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Abstract. Dimensionality reduction can efficiently improve computing
performance of classifiers in text categorization, and non-negative matrix
factorization could map the high dimensional term space into a low di-
mensional semantic subspace easily. Meanwhile, the non-negative of the
basis vectors could provide a meaningful explanation for the semantic
subspace. However, it usually could not achieve a satisfied classifica-
tion performance because it is sensitive to the noise, data missing and
outlier as a linear reconstruction method. This paper proposes a novel
approach in which the train text and its category information are fused
and a transformation matrix that maps the term space into a seman-
tic subspace is obtained by a basis orthogonality non-negative matrix
factorization and truncation. Finally, the dimensionality can be reduced
aggressively with these transformations. Experimental results show that
the proposed approach remains a good classification performance in a
very low dimensional case.

Keywords: Text Categorization, Dimensionality reduction, Non-negative
Matrix Factorization, Category Fusion.

1 Introduction

Text categorization (TC) is a task of automatically assigning predefined cate-
gories to a given text document based on its content [1]. Generally, the classical
text representation method based on machine learning techniques is the vector
space model (VSM) [2] in which the high dimensionality of the input feature
space is a major difficulty of TC [3].

The latent semantic indexing (LSI) [4] and the topic model [5] are commonly
used dimensionality reduction methods which can map a term space into a latent
semantic subspace; however, it is difficult to explain the physic meaning because
the negative value is permitted in its basis vectors.
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Non-negative matrix factorization (NMF) is a matrix factorization method
with a non-negative constrain [6], which can map the term space to the semantic
subspace for TC [7]. Mathematically, a terms-by-documents matrix X can be
decomposed as Xm×n ≈ Wm×r ×Hr×n, where m and n are the number of the
terms and documents respectively, and r is a positive integer, W is called basis
matrix and H is called coefficient matrix. Because each column vector of W
is constituted with some non-negative values of all terms, it can be regarded
as the latent semantic basis vector, and all these basis vectors span a semantic
subspace with dimensionality r. When r � min{m, n}, the dimensionality of
the semantic subspace is far less than the dimensionality of the original term
space. However, as a linear reconstructed method, it usually could not achieve
a satisfied classification performance in that subspace because it is sensitive to
the noise, data missing and outlier which will affect the discriminative ability of
basis vectors.

This paper proposes a novel method to reduce the dimensionality aggressively
by fusing category information and with basis orthogonality non-negative matrix
factorization and truncation.

We give a category coding schema and fusing the weighting of training doc-
uments with their category coding into an extended matrix. Therefore the ex-
tended dimension generated by the category information can decrease the im-
pact of the noise, data missing and outlier. After that, a NMF iteration al-
gorithm is designed in which the basis vectors are driven to orthogonality to
enhance the stability of factorization. Furthermore, a transformation matrix
mapping the term space to the semantic subspace is obtained via the matrix
factorization and truncation. Then a document can be represented as a point
in the low dimensional semantic subspace, and TC is implemented in this sub-
space.

The rest of this paper is organized as follows: Section 2 reviews the related
work briefly. Section 3 explains the proposed method in detail. Experimental
results and analysis are shown in Section 4. Finally, we give our conclusions in
Section 5.

2 Related Works

Some works have used NMF to reduce the dimensionality: Hoyer adds an ex-
plicitly constrain to control the sparseness of basis and coefficient matrices, but
the sparseness does not necessarily contribute to the classification performance
[8]. Guillamet et al. integrate the class information into NMF by assigning large
weight values to the minority classes [9], but it is hard to suit the multi-label
situation of TC (i.e. a document might belong to multiple categories in the same
time). Liu, Yuan et al. utilize the NMF to reduce the dimensionality of the
micro-array data but it limits the number of instances [10]. Silva and Ribeiro
use NMF to extract the semantic features for TC [7], however it does not take
into account the information of the category.
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Fig. 1. Panel (a) shows there is no dimensionality extended, the solid line represents
an ideally classification bound and the dash line represents the classification bound
affected by three outlier points. Panel (b) shows another case of the dimensionality
extended. The linear separability increases by adding some new dimension generated
by category information.

3 Dimensionality Reduction Method

3.1 Category Information Fusion

Because the NMF is a linear reconstructed method, its goal is to obtain the
optimal representative feature rather than the optimal classification feature. So
the noise, missing data and outliers existing in the high dimensionality space also
exist in the low-dimensional subspace generated by NMF. As panel (a) of Figure
1 shows, these points will affect the establishment of the correct classification
boundary. Therefore, we wish to utilize category information as the extended
dimensionality and fuse them into training data. So the linear separability of
data increases in the new dimensionality extended space illustrated in panel (b)
of Figure 1.

The category information fusion can be implemented with three stages: docu-
ment weighting, category information coding, and fusion. The document weight-
ing is presented as follows:

Given a document d = (t1, t2, · · · , tm), where m is the number of dimension-
ality in the feature space. The tfidf value [2] for each term is defined as:

tfidf(ti, d) = tf(ti, d)× idf(ti), (1)

where tf (ti, d) denotes the number of times that ti occurred in d, and idf (ti) is
the inverse document frequency which is defined: idf(ti) = log(n/df(ti)), where
n is the number of documents in training set, and df (ti) denotes the number of
documents in training set in which ti occurs at least once. Then a document can
be represented as a vector:

d = (w1, w2, · · · , wm)T , (2)
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where wi is evaluated as: wi = tfidf(ti, d)/

√
m∑
j

tfidf(tj, d)2.

In order to represent the category information uniformly for multi-label or uni-
label corpus, we extend the category coding scheme 1−of−K [11] to k−of−K,
i.e. define the class vector corresponding to the document d as follows

c = (b1, · · · , bi, · · · , bk)T , (3)

where k is the number of category in dataset, and bi is equal to 1 or 0 de-
pending on whether the related document belongs to the corresponding cate-
gories. For example, assuming there are four categories (k = 4), a document
d = (w1, w2, · · · , wm)T belongs to the first and the forth categories, then the
related class vector is c = (1, 0, 0, 1)T . Then we fuse d and c into a new extended
vector x:

x =
[

d
λ× c

]
, (4)

where λ is a parameter used to control the tradeoff between train text d and
its corresponding category information c. Finally, all train documents are fused
into an extended matrix X , represented as

X =
[

D
λ× C

]
, (5)

where D is the weighting matrix of all train documents, C is the class matrix
related to D, and each column of X is an extended vector obtained by Eq. (4).
Then X will be decomposed with the orthogonal NMF given below.

3.2 Orthogonal NMF

Given the extended matrix X , let

Xm×n ≈Wm×r ×Hr×n. (6)

Because of the uniqueness problems of scaling and permutation of NMF, we wish
the basis matrix W tends to the orthogonal normalization, i.e. WT W − I = O,
where I is the unit matrix and O is the corresponding zero matrix. We consider
it as a constrain term with parameter W , and add it into the loss function which
can be constructed as follows

L(W, H) = ||X −WH ||2F + α||WT W − I||2F
s.t.W, H ≥ 0 , (7)

where α is used to balance the tradeoff between the approximation error and the
orthogonal constraint. Same with [12], the multiplicative update algorithm is:

Wi,j ←Wi,j

(WHT + 2αW )i,j

(WHHT + 2αWWT W )i,j

, Hi,j ← Hi,j

(WT X)i,j

(WT WH)i,j

. (8)
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3.3 Dimensionality Reduction and TC

Assuming the matrix X (in Eq. (5)) is decomposed (with Eq. (8)) as follows

X =
[

Dm×n

λ× Ck×n

]
≈W(m+k)×r ×Hr×n, (9)

let

W(m+k)×r =
[
Sm×r

Lk×r

]
, (10)

where S is obtained by truncating W . Then[
Dm×n

λ× Ck×n

]
≈

[
Sm×r ×Hr×n

Lk×r ×Hr×n

]
. (11)

So Dm×n ≈ Sm×r × Hr×n, where S can be regarded as a matrix formed with
the semantic vectors. Defining

P = (Sm×r)†, (12)

then
D̂r×n ≈ P ×Dm×n, (13)

where P can be regarded as the transformation matrix which maps documents
from the term space into a semantic subspace spanned by S, and D̂ can be
regarded as the projected vector set in the semantic subspace.

Using Eq.(13), the train and test data all can be mapped from the term space
to a semantic subspace. In the new semantic subspace, dimensionality could be
reduced aggressively, and some classical classification algorithms can be applied.
For example using the support vector machine (SVM) algorithm, a pseudo code
for TC is given by algorithm 1.

4 Experiments

4.1 Dataset

Two popular TC benchmarks are tested in our experiments: Reuters-21578 and
20-newsgroups. The Reuters-21578 dataset1 is a standard multi-label TC bench-
mark and contains 135 categories. In our experiments, we use a subset of the
data collection which includes the 10 most frequent categories among the 135
topics and we call it Reuters-top10. We divide it into the train and test set
with the standard ’ModApte’ version. The pre-processed including: removing
the stop words; switching upper case to lower case; stemming2); removing the
low frequency words (less than three).

The 20-Newsgroups dataset3 contains approximately 20,000 articles evenly
divided among 20 usenet newsgroups. We also remove the low frequency words
(less than three) in the data set.
1 Available at http://www.daviddlewis.com/resources/testcollections/
2 Available at http://tartarus.org/˜martin/PorterStemmer/
3 Available at http://people.csail.mit.edu/jrennie/20Newsgroups/
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Algorithm 1. TC implementation
Input: the training and testing set and the setting of parameters
Output: the label of testing set
Learning stage:
1: for each document d in training set do
2: evaluating the weighting of d with Eq. (2)
3: evaluating the extended vector x with Eq. (4)
4: end for
5: evaluating the extended matrix X with Eq. (5)
6: factoring X into the form of Eq.(9) with Eq. (8)
7: evaluating the transformation matrix P using Eq.(10) and Eq. (12)
8: evaluating the projection of training set in the semantic subspace with Eq.(13)
9: Learning SVM mode in the semantic subspace

Classification stage:
10: for each document d′ in testing set do
11: evaluating the weighting of d′ with Eq. (2)
12: evaluating d̂′ with Eq. (13)
13: classifying the document d̂′ with SVM classifier in the semantic subspace
14: end for

4.2 Evaluation Measures

In the tests, we adapt the macroaveraged F1 [1] as the performance measure
which is defined as

macroaveragedF1 = (
k∑
i

F1i)/k, (14)

where k is the number of categories, F1i denotes the F1 value of the ith category.

4.3 Results and Analysis

To verify the performance of the proposed approach (denoting it as CONMF
for convention), we compare it with the information grain (IG) (one of the most
successful feature selection methods [13]), the ordinary NMF method [7] (denotes
it as NMF), and LSI [14]. The classifier is implemented with SVMlight4 and its
default parameters are adapted. We set α = 0.5 (Eq. (7)) and λ = 1 (Eq. (5)).
The dimensionality reduction level is from about 1% to 0.1%. For each test
dimensionality, we repeat the experimentation ten times and take their means
as the result.

The results are shown in Figure 2. From this figures, we can see that the
performance of IG is very awful when the dimensionality is reduced aggressively,
it is because that case might induce all zero value of feature vectors using feature
selection method, which makes the classification failure.

4 Available at http://svmlight.joachims.org/
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Fig. 2. Performances in Reuters-top10 and 20-newsgroups

According to the ordinary NMF method, although it has a more reasonable
physical interpretation than LSI, it does not presents a good classification perfor-
mance because its objective function is non-convex and it is difficult to obtain
the optimal solution. Moreover, it is sensitive to the noise, data missing and
outlier which will affect the establishment of the correct classification boundary.

Despite the results that the performance of IG or LSI or ordinary NMF de-
scends drastically in the very low dimensional situation, our CONMF method
obtains relatively stable performance in that case.

These figures also reveal a phenomenon that the relationship between the
dimensionality of semantic subspace (or the number of semantic concepts) and
the TC performance is not a linear function. In other words, the performance
does not necessarily increase when the dimensionality of the semantic subspace
increases and vice versa, which imply that there might exist an optimized number
of semantic concepts in a specific text corpus.

5 Conclusions

This paper proposes a novel approach to reduce dimensionality aggressively.
By utilizing category information as the extended dimensions, the impact of
the noise, data missing and outlier could be decreased. Furthermore, with basis
orthogonality non-negative matrix factorization and truncation, the data in the
high dimensional term space could be mapped into a low dimensional semantic
subspace. Experimental results show that the proposed approach remains a good
classification performance in the very low dimensional case.

The proposed method is simply and effective, and its factorization form as well
as its non-negative constrain could provide a more reasonable physical interpre-
tation than LSI. Meanwhile, it reflects the concept about “parts form the whole”
in human mind. Furthermore, the form of word-semantic-category is consistent
with the cognitive process when people read articles.
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For the future researches, we would like to study the dimensionality problem
of the semantic subspace to enhance the stability of factorization, and try to
incorporate cognitive information into the non-negative matrix factorization to
improve the classification performance.
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