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Abstract. In this paper an efficient graph coloring algorithm based on the 
transiently chaotic neural network (TCNN) is presented. This algorithm apply 
the TCNN with  hysteretic output function instead of logistic output function, 
this make the model has higher ability of overcoming drawbacks that suffer 
from the local minimum. Meanwhile, a rapid strategy is merged in this model in 
order to avoid oscillation and offer a considerable acceleration of converging to 
the optimal solution. The numerical simulation results demonstrated that the 
proposed model has higher ability and more rapid speed to search for globally 
optimal solution of the graph coloring problem than the previous TCNN model 
with logistic output function and without the rapid strategy.  
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1   Introduction 

The graph coloring problems is one of the classical combinatorial optimization 
problems having widespread applications in areas such as frequency assignment 
problems and computer compiler optimization. The graph coloring problem is to color 
or label the vertices of a graph with the minimum number of colors, such that no two 
adjacent vertices are the same color. It is more difficult with constraint that the 
minimum number of colors is required for a given map or graph. In 1976, Appel and 
Haken [8] solved the four-color problem based on the sequential method whose 
computation time may be proportional to O(n2) (where n is the number of regions to 
be colored) so that it took many hours to solve a large problem. 

Solving combinatorial optimization problems has been one of the main motifs for 
the development of neural networks since Hopfield and Tank [1] proposed their 
recurrent network to traveling salesman problem (TSP). Takefuji [2] have used a 
discrete Hopfield-type network to solve the four-coloring map problem. While the 
classical Hopfield model may be trapped at local minimum and fail to reach global 
minimum of the objective functions, the transiently chaotic neural network (TCNN) 
was developed [3]. We have applied a TCNN to solve the four-coloring map 
problems, which have higher ability of searching for the globally optimal solution 
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because of its complicated chaotic dynamics [4]. Recently, non-monotonous output 
functions have been employed in various neural networks. The neuro-dynamics with a 
non-monotonous have been reported to possess an advantage of the memory capacity 
superior to the neural network models with a monotonous output function [5]. We 
have proposed a transiently chaotic neural network model with a hysteresic output 
function (HTCNN) to solve the graph coloring problems, which has higher ability of 
overcoming drawbacks that suffered from the local minimum [6]. In order to simulate 
continuous dynamics and accomplish fast calculation with parallel digital computers, 
our previous algorithm is operated in a synchronous and discrete way in which case 
much iteration is required before converging to optimal solution with small time 
difference. When time difference is large, however, the system becomes oscillatory 
and the search fails completely. This will make the speed of converging to the optimal 
solution slower. In this paper, a rapid searching algorithm is proposed and merged 
into the HTCNN, which offers a considerable acceleration of converging to the 
optimal solution when the TCNN is updated in a synchronous discrete manner. 

2   TCNN with Hysteretic Output Function for the Graph Coloring 
Problems 

In order to map the four-coloring graph problems to Hopfield network, a n×4 two-
dimensional neural array is needed, where n is the number of regions to be colored, 
and a single region requires four neurons for the single-color assignment. Seven-
region graph are colored by four colors as shown in Fig. 1 (a). If red, yellow, blue and 
green are represented respectively by 1000, 0100, 0010 and 0001, the neural 
representation for the problem is given in Fig.1 (b), where a 7×4 neural array is used. 
Fig. 1 (c) shows the 7×7 adjacency matrix d of the seven-region graph, which gives  
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Fig. 1. (a) A 7-region map and four-colored map.  (b) Neural representation for the map. (c) An 
adjacency matrix of the map 



356 X. Wang and Q. Qiao 

the boundary information between regions, where dXY=1 if regions X and Y are 
adjacent to each other, and dXY=0 otherwise. 

In order to consider in such a way that no two adjacent regions are of the same 
color, the energy function is given by 
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Where A, B and C are constant, d is the adjacency matrix. VXi is the output of the ith 
neuron in the X region. The first term corresponds to the row constraint in the neural 
array, which forces one region to be colored by only one color. The second term is the 
global inhibition to enforce the requirement that exactly “n” neurons are “1”. The 
third term describes the boundary violation between regions; If X and Y regions have 
a common boundary (dXY=1), X and Y region should not have the same color i. The 
minima of energy function E, that is, E=0 corresponds to the optimal solution of the 
four-coloring graph problem. 

The connection weighting values WXi,Yj of the  neurons and threshold IXi of the 
neural network are 

               jiXYijXYYjXi CdBAW δδδ −−−−= )1(,                              (2) 
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Where δij=1,if i=j, otherwise δij=0. The dynamic equation of the neurons is 
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Where τ is the time constant, ε is constant controlling the steepness of the sigmoid 
curve f ( uXi ). uXi is the internal state of neuron Xi. 

A transiently chaotic neural network with hysteretic output function (HTCNN) for 
solving the graph coloring problems is created  by introducing transient chaos into the 
system, and its output function is hysteresis [6]. The continuous dynamics of the 
HTCNN is 
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Where z (t) is the self-feedback connection weight, β0 (0<β0<1) is damping factor, and 
I0 is a positive parameter. A value of z is used such that is strong enough to generate 
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the chaotic dynamics for searching the global minima. It is then gradually decayed 
according to (7) such that the system becomes convergent to a stable fixed point. The 
transient chaos improved optimization ability is apparent in solving the graph coloring 
problems [4]. 

The output function of above HTCNN is a hysteretic function which is depicted in 
Fig. 2 and is described as: 

 

Fig. 2. Hysteretic output function 
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HTCNN includes memory because of using hysteretic function as neuron’s output 
function. And due to a change in the direction of the input, a system can pull itself out 
of a saturated region by jumping from one segment of the hysteretic output function 
to the other segment. This make the HTCNN has a tendency to overcome local 
minima. The HTCNN improve the optimization capacity in solving the graph coloring 
problems [6]. 

The calculation of the above differential equation must be converted to the 
difference equation by using the Eular discretization when a digital computer is used. 
Thus, the difference equation is written in the form: 
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Where let’s set k = (1-Δt/г), and α0=Δt.  
If the time difference △t is small, the search can be carried out successfully, but it 

requires much iteration before reaching optimal solutions. It is expected that the 
number of iterations can be reduced by using larger △t. When △t is too large, 
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however, the network becomes oscillatory and the searching for the optimal solution 
fails completely. This has shown that the use of synchronous discrete computation 
cannot quickly converge to an optimal solution when analog HTCNN is a dopted to 
the searching. In the following section, we propose an algorithm that overcomes the 
above dilemma. 

3   Merging a Rapid Strategy into HTCNN 

Kindo and Kakeya [7] have proposed a geometrical method for analyzing the 
properties of associative memory model and provided the geometrical outline of the 
model’s dynamics. Based on it, we give a short review of the geometrical explanation 
on neural dynamics. For simplicity, assume v=f(u)=sgn(u), I=0 (∀i and j), and z=0(∀i 

and j), Then Nv =  holds, for the state vector v has +1 or –1 as its components. 

Therefore v is always on the surface of the hypersphere SN-1 with radius N , N is 
the number of mutually interconnected neurons. The neural dynamics are divided into 
two phases. In the first phase, the state vector v(t) is transferred to the vector 
u(t+1)=(1-△t)u(t)+△tWv(t) linearly (τ=1) with the weight matrix W. In the second 
phase, the vector is quantized to the nearest state vector that requires the least angle 
rotation. Therefore, from the hyperspherical viewpoint, linear transformation gives 
the major driving force of dynamics, while nonlinear transformation generates the 
terminal points of dynamics. That is to say linear transformation is more important 
than the nonlinear transformation when we discuss non-equilibrium dynamical 
properties of neural network. This suggests that the eigenspace analysis of the weight 
matrix gives major information to explain the global feature of the dynamics. Now we 
apply this approach to analyze the weight matrix of the neural network for solving the 
graph coloring problems. 

As stated above, the good solutions of the graph coloring problems are located in 
the low energy area of the state space, and the low energy state of the network 
corresponds to the state that is composed mainly of the eigenvectors with large 
eigenvalues. Therefore good solutions have large components of eigenvectors with 
large eigenvalues and almost no components of eigenvector with negative 
eigenvalues. 

While the synchronous discrete dynamics with large  △t do not always realize 
state transition toward the low energy. Fig. 3 is used to illustrate the simple 
mechanism. Here the nonlinear transformation is neglected for simplicity, and the 
dynamics given by u(t+1)=(1-△t)u(t)+△tWv(t) are illustrated. When △t is small, the 
state vector converges to the eigenvector of W with the largest positive eigenvalue, 
which spans the low energy states. When △t is large, however, the state vector is 
attracted to the eigenvector of W whose eigenvalue has larger absolute value. This 
means that the state vector stays in the higher energy states when a negative 
eigenvalue has larger absolute value than the maximum positive eigenvalue. In this 
case, △t has to be kept small to ensure convergence to a low energy state though 
larger △t leads to faster convergence when positive eigenvalues are dominant. 
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Fig. 3. Convergence of dynamics given by difference equation with small and large time 
differences △t 

From this discussion, it is expected that synchronous and discrete state transition 
with large △t can proceed toward the low energy states if the effect of the minimal 
eigenvalue is canceled. The component of the eigenvector with the minimal 
eigenvalue is reduced from the weight matrix W of neural network for the graph 
coloring problem by calculating 

(min)(min)
min YjXiXiYjXiYj eeW ρλ−=Ψ

                                   (11) 

Where λmin is the minimal eigenvalue and eij
(min) is its normalized eigenvector, ρ is a 

positive constant, when ρ=1, the minimal eigenvalue component is eliminated from W 
completely. However, because reduction of small eigenvalues increases the firing rate 
of the network, the network converge to a solution which does not satisfy the 
constraints. To adjust the firing rate, the threshold should be raised in accordance with 
the increase of the average weight. Since the threshold is always active while the 
firing rate of neurons in the feasible solutions is 1/N, the effect of the threshold is N 
times larger than that of the neurons. Therefore the threshold is  
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This can keep the firing rate to the proper level. 

4   Solving Graph Coloring Problems by Merging the Rapid 
Strategy into HTCNN 

In this section, we solve the graph coloring problem based on the transiently chaotic 
neural network with hysteretic output function which is merged the above rapid 
searching strategy (RHTCNN), where, the neuron output function is given by the 
hysteretic function as follows: 
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Where, Xiv and Xiu   are output value and internal input value of neuron X i. 

We use RHTCNN to solve the 7-region and 30-region graph four-coloring 
problems. In the simulation of 7-region graph four-coloring problem, the parameters 
are chosen as A=1, B=1, C=1, k=0.985, α0=0.015, I0=0.65, β0=0.01, z0=0.08, ε=0.04, 

50== βα γγ XiXi , 02.0== XiXi βα , The eigenvalue distribution of the weight 

matrix W is shown in Fig. 4.(a). It has a extremely small eigenvalue –61.4267. Chose 
ρ=0.73 for calculating weight matrix Ψ and threshold Ф, time difference △t=0.05, 
the results with 100 different initial conditions in RHTCNN, HTCNN and TCNN are 
summarized in Table 1. 
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Fig. 4. Eigenvalue distribution of weight matrix for 7-region and 30-region map four-coloring 
problem 

Part of Chinese map consists of 30 provinces or cites, so the adjacency matrix is 
given by 30×30 array, and 30×4 neural array is used. The parameters are chosen as 
A=1, B=1, C=1, k=0.998, α0=0.012, I0=0.65, β0=0.03, z0=0.1, ε=0.04, 

50== βα γγ XiXi , 02.0== XiXi βα  , The eigenvalue distribution of the weight 
matrix W is shown in Fig. 4.(b). It has an extremely small eigenvalue –127.4.  

Chose ρ=0.55 for calculating weight matrix Ψ and threshold Ф, time difference  
△t=0.02. The results with 100 different initial conditions in RHTCNN, HTCNN and 
TCNN are summarized in Table 2. 

Table 1. Results of RHTCNN, HTCNN and TCNN for 7-region graph four-coloring problems 

Neural network RHTCNN HTCNN TCNN 
minima of E  0.00227 0.0023 0.0056 

Average iterations for convergence 106 137 280 
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Table 2. Results of rhtcnn, HTCNN and TCNN for 30-region graph four-coloring problems 

Neural network RHTCNN HTCNN TCNN 
minima of E 1.29×10-7 2.4×10-7 0.0509 

Average iterations for convergence 198 238 439 

5   Conclusion 

In this paper, we proposed an efficient graph coloring algorithm by merging a rapid 
strategy into a transiently chaotic neural network with hysteretic output function. By 
using hysteretic output function and transiently chaotic dynamics simultaneously, this 
algorithm has higher ability of searching global optimal solution. Meanwhile, by 
eliminating the components of the eigenvectors with eminent negative eigenvalues of 
the weight matrix, a rapid strategy is presented, which can avoid oscillation and 
converge to the optimal solution quickly and stably. Numerical simulations of 7-
region and 30-region graph four-coloring problems show that the proposed algorithm 
can  accelerate the speed of searching for optimal solution of the graph coloring 
problems under the synchronous discrete computation. 
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