
M. Ma, M. Fradinho Oliveira, J. Madeiras Pereira (Eds.): SGDA 2011, LNCS 6944, pp. 61–71, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Serious Game for Introductory Programming

António Coelho1,2, Enrique Kato1, João Xavier1, and Ricardo Gonçalves1

1 FEUP/DEI, Rua Dr. Roberto Frias, s/n 4200-465, Porto, Portugal
2 INESC Porto, Campus da FEUP, Rua Dr. Roberto Frias, s/n 4200-465, Porto, Portugal

Abstract. For beginners in computer programming, the learning curve can be in
many cases quite steep, especially if it is their first contact with this area. Plus, the
traditional learning methodologies are usually based on doing countless exercises
that aim to cover many areas, but are often disconnected from each other and can
become tiresome, as they offer little immediate rewards to the student.

Nowadays serious games technology offers tools that may have potential to
help computer programming students to become more engaged on their learning
through a `learn while having fun' approach. This paper aims to generally
describe our approach on the creation of a platform for deploying serious
computer games for the teaching of any computer programming language. We
will begin by describing the game mechanics, followed by the general system
architecture and its data model, finalizing with a small conclusion.

Keywords: serious games, programming, e-learning, unity3d, domjudge.

1 Introduction

Serious computer games have emerged in recent history, but serious games have
always been part of human culture as far as we know. Of course in ancient times,
serious games took the shape of campfire fables told by grown ups to children to pass
some kind of knowledge. Through these fables children were able to better understand
the serious concepts being passed on to them instead of just being told directly.

Today’s computer ever developing technology allows us to create more and more
complex systems that can help us use gaming for learning purposes, allowing us to go
beyond the simple fables told in the ancient times. Learning how to program can be
enhanced and encouraged through this type of approach, by creating a serious game
that is both a conduit of knowledge and experience and at the same time a fun task.
But it is important to keep in mind that the serious games’ emphasis must be placed
on the educational objectives rather than the fun part, for they are primarily tools of
education and not games to entertain [1].

The challenge we address in this paper is the building of a computer platform that
allows the deployment of serious games that aim to assist on the learning of
programming fundamentals with as much level of customization as possible, when
creating a new game. Also, it has to allow the teacher to supervise, follow up
students’ progress and give them feedback. For this end, the game engine Unity3D
was selected due to its rich features, its growing community, available resources and
its ability to be deployed on the Web [2].

62 A. Coelho et al.

2 Related Works

Inside the digital domain, a serious game can be defined as a contest played with a
computer, which uses entertainment to develop training for military and corporative
skills, education or use on health, public policy and strategic communication [15]. In
education, research and interest has grown rapidly, and this can be noticed, as many
European projects concern on design of educational games [14].

It is a well documented fact that there is a problem with Computer systems majors
[8], since universities experiment a decrease on student demand [12], and
abandonment because the low motivation from students towards difficult programming
courses [14]. As this is of great concern between researches, heads are being turn
towards using video games as a motivator for students in computer curricula and
research [10].

Reviewing the work done by others brought on the table ideas on what can be
applied onto our approach for the programming serious game. There are different
approaches that researches have taken to tackle the problem on student motivation for
Computer Science courses. Projects like Alice [9] and MUPPETS [13] propose
software tools that allow students to create animations and virtual worlds through
“programming-like" graphic commands. Another approach is the one taken by
researchers at the University of North Carolina with the Games2Learn project in
which they are making undergraduate students create small games about
programming principles for novice students, like the game Wu's Castle [10] that helps
students understand better the concepts of arrays and loops.

With a bigger gaming approach there are projects like IBM's Robocode, now
public via SourceForge project, a framework for programming tanks and compete
against tanks of other players in a multi-user environment [13]. Epsitec develops
games like Colobot [11] where the objective is to solve several missions, which range
from gathering resources, building structures, commanding robots to perform tasks
and defend the land, a complete game in 3D. The Meadow is a game where
developers created a custom engine to meet their university course expectations,
where students control virtual sheep via C-Sheep programming language [8].

Authors agree that the new generation of students, the \Plug & Play" generation is
more guided towards visuals and 3D environments, and so there is an interest on these
kinds of interfaces to meet the expectations from these students [8]. On our approach,
we decided to try with a 3D world since immersion is an important aspect in our
project that may help students to continue with their programming studies. Also to
meet the requirements of the courses given at the University of Porto, we are
developing the project as an open platform, that could adapt to any programming
paradigm and languages used at the faculty.

A tool made in house can also be designed to attend the needs of the specific
population of the university and be modeled to reach the academic objectives of their
courses.

3 The Mechanics

Every game has a set of rules that indicates how it is meant to be played by the
players - the game mechanics - serving as a basis for the gameplay; if the mechanics
are designed focused on the player, the final game may have a stronger quality.

 Serious Game for Introductory Programming 63

Fig. 1. Game mechanics interaction

Mechanics of serious games are similar to those found on commercial video
games, but since the main objective of each is different, there are some differences to
be aware. Whereas commercial video games' main purpose is to entertain and the
mechanic used in them allows for various modes of play, they incorporate outcomes
of leisure along with strong focus on presentation and storyline; serious games for
education have a different path. Educational games focus on learning outcomes that
are dependent upon an appropriate pedagogy and the underlying game mechanics and
how the content is integrated into the game so the learning is intrinsic to play [4].

The system proposed in this paper is an educational platform providing serious
games designed taking in consideration a set of specifications to meet the academic
objectives to which it is aimed. Therefore, the game mechanics for this platform have
to be designed and implemented with flexibility to provide distinct learning objectives
for different programming courses. This paper will cover the core mechanics
proposed for the nature of the serious games to be provided by the platform.

3.1 Project Specification

The project is being developed with an instructive stance, and since the definition of
serious games differ from that of commercial video games, the specifications and
objectives are defined clearly within the academic vision of the course.

The core mechanic should be mostly about solving problems via code
understanding and programming, adding playful mechanics seen in commercial
games as a way to aid in the immersion of the player and improve a continued use of
the game. During programming it is common to have errors; the mechanic has to
support this approach without penalizing the player too much. The design should
ensure that the player keeps trying to solve the exercise, meaning that motivation is at
hand and that the challenge does not compromise the advance of the student within
the game. The general design of the game mechanics must be open enough to be able
to cover other languages or technology courses. Teachers should be able to customize
the game design to adapt it to their courses. Therefore, the design of the game should
be general and open, in order to allow for further edition of the design, while keeping
the flow and script of the game.

64 A. Coelho et al.

3.2 Proposed Core Mechanics

Given the three main specifications of the project, it can be said that the game core
mechanic is basically to interact with the world via coding and scripting. The game is
based on the programming fundamentals class, so the main learning objective is to
use programming concepts to advance through the game. This section describes the
core elements of the mechanics that meet the aforementioned specifications.

- The player-token of the game is a character and its robot companion. This token
receives input from the player to interact with the virtual world of the game. The
main character is the one that interacts with the virtual world while the robot
sidekick is the one that gives academic advice to the player and prompts the
main mechanic of the game: programming;

- The main interaction with the world is done by coding through the terminals
scattered in the game. Each terminal presents one or various programming
quests to solve. The correct solution of a problem triggers an interaction with the
objects on the room, giving access to other areas, clear a hazardous object of the
area, or get more info of the game plot and story. If the obligatory quests are not
cleared the player will not be able to advance;

- The world of the game is designed as a series of levels that have one to N
number of interconnected rooms to explore. The rooms have several kinds of
objects that construct a general puzzle. To clear it and continue the game,
players have to solve the programming tasks;

- Players can keep a mini inventory of items found during exploration of the
levels. Items can be used to aid the player, to complete other quests or educative
information about the problems that are being solved;

- Players increase their global and level score depending on the quests solved
within the level. Getting some special items and solving optional harder quests
increases the final score for the player. The score can be followed by students
and teachers;

- Penalization to the player comes as reduction of points from the score. A quest
has a number of points assigned if completed successfully. Incorrect code input
has a limited point reduction from the full point value of each quest. A
compiling error has minimal effects since it may be the most common problem.
Several failed attempts of a compiled code mean more points deducted from the
initial value of the quest;

- If the player reaches a limit number of tries, another path can be open to help
develop the abilities of the student. This will bring a series of rooms that would
have easier and guided challenges to helps student develop skills. At the end the
character gets back to the room he was supposed to reach, to try to fulfill the
normal quests;

- Code clues come from recovered logs, from the Robot Sidekick or by
intervention of the teacher of the course. Two types of help are planned. The
first is a set of tips and lessons that give a little bit more insight on the
programming concepts seen during the level. The second one is the set messages
that the Robot Sidekick or teacher can give as tips if the player starts to fail at
the quests.

 Serious Game for Introductory Programming 65

These mechanics are the ones that define the main functionality of the game and
serve as a basis to have an overall open mechanics that can be applied to other
courses. By open it is meant that on a matured version of the game, a group of
academic staff could edit it to construct a new game using concepts of other
informatics areas and courses. The instructors editing the game could apply other type
of problems, tutorials and clues to the game to prepare it for another class, without
having to edit or design the core functionalities of it. This is the main problem we
seek to solve and an important objective when designing the game mechanics.

4 The Implementation

In order to successfully implement the mechanics discussed in the previous chapter, it
was decided to use a client-server architecture, as shown in figure 2. From this image
three distinct packages are visible:

These packages are connected to each other through either a local or a wide area
network, such as the Internet. At the core of this platform the server package manages
all aspects of the platform. The client package is the interface which users use to
interact with the platform and finally, the DOMjudge package handles all source code
evaluation. These components will be further explained in the next sections.

Fig. 2. Platform architecture

66 A. Coelho et al.

At this stage, both the server package and the client package have been partially
implemented, and a prototype has been created as a proof of concept. The server
package is still missing the web page, but the web service and database have been
implemented. On the other hand, the client, although working well, will only be
considered fully implemented once the server is complete and functional.

4.1 Server Package

The server as whole can be described as the heart of this project, pumping data to
its components and other packages. Its mission is to interact with the other packages
by managing and processing all information. This package is composed by three
components:

– Web page - This component serves two main purposes: first it serves as the way
through which the teacher creates and configures the game with tools like map
editor and quest/exercise editor (more on this in the next chapter), and secondly
it serves as a conduit for the teacher to follow his students progress through the
game as well as it allows each student to see his own progress and receive
feedback from his teacher;

– Database - This is where all the data regarding both the web page and the game
is stored;

– Web service - This component handles all major game logic, controlling the
game behavior and feeding it with all the necessary data required to build the
virtual world with which players interact. This includes map data, quests
(exercises), objects, tips (knowledge teachers may wish to add as a an extra way
of helping their students with the exercises) and game plot information.

4.2 Client Package

To access the web page and the game, the user simply needs a recent version of any
of today's browsers like Mozilla Firefox, Opera, Internet Explorer, etc.

The game itself was created through Unity3D Game Engine (free version) which
allows the deployment of rich 3D applications that can be embedded into web pages.
Through this functionality, the game will be able to be embedded into the web page,
providing an all-in-one package for the students, automating and simplifying its
access. This means, by login into the web page, the student automatically has access
to the game without any need for manual software installation other than the Unity3D
Web Player plug-in for web browsers.

The game itself is able to generate distinct games (but within the same scope) on
run time, based on the data it receives from the web service. The game is meant to be
mostly an end terminal and as such, most decisions are made on the server side, as
explained before. This greatly limits the possibility of cheating by attempting to alter
the game normal functionality.

The game starts by requesting game settings information, like the name of game or
the location of the textures used in the game. The selected textures are then pulled

 Serious Game for Introductory Programming 67

back to the game for later usage in building the virtual world. Once this is done, a
menu appears requesting the player to log in. By logging into the game, the server
creates a session (or regenerates it if one was already assigned to that particular
account) and returns the session and profile information back to the player. After
logging in successfully the player can select one of ten different profiles, each one
giving him the chance to start the game from scratch.

Upon selecting a profile, the game shows introductory menus that, depending on
what was defined on the database, can show for example the initial plot/story
information and after the intro a menu describing the game controls and how to
interact with the game is shown.

Fig. 3. Intro menus present in the prototype

Following the help menu, depending on the profile settings, the game requests the
map where the player is supposed to be and a virtual 3D world is generated. Within
this newly created world, the player is able to interact with several objects and move
freely through it. These objects are:

– Quest terminals - These objects are the way through which players accept
programming exercises which allows them to progress in the game, like
enabling or disabling another object that prevents them from continuing the
game, and by which they submit the program they believe to be a solution to
the exercise;

– Data pads - These can be used to extend the game plot or give information
about an exercise to help the player solve the problem;

– Force fields - These can be placed in narrow places, for example to prevent
access to an area;

– Teleporters - These teleport the player to a specific location;
– Lights - These provide illumination to the scene;
– Doors - These allow the player to travel between maps;
– End game object - It looks like a door but it is meant to be the game exit, the

final door, and by using it, a menu appears congratulating the player for
completing the game.

68 A. Coelho et al.

Fig. 4. In-game images

The quests, as mentioned before, are in fact computer programming exercises
presented in a way that it feels it is part of the plot and the player needs to solve it if
he desires to continue his adventure. Figure 4 shows two images of the first map of
the prototype created to test this platform. The image on the left shows a terminal and
to the right, a force field. The terminal contains the following quest:

Disable the Force Field

This force field receives energy from five power generators.
To bring it down, get the value of the five power generators and return the number

of generator that has the least amount of energy available.
Objective: Write a program that receives 5 numbers and returns the position of the

smallest of all.

Behind the force fields there is a teleporter which needs to be activated by another
terminal. After activating and using the teleporter, the player is teleported above and
has to hop around the room, like a normal platform game, to reach the door that leads
to the next room. The exercises required solutions to be programmed in C++ language,
but could easily be any other language. More on this reviewed on the next section.

4.3 DOMjudge Package

In order to evaluate the programming exercises, the selected system was DOMjudge,
which is known for running programming contests like the ACM-ICPC regional and
world championship programming contests [7].

The basic functioning of the automatic assessment can be described as follows:

– A solution for a problem is submitted by a team and stored in the database.
Upon compiling and running, both compiler and program outputs will be stored
and accepted or rejected;

– The first available Judgehost checks a not judged submission against the input-
output data and marks it as judged;

– The result is automatically recorded and the team can view the result and the
scoreboard is updated.

 Serious Game for Introductory Programming 69

DOMjudge benefits from a distributed architecture, based on a client-server
framework. Its foundation lays on the main DOMjudge server, which runs a MySQL
database for keeping the submissions and in a variable number of Judgehosts that can
be set up to mark the submissions (as it is shown in figure 2). The authors developed
the system with security as one of the main concerns, providing detailed
documentation on how to keep the installation secure and fail-proof [6].

DOMjudge is open-source, supports a wide array of programming languages and
can be easily configured to support more. Moreover, a computer-based assessment
system that integrates with Moodle was already developed and tested in this faculty
taking advantage from this system [5]. It features a secure connection to a DOMjudge
server through the use of web services and not only it serves as a proof of concept, but
also as a basis for applying those web services in the game.

So, at each submission the system first starts by asking the server to accept the
quest and if all goes well the profile is updated by setting the quest as an accepted
quest. At this point a solution can be submitted in order to solve the problem, but only
one at a time. Once a solution is submitted, the web service verifies if it is a valid
submission and if so, adds it to the DOMjudge database. The DOMjudge then treats
the source code, as described above. The game, on the other hand, will go into a state
of waiting for a result, in which at each every few seconds sends a request to the web
service for a status update on the solution result. Once the result comes in, it is
processed in the web service, making all the necessary logic, and the game mimics the
same logic, but the web service takes precedence over the game data.

5 Tools Used

To accomplish this project several tools are being used:
The web service is programmed in C# over .NET 4.0 Framework and to connect to

the databases, MySQL Connector 3.3.6 is being used. The database used on both
packages are MySQL >= 5.2. In order to run the web service, IIS 5.0 and 7.0 were
tested and work perfectly over Microsoft Windows XP Professional or Microsoft
Windows 7 Professional.

As for the game, it is supported by the engine Unity3D, which allows web
deployment. This engine also supports both Microsoft Windows Operative Systems as
well as Mac OS X, which both were tested and ran flawlessly during the tests to the
prototype.

The DOMjudge servers, during the tests, were deployed on two virtual machines
running Debian GNU/Linux, while the database and control website were on a third
virtual machine, also running Debian GNU/Linux.

6 Conclusions and Future Work

At this moment, both the game and the web service are implemented, remaining the
website with its game generation and teacher student interaction features.

In order to test the platform, a game prototype was implemented and tested by a
group of students. The participants’ feedback on the game was very positive and at

70 A. Coelho et al.

the end of the tests each of them filled a survey. This survey gave a new perspective,
showing what still needs to be improved, like having more types of objects with
which to interact with, adding sound to the game and the amount of information
regarding the solutions evaluation results.

The web page with its configuration capabilities and teacher/students interaction is
the main part that remains to be completed. As this gets implemented, the prototype
will come in handy to test and help deciding the best ways the implementation
process should follow. These include changing map formats that allow different and
richer map layouts, communication protocols, exception handling, more objects,
different ways to interact with quests and the way they behave upon completion.

Acknowledgements. This work is partially supported by the Portuguese government,
through the National Foundation for Science and Technology – FCT (Fundação para a
Ciência e a Tecnologia) and the European Union (COMPETE, QREN and FEDER)
through the project PTDC/EIA- EIA/108982/2008 entitled 3DWikiU 3D Wiki for
Urban Environments.

References

1. Wiberg, C., Jegers, K.: Satisfaction and learnability in edutainment: A usability study of
the knowledge game laser challenge at the nobel e-museum (2003),
http://www8.informatik.umu.se/~colsson/cwkjhci03.pdf

2. Petridis, P., Dunwell, I., de Freitas, S., Panzoli, D.: An engine selection methodology for
high fidelity serious games. In: Second International Conference on Games and Virtual
Worlds for Serious Applications (2010)

3. Fabricatore, C.: Gameplay and game mechanics design: A key to quality in Videogames
(2007), http://www.oecd.org/dataoecd/44/17/39414829.pdf

4. Ulicsak, M.: Games in education: Serious games. Future Lab,
http://media.futurelab.org.uk/resources/documents/
lit_reviews/Serious-Games_Review.pdf (June 2010)

5. Pacheco, P.: Computer-based assessment system for e-Learning applied to programming
education. Masters thesis (2010)

6. Eldering, J., Kinkhorst, T., Warken, P.: DOMjudge Administrators Manual (2010)
7. Eldering, J., Kinkhorst, T., Warken, P.: DOMjudge - programming contest jury system

(January 2011), http://domjudge.sourceforge.net/
8. Anderson, E.F., McLoughlin, L.: Critters in the classroom: a 3D computer-gamelike tool

for teaching programming to computer animation students. In: ACM SIGGRAPH 2007
Educators Program, 7es. ACM, New York (2007),
http://portal.acm.org/citation.cfm?id=1282048

9. Cooper, S., Dann, W., Pausch, R.: Alice: a 3-D tool for introductory programming
concepts. Journal of Computing Sciences in Colleges 15, 107 (2000),
http://portal.acm.org/citation.cfm?id=364161

10. Eagle, M., Barnes, T.: Experimental evaluation of an educational game for improved
learning in introductory computing. ACM SIGCSE Bulletin 41(1) (March 2009),
http://portal.acm.org/citation.cfm?

11. Epsitec Games. Colobot. Epsitec SA, Belmont(2010),
http://www.ceebot.com/colobot/index-e.php

 Serious Game for Introductory Programming 71

12. Muratet, M., Torguet, P., Jessel, J.-P., Viallet, F.: Towards a Serious Game to Help
Students Learn Computer Programming. International Journal of Computer Games
Technology, 1–12 (2009),
http://www.hindawi.com/journals/ijcgt/2009/470590/

13. Phelps, A.M., Egert, C.A., Bierre, K.J.: Multi-User Programming Pedagogy for Enhancing
Traditional Study: An Environment for both Upper and Lower Division Students.
Education, 8–15 (2005)

14. Shabalina, O., Vorobkalov, P., Kataev, A., Tarasenko, A.: Educational games for learning
programming languages. System, 79–83 (2008),
http://sci-gems.math.bas.bg:8080/jspui/handle/10525/1136

15. Zyda, M.: From visual simulation to virtual reality to games. Computer 38(9) (September
2005),
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1510565

	Serious Game for Introductory Programming
	Introduction
	Related Works
	The Mechanics
	Project Specification
	Proposed Core Mechanics

	The Implementation
	Server Package
	Client Package
	DOMjudge Package

	Tools Used
	Conclusions and Future Work
	References

