F (xk+1)

is determined. In the best case, superlinear local convergence can be shown to
hold again. A specification to linear systems is the algorithm GBIT described
in Section 1.4.4 below.

Gauss-Newton methods. This type of method applies to nonlinear least
squares problems, whether unconstrained or constrained. The method re-
quires the nonlinear least squares problems to be statistically well-posed,
characterized either as ‘small residual’ (Section 4.2.1) or as ‘adequate’ prob-
lems (Section 4.3.2). For this problem class, local Gauss-Newton methods
are appropriate, when ‘sufficiently good’ initial guesses are at hand, while
global Gauss-Newton methods are used, when only ‘bad initial guesses’ are
available. In the statistics community Gauss-Newton methods are also called
scoring methods.

Quasilinearization. Infinite dimensional Newton methods for operator
equations are also called Newton methods in function space or quasilineariza-
tion. The latter name stems from the fact that the nonlinear operator equa-
tion is solved via a sequence of corresponding linearized operator equations.
Of course, the linearized equations for the Newton corrections can only be
solved approximately. Consequently, inexact Newton methods supply the cor-
rect theoretical frame, within which now the ‘truncation errors’ represent
approximation errors, typically discretization errors.

26 1 Introduction

Inexact Newton multilevel methods. We reserve this term for those mul-
tilevel schemes, wherein the arising infinite dimensional linear Newton sys-
tems are approximately solved by some linear multilevel or multigrid method;
in such a setting, Newton methods act in function space. The highest degree of
sophistication of an inexact Newton multilevel method would be an adaptive
Newton multilevel method, where the approximation errors are controlled
within an abstract framework of inexact Newton methods.

Multilevel Newton methods. Unfortunately, the literature is often not
unambiguous in the choice of names. In particular, the name ‘Newton multi-
grid method’ is often given to schemes, wherein a finite dimensional Newton
multigrid method is applied on each level—see, e.g., the classical textbook
[113] by W. Hackbusch or the more recent treatment [135] by R. Kornhuber,
who uses advanced functional analytic tools. In order to avoid confusion, such
a scheme will here be named ‘multilevel Newton method’.

Nonlinear multigrid methods. For the sake of clarity, it may be worth
mentioning that ‘nonlinear multigrid methods’ are not Newton methods, but
fixed point iteration methods, and therefore not treated within the scope of
this book.

Bibliographical Note. The classic among the textbooks for the numer-
ical solution of finite dimensional systems of nonlinear equations has been
the 1970 book of J.M. Ortega and W.C. Rheinboldt [163]. It has certainly
set the state of the art for quite a long time. The monograph [177] by
W.C. Rheinboldt guides into related more recent research areas. The popu-
lar textbook [132] by C.T. Kelley offers a nice introduction into finite dimen-
sional inexact Newton methods—see also references therein. The technique of
‘preconditioning’ is usually attributed to O. Axelsson—see his textbook [11]
and references therein. Multigrid Newton methods are worked out in detail
in the meanwhile classic text of W. Hackbusch [113]; a detailed convergence
analysis of such methods for certain smooth as well as a class of non-smooth
problems has been recently given by R. Kornhuber [135].

1.4 Adaptive Inner Solvers for Inexact Newton Methods

As stated in Section 1.3 above, inexact Newton methods require the linear
systems for the Newton corrections to be solved iteratively. Different affine
invariance concepts naturally go with different concepts for the iterative so-
lution. In particular, recall that

• residual norms go with affine contravariance,
• error norms go with affine covariance,

1.4 Adaptive Inner Solvers for Inexact Newton Methods 27

• energy norms go with affine conjugacy.

For the purpose of this section, let the inexact Newton system (1.15) be
written as

Ayi = b− ri, i = 0, 1, . . . imax

in terms of iterative approximations yi for the solution y and iterative resid-
uals ri. In order to control the number imax of iterations, several termination
criteria may be realized:

• Terminate the iteration as soon as the residual norm ‖ri‖ is small enough.
• Terminate the iteration as soon as the iterative error norm ‖y−yi‖ is small

enough.
• If the matrix A is symmetric positive definite, terminate the iteration as

soon as the energy norm ‖A1/2(y − yi)‖ of the error is small enough.

In what follows, we briefly sketch some of the classical iterative linear solvers
with particular emphasis on appropriate termination criteria for use within
inexact Newton algorithms. We will restrict our attention to those iterative
solvers, which minimize or, at least, reduce

• the residual norm (GMRES, Section 1.4.1),
• the energy norm of the error (PCG, Section 1.4.2), and
• the error norm (CGNE, Section 1.4.3, and GBIT, Section 1.4.4).

We include the less known solver GBIT, since it is a quasi-Newton method
specialized to the solution of linear systems.

Preconditioning. This related issue deals with the iterative solution of
systems of the kind

CLACRC
−1
R yi = CL(b − ri), i = 0, 1, . . . imax , (1.18)

where left preconditioner CL and right preconditioner CR arise. A proper
choice of preconditioner will exploit information from the problem class under
consideration and often crucially affect the convergence speed of the iterative
solver.

Bi-CGSTAB. Beyond the iterative algorithms selected here, there are nu-
merous further ones of undoubted merits. An example is the iterative solver
Bi-CG and its stabilized variant Bi-CGSTAB due to H.A. van der Vorst [189].
This solver might actually be related to affine similarity as treated above
in Section 1.2; as a consequence, this code would be a natural candidate
within an inexact pseudo–continuation method (see Section 6.4.2). However,
this combination of inner and outer iteration would require a rather inconve-
nient norm (Jordan canonical norm). That is why we do not incorporate this
candidate here. However, further work along this line might be promising.

28 1 Introduction

Bibliographical Note. A good survey on many aspects of the iterative
solution of linear equation systems can be found in the textbook [181] by
Y. Saad. Preconditioning techniques are described, e.g., in the textbook [11]
by O. Axelsson.

Multilevel discretization. For the adaptive realization of inexact Newton
methods in function space, discretizations on successively finer levels play the
role of the inner iteration. That is why we additionally treat linear multigrid
methods in Section 1.4.5 below. Skipping any technical details here, mul-
tilevel methods permit an adaptive control of discretization errors on each
level—for example, see Section 7.3.3 on Fourier-Galerkin methods for periodic
orbit computation, Section 7.4.2 on polynomial collocation methods for ODE
boundary value problems, and Section 8.3 on adaptive multigrid methods for
elliptic PDEs.

1.4.1 Residual norm minimization: GMRES

A class of iterative methods aims at the successive reduction of the resid-
ual norms ‖ri‖ for increasing index i. Outstanding candidates among these
are those solvers that even minimize the residual norms over some Krylov
subspace—such as GMRES and CGNR. Since algorithm GMRES requires less ma-
trix/vector multiplies per step, we focus our attention on it here.

Algorithm GMRES. Given an initial approximation y0 ≈ y compute the
initial residual r0 = b−Ay0. Set β = ‖r0‖2 , v1 = r0/β , V1 = v1.
For i = 1, 2, . . . , imax:

I. Orthogononalization: v̂i+1 = Avi − Vihi

where hi = V T
i Avi

II. Normalization: vi+1 = v̂i+1/‖v̂i+1‖2

III. Update: Vi+1 = (Vi vi+1)

Hi =
(
Hi−1 hi

0 ‖v̂i+1‖2
)

Hi is an (i+ 1, i)-Hessenberg matrix
(for i = 1 drop the left block column)

IV. Least squares problem for zi : ‖βe1 −Hiz‖ = min

V. Approximate solution (i = imax): yi = Vizi + y0

Array storage. Up to iteration step i, the above implementation requires
to store i+ 2 vectors of length n.

1.4 Adaptive Inner Solvers for Inexact Newton Methods 29

Computational amount. In each iteration step i, there is one matrix/vector
multiply needed. Up to step i, the Euclidean inner products sum up to ∼ i2n
flops.
As already stated, this algorithm minimizes the residual norms over the
Krylov subspace

Ki(r0, A) = span {r0, . . . , Ai−1r0} .
By construction, the inner residuals will decrease monotonically

‖ri+1‖2 ≤ ‖ri‖2 .
Therefore, a reasonable inner termination criterion will check whether the
final residual ‖ri‖2 is ‘small enough’. Moreover, starting with arbitrary initial
guess y0 and initial residual r0 �= 0, we have the orthogonality relation (in
terms of the Euclidean inner product 〈· , ·〉)

〈ri, ri − r0〉 = 0 ,

which directly implies that

‖r0‖22 = ‖r0 − ri‖22 + ‖ri‖22 (1.19)

throughout the inner iteration. If we define

ηi =
‖ri‖2
‖r0‖2 ,

then we will generically have ηi < 1 for i > 0 and

ηi+1 < ηi , if ηi �= 0 .

This implies that, after a number of iterations, any adaptive truncation cri-
terion

ηi ≤ η̄
for a prescribed threshold value η̄ < 1 can be met. In passing we note that
then (1.19) can be rewritten as

‖r0 − ri‖22 = (1− η2
i)‖r0‖22 . (1.20)

These detailed results are applied in Sections 2.2.4 and 3.2.3.

Preconditioning. Finally, if (1.18) is applied, then the Euclidean norms of
the preconditioned residuals r̄k = CLr

k are iteratively minimized in GMRES,
whereas CR only affects the rate of convergence. Therefore, if strict residual
minimization is aimed at, then only right preconditioning should be imple-
mented, which means CL = I.

30 1 Introduction

Bibliographical Note. This iterative method has been designed as
a rather popular code by Y. Saad and M.H. Schultz [182] in 1986; an
earlier often overlooked derivation has been given by G.I. Marchuk and
Y.A. Kuznetsov [146] already in 1968.

1.4.2 Energy norm minimization: PCG

With A symmetric positive definite, we are able to define the energy product
(·, ·) and its induced energy norm ‖ · ‖A by

(u, v) = 〈u,Av〉, ‖u‖2A = (u, u)

in terms of the Euclidean inner product 〈·, ·〉. Let B ≈ A−1 denote some pre-
conditioning matrix, assumed to be also symmetric positive definite. Usually
the numerical realization of z = Bc is much simpler and faster than the so-
lution of Ay = b. Formally speaking, we may specify some CL = CT

R = B1/2.
This specification does not affect the energy norms, but definitely the speed
of convergence of the iteration. Any preconditioned conjugate gradient (PCG)
method reads:

Algorithm PCG. For given approximation y0 ≈ y compute the initial residual
r0 = b − Ay0 and the preconditioned residual r̄0 = Br0. Set p0 = r̄0 σ0 =
〈r0, r̄0〉 = ‖r0‖2B .
For i = 0, 1, . . . , imax:

αi =
‖pi‖2A
σi

yi+1 = yi +
1
αi
pi

γ2
i =

σi

αi
(energy error contribution ‖yi+1 − yi‖2A)

ri+1 = ri − 1
αi
Api, r̄i+1 = Bri+1

σi+1 = ‖ri+1‖2B, βi+1 =
σi+1

σi

pi+1 = r̄i+1 + βi+1pi.

Array storage. Up to iteration step i, ignoring any preconditioners, the
above implementation requires to store only 4 vectors of length n.
Computational amount. In each iteration step i, there is one matrix/vector
multiply needed. Up to step i, the Euclidean inner products sum up to ∼ 5in
flops.
This iteration successively minimizes the energy error norm ‖y− yi‖A within
the associated Krylov subspace

1.4 Adaptive Inner Solvers for Inexact Newton Methods 31

Ki(r0, A) = span{r0, . . . , Ai−1r0} .
By construction, we have the orthogonality relations (also called Galerkin
conditions)

(yi − y0, yi+m − yi)A = 0 , m = 1, . . . ,

which imply the orthogonal decompositions (with m = 1)

‖yi+1 − y0‖2A = ‖yi+1 − yi‖2A + ‖yi − y0‖2A (1.21)

and (with m = n− i and yn = y)

‖y − y0‖2A = ‖y − yi‖2A + ‖yi − y0‖2A . (1.22)

From (1.21) we easily derive that

‖yi − y0‖2A =
i−1∑
j=0

‖yj+1 − yj‖2A =
i−1∑
j=0

γ2
j . (1.23)

Together with (1.22), we then obtain

εi = ‖y − yi‖2A =
n−1∑
j=i

γ2
j . (1.24)

Estimation of PCG error. Any adaptive affine conjugate inexact Newton
algorithm will require a reasonable estimate for the errors εi to be able to
exploit the theoretical convergence results. Note that the monotonicity

‖yi − y0‖A ≤ ‖yi+1 − y0‖A ≤ · · · ≤ ‖y − y0‖A

can be derived from (1.21)—a saturation effect easily observable in actual
computation. There are two basic methods to estimate the error.
(I) Assume we have a computable upper bound

ε̄0 ≥ ‖y − y0‖2A ,
such as the ones suggested by G.H. Golub and G. Meurant [104] or by
B. Fischer [92]. Then, with (1.22) and (1.23), we obtain the computable upper
bound

εi ≤ ε̄0 −
i−1∑
j=0

γ2
j = [εi] .

(II) As an alternative (see [68]), we may exploit the structure of (1.24) via
the lower bound

[εi] =
i+m∑
j=i

γ2
j ≤ εi (1.25)

32 1 Introduction

for some sufficiently large index m > 0—which means to continue the itera-
tion further just for the purpose of getting some error estimate. In the case
of ‘fast’ convergence (usually for ‘good’ preconditioners only), few terms in
the sum will suffice. Typically, we use this technique, since it does not require
any choice of an upper bound ε̄0.
Both techniques inherit the monotonicity [εi+1] ≤ [εi] from εi+1 ≤ εi. Hence,
generically, after a number of iterations, any adaptive truncation criterion

[εi] ≤ ε

for a prescribed threshold value ε can be met. In the inexact Newton-PCG
algorithms to be worked out below we will use the relative energy error norms
defined, for i > 0, as

δi =
‖y − yi‖A

‖yi‖A
≈
√

[εi]
‖yi‖A

.

Whenever y0 = 0, then (1.21) implies the monotone increase ‖yi+1‖A ≥ ‖yi‖A

and therefore the monotone decrease δi+1 ≤ δi. This guarantees that any
relative error criterion

δi ≤ δ
can be met. Moreover, in this case we have the relation

‖yi‖2A = (1 + δ2i)‖y‖2A . (1.26)

For y0 �= 0, the above monotonicities and (1.26) no longer hold. This option,
however, is not used in the inexact Newton-PCG algorithms to be derived in
Sections 2.3.3 and 3.4.3 below.

1.4.3 Error norm minimization: CGNE

Another class of iterative solvers aims at the successive reduction of the
(possibly scaled) Euclidean error norms ‖y−yi‖ for i = 0, 1, Among these
the ones that minimize the error norms over some Krylov subspace play a
special role. For nonsymmetric Jacobian matrices the outstanding candidate
with this feature seems to be CGNE. For its economic implementation, we
recommend Craig’s variant (see, e.g., [181]), which reads:

Algorithm CGNE. Given an initial approximation y0, compute the initial
residual r0 = b−Ay0 and set p0 = 0, β0 = 0, σ0 = ‖r0‖2.
For i = 1, 2, . . . , imax:

1.4 Adaptive Inner Solvers for Inexact Newton Methods 33

pi = AT ri−1 + βi−1pi−1

αi = σi−1/‖pi‖2
γ2

i−1 = αiσi−1 (Euclidean error contribution ‖yi − yi−1‖2)
yi = yi−1 + αipi

ri = ri−1 − αiApi

σi = ‖ri‖2
βi = σi/σi−1

Array storage. Up to iteration step i, the above implementation requires
to store only 3 vectors of length n.
Computational amount. In each iteration step i, there are two ma-
trix/vector multiplies needed. Up to step i, the Euclidean inner products
sum up to ∼ 5in flops.
This iteration successively minimizes the Euclidean norms ‖y − yi‖ within
the Krylov subspace

Ki(AT r0, A
TA) = span{AT r0, . . . , (ATA)i−1AT r0} .

By construction, we have the orthogonality relations (also: Galerkin condi-
tions)

(yi − y0, yi+m − yi) = 0 , m = 1, . . . ,

which imply the orthogonal decomposition (with m = 1)

‖yi+1 − y0‖2 = ‖yi+1 − yi‖2 + ‖yi − y0‖2 (1.27)

and (with m = n− i and yn = y)

‖y − y0‖2 = ‖y − yi‖2 + ‖yi − y0‖2 . (1.28)

From (1.27) we easily derive that

‖yi − y0‖2 =
i−1∑
j=0

‖yj+1 − yj‖2 =
i−1∑
j=0

γ2
j . (1.29)

Together with (1.28), we then obtain

εi = ‖y − yi‖2 =
n−1∑
j=i

γ2
j . (1.30)

34 1 Introduction

Estimation of CGNE error. Any adaptive affine covariant inexact Newton
algorithm will require a reasonable estimate for the errors εi to be able to
exploit the theoretical convergence results. Again, the saturation effect from
the monotonicity

‖yi − y0‖ ≤ ‖yi+1 − y0‖ ≤ · · · ≤ ‖y − y0‖

can be derived from (1.27).
There are two basic methods to estimate the error within CGNE.
(I) Assume we have a computable upper bound

ε̄0 ≥ ‖y − y0‖2

in the spirit of those suggested by G.H. Golub and G. Meurant [104] or by
B. Fischer [92]. From this, with (1.28) and (1.29), we obtain the computable
upper bound

εi ≤ ε̄0 −
i−1∑
j=0

γ2
j = [εi] .

(II) As an alternative, transferring an idea from [68], we may exploit the
structure of (1.30) to look at the lower bound

[εi] =
i+m∑
j=i

γ2
j ≤ εi (1.31)

for some sufficiently large index m > 0—which means to continue the itera-
tion further just for the purpose of getting some error estimate. In the case
of ‘fast’ convergence (for ‘sufficiently good’ preconditioner, see below), only
few terms in the sum will be needed. Typically, we use this second technique.
Both techniques inherit the monotonicity [εi+1] ≤ [εi] from εi+1 ≤ εi. After
a number of iterations, any adaptive truncation criterion

[εi] ≤ ε

for a prescribed threshold value ε can generically be met. In the inexact
Newton-ERR algorithms to be worked out below we will use the relative
error norms defined, for i > 0, as

δi =
‖y − yi‖
‖yi‖ ≈

√
[εi]
‖yi‖ . (1.32)

Whenever y0 = 0, then (1.27) implies the monotonicities ‖yi+1‖ ≥ ‖yi‖ and
δi+1 ≤ δi. The latter one guarantees that the relative error criterion

δi ≤ δ (1.33)

1.4 Adaptive Inner Solvers for Inexact Newton Methods 35

can be eventually met. For this initial value we also have the relation

‖yi‖2 = (1 + δ2i)‖y‖2 . (1.34)

These detailed results enter into the presentation of local inexact Newton-
ERR methods in Section 2.1.5.
For y0 �= 0, the above monotonicities as well as the relation (1.34) no longer
hold. This situation occurs in the global inexact Newton-ERR method to be
derived in Section 3.3.4. Since the ‖yi‖ eventually approach ‖y‖, we never-
theless require the relative truncation criterion (1.33).

Preconditioning. Finally, if (1.18) is applied, then the norms of the iterative
preconditioned errors C−1

R (y−yi) are minimized. Therefore, if strict unscaled
error minimization is aimed at, then only left preconditioning should be real-
ized. In addition, if ‘good’ preconditioners CR or CL are available (resulting
in ‘fast’ convergence), then the simplification

‖C−1
R (y − yi)‖ ≈ ‖C−1

R (yi+1 − yi)‖

will be sufficient.
Remark 1.2 Numerical experiments with large discretized PDEs in Section
8.2.1 document a poor behavior of CGNE, which seems to stem from a rather
sensitive dependence on the choice of preconditioner. Generally speaking, a
preconditioner, say B, is expected to reduce the condition number κ(J) to
some κ(BJ) � κ(J). However, as the algorithm CGNE works on the normal
equations, the characterizing dependence is on κ2(BJ)� κ(BJ). In contrast
to this behavior, the preconditioned GMRES just depends on κ(BJ) as the
characterizing quantity.

1.4.4 Error norm reduction: GBIT

The quasi-Newton methods already mentioned in Section 1.3 can be spec-
ified to apply to linear systems as well. Following the original paper by
P. Deuflhard, R. Freund, and A. Walter [74], a special affine covariant rank-1
update can be chosen, which turns out to be Broyden’s ‘good’ update [40].
Especially for linear systems, an optimal line search is possible, which then
gives the algorithm GBIT (abbreviation for Good Broyden ITerative solver for
linear systems).
Preconditioner improvement. The main idea behind this algorithm is to
improve any (given) initial preconditioner B0 ∼ A, or H0 ∼ A−1, respec-
tively, successively to Bi ∼ A,Hi ∼ A−1. Let Ei = I − A−1Bi denote the
preconditioning error, then each iterative step can be shown to realize some
new preconditioner such that

36 1 Introduction

‖Ei+1‖2 ≤ ‖Ei‖2 , i = 0, 1,

Error reduction. In [74], this algorithm has been proven to converge under
the sufficient assumption

‖E0‖2 < 1
3 , (1.35)

in the sense that
‖yi+1 − y‖ < ‖yi − y‖ . (1.36)

Moreover, asymptotic superlinear convergence can even be shown. Numerical
experience shows that an assumption weaker than (1.35) might do, but there
is no theoretical justification of such a statement yet.
The actual implementation of the algorithm does not store the improved
preconditioners Hi explicitly, but exploits the Sherman-Morrison formula to
obtain a cheap recursion. The following implementation is a recent slight
improvement over the algorithm GB suggested in [74]—essentially replacing
the iterative stepsize ti = τi therein by some modification (see below and
Exercise 1.4 for τmax = 1).

Algorithm GBIT. Given an initial guess y0, an initial preconditioner H0 ∼
A−1, and some inner product 〈u, v〉.
Initialization:

r0 = b−Ay0
Δ0 = H0r0

σ0 = 〈Δ0, Δ0〉

Iteration loop i = 0, 1, . . . , imax:

qi = AΔi

ζ0 = H0qi

Update loop m = 0, . . . , i− 1 (for i ≥ 1):

ζm+1 = ζm +
〈Δm, ζm〉
σm

(Δm+1 − (1 − tm)Δm)

zi = ζi

γi = 〈Δi, zi〉
τi = σi/γi

if τi < τmin : restart

ti = τi

1.4 Adaptive Inner Solvers for Inexact Newton Methods 37

if ti > τmax : ti = 1

yi+1 = yi + tiΔi

(ri+1 = ri − tiqi)
Δi+1 = (1− ti + τi)Δi − τizi
σi+1 = 〈Δi+1, Δi+1〉
εi = 1

2

√
σi−1 + 2σi + σi+1

if εi ≤ ρ‖yi+1‖ · ERRTOL : solution found

The parameters τmin, τmax are set internally such that 0 < τmin � 1, τmax ≥ 1,
the safety factor ρ < 1 and the error tolerance ERRTOL are user prescribed
values.
Array storage. Up to iteration step i, the above recursive implementation
requires to store the i+ 3 vectors

Δ0, . . . , Δi, q, z ≡ ζ .
of length n.
Computational amount. In each iteration step i, the computational work
is dominated by one matrix/vector multiply, one solution of a preconditioned
system (ζ0 = H0q), and ∼ 2i · n flops for the Euclidean inner product. Up to
step i, this sums up to i preconditioned systems and ∼ i2n flops.
Inner product. Apart from the Euclidean inner product 〈u, v〉 = uT v any
scaled version such as 〈u, v〉 = (D−1u)TD−1v, with D a diagonal scaling ma-
trix, will be applicable—and even preferable. For special problems like dis-
crete PDE boundary value problems certain discrete L2-products and norms
are recommended.
Error estimation and termination criterion. By construction, we obtain
the relation

yi − y = Δi − EiΔi ,

which, under the above preconditioning assumption, certainly implies the
estimation property(

1− ‖EiΔi‖
‖Δi‖

)
‖Δi‖ ≤ ‖yi − y‖ ≤

(
1 +

‖EiΔi‖
‖Δi‖

)
‖Δi‖ .

Hence, the true error can be roughly estimated as

‖yi − y‖ ≈ ‖Δi‖ =
√
σi .

In order to suppress possible outliers, an average of the kind

εi = 1
2

√
σi−1 + 2σi + σi+1 (1.37)

38 1 Introduction

is typically applied for i > 1. This estimator leads us to the relative termina-
tion criterion

εi ≤ ρ‖yi+1‖ · ERRTOL ,

as stated above.
Note that the above error estimator cannot be shown to inherit the mono-
tonicity property (1.36). Consequently, this algorithm seems to be less effi-
cient than CGNE within the frame of Newton-ERR algorithms. Surprisingly,
this expectation is not at all in agreement with numerical experiments—see,
for instance, Section 8.2.1.
Remark 1.3 On top of GBIT we also applied ideas of D.M. Gay and
R.B. Schnabel [97] about successive orthogonalization of update vectors to
construct some projected ‘good’ Broyden method for linear systems. The
corresponding algorithm PGBIT turned out to require only slightly less itera-
tions, but significantly more array storage and computational amount—and
is therefore omitted here.

1.4.5 Linear multigrid methods

In Newton methods for operator equations the corresponding iterates and so-
lutions live in appropriate infinite dimensional function spaces. For example,
in steady state partial differential equations (PDEs), the solutions live in some
Sobolev space—like Hα—depending on the prescribed boundary conditions.
It is an important mathematical paradigm that any such infinite dimensional
space should not just be represented by a single finite dimensional space of
possibly high dimension, but by a sequence of finite dimensional subspaces
with increasing dimension.
Consequently, any infinite dimensional Newton method will be realized via a
sequence of finite dimensional linearized systems

Ayj = b+ rj , j = 0, 1, . . . jmax ,

where the residuals rj represent approximation errors, mostly discretization
errors. Each of the subsystems is again solved iteratively, which gives rise to
the question of accuracy matching of discretization versus iteration. This is
the regime of linear multigrid or multilevel methods—see, e.g., the textbook
of W. Hackbusch [113] and Chapter 8 below on Newton multilevel methods.

Adaptivity. In quite a number of application problems rather localized
phenomena occur. In this case, uniform grids are by no means optimal, which,
in turn, also means that the classical multigrid methods on uniform grids
could not be regarded as optimal. For this reason, multigrid methods on
adaptive grids have been developed quite early, probably first by R.E. Bank

1.4 Adaptive Inner Solvers for Inexact Newton Methods 39

[18] in his code PLTMG and later in the family UG of parallel codes [22, 21] by
G. Wittum, P. Bastian, and their groups.
Independent of the classical multigrid methods, a multilevel method based
on conjugate gradient iteration with some hierarchical basis (HB) precon-
ditioning had been suggested for elliptic PDEs by H. Yserentant [204]. An
adaptive 2D version of the new method had been first designed and im-
plemented by P. Deuflhard, P. Leinen, and H. Yserentant [78] in the code
KASKADE. A more mature version including also 3D has been worked out by
F. Bornemann, B. Erdmann, and R. Kornhuber [36]. The present version of
KASKADE [23] contains the original HB-preconditioner for 2D and the more
recent BPX-preconditioner due to J. Xu [200, 39] for 3D.

Additive versus multiplicative multigrid methods. In the interpreta-
tion of multigrid methods as abstract Schwarz methods as given by J. Xu
[201], which the author prefers to adopt, the classical multigrid methods
are now called multiplicative multigrid methods, whereas the HB- or BPX-
preconditioned conjugate gradient methods are called additive multigrid
methods. In general, any difference in speed between additive or multiplica-
tive multigrid methods is only marginal, since the bulk of computing time is
anyway spent in the evaluation of the stiffness matrix elements and the right
hand side elements. For the orientation of the reader: UG is nearly exclusively
multiplicative, PLTMG is predominantly multiplicative with some additive op-
tions, KASKADE is predominantly additive with some multiplicative code for
special PDE eigenvalue problems.

Cascadic multigrid methods. These rather recent multigrid methods can
be understood as a confluence of additive and multiplicative multigrid meth-
ods. From the additive point of view, cascadic multigrid methods are charac-
terized by the simplest possible preconditioner: either no or just a diagonal
preconditioner is applied; as a distinguishing feature, coarser levels are vis-
ited more often than finer levels—to serve as preconditioning substitutes.
From the multiplicative side, cascadic multigrid methods may be understood
as multigrid methods with an increased number of smoothing iterations on
coarser levels, but without any coarse grid corrections. A first algorithm of
this type, the cascadic conjugate gradient method (algorithm CCG) had been
proposed by the author in [68]. First rather restrictive convergence results
were due to V. Shaidurov [185]. The general cascadic multigrid method class
with arbitrary inner iterations beyond conjugate gradient methods has been
presented by F. Bornemann and P. Deuflhard [35].
Just to avoid mixing terms: cascadic multigrid methods are different from
the code KASKADE, which predominantly realizes additive multigrid methods.

Local error estimators. Any efficient implementation of adaptive multi-
grid methods (additive, multiplicative, cascadic) must be based on cheap local

40 1 Introduction

error estimators or, at least, local error indicators. In the best case, these are
derived from theoretical a-posteriori error estimates. These estimates will be
local only, if local (right hand side) perturbations in the given problem remain
local—i.e., if the Greens’ function of the PDE problem exhibits local behavior.
As a consequence of this elementary insight, adaptive multigrid methods will
be essentially applicable to linear or nonlinear elliptic problems (among the
stationary PDE problems). A comparative assessment of the different avail-
able local error estimators has been given by F. Bornemann, B. Erdmann,
and R. Kornhuber in [37]. In connection with any error estimator, the lo-
cal extrapolation method due to I. Babuška and W.C. Rheinboldt [14] can
be applied. The art of refinement is quite established in 2D (see the ‘red’
and ‘green’ refinements due to R.E. Bank et al. [20]) and still under further
improvement in 3D.
Summarizing, adaptive multilevel methods for linear PDEs play a domi-
nant role in the frame of adaptive Newton multilevel methods for nonlinear
PDEs—see, e.g., Section 8.3.

Exercises

Exercise 1.1 Given a nonlinear C1-mapping F : X → Y over some domain
D ⊂ X for Banach spaces X, Y , each endowed with some norm ‖ ·‖. Assume
a Lipschitz condition of the form

‖F ′(x) − F ′(y)‖ ≤ γ‖x− y‖ , x, y ∈ D .

Let the derivative at some point x0 have a bounded inverse with

‖F ′(x0)−1‖ ≤ β0 .

Show that then, for all arguments x ∈ D in some open ball S(x0, ρ) with

ρ =
1
β0γ

, there exists a bounded derivative inverse with

‖F ′(x)−1‖ ≤ β0

1− β0γ‖x− x0‖ .

Exercise 1.2 Usual proofs of the implicit function theorem apply the
Newton-Kantorovich theorem—compare Section 1.2. Revisit this kind of
proof in any available textbook in view of affine covariance. In particular,
replace condition (1.3) for a locally bounded inverse and Lipschitz condition
(1.4) by some affine covariant Lipschitz condition like (1.6), which defines

Exercises 41

some local affine covariant Lipschitz constant ω0. Formulate the thus ob-
tained affine covariant implicit function theorem. Characterize the class of
problems, for which ω0 =∞.

Exercise 1.3 Consider the scalar monomial equation

f(x) = xm − a = 0 .

We want to study the convergence properties of Newton’s method. For this
purpose consider the general corresponding contraction term

Θ(x) =
ff ′′

f ′2
.

Verify this expression in general and calculate it for the specific case. What
kind of convergence occurs for m �= 1? How could the Newton method be ‘re-
paired’ such that quadratic convergence still occurs? Why is this, in general,
not a good idea?
Hint: Study the convergence properties under small perturbations.

Exercise 1.4 Consider the linear iterative solver GBIT described in Section
1.4.4. In the notation introduced there, let the iterative error be written as
ei = y − yi.

a) Verify the recursive relation

ei+1 = (1 − ti)ei + tiEiei ,

where
Ei = −(I − Ei)−1Ei .

b) Show that, under the assumption ‖Ei‖ < 1 on a ‘sufficiently good’ pre-
conditioner, any stepsize choice 0 < ti ≤ 1 will lead to convergence, i.e.,

‖ei+1‖ < ‖ei‖, if ei �= 0 .

c) Verify that ‖Ei+1‖2 ≤ ‖Ei‖2 holds, so that ‖E0‖2 < 1
2 implies ‖Ēi‖2 < 1

for all indices i = 0, 1,
d) Compare the algorithm GBIT for the two steplength strategies ti = τi

and ti = min(1, τi) at your favorite linear system with nonsymmetric
matrix A.

	1 Introduction
	1.1 Newton-Raphson Method for Scalar Equations
	1.2 Newton’s Method for General Nonlinear Problems
	1.2.1 Classical convergence theorems revisited
	1.2.2 Affine invariance and Lipschitz conditions
	1.2.3 The algorithmic paradigm

	1.3 A Roadmap of Newton-type Methods
	1.4 Adaptive Inner Solvers for Inexact Newton Methods
	1.4.1 Residual norm minimization: GMRES
	1.4.2 Energy norm minimization: PCG
	1.4.3 Error norm minimization: CGNE
	1.4.4 Error norm reduction: GBIT
	1.4.5 Linear multigrid methods

	Exercises

