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Abstract. The word level system combination, which is better than phrase level 
and sentence level, has emerged as a powerful post-processing method for 
statistical machine translation (SMT). This paper first give the definition of 
HyperGraph(HG) as a kind of compact data structure in SMT, and then 
introduce simple bracket transduction grammar(SBTG) for hypergraph 
decoding. To optimize the more feature weights, we introduce minimum risk 
(MR) with deterministic annealing (DA) into the training criterion, and compare 
two classic training procedures in experiment. The deoding approaches of n-
gram model based on hypergraph are shown to be superior to conventional cube 
pruning in the setting of the Chinese-to-English track of the 2008 NIST Open 
MT evaluation. 

Keywords: System combination, HyperGraph, N-gram model, Inside-outside 
Pruning. 

1   Introduction 

System combination[2][9][22] aims to find consensus translations among different 
statistical machine translation (SMT) systems. It has been proven that such consensus 
translations are usually better than the translation output of individual systems. 
Confusion network(CN) for word-level combination is a widely adopted approach for 
combining SMT output, which was shown to outperform sentence re-ranking methods 
and phrase-level combination[2]. In order to construct confusion network, word 
alignment between a skeleton (or backbone) and a hypothesis is a key technic in this 
approach. The important alignment methods include Translation Edit Rate (TER)[19] 
based alignment, which is proposed in Sim et al. (2007) and often taken as the 
baseline, and a couple of other approaches, such as the Indirect Hidden Markov Model 
(IHMM)[23] and the ITG-based alignment[6], which are recently proposed with better 
results reported. Joint optimization[24] integrates CN construction and CN-based 
decoding into a decoder without skeleton selection. Lattice-based system 
combination[10] model normalizes the alignment between the skeleton and the 
hypothesis CN into the lattice  without breaking the phrase structure. 
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In this paper, we start from the view of decoding, and introduce a hypergraph 
decoding algorithm of system combination which runs in a bottom-up manner. This 
algorithm parses the target words in the order of CN with reordered words and inserted 
null words. The hypergraph decoding based on system combination is different from 
the conventional decoding algorithm, in particular: 

 The formal grammar is used in hypergraph-based system combination. 
Hypergraph is generally used by parsing and machine translation [17-18]. The 
algorithm produces the hypergraph by simple bracket transduction grammar 
(SBTG) with lexical and non-terminal rules.  

 Two pass decoding algorithm is adopted in the framework. The first pass uses a 
5-gram language model, and the resulting parse hypergraph is used in the second 
pass to guide search with the re-estimated n-gram probability. We can rescore the 
derivation through original viterbi model and re-estimated n-gram model, using 
the product of inside and outside probability.   

 MR with/without DA, which attempts the solution of increasingly difficult 
optimization problem, is introduced in hypergraph decoding, because of fitting 
the curve of the probability distribute of log-linear model better and solving the 
large feature number. 

This paper is structured as follows. We will first, in Section 2, give the definition of 
hypergraph; then in Section 3, we show decoding procedure including inside outside 
pruning, n-gram probablity re-estimation and decoding algorithm. In Section 4, 
experiment results and analysis are presented.  

2   Hypergraph Definition 

Formally, a hypergraph[17-18] in system combination is defined as a 4-tuple H=<V, 

E, G, R> , where V is a finite set of hypernode, E is a finite set of hyperedge, G∈R is 

the unique goal item in H, and R is a set of weights. For a input sentence of target 

language ݁ଵ௃ ൌ ݁ଵ, … ௃݁ , each hypernode is in the form of  ௜ܺ௝ , which denotes the 

partial translation of target partial language ݁௜, … ௝݁ spanning the substring from i-1 to 

j. Each hyperedge e∈E is a triple tuple e=<T(e), h(e), w(e)>, where T(e)∈V is a 

vector of tail nodes, h(e)∈V is its head, and w(e) is a weight function from R|T(e)|  

to R. 
Our hypergraph-based system combination is represented by simplified bracket 

transduction grammar (SBTG). Formally, the set of these hyperedges can be defined 
as a 3-tuple E=<T, N, P>, where T is a set of the terminal word symbol in target 
language, N is a set of the non-terminal symbol including three symbols N={S, X1, 
X2}, P is a set of production rules including two types: 

 Lexical rule:            X→w,  w∈D 
 Non-terminal rule : S→X1 X2, 

X→X1 X2 
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where D is a dictionary including null word (ε) for normalization in system 
combination, start symbol (G∈R) and single word. Non-terminal rule is like straight 
reordering in bracket transduction grammar [8].  

2.1   Inside and Outside Prunning 

The inside-outside algorithm is a way of re-estimating hyperedge probability in 
synchronous context-free grammar (SCFG). It was introduced as a generalization of 
the forward-backward algorithm for parameter estimation on Hidden Markov Models 
(HMM). It is used to compute expections, for example as part of the EM (expectation 
maximization) algorithm. Standard inside and outside recursion formulation is 
showed in Equation (1) and Equation (2), in which I(v) and O(v)  is inside score and 
outside score in hypernode, f(e) and w(e) are feature and weight vector ,respectively, 
and dim(f(e)) is the dimension of feature vector. IN(v) and OUT(v) are incoming and 
outgoing hyperedge of v. 

                             

(1) 

                                         

(2) 

Trough Equation (3), we can get the posterior probability of hyperedge including 
language model feature score, which is computed after its hypernode is generated. 
After coputing the posterior probability, we can prune these hyperedges whose 
probability is below the threshold. P(e|F) is the posterior probability of specific 
hyperedge e, and pe is the original weight of hyperedge e in hypergraph F, and Z is 
normalization factor that equals to the inside probability of the root node in F.   

                                     (3) 

The inside-outside algorithm for pruning and n-gram model is shown in Algorithm 1 
and Algorithm 2.  
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4:           

5:          for  

6:                

7:          

8: return  

 
Algorithm 2 Outside Recursion Algorithm 
run from top to bottom 
1:  for  
2.     

3:     for  

4:           

5:          for  

6:               if  

7:                   

8:          

9: return  

2.2   N-Gram Probability 

We adopt three types of n-gram estimation model and compare these models which 
are proposed by Li[26], which describes an algorithm for computing it through n-
gram model, by Kumar[21],which describes an efficient approximate algorithm 
through the highest edge posterior probability relative to predecessors on all 
derivations in hypergraph, and by Dereno[12][13], which give the expectation count 
and exact algorithm. The n-gram estimation algorithm framework is shown in 
Algortihm 3. 

 
Algorithm 3 N-gram Model/Posterior/Expectation Count Computation 
run from bottom to top 
1: run inside and outside algorithm  
2: compute hyperedge posterior probability P(e|F)  
3:  for  
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7:  

8:  

9: return as n-gram model 

10: return  as n-gram expectation count 

11: return  as n-gram posterior probability 

2.3   Decoding Algorithm  

Different from conventional cube pruning[7], we use cube growing[16] to exploit the 
idea of lazy computation, which get n-best from top to bottom in hypergraph. 
Conceptually, complicate hypergraph decoding incorporates the following procedure: 

1. Generating the hypergraph: generate all hypernodes and hyperedges 
inhypergraph bottom-up in topological order. Every hypernode have many 
hyperedges with SBTG rule for phrase structure. According to the generating 
order of a target sentence, the decoding category is bottom-up[25]. Finally, the 
hypergraph has a distinguished goal item for convenient decoding.  

2. Running inside recursion algorithm: for every hypernode, we compute the inside 
score from its hyperedges with tail nodes. The algorithm set the inside score of 
axiom item to zero, and run from bottom to top for the score through axiom item 
and inference rule[7]. 

3. Running outside recursion algorithm: for every hypernode, we compute the 
outside score of the hypernode, which might be the left or right branch of the 
parent hypernode(two non-terminal in SCFG).  

4. Computing hyperedge posterior probability: according to inside and outside 
probability of hypernode and inside score of goal item and hyperedge weight, we 
compute the hyperedge posterior probability in hypergraph. 

5. Inside-Outside pruning: to reduce the search space and improve the speed, 
pruning the hyperedges is important in the light of posterior probability. Our 
pruning strategy is including threshold and histogram. Pruning algorithm shows 
in above section. 

6. Computing n-gram Probability: the method assume n-gram locality of the 
hypergraph, the property that any n-gram introduced by a hyperedge appears in 
all derivations that include the hyperedge and thus we apply the rule of edge e to 
n-grams on T(e) and propagate n-1 gram prefixes or suffixes to h(e). 

7. Assignning scores to hyperedge: if the hyperedge introduce the ngram into the 
derivation, the n-gram probability is assigned to hyperedge for search k-best 
translation from hypergraph. 

8. Reranking hyperedges in hypernode: we reestimate the n-gram model feature 
value by n-gram posterior probability and count expectation.  

9. Finding the best path in the hypergraph: cube growing[16] compute the k-th best 
item in every cell lazily. But this algorithm still calculates a full k-th best item for 
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every hypernode in the hypergraph. We can therefore take laziness to an extreme 
by delaying the whole k-best calculation until after generating the hypergraph. 
The algorithm need two phases, which are forward that is same as viterbi 
decoding, but stores the hypergraph (keep many hyperedges in each hypernode) 
and backward phase that recursively ask what‘s your k-th best derivations from 
top to down. 

The word posterior feature fs(arc) is the same as the one proposed by [2]. Other 
features used in our log-linear model include language model flm=LM(ei), real word 
count fwc=Nword(ei) andεword count fε=Nnull(ei), where CN is confusion network. 
Equation (4) is decoding framework. 

                      

(4) 

where f denote the source language, e denote the consensus translation generate by 
system combination.λi, α, βandγ is weight of other feature. Cube pruning 
algorithm with beam search is employed to search for consensus translation [16]. 

3   Experiments 

In our chinese-english translation experiments, the candidate systems participating in 
the system combination are as listed in Table 1: Sys-1 uses a syntax-based decoder[1], 
informed by a source language dependency parse (Chinese); Sys-2 is a single-pass 
phrase-based system. The decoder uses a beam search to produce translation 
candidates left-to-right, incorporating future distortion penalty estimation and early 
pruning to limit the search[20]; Sys-3 is essentially the same as Sys-2 except that we 
apply a syntactic reordering system as a preprocessor to reorder Chinese sentences in 
training and test data in such a way that the reordered Chinese sentences are much 
closer to English in terms of word order. For a Chinese sentence, we first parse it 
using the Stanford Chinese Syntactic Parser [15], and then reorder it by applying a set 
of reordering rules, proposed by [3], to the parse tree of the sentence; Sys-4 is a 
syntax-based pre-ordering based MT system using a syntax-based pre-ordering model 
as described in [4]; Sys-5 is a hierarchical phrase-based system as described by [7]. It 
uses a statistical phrase-based translation model that uses hierarchical phrases; Sys-6 
uses a lexicalized re-ordering model similar to the one described by [8]. It uses a 
maximum entropy model to predicate reordering of neighbor blocks (phrase pairs); 
Sys-7 is a two-pass phrase-based system with adapted LM proposed by Foster and 
Kuhn [11]. This system uses a standard two-pass phrase-based approach; Sys-8 is a 
hierarchical phrase-based system that uses a 4-gram language model in the first pass 
to generate n-best lists, which are rescored by three additional language models to 
generate the final translations via re-ranking. 
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Table 1. Performance of individual systems on the dev and test set 

System ID Dev(BLEU) Test(BLEU) 
Sys1 31.48 25.63 
Sys2 31.41 26.78 
Sys3 32.31 26.03 
Sys4 30.55 27.38 
Sys5 32.60 27.75 
Sys6 28.99 22.86 
Sys7 27.33 21.45 
Sys8 28.91 22.67 

3.1   Experimental Setup  

The development set of experimental setup is NIST MT06 data set including 1099, 
and the test set of it is NIST MT08 data set including 1357 from both newswire and 
web-data genres. Both dev and test sets have four references per sentence. However, 
to save computation effort, the result on the dev and test set are reported in case 
insensitive BLEU score instead. The above system generates the 10-best of every 
sentence as input of system combination through the max-BLEU traning(MERT). The 
language model used for all models is a 5-gram model trained with Xinhua portion of 
LDC English Gigaword corpus version 3. We use incremental IHMM as baseline[5]. 
The parameter of incremental IHMM show in [5]. The lexical translation probabilities 
used in semantic similarity model are from a small portion (FBIS+GALE) of the 
constrained track training data. The skeleton is select by MBR. The loss function used 
for incremental IHMM style is BLEU. As to incremental system, the default order of 
hypothesis is ascending according to BLEU score against the skeleton. We employ 
the distortion model in incremental IHMM[5]. When confusion network is built in 
training process, a set of word confident are added for decoding. Meanwhile, the 
decoder uses the features of word confident, language model, word penalty and null 
penalty. 

We compare the system combination based on hypergraph decoding with 
conventional decoding style. The hypergraph decoder was implemented by modifying 
the classic CKY algorithm with cube growing[16]. 

3.2   Decoding Performance  

During second-pass decoding, we use the same beam size as first pass decoding 
because the outside probability estimation of the second-pass decoding is 
discriminative enough to guide second-pass hypergraph decoding. We develop a 
unified algorithm of three n-gram probabilty which are n-gram model (denoted by 
ngram_1), n-gram count expection (denoted by ngram_2) and n-gram posterior 
probability (denoted by ngram_3), and then compare the performance of them. 

The Effect of n-gram Model: as shown in Table 2, decoding with 1-5-gram+wp 
(word penalty denoted by wp) model of different estimation methods improve (+0.94, 
+0.63 and +0.57 BLEU score) over baseline on the development set, and we achieve 
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an absolute improvement (+1.16, +1.17 and +1.13 BLEU score) on the test set. The 
experimental result proves that n-gram feature is effective.   

The effect of Viterbi model can be seen through comparing Table 3 with Table 2. 
The various interpolation models show an improvement of +0.25, +0.3 and +0.27 
BLEU points over model without Viterbi on the development set, and +0.25, +0.13 
and +0.04 BLEU point on test set. If we compare it with baseline (incremental 
IHMM), the best performance of three types of n-gram probability can be obtained 
when the setting is Vi+1-5gram_1+wp. It obtains +1.19 and +1.41 BLEU score on the 
development and test set respectively. 

The experimental results prove the efficiency of n-gram and Viterbi+n-gram model. 

Table 2. The quality of second-pass decoding on the development and test set 

n-gram model NIST06 NIST08 
Baseline 39.34 32.82 
1-5gram_1+wp 40.28 33.98 
1-5gram_2+wp 39.97 33.99 
1-5gram_3+wp 39.91 33.95 

Table 3. The quality of second-pass decoding with Viterbi baseline on the development and 
test set 

Viterbi+n-gram NIST0
6 

NIST08 

Vi+1-5gram_1+wp 40.53 34.23 
Vi+1-5gram_2+wp 40.27 34.12 
Vi+1-5gram_3+wp 40.18 33.99 

 

The Effect of MR with DA: MR with DA is introduces by [27], but it apply in SMT 
and don’t compare performance of these scheme. We compare the five training 
schema: MERT vs. MR with different setting, which are with/without DA, 
with/without quenching scaling factor ߣ   and on hypergraph. With the entropy 
constrains, starting temperature T=1000; quenching temperature T=0.001. The 
temperature is cooled by half at each step; then we double ߣ at each step. Once T is 
quite cool, it is common in practice to switch to rising ߣ directly and rapidly until 
some convergence condition. We optimize feature weight vector ࣂ  and 
hyperparameter ߣ through BFGS optimization. 

The configures of the experiment use the interpolation between 1-5gram_1 and 
Viterbi model. We compare five settings on the development in Figure 1 and the test 
set in Table 4. MERT, MR without DA&quenching, MR&DA without quenching, 
MR&DA with quenching and MR&DA with quenching on HG achieve a BLEU score 
of 40.53, 40.17, 40.37, 40.50 and 40.50 on the development set. The best performance  
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can be obtained by MERT on the development set, and meanwhile the worst 
performance can be obtained by it on test set. The fact proves the overfitting of 
MERT. The reason of decreased performance of 2-th iteration MR with DA is the 
initialization bias. 

Table 4. The MERT and MR with/without DA performance of the test set 

Training Criterion NIST08 
MERT 34.23 
MR without DA&queching 34.24 
MR&DA without quenching 34.28 
MR&DA with quenching 34.29 
MR&DA with quenching on HG 34.29 

 

 

Fig. 1. The MERT and MR with/without DA performance on the development set 

 
Compared to MERT, MR&DA on HG has almost the same performance on test set 

because of a small number of features[27] or a sparse feature of the non-terminal rule 
which only includes language model probability. In total, MR&DA on HG 
outperform baseline (incremental IHMM) using Cube Pruning up to +1.47 in BLEU 
score. 
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4   Conclusion 

This paper proposed hypergraph_based decoding method in word–level system 
combination, and then compare a set of n-gram feature on hypergraph for two-pass 
decoding. The hypergraph decoding includes three types of n-gram probabilities, 
which are n-gram calculating style. The method is evaluated against state-of-the-art 
baselines including classic incremental IHMM on the NIST MT06 and MT08 C2E 
tasks. We also use HG-based MR with/without DA training, which solve the 
overfitting to objective function and a large number of features. The two-pass 
hypergraph decoding is shown to outperform cube pruning style decoding 
significantly. We ontain 1.28 and 1.59 BLEU score improvement in dev and test set 
through two-pass decoding using HG-based MR training. 

Since our training algorithm can cope with a large number of features, in future 
work, we plan to incorporate more expressive features and hypergraph training in the 
model. We combine the different system combination model, which has the different 
expressive ability. 
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