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Abstract. A simple way is proposed to estimate the non-negative real 
parameter tuple {ω, c1, c2} of standard Particle Swarm Optimization algorithm 
using control theory. The distribution of complex characteristic roots on the 
convergence region of particles is studied by means of linear discrete-time 
system analysis method. It is pointed out that the critical factors affecting the 
modulus value and the phase angle of the complex characteristic roots are the 
maximum overshoot and angular frequency of damped oscillation. The way 
shows that the product of the maximum overshoot and the angular frequency of 
damped oscillation approximately equaling to 1 is the promising guideline for 
parameter selection in PSO when the angular frequency in the range of (0.65π, 
0.35π). Based on this, widely used benchmark problems are employed in series 
experiments using a stochastic approximation technique, and the results are well 
back above deduction.  

Keywords: particle swarm optimization, statistical experiments, parameter 
selection. 

1   Introduction  

Particle swarm optimization (PSO) has been shown to be an efficient, robust and 
simple optimization algorithm for finding optimal regions of complex search spaces 
through the interaction of individuals in a population of particles. Accelerating 
convergence rate and avoiding local minima or prematurely are two main aspects in 
PSO. Clerc and Kennedy [1] mathematically analyzed the stochastic behavior of the 
PSO algorithm in stagnation. Trelea [2] analyzed the dynamic behavior and the 
convergence of the simplified PSO algorithm using standard results from the discrete-
time dynamic system theory, and provided a parameter set (ω = 0.6, c1 =c2= 1.7) in 
the algorithm convergence domain. M. Jiang et al. [3] studied the stochastic 
convergence property of the standard PSO algorithm, and gave a sufficient condition 
to ensure the stochastic convergence of the particle swarm system. And then, 
according to the analysis result, a set of suggested parameters (ω=0.715, c1 =c2= 1.7) 
was given in another literature [4]. J. L. Fern´andez Mart´ınez et al. proved the same 
stability regions under stagnation and with a moving center of attraction. They also 
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pointed out that properties of the second-order moments variance and covariance 
served to propose some promising parameter sets and proposed a good parameter 
region of inertia value and acceleration coefficients [5]. Above reports provide 
insights into how particle swarm system works based on mathematical analyses. 
Besides, the oscillation properties also have important influence on optimization 
process, while its analysis in optimization process based on control theory was seldom 
reported by far.  

The rest of the paper is organized as follows. Section 2 surveys the standard PSO 
in the z-plane according to the control theory. A simple principle to find the best 
parameter values in particle swarm optimization based is presented in Section 3. 
Section 4 presents the experimental results using seven benchmark functions. Finally, 
Section 5 concludes the paper. 

2   Analysis of Particle Swarm Optimization 

2.1   The Difference Equations of Standard PSO Algorithm 

PSO uses a set of particles, representing potential solutions to solve the optimization 
problem. The particles move around in a multidimensional search space with a 
position xt

id and a velocity vt
id, where i=1,2,…,N represents the index of the particle, t 

is the time step, and d =1,2,…,D is the dimensionality of the search space. For each 
generation, the particle compares its current position with the goal (global 
best/personal best) position and adjusts its velocity towards the goal with the help of 
the explicit memory of the best position ever found both globally and individually. 
Then the updating of velocity and particle position can be obtained by using the two 
following equations 

( ) ( )1
1 21 2t t t t t t t t

id id id id id id gd idv v c r p x c r p xω+ = × + × × − + × × −
 

(1)

1 1t t t
id id idx x v+ += +  (2)

where c1 and c2 are positive constants, defined as acceleration coefficients; ω is the 
inertia weight introduced to accelerate the convergence speed of PSO algorithm; r1t

id 
and r2t

id are two random functions in the range of [0,1]; pt
id is the best previous 

position of xt
id; p

t
gd is the position of the best particle among the entire population.  

During stagnation, each particle behaves independently and each dimension is 
treated independently too. So updated equations are rewritten as 

( ) ( )1 1 1, 2 2,t t t i t t g tv v c r p x c r p xω+ = + − + −  (3)

1 1t t tx x v+ += +  (4)

By substituting Eq. (3) into Eq. (4), the following non-homogeneous recurrence 
relation is obtained: 

( )1 1 1, 2 2, 1 1 1, 2 2,1 0t t t t t t i t gx c r c r x x c r p c r pω ω+ −+ + − − + − − =  (5)
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Applying the expectation operator to both sides of the Eq. (5), obtaining 

1 21 2
2 11 0

2 2
i g

t t t

c p c pc c
Ex Ex Exω ω+ +

−+ + − − + − = 
 

 (6)

According to the z–transform of the second-order difference Eq. (6), the expectation 
of x(z) is 

( )
1 22 1 2

0 1 0

2 1 2

1
2 2 1

1
2

i gc p c pc c z
z x zx zx

z
Ex z

c c
z z

ω

ω ω

++ + + − − +  − =
+ + − − + 

 

 
(7)

and the corresponding characteristic equation is 

2 1 2 1 0
2

c c
z zω ω+ + − − + = 

 
 (8)

Let 
1 2c c c= = ， the solutions of the corresponding characteristic equation give the 

eigenvalues 

1
1 2 2

c
z

ω+ − ± Δ
=

，

 (9)

where 

( )21 4c ω ωΔ= − − −  (10)

The positions of eigenvalues in the z-plane affect the dynamic characteristic of kEx , 

and it can be discussed in two cases , both eigenvalues are real ones or complex ones . 

2.2   Dynamic Characteristic Analysis of Complex Eigenvalues 

According to the time-domain analysis of linear systems， the complex eigenvalues 
can be expressed as  

( )
1,2 1,2=d dj T j Tz e z eσ ω ω− ± ±=  (11)

and the model of the complex eigenvalues is  

n
1,2 =z e e ξωσ −−=  (12)

where
nσ ξω=  is attenuation coefficient，

21d nω ω ξ= − is angular frequency of damped 

oscillation，ωn is natural frequency， ( )0 1ξ ξ< < is damping ratio in control . 

From inverse z-transform, the transient component of the complex eigenvalues can 
be derived as：   
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2

1
( ) sin( )

1
nnT

dEx nT e nTξω ω β
ξ

−= − +
−

 (13)

where arccosβ ξ= ，T is sampling period. 
The maximum overshoot 

21 100%M e
πξ

ξ
−

−= ×  (14)

denotes the maximum peak value of the response. It is decided by system's damping 
degree, and the greater the value of ξ is, the smaller the maximum overshoot will be.  

The characteristics of Eqs.(12),(13) and (14) can be summarized as follows:  
(1) The complex eigenvalues locate inside the unit circle in the z-plane when 

1,2 1z <  and then the dynamic response ( )Ex nT  is a periodic pulse sequence with 

damping process. The smaller the value of 1,2z  is, the closer the complex eigenvalues 

to the origin of the z-plane, and then it will cause the inevitable result of rapid 
convergence. The convergence rate becomes slower when the value of 1,2z  

approaches to 1 and continuous oscillation will occur when 1,2 1z = . 

(2) The dynamic characteristic of ( )Ex nT  decided by the complex eigenvalues is 

sinusoidal oscillation with the angular frequency dω . The fact that the value of dω  is 
too small to favor the system overcoming premature convergence and a much greater 
one causes the system oscillate seriously and even incapable convergence in limited 
optimization period. 

(3) The maximum overshoot is only a function of the damping ratioξ  as shown in 

Eq.(14).The greater the maximum overshoot is, the bigger the oscillation amplitude 
will be. The value of M is too great to favor the system fast stabilization, and too 
small to favor the system optimization. 

The relationships between the distribution  of complex eigenvalues and their 
corresponding dynamic responses are shown in Fig.1. 

 

Fig. 1. The distribution of complex characteristic roots and their corresponding dynamic 
responses 
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According to the analysis results above, it can be concluded that the maximum 
overshoot M and the angular frequency of the damped oscillation ωd affect the 
optimization behavior mainly. When the value of ωd is heightened, the maximum 
overshoot M should be reduced. Conversely when the value of ωd is decreased, the 
maximum overshoot M should be increased. 

3   A New Simple Parameter Selection Guideline 

Based on the theoretical analysis results obtained above and corresponding 
experimental results, the new   guidelines for parameter selection are proposed as 
following and detailed discussion are made to show the validity of the new guidelines 
in [6]. 

( )=1 0.65 ,0.35d dM ω ω π π× ∈  (15)

According to Eq.(15), PSO algorithm will search the solution space thoroughly, and 
find the optima with higher probability. The way to get the certain values of ω and c 
from the relationship of M and ωd in Eq.(15) is shown as following.  

As discussed above, the eigenvalues can be easily obtained from Eqs. (9) and (10) 
when 0Δ < .The solving formula is 

( )
1,2

21 4 1

2

c j c
z

ω ω ω+ − ± − − −=  (16)

Let the sampling period T=1s, and from Eqs. (16) and (12) the model of eigenvalues 
can be expressed as 

( )
1,2

21 4 1

2
n

c j c
z e ξωω ω ω ω −+ − ± − − −

== =  (17)

The angular frequency of  the damped oscillation in the z-plane is 

( ) 2
24 1

180 +arctan
1801

1d n

c

c

ω ω π
ω

ω ω ξ
 − − − ° × + − 
 

= = −（ rad）  (18)

The solving process can be summarized as following.  

(1) Choosing the value of ωd arbitrarily, such as 0.65π, 0.6π, 0.55π, 0.5π, 0.45π, 0.4π, 
0.35π listed in table 1. 

(2) Getting the corresponding maximum overshoot M according to Eq.(15). 
(3) Then the damping ratio ξ can be calculated from Eq.(14).  
(4) The corresponding values of ω and c can be calculated respectively according to 

Eqs. (18) and (17) finally. 

The detailed data are listed in table 1 .  
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Table 1. Data according to the simple parameter selection guidelines 

ωd ω c dM ω×  

±0.65π 0.398 1.971 1 
±0.60π 0.469 1.892 1 
±0.55π 0.551 1.783 1 
±0.50π 0.640 1.640 1 
±0.45π 0.736 1.468 1 
±0.40π 0.836 1.271 1 
±0.35π 0.821 0.998 1 

0.456π [1] 0.729 1.494 1 
0.521π [2] 0.600 1.700 1 
0.473π [4] 0.715 1.700 1 

4   Optimization Strategies and Experiment Results  

4.1   Test Conditions 

The detailed information of three benchmark functions are summarized in Table 2. A 
fully connected topology (all particles being neighbors) was used in all cases. For 
each function, the population sizes were set to 30. Defined the maximum velocity 
according to equation vmax=xmax. The optimization process will stop when the error 
goal is reached or the numbers of iterations reach 5000.  

Table 2. Typical test functions 

Name Formula Dim. Range Error goal 

Rastrigin ( ) ( )( )2

1

10cos 2 10
n

i i
i

f x x xπ
=

= − +
 

30 [-5.12,5.12]n 102 

Griewank ( ) 2

1 1

1
cos 1

4000

nn
i

i
i i

x
f x x

i= =

 = − + 
 

 ∏ 30 [-600,600]n 10-1 

Schaffer’s 
f6 ( )

( )
( )( )

2
2 2
1 2

2
2 2
1 2

sin 0.5
0.5

1 0.001

x x
f x

x x

+ −
= +

+ +

 
2 [-100,100]2 10-5 

4.2   Experimental Results 

New simple guidelines for parameter selection in PSO are proposed based on the 
dynamics characteristic analyses of the eigenvalues in the z-plane according to the 
control theory. To further explain their validity, experimental comparisons between 
research results in literatures such as [1, 2, 4] and the new simple guidelines are 
carried out as following. For each setting, 20 runs are performed. During each run, the 
operation terminates when the fitness score drops below the cutoff error and it is 
assumed that the global minimum of the function is reached, henceforth; the score is 
set to 0. The experimental results are listed as follows:  
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Fig. 2. Iterative comparison with functions of Rastrigin, Griewank and Schaffer’s f6  

Table 3. Statistical results from 20 runs of  the functions      

d 0.65  0.6  0.55  0.5  0.45  0.4  0.35  
0.456  

[1] 
0.521  

[2] 
0.473  

[4] 
Suc. 1 1 1 1 1 1 1 1 1 1 

Max. 177 141 151 166 215 587 267 343 171 162 

Min. 80 69 64 57 88 159 71 101 67 166 

Mean 115 98 107 102 127 279 122 162 99 178 

Rastrigin 
function 

St.D 23.5 21.4 21.4 26.4 28.0 103 45.5 62.5 24.8 35.1 

Suc. 1 1 0.85 0.95 1 1 0.65 1 0.90 1 

Max. 424 374 339 457 557 724 639 497 337 593 

Min. 243 227 239 225 273 466 216 274 209 423 

Mean 309 289 279 309 328 564 402 356 276 514 

Griewank 
function 

St.D 42.8 39.7 36.5 63.7 64.1 66.8 133 57.4 36.4 50.7 

Suc. 0.60 0.45 0.60 0.45 0.85 0.75 0.70 0.30 0.55 0.70 

Max. 431 358 440 295 526 554 480 491 460 271 

Min. 4 53 7 9 4 5 5 5 68 5 

Mean 116 184 198 134 145 179 139 200 169 119 

Schaffer’s 
f6 

function 

St.D 104 119 133 86 129 182 131 182 140 98 
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The statistical comparison between the new simple guidelines and research results 
in literatures are reported in tables 3. Iterative comparisons among new simple way 
mentioned in this paper and other parameter selection strategies with three functions 
are showed in Fig.2. The statistics in the tables indicate that the parameters in 
accordance with the simple way show good performance in speed and reliability. But 
when ωd take 0.45π and 0.35π, the values of average and variance are larger in some 
cases and hence can’t avoid getting trapped into local optimum. 

5   Conclusion 

This paper has presented a simple guideline for parameter selection of standard PSO 
using control theory. The simple guideline is that the product of the maximum 
overshoot and the angular frequency of damped oscillation approximately equaling to 
1 is the promising guideline for parameter selection in PSO when the angular 
frequency in the range of (0.65π, 0.35π). The statistical results well back the 
superiority of the new simple guidelines in terms of time, iterations and convergence. 
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