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Abstract. Bayesian networks are a probabilistic representation for uncertain 
relationships, which has proven to be useful for modeling real world problems. 
Causal Independence and stochastic Independence are two important notations 
to characterize the flow of information on Bayesian network. They correspond 
to unidirectional separation and directional separation in Bayesian network 
structure respectively. In this paper, we focus on the relationship between 
directional separation and unidirectional separation. By using the layer sorting 
structure of Bayesian networks, the condition demanded to be satisfied to 
ensure d-separation and ud-separation hold is given. At the same time, we show 
that it is easy to find d-separation and ud-separation sets to identify direct causal 
effect quickly. 
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1   Introduction 

Bayesian networks also called Belief Networks or Causal Networks, are a powerful 
tool for modeling decision-making under uncertainty (see [1-5]). They have been 
successfully applied to different fields, such as, Machine learning, Prediction and 
Bioinformatics (see [1, 7-9]). Bayesian networks excel in knowledge representation 
and reasoning under uncertainty notion of causality suggests an unidirectional 
separation as graphical representation of causal conditional independence structures. 
There has been lots of research on theory and application about causal effects in 
Bayesian networks, for example [4, 6, 10-15]. Pearl’s [3] notion of causality suggests 
a unidirectional separation as graphical representation of causal conditional 
independence structures. Causal independence allows for defining a measure to 
characterize the strength of a causal effect of causal networks which is called 
information flow by Nihay Ay and Daniel Ploani [4]. The cause contribution of A to 
B imposing S is zero, then we say there is no information flow between A  and B  
after intervening S. The notion of causal effects is based on the possibility to intervene 
in causal models. An intervention is an action taken to force a variable into a certain 
state, without reference to its own current state, or the states of any of the other 
variables.  Direct causal effect A B→ is the post-interventional probability 
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distribution of B which is defined via mechanisms rather than observations. The 
interventional formalism (see [3]) provided an appropriate framework for the cause 
mechanisms in the given system. Causal effects can be identified or post-
interventional probability distributions can be calculated by interventional formalism 
if all variables can be observed. There are three popular figure criteria, front-door, 
back-door and instrumental variables criteria for causal effects. Pearl’s notion [3] of 
identify causal effect demands to meet front-door criteria or back-door criteria if there 
are some unobserved variables. Zhao and Zheng [10] have discussed and compared 
identifiability criteria for causal effects in Gaussian causal models. They have 
obtained that complete data method is better than front-door, back-door criteria and 
back-door criteria is better than instrumental variables criteria. These results can offer 
guidance for choosing better identifiability criterion in practice. Hei and Manabu [11] 
present an extended set of graphical criteria for the identification of direct causal 
effects in linear Structural Equation Models (SEMs), they introduce a new set of 
graphical criteria which uses descendants of either the cause variable or the effect 
variable as “path-specific” instrumental variables" for the identification of the direct 
causal effect as long as certain conditions are satisfied.  

Directional separation (d-separation for short) is a relation among three disjoint 
sets of nodes in a directed acyclic graph which is defined in [12]. Two subsets of 
nodes, X  and Y , are said to be d-separated by Z  if all chains between the nodes in 
X  and the nodes in Y  are blocked by Z . While this condition is characterized by its 

consistency with stochastic independence structures. Pearl’s well known d-separation 
criterion in a directed acyclic graph is a path separation criterion that can be used to 
efficiently identify all valid conditional independence relationships in the Markov 
model determined by the graph. A joint distribution represented by a Bayesian 
network must satisfy the Markov conditions of the structure: each variable must be 
independent of its non-descendents given its parents. Unidirectional separation (ud-
separation for short) which is defined in [4] is used to judge causal conditional 
independence. Let A, B, S be three disjoint subsets of nodes. We say that B is ud-
separated from A  by S if all directed paths from A  to B  go through S . There 
exists a directed path from A  to B  that does not meet S  if the information flow 
between A  and B is a positive number after intervene S. A necessary and sufficient 
condition of ud-separation is given in [4] .What is the relationship between d-
separation and ud-separation? How to find the d-separation and ud-separation sets 
quickly? 

The purpose of this paper focus on the relationship between d-separation and ud-
separation in directed acyclic graphs. By using layer sorting structure of a Bayesian 
network, d-separation and ud-separation sets are found quickly to identify direct 
causal effects . 

This paper is organized as follows. In section 2, we introduce background 
knowledge. In section 3, a new definition which is called layer sorting is introduced, 
and we discuss a special kind of Bayesian networks, and in this case, both d-
separation and ud-separation hold when it satisfy certain condition. In section 4, we 
introduce two applications about layer sorting. 
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2   The Basic Concepts and Relation Works  

In this section, we introduce some notions and discuss previous relevant works on 
which our results is based. At the same time, we introduce present relevant 
background knowledge. We assume that the readers have some basic familiarity with 
graph theory and Bayesian networks.    

A Bayesian network is consist of (1) structure: a directed acyclic graph or a DAG 
for short, ( , )G V E= ; (2) parameters: represent a joint distribution P  over variables. 

We use higher-case Roman letters for sets of nodes, and lower-case Roman letters for 
singleton node. 

We consider a finite set V φ≠  of nodes and a set E V V∈ × among these nodes. 

Such a directed graph ( , )G V E= , if ,i jv v E ∈ , it means that it is a directed edge 

from iv  to jv ,we note i jv v→ .If two nodes iv and jv , either i jv v→ or j iv v→ , we 

call iv and jv are adjacent, we note i jv v− . An ordered sequence 1 2( , , )nv v vπ =  in a 

DAG ( , )G V E=  is called a path from 1v  to nv , if iv  and 1iv +  are adjacent for all 

1, 2, 1i n= − . An ordered sequence 1 2( , , )nv v vπ =  in a DAG ( , )G V E= is called 

a directed path from 1v  to nv , if 1i iv v +→  for all 1, 2, 1i n= − . If 1 nv v= , directed 

path 1 2( , , )nv v vπ =
 
is called a directed cycle. A directed graph with no directed 

cycles is called a directed acyclic graph. 
Let ( , )G V E=  be a DAG, and , ,x y z  be three different nodes in G . 

If x z y G→ → ∈ , we call z  is a serial connection node. If x z y G← → ∈ , we call 

z  is a diverging connection node. If x z y G→ ← ∈ ,  we call z  is a collider node. A 

path 1 2( , , )nv v vπ =  is called a compound active path given conditioning set Z  in 

DAG G , if each node iv  in the path has one of the two following properties: (1) iv  is 

not a collider and iv is not in Z ;  or (2) iv  is a collider and either iv  or a descendant 

of iv  in G  is in Z . D-separation has been identified as the graphical separation 

property that is consistent with stochastic conditional independence. It is defined as 
follows. A path 1 2( , , )nv v vπ =

 
is blocked by a set S ,  if there is a node 

(1 )jv j n< <  of the path such that: either jv S∈  and jv  is not a collider, or jv  and 

all its descendants are not in S , and jv  is a collider. Sets A and B  are d-separated 

given a set S  in ( , )G V E= , if every simple active path between a node in A  and a 

node in B is blocked given conditioning set S . Let ( | )d GB A S⊥  denote that A  is d-

separated from B given S  in G . Sets A and B are ud-separated given a set S  in 
( , )G V E= , if every directed  path from A to B is blocked given conditioning set S . 

And let ( | )ud GB A S⊥  denote that B is unidirectional separated from A given a set S  

in G . 
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Fig. 1. A directed acyclic graph 

For example, we have a set of six nodes 1 2 3 46 5 6{ , , , ,X ,X }V X X X X= , and a set of 

six edges among these nodes:  

1 2 3 2 2 4 3 5 4 5 5 6{ , , , , , , , , , , , }E X X X X X X X X X X X X=             , 

which is shown in Figure 1. The path 1 2 4 5 6X X X X X→ → → → is direct path. Let 

1 6 3{ , }A X X= , 1 1{ }B X=  and 1 4{ }S X= . Then sets 1A  and 1B  are ud-separated by 

1S .  Let 2 6{ }A X= , 2 1{ }B X= , 2 5{ }S X= . One has that 2A is d-separated from 2B  

given 2S .            

3   Main Results and Proof  

In this section, we take two parts to discuss the relationship between d-separation and 

ud-separation. 

There is a simple active path between node x  and node y  given conditioning set 

Z  in G  if and only if there is a compound active path between node x  and node y  

given conditioning set Z  in G . This implies that simple and compound active paths 
are interchangeable with respect to the definition of d-separation.  Firstly, let us see 
the following lemma 3.1. 

Lemma 3.1. Let ( , )G V E= be a DAG, and A , B and S are three disjoint subsets of 

V , then ( | )d GB A S⊥  is the sufficient condition for ( | )ud GB A S⊥ . 

Proof. we assume sets A and B  are d-separated by S . Let 1 2( , , )nl v v v= be an any 

directed path from the set A  to the set B , then l  is blocked by S . Each node 
( 1,2 )jv j n=  in l  is a serial connection node, according to the definition of d-

separation, there must be exist one node (1 )jv j n< <
 
in S . Therefore each directed 

path between sets A  and B  goes through S , then B  is d-separated from A  given 
S .               □ 

We can see this from Figure 1. Suppose 6 3{ , }A X X= , 1{ }B X= , 4{ }S X= , then 

B is ud-separated from A given S , but B  is not d-separated from A given S . 
From lemma 3.1, we know that d-separation is the sufficient condition for ud-

separation. In order to discuss the condition that both d-separation and ud-separation 
hold, we introduce the definition of layer sorting. 
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Let ( , )G V E= be a DAG, 0F  be the set of nodes that has no parents nodes. 

According to 1 0 1 0 1{ \ ( , , ) : ( ) ( ) }m m mF v V F F F pa v F F F φ+ = ∈ ≠∪ ∪ ∪ ∪  

where 0,1,2m = , we get next layers. Since V is a finite set, for some m , we have 

1mF φ+ = . Therefore, the layers after 1mF +  are also empty.  Assume 

max{ , }mK m F φ= ≠ , we have the disjoint union 0 1 KV F F F= ∪ ∪ ∪ . The 

corresponding map that {0,1 }l K→  assigns to each v V∈ its layer number ( )l v  

where 0 ( )l v K≤ ≤ . 

Suppose 1 3 6 5{ , }, { }, { }A X X B X S X= = = , obviously B is d-separated from A  

given S  and it also is ud-separated A  given S . 

Theorem 3.1. Suppose ( , )G V E= be a DAG, and its layer structure 

0 1 KV F F F= ∪ ∪ ∪ . 

For any non-negative integers , ,a s b , then bF  are aF  ud-separated by sF  if 

0 a s b K≤ < < ≤ . 

Proof. We consider a directed path 1 2( , , )nv v vπ =  from aF  to bF . The 

corresponding layer numbers are 1( ), ( )nl v l v , and 1( )l v a= , ( )nl v b= . If 

1( ) ( )i il v l v+ > , we have 1( ) ( ) 1i il v l v+ = + . It implies that there must be one node 

( ) ( )il v s a i b= < < . Therefore, any directed path 1 2( , , )nv v vπ =  from aF  to bF  

goes through sF .  That is ( | )b ud a s GF F F⊥  holds.        □ 

Theorem 3.2. Suppose ( , )G V E= be a DAG, and its layer structure 

0 1 KV F F F= ∪ ∪ ∪ . 

If the parents of mF are included in 0 1 mF F F∪ ∪ ∪ , for three non-negative 

integers , ,a s b , if 0 a s b K≤ < < ≤ , bF  and aF  are ud-separated and d-separated by 

sF . 

Proof. Firstly, we prove that a d b s GF F F ⊥  holds. Let 

1 2( , , , , , )i j k ql v v v v v v=  be a simple active path from aF
 
to bF . There exist 

one nodes of sF at least is not a collider in path l . Assume { }i sp v l F= ∈ ∩  where the 

path l  goes through sF . If one node in p  is not a collider, then the conclusion that 

( | )a d b s GF F F⊥  is right. Otherwise, all nodes in p  are colliders in the path l . We 

consider kv , since kv p∈ , then 1k sv F+ ∉ . Then the subpath '
1 2( , , )k k ql v v v+ +=  of l  

is a simple active path from 1sF −  to bF . According to lemma 3.2,  there exists one 

node in 'l  goes through sF . This is contradictory to the definition on p . Therefore 

( | )a d b s GF F F⊥  holds. 
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Because all directed paths from aF  to bF  go through sF ,  according to theorem 3.1,
 

( | )b ud a s GF F F⊥  holds.            □ 

In that special kind of Bayesian networks, there is one node on each active path 
from aF  to bF which is not a collider in conditioning set sF . 

Let ( , )G V E= be a DAG. Further let A , B  and S are three disjoint subsets of V . 

If ( | )d GA B S⊥  and ( | )ud GB A S⊥  hold simultaneously, any active path l  from A  

to B  must meet one of the following two conditions. 
Either l  is a directed path in itself, then l  must go through S , or l  is not a 

directed path in itself, (1) l  does not go through S , there must be a collider node in 
l  and its descendents are not in S , (2) l  goes through S , let 1 2( , , )ks s s  be the 

nodes that l goes through S , if 1k = , node 1s  is not a collider node in S . If 2k ≥ , 

there is a node (1 )is i k≤ ≤  which is not a collider in l .  

Because an active path may be also a directed path in itself, and may be a directed 
path is a sub-path of an active path. In order to discuss the condition demanded to be 
satisfied to ensure d-separation and ud-separation hold simultaneously, we discuss it 
in two special cases, any other cases seems to be these two cases. 

 

2X

1X 3X

4X 5X
 

Fig. 2. Two special cases to judge d-separation and ud-separation 

Case1: Let 1 1 1 5 1 3{ }, { }, { }A X B X S X= = =  in Figure 2. Then 1 1 1( | )d GB A S⊥ and 

1 1 1( | )ud GB A S⊥  hold simultaneously. Namely, each directed path from 1A  to 1B goes 

through 1S . If one has a active paths from 1A  to 1B  which not go through 1S , there is 

a collider node in these active paths and its descendents are not in 1S . 

Case 2: Assume 2 1 2 2 3 2 4 5{ }, { , }, { , }A X S X X B X X= = =  in Figure 2. Then 2B  is ud-

separated from 2A  by 2S  in G . However 2B  is not d-separated from 2A  by 

2S because nodes 1X and 5X  are not independence given 2X  in 

path 1 2 5X X X→ ← . In the case, if there is an active path from 2A  to 2B  which has 

only a collider node in 2S , the case is not right.                      

4   Applications and Discussion 

In this section, we discuss two applications of layer sorting. One is that we can get a 
Bayesian network’s topological sequence using layer sorting. The other is we can get 
d-separation and ud-separation sets to indentify the direct causal effects. 
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Assume we give a causal graph G  as is shown in Figure 3 and its layer structure is 
shown in Figure 4. 

From Figure 4, one has 0 1 2 3{ , }, { , , }, { , }, { }F A B F C D E F F H F G= = = = . Firstly, 

we choose one node from 0F  and delete it until 0F  is empty.  Secondly, we select one 

node that has not parents from 0\V F  and delete it.  Do like this until all nodes are 

opted. The topological sequence of causal graph G  is 

( , , , , , , , )A B C D E F G H . 

Let F  and H  be two different nodes in G . We want to judge whether the causal 
effect of F  on H  is identifiable. Using layer sorting, we obtain its layer structure 
which is shown in Figure 4.  From Figure 4, we have F  and H  are in the same layer. 
We know the d-separation set is consist of C  and D . We use this example to show 
that we can get the d-separation and ud-separation sets easily using layer sorting for 
some special kind of Bayesian Networks. 

F K H

C E

A D B
                

A B

C D E

F H

K  

                      Fig. 3. A causal graph G           Fig. 4. The layer structure of G  

The relationship between d-separated and ud-separated is discussed in this paper, 
we obtain that d-separated is sufficient condition for ud-separated. By using the layer 
sorting structure of Bayesian networks, the condition demanded to be satisfied to 
ensure d-separation and ud-separation hold is given. D-separation and ud-separation 
play a very important role in the indentify of direct causal effects. In the next time, we 
will use layer sorting together with d-separation and ud-separation’s nature to 
indentify the direct causal effects. 
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