Adapting Helios for Provable Ballot Privacy

David Bernhard!, Véronique Cortier?, Olivier Pereira,

Ben Smyth?, and Bogdan Warinschi®

! University of Bristol, England
2 LORIA - CNRS, France
3 Université Catholique de Louvain, Belgium

Abstract. Recent results show that the current implementation of He-
lios, a practical e-voting protocol, does not ensure independence of the
cast votes, and demonstrate the impact of this lack of independence on
vote privacy. Some simple fixes seem to be available and security of the
revised scheme has been studied with respect to symbolic models.

In this paper we study the security of Helios using computational
models. Our first contribution is a model for the property known as
ballot privacy that generalizes and extends several existing ones.

Using this model, we investigate an abstract voting scheme (of which
the revised Helios is an instantiation) built from an arbitrary encryp-
tion scheme with certain functional properties. We prove, generically,
that whenever this encryption scheme falls in the class of voting-friendly
schemes that we define, the resulting voting scheme provably satisfies
ballot privacy.

We explain how our general result yields cryptographic security guar-
antees for the revised version of Helios (albeit from non-standard as-
sumptions).

Furthermore, we show (by giving two distinct constructions) that it
is possible to construct voting-friendly encryption, and therefore voting
schemes, using only standard cryptographic tools. We detail an instan-
tiation based on ElGamal encryption and Fiat-Shamir non-interactive
zero-knowledge proofs that closely resembles Helios and which provably
satisfies ballot privacy.

1 Introduction

Electronic voting protocols have the potential to offer efficient and sound tallying
with the added convenience of remote voting. It is therefore not surprising that
their use has started to gain ground in practice: USA, Norway and Estonia are
examples of countries where e-voting protocols have been, at the very least,
trialled in elections on a national scale.

Due to the sensitive nature of elections, security of e-voting protocols is crucial
and has been investigated extensively. Among the security properties that have
been identified for e-voting, perhaps the most desirable one is that users’ votes
should remain confidential. Three levels of confidentiality have been identified.
These are (in increasing strength) the following.

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 335 2011.
© Springer-Verlag Berlin Heidelberg 2011

336 D. Bernhard et al.

— Ballot privacy: A voter’s vote is not revealed to anyone.

— Receipt—freeness: A voter cannot obtain information which can prove to a
coercer how she voted.

— Coercion resistance: Even a voter who collaborates with a coercer cannot
obtain information that proves how she voted.

Other important properties that are desirable include ballot independence
[12] (the ballots cast do not depend on each other) and end-to-end verifiabil-
ity [2328I38] (it is possible to verify that the election process has been followed
honestly).

This paper is motivated by recent developments regarding the security of the
Helios voting scheme [45]. Starting from version 2.0 [35], Helios has been using
a variant of a classical protocol by Cramer et al. [I4] incorporating tweaks pro-
posed by Benaloh [29], and has been used in real-world elections, for example
by the International Association for Cryptographic Research (IACR) to elect
its 2010 board [36], by Princeton University to elect the undergraduate student
government [46] and to elect the president of the Université Catholique de Lou-
vain [35]. Helios aims to achieve only ballot privacy and explicitly discards the
stronger confidentiality notions (which it does not satisfy) in favor of efficiency.
It turns out that the current implementation of Helios does not enforce ballot
independence (contrary to the original protocol of Cramer et al. [I4]) and, as
a result, Cortier and Smyth [37/42] have exhibited several attacks against the
ballot privacy property of Helios. (The property is called “ballot secrecy” in
Cortier and Smyth’s papers.) The attacks range from simple ballot copying to
subtle reuse of parts of existing ballots, however they can all be detected (and
prevented) by public algorithms. A revised scheme has been proved secure in
a symbolic model but its security in the stronger, computational sense has not
been assessed.

Contributions. We start by providing a computational security model for ballot
privacy (Section[Z). In a sense, our model generalizes and strengthens the model
of [24126] where an attacker tries to distinguish when two ballots are swapped.
Here, we ask that the adversary cannot detect whether the ballots cast are
ballots for votes that the adversary has chosen or not. In doing so, the adversary
is allowed to control arbitrarily many players and see the result of the election.
Our model uses cryptographic games and thus avoids imposing the more onerous
constraints that other definitional styles (in particular simulability) require from
protocols.

Next we turn our attention to the revised version of Helios. Our analysis fol-
lows a somewhat indirect route: instead of directly analysing the scheme as it has
been implemented, we analyze an abstract version of Helios that follows the same
basic architecture, but where the concrete primitives are replaced with more
abstract versions. Of course, the version we analyze implements the suggested
weeding of ballots. We present this abstract scheme as a generic construction of
a voting scheme starting from encryption scheme with specific functional and
security properties (Section [).

Adapting Helios for Provable Ballot Privacy 337

Focusing on this more abstract version brings important benefits. Firstly, we
pin-down more clearly the requirements that the underlying primitives should
satisfy. Specifically, we identify a class of woting-friendly encryption schemes
which when plugged in our construction yield voting schemes with provable
ballot privacy. Roughly speaking, such encryption schemes are IND-CCA2 secure
and have what we call a homomorphic embedding (parts of the ciphertexts can
be seen as ciphertexts of a homomorphic encryption scheme). Secondly, our
analysis applies to all voting schemes obtained as instantiations of our generic
construction. Although we analyze and propose constructions which for efficiency
reasons resort to random oracles, our generic approach also invites other (non-
random oracle based) instantiations.

Next, we show how to construct voting-friendly encryption schemes using
standard cryptographic tools (Section [M]). We discuss two distinct designs. The
first construction starts from an arbitrary (IND-CPA) homomorphic encryption
scheme and attaches to its ciphertexts a zero-knowledge proof of knowledge of the
plaintext. We refer to this construction as the Enc+PoK construction. Despite
its intuitive appeal, we currently do not know how to prove that the above
design leads to an IND-CCA2 secure encryption scheme (a proprety demanded
by voting-friendliness). We therefore cannot conclude the security of our generic
scheme when implemented with an arbitrary Enc+PoK scheme. Nevertheless,
an investigation into this construction is important since the instantiation where
Enc is the ElGamal scheme and PoK is obtained using the Fiat-Shamir paradigm
applied to a Schnorr-like protocol corresponds precisely to the encryption scheme
currently used in Helios. The security of this specific construction has been
analyzed in prior work. Tsiounis and Yung [I7] and Schnorr and Jakobsson [19]
demonstrate that the scheme is IND-CCAZ2 secure, but their proofs rely on highly
non-standard assumptions. Nevertheless, in conjunction with the security of our
main construction, one can conclude that the current implementation of Helios
satisfies ballot privacy based on either the assumption in [I7] or those of [19].

We then take a closer look at the Enc+PoK construction and revisit a tech-
nical reason that prevents an IND-CCA2 security proof, first studied by Shoup
and Gennaro [16]. Very roughly, the problem is that the knowledge extractor
associated to the proof of knowledge may fail if used multiple times since its
associated security guarantees are only for constant (or logarithmically many)
uses. With this in mind, we note that a security proof is possible if the proof
of knowledge has a so called straight line extractor [22]. This type of extractor
can be reused polynomially many times. In this case, the Enc+PoK construc-
tion leads to a voting-friendly encryption scheme, whenever Enc is an arbitrary
IND-CPA homomorphic encryption scheme.

The second design uses the well-known Naor-Yung transformation [7]. We
show that if the starting scheme is an arbitrary (IND-CPA) homomorphic
encryption scheme then the result of applying the NY transform is a voting-
friendly encryption scheme. Applied generically, the transform may lead to non-
efficient schemes (one of its components is a simulation-sound zero-knowledge
proof of membership [I§]). We present a related construction (where the proof of

338 D. Bernhard et al.

membership is replaced by a proof of knowledge) which can be efficiently instan-
tiated in the random oracle model. In the final section of the paper (Section [H)
we propose adopting an instantiation of Helios where the encryption-friendly
scheme is implemented as above. The computational overhead for this scheme is
reasonable (and can be further improved through specific optimization) and the
scheme comes with the formal guarantees offered by the results of this paper.

Related work. Chevallier-Mames et al. [27] present an unconditional definition
of ballot privacy but Helios cannot be expected to satisfy this definition due
to its reliance on computational assumptions. Chevallier-Mames additionally
show that their definition of unconditional ballot privacy is incompatible with
universal verifiability; however, ballot privacy and universal verifiability have
been shown to coexist under weaker assumptions, for example as witnessed by
Juels, Catalano & Jakobsson [23]. Computational definitions of ballot privacy
have been considered by Benaloh et al. [2/4J5]. These definitions however do
not come with a general characterization of the properties that an encryption
scheme should satisfy in order to ensure that they are satisfied (the corresponding
security notions did not exist at that time either). Wikstrém [34] considered the
general problem of secure submission of inputs with applications to mixnet-based
voting protocols. His definitions and constructions are the most closely related
to ours, and will be discussed below. Other definitions for voting systems have
been proposed in terms of UC realization of ideal voting functionalities, starting
with Groth [21], which capture privacy as part of the functionality behavior.

In addition, receipt-freeness has been considered by Benaloh & Tuinstra [11]
and Moran & Naor [25] and coercion resistance has been studied by Juels, Cata-
lano & Jakobsson [23], Kiisters, Truderung & Vogt [40] and Unruh & Miiller-
Quade [39]. These definitions can be used to show ballot privacy because it is
believed to be a weaker condition [TT26]; however, they are too strong for proto-
cols which only provide ballot privacy and in particular, they cannot be used to
analyse ballot privacy in Helios. Ballot privacy has also been formalized in the
symbolic model (for example, [26]33]) but the symbolic model suffers a serious
weakness: In general, a correct security proof does not imply the security of the
protocol. Cortier & Smyth [37/42] present an attack against ballot privacy in He-
lios and propose a variant of Helios which aims to prevent the attack by weeding
ballots. Their solution has been shown to satisfy ballot privacy in the symbolic
model but Cortier & Smyth acknowledge that a thorough cryptographic analysis
of the solution is necessary.

2 Ballot Privacy

Notation. Throughout this paper, we use the following notation. Assignment and
input/output of algorithms are both denoted by a left-facing arrow «. Picking a

value z uniformly at random from a set S is denoted by = &S The expression

cEe appends c¢ to the list C, () on its own is an empty list. We use “C” style
returns in algorithms, i.e. “Return a = b” to mean return 1 if a = b, otherwise 0.

Adapting Helios for Provable Ballot Privacy 339

A function f is called negligible if for any polynomial P, there exists 71y such
that v > no, f(n) < pi, -

2.1 Voting Schemes

In this section we fix a general syntax for the class of voting schemes that we
treat in this paper. In particular, our syntax encompasses several variations of
the Helios protocol.

We consider schemes for votes in a non-empty set V, and we assume L to be
a special symbol not in V that indicates that the voter has abstained. The result
of an election is then an arbitrary function p that takes a list of votes as input
and returns the election result. Elections are stateful, so the algorithms that we
define next use such a state. Since often, and in particular in the case of Helios,
this state is a bulletin board, in the definition below we write BB for this state
(and even refer to it as a bulletin board).

Definition 1 (Voting scheme). Algorithms (Setup, Vote, ProcessBallot, Tally)
define a voting scheme as follows.

— Setup: The setup algorithm takes a security parameter 1* as input and re-
turns secret information x, public information y, and initializes the state
BB. We write (x,y, BB) « Setup(1*) for this process. We assume the pub-
lic information is available to all subsequent algorithms.

— Vote: The voting algorithm takes a vote v € V as input and produces as
output a ballot b (that encodes the vote). We write b — Vote(v) for this
process.

— ProcessBallot: The ballot processing algorithm takes a candidate ballot b and
a bulletin board BB, checks the ballot for correctness (e.g. that it is well
formed, it is not a duplicate, etc.) and returns a result (accept/reject) and
the new state of the bulletin board. We write (a, BB) < ProcessBallot(BB, b)
for this process. Here a is either accept or reject.

— Tally: The tallying algorithm takes the secret information x and the bulletin
board BB and produces the election result.

For correctness of the scheme, we demand two conditions: 1) ballot tallying cor-
responds to evaluating the function p on the underlying votes; and 2) correctly
constructed votes will be accepted by the ballot processing algorithm. Both con-
ditions should hold with overwhelming probability and can be captured by the
experiment described in Figure [[l In this experiment, an adversary repeatedly
submits votes vi,vs,... € V and each vote is used to construct a ballot which
is then processed. The game outputs 1 (the adversary wins) if the ProcessBallot
algorithm rejects some ballot or the result of the election does not correspond
to the votes cast. The voting scheme is correct if the algorithm outputs 1 with
at most negligible probability.

2.2 Security Model

Informally, ballot privacy is satisfied if an adversary in control of arbitrarily
many voters cannot learn anything about the votes of the remaining, honest

340 D. Bernhard et al.

Exp™™ (4)
(z,y, BB) < Setup
V=0
repeat
(a,v) — A
b < Vote(v)
(r, BB) < ProcessBallot(BB, b)
vy
until a = stop or r = reject
if r =“reject” or Tally(z, BB) # p(V) then return 1 else return 0

Fig. 1. Experiment for defining the correctness of a voting scheme

voters beyond what can be inferred from the election result. The adversary can
read the (public) bulletin board and the communication channels between the
honest parties and the bulletin board (in other words, we assume them to be
authentic but not secret). Ballot privacy requires that the adversary is unable
to distinguish between real ballots and fake ballots, where ballots are replaced
by ballots for some fixed vote € chosen by the adversary.

Formally, we consider an adversary that can issue two types of queries, vote
and ballot, to an oracle O. The oracle maintains two bulletin boards initialized
via the setup algorithm: BB is visible to the adversary and BB’ always contains
ballots for the real votes. A vote query causes a ballot for the given vote to be
placed on the hidden BB’. In the real world, the same ballot is placed on BB; in
the fake one a ballot for ¢ is placed on BB instead. A ballot query always causes
the submitted ballot to be processed on both boards. This process is defined
formally in Figure 2l The experiment on the right of Figure Bl is used to define
ballot privacy. The selection of 3 corresponds to the real world (8 = 0) or the
fake world (8 = 1). Throughout the experiment the adversary has access to BB,
but tallying is done using BB’.

Definition 2 (Ballot Privacy). We define the advantage of adversary A in
defeating ballot privacy for voting scheme IT by:

1

AdvES(A) = Pr[ExpB®(A) = 1] —)

and say that II ensures ballot privacy if for any efficient adversary its advantage
s negligible.

We make a few remarks regarding the security model that we propose. Firstly,
we use cryptographic games rather than a simulation based definition. The
former offer well-accepted levels of security, are more flexible, and allow for
more efficient implementations. Second, we model directly the more relaxed no-
tion of vote privacy and not stronger notions like receipt-freeness or coercion
resistance [26]. While stronger notions are certainly desirable, they are more

Adapting Helios for Provable Ballot Privacy 341

Exp”(A)
VOte(/”) (z,y, BB) « Setup(1*)
b" — Vote(v) BB' — BB
if 3=0then b« b (e, st) — A(y)
else b — Vote(e) 3 ; 0,1} Y
(r, BB) < ProcessBallot(b, BB) st — A9 (st)

(r', BB') « ProcessBallot(b', BB')

!
return (r, BB, b) result — Tally(z, BB’)

B — A(st, result)

ballot(b) return § = §

(r, BB) < ProcessBallot(b, BB)
if r = accept then

(r', BB") « ProcessBallot(b, BB')
return (r, BB)

Fig. 2. The algorithms on the left explain how the oracle processes adversary’s queries.
The experiment on the right is used to define ballot privacy.

difficult to achieve leading to rather inefficient protocols. Indeed, Helios deliber-
ately trades these stronger notions for efficiency. Finally, we emphasize that our
computational definition does not mirror existing security definitions in more
abstract models, e.g. [24]. It turns out that the direct extension of that defini-
tion to computational models seems strictly weaker than the definition that we
provide. We comment more on this point later in the paper.

3 A Generic Construction of Voting Schemes with Ballot
Privacy

In this section we present a generic construction of a voting scheme starting
from any encryption scheme with certain properties. We first fix this class of
encryption schemes (which we call voting-friendly), then give our construction
and prove its security.

3.1 Voting-Friendly Encryption

In a nutshell, a voting-friendly encryption scheme is a “(threshold) checkable
provable IND-CCA2 secure public key encryption scheme with key derivation
and a homomorphic embedding”. These rather convoluted looking requirements
are in fact not too onerous. We explain informally each of the requirements in
turn and give formal definitions. For simplicity, the presentation in this section is
for the non-threshold case, that is decryption is carried out using a single key by
a single party, as opposed to implementing decryption via an interactive process
where several parties share the keys.

Non-Interactive Zero Knowledge Proof Systems. Here we recall some basic no-
tions regarding non-interactive zero-knowledge proof systems [6]. Given language
L defined by NP relation R we write (w,z) € R if w is the witness that « € Lg.

342 D. Bernhard et al.

A proof system for Lp is given by a pair of algorithms (Prover, Verifier) called
prover and verifier, respectively. We distinguish between proof systems in the
common reference string model (in this situation, an additional algorithm Setup
produces a common reference string accessible to both the prover and the ver-
ifier) and the random oracle model (where the setup is not required, but all
algorithms in the system have access to a random oracle). In a standard execu-
tion of the proof system, the prover and the verifier both have an element = € Ly
as input and in addition, the prover has as input a witness w that x € Lr (i.e.
R(w,z) = 1). The prover sends a single message 7 to the verifier who outputs
the decision to accept/reject. We call 7 a proof for the statement z € Lg. Typ-
ical requirements for such proof systems are that they should be sound (if the
input z is not in Lg then the verifier rejects m with overwhelming probability)
and complete (if z is in the language then the verifier accepts 7 with probability
1). We write m < Prover for the process of producing proof = when the state-
ment x and the witness w are clear from the context. A non-interactive proof
system is zero-knowledge if there exists a simulator Sim that is able to produce
transcripts indistinguishable from those of a normal execution of the protocol.
The simulator may use a trapdoor in the common reference string model, or can
program the random oracle in the random oracle model. We occasionally write
(Prover, Verifier) : R to indicate that the proof system is for the language Lp.

We assume the reader is familiar with public key encryption and its associated
security notions. We write (Gen, Enc, Dec) for the key generation, encryption, and
decryption algorithms of a public key encryption scheme.

Homomorphic encryption. We also briefly recall the notion of homomorphic
encryption. An encryption scheme is homomorphic if the plaintext space is a
group and there exists an algorithm Add that takes two ciphertexts for messages
mo and m1 and produces a ciphertext for mgom; (where o is the group operation
on plaintexts).

Embeddable Encryption. A crucial property for the encryption schemes that are
the focus of this section is that they have a homomorphic embedding. Informally,
this property means that it is possible to identify part(s) of the ciphertexts as
forming a ciphertext for some other encryption scheme, and this second encryp-
tion scheme is homomorphic. The ElGamal+PoK construction sketched in the
previous section is an example of an encryption scheme with an homomorphic
embedding. Indeed the e component of a ciphertext (e,7) is a ciphertext for
an homomorphic encryption scheme (ElGamal). The next definition makes this
discussion more precise.

Definition 3 (Homomorphic Embedding). We say that the homomorphic
encryption scheme II = (EGen, EEnc, EDec, EAdd) is embedded in encryption
scheme IT" = (Gen, Enc, Dec), or alternatively that encryption scheme II' has IT
as a homomorphic embedding if there are algorithms ExtractKey, Extract such
that for all m,pk, sk, c

EGen() = ExtractKey(Gen())

Adapting Helios for Provable Ballot Privacy 343

EEnc(m, ExtractKey(pk)) = Extract(Enc(m, pk))
Dec(c, sk) = EDec(Extract(c), sk)

Essentially, the ExtractKey algorithm maps keys (or key pairs) for the “larger”
scheme to keys for the embedded one, and the Extract algorithm extracts the
ciphertext for the embedded scheme out of ciphertext for the larger one, while
performing validity verifications at the same time.

The Extract algorithm must, by definition, produce a ciphertext that decrypts
to the same value as the input that it is given; in particular it must produce a
“ciphertext” that decrypts to L if and only if its input does. However, the Extract
algorithm does not take any secret keys as input. This implies that anyone can
check whether a ciphertext is valid (in the sense that it decrypts to something
other than 1) without knowing the secret key. This property forms the basis for
combining homomorphic and IND-CCAZ2 secure encryption in our construction.

We note that an IND-CCA2 secure cryptosystem with homomorphic embed-
ding is actually very close to a submission secure augmented (SSA) cryptosystem
as defined by Wikstrom [34]. Some important differences appear, though. The
most important one is that SSA cryptosystems do not require public verifiability
of the ciphertexts: it might be necessary to publish a private key augmentation
to be able to perform ciphertext validity checks. While this feature enables ef-
ficient solutions that are secure in the standard model, it is however often not
desirable in practice: it is quite useful to be able to dismiss invalid votes as soon
as they are submitted (and to resolve potential conflicts at that time) rather
than needing to wait for some partial key to be revealed. Besides, in order to
mitigate this inconvenience, SSA cryptosystems allow multiple independent aug-
mentations, which enables updating an augmentation and revealing the previous
one in order to be able to check the validity of previously submitted ciphertexts.
Our requirement of immediate public verifiability property makes this feature
unnecessary for our purpose.

We also note that in concurrent work, Persiano [44] and Smart [41] define
similar embedding concepts.

S2P Key Derivation. This property simply requires that if a key pair is produced
by the key generation algorithm of an encryption scheme then it is possible to
compute the public key from the secret key. This property will allow us to use
proofs of knowledge of the secret key corresponding to the public key.

Definition 4 (S2P Key Derivation). An encryption scheme has the S2P key
derivation property if there is an algorithm DeriveKey such that (z,y) «— Gen
implies y = DeriveKey(z).

Provable Encryption. In our generic construction voters need to certify that
various encryptions in the ballots that they produce satisfy some desirable prop-
erties (e.g. that a ciphertext encrypts 0 or 1, and not something else), and such
certification can be done via zero-knowledge proofs of knowledge. Since all of the
statements that we are interested in are NP statements, the existence of appro-
priate proof systems follows from general results [9]. Here, we make more precise

344 D. Bernhard et al.

the statements for which we demand the existence of such proof systems and
introduce some useful notation for the proof systems associated to the various
languages that we define.

In particular, it should be possible to prove knowledge of the secret key corre-
sponding to the public key, knowledge of the plaintext underlying a ciphertext,
as well as proving that a certain plaintext has been obtained by decrypting with
the key associated to the public key. To avoid complex nomenclature, we call a
scheme for which this is possible a scheme with provable encryption.

Definition 5 (Provable Encryption). An encryption scheme (Gen, Enc, Dec)
is provable if it has the S2P key derivation property and the following non-
interactive zero-knowledge proof systems exist:

1. (ProveGen, VerifyGen): Ry(z,y) =y < DeriveKey(x)
2. (ProveEnc, VerifyEnc): Ry((m,7),¢) := ¢ = Enc(m;)
3. (ProveDec, VerifyDec): R3(z, (c,y,d)) ==y < DeriveKey(z) A d < Dec(z,)

The above definition is for standard encryption schemes. For the case when
the encryption scheme that we need is embedded, we demand in addition the
existence of proof systems for the following two properties. The first requires that
one can prove a statement that involves plaintexts underlying several ciphertexts,
and secondly, one should be able to prove that the keys for the embedded schemes
in use have been correctly obtained from the keys of the embedding one. This
latter condition is a simple adaptation of provability as defined above.

Definition 6 (Provable Embedding). An encryption scheme (Gen, Enc, Dec)
for message space M with embedded scheme (EGen, EEnc, EDec) has embedded
provability for M’ C MY (for some N € N) if the following zero-knowledge
proof-systems exist:

1. (ProveGen, VerifyGen): Ry(z,y) =1y < DeriveKey(x)
2. (ProveEnc, VerifyEnc): R5((m1, ma,...,mnN,71,72,...,7N), (€1,C2,...,CN)) =

N
/\ 1 ~ Enc(mg;m) A (ma,...,mn) € M’
i=1

3. (ProveEDec, VerifyEDec): R¢(z, (y,d,¢)) :=
y = DeriveKey(z) A (2, y) «— ExtractKey(z,y) A d = EDec(z’, c)

In the last relation, the second conjunct is not a boolean condition, but simply
indicates that the keypair (2/,y’) is derived from (z,y) using the ExtractKey
algorithm.

The following definition states all the properties that we require from an
encryption scheme in order to be able to implement our generic voting scheme.

Adapting Helios for Provable Ballot Privacy 345

Definition 7 (Voting-Friendly Encryption). A wvoting-friendly encryption
scheme for vote space V is a public-key scheme for message space M with V C
MN such that it is IND-CCA2 secure and has S2P key derivation, an embedded
homomorphic scheme and embedded provability for V.

Note that voting-friendly encryption requires security guarantees of both the
encryption scheme and the contained proof systems.

3.2 Our Generic Construction

In this section we describe a voting scheme based on an arbitrary voting-friendly
encryption scheme. The design idea is similar to that of Helios.

The scheme handles elections with multiple candidates. In an election with
three candidates a vote is a triple (a, b, ¢) such that a,b,c € {0,1} and a+b+c =
1. A ballot is then simply formed by individually encrypting each component of
the list with an IND-CCA scheme that has an homomorphic embedding, and
proving in zero-knowledge that the individual plaintexts in a ballot satisfy the
desired relation. To prevent an adversary from casting a vote somehow related
to that of an honest voter, we ensure that each ballot cast does not contain
any ciphertexts that are duplicates of ones in the ballots already on the bulletin
board. This condition is checked while processing ballots.

More formally, denote the set of ciphertexts contained in a ballot b by Cipher(b)
and the set of all ciphertexts on the bulletin board BB by Cipher(BB), that is
Cipher(BB) = Uy ¢ Cipher(b'). When submitting a ballot b, we check that
Cipher(b) N Cipher(BB) = 0.

Definition 8 (Abstract Voting Scheme). Let IT be a voting-friendly encryp-
tion scheme. The abstract voting scheme V (IT) is the construction consisting of

algorithms [IH4

In our construction, V is the set of voters, Z is a party representing “the public”
(elements sent to Z are published) which also functions as a trusted party for
generating the initial setup parameters and 7 is the trustee of the election (that
receives the decryption keys).

If M is the message space of the voting-friendly encryption scheme we consider
the space of votes to be V. C MY for some N € N.

We consider result functions of the form p : V¥ — M* where V* := UZ-GNOVi
(this allows us to tally an arbitrary number of votes) and each component of
the range of p can be described by a sum of the form pp = >, yaix - v; for
constants a; ; € N. This covers the class of result functions that can be com-
puted homomorphically, including normal and weighted sums of votes but also
the special case of revealing all the votes and allows us to exploit the homo-
morphism in the tallying operation: The same operation can be performed on
homomorphic ciphertexts using the EAdd algorithm, for which we write & i.e.
a @ b := EAdd(a, b). Furthermore, we can define scalar multiplication ® on the
ciphertexts i.e. 2 ® a := EAdd(a, a).

We also provide a public verification algorithm as Algorithm [although we
do not define this property formally.

346 D. Bernhard et al.

Algorithm 1. Setup(1?)
Z
params «— Setup(l’\). These parameters are implicitly available to all further algo-
rithms.
BB — ()
T:
(z,y) < Gen(1")
79" ProveGen(z,)
Z o (y,m)
Z
VerifyGen (y, 79°™) £ 1 or abort with failure.

Algorithm 2. Vote((v1,v2,...,0N))
Vje{1,2,...,N}

¢j < Enc(y,vj)
7% « ProveEnc(y, vj, ¢;)
bj — (cj,m3)

output b

Algorithm 3. ProcessBallot(b, BB)

if VerifyEnc(b) = 0 then return (“reject”, BB) end if
for all ¢ € Cipher(b) do
if Extract(c) = L then return (“reject”, BB) end if
if Cipher(b) N Cipher(BB) # (then return (‘“reject’, BB) end if
end for
BB &b
return (“accept”’, BB)

Algorithm 4. Tally(BB)

for all ¢; € BB (j € V) do €} «— Extract(c;) end for

for all k do
ex — @;ep(ajr @ e)) {Ie. use EAdd to compute ciphertexts for the results.}
ry, «— EDec(z, e})
7w «— ProveEDec(z, e}, 1)

end for

Z (T’ﬁﬂ'kDec)k

Adapting Helios for Provable Ballot Privacy 347

Algorithm 5. Verification

Z performs the following, aborting if any of the checks (denoted by ;) fail. The ordering
on V is a slight abuse of notation; it represents the order the ballots were received in.
If successful, the result of the election is r.

VerifyGen (y, 7%°™) 1
for all j € V do

(¢j,m5) < b;

VerifyEnc(b;) Z1

(cj & (cjr)jrev,ir<j) =1

e} «— Extract(c;)

?

e;- # 1
end for
e’ — EAdd(p, (€})jev)
VerifyEDec(r, ¢, ¢’) 21

We only prove ballot privacy of our construction formally; correctness follows
from the correctness of the voting-friendly encryption scheme. The following
theorem states that ballot privacy relies entirely on the security of the underlying
voting-friendly scheme.

Theorem 1. Let IT be a voting-friendly encryption scheme. Then V(IT) has
ballot privacy.

To prove the theorem we proceed in two steps. First, we strip the voting scheme

of the unnecessary details that concern verifiability, resulting in a scheme that we

call “mini-voting”. We prove that ballot privacy for this latter scheme only relies

on the IND-CCAZ2 security of the encryption scheme employed (which highlights

IND-CCA2 security as the crucial property needed from the underlying building

block). We then explain how to adapt the proof to show the security of V (IT).
The full proof can be found in the full version of this paper.

4 Constructions for Voting—Friendly Schemes

In the previous section we gave a generic construction of a voting scheme with
ballot privacy starting from an arbitrary voting-friendly encryption scheme. In
this section we show that such schemes can be easily constructed using standard
cryptographic tools in both the standard and the random oracle models. We
discuss three different possibilities.

Encrypt + PoK. This construction does not lead immediately to a voting-
friendly scheme but its security is highly relevant to that of Helios, and the
design idea forms the basis of a construction that we discuss later.

Under this paradigm, one attempts to construct an IND-CCA2 scheme start-
ing from an IND-CPA scheme and adding to the ciphertext a non-interactive

348 D. Bernhard et al.

proof of knowledge of the underlying plaintext. Intuitively, this ensures that
an adversary cannot make use of a decryption oracle (since he must know the
underlying plaintext of any ciphertext) hence the security of the scheme only
relies on IND-CPA security. Unfortunately, this intuition fails to lend itself to
a rigorous proof, and currently the question whether Enc+PoK yields an IND-
CCA2 scheme is widely open. A detailed treatment of the problem first appeared
in [16].

Yet, the question is important for the security of Helios: the current im-
plementation is essentially an instantiation of our generic construction with
an Enc+PoK encryption scheme. More precisely the encryption scheme Enc
is ElGamal, and the proof of knowledge is obtained by applying the Fiat-Shamir
transform to a Schnorr proof. Per the above discussion, no general results imply
that the resulting E1Gamal+PoK scheme is IND-CCAZ2 secure (a requirement for
voting-friendliness) and our generic result does not apply. However, if one is pre-
pared to accept less standard assumptions, two existing results come in handy.
The security of the particular construction that employs ElGamal encryption
and Fiat-Shamir zero-knowledge proofs of knowledge has been investigated by
Tsiounis & Yung [I7] and Schnorr & Jakobsson [I9]. Both works support the
conjecture that the construction is IND-CCA2 but neither result is fully satisfac-
tory. Tsiounis & Yung make a knowledge assumption that essentially sidesteps
a crucial part in the security proof, whereas the proof of Schnorr & Jakobs-
son assumes both generic groups [13] and random oracles [I0]. Nevertheless,
since using either assumption we can show that ElGamal+PoK construction is a
voting-friendly scheme, we conclude that Helios satisfies ballot privacy under the
same assumptions. Unfortunately, the security of the construction under stan-
dard assumptions is a long-standing open question. This observation motivates
the search for alternative constructions of voting-friendly schemes.

Straight-line Extractors. To motivate the construction that we discuss now, it is
instructive to explain why a proof that Enc+PoK is IND-CCA2 fails. In such a
proof, when reducing the security of the scheme to that of the underlying prim-
itive, a challenger would need to answer the decryption queries of the adversary.
Since the underlying encryption scheme is only IND-CPA secure, the only pos-
sibility is to use the proof of knowledge to extract the plaintext underlying the
queried ciphertexts. Unfortunately here the proof gets stuck. Current definitions
and constructions for proofs of knowledge only consider single statements and
the knowledge extractor works for polylogarithmically many proofs but it may
break down (run in exponential time [19]) for polynomially many. Since the IND-
CCA2 adversary is polynomially bounded answering all of its decryption queries
may thus not be feasible.

A construction that gets around this problem employs a zero-knowledge proof
of knowledge with a straight-line extractor. Such extractors do not need to
rewind the prover and in this case the Enc+PoK construction yields an IND-
CCA2 encryption scheme. This notion of extraction and a variation of the Fiat-
Shamir transform that turns a sigma-protocol into a non-interactive proof of
knowledge with a straight-line extractor in the random oracle model has recently

Adapting Helios for Provable Ballot Privacy 349

been proposed by Fischlin [22]. As above, starting with a homomorphic encryp-
tion scheme would yield a voting friendly encryption scheme. Unfortunately the
construction in that paper is not suffficiently efficient to yield a practical en-
cryption scheme.

The Naor-Yung Transformation. This transformation starts from any IND-CPA
secure encryption scheme. An encryption of message m is simply two distinct
encryptions ¢; and co of m under the original scheme, together with a simulation-
sound zero-knowledge proof 7 that ¢; and ¢y encrypt the same message with an
extra property that we call unique applicability. Formally, we have the following
definition.

Definition 9 (Naor-Yung Transformation). Let E = (EGen, EEnc, EDec) be
a public-key encryption system. Let P = (Prove, Verify, Sim) be a non-interactive
zero-knowledge proof scheme for proving (in Camenisch’s notation [15)])

PoK{(m,r1,m2) : ¢1 = Enc(y1, m;r1) A ca = Enc(y2, m;r2)}

with uniquely applicable proofs. Assume the input to Prove is given in the form
(maylay%rlar%clatb)'

The Naor-Yung transformation [I] NY (E, P) of the encryption system is the
public-key cryptosystem defined in Algorithm [@.

Algorithm 6. Naor-Yung Transformation
Gen

(z1,y1) < EGen

(z2,y2) — EGen

return ((z1,22), (y1,y2))
Enc((?ﬂ: y2)7 m; (T1> TQ))

c1 < Enc(y1,m;71)

¢z — Enc(yz2, m;r2)

7 «— Prove(m, y1, y2,71, 72, C1,C2)

return (ci1,c2,m)
Dec(c1, 2,)

if Verify(ci,c2,m) =1 then return EDec(z1,c2) else return L end if

Sahai [I8] showed that the above transformation yields an IND-CCA2 en-
cryption scheme if the starting scheme is IND-CPA and the proof system is
simulation-sound and has uniquely applicable proofs (essentially each proof can
only be used to prove one statement).

Theorem 2 (Sahai[18]). If the zero-knowledge proof system P has uniquely
applicable proofs then the Naor-Yung transformation NY (E, P) of an IND-CPA
secure scheme E gives IND-CCAZ2 security.

350 D. Bernhard et al.

It turns out that if the starting encryption scheme is homomorphic, then the re-
sulting construction is a voting-friendly encryption scheme. Indeed, the resulting
scheme has a homomorphic embeding (given either the first or the second com-
ponent of the ciphertext) and it is checkable (the checking algorithm only needs
to verify the validity of 7). As explained earlier, the required proof-systems for
provability of the embeding exist, from general results. One can therefore obtain
voting schemes with provable ballot privacy in the standard model starting from
any homomorphic encryption scheme that is IND-CPA secure in the standard
model.

In general, the above construction may not be very efficient (the simulation-
sound zero-knowledge proof and associated required proof-systems may be rather
heavy). In the random oracle model one can implement the above idea efficiently
by replacing the simulation-sound zero-knowledge proof (of membership) with a
zero-knowledge proof of knowledge of the message that underlies the two cipher-
texts. Interestingly, one may regard the NY transform as providing the under-
lying encryption scheme with a straight-line extractor (so our previous results
already apply).

The following theorem is a variation of the basic Naor-Yung transform applied
to our setting.

Theorem 3. If E is an IND-CPA secure homomorphic encryption scheme with
S2P key deriwation and P is a zero-knowledge proof of knowledge system with
uniquely applicable proofs, then NY (E, P) is a voting friendly encryption scheme.

5 Application to the Helios Protocol

We propose an enhanced version of Helios 3.0 which is an instantiation of our
generic voting scheme with a voting-friendly encryption scheme obtained from
ElGamal encryption [1] via the NY transform [7]. The required proof of knowl-
edge is obtained via the Fiat-Shamir transform [3] applied to generalized Schnorr
proofs. In this scheme duplicate ballots would be rejected as defined in the Pro-
cessBallot procedure (Algorithm Bl). We can further improve the efficiency by
reusing some components as described by [20].

Thanks to Theorems [[l and Bl we deduce that the enhanced version of Helios
3.0 (provably) preserves ballot privacy. The modification of Helios we propose
does not change the architecture nor the trust assumption of Helios and can be
easily implemented. The computational overhead is reasonable (both the length
of the messages and the time of computation would at most double and some
optimizations can be foreseen). In exchange, we get the formal guarantee that
Helios does preserve ballot privacy, a very crucial property in the context of
electronic voting. For concreteness, we prove the details of the construction, as
well as a proof of security in the full version of this paper.

We emphasize that our results go beyond proving ballot privacy of a particular
e-voting protocol. We have identified IND-CCA2 as a sufficient condition for con-
structing voting schemes satisfying our notion of ballot privacy and have given
an abstract construction of a Helios-type voting scheme from IND-CPA secure

Adapting Helios for Provable Ballot Privacy 351

homomorphic threshold encryption and non-interactive zero-knowledge proofs of
knowledge. Our construction is independent of any hardness assumptions or se-
curity models (in particular, the random oracle model). We have formalized the
concept of embeddable encryption and showed how to construct IND-CCA2 se-
cure encryption with homomorphic embedding, despite the known impossibility
of homomorphic IND-CCA2 secure encryption.

As further work, we plan to extend the definitions and proofs for threshold
encryption scheme in order to have a fully complete proof for Helios. We are
confident that our proof techniques will apply in a straightforward way. We also
wish to investigate the possibility of defining ballot privacy in a more general
way, e.g. allowing the current voting algorithm to be replaced by a protocol.
Indeed, it could the case that casting a vote or tallying the vote require more
than one step.

Acknowledgements. We are very grateful to Ben Adida for helpful discussions
on how to enhance ballot privacy in Helios.

This work was partially supported by the European Commission through the
ICT Programme under Contract ICT- 2007-216676 ECRYPT II, by the Interuni-
versity Attraction Pole P6/26 BCRYPT, and by the European Research Council
under the European Unions Seventh Framework Programme (FP7,/2007-2013) /
ERC grant agreement number 258865 (ProSecure project). Olivier Pereira is a
Research Associate of the Belgian Funds for Scientific Research (F.R.S.-FNRS).

References

1. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469-472 (1985)

2. Cohen (Benaloh), J., Fischer, M.: A Robust and Verifiable Cryptographically Se-
cure Election Scheme. In: Proceedings of the 26th Symposium on Foundations of
Computer Science, pp. 372-382 (1985)

3. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186-194. Springer, Heidelberg (1987)

4. Cohen (Benaloh), J., Yung, M.: Distributing the Power of a Government to En-
hance the Privacy of Voters. In: Proceedings of the 5th Symposium on Principles
of Distributed Computing, pp. 52-62 (1986)

5. Cohen (Benaloh), J.: Verifiable Secret-Ballot Elections. Yale University Depart-
ment of Computer Science Technical Report number 561 (1987)

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: 20th STOC, pp. 103-112 (1988)

7. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: Proceedings of the Twenty-Second Annual ACM Symposium
on Theory of Computing (STOC 1990), pp. 42-437 (1990)

8. Schnorr, C.-P.: Efficient signature generation for smart cards. Journal of cryptol-
ogy 4, 161-174 (1991)

352

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

D. Bernhard et al.

Damgard, 1.B.: Non-interactive circuit based proofs and non-interactive perfect
zero-knowledge with preprocessing. In: Rueppel, R.A. (ed.) EUROCRYPT 1992.
LNCS, vol. 658, pp. 341-355. Springer, Heidelberg (1993)

Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security (CCS 1993), pp. 62-73 (1993)

Benaloh, J., Tuinstra, D.: Receipt-Free Secret-Ballot Elections. In: Proceedings of
the 26th ACM Symposium on Theory of Computing, pp. 544-553 (1994)
Gennaro, R.: Achieving independence efficiently and securely. In: Proceedings of
the 14th Principles of Distributed Computing Symposium (PODC 1995), pp. 130
136 (1995)

Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256-266. Springer, Heidelberg
(1997)

Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient
Multi-authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103-118. Springer, Heidelberg (1997)

Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410-424. Springer,
Heidelberg (1997)

Shoup, V., Gennaro, R.: Securing Threshold Cryptosystems against Chosen Ci-
phertext Attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
1-16. Springer, Heidelberg (1998)

Tsiounis, Y., Yung, M.: On the security of ElGamal based encryption. In: Imai, H.,
Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117-134. Springer, Heidelberg
(1998)

Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: Proceedings of th 40th Annual Symposium on Foundations
of Computer Science (FOCS 1999), pp. 543-553 (1999)

Schnorr, C.-P., Jakobsson, M.: Security of Signed ElGamal Encryption. In:
Okamoto, T. (ed.) ASTACRYPT 2000. LNCS, vol. 1976, pp. 73-89. Springer, Hei-
delberg (2000)

Bellare, M., Boldyreva, A., Staddon, J.: Multi-recipient encryption schemes: Se-
curity notions and randomness re-use. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS,
vol. 2567. Springer, Heidelberg (2002), http://cseweb.ucsd.edu/~mihir/papers/
bbs.html

Groth, J.: Evaluating Security of Voting Schemes in the Universal Composabil-
ity Framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 46-60. Springer, Heidelberg (2004)

Fischlin, M.: Communication-Efficient Non-interactive Proofs of Knowledge with
Online Extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152—
168. Springer, Heidelberg (2005)

Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elections.
In: Proceedings of the 4th Workshop on Privacy in the Electronic Society (WPES
2005), pp. 61-70 (2005)

Kremer, S., Ryan, M.D.: Analysis of an Electronic Voting Protocol in the Ap-
plied Pi Calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186-200.
Springer, Heidelberg (2005)

http://cseweb.ucsd.edu/~mihir/papers/bbs.html
http://cseweb.ucsd.edu/~mihir/papers/bbs.html

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Adapting Helios for Provable Ballot Privacy 353

Moran, T., Naor, M.: Receipt-Free Universally-Verifiable Voting with Everlast-
ing Privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373-392.
Springer, Heidelberg (2006)

Delaune, S., Kremer, S., Ryan, M.D.: Coercion-Resistance and Receipt-Freeness
in Electronic Voting. In: 19th Computer Security Foundations Workshop (CSFW
2006), pp. 28-42 (2006)

Chevallier-Mames, B., Fouque, P., Pointcheval, D., Stern, J., Traoré, J.: On Some
Incompatible Properties of Voting Schemes. In: Proceedings of the Workshop on
Trustworthy Elections, WOTE 2006 (2006)

Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl Accord
(2007), http://www.dagstuhlaccord. org/

Benaloh, J.: Ballot Casting Assurance via Voter-Initiated Poll Station Auditing.
In: Proceedings of the Second Usenix/ACCURATE Electronic Voting Technology
Workshop (2007)

Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13-25. Springer, Heidelberg (1998)

Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a Secure Voting System.
In: Proceedings of the 29th Security and Privacy Symposium (S&P 2008), pp.
354-368 (2008)

Adida, B.: Helios: Web-based open-audit voting. In: 17th USENIX Security Sym-
posium, pp. 335-348 (2008),
http://wuw.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
Backes, M., Hritcu, C., Maffei, M.: Automated Verification of Remote Electronic
Voting Protocols in the Applied Pi-calculus. In: Proceedings of the 21st IEEE
Computer Security Foundations Symposium (CSF 2008), pp. 195-209 (2008)
Wikstrom, D.: Simplified Submission of Inputs to Protocols. In: Ostrovsky, R., De
Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 293-308. Springer,
Heidelberg (2008)

Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.-J.: Electing a university
president using open-audit voting: Analysis of real-world use of Helios. In: Pro-
ceedings of the 2009 Conference on Electronic Voting Technology/Workshop on
Trustworthy Elections (2009)

International association for cryptologic research. Election page at
http://www.iacr.org/elections/2010

Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy
Website with description and video at http://www.bensmyth.com/publications/
10-attacking-helios/ (Cryptology ePrint Archive, Report 2010/625)

Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting proto-
cols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 389-404. Springer, Heidelberg (2010)

Unruh, D., Miiller-Quade, J.: Universally Composable Incoercibility. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 411-428. Springer, Heidelberg (2010)
Kiisters, R., Truderung, T., Vogt, A.: A Game-Based Definition of Coercion-
Resistance and its Applications. In: Proceedings of the 23rd IEEE Computer Se-
curity Foundations Symposium (CSF 2010), pp. 122-136 (2010)

Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-Secure Fully Homo-
morphic Encryption, http://eprint.iacr.org/2010/560

http://www.dagstuhlaccord.org/
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
http://www.iacr.org/elections/2010
http://www.bensmyth.com/publications/10-attacking-helios/
http://www.bensmyth.com/publications/10-attacking-helios/
http://eprint.iacr.org/2010/560

354 D. Bernhard et al.

42. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy.
To appear in: Proceedings of the 24th Computer Security Foundations Symposium,
CSF 2011 (2011)

43. Kiisters, R., Truderung, T., Vogt, A.: Verifiability, Privacy, and Coercion-
Resistance: New Insights from a Case Study. To appear at the 32nd Security and
Privacy Symposium, S&P 2011 (2011) (preprint)

44. Persiano, G.: About the Existence of Trapdoors in Cryptosystems. Work in
Progress, http://libeccio.dia.unisa.it/Papers/Trapdoor/

45. Helios voting. Website, http://heliosvoting. org

46. Helios Headquarters, Princeton University Undergraduate Student Government,
http://usg.princeton.edu/officers/elections-center/
helios-headquarters.html

http://libeccio.dia.unisa.it/Papers/Trapdoor/
http://heliosvoting.org
http://usg.princeton.edu/officers/elections-center/helios-headquarters.html
http://usg.princeton.edu/officers/elections-center/helios-headquarters.html

	Adapting Helios for Provable Ballot Privacy
	Introduction
	Ballot Privacy
	Voting Schemes
	Security Model

	A Generic Construction of Voting Schemes with Ballot Privacy
	Voting-Friendly Encryption
	Our Generic Construction

	Constructions for Voting–Friendly Schemes
	Application to the Helios Protocol
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

