

Lecture Notes in Computer Science 6879
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Vijay Atluri Claudia Diaz (Eds.)

Computer Security –
ESORICS 2011

16th European Symposium
on Research in Computer Security
Leuven, Belgium, September 12-14, 2011
Proceedings

13

Volume Editors

Vijay Atluri
Rutgers University
MSIS Department and CIMIC
1 Washington Park
Newark, NJ 07102, USA
E-mail: atluri@rutgers.edu

Claudia Diaz
K.U. Leuven ESAT/COSIC
Kasteelpark Arenberg 10
3001 Leuven-Heverlee, Belgium
E-mail: claudia.diaz@esat.kuleuven.be

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23821-5 e-ISBN 978-3-642-23822-2
DOI 10.1007/978-3-642-23822-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011935429

CR Subject Classification (1998): C.2, K.6.5, D.4.6, E.3, J.1, H.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The European Symposium on Research in Computer Security (ESORICS) has a
tradition that goes back two decades. It brings together the international research
community in a top-quality event that covers all the areas of computer security,
ranging from theory to applications.

ESORICS 2011 was the 16th edition of the event. It was held in Leuven,
Belgium, during September 12–14, 2011. The conference received 155 submis-
sions. The papers went through a careful review process in which each paper
received at least three independent reviews. The papers were then discussed by
the Program Committee to arrive to the final decision. The Program Committee
selected 36 papers for the final program, resulting in an acceptance rate of 23%.
The authors of accepted papers were requested to revise their papers, based on
the comments received. The program was completed with an invited talk by Ross
Anderson, from the University of Cambridge.

First and foremost, we would like to thank the members of the Program
Committee for their extensive efforts both during the review and the discussion
phase. Our task would not have been feasible without their collective knowledge
and wisdom. We would also like to express our thanks to the numerous external
reviewers for their contributions.

We are indebted to Bart Preneel, the General Chair of this symposium, for
his continuous support. Our appreciation goes to Claudio Ardagna for acting as
Publicity Chair; and to Pela Noe, Saartje Verheyen, Sebastiaan Indesteege, Roel
Peeters, and the rest of the COSIC team for their help with the organization
of the event. We are also grateful to Google, Technicolor, and BCRYPT for
sponsoring ESORICS 2011.

Finally, we would like to thank the submitters, authors, presenters, and par-
ticipants who, all together, made ESORICS 2011 a great success.

We hope that the papers in this volume can help you with your research and
professional activities, and serve as a source of inspiration during the difficult
but fascinating route toward an on-line world with adequate security.

June 2011 Vijay Atluri
Claudia Diaz

Organization

General Chair

Bart Preneel K.U. Leuven, Belgium

Program Committee Chairs

Vijay Atluri Rutgers University, USA
Claudia Diaz K.U. Leuven, Belgium

Publicity Chair

Claudio Ardagna Università degli Studi di Milano, Italy

Program Committee Members

Mikhail Atallah Purdue University, USA
Michael Backes Saarland University and MPI-SWS, Germany
Feng Bao Institute for Infocomm Research, Singapore
Lujo Bauer Carnegie Mellon University, USA
Carlo Blundo Università di Salerno, Italy
Jan Camenisch IBM Research - Zurich, Switzerland
Srdjan Capkun ETH Zurich, Switzerland
Véronique Cortier LORIA-CNRS, France
Jason Crampton Royal Holloway, University of London, UK
Frédéric Cuppens IT TELECOM Bretagne,France
George Danezis Microsoft Research, UK
Sabrina De Capitani di

Vimercati Università degli Studi di Milano, Italy
Roger Dingledine The Tor Project, USA
Orr Dunkelman Weizmann Institute, Israel
Simon Foley University College Cork, Ireland
Dieter Gollmann Hamburg University of Technology, Germany
Thorsten Holz Ruhr University Bochum, Germany
Sushil Jajodia George Mason University, USA
Stefan Katzenbeisser T.U. Darmstadt, Germany
Angelos Keromytis Columbia University, USA
Aggelos Kiayias University of Athens, Greece
Michiharu Kudo IBM Research - Tokyo, Japan
Klaus Kursawe University of Nijmegen, The Netherlands
Adam Lee University of Pittsburgh, USA

VIII Organization

Ronald Leenes Tilburg University / TILT, The Netherlands
Peng Liu Pennsylvania State University, USA
Javier Lopez University of Malaga, Spain
David Molnar Microsoft Research, USA
Steven Murdoch University of Cambridge, UK
Gregory Neven IBM Research - Zurich, Switzerland
Radia Perlman Intel Corporation, USA
Indrakshi Ray Colorado State University, USA
Ahmad-Reza Sadeghi Ruhr University Bochum, Germany
Rei Safavi-Naini University of Calgary, Calgary
Pierangela Samarati Università degli Studi di Milano, Italy
R. Sekar Stony Brook University, USA
Basit Shafiq Rutgers University, USA
Vitaly Shmatikov University of Texas Austin, USA
Einar Snekkenes Gjovik University College, Norway
Paul Syverson Naval Research Laboratory, USA
Patrick Traynor Georgia Institute of Technology, USA
Carmela Troncoso K.U. Leuven, Belgium
Jaideep Vaidya Rutgers University, USA
Will Winsborough University of Texas at San Antonio, USA

External Reviewers

Zahra Aghazadeh
Hadi Ahmadi
Mohsen Alimomeni
Sami Alsouri
Todd Andel
Elena Andreeva
George Argyros
Md. Shamim Ashik
Elias Athanasopoulos
Ero Balsa
Manuel Barbosa
Lejla Batina
Meriam Ben Ghorbel
Joseph Bonneau
Mike Brennan
Sven Bugiel
Joan Calvet
Sambuddho Chakravarty
Omar-Salim Choudary
Omar Chowdhury
Cheng-Kang Chu
Cas Cremers

Nora Cuppens-Boulahia
Paolo D’Arco
Jun Dai
Angelo De Caro
Emiliano De Cristofaro
Elke De Mulder
Mario Di Raimondo
Maria Dubovitskaya
Nicholas Farnan
Carmen Fernández-Gago
Sara Foresti
Aurelien Francillon
Martin Franz
Keith Frikken
Martin Gagne
Joaquin Garcia-Alfaro
Deepak Garg
Dimitris Geneiatakis
Johannes Hoffmann
Yuan Hong
Ralf Hund
Vincenzo Iovino

Rob Jansen
Kangkook Jee
Ravi Jhawar
Aaron Johnson
Ghassan Karame
Charlie Kaufman
Vasileios P. Kemerlis
Johannes Kinder
Marc Kuehrer
Hoi Le
Fengjun Li
Joseph Liu
Giovanni Livraga
Mohammad Hossein

Manshaei
Claudio Marforio
Damon Mccoy
Nicky Mouha
Francisco Moyano
Sascha Müller
Pablo Najera
Kris Narayan

Organization IX

Ana Nieto
David Nuñez
Femi Olumofin
Vasilis Pappas
Andreas Pashalidis
Cristina Perez
Ray Perlner
Michalis Polychronakis
Murillo Pontual
Christina Popper
Georgios Portokalidis
David Ramos
Aanjhan Ranganathan
Indrajit Ray
Joel Reardon
David Rebollo-Monedero

Ruben Rios
Rodrigo Roman
Ahmad-Reza Sadeghi
Nashad Safa
Thomas Schneider
Steffen Schulz
Reza Shokri
Ben Smyth
Angelos Stavrou
Kun Sun
Xiaoyan Sun
Gelareh Taban
Mehdi Talbi
Naoki Tanaka
Nils Tippenhauer
Mathieu Turuani

Sebastian Uellenbeck
Jeffrey Vaughan
Jose Luis Vivas
Christian Wachsmann
Jun Wang
Gaven Watson
Marcel Winandy
Yongdong Wu
Ji Xiang
Xi Xiong
Yanjiang Yang
Eugen Zalinescu
Qiang Zeng
Bin Zhao
Wanying Zhao

Table of Contents

Wireless Security

Secure Localization Using Dynamic Verifiers . 1
Nashad A. Safa, Saikat Sarkar, Reihaneh Safavi-Naini, and
Majid Ghaderi

WiFiHop - Mitigating the Evil Twin Attack through Multi-hop
Detection . 21

Diogo Mónica and Carlos Ribeiro

Investigation of Signal and Message Manipulations on the Wireless
Channel . 40

Christina Pöpper, Nils Ole Tippenhauer, Boris Danev, and
Srdjan Capkun

Web Security I

Protecting Private Web Content from Embedded Scripts 60
Yuchen Zhou and David Evans

Preventing Web Application Injections with Complementary Character
Coding . 80

Raymond Mui and Phyllis Frankl

Automatic and Precise Client-Side Protection against CSRF Attacks . . . 100
Philippe De Ryck, Lieven Desmet, Wouter Joosen, and
Frank Piessens

Web Security II

Timing Is Everything: The Importance of History Detection 117
Gunnar Kreitz

Reclaiming the Blogosphere, TalkBack: A Secure LinkBack Protocol for
Weblogs . 133

Elie Bursztein, Baptiste Gourdin, and John C. Mitchell

A Systematic Analysis of XSS Sanitization in Web Application
Frameworks . 150

Joel Weinberger, Prateek Saxena, Devdatta Akhawe,
Matthew Finifter, Richard Shin, and Dawn Song

XII Table of Contents

Forensics, Biometrics and Software Protection

Who Wrote This Code? Identifying the Authors of Program Binaries . . . 172
Nathan Rosenblum, Xiaojin Zhu, and Barton P. Miller

Secure and Efficient Protocols for Iris and Fingerprint Identification 190
Marina Blanton and Paolo Gasti

Linear Obfuscation to Combat Symbolic Execution 210
Zhi Wang, Jiang Ming, Chunfu Jia, and Debin Gao

DriverGuard: A Fine-Grained Protection on I/O Flows 227
Yueqiang Cheng, Xuhua Ding, and Robert H. Deng

Access Control

Time-Storage Trade-Offs for Cryptographically-Enforced Access
Control . 245

Jason Crampton

Socially Constructed Trust for Distributed Authorization 262
Steve Barker and Valerio Genovese

Fully Secure Multi-authority Ciphertext-Policy Attribute-Based
Encryption without Random Oracles . 278

Zhen Liu, Zhenfu Cao, Qiong Huang, Duncan S. Wong, and
Tsz Hon Yuen

Cryptography and Protocol Analysis

How to Aggregate the CL Signature Scheme . 298
Dominique Schröder

Key Exchange in IPsec Revisited: Formal Analysis of IKEv1 and
IKEv2 . 315

Cas Cremers

Adapting Helios for Provable Ballot Privacy . 335
David Bernhard, Véronique Cortier, Olivier Pereira,
Ben Smyth, and Bogdan Warinschi

Information Flow, Side Channels, and Vulnerability
Analysis

Remote Timing Attacks Are Still Practical . 355
Billy Bob Brumley and Nicola Tuveri

Table of Contents XIII

Multi-run Security . 372
Arnar Birgisson and Andrei Sabelfeld

Automated Information Flow Analysis of Virtualized Infrastructures 392
Sören Bleikertz, Thomas Groß, Matthias Schunter, and
Konrad Eriksson

Scalable Analysis of Attack Scenarios . 416
Massimiliano Albanese, Sushil Jajodia, Andrea Pugliese, and
V.S. Subrahmanian

Usability, Ttrust, and Economics of Security and
Privacy

Usability of Display-Equipped RFID Tags for Security Purposes 434
Alfred Kobsa, Rishab Nithyanand, Gene Tsudik, and Ersin Uzun

Forcing Johnny to Login Safely: Long-Term User Study of Forcing and
Training Login Mechanisms . 452

Amir Herzberg and Ronen Margulies

Towards a Mechanism for Incentivating Privacy . 472
Piero A. Bonatti, Marco Faella, Clemente Galdi, and Luigi Sauro

Investigating the OpenPGP Web of Trust . 489
Alexander Ulrich, Ralph Holz, Peter Hauck, and Georg Carle

Privacy I

A Practical Complexity-Theoretic Analysis of Mix Systems 508
Dang Vinh Pham, Joss Wright, and Dogan Kesdogan

A Light-Weight Solution to Preservation of Access Pattern Privacy in
Un-trusted Clouds . 528

Ka Yang, Jinsheng Zhang, Wensheng Zhang, and Daji Qiao

Optimizing Mixing in Pervasive Networks: A Graph-Theoretic
Perspective . 548

Murtuza Jadliwala, Igor Bilogrevic, and Jean-Pierre Hubaux

Privacy II

A New RFID Privacy Model . 568
Jens Hermans, Andreas Pashalidis, Frederik Vercauteren, and
Bart Preneel

Quantitative Information Flow, with a View . 588
Michele Boreale, Francesca Pampaloni, and Michela Paolini

XIV Table of Contents

To Release Or Not to Release: Evaluating Information Leaks in
Aggregate Human-Genome Data . 607

Xiaoyong Zhou, Bo Peng, Yong Fuga Li, Yangyi Chen,
Haixu Tang, and XiaoFeng Wang

Privacy III

Don’t Reveal My Intension: Protecting User Privacy Using Declarative
Preferences during Distributed Query Processing . 628

Nicholas L. Farnan, Adam J. Lee, Panos K. Chrysanthis, and
Ting Yu

Supporting Concurrency in Private Data Outsourcing 648
Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi,
Gerardo Pelosi, and Pierangela Samarati

Privacy-Preserving DNS: Analysis of Broadcast, Range Queries and
Mix-Based Protection Methods . 665

Hannes Federrath, Karl-Peter Fuchs, Dominik Herrmann, and
Christopher Piosecny

Author Index . 685

Secure Localization Using Dynamic Verifiers

Nashad A. Safa, Saikat Sarkar, Reihaneh Safavi-Naini, and Majid Ghaderi

Department of Computer Science
University of Calgary

{nasafa,ssarka,rei,mghaderi}@ucalgary.ca

Abstract. We consider secure positioning in wireless environments where
mobile nodes use a trusted infrastructure to prove their location: a node
claims a position and wants to prove to the verification infrastructure
that it is actually located in that position. We propose a system that
uses the notion of dynamic verifiers and provides security against collu-
sion attack in which the adversary corrupts a set of nodes and its aim is
to claim a position where none of the corrupted nodes are located. We
give a detailed analysis of the system and show that under reasonable as-
sumptions the protocol will reject false claims and the success probability
of the adversary can be made arbitrarily small. We also give the results
of our simulation that closely match the analysis. Our protocol is the
first secure positioning protocol with security against collusion attack.

1 Introduction

Finding location or range (distance from a fixed node) of nodes in wireless en-
vironments has been extensively studied [1,2,3,4,11,13]. These information can
be used for network services such as routing [2,8,9], as well as for location based
services. Location information has also been used for user authentication [7,20]
and access control [21].

Positioning and ranging systems in wireless environments use attributes of
wireless signals including time-of-flight, angle of arrival and signal strength [5].
In all cases there is a trusted infrastructure that verifies the claims of nodes
(position or range). The infrastructure usually consists of a number of trusted
verifiers with fixed, known locations, that have out-of-band communication with
each other. Positioning and ranging systems however are vulnerable to malicious
nodes that report false information. The strongest attack is when the adversary
controls a number of nodes to make false claim (e.g. false location or range).
This is called collusion attack. In [3] it was shown that an adversary always
succeeds if the number of colluding nodes is sufficiently large. This impossibility
result however is only valid if the location of verifiers is known to the adversary.
A theoretically feasible result for this scenario is in bounded storage model that
assumes that the adversary is restricted in terms of her storage capacity and can
not store large messages broadcasted by verifiers.

A practically attractive solution for secure positioning systems is to use hid-
den verifiers [11]: that is to employ verifiers whose locations are not publicly

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 1–20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 N.A. Safa et al.

known. This solution however becomes vulnerable if the adversary can adap-
tively interact with the system over a period of time. To our knowledge there is
no positioning protocol that can withstand collusion attack.

Our Work: We consider the problem of secure location verification in the
presence of collusion attack. We assume verifiers are connected by out-of-band
communication channels and have fixed publicly known locations. Other nodes
are mobile and their locations may vary with time. A node can use a positioning
protocol to prove a location claim p to this infrastructure. The communication
between nodes is wireless and the time-of-flight (TOF) of radio signals is used
to calculate distances (the protocol however can be adapted to other localiza-
tion techniques). We assume any node in the verification region can receive the
transmission of all verifiers and other nodes. Colluding nodes coordinate their
actions by communicating with each other using out-of-band channels and use
directional antennas to target a specific receiver. The aim of the adversary is
to claim a location that is “far” from all the corrupted nodes. Here “far” is de-
termined by a threshold Δ, which is a system parameter and depends on the
accuracy of the positioning system.

The proposed system: We propose a protocol, referred to as Secure Localization
using Dynamic Verifiers (or SLDV for short) that, with a chosen high proba-
bility, will reject false location claims of provers. The protocol is efficient and
practical and does not need any unrealistic assumption. Moreover it does not re-
quire any additional fixed infrastructure and is particularly applicable to cellular
networks, mobile ad hoc networks or vehicular ad hoc networks where system
devices have sufficient computing capability. The protocol requires a single pub-
lic key operation per verification round from the device and so can be easily used
for smart-phones, tablets and other similar handheld devices.

We introduce the notion of dynamic verifiers: these are verifiers that are ‘re-
cruited’ in each run of the protocol. The set of dynamic verifiers is a random
subset of users that is chosen from the active (connected) nodes in the system,
and their role is to help the static verifiers to correctly verify a location claim.
The subset is changed in each run of the protocol and so the locations of the
dynamic verifiers remain unknown to the adversary. At a high level the proto-
col between the verifiers and a prover is a basic two phase challenge-response
that measures the time-of-flight for the challenge and response, to determine the
location. To avoid collusion attack, dynamic verifiers also ‘monitor’ and collect
timing information on the challenge and response and provide it to the static
verifiers. Since corrupted and honest nodes are indistinguishable to the verifiers,
the set of dynamic verifiers may include corrupted nodes that would provide
incorrect information to the verifiers. We will show that as long as sufficiently
many dynamic verifiers are honest nodes, the final decision will be correct with
high probability.

We give a detailed analysis of the protocol, and calculate the best chance
of the adversary in two cases: (i) the adversary does not know the location of
the mobile nodes in the system, and (ii) the adversary does know the location
of mobile nodes in the system, but does not know which ones are chosen as

Secure Localization Using Dynamic Verifiers 3

dynamic verifiers. As long as the majority of nodes in the system are honest, the
observations provided by the dynamic verifiers will guarantee a correct decision.
In Section B, we give an argument similar to [3], to show that without this
assumption it is impossible to provide secure positioning using dynamic verifiers
approach.

The rest of the paper is organized as follows. We provide the model and
background for our system in Section 3. Section 4 and 5 contain the protocol
description and corresponding security analysis. Simulation results and efficiency
of the protocol are discussed in Section 6, and Section 7 concluded the paper.
An important advantage of dynamic verifier approach is that it does not need
infrastructure cost. Correct working of the system requires sufficiently many
“good” nodes (roughly more than half of the user population). To overcome this
threshold we propose a hybrid approach that combines dynamic verifier approach
with hidden base station approach [11] which is discussed in Appendix A.

2 Related Work

Protocols for location verification have been studied in the literature from the-
oretical and practical view points.

In [3], a theoretical framework for location verification was proposed and it
was proved that secure positioning against collusion attack is impossible if the
locations of the verifiers are public, and this result holds even if verifiers have
unbounded computation. The authors then proposed a secure protocol in the
Bounded Retrieval Model (BRM), where it was assumed that the verifiers can
generate large strings with high minimum entropy that can not be stored by any
entity in the system (including adversaries), but can be used by the prover. This
work is mainly of theoretical interest.

Secure and practical positioning systems have been well-studied in the field of
wireless security. These protocols can be broadly categorized into two groups: one
in which the goal is to verify that the prover is within a certain distance from the
verifiers, and the second in which a location claim must be verified. Protocols in
[14],[12] belong to the first group. The protocol in [14] uses time-of-flight of radio
signals while the Echo protocol in [12] uses time-of-flight of ultrasound signals.
The protocols in [1,2,4,11,13] consider the problem of verifying location claims.
In most cases multilateration (i.e. apply distance bounding strategy from a set
of verifiers) based on the time-of-flight of radio signals is used. The ‘two tests’-
based scheme in [1] can detect false position claims from a single attacker, but
is not secure against collusion attack. The system in [22] uses signal intensity of
802.11 card for accurate location determination, but does not consider collusion
attack.

The protocols in [2,13] are able to protect against collusion attack but this is
achieved using extra assumptions such as the existence of tamper-proof hardware
or device fingerprints. The system in [4] provides security against collusion attack
with the limitation that the number of colluders is less than the number of
fixed verifiers (small number) in the system. In [11], a system with hidden and

4 N.A. Safa et al.

mobile base stations is considered. For better security, the number of hidden
base stations must be high and this incurs significant infrastructure cost. In [3],
it is shown that the locations of the hidden base stations can be found by an
attacker, assuming that the attacker can run the protocol multiple times and
know the result of a failed protocol run. A similar attack is presented in [3] for
the case that the base stations are mobile.

In [23] hidden sensors are used to detect fake sensors. Fake sensors are not al-
lowed to exchange messages and so the attack model is weaker than the standard
collusion attack. The work of [25] is on geo-localization of wireless sensor nodes
where a sensor finds its position from the nodes in its neighbourhood. On the
contrary we consider location verification by trusted verifiers. In [24], location is
verified by using the feedbacks of beacon nodes. Beacon nodes can be malicious.
The authors show an upper bound on the number of malicious nodes that can be
tolerated. A possible attack that is not considered by the authors is by position-
ing malicious nodes close to the honest nodes and so succeeding in false location
claims. In comparison to the above previous works, we analyzed security of our
protocol when user can provide malicious feedbacks and can position themselves
distributively to provide timely responses without being at the claimed location.

3 Model and Background

3.1 Time-of-Flight for Positioning

We will use time-of-flight to determine distance between two nodes. This uses the
round trip time of a sent message and the received response, assuming negligible
delay in response by the receiver, and the constant speed of the wireless signal
during this time. Accuracy of the TOF based schemes depends on the used tech-
nology. For example the system in [15] uses ultrasound and can achieve accuracy
of 2 cm within the communication range of up to 100 meters. Implementation of
[16] (using time-of-flight of radio signals as the underlying mechanism) has an
average error of 1.17 m in outdoor environments whereas for indoor environments
average error goes up to 2.1 m.

Attacks on the time-of-flight based localization systems aim at changing the
timing information of the signals. In extreme cases, the signal is completely
blocked (jammed) and the protocol fails. We do not consider these attacks here.
In positioning systems with many nodes, the number of nodes that the adversary
can corrupt and control (colluding nodes) determines its colluding power. The
following Lemma is proved in [3].

Lemma 1. If the number of colluders scales to the number of verifiers, they can
devise a collusion attack to simulate any time-of-flight based location verification
protocol to establish a fake position claim in a general setting.

Readers are referred to [3] for the proof of this lemma.

Secure Localization Using Dynamic Verifiers 5

3.2 Model

There is a set U of users (mobile nodes) that are connected to the system and
their locations are registered to the positioning infrastructure. There is a fixed
set of trusted static verifiers, V = {v1, v2, . . . , vg} with publicly known locations.
We refer to these as simply, verifiers. Verifiers have a pair (public and private)
of encryption keys ((Ke, ke)), and a pair of public and private keys ((Ks, ks))
for a secure digital signature scheme. The public keys of the encryption and dig-
ital signature schemes are assumed to be known by all users. The corresponding
secret keys are known only by the verifiers. Verifiers share all key information.
Any user can send an encrypted message to the verifiers and can verify a mes-
sage signed by them. Verifiers may also have out-of-band secure channel among
themselves (possibly a wired connection). Data is shared among all the verifiers
using this channel.

Verifiers maintain a table that records information about users that have
appeared in the system so far. The first successful position verification of a node
results in an entry in the table containing information such as pseudonym (Id) of
the node, a shared key between the verifier and the node, the registered location
of the node and an initialization vector. These information will be updated every
time that the node can prove a location.

A Prover Px, is a user who claims a new location p to be verified by V . A
prover determines its location, e.g. using a GPS, and then transmits its claimed
position p to the verifiers. Verifiers collaboratively execute a protocol with the
prover to verify p. During the verification process for a position p, a subset of
users, denoted by Dp, is selected, that will serve as the set of Dynamic Verifiers
for that claim. Time is synchronized among the verifiers and the provers [19,18].

Security: The Adversary corrupts and controls one or more nodes with the aim
of falsely claiming a position which is not “close” to any of the colluding nodes.
Colluders are equipped with omnidirectional and directional antennas, and can
use them to broadcast messages or target a particular node. We assume that
communications between static verifiers and provers are of broadcast nature.

We assume that majority of nodes in the verification region are honest. We
note that the number of static verifiers (e.g. base stations, satellites) that form
the positioning infrastructure is in general much less than the number of users
in a verification region. For example, in a typical cellular network, a cell-site
usually contains from 1 to 3 base stations whereas the number of users may be
in the range of hundreds of users.

We say a location verification protocol Π is (Δ, λ) secure if a prover at
location p′ can establish its fake location at p with probability ≤ λ such that
dist(p, p′) > Δ. Probability is taken over all random coins of the adversary, and
assuming uniform distribution for users in the verification region.

3.3 Notation

We used ΠSLDV to denote the localization protocol. DV denotes a dynamic
verifier. Px denotes a new prover who needs to be authenticated. We used the

6 N.A. Safa et al.

Table 1. Notations used in ΠSLDV

Notation Description

Px New prover
N Number of users in the system
px Position of user x
V Set of static (i.e. system) verifiers
vi Static verifier i
DVi Dynamic verifier i
IDi, IDr

i Id (pseudonym) for user i, and its refreshed form
IVi Initialization vector chosen by node i
kV,i Shared symmetric key between V and node i
Ke, ke V ’s Public and private key for public key encryption algorithm.
Ks, ks V ’s Public and private key for digital signature algorithm
PubE(m,Ke), PubD(c, ke) Public key encryption/decryption of plaintext m using key Ke/ke.
SymE(m,k), SymD(c, k) Symmetric Encryption/decryption of plaintext m using key k
Sign(m, ks), V erify(s,Ks) Digital sign/verify of message m using private key ks/public key Ks

bDVi , bSVi Status bit output of DVi and vi

qDV
+ , qDV

− Number of positive/negative verdicts of DV’s responses
tb Broadcast instance of nonce x
c Speed of light
tSV
rj

Time instance of response received by vj

tDV
ri

Time instance of response received by DVi

notation dist(p, q) to indicate physical distance between positions p and q. We
denote the acceptable error in location measurement by Δ. The notations used
in the paper are summarized in Table 1.

4 The Proposed System

Consider a new prover Px who wants to prove its location p to the system. We
assume N users are connected to the network. Upon receiving a location claim
message from Px, verifiers execute a challenge response protocol and measure
TOF to determine the location. However before sending the challenge, they
increase the number of verifying nodes by selecting a set Dp of k(≤ N) users to
play the role of ‘dynamic verifiers’ in that round. The TOF measurement of static
and dynamic verifiers, both will be used by the verifiers to verify the location of
Px. The adversary does not know the location of dynamic verifier nodes and so
cannot position the corrupted nodes to control the view of the verifiers. The set
Dp changes in every run of the protocol. Moreover the pseudonyms of the nodes,
and hence DVs, are refreshed in every run. This ensures that the adversary
cannot ‘trace’ nodes in multiple runs of the protocol. Algorithm 1 describes the
main steps of ΠSLDV .

4.1 Algorithm Description

Verifiers maintain a user list UserList with one entry for each user that has
made a verified claim at one stage in the system. This table is updated after

Secure Localization Using Dynamic Verifiers 7

Algorithm 1. Protocol ΠSLDV

1. Position claim
Px :1

→) : p ; ; if first time prover.
→) : SymE((p, IDPx), kV,Px) ; ; if returning prover2.

2. Verifiers’ challenge:
v� ∈ V = {v1, v2, . . . , vg}; select leader verifier.
v� :
Dp = {DV1, DV2 . . . DVk} ⊂ UserList.
ch ∈r {0, 1}n; challenge ch is generated.
IDr

i ← IDRefresh(IDi), where IDRefresh(IDi) := (IDi ⊕ SymE(IVi, kV,i))
v� → Dp : [IDr

1 , . . . , IDr
k]

v� →) : ch, Sign(ch, ks)
3. Prover’s response

Px :
kV,Px ∈r {0, 1}n′

; select symmetric key.
IVPx ∈r {0, 1}l; select initial vector.
→) : m = (ch, PubE((kV,Px , IVPx), Ke))

4. Dynamic verifiers’ response
DV i, i = 1, · · · k :
set bDV

i = 1, if ch in response m matches with challenge; bDV
i = 0 otherwise.

record time instance of receiving m (tDV
ri

) and current position pDVi .
→ v� : SymE((tDV

ri
,pDVi ,b

DV
i ,IDr

i),kV,DVi).
5. Response validation and decision

v�:
(i) Generate a vote for SV: increment qSV

+ if V erfyRp(tb, t
SV
ri

, p, pvi) returns
True ; increment qSV

− , if False.
(ii) Generate a vote for DV: increment qDV

+ if V erfyRp(tb, t
DV
ri

, p, pDVi) returns
True and bDV

i =1 ; increment qDV
− , if False.

(iii) Accept p if qDV
+ > qDV

− and qSV
− < θ; reject otherwise.

(iv) Update user table: if first time prover: add new entry and send
SymE(IDPx, kV,Px) ; if returning: update location.

each run of the protocol. The first successful verification of a user (Px) results
in an entry in UserList that includes (i) current position of the user, (ii) a
shared key kV,Px , (iii) an initial vector IV that will be used in symmetric cipher
in a chaining mode and (iv) a pseudonym ID. kV,Px and IV are chosen by the
prover and sent to V in encrypted form (public key encryption). ID is generated
by V and is sent to the node in encrypted form (symmetric key encryption). ID
is used as the user’s pseudonym and is refreshed in every usage. The update of
ID is done simultaneously by V and the corresponding user using IV for the
symmetric key algorithm in a chaining mode. A returning prover with a new
rejected claim will fail to establish its new position to verifiers.

1 ‘a : s’ indicates that node a executes statement s
2 ‘a→) : m’ is used to indicate sending of a broadcast message m by node a. Similarly

‘a→ b : m’ represents sending of message m from node a to node b.

8 N.A. Safa et al.

Update(UserList) algorithm is run after each verification session. Let V =
{v1, v2, . . . , vg} denote the set of verifiers.

Px Claims Location p. A user Px wants to claim a location p. If this is the
first time claiming a location, Px simply broadcasts p to verifier set V . If it is
a returning prover with IDPx and kV,Px , it also sends its IDPx along with p in
encrypted form.

Verifiers’ Challenge. Verifiers select a lead verifier v� who coordinates the
communication and decision of that protocol run. v� randomly selects a subset
of k users, denoted by Dp, from UserList as dynamic verifiers for that round.
v� refreshes the IDs of the selected subset using IDRefresh(ID); selects a
random challenge ch; and broadcasts the list of refreshed IDs and then the
signed challenge.

Prover’s Response. Px receives the challenge and verifies the signature. If this
is the first time verification (i.e. a new prover), it selects a random key kV,Px

and an initial vector IVPx ; encrypts the key and the IV using the public key of
the verifiers3 and broadcast the message m = (ch, PubE((kV,Px , IVPx), Ke)). If
a returning prover, Px only broadcasts m = ch.

Dynamic Verifiers’ Response. A dynamic verifier DVi is a user who has
been verified before and shares a symmetric key kV,DVi and an IVDVi with the
verifiers. DVi maintains its current ID in synchrony with the verifiers, and so by
monitoring verifiers’ broadcast, will be able to determine if it has been selected as
a dynamic verifier. It verifies the signature of challenge ch and records the time
of receiving Px’s response, denoted by tDV

ri
. It outputs a bit bDVi that is 1 if the

replayed nonce by Px is equal to the challenge nonce (ch), and zero otherwise.
Each DVi also determines its position pDVi using the GPS functionality.

Response of DVi (i.e. pDVi , t
DV
ri

, bDVi , IDr
i) is encrypted using the shared key

with the verifiers using the symmetric key algorithm (used in a secure mode).

Response Validation and Decision. v� receives a vote bSVi , i = 1 . . . g from
each static verifier. bSVi is generated using the time that v� broadcasts ch (tb)
and vi receives Px’s response (tSV

ri
), using algorithm V erfyRp(tb, tSV

ri
, p, pvi).

These votes are securely sent to v� (out-of-band communication, or public key
encryption).

v� also receives (pDVi , t
DV
ri

, bDVi , IDr
i), i = 1 . . . k. If bDVi is set to 1, v� uses

algorithm V erfyRp(tb, tDV
ri

, p, pDVi) to determine if Px’s response was within
the expected time for the respective DVi. If not, vote of this DVi is considered
negative directly. The claim is accepted if for the majority of DVs, the response
is valid, and less than a threshold θ of static verifiers reject the claim. The
threshold θ is chosen according to quality of reception in the verification region
and the required level of assurance.

3 We comment that encryption should be completed before receiving the challenge to
reduce processing delay.

Secure Localization Using Dynamic Verifiers 9

Algorithm 2. Update(UserList)
if position claim is accepted then

if Px is a new prover then
v� : DataPx ← {IVPx , p, kV,Px}
UserList[IDPx]← DataPx

else
Update position of Px

in UserList[IDPx] to p
end if

end if
for every dynamic verifier DVi do

Increase IVi in UserList[IDi] by 1
end for

Algorithm 3. V erfyRp(t1, t2, p1, p2)
if |(t2 − t1)c − (dist(pv� , p1) +
dist(p1, p2))| ≤ Δ then

return True
else

return False
end if

List Update. The next steps of the protocol relate to update UserList after
a verification scenario and are described in Algorithm 2. Let us assume DataPx

represents the collection of attributes (IVPx , p, kV,Px) associated with an ac-
cepted prover Px. If Px is verified for the first time, its attributes are included in
UserList table indexed by IDPx . Otherwise, its position in UserList is updated
to p. Regardless of acceptance or rejection, IVi of each DVi participated in this
verification session are increased (or updated).

4.2 Reliability of Verification Decisions

Verifiers randomly select k users as dynamic verifiers from the set of all registered
users in the network. We use a parameter hp to show the level of trust that can
be put on a randomly selected node and so to its observation. For k randomly
selected users, the probability that at least k/2 users are dishonest is given by∑k

i=�k/2�
(
k
i

)
[(1 − hp)ihk−i

p] which is O(e−2(k−1)(hp−0.5)2) for hp ≥ 0.5. We can
denote this probability as Pdh. The following Lemma shows that, if hp ≤ 0.5, it
is impossible to provide a secure localization protocol in the general setting (aka
‘vanilla model’). The proof of the lemma is given in Appendix B.

Lemma 2. If the number of colluding nodes is at least half of the total number
of users and verifiers (i.e.(N + g)/2), the dynamic verifier system will loose its
security. That is colluding nodes can formulate a collusion attack that guarantees
success to establish a fake position claim in a general setting.

5 Security Analysis

An adversary will be successful if a location p can be successfully verified without
any colluding node being present at that location (within accuracy parameter
Δ). The best success chance of the adversary is when it initiates a verification
session rather than tampering with an existing session. In this case the adversary

10 N.A. Safa et al.

completely controls the initial location claim and the prover’s response to the
verifiers’ challenge, and will succeed if it can modify (or dominate) the vote of
sufficiently many dynamic verifiers. The barriers for this success are two: the
location of dynamic verifiers are unknown and so correct timing information
cannot be generated, and DVs use secure encryption algorithms to construct
their messages in a format that is expected by the verifiers.

We first discuss the cryptographic protection offered by the system, and then
analyze the success probability of the adversary in providing correct timing in-
formation. The set of DVs is chosen independently for each verification round
and so the success chance of finding the DV set is the same as random guess-
ing. Note that refreshing the IDs of DVs in each verification round ensures that
long term monitoring of the network cannot be used for tracing users and bet-
ter guessing the location of DVs. (If IDs are fixed, a very powerful adversary
may be able to activate its corrupted nodes that are right next to the selected
DVs of a verification round, immediately after seeing the broadcasted IDs.) To
construct the response of a DV, the adversary must know the secret key shared
by the DV and the verifiers. This is because the messages sent by DVs contain
fresh information for the current round (including the refreshed ID of the node)
and so can not be reused or correctly guessed which will have a small success
chance. Finally one can consider a man-in-the-middle attack where the adver-
sary intercepts m from an honest prover and replaces it with her own chosen key,
which needs to be performed within expected response-time for most DVi. This
requires guessing Dp or their locations and adjusting the instance of sending the
response accordingly.

So, the viable option remains for the adversary is to control the timing of
sending the response message by anticipating the locations of DV or the set Dp

itself (when the adversary is able to track the current location of all users). The
latter case can arise if the users are not sufficiently mobile and thus a persistent
adversary can find all of their locations by observing communications to each
other (if allowed in the system) and to dynamic verifiers. In the following we
will assume that a colluding node will succeed if it is well positioned. That is we
do not use the added layer of security provided by the cryptographic primitives
used in the system. In other words we assume that corrupted nodes can construct
well formed responses and their success chance is only limited by the unknown
locations of DVs.

5.1 Security against Collusion Attacks

Theorem 1 states the security of ΠSLDV against collusion attack. Let hp denote
the probability that a randomly selected user be honest and h′

p = 2hp − 1. We
assume 2r is the diameter (largest dimension) of the verification region, and N
denotes the total number of users in the system.

Theorem 1. ΠSLDV is (Δ, λ) secure against collusion attack provided the num-
ber of corrupted nodes in the system is less than the number of honest nodes.
The value of λ is as follows:

Secure Localization Using Dynamic Verifiers 11

1. λ = 1−PSLDV = Pdh+(1−Pdh)(0.809

r/
√

N(1−hp)
×2Δ)k/2), when users locations

are unknown to adversaries;
2. λ = 1 − P ′

SLDV = Pdhm + (1 − Pdhm)(0.809

r/
√

N(1−hp)
× 2Δ)k/2), when users

locations are available to adversaries.

Here, Pdh =
∑k

i=�k/2�
(
k
i

)
[(1−hp)ihk−i

p], and Pdhm =
∑k

i=�k/2�
(
k
i

)
[(1−h′

p)
ih′k−i

p].

Location of Users Are Unknown. To deceive a DVi in Dp (without knowing
its location), the distance between a colluding node and DVi must be the same as
the corresponding distance between the claimed location and DVi. The adversary
succeeds if this is the case for majority of users in Dp. As DV are assumed to be
randomly distributed in the network space, the adversary’s only strategy would
be to guess the approximate locations of Dp and try to adjust the instance
of transmitting m based on this guess. The following lemma gives the security
of ΠSLDV against collusion attack when users are in unknown positions with
respect to the adversary.

Lemma 3. If N ≥ k mobile users are available in the system, ΠSLDV can detect
collusion attack in a two dimensional region with probability, PSLDV = 1−(Pdh+
(1 − Pdh)(0.809

r/
√

N(1−hp)
× 2Δ)k/2), where Pdh =

∑k
i=�k/2�

(
k
i

)
[(1 − hp)ihk−i

p] and

Δ << r.

Proof: For simplicity we assume positioning of devices takes place in a circu-
lar region of radius r. Here we consider both two-dimensional (2D) and three-
dimensional (3D) localization scenarios. Suppose an adversary chooses its posi-
tion Ap uniformly over the region of radius r and the distance between a DVi and
the claimed prover’s location is s. We first determine the success probability in
the two-dimensional case. A similar argument can be used for three-dimensional
case.

First, we compute the probability that the distance between a single adver-
sarial node and a single DVi is the same as the distance between the claimed
location and that DVi. Then we will extend the result for multiple colluding
nodes and dynamic verifiers. Using the geometric approach of [17], the proba-
bility distribution function (pdf) of adversary’s distance dA from the randomly
distributed location of a dynamic verifier can be expressed by:

Pr2D[dA = s] =
4s

πr2
cos−1(

s

2r
)− 2s2

πr3

√
1− s2

4r2

And for 3D,

Pr3D[dA = s] =
3s2

r3
− 9s3

4r4
+

3s5

16r6

Plotting these functions for different values of s, (0 ≤ s ≤ 2r) establishes that
for s = 0.84r, Pr2D[dA = s] achieves its maximum value (which is 0.809/r)
whereas for s = 1.05r, Pr3D[dA = s] achieves its maximum value 0.942/r. The
maximum probability value decreases (which is always achieved at the same s

12 N.A. Safa et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1r

0.2r

0.3r

0.4r

0.5r

0.6r

0.7r

0.8r

0.9r

1r 1.1r

1.2r

1.3r

1.4r

1.5r

1.6r

1.7r

1.8r

1.9r

 P
r 2

D
 [d

A
 =

 s
]

Distance of a claimed prover’s location to a dynamic verifier, s

r=1
r=2

r=30

Fig. 1. Pr2D(dA = s) vs r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 P
2D

(A
)

Number of selected random provers, k

Δ/r=0.2
Δ/r=0.4

Fig. 2. Value of Pr2D(A,k) As k Increases

New Prover

Adversary

Dynamic Verifier

Fig. 3. Colluding Adversarial Scenario

value) as the radius of the network r increases. The relation is depicted in Fig 1
for the two dimensional case. This means that a malicious node has the highest
probability of success when it guesses the distance of a random DVi from its
position as s = 0.84r (in 2D case). As we are also allowing an error range Δ
to be accepted (to compensate for processing and transmission delay), average
success probability of an attacker for a network dimension of radius r can be
computed as follows [11]:

Pr2D(A) =
∫ 0.84r+Δ

0.84r−Δ

Pr2D[dA = s] ≈ 0.809
r

× 2Δ

Pr3D(A) =
∫ 1.05r+Δ

1.05r−Δ

Pr3D[dA = s] ≈ 0.942
r

× 2Δ

Here, Δ has been considered with respect to radius r and 0 < Δ < 0.5r. The
above success probabilities have been calculated considering a single DVi and a
lone adversary. We note that, as the radius of the verification region r increases,
this probability decreases drastically. In practice, we expect r to be a large value.
In ΠSLDV , verifiers select k independent random users in Dp for the purpose
of response verification. For calculating probability of a successful attack which
involves k random DV against a set of colluding nodes, we identify the following
two cases (see Fig 3):

Secure Localization Using Dynamic Verifiers 13

(1) A single adversarial node tries to deceive the k DV based on conjectures.
In this case the probability of a successful attack would be the probability that
distances between every DVi in Dp and this sole adversary are same as the
corresponding distances between these DVi and the claimed location. So, the
average success probability of attack in this scenario would become:

Pr2D(A, k) = [Pr2D(A)]k ≈ (
0.809

r
× 2Δ)k (1)

Pr3D(A, k) = [Pr3D(A)]k ≈ (
0.942

r
× 2Δ)k (2)

For reasonable small Δ and moderate values of k, success probability of adver-
sarial spoofing of a fake position becomes negligible. Fig 2 shows how Pr2D(A, k)
value decreases when we increase k for two different values of Δ.

(2) Alternatively we can assume l colluding nodes are collaborating for the
deception. Now if a dynamic verifier receives responses from more than one
malicious node who is sending response on behalf of the actual prover, it will
invalidate the position claim. Thus, from adversarial view point it will be wise
to divide the whole validation zone (of area πr2) into l subregions where each
colluder will broadcast the response using directional antennas or alternatively
broadcast with low signal power. Members of Dp are selected uniformly over
the verification region. The number of dynamic verifiers (assuming they are uni-
formly distributed and all the subregions possess equal area) in each of these
subregions would be k/l. Without loss of generality we can assume that each
subregion is a circle of radius r′ where r′ ≈ r/

√
l and r′ ≥ 1. Hence, the proba-

bility that colluder i would be successful to deceive his part of dynamic verifiers
(k/l in number) is given by:

Pr2D(Asingle) = [Pr2D(A)]k/l ≈ (
0.809

r′
× 2Δ)k/l

Pr3D(Asingle) = [Pr3D(A)]k/l ≈ (
0.942

r′
× 2Δ)k/l

Hence the probability that all the l colluders become successful in their attack
would be:

Pr2D(Al, k) = [Pr2D(Asingle)]l ≈ (
0.809

r′
× 2Δ)k (3)

Pr3D(Al, k) = [Pr3D(Asingle)]l ≈ (
0.942

r′
× 2Δ)k (4)

Suppose hp represents the probability with which a random user can be trusted.
Now if we select k random users in Dp, the probability that k/2 dynamic verifiers
or more would be dishonest is

∑k
i=�k/2�

(
k
i

)
[(1 − hp)ihk−i

p]. We can denote this
probability as Pdh. If total number of nodes in the system is N , the number of
expected malicious nodes would become N(1−hp). Therefore, r′ in Eq. 3 will be

14 N.A. Safa et al.

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
104
108
112
116
120
124
128
132
136
140

P
ro

ba
bi

lit
y

th
at

 S
LD

V
 s

uc
ce

ss
fu

lly
 d

et
ec

ts
 a

 c
ol

lu
si

on
 a

tta
ck

,(
P

S
LD

V
)

Number of selected dynamic verifiers, k

hp=0.60
hp=0.70
hp=0.80

(a) PSLDV vs k for different hp when
Δ/r = .01 and N = 1000

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

20 30 40 50 60 70 80 90 100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

P
ro

ba
bi

lit
y

th
at

 S
LD

V
 s

uc
ce

ss
fu

lly
 d

et
ec

ts
 a

 c
ol

lu
si

on
 a

tta
ck

,(
P

’ S
LD

V
)

Number of selected dynamic verifiers, k

hp=0.78
hp=0.80
hp=0.82

(b) P ′
SLDV vs k for different hp when

Δ/r = .01 and N = 1000

Fig. 4. Probability of Detecting Collusion Attack

r/
√

N(1− hp). Consequently, ΠSLDV will be able to detect a collusion attack
(in this scenario) with probability PSLDV , where

PSLDV = 1− (Pdh + (1 − Pdh)(
0.809

r/
√

N(1− hp)
× 2Δ)k/2)

In typical networks, we expect the value of hp to be high. It is evident in
Fig. 4 that for reasonable values of k, probability of detecting a collusion attack
becomes close to one and we claim that ΠSLDV is (Δ, 1−PSLDV) secure against
collusion attack under the stated assumptions. This completes the proof of our
lemma. �

Location of All Users is Known to the Adversary. The following lemma
specifies the security of ΠSLDV against collusion attack when users are in known
positions with respect to the adversary.

Lemma 4. If N ≥ k users are available in the system (whose locations are
known to adversaries), ΠSLDV can detect collusion attack in a two dimensional
region with probability, P ′

SLDV = 1− (Pdhm + (1−Pdhm)(0.809

r/
√

N(1−hp)
× 2Δ)k/2)

where Pdhm =
∑k

i=�k/2�
(
k
i

)
[(1 − h′

p)ih′k−i
p], Δ << r and h′

p = 2hp − 1.

Proof: With N users connected to the system and hp trust assumption, the
number of expected attackers is, l = N(1− hp). If the size of set Dp is k, out of
the k DV, k(1 − hp) are expected to be corrupted. Now l attackers can choose
l of the users randomly, out of total Nhp honest users, to take appropriate
position and perform the distributed time-delayed response attack (as described
in Lemma 1). Among these l users, l

khp

Nhp
of them are expected to be in the set

Dp. Consequently, expected number of unmonitored honest DV in set Dp is,
k′ = k − k(1− hp)−N(1− hp) k

N .

Secure Localization Using Dynamic Verifiers 15

Let h′
p represents the probability that a random DV in set Dp is both honest

and unmonitored. Then, h′
p = k′/k = 2hp−1. From this expression, it is easy to

find that for h′
p to be greater than 0.5 (for reliable decision), we need hp ≥ 0.75.

Now using the same arguments presented in Lemma 3, it can be derived that
probability of detecting a collusion attack by ΠSLDV is,

P ′
SLDV = 1− (Pdhm + (1 − Pdhm)(

0.809
r/
√

N(1− hp)
× 2Δ)k/2)

Where, Pdhm =
∑k

i=�k/2�
(
k
i

)
[(1−h′

p)
ih′k−i

p] and h′
p = 2hp−1. �

To calculate attacker’s success probability in three dimensional regions, we just
need to replace 0.809 with 0.942 in both PSLDV and P ′

SLDV .
We have numerically computed and plotted the probability of collusion attack

in Fig 4. In Fig. 4(a) we can see that as long as the users’ locations cannot be
tracked by the adversary, for reasonable values of k, the probability of detecting a
collusion attack, (PSLDV) becomes close to one. In the case of all users’ locations
are known to the adversary, Fig. 4(b) shows the probability values of detecting
a collusion attack (P ′

SLDV) for different hp assumptions and Δ/r = 0.01. As ex-
pected, when users’ locations are compromised to the adversary, we need higher
trust assumption and larger number of k to detect a collusion attack with high
probability. However, we emphasize that in a typical mobile environment, current
locations of very few users will be compromised to the adversary.

6 Simulation Results

We performed simulations to estimate the value of PSLDV for two cases: users’
location is unknown, and users’ location is known to the adversary. Our sim-
ulation program is written in Java and run on an intel 2.66 GHz core 2 duo
processor. The number of user nodes, range of co-ordinates for location and
trust assumption hp are given as simulation parameters. To generate random
numbers we used Random class provided in java.lang.Math package. We con-
sidered hp = 0.65, i.e. on average 350 of the 1000 users are corrupted in each
system run. Co-ordinates of the users are sampled randomly within the given
topological range. Users are also randomly selected as honest or corrupted in
accordance with the trust assumption hp.

Let l denote the total number of corrupted nodes and k denotes the number of
randomly chosen DVs, t of which are corrupted. For simplicity we assumed that
static verifiers are all deceived by the attackers and hence verification decision
only depends on the dynamic verifiers. A random position p in the given range is
assumed to be the falsely claimed location. We found the number of honest users
(denoted by s) among k, such that the Euclidean distance between them and
p is approximately equal (with allowed error distance of 0.01) to the distance
between them and one of the corrupted user’s location. If the sum of s and t is
less than k/2, we regard this run of the simulation as a successful detection of
collusion attack, otherwise not.

16 N.A. Safa et al.

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

104

108

112

116

120

P
ro

ba
bi

lit
y

th
at

 S
LD

V
 s

uc
ce

ss
fu

lly
 d

et
ec

ts
 a

 c
ol

lu
si

on
 a

tta
ck

,(
P

S
LD

V
)

Number of selected dynamic verifiers, k

Analytical
Simulation

(a) PSLDV when Δ/r = .01, hp = 0.65 and
N = 1000

0.7

0.75

0.8

0.85

0.9

0.95

1

40 46 52 58 64 70 76 82 88 94 100

106

112

118

124

130

136

142

148

154

160

166

172

178

184

190

196

202

208

214

P
ro

ba
bi

lit
y

th
at

 S
LD

V
 s

uc
ce

ss
fu

lly
 d

et
ec

ts
 a

 c
ol

lu
si

on
 a

tta
ck

,(
P

’ S
LD

V
)

Number of selected dynamic verifiers, k

Analytical
Simulation

(b) P ′
SLDV when Δ/r = .01, hp = 0.78 and

N = 1000

Fig. 5. Comparison of Analytical and Simulated values

For each value of k, we ran this simulation 5000 times and determined during
how many times the system is able to detect the collusion attack. If m times
out of the 5000 runs, the system is able to detect the attack, then PSLDV is
estimated as m

5000 . Fig 5(a) shows the close match of our simulation results and
the analytical results when the locations of users are unknown. For the case that
the locations of the users are known to the adversary, we assumed hp = 0.78. Fig.
5(b) compares the values of P ′

SLDV for analytical and simulated cases. Again the
results closely match.

Efficiency. The verification protocol has two rounds of communication for a
new prover together with one broadcast message by verifiers intended for all
“dynamic verifiers”, and k response messages from the DVs. That is the overall
communication cost of the protocol is O(k).

Maintaining UserList requires storage equal to O(N), where N is the total
number of verified nodes in the network. The value k determines the security
of the system and can be chosen based on the required level of security and
the trust assumption on the users (see Fig 4). The main computation required
by the system is constructing messages that use efficient public and symmetric
cryptographic primitives. This makes the protocol computationally very efficient.

7 Conclusion

We proposed a protocol for secure localization of mobile devices using the notion
of dynamic verifiers, and proved its security against collusion attacks provided
there are sufficient number of honest users active in the network. To our knowl-
edge, this is the first protocol with security against large number of colluding
nodes (more than the number of static verifiers) without making extra, and
in many cases unrealistic, assumptions. A possible future work in this context
would be to implement the protocol in a real wireless environment and evaluate
the performance in different scenarios.

Secure Localization Using Dynamic Verifiers 17

References

1. Čapkun, S., Hubaux, J.P.: Secure positioning of wireless devices with application
to sensor networks. In: IEEE INFOCOM, Miami, USA (2005)

2. Čapkun, S., Hubaux, J.P.: Secure positioning in wireless networks. IEEE Journal
on Selected Areas in Communications 24(2), 221–232 (2006)

3. Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptogra-
phy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer,
Heidelberg (2009)

4. Chiang, J.T., Haas, J.J., Hu, Y.-C.: Secure and precise location verification using
distance bounding and simultaneous multilateration. In: WiSec, Zurich, Switzer-
land (2009)

5. Ferris, B., Haehnel, D., Fox, D.: Gaussian processes for signal strength-based loca-
tion estimation. In: Robotics: Science and Systems, Philadelphia, USA (2006)

6. Jain, R., Puri, A., Sengupta, R.: Geographical routing using partial information
for wireless ad-hoc networks. IEEE Personal Communications 8(1), 48–57 (2001)

7. Jansen, W., Korolev, V.: A location-based mechanism for mobile device security. In:
World Congress on Computer Science and Information Engineering, Los Angeles,
USA (2009)

8. Navas, J.C., Imielinski, T.: Geocast-geographic addressing and routing. In: Mobi-
Com, Budapest, Hungary (1997)

9. Rasmussen, K.B., Čapkun, S.: Implications of radio fingerprinting on the security
of sensor networks. In: SecureComm, Nice, France (2007)

10. Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized
cipher. Journal Cryptology 5(1), 53–66 (1992)

11. Čapkun, S., Čagalj, M., Srivastava, M.: Secure localization with hidden and mobile
base stations. In: INFOCOM, Barcelona, Spain (2006)

12. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In:
WiSE, Rome, Italy (2003)

13. Singelee, D., Preneel, B.: Location verification using secure distance bounding pro-
tocols. In: MASS, Washington, DC, USA (2005)

14. Brands, S., Chaum, D.: Distance-bounding protocols (extended abstract). In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer,
Heidelberg (1994)

15. Savvides, A., Han, C.-C., Srivastava, M.B.: Dynamic fine-grained localization in
ad-hoc networks of sensors. In: Mobicom, Rome, Italy (2001)

16. Wibowo, S.B., Klepal, M., Pesch, D.: Time of Flight Ranging using Off-the-self
IEEE802.11 WiFi Tags. In: POCA, Antwerp, Belgium (2009)

17. Tu, S.-J., Fischbach, E.: A New Geometric Probability Technique for an N-
dimensional Sphere and Its Applications to Physics. arXiv:math-ph/0004021
(2000)

18. Elson, J., Estrin, D.: Time Synchronization for Wireless Sensor Networks. In:
IPDPS, San Francisco, USA (2001)

19. Song, H., Zhu, S., Cao, G.: Attack-resilient Time Synchronization for Wireless
Sensor Networks. In: MASS, Washington, DC, USA (2005)

20. Bardram, J.E., Kjær, R.E., Pedersen, M.Ø.: Context-aware user authentication –
supporting proximity-based login in pervasive computing. In: Dey, A.K., Schmidt,
A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 107–123. Springer,
Heidelberg (2003)

18 N.A. Safa et al.

21. Ardagna, C.A., Cremonini, M., Damiani, E., De, S., di Vimercati, C., Samarati, P.:
Supporting Location-based Conditions in Access Control Policies. In: ASIACCS,
Taipei, Taiwan (2006)

22. Traynor, P., Schiffman, J., La Porta, T., McDaniel, P., Ghosh, A.: Constructing
Secure Localization Systems with Adjustable Granularity Using Commodity Hard-
ware. In: IEEE GLOBECOM, Miami, USA (2010)

23. Delaët, S., Mandal, P.S., Rokicki, M.A., Tixeuil, S.: Deterministic Secure Posi-
tioning in Wireless Sensor Networks. In: IEEE DCOSS, Santorini Island, Greece
(2008)

24. Jadliwala, M., Zhong, S., Upadhyaya, S., Qiao, C., Hubaux, J.: Secure Distance-
Based Localization in the Presence of Cheating Beacon Nodes. IEEE Transactions
on Mobile Computing 9(6), 810–823 (2010)

25. Garcia-Alfaro, J., Barbeau, M., Kranakis, E.: Secure Geolocalization of Wireless
Sensor Nodes in the Presence of Misbehaving Anchor Nodes. Annals of Telecom-
munications (2011)

A Hybrid Approach with Hidden-Base Stations

In a Hybrid system the two approaches to secure positioning, dynamic verifier
approach and hidden base station (HBS) approach, are combined to save on
infrastructure, while providing protection against location tracking attack on
these latter systems as proposed in [3]. In this hybrid scheme a set HiddenV of
fixed hidden verifiers work as part of the positioning infrastructure along with the
set of dynamic verifiers. We provide a modification to the basic HBS approach
of [11]. Instead of using all the static hidden verifiers from set HiddenV , we
select a random subset SHV (of size q) from it. Randomized selection of HBS
ensures that the attack mentioned in [3] can not be executed as stated. This
is because the outcome of the protocol now depends on the selection of HBS
which resides in different locations at different executions. However, to achieve
sufficient randomness for SHV , the size of HiddenV (denoted by z) needs to be
much larger than q so that 1

(z
q)

becomes small.

When HBS are used in conjunction with DV, z can be smaller as verification
decision will also rely on Dp which is randomly selected from a large set of
nodes. Suppose, according to [3], adversary needs to execute the localization
protocol c (i.e. O(log (1/δ))) times to find out the locations of HBS, where δ is
the precision of location. To make the attack successful, selection of SHV needs
to be same for all these c rounds, which is proportional to (1

(z
q)

)c−1. Moreover,

observations of DV either can not have impact on these verifications or Dp needs
to be static for these c rounds, which leads to a success chance proportional

to
(

1

(z
q)

(
Pdh + (1− Pdh) 1

(N
k)

))c−1

for the adversary to determine locations of

HBS. Thus by increasing z with respect to q, it is possible to achieve security
in this hybrid approach even when hp is less than 0.5 (i.e. Pdh is close to 1).
Specifically, when hp ≥ 0.5 (i.e. Pdh is small), randomization of SHV is not
necessary and z can be equal to q. Now, if z hidden base stations are used (along
with k dynamic verifiers) as part of infrastructure, the probability that any q

Secure Localization Using Dynamic Verifiers 19

0.4

0.5

0.6

0.7

0.8

0.9

1

(22,0)
(22,1)
(22,2)
(22,3)
(22,4)
(22,5)
(24,0)
(24,1)
(24,2)
(24,3)
(24,4)
(24,5)
(26,0)
(26,1)
(26,2)
(26,3)
(26,4)
(26,5)
(28,0)
(28,1)
(28,2)
(28,3)
(28,4)
(28,5)
(30,0)
(30,1)
(30,2)
(30,3)
(30,4)
(30,5)
(32,0)
(32,1)
(32,2)
(32,3)
(32,4)
(32,5)

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
fu

l d
et

ec
tio

n
of

 a
 c

ol
lu

si
on

 a
tta

ck
,(

P
H

B
S

S
LD

V
)

Combination of dynamic verifiers and HBS,(k,q)

hp=0.52
hp=0.56

(a) Values of P HBS
SLDV vs (k, q) for different

hp when Δ/r = .01 and N = 1000

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16 18 20

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
fu

l d
et

ec
tio

n
of

 a
 c

ol
lu

si
on

 a
tta

ck
,(

P
H

B
S

S
LD

V
)

Number of dynamic verifiers, k

q=4
q=6
q=8

(b) Values of P HBS
SLDV vs k for different q

when Δ/r = .05, hp = 0.7 and N = 1000

Fig. 6. Values of P HBS
SLDV

Table 2. Dynamic Verifiers vs Hidden Base Stations

HBS-only System Hybrid System

Δ/r # of HBS # of HBS # of DV

0.05
6 4 6
8 4 11
10 6 11

0.07
8 4 11
10 4 15
10 6 11

of them are deceived by colluding attackers is bounded by (0.809

r/
√

N(1−hp)
× 2Δ)q.

Hence, the probability of detecting a collusion attack (i.e. PHBS
SLDV) would become

1 − (Pdh + (1 − Pdh)(0.809

r/
√

N(1−hp)
× 2Δ)k/2)(0.809

r/
√

N(1−hp)
× 2Δ)q, where Pdh =∑k

i=�k/2�
(
k
i

)
[(1−hp)ihk−i

p]. Here we assume z is appropriately chosen according
to hp. HBS are particularly useful when we have a comparatively low trust
assumption for users. With hp = 0.52 and 22 dynamic verifiers alone, we can
achieve PSLDV around 0.5 where as the combination of 22 dynamic verifiers and
5 HBS give PHBS

SLDV of approximately 0.998 (see Fig. 6(a)).
Even if we consider that assumptions stated in the attack of [3] do not hold,

this hybrid system can help to save on infrastructure cost required for setting
up multiple HBS in the verification region. From Fig. 6(b) we can see that
instead of using 8 HBS we can incorporate a combination of 4 HBS and 11
dynamic verifiers (with hp = 0.7) to achieve similar security. Table 2 shows
few comparisons to illustrate the equivalency between a HBS-only system and
a hybrid system containing both DV and HBS (for different values of Δ/r and
hp = 0.7).

20 N.A. Safa et al.

B Impossibility of a Secure Protocol with Less Honest
Users

Proof of Lemma 2. A valid user can lie about its location and share all of
its cryptographic credentials with other collaborators. Moreover, a user can be
honest for a certain period of time and then can attempt to establish a false
location. Hence it’s not possible for verifiers to determine whether a specific
user is honest or dishonest before an authentication session with certainty. If
the location verification protocol does not involve users to delegate verifying
duty, we can devise a collusion attack similar to Lemma 1. Now, if the location
verification protocol involves users to perform verifying duty and the number of
colluding nodes scales up to them, we can form a collusion attack in any of the
following ways:

1. In any selection of the users (Dp) to perform verifying duty, the number of
expected malicious nodes will be as much as the honest nodes. Thus, taking
a majority decision will not provide correct verification result regardless of
the protocol. If unanimous decision is adopted for positive verification, it
will always be possible for adversary to undermine a valid verification case.

2. If the network model allows users to communicate to each other which are not
mobile, persistent adversary by observing communications of the users over a
long period of time can determine their positions. Hence colluding nodes can
take positions (with respect to the false location) in such a way that they
can provide the correct response-time (turi

) for each user u. Consequently,
regardless of which users are selected as DV, adversary becomes successful
to establish the false location.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98
P

dh

Number of selected dynamic verifiers, k

hp=0.46
hp=0.48
hp=0.50

Fig. 7. Change in Pdh Value as k Increases

Figure 7 illustrates this fact by showing how reliability decreases (i.e. Pdh

increases) when hp is assumed to be ≤ 0.5 and we increase k indefinitely.

WiFiHop - Mitigating the Evil Twin Attack through
Multi-hop Detection

Diogo Mónica and Carlos Ribeiro

Instituto Superior Técnico / INESC-ID Lisboa,
Rua Alves Redol 9, sala 605, 1000-029, LISBOA

{diogo.monica,carlos.ribeiro}@ist.utl.pt
http://www.gsd.inesc-id.pt

Abstract. Public hotspots have undeniable benefits for both users and providers.
Users get ubiquitous internet access and providers attract new potential clients.
However, the security mechanisms currently available (e.g. WEP, WPA) fail to
prevent a myriad of attacks. A particularly damaging attack to public WiFi net-
works is the evil twin attack, where an attacker masquerades as a legitimate
provider to mount wireless interposition attacks. This paper proposes WiFiHop,
a client-sided tool that leverages the intrinsic multi-hop characteristics of the evil
twin attack, to detect it. The proposed tool is technology independent (e.g. net-
work bandwidth or latency), and detects the attacks in real time (i.e. before any
user traffic is transmitted). It works with both open and encrypted networks. This
tool was tested in a real-life scenario, and its effectiveness demonstrated.

1 Introduction

Wi-Fi networks have become a ubiquitous technology. These networks enable users to
access the internet at home, at work, and even when traveling, but they are vulnerable
to a number of threats, mainly because wireless access point (AP) operators often don’t
take the time to activate the adequate security features. The theft of private information
is, therefore, becoming a growing concern. Users accessing the internet with wireless
devices in public places (e.g. cafes or airport terminals) are particularly susceptible to
these attacks.

An increasingly common strategy for the theft of private information is the evil twin
attack, which consists of having an unsuspecting user automatically associating to an
AP under the control of the attacker (a rogue AP). This access point is configured to
mimic a legitimate access point (for example, by copying the legitimate network’s SSID
name), and enables attackers to eavesdrop all wireless communications done by the
victims. Due to these two characteristics, these rogue access points are usually called
evil twin APs.

There are essentially three different strategies for attackers to lure victims into con-
necting to their rogue AP. The first one is by having a higher signal strength than the
other AP. This strategy works, since several operating systems choose the AP with the
strongest signal strength, even when several APs with the same SSID are available.
Also, users tend to choose the network with the higher signal strength when manually
choosing a network to connect to. The second strategy uses the automatic re-association

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 21–39, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.gsd.inesc-id.pt

22 D. Mónica and C. Ribeiro

feature that several end-user systems provide. These systems have preferred network
lists, containing the SSID names of the networks a user has previously connected to in
the past. To exploit these lists, the attacker simply choses the evil twin AP SSID name
to be one of the most commonly used SSID names (e.g. linksys), and waits for victims
to connect. Finally, the third strategy involves using a denial-of-service attack against
802.11 networks. Attackers use well-known vulnerabilities in 802.11 to prevent a client
from initially associating to a legitimate AP, or even to disassociate clients already as-
sociated [13]. The loss of connectivity resulting from the continuous disassociations,
forces users to select other available wireless networks. This strategy can be highly
effective, especially when combined with one of the previous two.

The evil twin attack is usually launched at public places where open-access WiFi net-
works are available. Locations like airports or cafes, are ideal, since there is no way for
the users to distinguish rogue from legitimate APs [9]. Using an evil twin AP, attack-
ers can effectively intercept all kinds of sensitive data such as passwords, credit-card
information or even launch man-in-the-middle and phishing attacks. The malicious po-
tential of this attack, together with the ease in configuring and deploying rogue APs,
makes this attack a serious threat to wireless networks. This attack is particularly hard
to trace, since it may occur only for a short amount of time. Depending on the objective
of the attacker, after a few minutes of operation, the attack can be terminated, caus-
ing nothing more than a network disconnection for the victims (something somewhat
common in wireless networks). In this short time frame, the attacker may already have
compromised user’s sensitive information.

The rest of this paper is organised as follows. Section 2 introduces the existing so-
lutions to the generic problem. In Section 3 we detail the exact setup and assumptions
addressed in the paper. Section 4 describes in detail the operation of our evil twin at-
tack detection mechanism. In Section 5, our algorithm implementation is described.
Finally, the results of the implementation of our mechanism are presented in Section 6.
Section 7 concludes the paper.

2 Related Work

Existing solutions are mainly focused on the detection of rogue APs by the network
administration, and not by the users themselves. One of the original ways of detecting
these rogue APs relied on the manual verification of the available APs by a network
administrator, using network enumeration tools such as Netstumbler [2]. This proved
to be ineffective, since manual scans are time-consuming and expensive, and were
therefore conducted infrequently. Since then, several automated systems have been pro-
posed [1,8,6,11,10]. These solutions monitor the wireless medium and other types of
information gathered at the network routers/switches, and compare them with a known
authorisation list. For example, AirDefense [1] uses a combination of radio-frequency
sensors jointly with an intrusion detection server to capture, process, and ultimately cor-
relate network events, in search for APs with unknown ”fingerprints”. In other works
[10,11], special diagnostic software was installed on mobile clients to perform wire-
less medium monitoring, helping the detection of rogue APs. Several variations, such
as using sensors instead of sniffers to scan the wireless medium, have also been pro-
posed ([6]). However, most of these solutions suffer from some, or all, of the following

WiFiHop - Mitigating the Evil Twin Attack through Multi-hop Detection 23

problems: they do guarantee a complete coverage of the network (required to ensure
effective rogue AP detection); they may flag a normal AP (e.g. the access point of
a nearby coffee shop) as a rogue AP; they do not work for rogue APs that possess
authentication mechanisms such as WEP and WPA; and finally they may access unau-
thorised networks in the process of testing all the available APs in the vicinity.

A different line of work has also been pursued, where researchers attempt to
distinguish wireless, from wired hosts, by analysing wired network traffic
([25,18,26,24,28,20,12,23]). The RIPPS system [18], for example, deduces wireless
connectivity from the existing wired network traffic. The objective of RIPPS is to detect
rogue APs without using wireless sensors. It uses active network traffic conditioning
together with passive packet timing analysis. Wei et al. [26] use wireless traffic char-
acteristics to distinguish wireless nodes. They present two detection algorithms that
apply sequential hypothesis tests to packet-header data. These algorithms are able to
detect wireless TCP traffic by considering specific properties of the 802.11 CSMA/CA
mechanism. A similar work was done by Xie et al. [27], where the TCP jitter was pro-
posed as the distinguishing characteristic between wired and wireless nodes. Several
works [20,14] propose the analysis of the differences in inter-packet spacing to achieve
the same objective. Other characteristics of the wireless traffic flows, like the client-side
bottleneck bandwidth or the round trip time of network traffic, are also used in [16] and
[17] (respectively). However, this general scheme assumes that there is a way to analyse
all the network traffic, which might not be practical, and severely limits the scalability
of these systems.

Finally, there are also some hybrid solutions like Yin et al. [28], where both sniffers
and wired traffic analysis are used. In this particular case, they use an intrusion detection
mechanism that uses a verifier on the internal wired network to send test traffic towards
wireless edges. This mechanism can detect rogue access points, by detecting the relay
of the test packets to the wireless edge. Liran Ma et al. [17] also proposed a hybrid
solution, by correlating anomalies using both wired and wireless scans, being able to
detect not only unauthorised but also compromised APs.

In these administrator-oriented solutions, a user must trust the network. Also, most
of these solutions are not real-time, allowing short time attacks to remain undetected.
Secondly, even if the detection is done in a timely fashion, many users can still fall prey
to the attack, since there is no automated way of denying access to the evil twin APs or
even warn the users of the attack. Our work shifts the usual paradigm, and empowers
users with a tool that allows them to detect if an evil twin attack is being launched,
before they actually start using the network.

To the best of our knowledge, only one author employs a client-side method, de-
signed for evil twin attack detection. Song et al. [21], propose ETSniffer, using timing
measurements to distinguish a one-hop from a multi-hop setting. However, as stated
in [18], these timing measurements are technology dependent. With the increase in wire-
less networks transmission rates (e.g. 802.11n), differences in delay between wireless
and wired settings will fade, or at least, vary. This means that a wireless node may
become indistinguishable from a wired node, or, in the particular case of ETSniffer, a
multi-hop setting, indistinguishable from a one-hop setting in a faster technology.

24 D. Mónica and C. Ribeiro

Our solution differs from previous work in that it does not depend on timings to
detect a multi-hop setting. Instead, detection is based on the behaviour of the legitimate
AP, thwarting the attacker from evading the mechanism. Additionally, we do not require
the knowledge of an authorisation list, and allow the user to proactively test the network,
prior to using it. The fact that detection is done by the users makes this an efficient and
cost-effective solution, where no modifications to the client hosts are required.

3 Problem Statement

We assume the existence of an 802.11 wireless LAN device, capable of operation in
monitor mode, being operated by a user that wishes to access the internet through a free
hotspot. This user has no knowledge of the infrastructure, and cannot, thus, verify the
authenticity of any available access points in the vicinity. We further assume that the
user is in radio range of the legitimate access point, where the wired connection to the
internet is located. In fact, this scenario describes almost all public locations where a
free hotspot is available, such as cafes or airports.

In normal operation, a user in the vicinity of a legitimate AP will associate directly
to it, and access the internet. However, in the case where there is a malicious attacker
launching an evil twin attack, the user might be fooled into associating to the evil twin
AP, instead of directly connecting with the legitimate one (Figure 1). This evil twin AP
will also allow internet access to the user, by forwarding all the information received
from the user, wirelessly, to the legitimate AP. It will, therefore, be capable of intercept-
ing all the user information, without being detected. Notice that, in both scenarios, the
legitimate AP is within range of the user.

Internet AP User
Evil
Twin
AP

Fig. 1. Illustration of the problem being addressed

Our objective is to provide a convenient and usable technique to detect the existence
of an evil twin attack. The detection scheme will be required to possess the following
properties:

– Operation not detectable by the attacker;
– Capable of operation in encrypted networks;
– Independent control of both the probability of detection pD and of false alarm pFA;
– Non-disruptive operation;
– User-sided operation.

The rationale for requiring most of these properties is clear. A note must, however, be
made, concerning the last property listed (user-sided operation). The detection algo-
rithm to be developed is intended to constitute a tool which users may ubiquitously

WiFiHop - Mitigating the Evil Twin Attack through Multi-hop Detection 25

possess, to be used automatically whenever the user joins a public hotspot, or in any
instance where it may be considered necessary. The use of solutions such as end-to-end
VPNs, is much more complex in terms of implementation/setup and still leaves users
vulnerable to layer 2 and denial-of-service attacks.

4 Detecting the Evil Twin AP

The presence of an evil twin AP will be detected using the fact that, when such an attack
is in place, the user’s data must transit the wireless channel between the evil twin and
the legitimate AP (see Figure 1). If we can detect the existence of this extra wireless
hop, we will then have attested the presence of the evil twin AP.

The basic overall scheme for detecting the existence of a multi-hop setting between a
user and the internet is the following (details will be addressed later on, and will depend
on the particular type of network under analysis): the user sends a watermarked packet
(or packet sequence) to the internet, through the access point to which it is currently
associated with; the watermark signature is known only to the user; after sending this
packet in the channel associated with its AP connection, the user listens to a different
wireless channel, and tries to detect the presence of the watermark in the traffic passing
through that wireless channel. If an evil twin attack is being launched, the watermark
will necessarily appear on the wireless link between the evil twin and the legitimate
APs, and the attack will, therefore, be detected, if the user repeats the procedure for
every one of the available wireless channels. We called this generic scheme WiFiHop.

Since the time taken for the wireless access point to retransmit the watermarked
packet (the store-and-forward delay of the AP) is orders of magnitude lower than the
time taken for a user to switch channels and begin parsing wireless traffic, detection of
the watermark cannot be done on the outward path, since by the time the user is ready
to detect the watermark, the packet has already been forwarded to the legitimate AP.
We therefore send the watermark packet to an external server on the internet, which
we assume not to be malicious, having the packet being replayed back to the user a
pre-defined number of times. The watermark will then be detected on the incoming,
returning path, when being forwarded to the evil AP by the legitimate one. This scheme
not only allows the user to properly switch channels and initiate monitoring mode (if
that is the case), but it also allows the option of simply requesting the watermark from

Internet

Echo Server

Legitimate
AP

User

1 - User sends the watermark
2 - Echo-server replies to the watermark (n times)

3 - User changes to the desired channel,
and tries to detect the watermark

Evil Twin
AP

1

2

3

Fig. 2. The WiFiHop mechanism

26 D. Mónica and C. Ribeiro

the server, avoiding the need for its outward transmission, a scheme which will be used
in the later parts of the paper. Figure 2 depicts this evil twin detection mechanism.

There is however, one important issue that has to be taken into account. We have to
consider the possibility of existence of an encrypted channel between the evil twin AP
and the legitimate AP. While most hotspots do not have encryption in place, wireless
security mechanisms such as WEP and WPA, are commonplace nowadays. In the case
where the link between the evil twin and the legitimate AP is protected with one of
these security mechanisms, the user will be unable to detect a watermark embedded
into the payload of the encrypted packet. We will, thus, provide two different solutions
for detecting the watermark in these two scenarios (plain and encrypted channels): Open
WiFiHop and Covert WiFiHop.

In both solutions, we will need to take into account the possibility of packet loss. In
multi-hop wireless networks, specially with high traffic load, packet losses are frequent.
This possibility of packet loss will, therefore, be accounted for in the proposed scheme.

Finally we note that there are legitimate uses for multi-hop schemes (such as range
expansion). While false positives may occur when both APs (the original and the ex-
pander) are in range, the user will simply be instructed to use the AP that is directly
connected to the internet. If only one of the APs is in range no false positive will occur.

4.1 Open WiFiHop

In Open WiFiHop, we assume that there is no encryption between the evil twin AP and
the legitimate AP. Watermark detection can, thus, be easily done. The user creates a
random bitstring, and sends it to the echo-server. Then, it tries to find the exact same
pattern in the payload of all the packets being sent in one of the alternative wireless
channels. The test is repeated for every wireless channel, other than the one being used
in the association between the user and the service providing AP.

In this particular case, and since we can increase the size of the random bitstring,
there is almost no possibility of having false positives (false alarm). A false alarm would
happen if the random bit string chosen by the user happened to be present, by chance,
in any wireless packet other than the echo-server’s answer. However, by choosing a
bitstring of any reasonable size (e.g. 128 bits), we can bring this probability arbitrarily
close to 0. This aspect will be discussed again, when discussing the detection perfor-
mance of the algorithm.

However, there still is the possibility that either the client’s request or the reply wa-
termarked packets are lost in transit, something that would make Open WiFiHop return
a false negative (miss). There are four situations that will translate in Open WiFiHop
not detecting the watermark: packets being lost between the echo-server and the legiti-
mate AP; packets being lost in the air, between the legitimate AP and the evil twin AP;
packets being delayed more than the time window allocated to the test; and finally, reply
packets not being detected by the sniffer (the user network card). Of these, the last one
is conspicuous, since it creates a considerable asymmetry between the probabilities of
losing a request, and the probability of not detecting a reply. As will be seen, the effi-
ciency of the sniffer can vary widely (we used both TCPDump [5] and Scapy [4]), but
will, in all cases, constitute a major source of loss of reply packets. We will, therefore,
consider two different probabilities of packet loss, one for outgoing packets (requests),

WiFiHop - Mitigating the Evil Twin Attack through Multi-hop Detection 27

pplo, and one for incoming packets (replies), ppli. To be able to control the statistical
performance of the method in this packet loss environment, clients will repeat the re-
quest c times for each wireless channel, and the server repeats the watermarked packet
n times, in response to each received request.

Statistical Performance. It is assumed that the observation window (t) is chosen to
be wide enough so as to render negligible the probability that the transmitted packets
fall outside the window (which might otherwise occur, due to excessive latency in the
network). The choice of t will be addressed later on in the paper. Since the number of
bits constituting the watermark can be arbitrarily long (within the restriction imposed
by the network’s MTU), the probability of a particular pattern appearing in an external
packet (pra) is, for all practical purposes, as close to zero as desired. Even with water-
marks as small as 64 bits, the probability of random appearance is of the order of 10−20.
Hence, the only parameters of interest to the analysis of the statistical performance of
the detection scheme are the end-do-end probabilities of packet loss (pplo and ppli) of
the server-sniffer channel. The relevant probabilities are, thus, easily obtained:

– Probability of miss - pM . An error of the second kind (failing to detect the water-
mark) may result both from the loss of the c requests transmitted by the client, or
from the loss of all the packets transmitted by the echo-server (n, for each received
request). Assuming statistical independence between packets (a waiver to all cases
such as jamming or long interference bursts), the conditional probability that the
n replies are not detected, given that a request was received by the echo-server, is
given by:

pM|r = pn
pli. (1)

The overall probability of a false negative is given by:

pM =
c∑

i=0

(
c
i

)
(pplo)(c−i)(1− pplo)i(pM|r)i. (2)

– Probability of detection - pD. The probability of correct detection of the water-
mark is given by: pD = 1− pM

– Probability of false alarm - pFA. An error of the first kind (spurious detection of a
watermark) can be considered negligible, as previously discussed, since even small
watermarks will bring this probability to negligible values: pFA ≈ 0.

As can be seen from (1) and (2), increasing n will imply a decrease in the probability
of false negatives (pM). However, there will be a residual probability of false negatives
which no increase in n can affect, since it is associated with the probability of loss of
all the request packets (the term for i = 0, in (2)), a situation where n plays no role
whatsoever. This implies that, for a desired probability of detection p∗D, and even though
a trade-off between c and n is possible in general, there is a minimum threshold for c,
which can not be compensated by an increase in n:

c ≥ log(1− p∗D)
log(pplo)

(3)

28 D. Mónica and C. Ribeiro

The observed particular values of the parameters (and the resulting probabilities) will
be presented at a later section, when discussing the implementation made by the au-
thors. Also, even though we are required to obey (3), there is a trade-off to be made
between c and n, since both parameters will affect pD. However, their effect on the
time to complete the test is substantially different: increasing c will imply considerably
higher accrued delays. Hence, in our implementation, we kept c as small as possible,
and adjusted n to achieve the desired pD.

4.2 Covert WiFiHop

If the wireless link between the evil and legitimate APs is encrypted, we cannot hope to
access the payloads of the exchanged packets. In this case, we modify our scheme, fo-
cusing its principle of operation on the one measure we can rely on: packet length. Since
the relevant security mechanisms (e.g. WEP, WPA) have deterministic, predictable be-
haviours, concerning the increase in length of the unencrypted packets [3], we can create
an effective watermark using a sequence of packets with pre-determined lengths. De-
tecting the watermark will then become a problem of detecting a set of packets with
the appropriate length sequence. This mechanism also works seamlessly in networks
without encryption, being, however, slightly more complex to implement.

Another option, which will not be presented in this article, is to use, as a watermark,
not a sequence of chosen lengths, but a sequence of length differentials. This will make
the scheme invariant to all network cyphers whose final lengths are affine functions of
the plain packet lengths, but will both increase complexity, and decrease the overall
statistical performance of Covert WiFiHop. The increase in complexity results directly
from the fact that, since we will be operating on a packet switched network, extraneous
packets may, and will, be inserted between the watermark packets (more on this will
be said later). This creates a hard setup for the detection of length differentials, and
will imply an increased scheme complexity. Also, any particular length difference is,
statistically (all other things being equal), orders of magnitude more probable than a
particular length (many candidate pairs may create that length difference, while length
coincidence has a single candidate (that particular length itself). This approach should
only be used, therefore, on a need to basis, and will not be addressed here.

Before pursuing the analysis of Covert WiFiHop, some notes must be made. The
first one concerns the fact that, while in Open WiFiHop, pFA could be considered null,
due to the statistical improbability of a random generation of the watermark, in this
case, the probability of appearance of extraneous packets with coincidental lengths is
not infinitesimal, and such events must, therefore, be considered. In fact, even though
with low probability, the appearance of coincidental lengths are not rare events, and its
probability depends on the amount of time spent in the analysis of network traffic to
support the choice of the least observed packet lengths. To illustrate this, we processed
a 4 day sequence of packets from the widely used SIGCOMM conference trace [19]
with 10 different analysis periods (0.1 s to 1 s, in 0.1 increments). For each analysis
period, we computed the probability that the least observed packet length during the
analysis period (or, if the set of least observed lengths is multi-valued, one randomly
chosen length from that set) was observed in the 5 minutes immediately following the
analysis period. The obtained results can be seen in Figure 3. As can be observed, longer

WiFiHop - Mitigating the Evil Twin Attack through Multi-hop Detection 29

Fig. 3. Probability of extraneous appearance of packets with the chosen length

Fig. 4. Probability of sequences of repeated lengths

analysis periods will provide length choices less prone to extraneous appearance. Also,
we note that small observations periods (e.g. 6 s) are already very effective in providing
low values of pra.

Secondly, we must consider the fact that common life sequences of packet lengths do
not constitute white noise processes. That is, there are significant correlations between
successive lengths. Namely, repeating lengths are very frequent. As an illustrative ex-
ample, we evaluated the number of repetitions in the time series of observed packet
lengths from the SIGCOMM trace [19]. To avoid bias in the results, the sequence was
preprocessed, and all retransmissions and non-data packets (e.g. beacons) removed. It
was found that, in that particular sequence (approximately 29.3 million packets), 17.8%
of the packets were immediately followed by one or more packets of the same length.
As can be seen in Figure 4, sequences of up to 25 packets with the same length fall in
the range of probability p ≥ 10−5.

30 D. Mónica and C. Ribeiro

Fig. 5. Distribution of the number of intercalated packets

For confirmation purposes, we made several on campus recordings of 2-hour pe-
riods, in different operational situations (weekends and weekdays, morning and late
afternoon). The obtained results were, in fact, similar, with the appearance of the same
behaviour of repetitions.

This fact immediately rules out the hypothesis of choosing, as watermark, a sequence
of packets with the same length, at least for small k. Even if that particular length has a
low probability of random appearance, its conditional probability, given that one packet
of the coincidental length appeared, is too high. Which, of course, means that the prob-
ability of random occurrence of the k-sized sequence may remain of the approximate
order of magnitude of the probability of random occurrence of its first value (pra). We
will therefore use as watermark a sequence of packets of different lengths, these lengths
being chosen from the set of packets lengths with lower probability (resulting from a
local ad-hoc pre-analysis). Since, typically, there will be many lengths of equivalent
low probability to choose from, the choice does not pose any additional difficulties or
constraints.

Thirdly, we must also consider the fact that, in a packet switching environment, it is
possible that extraneous packets are inserted amongst the watermark sequence packets.
In fact, for any reasonable traffic load conditions, it will be highly unlikely for the
watermark sequence of packets to be transmitted from the legitimate to the evil AP
end-to-start, without intercalated extraneous packets, belonging to other conversations.
To appreciate this, we can see, in Figure 5, the histogram of the number of packets
received in between packets of a 30 packet watermark sequence. Both the details of the
test wireless network, and of the traffic conditions in all three profiles (low, medium and
high traffic), are detailed in Section 5, more particularly, in Figure 6 and Table 7(a).

The observed mean number of extraneous packets inserted between each pair of
packets belonging to the watermark sequence was 34.8. As can be seen in Figure 5,
the distribution has a heavy right tail, and inserted sequences of more than 100 pack-
ets were observed. The situation becomes worse, of course, at high traffic levels (see

WiFiHop - Mitigating the Evil Twin Attack through Multi-hop Detection 31

Section 5 for details), were the observed mean rose to 96.4, with the appearance of
inserted sequences longer than 300 packets.

Finally, it is also possible for packets in the sequence to arrive at the legitimate AP in
reversed order. This is thus the environment which the sequence detection scheme must
be designed to cope with.

Detection of the watermark sequence will be made by progressing through the steps
of a k-state finite state machine. The machine state progresses whenever a packet with
the proper length is detected. If, for example, the watermark is chosen to be a sequence
of three packets of lengths 110, 250 and 130, the three-state machine (k = 3) will ter-
minate when all three lengths 110, 250, 130 are observed, in this relative order. It does
not matter how many extraneous packets are interspersed between the water mark se-
quence, since the machine state never regresses. Due to the possibility of packet loss,
we again have clients repeating the request c times, and the server repeating the water-
mark n times. That is, n sets of k packets will be transmitted for each request received
by the server, each one of the k sets of packets being constituted by packets with the
chosen lengths.

Even though the watermark to be detected is constituted by a sequence, we will not
use a Sequential Likelihood Ratio Test - SLRT [22] to support the decision, as could
be expected in such a type of sequence based detection (see, for example, [28]). The
reason is threefold, and lies deep in the assumptions of such a test, which our particular
setup fails to obey. To start with, we have the lack of statistical independence between
samples of the stochastic process formed by the sequence of packet lengths (mainly
resulting from the high probability of repetitions of the same length, as discussed above).
But there are two eventually deeper and more structural reasons: the lack of stationarity
and lack of ergodicity of the underlying stochastic process (both of which are in the ba-
sis of the SLRT). To appreciate this, let us consider a simple example, where an SLRT
is being used in a medium traffic situation, and we have just received a packet with the
correct length, but we have not yet crossed one of the decision thresholds. This means
that we will look at the following packets to further refine the associated probabilities
and, hence, hopefully progress towards one of the decision boundaries (see, for exam-
ple, [15]). The problem is now: is the probabilistic density of the next packet unchanged
by the knowledge that we’ve just detected one packet of the proper length? And what
about the density of, say, the 35th packet to arrive after the just detected packet? Is its
probabilistic density unchanged? And is it the same density of the next packet? The
answer to all these questions is no (which, of course, implies that there is no stationar-
ity, and, hence, no ergodicity). Since, in these traffic conditions, the distribution of the
number of packets inserted between watermark packets has a mean of approximately
35 (see Figure 5 and the related discussion), the 35th packet is much more likely to
belong to the watermark than the next packet. Those two packets will, therefore, have
different associated probability distributions, which immediately rules out stationarity.
The assumption of ergodicity cannot thus be maintained (meaning that we cannot re-
flect the temporal behaviour of the sequence on the statistics of each packet). All in all,
the statistical basis for the use of an SLRT is completely compromised.

The chosen decision rule is therefore, the following: if the machine terminates
(reaches its final state) within the time period allocated to the test, the watermark is

32 D. Mónica and C. Ribeiro

considered detected (and, therefore, the service providing AP classified as an evil twin);
otherwise, it is decided that no watermark was transmitted on that channel, and the test
is repeated for the remaining channels.

Statistical Performance. In this case of encrypted networks, the major difference will
be observed on pFA, since, as discussed, the probability of extraneous packets having
the same length than the marking packets (pra) is not a negligible quantity. n sets of
k packets will be sent, each set having the chosen packet length sequence. Detection
occurs when the sniffer has seen all the required packet lengths, in the proper sequence.

We will assume that a false negative due to the loss of the watermark sequence will
happen if packet losses occur in all transmitted sets. In fact, this is a conservative as-
sumption, since a partial length sequence, observed on, say, the first set, may be com-
pleted by length observations belonging to the second set. Also, it is possible that a lost
packet may be substituted by an extraneous packet with the proper length, thus leading
to a correct detection of the sequence on that set.

For small values of n, the assumption error is small. In any case, it always leads to a
conservative evaluation. With this assumption, the associated probabilities thus become:

– Probability of miss - pM .

pM|r = (1− (1 − ppli)k)n. (4)

The overall probability of a false negative is, again, given by:

pM =
c∑

i=0

(
c
i

)
(pplo)(c−i)(1− pplo)i(pM|r)i. (5)

– Probability of detection - pD. The probability of correctly detecting the length
sequence is given by: pD ≥ 1− pM .

– Probability of false alarm - pFA. An error of the first kind (spurious detection
of the watermark) will occur if we have k extraneous occurrences of appropriate
length. Designating by λ the rate of such an extraneous occurrence, we may use a
Poisson process to majorate the probability of false alarm:

pFA = 1−
(k−1)∑
i=0

(λ t)i

i!
e−λ t, (6)

where t is the observation period.

This implies that both pFA and PD can be independently controlled. Increasing k will
decrease pFA as desired. This will also reduce pD, but pD can then be brought to the
desired level by properly choosing n or c. Denoting the desired probabilities by p∗FA

and p∗D, and noting that the previously threshold effect for c is also applicable for the
Covert WiFiHop case, we must choose k in such a way as to guarantee that

(k−1)∑
i=0

(λ t)i

i!
e−λ t ≥ 1− p∗FA, (7)

and

WiFiHop - Mitigating the Evil Twin Attack through Multi-hop Detection 33

c ≥ log(1− p∗D)
log(pplo)

(8)

The observed particular values of the parameters, and a description of our particular
implementation of WiFiHop, will be presented next. We again note that, in the trade-off
to be made between c and n, we kept c as small as possible, to minimize execution time.

5 Implementation

To evaluate the performance of the proposed schemes in a real life situation, a test setup
was put together. We deployed an access point in our university campus, and configured
it to provide access to the internet. The objective was to test both algorithms under
real traffic and environmental conditions, by having several other wireless networks
coexisting with our own. An evil twin AP was also deployed and configured to act as a
rogue access point. Finally, we set up a client with wifihop-ng, and an extra computer
that served as a wireless monitor and captured all the wireless packets being sent, for
later examination. A representation of this network is shown in Figure 6.

Both the legitimate and the evil twin APs are FON2201, supporting IEEE 802.11b/g.
The client used was an Intel desktop, running a Linux flavoured operating system, with
a Proxim ComboCard Gold that supports IEEE 802.11a/b/g. The monitor was an iMac
running OSX Snow Leopard. Note that all of these off-the-shelf equipment supports
monitor mode, and therefore, meets the requirements to run WiFiHop. We tested sev-
eral different network configurations. In all the tests, the client accessed the evil twin
AP through an open network1 (no encryption), but we varied the encryption available
between the evil twin and the legitimate APs. The encryptions used were: WEP with a
128 bit key; WPA2 using AES; and OpenVPN using blowfish. We note here a limitation
of our system: the inability of currently dealing with security systems that use random
padding on their cryptography algorithm. However, we note that the IEEE 802.11 stan-
dard does not offer this feature [3], and the use of VPNs in Hotspots is very uncommon.
This leaves WiFiHop capable of detecting the very large majority of present day attacks,
as claimed.

To be able to infer the influence of network traffic on the performance of WiFiHop,
we added two extra clients to the network, connected directly to the legitimate AP,
that generated constant TCP and UDP traffic. The generation of traffic was done using
HTTP downloads with rate-limiting, and iperf, a traffic generation tool, used to generate
constant UDP traffic streams. The traffic profiles generated by these two extra clients
are presented in Table 7(a).

The first task was the characterisation of the parameters relevant to the statistical
configuration of the tests. Namely, the following probabilities had to be estimated: the
probabilities of packet loss ppli and pplo, the rate of extraneous appearance of packets
with lengths coincidental with the length of the next expected watermark packet λ, and
the statistical distribution of the roundtrip delay in the user/echo-server channel.

1 The use of an open network between clients and the evil twin AP is just a particularity of our
testing environment, and not a limitation of WiFiHop itself.

34 D. Mónica and C. Ribeiro

Campus
Network

Legitimate APUser

Evil Twin
AP

Wired
Wireless

FON 2201
Firmware: DD-WRT v24

FON 2201
Firmware: DD-WRT v24

Backtrack Linux v4

Monitor
OS X Snow Leopard

Fig. 6. Illustration of the network in which WifiHop was tested

Profile DL rate UL rate
(Mbps) (Mbps)

Low 2 1
Medium 8 5

High 16 12
(a) Traffic generated by the
extra clients.

Low Medium High
Traffic Traffic Traffic

ppli 0.0217 0.0239 0.0805
(tcpdump)

ppli 0.2574 0.6721 0.8911
(scapy)
pplo 1.333 · 10−4 2.667 · 10−4 0.16

(b) Probability of packet loss.

Fig. 7. Traffic profiles and probability of packet loss

Determination of λ. We used a six second window to determine the least probable
packet lengths. That is: the choice of packet lengths to be used in the watermark se-
quence (encrypted networks case) is obtained by monitoring network traffic during six
seconds, and choosing the k least observed lengths. If there are more than k lengths
with the same minimal length, which turns out to be invariably the case, the choice is
randomly made between the minimal length candidates. From Figure 3, we see that this
choice implies pra = 6.4E−4. Since this probability was obtained for 5 minute blocks,
with a mean number of 25606 packets, this translates, in terms of Poisson arrival rate to
λ = 0.0533 arrivals per second.

Determination of ppli and pplo. The probabilities of packet loss were experimentally
determined. Runs of 10 mins were made, in which control packets were inserted in
the network, along with the random traffic generated by the two extra clients (see Ta-
ble 7(a)). To measure the ppli we divided the number of control packets captured by the
sniffers, and divided them by the number of control packets sent by the remote server,
effectively obtaining 1−ppli. For pplo, we simply divided the number of control packets
sent from the client, by the number of control packets received at the server, obtaining
1−pplo. In the case of ppli, and since the sniffer will be the predominant cause of packet
loss, we repeated the test with two different sniffers: TCPdump [5] and Scapy [4].

As can be seen in Table 7(b), there is a very big difference in performance between
TCPdump and Scapy. Therefore, scapy was used in all the implementation tests, to
obtain worst case evaluations.

WiFiHop - Mitigating the Evil Twin Attack through Multi-hop Detection 35

Fig. 8. Cumulative histogram of the round-trip delay

Low Medium High
Traffic Traffic Traffic

Open c 1 1 3
n 6 19 18
c 1 1 3

Covert n 6 19 18
k 1 1 1

(a) Required values for c, n and k.

Traffic Profile WiFiHop Attacks detected

Low Traffic
Open 100%

Covert 100%

Medium Traffic
Open 100%

Covert 100%

High Traffic
Open 98.44%

Covert 98.05%
(b) Effectiveness of WifiHop.

Fig. 9. Parameters and results of WiFiHop’s evaluation

Round-trip delay distribution. To evaluate the round-trip delay distribution, a simple
experiment was setup: a request was transmitted from the wireless client to the echo-
server; upon reception, the echo server replied with a sequence of 30 packets, addressed
to the wireless client. The time between the wireless transmission of the request and the
wireless reception of the last packet in the sequence was recorded. The experiment was
repeated 1000 times, in medium traffic conditions. The cumulative histogram of the
recorded values can be seen in Figure 8.

As can be seen in this figure, we only need 156 ms to ensure a 0.99 probability that
all the sequence is received. However, the user needs some additional time to be able to
change channels, and enter monitor mode. Hence, the echo-server will be made to delay
transmissions by an extra 500 ms. This means that the attempt to detect the watermark
transmission should not terminate until t ≥ 656 ms after the transmission of the request
(or watermark) to the echo-server. In all tests, t was set to 1 s.

36 D. Mónica and C. Ribeiro

Determination of c, n and k. With the above values of λ, pplo and ppli, it is easy to
obtain the needed values of c, n and k, by using the formulas of Section 4. Imposing,
as objectives, p∗D ≥ 0.999 in the medium and low traffic conditions, p∗D ≥ 0.98 in
the high traffic case (due to the extremely heavy conditions of the test, well above the
limits of reasonable operation), and p∗FA ≤ 0.001 in all cases, the required values of c,
n and k are, for both (Open and Covert) cases, the ones represented in Table 9(a). These
were, therefore, the parameter values used in our implementation of WiFiHop, for the
performance tests of Section 6.

Since, in the Covert WiFiHop case, k turned out to be one in all traffic conditions
(due to the low probability of random appearance of coincidental lengths), the values
of c and n are the same for both Open and Covert WiFiHop.

Echo server. The echo-server can deployed through the use of a simple script on
any public hosting service (we used a 10-line Python script). This simplicity, op-
posed to, for example, the deployment and configuration of an end-to-end VPN,
enables users to easily create private echo-servers in which they can trust. In Open
WiFiHop, the server, after receiving a UDP packet, transmits n replies, each one of
them containing the watermark, but delaying the replies by d seconds. In our ex-
periments, clients were always able to switch channels in less than 500ms. There-
fore, d = 0.5 was used. The Covert WiFiHop receives, as payload of the UDP
request packet, the set of packet sizes to be used in the watermark sequence. The
packet sizes, as mentioned in the previous section, are chosen by the user, after
testing the wireless medium for six seconds. As in the previous case, the server
waits d seconds before transmitting the watermark.

WiFiHop. A command-line tool was developed, which implements both Open and
Covert WiFiHop: wifihop-ng. When ran, wifihop-ng puts the wireless device in moni-
tor mode, allowing the wireless device to receive every transmitted packet, regardless
of origin or destination. While not all wireless devices support this specific mode, an
increasing number of them do [7].

After association with the AP, wifihop-ng verifies internet connectivity by sending a
heartbeat to our remote echo-server. Then, it sends the watermark to the AP and imme-
diately switches to one of the other available radio channels, listening all transmitted
packets. In Open WiFiHop, we chose a small UDP packet, with a total of 44 bytes, that
contains a random 128 bit string in the payload. The choice of UDP over TCP was made
to avoid the TCP three-way handshake. However, any kind of packet can be used. In
Covert WiFiHop, the watermark is also UDP packet, containing the packet sizes to be
used on the watermark (see Section 4 for more details on this).

To distinguish between both mechanisms wifihop-ng receives an input flag. If
the watermark is not detected within the time period t, the procedure is repeated
with a different wireless channel. Conversely, if the watermark is detected, wifihop-
ng returns the origin and destination MAC addresses of the APs involved in the
communication. The user is then asked if he wishes to connect directly to the
legitimate AP.

WiFiHop - Mitigating the Evil Twin Attack through Multi-hop Detection 37

6 Results

Regarding the effectiveness of WiFiHop, we show in Table 9(b) the results of a total of
6000 different trials, using the previously calculated parameters (Table 9(a)). We made
1000 tests for each one of the traffic profiles present in Table 7(a), for both Open and
Covert WiFiHop. The immediate conclusion is that WifiHop had no false negatives for
both the low and medium traffic profiles. This was expected, since we had imposed
pD ≥ 0.999 (and, hence, pM ≤ 0.0001) in both these settings. In the high traffic case,
the observed detection probabilities were pD = 0.9844 and pD = 0.9805 (for Open and
Covert WiFiHop, respectively), which again are within the required range. In none of
the tests false positives occurred. That is why this parameter is not shown in Table 9(b).

The user does not need to test every available wireless channel, since wifihop-ng can
search for beacons, and tests can safely be made only on channels in which networks
are being advertised. However, we will consider the worst case scenario (testing all 11
channels). Each test requires six seconds to choose the less probable packet lengths (in
the case of Covert WiFiHop), an additional t = 1 seconds for each wireless channel to
be tested, and approximately 0.5 seconds to change the channel back to the network op-
eration channel. This means that a full set of tests will last a minimum of approximately
22.5 seconds. In fact, all the tests performed with wifihop-ng, required approximately
30 seconds. Such a full set of tests will only be done once, when the user joins a new
network, and therefore, this time-frame does not seem to be excessive or impractical.

7 Conclusions

User-sided evil twin attack detection is viable. It can be done in useful time, and is
statistically high effective in the range of normal network operations. These detection
mechanisms can operate in both open and encrypted networks (e.g. WEP, WPA and
some VPNs). Also, they avoid many of the difficulties associated with some server-
sided detection mechanisms, such as the need for several wireless sniffers, the high
false positive rate, and the non-real time detection. We have shown that WiFiHop can
be implemented in off-the-shelf equipment, giving wireless hotspot users the capability
of individually detecting a evil twin attack in the networks to which they access, without
having to trust the network operator. In our implementation of WiFiHop, this detection
was always done in less than one minute, with virtually no false positives, and a very
low rate of false negatives.

References

1. Airdefense - tire of rogues? solutions for detecting and eliminating rogue wireless networks,
http://www.airdefense.net/whitepapers/roguewatch_request2.php

2. Netstumbler, http://www.netstumbler.com/
3. Nist guide to securing legacy ieee 802.11 wireless networks, http://csrc.nist.gov/

publications/nistpubs/800-48-rev1/SP800-48r1.pdf
4. Scapy project, http://www.secdev.org/projects/scapy/
5. Tcpdump, http://www.tcpdump.org/

http://www.airdefense.net/whitepapers/roguewatch_request2.php
http://www.netstumbler.com/
http://csrc.nist.gov/publications/nistpubs/800-48-rev1/SP800-48r1.pdf
http://csrc.nist.gov/publications/nistpubs/800-48-rev1/SP800-48r1.pdf
http://www.secdev.org/projects/scapy/
http://www.tcpdump.org/

38 D. Mónica and C. Ribeiro

6. Wavelink, http://www.wavelink.com
7. Wireless card compatibility list, http://www.aircrack-ng.org/doku.php?

id=compatibility_drivers
8. Wisentry - wireless access point detection system, http://www.wimetrics.com/

Products/WAPD.htm
9. Abdollah, T.: Ensnared on the wireless web, http://articles.latimes.com/

2007/mar/16/local/me-wifihack16
10. Adya, A., Bahl, P., Chandra, R., Qiu, L.: Architecture and techniques for diagnosing faults in

ieee 802.11 infrastructure networks. In: Proceedings of the 10th Annual International Confer-
ence on Mobile Computing and Networking, MobiCom 2004, pp. 30–44. ACM, New York
(2004), http://doi.acm.org/10.1145/1023720.1023724

11. Bahl, P., Chandra, R., Padhye, J., Ravindranath, L., Singh, M., Wolman, A., Zill, B.: Enhanc-
ing the security of corporate wi-fi networks using dair. In: Proceedings of the 4th Interna-
tional Conference on Mobile Systems, Applications and Services, MobiSys 2006, pp. 1–14.
ACM, New York (2006), http://doi.acm.org/10.1145/1134680.1134682

12. Baiamonte, V., Papagiannaki, K., Iannaccone, G.: Detecting 802.11 wireless hosts from re-
mote passive observations. In: Akyildiz, I.F., Sivakumar, R., Ekici, E., Oliveira, J.C.d., Mc-
Nair, J. (eds.) NETWORKING 2007. LNCS, vol. 4479, pp. 356–367. Springer, Heidelberg
(2007), http://portal.acm.org/citation.cfm?id=1772322.1772361

13. Bellardo, J., Savage, S.: 802.11 denial-of-service attacks: real vulnerabilities and practical
solutions. In: Proceedings of the 12th Conference on USENIX Security Symposium, vol. 12,
p. 2. USENIX Association, Berkeley (2003), http://portal.acm.org/citation.
cfm?id=1251353.1251355

14. Beyah, R., Kangude, S., Yu, G., Strickland, B., Copeland, J.: Rogue access point detection
using temporal traffic characteristics. In: Global Telecommunications Conference, GLOBE-
COM 2004, November-December 3, vol. 4, pp. 2271–2275. IEEE, Los Alamitos (2004)

15. Hippenstiel, R.D.: Detection Theory: Applications and Digital Signal Processing, 2nd edn.
CRC Press, Boca Raton (2002)

16. Kao, K.F., Liao, I.E., Li, Y.C.: Detecting rogue access points using client-side bottleneck
bandwidth analysis. Computers and Security 28(3-4), 144–152 (2009), http://
www.sciencedirect.com/science/article/B6V8G-4V353XY-1/2/
0e2cd909933fa11ae60a0417d16d0faa

17. Ma, L., Teymorian, A.Y., Cheng, X.: A Hybrid Rogue Access Point Protection Framework
for Commodity Wi-Fi Networks. In: 2008 IEEE INFOCOM - The 27th Conference on Com-
puter Communications, pp. 1220–1228. IEEE, Los Alamitos (2008), http://dx.doi.
org/10.1109/INFOCOM.2008.178

18. Mano, C.D., Blaich, A., Liao, Q., Jiang, Y., Cieslak, D.A., Salyers, D.C., Striegel, A.: Ripps:
Rogue identifying packet payload slicer detecting unauthorized wireless hosts through net-
work traffic conditioning. ACM Trans. Inf. Syst. Secur. 11, 2:1–2:23 (2008), http://doi.
acm.org/10.1145/1330332.1330334

19. Schulman, A., Levin, D., Spring, N.: CRAWDAD data set umd/sigcomm2008 (March 2,
2009), crawdad.cs.dartmouth.edu/umd/sigcomm2008 (March 2009)

20. Shetty, S., Song, M., Ma, L.: Rogue access point detection by analyzing network traffic
characteristics. In: Military Communications Conference, MILCOM 2007, pp. 1–7. IEEE,
Los Alamitos (2007)

21. Song, Y., Yang, C., Gu, G.: Who is peeping at your passwords at starbucks?; to catch an evil
twin access point. In: 2010 IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), June 28- July 1, pp. 323–332 (2010)

22. Wald, A.: Sequential Analysis. Wiley, Chichester (1959)

http://www.wavelink.com
http://www.aircrack-ng.org/doku.php?id=compatibility_drivers
http://www.aircrack-ng.org/doku.php?id=compatibility_drivers
http://www.wimetrics.com/Products/WAPD.htm
http://www.wimetrics.com/Products/WAPD.htm
http://articles.latimes.com/2007/mar/16/local/me-wifihack16
http://articles.latimes.com/2007/mar/16/local/me-wifihack16
http://doi.acm.org/10.1145/1023720.1023724
http://doi.acm.org/10.1145/1134680.1134682
http://portal.acm.org/citation.cfm?id=1772322.1772361
http://portal.acm.org/citation.cfm?id=1251353.1251355
http://portal.acm.org/citation.cfm?id=1251353.1251355
http://www.sciencedirect.com/science/article/B6V8G-4V353XY-1/2/0e2cd909933fa11ae60a0417d16d0faa
http://www.sciencedirect.com/science/article/B6V8G-4V353XY-1/2/0e2cd909933fa11ae60a0417d16d0faa
http://www.sciencedirect.com/science/article/B6V8G-4V353XY-1/2/0e2cd909933fa11ae60a0417d16d0faa
http://dx.doi.org/10.1109/INFOCOM.2008.178
http://dx.doi.org/10.1109/INFOCOM.2008.178
http://doi.acm.org/10.1145/1330332.1330334
http://doi.acm.org/10.1145/1330332.1330334
crawdad.cs.dartmouth.edu/umd/sigcomm2008

WiFiHop - Mitigating the Evil Twin Attack through Multi-hop Detection 39

23. Watkins, L., Beyah, R., Corbett, C.: A passive approach to rogue access point detection.
In: Global Telecommunications Conference, GLOBECOM 2007, pp. 355–360. IEEE, Los
Alamitos (2007)

24. Wei, W., Wang, B., Zhang, C., Kurose, J., Towsley, D.: Classification of access network types:
Ethernet wireless lan, adsl, cable modem or dialup? In: Proceedings IEEE of INFOCOM
2005 24th Annual Joint Conference of the IEEE Computer and Communications Societies,
vol. 2, pp. 1060–1071 (March 2005)

25. Wei, W., Jaiswal, S., Kurose, J., Towsley, D.: Identifying 802.11 traffic from passive mea-
surements using iterative bayesian inference. In: Proc. IEEE INFOCOM (2006)

26. Wei, W., Suh, K., Wang, B., Gu, Y., Kurose, J., Towsley, D.: Passive online rogue access
point detection using sequential hypothesis testing with tcp ack-pairs. In: Proceedings of the
7th ACM SIGCOMM Conference on Internet Measurement, IMC 2007, pp. 365–378. ACM,
New York (2007), http://doi.acm.org/10.1145/1298306.1298357

27. Xie, G., He, T., Zhang, G.: Rogue access point detection using segmental tcp jitter. In:
Proceeding of the 17th International Conference on World Wide Web, WWW 2008, pp.
1249–1250. ACM, New York (2008), http://doi.acm.org/10.1145/1367497.
1367750

28. Yin, H., Chen, G., Wang, J.: Detecting protected layer-3 rogue aps. In: Fourth International
Conference on Broadband Communications, Networks and Systems, BROADNETS 2007,
pp. 449–458 (September 2007)

http://doi.acm.org/10.1145/1298306.1298357
http://doi.acm.org/10.1145/1367497.1367750
http://doi.acm.org/10.1145/1367497.1367750

Investigation of Signal and Message Manipulations on
the Wireless Channel

Christina Pöpper, Nils Ole Tippenhauer, Boris Danev, and Srdjan Capkun

Department of Computer Science, ETH Zurich, Switzerland
{poepperc,tinils,bdanev,capkuns}@inf.ethz.ch

Abstract. We explore the suitability of Dolev-Yao-based attacker models for the
security analysis of wireless communication. The Dolev-Yao model is commonly
used for wireline and wireless networks. It is defined on abstract messages ex-
changed between entities and includes arbitrary, real-time modification of mes-
sages by the attacker. In this work, we aim at understanding and evaluating the
conditions under which these real-time, covert low-energy signal modifications
can be successful. In particular, we focus on the following signal and message
manipulation techniques: symbol flipping and signal annihilation. We analyze
these techniques theoretically, by simulations, and experiments and show their
feasibility for particular wireless channels and scenarios.

Keywords: Wireless Security, Adversarial Interference, Signal Manipulation.

1 Introduction

In wireless radio communications, message transmissions from a sender to one or sev-
eral receivers take place over the wireless channel. Given that this channel is an open
and shared medium, the communication is inherently exposed to threats related to
eavesdropping and intentional interference. The security analysis of wireless systems
usually evaluates these intrinsic threats with respect to specific application and system
properties (e.g., mobility, device complexity). As a result, a range of attacker models
and corresponding assumptions arise in practical evaluations.

Certain attacker models only consider passive (eavesdropping) attacks [36,10]. Oth-
ers are restricted to denial-of-service (DoS) jamming attacks in which the receiver is
precluded from retrieving and decoding the signal transmitted by the sender, e. g., in
military [19, 20] and increasingly in civilian [14, 38, 35] contexts. In stronger attacker
models, the attacker does not only have the ability to jam (i. e., block) the original trans-
mission, but she can also insert her own self-composed or replayed signals (insertion/
pollution attack) [1,32,28,26]. The attacker usually achieves this by either transmitting
a signal with significantly more power, which “overshadows” the original transmission
(this was, e. g., reported for GPS signals in [32] and for wireless access points in [26])
or by blocking the legitimate signal by jamming and then inserting her own signal at an-
other time or on another frequency channel (e. g., demonstrated for WLAN in [28]). In
both cases, in a successful attack, the receivers get deceived into receiving the inserted
signal of the attacker instead of the original signal.

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 40–59, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Investigation of Signal and Message Manipulations on the Wireless Channel 41

The strongest attacker models (e. g., in [24, 25, 11, 16]) adhere to a Dolev-Yao [5]
model, in which the attacker has the capability to eavesdrop, modify, compose, and
(re)play any messages transmitted and received by authorized devices. In this model, in
addition to eavesdropping and insertion, the attacker can fully [24] or partially [25, 11,
16] modify and annihilate signals at the receiver’s antenna.

Since attacker models are the foundation of the security analysis of any system, they
should be based on a realistic assessment of the system vulnerabilities and attacker ca-
pabilities. Weaker attacker models usually underestimate the threats because they do
not consider the full set of techniques that may be available to a determined attacker.
For example, any jamming detection based on the energy observed on the channel could
be circumvented if the attacker is using low-energy signals that corrupt only the mes-
sage preamble; many standard receivers would not be able to decode the message, al-
though the data part of the message would remain unchanged. On the other hand, the
strongest attacker models are often not motivated by practical considerations. For exam-
ple, Dolev-Yao based models will allow the attacker to transfer information to remote
locations instantaneously while this is not realistic [22]. Although designing a system
with an overestimation of the attacker capabilities does not harm the security of the
system, it may complicate the proposed solutions and create unnecessary overhead on
the communication or make the hardware setup more costly.

To investigate the suitability of different attacker models for wireless communi-
cation, in this work we explore the basic techniques for wireless signal (message)
manipulations and investigate their assumptions and practical realization. We first cate-
gorize physical-layer techniques available to strong attackers and show how they affect
the received message at the logical layer. We then focus on techniques that allow the
attacker to achieve covert, low-energy manipulations during the signal transmission.
More specifically, we investigate symbol flipping attacks, by which the attacker can
change symbols of the transmitted message and thus attack the message integrity, and
signal annihilation attacks, by which the attacker suppresses the sender’s signal at the
receiver.

In short, our main contributions are as follows:

• We categorize adversarial interference in wireless transmissions and compare it to
the capabilities of a Dolev-Yao attacker.

• We present a theoretical model to describe symbol flipping attacks.
• We explore the effectiveness of symbol flipping and signal strength manipulation

(annihilation) attacks in simulations and validate our findings experimentally using
USRP [6] devices.

The remainder of this paper is organized as follows: In Section 2, we describe related
work and state the problem that we tackle. In Section 3, we define and classify adversar-
ial interference in wireless communications and analyze its mapping to the Dolev-Yao
attacker model. We analyze symbol flipping attacks and the conditions for their success
theoretically in Section 4. In Section 5, we evaluate the feasibility of symbol flipping
and signal strength manipulation attacks by simulations and experiments. We discuss
implications of our findings in Section 6 and conclude the paper in Section 7.

42 C. Pöpper et al.

2 Related Work and Problem Statement

2.1 Related Work on Signal Manipulations

Wireless communication jammers have been widely analyzed and categorized in terms
of their capabilities (e.g., broadband, narrowband, tone) and behavior (e.g., constant,
sweep, random, reactive) [13, 19, 38]. Jammer models used in prior works [13, 31, 38]
cover the interference with transmissions by signal jamming and dummy packet or
preamble insertions. The authors of [30, 25] explicitly consider signal modification,
overshadowing, and symbol flipping in their respective attacker models and propose
solutions that achieve jamming- (and overshadowing-)resistant communication. How-
ever, neither of the mentioned works investigates the feasibility of such attacks.

When signals collide, the stronger one may survive regardless of the kind of signal.
Whitehouse et al. [33] propose a technique for sensor networks to detect and recover
packets from (unintended) collisions taking advantage of the capture effect, whereby
the packet with the stronger signal strength can be received in spite of a collision. [23]
quantifies the SINR conditions under which the capture effect can be observed. Another
example is GPS tampering by overriding [3]; the success of the attack is based on the
fact that GPS receivers tune in to the strongest (four) GPS signals available. The authors
of [9] point out that GPS signals can also be subject to spoofing and flipping attacks
that succeed with a certain probability. While they do not derive these probabilities, our
findings in the experimental evaluation are conform to their numbers.

The authors of [1, 21] show that for low-power wireless devices (sensor motes) pre-
dictable and deterministic symbol corruptions (flippings) are hard to achieve by mote-
class attackers. In these papers, the authors describe the effect of intentional interference
with a signal transmission in terms of the predictability of bit and packet corruptions.
Our work is related to this, however, we do not restrict our investigations to customary
sensor mote attackers but explore the underlying principles and conditions under which
message manipulations and signal annihilation can be successful.

2.2 Problem Statement

In this paper, we address the following problem: How can an attacker actively interfere
with ongoing wireless transmissions and which success rates can be achieved? This
question aims at exploring the feasibility of real-time manipulations of signals (mes-
sages) in which the attacker tampers with the signals while they are being transmitted.

In particular, we will practically investigate two types of attacks that may allow the
attacker to (i) modify signals and the data content of messages during their transmission
or (ii) disrupt the communication in a covert, hard-to-detect manner. We briefly outline
these two types of attacks:

Symbol flipping targets the data payload or the packet preamble, trying to modify
the packets at the receivers. Flipped symbols in the preamble prevent both the decoding
of the data payload and the detection of the jamming attack on standard devices because
they do not allow the receiver to detect the beginning of the message header or result in a
misinterpretation of the constellation diagram. Successful preamble corruption does not
require that specific symbols are flipped. Although integrity measures (e. g., checksums
and CRCs) may identify symbol flippings, they will not succeed if the attacker can

Investigation of Signal and Message Manipulations on the Wireless Channel 43

deterministically change bits of the CRC to conceal her modifications. We note that a
number of wireless protocols do not employ integrity protection measures or do not
enforce them cryptographically (such as WEP 802.11, civilian GPS, or the RFID-M1
communication protocol).

Signal annihilation can be achieved when the attacker’s signal creates destruc-
tive interference with the sender’s signal at the receiver (similar to multipath interfer-
ence [29]). In this case, the sender’s signal gets attenuated and may be annihilated at
the receiver; hence the receiver cannot detect an ongoing transmission. This attack can
be performed without prior knowledge of the message content and is difficult to prevent
without resorting to hardware modifications of the transceivers. Signal attenuation and
amplification attacks are also crucial to the security of RSSI-based localization [8].

The investigation of the research question above examines realistic attacker capabil-
ities that are assumed in a number of works on wireless communication without explo-
ration, e. g. in [24,25,11,16]. We therefore see our work as an important building block
for constructing realistic threat models and appropriate countermeasures. This is spe-
cially relevant in view of the recent development of tools that practically interfere with
ongoing transmissions and show the feasibility of real-time reactive radio interference,
such as [34].

3 Classifying Wireless Attacks

Attacker models used in the security analysis of wireless protocols are often defined on
an abstract layer. They usually consider effects—such as deletion and modification—
that an attacker can have on the reception of messages at the receiver. We will explain
such an attacker model in more details in Section 3.1.

In the context of wireless systems, message-based attacker models have been adop-
ted in a number of works, e. g., in [25, 24, 22, 11, 16, 15]. In these works, the attacker
is usually assumed to be able to eavesdrop, insert, modify, replay, delay, or delete any
signal being transmitted on the wireless channel. Since messages are defined on the
abstract, logical level of bits and signals comprise also the physical characteristics of
the transmission, it is not clear that abstract network protocol attacker models can be
applied directly to wireless communications.

In the following, we summarize message-layer effects commonly used in abstract
attacker models and identify signal-layer effects which cause them (Section 3.1). To
model these effects, we define adversarial interference as attacks in which the attacker
transmits her own signals to the channel and we investigate how this can be captured
in existing physical-layer reception models (Section 3.2). We then formally classify
attacks based on adversarial interference (Section 3.3).

3.1 Signal Manipulations and Effects on Messages

In attacker models such as the Dolev-Yao (DY) model [5], the attacker’s capabilities
include eavesdropping and the arbitrary modification and deletion of messages trans-
mitted by legitimate entities as well as the composition and insertion of the attacker’s

44 C. Pöpper et al.

Fig. 1. Examples of signal-layer manipulations and their effects on the message layer. Signals
can, e. g., be annihilated or jammed, their signal strength can be modified, and their amplitude,
phase or frequency can be changed to influence their demodulation. Message-layer effects can in
general be caused by multiple signal-layer effects. Signal-layer effects in bold will be investigated
in Section 4.

own messages at the receivers. In the following, we list the effects that a DY-like attacker
is assumed to be capable of achieving at the victim’s receiver and give examples of how
a wireless attacker can cause these effects on the signal layer (see Figure 1).

Message Eavesdropping: The attacker can observe all messages sent to one or more
receivers. In a wireless network, on the signal layer, an attacker can observe the channel
and record all signals with own antennas. The interpretation of the received signals as
messages may require secrets such as the used spreading codes, which might not be
available to the attacker. In some scenarios, the attacker can be restricted in the number
of channels that she can simultaneously monitor [4, 37, 25].

Message Insertion and Replay: The attacker acts like a legitimate member of the
network, and as such she can insert messages or replay previously received messages.
In wireless networks, this is a reasonable assumption on both the message and signal
layer because the attacker can construct own messages and transmit the corresponding
signals and she can also replay previously received signals and messages. Restrictions
on this can exist, e. g., in spread spectrum communication using secret sequences shared
between the sender and receivers [19].

Message Deletion: The attacker is in control of the network and can prevent the recep-
tion of messages. To achieve this effect on a wireless channel, several methods can be
used on the signal layer. These methods include jamming of complete messages using
higher energy noise signals as well as jamming only the message preamble to hide it
from the receiver. A more covert attack is to annihilate the signal by sending inverse
signals to the receiver. While these methods all have the same effect on the message
layer, i. e., the deletion of the message, in each method the receiver will capture differ-
ent signals on the (physical) signal layer.

Message Modification: The attacker can modify the messages obtained by the re-
ceivers. To modify wireless messages, the attacker can either change the signals during
their transmission by adding own signals—thus influencing the demodulation of single

Investigation of Signal and Message Manipulations on the Wireless Channel 45

symbols (symbol flipping)—or prevent the receiver from obtaining the original message
(message deletion) and then insert a modified version of the message.

Signal-layer manipulations such as attenuation and amplification are not directly re-
flected in abstract attacker models. If the signal amplitude of the message is increased
or decreased (within a certain threshold), the data content on the message layer will
remain unchanged with most modulation schemes. However, the amplitude change can
be relevant for a number of wireless protocols, e. g., RSSI-based localization [8] for
which signal strength amplification and attenuation constitute an attack.

3.2 Model of Adversarial Interference

In this section, we present a model to describe the possible effects that signal-layer
manipulations can have on the message layer.

We start with a brief system description and introduction of the notation used. We
consider a sender A and a particular receiver B that are able to communicate over
a wireless radio link. Wireless transmissions are characterized by the messages (data)
being transmitted and the physical signals used to transmit the data. The physical signals
are determined by the used modulation scheme, power levels, etc. Let s(t) be the signal
transmitted by A; s(t) is the result of the encoding process at A that packages, error-
encodes, and modulates a data sequence SA. Let ŝ(t) be the signal that B receives under
unintentional interference (including noise and signal attenuation). In order to receive
the message, B applies a function d(·) to demodulate ŝ(t); it outputs the demodulated
symbol sequence S. If B does not detect the message on the channel1, the demodulation
results in the empty symbol sequence ∅.

Let j(t) be the signal transmitted by an attacker J and ĵ(t) be the corresponding
signal received at B. The demodulation of ĵ(t) at B results in d(ĵ(t)) = SJ . We now
define adversarial interference as follows:

Definition 1. Let ô(t) be the superposition of two signals ŝ(t) and ĵ(t) at B. Let SA =
d(ŝ(t)), SA �= ∅. Let SB = d(ô(t)) at B. The transmission of j(t) is an interference
attack if SB �= SA or if Pô(t) �= Pŝ(t), where Pô(t) and Pŝ(t) are power metrics for
ô(t) and ŝ(t).

This definition implies that, in a successful interference attack, the attacker changes the
message symbols and/or the signal power of the original signal ŝ(t). We note that ŝ(t)
and ĵ(t) must overlap in time and frequency band at B for the attack to succeed.

The defined signal-layer manipulations can be integrated in existing physical recep-
tion models for wireless communications, see Appendix A. This integration supports
and facilitates the identification of different types of attacks.

3.3 Classification

Given the considerations above, we can identify the following types of attacks based on
adversarial interference. We also map them to message-layer effects, see Figure 1. We
use the notation as introduced in Definition 1.

1 The detection of a signal may, e.g., not be triggered if the signals power lies below a threshold
or if its preamble does not match the used protocol.

46 C. Pöpper et al.

• Symbol flipping: One or more symbols of SA are flipped. ô(t) gets demodulated
into a valid sequence SB , SB �= SA and SB �= SJ . Pô(t) ≈ Pŝ(t) for the message
duration.

• Amplification: ĵ(t) amplifies ŝ(t) at B. SB = SA. Pô(t) > Pŝ(t) for the entire
signal ô(t).

• Attenuation: ĵ(t) attenuates ŝ(t) at B. SB = SA. Pô(t) < Pŝ(t) for the entire
signal ô(t).

• Annihilation: ô(t) falls below the noise level. ŝ(t) is removed at B by a (suffi-
ciently close) inverse jamming signal ĵ(t) ≈ ŝ−1(t). SB = ∅. Pô(t) � Pŝ(t) for
the entire signal ô(t).

• Overshadowing: ŝ(t) appears as noise in the much stronger signal ĵ(t). SB = SJ .
Pô(t)	 Pŝ(t) for the entire signal ô(t).

• Noise jamming: ĵ(t) is noise to prevent B from detecting the message, thus block-
ing its reception. SB = ∅. Pô(t)	 Pŝ(t) for the entire signal ô(t).

Amplification, attenuation, and annihilation can be denoted as signal strength modifi-
cation attacks. From the attacker’s point of view, a similar action is performed in all
attack cases listed above, namely the transmission of a signal j(t). What differs are the
type and strength of j(t) and its dependency on s(t): While j(t) is independent of s(t)
in overshadowing and noise jamming attacks, the attacker uses s(t) to construct j(t)
in signal strength modification attacks and both s(t) and o(t) in symbol modification
attacks, where o(t) is the signal that the attacker wants B to receive.

We note that, according to Definition 1, attacks in which the attacker jams the origi-
nal signal and inserts an adversarial signal with a shift in time or frequency band (e.g.,
exploiting the channel structure of WLAN 802.11 signals by transmitting on separate
frequencies [28]) are a combination of adversarial interference and a parallel inser-
tion/pollution attack [25, 12].

4 Theoretical Analysis of Symbol Flipping

In this section, we focus on symbol modification attacks and present our model of sym-
bol flipping. We restrict our considerations to single carrier modulations and reason
about flipping on the level of symbols. We distinguish symbol flipping attacks accord-
ing to the attacker’s goal. SA, SB , and j(t) are as in Definition 1.

Definition 2. A deterministic symbol flipping attack has the goal to make B demodu-
late SB = ST , where the symbol sequence ST �= SA has been defined by the attacker
before the transmission of j(t). A random symbol flipping attack targets at modifying
any symbol(s) of SA such that SB �= SA.

In the following, we denote the symbols of the sequence SA also as target symbols.
Deterministic symbol flipping requires a-priori knowledge about the target symbols,
i.e., about the parts of a message that are to be flipped. We next investigate how to
achieve successful symbol flipping.

The way multiple signals get superimposed depends on their modulations (including
signal power, phase shifts, etc.). We consider linear digital modulation schemes such

Investigation of Signal and Message Manipulations on the Wireless Channel 47

(a) (b) (c)

Fig. 2. (a) Effect of imperfect baseband alignment of the flipping symbol w.r.t. the target QPSK
symbol. Given a delay βTs, the fraction β of the energy will be added to the next symbol. (b)
Effect of the relative carrier phase offset α between the target and the flipping signals. The phase
offset rotates the energy contribution of the flipping signal. As all flipping symbols have the same
carrier phase offset, all energy contributions get rotated. (c) Depending on the signal energy and
rotation, different constellation regions can be reached by symbol flipping.

as 2-PAM, 4-QAM (QPSK), and 16-QAM, which divide the constellation space into
decision regions with varying sizes and shapes. For QPSK (see Figure 2a), the decision
regions are separated by the axes of the IQ-plane. Given a modulation scheme and
the received signal vector ŝ, the decision element in the receiver’s decoder outputs the
constellation point with the minimum Euclidean distance (ML detection) [20]. Moving
a signal vector ŝ in the constellation implies a change in signal power (distance from
the origin of the constellation diagram) and/or a changed angular phase of the signal.
For QPSK, we define two ways of flipping a symbol (this will later matter for our
simulations):

Definition 3. For QPSK, a short transition denotes the shift of a symbol vector into an
adjacent constellation region (ideally parallel to the I- or Q-axis). A long transition
denotes a diagonal shift into the opposite constellation region.

In Gray-encoded constellations, a short transition changes one bit of a symbol and a
long transition both bits of the symbol. Such transitions can be caused by adding a
QPSK symbol with modified carrier phase alignment and enough power. If this symbol
temporally overlaps with one or more target symbols, we call it flipping symbol.

In practice, three factors influence the result of a symbol flipping attack: (i) the base-
band alignment of the sender’s and attacker’s symbols, (ii) the relative carrier phase
offset of the attacker’s signal, and (iii) the energy of the attacker’s symbol.

(i) The baseband alignment of the flipping symbols determines the amount of energy
that will not be contributed to the target but to the neighboring symbols in the message.
Here, we assume a sequence of flipping symbols that are all delayed by the same time
βTs, where Ts is the symbol duration. Then, a fraction β of the energy will influence
the decoding of the following symbol. Figure 2a visualizes the effect of the baseband
symbol alignment and shows the effect on the next target symbol: the misaligned flip-
ping symbol, represented by the vector (2,0), will affect the current symbol (−1,1) with
1 − β and the following symbol with β. A similar effect may occur to the current

48 C. Pöpper et al.

symbol due the prior flipping symbol. We will analyze the required baseband alignment
by simulations and experiments in Section 5.

(ii) In addition to the effect of the baseband alignment, the relative carrier phase
offset α of the flipping signal with respect to the target signal will rotate the energy

0

0.2

0.4

0.6

0.8

1

 0.5 1 1.5 2 2.5 3

P
ro

ba
bi

lit
y

of
 n

 fl
ip

s
pe

r
sy

m
bo

l
Relative energy of flipping signal

flips n >= 1
flips n = 1
flips n = 2

Fig. 3. Analytical probability of success-
ful symbol flipping for random carrier
phase alignment and perfect baseband
alignment, depending on the relative sig-
nal energy

contribution of the signal. As all flipping sym-
bols have the same carrier phase offset, all en-
ergy contributions get rotated in the same way,
see Figure 2b.

(iii) For short transitions, the minimum re-
quired signal energy (for exact carrier phase
and baseband alignment) is a factor 1/

√
2

of the energy of the target signal; for long
transitions, at least as much energy as in the
target signal is required. Figure 2c gives an ex-
ample of a short transition (one bit changed)
and a long transition (two bits changed). Based
on our model, we can predict the probabil-
ity of successful symbol flipping for a random
carrier phase offset. Figure 3 displays the ana-
lytical flipping probabilities depending on the
relative signal energy, derived using trigono-
metrical functions.

5 Simulation and Experimental Evaluation

In this section, we explore the conditions for successful symbol flipping and signal an-
nihilation (as defined in Section 3.3) under an attacker as presented in Section 5.1. We
verify our theoretical symbol flipping model of Section 4 by simulations in Matlab [27]
in Section 5.2. The main results are then validated using signals captured from recorded
wireless communications in Section 5.3. We also explore signal annihilation and atten-
uation by experiments with wireless devices in Section 5.4.

5.1 Simulation Setup and Attacker Model

Simulation Setup. For our simulation and experimental evaluation of symbol flipping
and annihilation, we focus on QPSK modulation due to its widespread use (e.g., in
802.11 and Bluetooth 3.0). We implemented an 802.11 digital QPSK modem with an
AWGN channel. The matched filter g(t) was implemented by a root raised cosine filter.
The carrier frequency was fixed to fc = 2.4 GHz with φ1(t) = cos(2πfct) and φ2(t) =
− sin(2πfct) for the I and Q channels, respectively. Figure 7 in Appendix B displays
the simulation setup.

Our simulations are based on 1000 random QPSK symbols that we use to create the
flipping symbols. For long transitions, we invert each symbol and double its amplitude;
for short transitions we combine the inverted symbol with its complex-conjugate. We
use the following notations: The original (target) symbol is denoted by T , the short

Investigation of Signal and Message Manipulations on the Wireless Channel 49

transition flipping symbol by S, and the long transition flipping symbol by L. R is a
flipping symbol with random carrier phase offset and same power as L.

Attacker Model. In our simulations, we focus on two attacker types: (a) a strong at-
tacker with perfect carrier phase alignment, able to predict which symbols are going to
be sent, and therefore using perfect flipping signals; (b) a weak attacker without carrier
phase alignment and therefore random flipping signals. The goal of the strong attacker
is to perform a deterministic symbol flipping attack, while the weak attacker tries to
perform a random symbol flipping attack (see Definition 2). In order to achieve their
goals, the attackers follow these strategies:

• The strong attacker uses a short transition flipping signal S to flip a specific bit of
a target symbol. To flip both bits of the symbol, she uses a (more powerful) long
transition flipping signal L. In both cases, the flipping signals have perfect carrier
phase alignment with the target signal.

• The weak attacker uses flipping symbols R with the same power as L but with
random carrier phase (rotating the signal vector in the IQ-plane) with respect to
the target signal.

We note that a short transition by a strong attacker is successful only if the intended bit
was flipped, while for a weak attacker the flipping of any of the two bits (or both bits)
of the symbol are considered a success.

5.2 Simulated Modification of Modulated Signals

Following our model from Section 4, we will now predict the effects of varying power,
carrier phase offset, and baseband offset of the flipping signal. Finally, we will predict
their impact on annihilation attacks.

Power of the Flipping Signal. According to our model, the power of the flipping signal
needs to be greater than a fraction 1/

√
2 of the target signal. Flipping in this case is only

successful if the flipping signal has the optimal phase (e.g., shifts the symbol (1,1) into
the direction of (1,-1)). For random phases, the power of the flipping signal must be
higher.

Figure 4a displays the influence of the relative power of the flipping signal on the
probability to flip QPSK symbols (for random carrier phases of the flipping signal and
perfect baseband symbol alignment). The plot shows the probability of a random sym-
bol flip for a weak attacker and a deterministic flip for a strong attacker, for an SNR
level of 20 dB. The weak attacker has no carrier phase synchronization and thus no
control over the angle of the flipping signal. The strong attacker uses a flipping signal
with perfect phase synchronization.

The simulation confirms that, for a low noise level (high SNR), the power PS of a
short transition symbol must satisfy PS ≥ PT√

2
, where PT is the power of the target

symbol, in order to change a single bit of the symbol. The weak attacker’s probability
to flip a single bit converges towards 50 % for PR ≥ PT and her chance to flip both
bits of a symbol towards 25 % for PR →∞ (not shown in Figure 4a).

Carrier Phase Offset for Symbol Flipping. The carrier phase offset between the target
signals and the flipping signals at the receiver is hard to control for the attacker. This

50 C. Pöpper et al.

Fig. 4. Influence of the flipping symbol on the probability to change a QPSK symbol using a
random-phase flipping symbol R (weak attacker) or a perfect short/long flipping symbol (S/L)
(strong attacker). (a) Influence of the relative power of the flipping symbol. (b) Influence of the
carrier phase offset of the flipping signal. (c) Influence of the baseband offset (relative to the
symbol duration Ts) of the flipping symbol. (d) Influence of the SNR for a fixed carrier phase
offset of 0.05π.

is the main reason why symbol modification attacks are difficult to conduct even with
perfect advance knowledge of the data to be sent. The effect of a constant carrier phase
offset under noise is displayed in Figure 4b for PR = PL = 2PT , PS =

√
2PT , and

20 dB SNR.
Simulations without noise show that a strong attacker must hit the carrier phase

within about 13.5% of the carrier phase duration to flip both bits of the target sym-
bol (long transition). Short transitions for the strong attacker require less carrier phase
precision, the tolerance is 25%. The carrier phase offset has no impact for a weak at-
tacker because she uses flipping signals with random phase; the carrier phase offset
does therefore not influence her probability to flip bits.

If the attacker does not synchronize correctly to the sender’s carrier frequency, this
will make it almost impossible for her to predict the optimal carrier phase alignment
for the flipping symbols. However, the attacker must synchronize the carrier frequency
of her flipping signals only once to a target transmission, which will then result in the
same carrier phase offset for all flipping signals with respect to the target transmission.

Baseband Offset for Symbol Flipping. A weak attacker might have problems aligning
the flipping symbols correctly to the target symbols. This has the effect that the energy
of the flipping symbol will not only contribute to the target symbol but also influence
neighboring symbols (see Section 4). We evaluated the impact of this baseband offset

Investigation of Signal and Message Manipulations on the Wireless Channel 51

by simulations, see Figure 4c. We set PR = PL = 2PT and PS =
√
2PT as before for

the power of the flipping signals and 20 dB SNR. The simulation results show that the
probability for a weak attacker to flip a bit degrades smoothly. In Figure 4c, her prob-
ability does not converge to zero for a baseband misalignment of one symbol duration
(Ts) because the following symbol is flipped (which is a success for the weak attacker).
The strong attacker has a probability of 1 to flip both bits of a symbol if the baseband
offset is smaller than 50 % (with sufficiently high SNR).

Similarly to the carrier frequency offset, an offset in the baseband symbol rate be-
tween the attacker and the sender will lead to changing baseband offsets for a sequence
of flipping symbols, which will not influence the weak attacker but make deterministic
attacks for the strong attacker almost impossible.

Influence of the SNR. We next investigate the influence of the Signal-to-Noise-Ratio on
the attacker’s probability to perform successful symbol flipping. Intuitively, the higher
the SNR at the receiver, the better a strong attacker can predict the effects of the flipping
attack. To demonstrate the effect of the SNR on the attacker’s success probability, we
ran a simulation with PR = PL = 2PT , PS =

√
2PT , carrier phase offset 0.05π,

and perfect baseband alignment. The results in Figure 4d show that the SNR does not
influence the weak attacker, but lower SNR values require the strong attacker to have a
more accurate carrier phase synchronization to flip the target.

Simulation of Signal Strength Modification. We now investigate signal annihilation
attacks (cp. Section 3.3). For this purpose, we use the legitimate signal of the sender
to attenuate the sender’s signal at the receiver by destructive interference, similar to
worst-case effects in multipath environments. The attacker’s goal is to attenuate the
overall power of the signal so that it is not detected at the receiver (instead of changing
the message content). Since this attack repeats the signals transmitted by the sender,
it is agnostic to the actual data content of the message; the attacker does not need to
know it in advance. The repeated signal will also have the same carrier frequency as the
original signal, eliminating this possible source of randomness for the attacker. To fully
annihilate the original signal, the attacker’s signal needs to have the same power as the
sender’s signal at the receiver.

Figure 5a shows the simulated signal attenuation at the receiver for variable delays
between the transmitted (original) and the repeated (adversarial) signal using the sim-
ulation setup in Section 5.1 with an SNR of 30 dB. The highest attenuation of approx-
imately 28 dB is achieved only when shifting by a delay of π and high attenuation is
reached every 2π of the carrier delay. This high attenuation slightly decreases for higher
offsets in carrier periods due to the resulting larger time offset between the two signals.
We refer to this attack as a π-shift-attack. We note that the original signal can also be
amplified instead of attenuated. This would occur when shifting by a delay of 2π and
multiples of it. The original signal could be amplified by up to 6 dB.

Given that the π-shift-attack does not require demodulation or complex logic at the
attacker, it can be implemented using only directional antennas and possibly an ampli-
fier. In Section 5.4, we present a practical implementation of this attack and show that
high attenuation is also possible in practice.

52 C. Pöpper et al.

(a) (b) (c)

Fig. 5. Signal annihilation attack. Figures (a) and (b) depict the signal attenuation obtained by
adding the same signal delayed with different carrier offsets. (a) shows the results using signals
simulated in Matlab (with an SNR of 30 dB), (b) uses recorded signals (measured SNR of around
30 dB). (c) shows the practical signal attenuation obtained using our experimental carrier.

5.3 Simulated Modification of Recorded Signals

We continue our evaluation with signals transmitted over the air and recorded by an
oscilloscope. This allows us to validate the simulation results of symbol flipping and
signal attenuation (Section 5.2) with a non-ideal transceiver and lossy communication
channel. In our experiment, we combine our digital QPSK modem with the capabilities
of a universal software radio peripheral (USRP [6]). We use fully modulated messages
in a frame that closely resembles the 802.11b frame specification [2] with a preamble for
carrier frequency offset estimation and synchronization [17]. Figure 8 in Appendix C
displays our setup for the experimental investigations in Sections 5.3-5.4.

Symbol Flipping of Recorded Signals. Our main goal of this experiment is to validate
our predicted probabilities for an attacker using optimal S/L flipping symbols to reach
her goal with random carrier phase synchronization. In addition, we are interested in the
chance of a weak attacker flipping any (neighboring) bits. We simulated the addition of
the recorded flipping symbol with varying baseband offsets of 0, 0.25Ts, and 0.5Ts and
averaged carrier phase offsets between 0 and 2π. The power of the flipping symbols is
PR = PL = 2PT , PS =

√
2PT as in the previous simulations.

Table 1. Probability of modifications of the
target (T) and neighboring (N) symbols in
simulated vs. recorded signals for random
carrier phase offset (%)

Baseband Offset
0 0.25× Ts 0.5× Ts

Sim T N T N T N
R, short 25 0 25 0 0 0
R, long 13.5 0 9.3 0 0 49.96
R, any 63.5 59.3 74.82

Recorded T N T N T N
R, short 24.3 0 25.0 0 21.5 9.7
R, long 11.1 0 11.1 0 2.8 27.8
R, any 58.3 58.3 70.8

Table 1 compares the chances for suc-
cessful attacks on the target symbol (T) and
(unwanted) flipping of neighboring symbols
(N) between the results of simulation with-
out noise (Sim) and the findings based on
our recorded signals (Recorded). We observe
that the predicted probabilities for long and
short transitions closely follow the probabil-
ities computed from the recorded signals for
baseband offsets of 0 and 0.25Ts. The influ-
ence on the target and neighboring symbols
only differ for an offset of 0.5Ts. This is most
likely due to the fact that the probabilities to
symbol flipping at 0.5Ts occupy a transition
region (Figure 4c) and thus can take different
values in the presence of noise. Nevertheless,

Investigation of Signal and Message Manipulations on the Wireless Channel 53

our main result is confirmed by the experimental evaluation: about 13 % flipping chance
for long transitions and about 25 % for a short transition, both with random carrier phase
offset and small baseband offset.

Signal Annihilation of Recorded Signals. We used recorded messages as described
in 5.3 to simulate the effect of signal annihilation by adding time-shifted copies of
the signal. The lower plot in Figure 5 shows the obtained attenuation. In comparison
to the simulation with ideal signals (i.e., upper plot in Figure 5), the achieved highest
attenuation was lower by few decibels. Correct demodulation at the receiver was still
not possible with our implementation, hence the signal was successfully annihilated. We
also observe that there are several possible carrier offsets at which this high attenuation
can be achieved.

5.4 Experimental Evaluation of Signal Annihilation

The main goal of this evaluation is to estimate how accurately the carrier phase offset
can be controlled and what attenuation could be achieved in real multipath environ-
ments. For this purpose, we built the experimental signal annihilation setup shown in
Figure 8 (Appendix C). The setup consists of a transmitter (USRP), a receiver (oscillo-
scope), and two directional antennas (with a gain of 15 dBi) connected by a cable. One
antenna is directed at the transmitter and the second antenna repeats the received sig-
nal towards the receiver. The USRP sends periodic signals, which are simultaneously
repeated by the antennas, received at the oscilloscope, and demodulated in Matlab. To
achieve signal annihilation, the amplitude and carrier phase delay of the attacker’s sig-
nal must closely match the legitimate signal at the receiver. We controlled the carrier
phase offset between the transmitted and repeated signals by changing the distance be-
tween the antennas. Since we used high gain directional antennas, we could also adapt
the power of the repeated signal by directing the antenna away from the receiver by
some degrees. For a distance of 2 m between the USRP and the receiver and an appro-
priate positioning of the directional antennas (approximately 1 m away from the line of
sight), we achieved the predicted signal attenuation down to the noise level. Figure 5c
shows the signals received at the oscilloscope with and without the two directional an-
tennas. Our results show an attenuation of approximately 23 dB. By using a longer (1 m)
cable between the directional antennas, we also verified that the resulting higher base-
band offset between the transmitted and repeated signals does have a significant impact
on the achieved attenuation. We note that for longer distances, the same setup would
require additional amplification between the directional antennas.

5.5 Summary of Results

We evaluated the influence of carrier and baseband offsets, amplitude mismatches, and
the SNR on symbol flipping, first theoretically in Section 4 and then by simulations
and experiments. Our findings show that, given accurate carrier phase and baseband
synchronization, deterministic symbol flipping is feasible for strong attackers.

If the attacker cannot adapt to the sender’s carrier phase offset, a random offset will
allow her to achieve long transitions causing deterministic symbol flippings in around
13.5 % of the cases; for a short transition, this chance reaches up to 25 % (see Table 1).

54 C. Pöpper et al.

Fig. 6. Examples for wireless networks. (a) Static networks in quasi-static, quasi-free-space envi-
ronments allow a strong attacker to perform deterministic signal manipulations; we thus confirm
the Dolev-Yao model as an appropriate worst-case attacker model. (b) Environments with multi-
path effects and networks with mobile nodes suggest that deterministic, covert signal manipula-
tions are hard to achieve—a probabilistic attacker model is more realistic.

The weak attacker aiming at changing one bit of any symbol will achieve this with a
chance of 50 % (see Figure 4 and Table 1) per flipping symbol as long as her signal
has enough power, regardless of the carrier phase offset and baseband offset. Since the
carrier phase offset is influenced by the channel and the geometric setup of the sender,
attacker, and receiver, it might be hard to exactly match the target offset in practice. We
discuss the impact of this on deterministic message manipulations in Section 6.

We also predicted an attenuation of the original signal to the noise level by adding the
same signal shifted by a certain carrier phase offset for realistic SNR levels (e.g., 20 dB).
We reproduced the attenuation with recorded signal traces in Matlab and showed its
practical feasibility in a lab environment using two directional antennas.

We discussed the use of rotated and scaled QPSK symbols as flipping signals. The
use of alternative, e.g., shorter symbols of higher bandwidth, is left for future work.

6 Implications

In the previous sections, we have investigated the practicability of low-energy symbol
flipping and signal annihilation attacks through simulations and experiments. We will
now discuss the implications of our results in selected scenarios.

In a first scenario, we consider a wireless network with static wireless nodes and
quasi-static, quasi-free-space channel properties. An example of such a network could
be wireless sensor nodes deployed in rural areas, see Figure 6a. If an attacker with strong
signal manipulation capabilities is allowed to access any location, she can measure dis-
tances and estimate the channel with high precision to any target node. The attacker
would thus be able to achieve carrier phase synchronization and control the signal am-
plitude levels at the target receiver in order to flip symbols and/or annihilate transmitted
signals with very high probability (for our system with non-coherent receivers). This
corresponds to the model of our strong attacker (Section 5.1).

In a number of scenarios that are typical for wireless network deployments at least
one of the assumptions in the above case is violated. Examples include static wireless
networks in dynamic environments (e.g., urban areas) or mobile wireless networks, see
Figure 6b. In both examples, wireless nodes communicate over time-varying fading
channels [29]. This channel makes carrier phase synchronization and amplitude control
at the target receiver very difficult (if not infeasible) for the attacker as it requires her to

Investigation of Signal and Message Manipulations on the Wireless Channel 55

know the state information of the sender-receiver channels. Given that feedback signal-
ing is typically needed for channel state information (CSI) estimation [18], it is hard to
launch deterministic attacks without receiver cooperation. Failing to do so significantly
reduces the probability of a strong attacker to perform deterministic short and long sym-
bol flipping (Definitions 2 and 3) to 25% and 12.5%, respectively (in our scenario using
QPSK modulation).

Furthermore, our results show that an attacker without a priori knowledge of the
transmitted data has a chance of up to 75 % (see Table 1) to change any symbol (flip
one or two bits) by adding a flipping symbol with twice the signal power. Depending on
the error-correcting mechanisms employed at the receiver, this can allow the attacker to
jam messages (or message preambles) in an energy-efficient way.

In summary, we draw the following conclusions: We conclude that the attacker models
selected for the security analysis of wireless communication need to be chosen in ac-
cordance with the deployed network and scenario. In the worst case, the attacker can
covertly and deterministically delete and manipulate messages if the wireless network
deployment cannot guarantee that the channel is dynamic. These attacks would not be
detected by existing energy-based jamming detection countermeasures, as they do not
add significantly more energy on the channel. In this aspect, the attacker’s capabili-
ties become very close to those of the Dolev-Yao model. If a dynamic channel can be
assumed, even the strongest attacker can only probabilistically delete and modify mes-
sages without risking detection by energy-based jamming detection techniques. Such a
probabilistic attacker model captures dynamic time-varying channels in the sense that
the carrier phase offset is likely to change between individual messages. We note that
the probability with which the attacker will be successful depends on a number of sys-
tem parameters, including coherency or non-coherency of the reception process of the
receiver, multipath effects, etc. We leave the investigation of these settings open for
future work.

7 Conclusion

In this paper, we investigated the applicability of abstract attacker models of wireline
protocols in the security analysis of wireless protocols. We first categorized different
types of signal-layer attacks and mapped them to the Dolev-Yao attacker model. Then
we explored the feasibility of basic techniques for manipulating wireless signals and
messages. We focused on symbol flipping and signal annihilation attacks that both allow
covert, low-energy manipulations of signals during their transmission. Our theoretical
analysis, simulations, and experiments identified their conditions for success for QPSK-
modulated signals and showed their practical feasibility given quasi-static, quasi-free-
space channels. Our findings confirm the need of strong attacker models (similar to
Dolev-Yao’s model) in specific static scenarios, but they also suggest to construct alter-
native, probabilistic attacker models for a number of common wireless communication
scenarios.

Acknowledgments. This work was partially supported by the Zurich Information
Security Center. It represents the views of the authors.

56 C. Pöpper et al.

References

1. Arora, A., Sang, L.: Capabilities of low-power wireless jammers. In: IEEE Infocom Mini-
conference (2009)

2. IEEE Standards Association. IEEE Standard 802.11b-1999: Wireless LAN MAC and PHY
Specifications (1999), http://standards.ieee.org

3. Davidoff, S.: GPS spoofing (2008),
http://philosecurity.org/2008/09/07/gps-spoofing

4. Desmedt, Y., Safavi-Naini, R., Wang, H., Charnes, C., Pieprzyk, J.: Broadcast anti-jamming
systems. In: Proceedings of the IEEE International Conference on Networks, ICON (1999)

5. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions on Infor-
mation Theory 29(2), 198–208 (1983)

6. Ettus. Universal software radio peripheral (USRP), http://www.ettus.com
7. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions on Information

Theory 46(2) (2000)
8. Hightower, J., Borriello, G., Want, R.: SpotON: An indoor 3D location sensing technology

based on RF signal strength. Technical Report 2000-02-02, University of Washington (2000)
9. Humphreys, T.E., Ledvina, B.M., Psiaki, M.L., O’Hanlon, B.W., Kintner Jr., P.M.: Assessing

the spoofing threat: Development of a portable GPS civilian spoofer. In: Proceedings of the
ION GNSS International Technical Meeting of the Satellite Division (2008)

10. Jana, S., Premnath, S.N., Clark, M., Kasera, S.K., Patwari, N., Krishnamurthy, S.V.: On the
effectiveness of secret key extraction from wireless signal strength in real environments. In:
Proceedings of the ACM/IEEE International Conference on Mobile Computing and Net-
working, MobiCom (2009)

11. Jin, T., Noubir, G., Thapa, B.: Zero pre-shared secret key establishment in the presence of
jammers. In: Proceedings of the ACM International Symposium on Mobile Ad Hoc Net-
working and Computing (MobiHoc). ACM Press, New York (2009)

12. Karlof, C., Sastry, N., Li, Y., Perrig, A., Tygar, D.: Distillation codes and applications to DoS
resistant multicast authentication. In: Proceedings of the Network and Distributed Systems
Security Symposium, NDSS (2004)

13. Li, M., Koutsopoulos, I., Poovendran, R.: Optimal jamming attacks and network defense
policies in wireless sensor networks. In: Proceedings of the IEEE Conference on Computer
Communications, InfoCom (2007)

14. Lin, G., Noubir, G.: On link layer denial of service in data wireless LANs: Research articles.
Wireless Communications & Mobile Computing 5(3), 273–284 (2005)

15. Liu, A., Ning, P., Dai, H., Liu, Y.: Defending DSSS-based broadcast communication against
insider jammers via delayed seed-disclosure. In: Proceedings of Annual Computer Security
Applications Conference, ACSAC (2010)

16. Liu, Y., Ning, P., Dai, H., Liu, A.: Randomized differential DSSS: Jamming-resistant wireless
broadcast communication. In: Proceedings of the IEEE Conference on Computer Communi-
cations, InfoCom (2010)

17. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-Time Signal Processing, 2nd edn.
Prentice-Hall Signal Processing Series (1998)

18. Iserte, A.P.: Channel state Information and joint transmitter-receiver design in multi-antenna
systems. PhD thesis, Polytechnic University of Catalonia (2005)

19. Poisel, R.A.: Modern Communications Jamming Principles and Techniques. Artech House
Publishers, Boston (2006)

20. Poisel, R.A.: Foundations of Communications Electronic Warfare. Artech House Publishers,
Boston (2008)

http://standards.ieee.org
http://philosecurity.org/2008/09/07/gps-spoofing
http://www.ettus.com

Investigation of Signal and Message Manipulations on the Wireless Channel 57

21. Sang, L., Arora, A.: Capabilities of low-power wireless jammers. Technical Report OSU-
CISRC-5/08-TR24, The Ohio State University (2008)

22. Schaller, P., Schmidt, B., Basin, D., Čapkun, S.: Modeling and verifying physical properties
of security protocols for wireless networks. In: Proceedings of the IEEE Computer Security
Foundations Symposium (2009)

23. Son, D., Krishnamachari, B., Heidemann, J.: Experimental study of concurrent transmission
in wireless sensor networks. In: Proceedings of the ACM Conference on Networked Sensor
Systems, SenSys (2006)

24. Strasser, M., Danev, B., Čapkun, S.: Detection of reactive jamming in sensor networks. ACM
Transactions on Sensor Networks 7, 16:1–16:29 (2010)

25. Strasser, M., Pöpper, C., Čapkun, S., Čagalj, M.: Jamming-resistant Key Establishment using
Uncoordinated Frequency Hopping. In: Proceedings of the IEEE Symposium on Research in
Security and Privacy, S&P (2008)

26. Symantec. Securing enterprise wireless networks. White Paper (2003)
27. The MathWorks, Inc. Matlab – a numerical computing environment,

www.mathworks.com
28. Tippenhauer, N.O., Rasmussen, K.B., Pöpper, C., Čapkun, S.: Attacks on Public WLAN-

based Positioning. In: Proceedings of the ACM Conference on Mobile Systems, Applications
and Services, MobiSys (2009)

29. Tse, D., Viswanath, P.: Fundamentals of wireless communication. Cambridge University
Press, Cambridge (2005)

30. Čagalj, M., Hubaux, J.-P., Čapkun, S., Rengaswamy, R., Tsigkogiannis, I., Srivastava, M.: In-
tegrity (I) Codes: Message Integrity Protection and Authentication Over Insecure Channels.
In: Proceedings of the IEEE Symposium on Research in Security and Privacy, S&P (2006)

31. Čagalj, M., Čapkun, S., Hubaux, J.-P.: Wormhole-based antijamming techniques in sensor
networks. IEEE Transactions on Mobile Computing 6(1), 100–114 (2007)

32. Warner, J.S., Johnston, R.G.: Think GPS Cargo Tracking = High Security? Think Again.
Technical report, Los Alamos National Laboratory (2003)

33. Whitehouse, K., Woo, A., Jiang, F., Polastre, J., Culler, D.: Exploiting the capture effect
for collision detection and recovery. In: Proceedings of the IEEE workshop on Embedded
Networked Sensors (EmNets) (2005)

34. Wilhelm, M., Martinovic, I., Schmitt, J., Lenders, V.: Reactive jamming in wireless net-
works: How realistic is the threat? In: Proceedings of the forth ACM Conference on Wireless
Network Security, WiSec (2011)

35. Wood, A.D., Stankovic, J.A.: Denial of service in sensor networks. IEEE Computer 35(10),
54–62 (2002)

36. Xiao, L., Greenstein, L., Mandayam, N., Trappe, W.: Fingerprints in the ether: Using the
physical layer for wireless authentication. In: Proceedings of the IEEE International Confer-
ence on Communications, ICC (2007)

37. Xu, W., Trappe, W., Zhang, Y.: Channel surfing: defending wireless sensor networks from
jamming and interference. In: Proceedings of the ACM Conference on Networked Sensor
Systems, SenSys (2006)

38. Xu, W., Trappe, W., Zhang, Y., Wood, T.: The feasibility of launching and detecting jam-
ming attacks in wireless networks. In: Proceedings of the ACM International Symposium on
Mobile Ad Hoc Networking and Computing, MobiHoc (2005)

www.mathworks.com

58 C. Pöpper et al.

A Integration into the SINR Model

In the physical SINR model [7], the transmission from a node A is successfully received
by node B under simultaneous transmissions from a set {Ii} of transmitters if

PAB

N +
∑

i PiB
≥ βB, (1)

where PAB = Pŝ(t) and PiB are the sender’s and the transmitters’ signal powers at
B, respectively, N is the ambient noise level, and βB is the minimum SINR (Signal
to Interference plus Noise Ratio) required for successful message reception at B. The
SINR model represents the reception of the original transmission s(t) under concurrent
signals of sufficient or insufficient power.

In order to capture adversarial interference in the SINR model, we split the overall in-
terference into legitimate (neighboring) transmissions and interference from an attacker
J . Let PJB = Pĵ(t) denote J’s signal power at B (originating from one or multiple col-
laborating attackers). In order to reflect different types of adversarial interference, we
distinguish constructive and destructive interference. We denote by P c

JB the fraction of
PJB that creates constructive interference with ŝ(t), by P d

JB the fraction of PJB that
creates destructive interference with ŝ(t), and by Pn

JB the fraction of PJB that appears
as noise at B; P c

JB + P d
JB + Pn

JB = PJB . B receives a signal of sufficient power to
enable demodulation for PAB + P c

JB − P d
JB > 0 if

PAB + P c
JB − P d

JB

N +
∑

i PiB + Pn
JB

≥ βB. (2)

The left-hand side of Equation 2 is the power of the signal ô(t) at B. Based on this
equation, we can distinguish the following cases:
• P d

JB = PAB + P c
JB:

This attack annihilates the signal with d(ô(t)) = ∅.
• Pn

JB 	 PAB + P c
JB:

This results in noise jamming with d(ô(t)) = ∅.
• P c

JB − P d
JB is in the order of PAB and Pn

JB does not cause a blocked message at
B:
This can modify (flip) bits in the message and we get d(ô(t)) �= ∅ and d(ô(t)) �=
SA. If this happens in the packet preamble we get d(ô(t)) = ∅.

• P c
JB and P d

JB do not modify the demodulation result and Pn
JB does not block the

reception at B:
In this case, we get d(ô(t)) = d(ŝ(t)) = SA, possibly under an amplified (with
P c

JB > P d
JB) or attenuated (with P c

JB < P d
JB) signal.

• P c
JB − P d

JB 	 PAB and Pn
JB does not cause a blocked message at B:

In this case, B will demodulate d(ô(t)) = d(ĵ(t)) = SJ , hence the attacker’s
message is overshadowing the message from A.

Investigation of Signal and Message Manipulations on the Wireless Channel 59

B Simulation Setup

Figure 7 shows the simulation setup used for the Matlab simulations. The modulated
data symbols are passed through a matched filter g(t) (root raised cosine) and up-
converted to the carrier frequency (2.4 GHz band) (φ(t)). The channel is simulated by
adding Gaussian noise (AWGN). After sampling with rate kTs, a Maximum Likelihood
(ML) decoder outputs the decoded symbols.

mapper
symbol ML

decoder

AWGN(t)

d

φ−1(t)

g−1(t)

φ(t)

g(t)
s(t) ŝ(t)

SBSA

kTs

Fig. 7. Simulation setup used for the Matlab simulations

C Experimental Setup

Figure 8 shows the setup we used for our practical experiments. Symbols are generated
by a QPSK modulator and form the input to a USRP that transmits them over the air.
We capture the original or manipulated transmissions using an oscilloscope. We then
demodulate and analyze the data.

Antennas

USRP

(a)QPSK Modulator

Matlab
Matlab

Oscilloscope

flipping
signal

QPSK Demodulator

(b)

Fig. 8. Experimental setup. (a) For simulated symbol flipping of recorded signals, we add the
flipping signals to the captured signals in Matlab. (b) For the experiments on signal attenuation,
two antennas capture and repeat the signals.

Protecting Private Web Content from Embedded Scripts

Yuchen Zhou and David Evans

University of Virginia
{yuchen,evans}@virginia.edu

Abstract. Many web pages display personal information provided by users. The
goal of this work is to protect that content from untrusted scripts that are embed-
ded in host pages. We present a browser modification that provides fine-grained
control over what parts of a document are visible to different scripts, and executes
untrusted scripts in isolated environments where private information is not acces-
sible. To ease deployment, we present a method for automatically inferring what
nodes in a web page contain private content. This paper describes how we modify
the Chromium browser to enforce newly defined security policies, presents our
automatic policy generation method, and reports on experiments inferring and
enforcing privacy policies for a variety of web applications.

1 Introduction

Web applications can provide better services and more targeted information by cus-
tomizing content for individual users. Those customizations, however, may leak per-
sonal information to third parties whose scripts are embedded in the web page. Current
web browsers grant embedded scripts full access to all content on the page, including
the ability to access any personal profile information, photos, email addresses, or other
private content that is displayed in the web page. Many commonly used scripts require
host pages to directly embed their scripts into the host page. Scripts that must be di-
rectly embedded include popular ad networks (including Google AdSense and Yahoo!
Advertising), analytics scripts (including Google Analytics), and Facebook’s recently
released comments API [18]. One example of how this privilege could be abused is an
advertisement embedded in Facebook pages last year that offended privacy expectations
by incorporating images of the user’s friends in an advertisement [17].

The easiest way to isolate untrusted scripts from the host page is to put them in
an iframe. Since a script included using an iframe comes from a different origin, that
script cannot access any resource in the host domain. This isolation is complete—the
included script cannot interact with any other part of the page. To avoid the all or nothing
model, several researchers have proposed alternatives that provide untrusted scripts with
limited access to the host. As we discuss further in Section 6, though, none of these
solutions satisfactorily address the security, functionality, and usability requirements
necessary for a solution to be widely deployed.

Threat Model. We focus on the scenario where a content provider wants to embed con-
tent from untrusted third-party scripts such as advertising, analytics scripts, and gadgets
in its output pages that contain private user information. The adversary controls one or

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 60–79, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Protecting Private Web Content from Embedded Scripts 61

more of the scripts embedded in the target page. To obtain private content, the embed-
ded script may use any means provided by JavaScript to get the text or attribute of a
confidential node including directly calling DOM APIs or probing values of variables
in host scripts. We assume a one-way trust model since our goal is to protect user con-
tent from untrusted scripts rather than to protect embedded scripts from the host page
or each other. Host scripts should be able to access the full functionality of third-party
scripts, but third-party scripts should not be able to access or modify host scripts. Hence,
we provide a form of one-way access from host to guest scripts. In summary, our goal
is to provide third-party scripts with limited access to the DOM and no access to host
scripts, while granting host scripts full access to third-party scripts and the DOM.

We do not target JavaScript frameworks such as jQuery that require rich, bi-direct-
ional interactions with the host’s content. In these cases, we assume the developers
fully trust the third-party libraries. We also do not consider other attack vectors such
as cross-site scripting attacks or web browser vulnerabilities. Many other projects have
focused on mitigating these risks, and we concentrate on the scenario where the host
page developer deliberately embeds untrusted scripts.

Contributions. Our approach has three main advantages over previous approaches:

Fine-grained access control. Polices can be specified at a per-node, per-script granu-
larity. For example, we allow the host page to set DOM node A to be invisible to script
X , while DOM node B is read-only to script Y and fully accessible to script X . Devel-
opers can explicitly allow scripts to collaborate and execute in the same context while
isolating them from other scripts on the page. This provides greater flexibility and ex-
pressiveness than previous solutions. For example, MashupOS [22] and Jayaraman et
al. [10] base their policies on node locations on the page. We also provide a mechanism
that gives developers one-way access to untrusted JavaScript code without exposing
trusted scripts. Section 2 explains the policies enabled by our mechanisms.

Compatibility. Previous approaches place restrictions on what embedded scripts may
contain, often placing limits on dynamic script execution. For example, AdJail [12] and
Stamm et al. [19] do not support script node insertion; Caja [14] and AdSafe [3] do
not support eval. AdJail [12] also does not fully support document.write(). We avoid
JavaScript source code transformations to ensure maximum compatibility and perfor-
mance. Our approach allows embedded scripts to use all of JavaScript with no restric-
tions, except those imposed by the actual access control policy. Section 3 explains how
our implementation achieves this.

Easy deployment. One of our goals is to enable developers to painlessly incorporate our
protection into legacy web applications, so our approach minimizes the effort required
from the developer. All developers need to do is identify untrusted scripts (which can
usually be done automatically based on their origin) and annotate nodes that contain
private information by adding an attribute to that node. To further reduce deployment
effort, we developed a method for automatically identifying all the nodes in a web page
that may contain private information (Section 4). For this, we consider any content that
varies depending on whether the page is requested with or without the user’s credentials
as private. We envision automatic policy learning as part of a third-party or ISP service,
enabling our protections to be provided without any cooperation from sites.

62 Y. Zhou and D. Evans

We evaluate our design by implementing it as a modification to the Chromium
browser, and conducting both security and functionality experiments on a range of web-
sites. Section 5 reports on our experiments that show it is possible to automatically learn
effective privacy policies for most tested sites, and to enforce our isolation and privacy
mechanisms without requiring developer modifications or breaking website functional-
ity.

2 Protecting Private Data

We provide two types of protection policies: JavaScript execution isolation and DOM
access control.

2.1 Execution Isolation

One of our primary goals is to let web developers easily group third-party scripts so
that some of them may collaborate with each other while still remaining separated from
other third-party scripts and host page scripts. To facilitate this we add a new attribute
to the script tag: worldID=string. This idea originates from Barth et al.’s isolated world
concept [1] which was developed to isolate browser extensions. Each world with a
unique worldID is isolated from all other worlds. The worldID attribute also serves as the
principal for scripts for controlling access to DOM nodes (Section 2.2).

Figure 1 illustrates the semantics of the worldID attribute. The custom and native
objects of the first script (in worldID="1") are isolated from the second script because
they have different worldIDs. This means the variable a, defined in the first script, is not
visible in the second script, and the second script only sees the original toString method.

<script worldID = "1">
var a = 3;
function f() {}
Boolean.prototype.toString = f;

</script>
<script worldID = "2">

var b = a; // error: a undefined
f(); // error: f undefined
new Boolean(0).toString();

// calls original toString
</script>
<script worldID = "1">

var b = a; // OK
new Boolean(0).toString(); // f()

</script>

Fig. 1. Execution context separation

<div id="a" RACL="1,2" WACL="1">
User: Alice

</div>
<script worldID = "1">

var b=document.getElementById('a'); // OK
b.innerHTML = 'changed'; // OK

</script>
<script worldID = "2">

var b=document.getElementById('a'); // OK
b.innerHTML = 'changed'; // disallowed write

</script>
<script worldID = "3">

var b=document.getElementById('a');
// error: a not readable

</script>

Fig. 2. DOM access mediation

Protecting Private Web Content from Embedded Scripts 63

Since the third script has worldID="1", it executes within the same context as the first
script and can access all the objects the first script can.

Shared Libraries. Full isolation of embedded scripts would break the functionality
of many host pages. To support embedded scripts that are used as libraries, we added
two new attributes to script tags: sharedLibId and useLibId. All objects inside a script
tagged with a sharedLibId attribute can be accessed by the host execution context as
well as all other worlds that have the corresponding useLibId attribute. The third-party
scripts, however, cannot access the privileged scripts and are still bound by the DOM
access policies.

For example, Google Analytics users can use _gaq to track business transactions. The
host script pushes transaction information into the array _gaq which is later processed
by Google Analytics. Now that we have isolated the context, the _gaq variable would
not normally be visible in other worlds. To support this, the sharedLibId attribute is
defined to identify when an embedded script is a shared library:

<script src="google.com/GA.js" worldID="1" SharedLibId="GA">

Then, other scripts can use the useLibId attribute to access objects defined in the shared
library. To prevent pollution of other script objects, objects in the shared library are
prefixed with the library identifier. For example,

<script useLibId = "GA">
GA._gaq.push(['_addTrans', '1234', '11.99']);

</script>

2.2 DOM Node Access Control

In addition to isolating objects in scripts, we provide fine-grained access control over
host objects at the granularity of DOM nodes. We introduce two additional tags for
all nodes in the DOM tree: RACL for specifying read access, and WACL for specifying
write access. Each access control list is a comma-separated list of worldIDs. Only scripts
running in the worlds listed in the RACL list are permitted to read the node, and only
scripts listed in WACL are permitted to modify the node. For example, if a third-party
script wants to remove a node, it must have the privileges of modifying both that node
and its parent (this is consistent with the JavaScript syntax for removing a node which
requires two node handles: parentNode.removeChild(thisNode)). On the other hand, to
append a node to an existing node, a script only needs to have write privileges for the
parent node since it already has access to the node to be inserted. The ACLs a node has
do not depend on its parent or children.

As shown in Figure 2, a script can only access a particular div element if it is present
in the corresponding access control list of that element. This is more flexible than pre-
vious works like Adjail [12] and MashupOS [22]. Table 1 summarizes the customizable
policies for providing fine-grained mediation of host objects together with the control
of sharing and isolation of custom and native objects.

Special Root Properties. In addition to specific DOM nodes, we also provide a way to
hide selected APIs from certain scripts. These special host objects may provide scripts

64 Y. Zhou and D. Evans

Table 1. Summary of Policy Attributes

Context Policy syntax Semantics
script worldID="s" WorldID of the script context is s
script sharedLibId="s" This is script from s library
script useLibId="s" This script requires to use s library

DOM node RACL="d1,d2, . . ." Worlds that may access this
DOM node WACL="d1,d2, . . ." Worlds that may modify this

with access to private information. For example, document.cookie returns authentica-
tion tokens. Since cookie is a special property of the document it is not associated
with any specific node. Other examples include document.location, document.URL and
document.title as well as powerful APIs such as document.write() and document.open().
Therefore, we add a set of new attributes for the <html> tag to allow developers to
specify these per-API/per-script policies. These privileges are disallowed for untrusted
scripts unless explicitly permitted.

3 Implementation

Our implementation is built on Google’s open source Chromium project (revision 57642
on Windows 7). Approximately 1500 lines of code were added or modified, mostly in
the WebKit DOM implementation and the bindings of V8 JavaScript interpreter and
WebKit DOM. We did not modify V8. Hence, our implementation could be adapted to
other browsers that use WebKit as well with the effort of adding isolated world support.

Figure 3 illustrates how a DOM API call is executed in our system. In step 1, the
WebKit parser parses a raw HTML file from a remote server and passes each script node
to the ScriptController in WebKit/V8 bindings to set up the execution environment.
If the context associated with the current worldID is already created, ScriptController
tells V8 to enter, otherwise it creates a new one. In step 2, the ScriptController sends the
script to V8 to start script execution. At some point, V8 encounters a DOM API call and
invokes a callback to the corresponding function using the WebKit/V8 bindings (step 3).

V8 JavaScript
Engine

V8/Webkit Bindings

ScriptController

worldIDWebKit DOM
Implementation

HTML
Response

worldID

ACLs
Policy

checking
Taint

tracking

Callback
functionDOM

Nodes

Script
Nodes

1 2

3
4

4

5

6

Fig. 3. Execution flow of a DOM API call

Protecting Private Web Content from Embedded Scripts 65

In step 4, that callback function is modified to include policy checking code that checks
the worldID against the ACLs of the node. After passing the policy checking, the call is
forwarded to the WebKit DOM implementation (step 5). In cases where modification
happens, the target node is also tainted according to rules explained in Section 3.3.
Finally, the result is returned from the WebKit DOM back to V8 (step 6). Next, we
provide details on how we enforce script isolation and mediate access to the DOM.
Section 3.4 discusses some special issues for handling dynamically-generated scripts.

3.1 Script Execution Isolation

Isolating any two scripts by putting them into different execution contexts allows us to
specify per-script policies. We adopt Barth et al.’s isolated world mechanism [1]. This
is used in Chrome to separate the execution context of different browser extensions, so
a security compromise of one extension does not compromise the host page or other ex-
tensions. The isolated world mechanism replaces the one-to-one DOM-to-JS execution
context mapping with a one-to-many map where each context maintains a mapping ta-
ble to the DOM elements of the host page. This ensures that only host objects are shared
among all worlds, but not native or custom objects. If a script in world 1 declares a local
variable or modifies the toString prototype function, it is not visible to other worlds. If
that script changes host page DOM elements, though, the changes are propagated to all
other worlds (our policy mechanisms can disallow such modifications).

We extend this mechanism to apply to embedded scripts instead of just extension
content scripts. We modified Chrome to recognize a new attribute worldID so that the
WebCore ScriptController can support different JavaScript execution contexts according
to a scripts’ worldID. A hashmap of all the execution contexts is instantiated on a per-
page basis to enable scripts to execute in the correct context. Two scripts with different
worldIDs run in completely different contexts and cannot access each other’s objects.

Host Script Access. For compatibility, we also need an asymmetric way for host scripts
to access third-party objects. We take advantage of two properties: (1) all objects de-
fined in the script are children of a global object, DOMWindow; and (2) it is possible to
inject arbitrary objects into another context using Google V8 JavaScript engine APIs.
We modified the browser to automatically grab the handle of the global object of that
context and inject it into the host context as soon as a third-party script execution con-
text with a SharedLibId is created. As long as the global objects of trusted contexts are
never passed to untrusted contexts, third-party scripts are never able to access objects
in trusted scripts. Here, developers need to be careful not to pass any confidential host
objects to untrusted scripts.

3.2 DOM Access Control

Fine-grained policies allow different scripts to be granted different access permissions.
We do this by either hiding inaccessible nodes from scripts based on their worldID, or
in cases where more expressive policies are needed, by mediating access requests.

Completely Hidden Nodes. Unreadable nodes can be completely hidden from scripts.
In our implementation, attempts to request a reference of a hidden node or any API
on a hidden node instead receive a fabricated result. We return the v8::null() object for

66 Y. Zhou and D. Evans

V8:3rd-p script

Write
Mediation

DOM API
Implementation

World 2

V8:3rd-p script

World 1

V8 Callback Table

Read
Mediation

innerHTML innerHTML_getter

setAttribute setAttribute

removeChild removeChild

Fig. 4. JavaScript to DOM API Mediation

functions that would normally return a DOM node wrapper; we return an empty string
object for functions that would normally return a string object. The null results avoid
leaking any information, but should enable a well-written script to continue (we confirm
this in our experiments, as reported in Section 5.2).

Our implementation mediates all DOM API getter functions to check the ACL of
target node as shown in Figure 4. The upperleft and the lowerleft squares indicate two
different execution worlds. As each world tries to grab handles of different nodes or call
getterAPIs on those nodes, some of them are thwarted by our mediation according to
respective policies; the ones that get through are executed normally.

Mediated functions include all the node handler getters as well as APIs that can be
called after a node handler is held, such as getAttribute(). One of the trickier APIs to deal
with is the innerHTML getter, as well as similar APIs. These APIs are designed to return
the text/HTML markup of all children of this node. AdJail[12] does not have to worry
about this since their policies require that the parent of a subtree cannot be assigned
more privileges than the intersection of its children’s privileges. Since in our case some
of the children may have been marked private while the root node is marked public,
calling the innerHTML getter on parent nodes may reveal confidential information in its
children. To remedy this, we modify the implementation of the innerHTML callback and
other similar APIs to filter out private nodes from the result.

Read-Only Access. Providing read-only or other restricted access is more complex
since it requires giving the script a handle to the node. There are five ways a script may
modify a node: 1) directly changing a node property (Chrome calls the internal setter
function), 2) modifying the style of that node, 3) modifying the children of that node,
4) modifying the attribute of that node by calling node-specific JS-DOM APIs (e.g.,
setAttribute(), textContent), or 5) attaching or removing any event handlers to that node
(e.g. addeventhandler()). Each of these is handled in a completely different fashion in
Chromium, so it is necessary to address all of them.

We modified all related JS-DOM binding functions and made sure that if a script’s
worldID does not appear in the WACL of a node it cannot do any of these actions. Special

Protecting Private Web Content from Embedded Scripts 67

caution has to be used when coping with textNode because the browser exposes a quite
different set of APIs. The security attributes, WACL, RACL, and worldID should never
be changed by scripts other than the host since this would allow untrusted scripts to
change the policy. We therefore modified the attribute setters to check attribute names
and the script’s worldID to prevent unauthorized modifications to these attributes.

3.3 Taint-Tracking

Since a node may initially contain public information, but later be modified by a script
to contain private information. This use of Ajax/XHR to dynamically authenticate users
and update respective content is not uncommon among the sites we have tested (for
example, cnn.com uses JavaScript to update the username box on the upper right
corner of the page after the entire page is loaded). Thus, it is important to update the
privacy status of a node when it is modified by a script. We do this using a conservative
taint-tracking technique that marks a DOM node as private whenever any host script
modifies it. Nodes that are modified by a script with worldID=a are only visible to scripts
in world a as well as the host scripts.

We implemented a simple taint-tracking design that automatically marks a node as
private when it is changed by a host script. Since our experiments show that this tainting
policy occasionally leads to compatibility problems when too many nodes are tainted,
we relaxed tainting by adding a heuristic to only taint nodes whose text content or source
attributes are changed by the script. This lowers the false positive rate by ignoring the
CSS and location changes of the nodes. In case this policy is too relaxed for certain
websites, developers can manually mark these nodes as private using the WACL or RACL
attributes. This heuristic does not pose a privacy risk, but enables side-channels between
scripts that could otherwise not communicate since they may be able to modify a node
that can be read by the other script. We do not consider this a serious security risk since
private data is only exposed to a third-party when explicitly allowed by the policy, so
although that script can now leak the data to a different third-party script it could also
misuse the data directly.

3.4 Dynamic Scripting

Many previous works feared the consequences of allowing dynamically-generated code
and simply excluded dynamic parts of JavaScript such as eval. This fear is justified
for any rewriting-based approach since dynamically-generated code circumvents the
rewriting protections. Since we enforce policies at run-time, we can fully support dy-
namic scripts but need to be careful to assign the appropriate policies to generated
scripts. In particular, generated scripts may execute in different contexts from the scripts
that created them. This may break functionality since variables and functions that should
be shared are now isolated. More seriously, it may also lead to privilege escalations if
less privileged scripts are able to dynamically create a higher privileged script.

We solve both problems by propagating worldIDs. Dynamically-generated scripts in-
herit the worldID from their creator, thus executing within the same context. We mediate
all four ways to dynamically evaluate a script: 1) calling eval() or setTimeOut(), etc.; 2)
defining an anchor element with JavaScript pseudo-protocol (i.e., javascript:code;); 3)
creating a script node with arbitrary code; or 4) embedding a new script node by calling

cnn.com

68 Y. Zhou and D. Evans

document.write(). The first two cases are handled by modifying respective script ini-
tialization functions in the V8ScheduledAction and ScriptController class. For the third
case, we strip any worldID attributes from created node and add the creator’s worldID
attribute. This is done automatically inside the browser. The fourth situation is most
complex, and discussed next.

Injected Scripts. In the fourth situation, scripts may be added to the page dynami-
cally using document.write or document.writeln. These functions can dynamically create
scripts by injecting raw HTML code into the page. These interfaces are very powerful,
but it is necessary to support them to maintain compatibility with many existing web
applications. To address this, we inject several lines of code in the HTML parser to
ensure the parser correctly interprets the current execution context and then adds the
appropriate worldID attribute to dynamically-created script nodes.

Event Handlers. Third-party scripts may also insert code in the context of host scripts
by adding that code as an event handler of another DOM node, assuming the event
can be triggered (e.g., using the onload event). There are four possible ways to attach
an event handler: 1) direct assignment (e.g., someNode.onclick = 'somefunction()'), 2)
setAttribute, 3) addEventListener, or 4) creating an attribute node and attaching it to a
node (e.g., <div onclick = 'somefunction()'>). To preserve policy enforcement and exe-
cution context, an event handler should execute in the same context as the script that
created it. For each of the four ways of attaching event handlers, we propagate the worl-
dID to make sure that the event handler executes in the correct context. Note that after
the host script registers an event handler, third-party scripts can try to call that event
handler even if the event is not triggered. Hence, we associate all event handlers with
their creator’s worldID and mediate all the getters of event handlers to make sure the
caller’s worldID is identical to the callee’s.

4 Automatic Policy Generation

To protect private information in host pages, we need some way to identify what nodes
in the host page contain private information. This could be done by web application de-
velopers manually annotating nodes as public or private. Manual annotation, however,
is probably too tedious for most web applications and unlikely to happen until a pro-
tection system is widely deployed. If we had access to the server, one strategy would
be to use information flow techniques at the server to track private content and mark
nodes containing private content when they are output. Since we do not assume server
access, however, here we instead present a dynamic technique for inferring private con-
tent solely based on the pages returned from different requests.

We define private content as any content that varies depending on user credentials.
Thus, any content that is different in an authenticated session from what would be re-
trieved for the same request in an unauthenticated session is deemed private. Nodes
that directly contain private information should be marked private, but not the parent of
that node. For example, if <div>Username</div> appears, only the inner
span element is private, but not the outer div. The fine-grained nature of our policy en-
forcement supports this. We automate learning policies by submitting multiple requests

Protecting Private Web Content from Embedded Scripts 69

to the server with different credentials, and identifying the differences as potentially
private content.

One of our design goals is to minimize the changes have to be made both on server
side and on client side, so we use a proxy to add security policies. Figure 5 illustrates
the structure of our policy learner. The proxy automatically identifies third-party scripts
and generates the policies for the response when a request is captured. The resulting
page, including the inferred policies, is passed on to browser client.

Our proxy is implemented using Squid, which supports the Internet Content Adap-
tation Protocol (ICAP) that allows us to modify web traffic on the fly. For convenience,
we run the Squid server in the same machine as our modified browser, however it could
be moved onto an intermediate node along the routing path for better centralized con-
trol. For the ICAP server implementation, we use GreasySpoon [15]. This design can-
not deal with SSL web traffic since the proxy will only see the encrypted traffic. The
Chromium development group is currently (as of June 2011) still working to implement
webRequest and webNavigation as experimental extension APIs [6]. Once these are im-
plemented, we can move our proxy server inside the browser thus making it work on
SSL/TLS traffic and easing deployment.

The content adaptation is divided into two main functions: third-party script identi-
fication and public node marking.

Third-party Script Identification. The ICAP server examines the response header.
For each script with a source tag we compare the script’s source with the host domain.
For scripts that come from different domains, we add worldID attributes that identify the
origin and indicate that they are not trusted by the host.

Identifying Public Nodes. To identify public content, our proxy compares the re-
sponses from two requests, one with the user’s credentials and one without, and de-
notes any content that is identical in both responses as public. For example, assume a
user visits nytimes.com so the browser sends a request including the user’s cook-
ies as credentials to nytimes.com and stores this response as Rpriv. Once our ICAP
server sees the incoming response it sends the same request except without including
the cookies, storing the response as Rpub.

Once it has both responses, the proxy executes a differencing algorithm. This is
similar to a simple text diff, except it follows the node structure. Initially, all nodes

Proxy Server
Client

Browser

① ②

③

④

⑤

⑥ Response

Request Cookie
Request Cookie

Response 1

Request

Response 2

Fig. 5. Automatic Policy Generation

nytimes.com
nytimes.com

70 Y. Zhou and D. Evans

are assumed to be private. Then, any node in Rpriv that appears identically in Rpub is
marked as public. For write accesses, we make sure all children of a root node are the
same before marking the root node public. Read access is slightly more relaxed than
write access, since we already modified innerHTML function to conceal private nodes
inside a subtree. As long as the attributes and immediate textnode children are the same
in both responses we mark that node public.

State-Changing Requests. Our policy learning process requires sending duplicate re-
quests to the server. This could have undesirable side effects if an unauthenticated re-
quest can alter server state. To limit this, POST requests are ignored since sending them
twice could result in undesired state changes at the server. The entire response from a
POST request is considered private. The HTML specification suggests GET methods
should be idempotent [4], but many sites do make persistent state changes in response
to GET requests. For example, a forum site might use a GET request for anonymous
postings. If we submit the request twice the anonymous comment may be posted twice
since no credentials are required for the posting.

We consider two possible solutions. The first is for the server to annotate non-
idempotent pages. The first time a user visits a site the proxy has not seen before, it
skips the request duplication and looks for idempotent field in the response header.
Servers can send idempotent=false in the header to indicate that the browser should not
to send duplicate requests for this page. If the idempotent field is not detected in the
first response we resume the proxy behavior and submit the duplicate requests.

A second approach is to set up a third-party service like AdBlock and have users
subscribe to this service. The centralized server collects information from users and
correlates responses to mark private data. If we have an authority like this we do not
necessarily need to send two requests since other users may have already submitted
similar requests and the server should already have recorded the responses. This cen-
tralized server should be established at the ISP so that we do not introduce extra vul-
nerable point in the network path. Of course in this case the ISP server’s identification
accuracy would affect many more users than a local proxy, but it is also convenient to
manually correct the mistakes as a center server. This approach also has a drawback
that the requests may not necessarily happen near each other in terms of timing. For a
highly active news site like nytimes.com, the structure or content might change fast
enough that more false positives will appear.

5 Evaluation

We evaluated security or our implementation by manually testing a range of possible
attacks, its compatibility with a sample of web applications, and the effectiveness of the
automatic policy generator.

5.1 Security

We tested our implementation against all attack vectors we could identify from the W3C
DOM [21] and ECMA specifications [9]. Table 2 lists the attack vectors and examples
of the attacks we tested. For each attack vector, we created at least one test case for

nytimes.com

Protecting Private Web Content from Embedded Scripts 71

Table 2. Attack Space Summary

Attack Type Examples
Calling DOM to get nodes document.getElementById(), nextSibling(), window.nodeID

Calling DOM to modify nodes nodeHandler.setAttribute(), innerHTML=, nodeHandler.removeChild()

Probing host for private objects reading host vars, calling host functions and event handlers
Accessing special properties document.cookie, open(), document.location

each feature in the W3C DOM/ECMAscript specification and confirmed that the attack
is thwarted by our implementation. Since most of these attack vectors are handled by a
few functions in the Chromium implementation, this provides a reasonably high level
of confidence that our implementation is not vulnerable to these attacks.

5.2 Compatibility

To evaluate how much our defense mechanisms disrupts benign functionality of typical
web applications, we conducted experiments on a proof-of-concept website we built
ourselves and on a broad sampling of existing websites.

The first experiment uses a constructed webpage that contains all the required anno-
tations and third-party scripts. This page functions well in our modified browser. Both
advertising networks we tested (Google Adsense and Clicksor) behave normally dur-
ing testing with no errors even while hiding as much user information as possible from
those scripts by marking content nodes as private. Security properties verified previ-
ously ensure that embedded third-party scripts cannot access the private content.

For real-world web applications, there is no easy way to automate testing because
of the need to create and log into accounts, as well as to interact with the site. This
limits the number of sites we can test. We picked 60 sites to test, sampling a range of
sites based on popularity. We chose the top 20 US sites according to Alexa.com, 20 sites
from sites ranked 80-300 (primarily from 80-100 with some other sites randomly picked
from 100-300 to substitute for sites with inappropriate content, e.g. porn sites), and 20
sites from below the rank of 1000 (randomly selected from sites ranked from 1000-
10000). For each site, we tested basic functionalities such as login and site-specific
operations. These sites contained a variety of third-party scripts including advertising
networks (Doubleclick, Adsonar, Ad4game, etc.) and Google Analytics. We isolated
the third-party scripts and added the privacy policies on nodes that carry user data. We
did not modify the embedded scripts. Policies for these pages are automatically gener-
ated by our policy learner which we evaluate more extensively in the following section.
Here, we ensure the third-party script identifications are correct. In cases where a com-
patibility issue arises due to errors in the automatic third-party script identification, we
manually correct the policies and test the functionality again. We discuss situations
where the policy learner produces an incorrect policy in Section 5.3.

We relaxed our policy learner to always give the <head> tag’s write access to third-
party scripts. This was necessary since some analytics and ad network scripts inject
script nodes in the head region. This does not compromise confidentiality due to the
fine-grained nature of our policy: user-sensitive data is never revealed from children

72 Y. Zhou and D. Evans

nodes of the <head> tag as long as the tags that directly containing the private informa-
tion are marked private.

With the assistance of our automatic policy generator and minimum manual annota-
tion effort (mainly helping proxy server to recognize important library scripts as host
scripts such as jQuery), 46 out of 60 sites functioned without a problem. Of these,
23 sites do require manual identification of third-party scripts. For example, we added
aolcdn.com to aol.com’s whitelist as trusted domain.

Of the 14 sites that have problems, four are due to our HTML parser, Nokogiri [16],
crashing on the site’s HTML. Two sites do not contain login functions, another two
sites use only SSL traffic which our current implementation of policy learner cannot
tackle. Three sites show significant JavaScript console errors, all due to host script try-
ing to access many guest objects (e.g., _gaq as mentioned before) but our policy learner
cannot automatically add the global window object before these accesses. This prob-
lem also happened in some other sites, but the access is simple and we can manually
add the object easily. For more complicated cases, they can be addressed by either web
developer’s effort or dynamic modification within JavaScript Engine. Three sites have
third-party scripts that try to access a private node and therefore crashed in the process.
After a closer look at all these accesses, we found that the private nodes identified by
our policy learner are actually all false positives. Appendix A provides more details on
the results for each site.

5.3 Policy Learning

To evaluate our automatic policy generator tested requests to sample websites and eval-
uated the accuracy of third-party script identification and node visibility marking.

Untrusted Script Identification. Our approach marks embedded scripts as untrusted
when their origin is different from the page origin. The only false positives we observed
resulted from websites that host scripts on another domain. This is fairly common with
larger websites. For example, nytimes.com embeds some scripts from nyt.com
which interact with host scripts closely, including accessing variables or functions from
host scripts. There is no way to safely infer that scripts from other domains are trusted,
so for this situation we resort to requiring developers to manually specify a list of addi-
tional trusted domains in the response headers. Scripts from a trusted domain are treated
as if they are from host domain and execute in the same world as host scripts.

There are also situations where scripts in the host page appear to come from the
host, but should not actually be trusted. This occurs when the host includes a third-
party script using cut-and-paste. For instance, Google AdSense and Google Analytics
require host pages to include an inlined code snippet. This is safer than an embedded
script loaded from the remote site, since at least the host has the opportunity to see the
script and knows that it is not vulnerable to a compromise of the remote server, but
inlined scripts should still not have access to protected data on the page. Our policy
generator has no way to tell whether an inlined script came from an untrusted source.
This causes certain functions to break due to the isolated execution environment of two
mutually dependent scripts. Our ad-hoc solution is to use heuristics to identify specific
patterns in inlined scripts that correspond to commonly inlined scripts. For example, we
look for _gat or _gaq in an inlined script and mark scripts that contain them with the

nytimes.com
nyt.com

Protecting Private Web Content from Embedded Scripts 73

same worldID as the embedded Google Analytics script. Since other scripts may now
intentionally add such tokens in their scripts to impersonate Google Analytics, this is
only a ad-hoc solution. Ideally, service providers would add an appropriate worldID tag
in their inlined snippets.

Private Node Marking. To test the marking accuracy of our private node identification
approach, we tested the basic functionalities such as login and site-specific operations
on the sample sites used for the compatibility experiment. The traffic is redirected to
go through the proxy server where modifications are made to the responses including
adding ACLs and worldIDs. We recorded the total number of nodes, total number of
nodes marked public before login and after login, total number of third-party scripts
existing on the page, and the trusted domains needed to be manually added (e.g., scripts
stored in Content Distribution Networks and libraries).

Table 3 summarizes the results of our policy generation experiments. Appendix A
provides the full details for each tested site. The sample size and ranking denotes the
total number of sites we selected from that range of ranking at Alexa.com. PrivNoCred

is the percentage of nodes that are marked private based in two identical requests, nei-
ther with credentials. Since none of these responses actually contain any personal in-
formation, PrivNoCred gives a rough measure of the nodes that are marked as private
because they vary between requests even though they do not contain sensitive informa-
tion. PrivCred is the percentage of nodes that are marked as private based on normal
operation of the proxy. That is, based on the differences between two successive re-
quests, one with and one without login credentials. The last two columns show the total
number of third-party scripts on the host page and the number of trusted domains that
need to be added to maintain functionality.

There is a reasonable drop in the fraction of nodes that are public after we login
to the page, which is exactly what we are expecting. We can also see an increase in
public content share after login as the ranking of sites goes lower, which indicates less
important sites have less private information.

Statistically, the average number of third-party scripts on a page grows as the sites
become less popular. This indicates that less popular sites are more likely to embed un-
trusted scripts than more popular sites. Finally, the number of trusted domains that have
to be added averages less than one per site. This is lower for less popular sites, con-
sistent with the expectation that hosting scripts on alternate domains is more common
with popular sites. This result indicates that the effort required for developers to denote
trusted sites is minimal.

We also inspected the nodes that were marked as private. Most of them do con-
tain information that most people would consider private such as usernames, email

Table 3. Summary of Automatic Policy Generation Results

Size Alexa Ranking PrivNoCred PrivCred 3rd-p scripts Trusted Domain
13 1-20 28.4% 47.4% 0.8 0.7
11 80-100+ 4.3% 21.6% 2.6 0.5
18 1000+ 2.0% 17.0% 2.2 0.5

74 Y. Zhou and D. Evans

addresses, personal recommendations and preferences. In addition, some nodes that
contain session-related advertisements and tags are also marked private, due to values
in those tags that vary across requests. These false positives are more frequently seen
on the more popular sites, as these sites are more dynamic and complex.

6 Related Work

Much previous work has targeted the challenge of safely executing scripts from un-
trusted sources in a web page. The two main approaches are to either rewrite the
JavaScript code or to modify the browser. An alternative to restricting the private in-
formation third-party scripts can access is to move the content-related computation in-
side the browser, therefore leaking no information at all. This approach is taken by
Adnostic [20] and RePriv [5], but since it requires re-architecting the entire web infras-
tructure we do not consider it further. Here, we categorize previous works by their major
mechanisms.

Isolating Execution Environments. Barth et al.’s isolated worlds mechanism is
designed to protect browsers from extension vulnerabilities [1]. The mechanism they
introduced isolates extensions from each other by dividing the JavaScript execution
context into several independent ones. We adopt this mechanism to isolate webpage
scripts. Since this work do not target privacy, it does not consider mediating DOM ac-
cesses.

Adjail [12] is the most similar work to ours. It puts third-party scripts into a shadow
iframe with a different domain name, using the browser’s same origin policy to isolate
that frame and sets up a restricted communication channel between the shadow iframe
and host page. This approach does not require any browser modification, but has sev-
eral limitations including inflexible policies (sub-tree root can only have intersection of
children’s ACLs), difficulty to accommodate two or more embedded collaborating ad
scripts and a complicated, and complex maneuvers needed to preserve impression and
clickthrough results.

The HTML5 standard provides a way to execute JavaScript in different threads us-
ing Web Workers [8]. The goal of this is mainly to improve JavaScript performance by
preventing misbehaving scripts from consuming too many resources. Another tag pro-
posed by HTML5 that related to our goals is sandbox [7]. This provides some isolation,
however the allowed policy is very coarse-grained.

Rewriting JavaScript. ADsafe [3] restricts the power of advertising scripts by using
a static verifier to limit them to a safe subset of JavaScript that excludes most global
variables and dangerous statements such as eval. Caja [14] also restricts JavaScript, but
uses an automatic code transformation tool. The rewriting procedure of Caja is very
complicated and cannot always preserve original script functionality. Conscript [13]
uses aspect-oriented programming to enforce various policies. Its advising functions
provide a broad range of policies such as forbidding inline scripts and enforcing Http-
only cookies.

Extending Browsers. Jim et al. proposed a per-script policy to defend against XSS
attacks [11]. The basic idea is to create a whitelist of the hash of all scripts that are

Protecting Private Web Content from Embedded Scripts 75

allowed to run on the page. MashupOS addresses the integrator-provider security gap
by introducing several new tags that can be used to restrict embedded scripts in different
ways [22]. However, it cannot support the policies needed to handle current ad networks
since MashupOS requires the third-party content to be in embedded in a particular way.
Following this work, Crites et al. proposed a policy that abandons the same-origin pol-
icy by allowing the integrator to specify public and private data including DOM ac-
cesses [2]. Completely abandoning SOP would require significant changes to websites.
Jayaraman et al. introduced OS protection ring idea to DOM access control [10]. Each
node is assigned a privilege level and only scripts within appropriate rings can access
that DOM element. Compared to these works, our work has the most expressive policies
and easiest deployment.

7 Availability

Our implementation is available under an open source license. The code for
our modified Chromium is at https://github.com/Treeeater/Chromium_
on_windows. The proxy server implementation is at https://github.com/
Treeeater/GreasySpoon-proxy-script.

Acknowledgments. This work was partly supported by grants from the National Sci-
ence Foundation and the Air Force Office of Scientific Research under MURI award
FA9550-09-1-0539. The authors thank Adam Barth for helpful advice on the isolated
worlds implementation. We thank Jonathan Burket, Peter Chapman, Jack Davidson,
Yan Huang, and Tianhao Tong for helpful comments on this work.

References

1. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting Browsers from Extension Vulner-
abilities. In: 17th Network and Distributed System Security Symposium (2010)

2. Crites, S., Hsu, F., Chen, H.: OMash: Enabling Secure Web Mashups via Object Abstractions.
In: 15th ACM Conference on Computer and Communications Security (2008)

3. Crockford, D.: ADsafe: Making JavaScript Safe for Advertising (2007),
www.adsafe.org

4. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: RFC2616: Hypertext Transfer Protocol - HTTP/1.1, http://www.w3.org/
Protocols/rfc2616/rfc2616-sec9.html#sec9.1.1

5. Fredrikson, M., Livshits, B.: RePriv: Re-Envisioning In-Browser Privacy. In: IEEE Sympo-
sium on Security and Privacy (2011)

6. The Chromium Development Group. The Chromium Projects: Notifica-
tions of Web Request and Navigation, https://sites.google.com/a/
chromium.org/dev/developers/design-documents/extensions/
notifications-of-webequest-and-navigation

7. Hickson, I.: HTML5 specification adding Sandbox attribute, http://www.whatwg.
org/specs/web-apps/current-work/#attr-iframe-sandbox

8. Hickson, I.: Web Workers in HTML5 standard, http://www.whatwg.org/specs/
web-workers/current-work/

https://github.com/Treeeater/Chromium_on_windows
https://github.com/Treeeater/Chromium_on_windows
https://github.com/Treeeater/GreasySpoon-proxy-script
https://github.com/Treeeater/GreasySpoon-proxy-script
www.adsafe.org
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1.1
https://sites.google.com/a/chromium.org/dev/developers/design-documents/extensions/notifications-of-webequest-and-navigation
https://sites.google.com/a/chromium.org/dev/developers/design-documents/extensions/notifications-of-webequest-and-navigation
https://sites.google.com/a/chromium.org/dev/developers/design-documents/extensions/notifications-of-webequest-and-navigation
http://www.whatwg.org/specs/web-apps/current-work/#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/#attr-iframe-sandbox
http://www.whatwg.org/specs/web-workers/current-work/
http://www.whatwg.org/specs/web-workers/current-work/

76 Y. Zhou and D. Evans

9. ECMA International. ECMA JavaScript specification, http://www.
ecma-international.org/publications/standards/Ecma-262.htm

10. Jayaraman, K., Du, W., Rajagopalan, B., Chapin, S.J.: ESCUDO: A Fine-Grained Protection
Model for Web Browsers. In: 30th IEEE International Conference on Distributed Computing
Systems (2010)

11. Jim, T., Swamy, N., Hicks, M.: Defeating Script Injection Attacks with Browser-Enforced
Embedded Policies. In: 16th International Conference on World Wide Web (2007)

12. Louw, M.T., Ganesh, K.T., Venkatakrishnan, V.N.: AdJail: Practical Enforcement of Confi-
dentiality and Integrity Policies on Web Advertisements. In: 19th USENIX Security Sympo-
sium (2010)

13. Meyerovich, L.A., Livshits, B.: ConScript: Specifying and Enforcing Fine-Grained Security
Policies for JavaScript in the Browser. In: IEEE Symposium on Security and Privacy (2010)

14. Miller, M.S., Samuel, M., Laurie, B., Awad, I., Stay, M.: Caja: Safe Active Con-
tent in Sanitized Javascript (2007), google-caja.googlecode.com/files/
caja-spec-2008-01-15.pdf (revised 2008)

15. Karel Mittig. GreasySpoon, Scripting Factory for Core Network Services, http://
greasyspoon.sourceforge.net/

16. Patterson, A.: Nokogiri - An HTML, XML, SAX and Reader parser with the ability to search
documents via XPath or CSS3 selectors and much more, http://nokogiri.org/

17. Rogers, M.: Facebook Advertisements Displayed Pictures of User’s Friends and Families
(2009), http://endofweb.co.uk/2009/07/facebook_ads_2/

18. Singel, R.: Singel-Minded: Facebook comments are another ’Good News, Bad
News’ proposition, http://www.wired.com/epicenter/2011/03/
singel-facebook-empire/

19. Stamm, S., Sterne, B., Markham, G.: Reining in the Web with Content Security Policy. In:
19th International Conference on World Wide Web. ACM, New York (2010)

20. Toubiana, V., Nissenbaum, H., Narayanan, A., Barocas, S., Boneh, D.: Adnostic: Privacy Pre-
serving Targeted Advertising. In: 17th Network and Distributed System Security Symposium
(2010)

21. W3C. W3C Document Object Model Level 3 Core Specification, http://www.w3.org/
TR/DOM-Level-3-Core/

22. Wang, H.J., Fan, X., Howell, J., Jackson, C.: Protection and Communication Abstractions
for Web Browsers in MashupOS. In: 21st ACM SIGOPS Symposium on Operating Systems
Principles (2007)

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf
google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf
http://greasyspoon.sourceforge.net/
http://greasyspoon.sourceforge.net/
http://nokogiri.org/
http://endofweb.co.uk/2009/07/facebook_ads_2/
http://www.wired.com/epicenter/2011/03/singel-facebook-empire/
http://www.wired.com/epicenter/2011/03/singel-facebook-empire/
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/DOM-Level-3-Core/

Protecting Private Web Content from Embedded Scripts 77

A Automatic Policy Generation Results

Here we present the results from our automatic policy generation experiments. For each
site we report:

– PrivNoCred — the number of nodes marked private based on two requests, both
without any user credentials (cookies).

– PrivCred — the number of nodes marked private based on normal proxy operation
(two requests, one with and one without credentials)

– 3rd-p scripts — the number of scripts from different origins included in the site.
– Compatibility — any compatibility problems due to our protections.

We group the results into three tables, corresponding to the top (1-50), middle (50-
300) and lower (1000+) ranking sites respectively, according to Alexa.com. The result
for some sites are excluded due to non-applicability (SSL traffic, no login approaches,
e.g.).

Policy Learning Results for Top-Ranked Sites

Sample sites PrivNoCred PrivCred 3rd-p scripts Compatibility Trusted Domain
Google 188/243 78% 209/265 79% none none none

Facebook 25/421 6% 122/195 63% none none fbcdn.net

Yahoo 3417/8273 34% 3600/8221 35%
keywordblocks,

none
yahooapis

s0.2mdn.com yimg
Youtube 32/739 4% 494/1195 41% GA4 inline access2 none
Amazon 295/1049 28% 640/1490 43% none none images-amazon
Twitter 399/752 53% 100/110 91% GA policy violation3 twimg,jQuery

Craigslist 0/1045 0% 0/1051 0% none none none
Linkedin 5/262 2% 794/876 91% GA inline access none

MSN 189/676 28% 36/1083 4% none none s-msn.com
Bing 40/187 22% 46/188 24% none none none
Aol 29/703 4% 75/706 11% player.it none aolcdn.com

CNN 4/1416 1% N/A1 N/A

Adsense

none turner.com
dl-rms.com

questionmarket
insideexpressai

wordpress 26/300 9% 122/349 35%
quantserve

inline access wp.comgravatar
scorecardresearch

Flickr 23/143 16% 663/699 95%
doubleverify

none
yimg.com

s0.2mdn.net yahooapis.com
1 These use scripts to change existing nodes to display user information. No significant number of

public to private node changes were detected after login.
2 Some of these pages’ host script try to access vars/functions in third-party scripts and therefore

encountered errors. Some of them can be corrected rather easily while others requires web devel-
opers effort or dynamic modification in the JavaScript engine.

3 Some third-party scripts in these pages try to access private nodes. These errors should happen
as the scripts violated the policies.

4 GA stands for Google Analytics.

78 Y. Zhou and D. Evans

Policy Learning Results for Middle-Ranked Sites

Sample sites PrivNoCred PrivCred 3rd-p scripts Compatibility Trusted Domain

Twitpic 18/107 17% 43/193 23%

crowdscience
scorecardresearch inline access googleapis.com

quantserve policy violation twitter
fmpub
gstatic

washingtonpost 1/1722 1% 192/1975 10% facebook inline access none

Digg 33/967 3% 348/1000 35% diggstatic.com none
facebook

scrorecardresearch
Expedia 66/814 8% 68/814 8% intentmedia none none
vimeo 13/413 3% 229/431 53% GA,quantserve none vimeocdn

statcounter 0/457 0% 53/190 28% doubleverify none none

tmz.com 9/1682 1% N/A1 N/A

quantserve

inline access none

adsonar
revsci.net
gumgum

nexac.com
s0.2mdn.net
doubleverify

bit.ly 3/105 3% 35/121 29% twitter,GA inline access2 none
newegg.com 8/1212 1% 10/1212 1% GA inline access2 none

indeed.com 2/128 2% 9/129 7%
jobsearch,GA

policy violation3 none
scrorecardresearch

wikia.com 2/417 1% 17/364 4%
GA

inline access nonevimeo
quantserve

yelp.com 12/794 2% 115/848 14% GA none yelpcdn
articlebase.com 1/1058 1% 563/729 77% GA none googleapis.com

skyrock.com 427/804 53% 473/865 55% CDN4 none skyrock.net
btjunkie.com 4/349 1% 1759/2564 68% Adbrite,GA none none

duckload.com 3/158 2% 134/233 58%
GA

none googleapis.com
statcounter

1 These sites use scripts to change existing nodes to display user information. No significant number
of public to private node changes were detected after login.

2 bit.ly combine jQuery code with Google Analytics, this will not work unless a separate jQuery library
is included in the page which is marked as third-party script.

3 Some third-party scripts in these pages try to access private nodes. These errors should happen as the
scripts violated the policies.

4 Skyrock.com puts many third-party scripts onto their CDN. This is very rare and the scripts are
considered first-party because CDNs need to be trsuted.

Protecting Private Web Content from Embedded Scripts 79

Policy Learning Results for Lowly-Ranked Sites

Sample sites PrivNoCred PrivCred 3rd-p scripts Compatibility Trusted Domain

gamefaqs 12/451 3% 25/450 6%
i.i.com.com

inline access none
cbsinteractive

timeanddate 1/333 1% 3/333 1%
exponential.com

none none
tribalfusion.com

Armorgames 4/1138 1% 12/1134 1%
GA,ad4game,

inline access cpmstar.com
quantserve

Fantasyleague 13/594 2% 33/580 4%
adtech

inline access nonetwitter
sumworld

9gag.com 8/529 1% 125/585 21%
Adsense

inline access
cloudfront.net

GA googleapis.com
Blinklist 1/321 1% 28/246 11% GA none none

modcloth.com 9/316 3% 17/314 5% GA policy violation1 none
Getcloudapp 2/51 4% 86/124 69% GA none none

imtalk 10/2096 1% 559/2488 22%
Adsense, addthis

policy violation none
statcounter, GA

change.org 19/355 5% 33/367 9%

GA

none googleapis
google map
simplegeo
quantserve

url.com 1/262 1% 28/279 10% GA none none
1 Some of these pages have Google Analytics initialization scripts that does docu-

ment.getElementsByTagName(’script’)[0].parent.insertBefore(). Since the first script of the
page is not necessarily public, this snippet would fail. Other version of Analytics use docu-
ment.write therefore does not have this issue.

Preventing Web Application Injections with

Complementary Character Coding

Raymond Mui and Phyllis Frankl

Polytechnic Institute of NYU
6 Metrotech Center

Brooklyn, NY, 11201, USA
wmui01@students.poly.edu,pfrankl@poly.edu

Abstract. Web application injection attacks, such as SQL injection and
cross-site scripting (XSS) are major threats to the security of the Inter-
net. Several recent research efforts have investigated the use of dynamic
tainting to mitigate these threats. This paper presents complementary
character coding, a new approach to character level dynamic tainting
which allows efficient and precise taint propagation across the bound-
aries of server components, and also between servers and clients over
HTTP. In this approach, each character has two encodings, which can
be used to distinguish trusted and untrusted data. Small modifications
to the lexical analyzers in components, such as the application code in-
terpreter, the database management system, and (optionally) the web
browser, allow them to become complement aware components, capable
of using this alternative character coding scheme to enforce security poli-
cies aimed at preventing injection attacks, while continuing to function
normally in other respects. This approach overcomes some weaknesses of
previous dynamic tainting approaches. Notably, it offers a precise protec-
tion against persistent cross-site scripting attacks, as taint information
is maintained when data is passed to a database and later retrieved by
the application program. A prototype implementation with LAMP and
Firefox is described. An empirical evaluation shows that the technique
is effective on a group of vulnerable benchmarks and has low overhead.

1 Introduction

Web applications have become an essential part of our every day lives. As web ap-
plications become more complex, the number of programming errors and security
holes in them increases, putting users at increasing risk. Injection vulnerabilities,
such as cross site scripting and SQL injection, rank as the top two of the most
critical web application security flaws in the OWASP (Open Web Application
Security Project) top ten list [25].

Web applications typically involve interaction of several components, each
of which processes a language. For example, an application may generate SQL
queries that are sent to a database management system and generate HTML
code with embedded Javascript that is sent to a browser, from which the scripts
are sent to a Javascript interpreter. Throughout this paper we will use the term

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 80–99, 2011.
� Springer-Verlag Berlin Heidelberg 2011

Complementary Character Coding 81

component languages to refer to the languages of various web application tech-
nologies such as PHP, SQL, HTML, Javascript, etc. We will also use the term
components to denote the software dealing with the parsing and execution of
code written in these languages from both server side and client side, such as a
PHP interpreter, a database management system, a web browser, etc.

Web application injection attacks occur when user inputs are crafted to cause
execution of some component language code that is not intended by the appli-
cation developer. There are different classes of injection attacks depending on
which component language is targeted. For example, SQL injection targets the
application’s SQL statements, while cross site scripting targets the application’s
HTML and Javascript code. These vulnerabilities exist because web applica-
tions construct statements in these component languages by mixing untrusted
user inputs and trusted developer code. Best application development practice
demands the inclusion of proper input validation code to remove these vulnera-
bilities. However, it is hard to do this because proper input validation is context
sensitive. That is, the input validation routine required is different depending
on the component language for which the user input is used to construct state-
ments. For example, the input validation required for the construction of SQL
statements is different from the one required for the construction of HTML,
and that is different from the one required for the construction of Javascript
statements inside HTML. Because of this and the increasing complexity of web
applications, manual applications of input validation are becoming impractical.
Just a single mistake could lead to dire consequences.

Researchers have proposed many techniques to guard against injection
vulnerabilities. Several approaches use dynamic tainting techniques
[6,10,12,23,24,26,27,37]. Current implementations of dynamic tainting involve in-
strumenting application code or modifying the application language interpreter
to keep track of which memory locations contain values that are affected by user
inputs. Such values are considered “tainted”, or untrusted. At runtime, locations
storing user inputs are marked as tainted, the taint markings are propagated so
that variables that are affected by inputs (through data flow and/or control flow)
can be identified and the taint status of variables is checked at “sinks” where
sensitive operations are performed.

Dynamic tainting techniques are effective at preventing many classes of in-
jection attacks, but there are a number of drawbacks to current approaches to
implementing dynamic tainting. Perhaps the most limiting of these arises when
applications store and/or retrieve persistent data (e.g. using a database). Cur-
rent approaches to dynamic tainting do not provide a clean way to preserve the
taint status of such data. Viewing the entire database as tainted, when retriev-
ing data, is overly conservative. But viewing it as untainted leaves applications
vulnerable to persistent attacks, such as stored XSS attacks.

This paper presents a new approach to dynamic tainting, in which taint marks
are seamlessly carried with the data as it crosses boundaries between compo-
nents. In particular, data stored in a database carries its taint status with it,
allowing it to be treated appropriately when it is subsequently processed by

82 R. Mui and P. Frankl

other application code. The approach is based on complementary character cod-
ing, in which each character has two encodings, one used to represent untainted
data and the other used to represent tainted data. Characters can be compared
with full comparison, in which the two representations are treated differently,
or value comparison, in which they are treated as equivalent. With fairly small
modifications, components (e.g. the application language interpreter, DBMS,
and optionally client-side components) can become complement aware compo-
nents (CACs), which use full comparison for recognizing (most) tokens of their
component language, while using value comparison in other contexts. When
component language code entered by a user (an attempted injection attack)
is processed by the CAC under attack, the component does not recognize the
component language tokens, therefore does not execute the attack. Meanwhile,
trusted component language code is treated normally. This allows secure execu-
tion of code without the need of input sanitization. Ideally, the approach will
be deployed with complement aware components on both the server side and
the client side, but we also demonstrate a server side only approach that still
protects current web browsers against XSS attacks. This allows for a gradual
migration strategy through the use of server side HTTP content negotiation,
supporting both current web browsers and complement aware browsers at once.

In addition to offering protection against stored attacks, our approach has
several other attractive features. Existing dynamic tainting approaches require
the processing at sinks to embody detailed knowledge of the component language
with which the application is interacting at the sink (e.g. SQL dialect, HTML)
and to parse the strings accordingly. Our technique delegates this checking to the
components, which need to parse the strings the application is passing to them
anyway. This provides increased efficiency and, potentially, increased accuracy.
Taint propagation is also very efficient with complementary character coding,
because taint propagation via data flow occurs automatically, without the need
for auxilliary data structures. The main contributions of this work are:

– The concept of complementary character coding, a character encoding scheme
where each character is encoded with two code points instead of one. Two
forms of complementary character coding, Complementary ASCII and com-
plementary Unicode, are presented.

– A new approach to dynamic tainting with complementary character coding,
which allows transparent taint propagation across component boundaries.

– The concept of complement aware components (CAC), which use comple-
mentary character coding to prevent a number of web application input
injection attacks, including SQL injection and cross site scripting.

– A proof of concept implementation of LAMP (Linux Apache MySQL PHP)
and Firefox using the technique in complementary ASCII. The prototype
LAMP implementation is also backwards compatible with current web
browsers.

– An experimental evaluation of the prototype, demonstrating that the ap-
proach effectively prevents SQL injection, reflected, and stored XSS attacks
without causing defects for legitimate requests, and has low overhead.

Complementary Character Coding 83

The remainder of this section presents a motivating example. Section 2 intro-
duces complementary character coding. Section 3 describes how complementary
character coding is used to implement dynamic tainting and how complement
aware components prevent injection attacks, without the need for sanitization.
Section 4 illustrates how the example attacks are prevented with our technique.
Section 5 describes the prototype implementation, Section 6 shows the results
of the experimental evaluation, Section 7 discusses related work, and Section 8
concludes.

1. <?php
2.
3. //connect to database
4. connectdb();
5.
6. //unsanitized user inputs
7. $message = $_POST['message'];
8. $username = $_POST['username'];
9.

10. //html header
11. echo '<html>
12. <head> <title>Blog</title> </head>
13. <body>';
14.
15. //welcome the user
16. if(isset($username)) {
17. echo "Welcome $username
";
18. }
19.
20. //insert new message
21. if(isset($message)) {
22. $query = "insert into messages values ('$username', '$message')";
23. $result = mysql_query($query);
24. }
25.
26. //display messages except those from this user or admin
27. $query = "select * from messages where username != '" + $username + "'";
28. $result = mysql_query($query);
29. echo '
Your messages:';
30. while($row=mysql_fetch_assoc($result)){
31. if($row['username'] != "admin") {
32. echo "
{$row['username']} wrote:
{$row['message']}
";
33. }
34. }
35.
36. //display the rest of html...

Fig. 1. Motivating Example

Figure 1 contains the code of an example web application written in PHP. The
database contains a single table, called messages with attributes username and
message, both stored as strings. Four input cases are shown in Figure 2. Case
one is an example of a normal execution. Case two is a SQL injection attack.
Case three is a reflected cross site scripting attack. Case four is a persistent cross
site scripting attack. Please refer to appendix A for detailed descriptions of each
case. In Section 4 below, we will show how our technique prevents these attacks.

84 R. Mui and P. Frankl

Case 1:
username = user message = hello

Case 2:
username = user message = hello');drop table messages;--

Case 3:
username = <script>document.location="http://poly.edu"</script> message = hello

Case 4:
username = user message = <script>document.location="http://poly.edu"</script>

Fig. 2. Input Cases for Example in Fig. 1

2 Complementary Character Coding

In complementary character coding, each character is encoded with two code
points instead of one. That is, we have two versions of every character. This sec-
tion introduces complementary ASCII and complementary Unicode, two forms
of complementary character coding, as well as the concepts of value comparison
and full comparison which are used to compare characters in complementary
character coding.

2.1 Complementary ASCII

In complementary character coding, there are two versions of each character.
Standard ASCII uses 7 bits per character (with values 0–127), while each byte
is 8 bits (with values 0–256). Complementary ASCII is encoded as follows: The
lowest seven bits are called the data bits, which corresponds to standard ASCII
characters 0–127. The eighth bit is called the sign bit, a sign bit of 0 corresponds
to a standard character and a sign bit of 1 corresponds to a complement char-
acter. In other words, for every standard character c in {0...127} from standard
ASCII, there exists a complement character c’ = c + 128 that is its complement.
The conversion between standard and complement characters in complementary
ASCII can be done in a single instruction by flipping the sign bit.

2.2 Value Comparison and Full Comparison

Since there are two versions of every character in complementary character cod-
ing, there must be certain rules to establish how characters are compared. In
complementary character coding there are two different ways to compare charac-
ters, value comparison and full comparison. Under value comparison, a standard
character is equivalent to its complement version. A simple way to implement
value comparison is to compute the standard forms of the characters and com-
pare them. Full comparison, however, compares all bits of a character. There-
fore under full comparison the standard and complement versions of the same
character are not equal. Note that all complement characters will be evaluated
as greater than all standard characters under full comparison regardless of the
value of their data bits. This is not a problem because our technique only uses
full comparison for equals and not equals comparisons.

Complementary Character Coding 85

2.3 Complementary Unicode

With the internationalization of the web, Unicode [32] schemes are becoming
the standard character formats for displaying web content. Currently Unicode
contains over a million code points and as of the current version of Unicode 6.0
less than 25 percent of this space is used or reserved. Due to the vast amount of
available space, complementary Unicode can be implemented in different ways.
One possible implementation of complementary Unicode can be done just like
complementary ASCII through the use of the high order bit as the sign bit. Under
this representation the operations of character conversion, value comparison and
full comparison are implemented in nearly the same way as their counterparts in
complementary ASCII. The extra space also allows the possibility of for having
more than two versions of every character, which will be explored in future work.

3 Preventing Injections with Complementary Coding

This section describes how complementary character coding is used to implement
dynamic tainting and how complement aware components prevent injection at-
tacks, without the need for sanitization. The use of HTTP content negotiation
to ensure backwards compatibility with non-complement aware web browsers is
also discussed. Assumptions about the application code and environment are
noted in section 3.4.

3.1 Dynamic Tainting with Complementary Coding

Prior dynamic tainting techniques maintain a data structure indicating which
variables or memory locations are tainted. This data structure is initialized and
updated either by instrumenting the application code or by modifying the ap-
plication language interpreter. Points where the application sends code to other
components (e.g. SQL statements to the DBMS, HTML to the browser, etc.) are
called “sinks”. Custom checks are performed at sinks to check whether tainted
data is used inappropriately.

In contrast, our approach does not require an additional data structure to
track taint status. Trusted application code is encoded in standard characters as
not tainted. When character strings from an untrusted source enter the system,
they are tainted as the web server converts them into complement characters.
Value comparison is used to compare characters during execution of the appli-
cation code, thus the program continues to function normally in spite of the fact
that extra information (taint status) is carried along with each character. Since a
character and its taint status reside in the same piece of data, taint propagation
via dataflow occurs automatically.

If the component C to which a string is being sent is complement aware,
checking of whether tainted data is being used appropriately is delegated to C,
as discussed in section 3.2, so no code instrumentation is needed at the taint sink.
If C is a legacy component that is not complement aware, taint sink processing
similar to that of existing dynamic tainting techniques can be used.

86 R. Mui and P. Frankl

Complementary character coding has the following advantages over prior dy-
namic tainting techniques: First it allows for free taint storage and implicit taint
propagation through normal execution, removing the need for code instrumenta-
tion and the resulting overhead of existing dynamic tainting techniques. Second,
under the guise of a character encoding, our technique allows for seamless taint
propagation between different server-side components, and also between servers
and clients over HTTP. This approach is particularly useful against persistent
cross site scripting attacks, as taint status of every character is automatically
stored in the database, along with the character. Data read in from the database
carries detailed information about taint status. Thus, when such data becomes
the web application output, it can be handled appropriately (either through a
complement aware browser or through server-side filtering.)

3.2 Complement Aware Components

We now describe how a component can leverage complementary character coding
to allow safe execution against injection attacks. A web application constructs
statements of a component language by mixing trusted strings provided by the
developers and untrusted user input data and sends these to other components.

Each component C takes inputs in a formal language LC with a well-defined
lexical and grammatical structure (SQL, HTML, etc.). As in reference [30] each
component language can have a security policy that stipulates where untrusted
user inputs are permitted within elements of LC . In general, a security policy
could be expressed at the level of LC ’s context free grammar, but our technique
focuses on security policies defined at the level of LC ’s lexical structure.

In our approach, complementary character coding is used to distinguish
trusted (developer-generated) characters from untrusted (user-generated) char-
acters throughout the system. Trusted characters are represented by standard
characters while untrusted characters are converted to complement characters by
the web server. By making small modifications to their parsers, components can
be made complement aware, capable of safe execution against input injection at-
tacks without need of sanitization through the enforcement of a default security
policy, or other optional policies if the default policy is deemed too restrictive.

More formally, the security policy of a complement aware component C is
defined in terms of the tokens of LC . The allowed tokens are tokens which can
include untrusted characters; all other tokens are designated as sensitive tokens
where untrusted characters are not allowed.

We define a Default Policy for each component language as follows: All tokens
except literal strings and numbers are sensitive. The Default Policy defines the
allowed token set as numbers and literal strings, all other tokens are defined
as sensitive tokens. For example, the Default Policy applied to SQL states that
tokens representing numbers and literal strings are allowed tokens, while all other
tokens representing SQL keywords, operators, attribute names, delimiters, etc.
are sensitive tokens.

A component C with input language LC is complement aware with respect to
a security policy P with allowed token set AP if

Complementary Character Coding 87

– The character set includes all relevant standard and complement characters
(e.g. complementary ASCII or complementary Unicode).

– Sensitive tokens, i.e., tokens that are not in AP , only contain standard char-
acters.

– LC has a default token d which is in AP . Strings that do not match any other
token match d. (Typically this would be the string literal token).

– During lexical analysis C uses value comparison while attempting to recog-
nize tokens in AP and uses full comparison for all other tokens.

– Aside from parsing, C uses value comparison (e.g. during execution).

The first four elements assure that complement aware components enforce their
security policies and the last element allow the component to function normally
after checking the security policy, so data values are compared as usual, preserv-
ing normal functionality.

Assume trusted developer code is encoded in standard characters and user
inputs are translated into complement characters on entry to the system (e.g.
by the web server). When the application sends a string s to component C, no
substring of s that contains complement characters can match any sensitive token
under full comparison. Therefore the following Safety Property is satisfied: If
component C is complement aware with respect to security policy P then C
enforces P , i.e., for any string s, consisting of trusted (standard) and untrusted
(complement) characters that is input to C, parsing s with LC ’s grammar yields
a parse tree in which every token (terminal symbol) that contains untrusted
characters is in AP . Consequently, when the parsed token stream is further
interpreted (e.g. during execution of the input), no sensitive tokens will come
from untrusted inputs.

Note that if C is complement aware with respect to the Default Policy and if s
is an attempted injection attack in which characters that come from the user are
encoded with complement characters, then C’s lexical analyzer will treat any
keywords, operators, delimiters, etc. in s that contain complement characters
(i.e. that were entered by the user) as parts of the default token (string literal),
and the attack string will be safely executed like normal inputs.

The Default Policy is a strong policy that is restrictive. It is designed to be
a safe default that is applicable to a wide number of languages against both
malicious and non-malicious types of injections. For example, the Default Policy
would define the use of HTML boldface tags (and) from user inputs as
a form of HTML injection. Other less restrictive policies can be defined through
the addition of more tokens to the allowed token set AP . For example, if the
developers of a web browser wish to allow users to enter boldface tags, they
can modify the Default Policy by adding boldface tags to AP , creating a less
restrictive policy which allows the browser to interpret untrusted boldface tags.

3.3 Architecture, Backwards Compatibility and Migration Strategy

Figure 3 provides an architectural overview of our technique. User inputs are
converted into complement characters by the server upon entry. We can ensure
backwards compatibility between the complement aware server and legacy web

88 R. Mui and P. Frankl

Fig. 3. Architecture of Our Technique

browsers with the use of HTTP content negotiation [36] with the Accept-Charset
header. A content negotiation module, shown in step 4 of Figure 3, routes the
application output in two ways. For a complement aware browser which specifies
itself as complement aware in the Accept-Charset header, the content negotiation
module sends the application output in complementary character coding over
HTTP unchanged. For a web browser that does not support complementary
character coding, the negotiation module routes the output to an HTTP filter.
The filter performs the function of a complement aware web browser on the
server side at the expense of server side overhead. It does so by applying the
Default Policy for HTML and converting its character encoding to one that is
readable by the client web browser, specified by the Accept-Charset header in
the request. This modified output is then sent back to the client web browser.1

This architecture allows for a gradual migration strategy. Initially, deployment
of complement aware servers would result in the usage of the HTTP filter for
nearly all requests, resulting in extra server overhead. This extra server overhead
would gradually decrease, as more and more users upgrade to complement aware
web browsers, which do not require the filtering. Please refer to Appendix B for
a step by step walk-through of the architecture.

3.4 Limitations

Complement aware components are mostly compatible with existing application
code, with some exceptions. Since our technique is designed to execute code
1 Server administrators who do not want clients to see which parts of the HTML come

from user inputs might opt to apply server side filtering as well.

Complementary Character Coding 89

without the use of sanitization functions, existing sanitization in application
code would have to be removed to avoid possible conflicts. While library sani-
tization functions (such as mysql real escape string in PHP) can be made to do
nothing by default, custom sanitization code would have to be changed manu-
ally. Also, application code that involves bit level operations on characters (e.g.
shifting left) would not work with the technique. However in the context of web
applications, we expect that developer code involving direct bit manipulations
are rare. We did not encounter these during our experiments. The technique is
also circumvented by applications that produce statements in component lan-
guages that are control-dependent, but not data dependent on inputs. The same
problem occurs with other dynamic tainting techniques unless taint propagation
via control dependence is implemented [7]. We also assume that the technique
is not being used in an environment that is already compromised.

4 Example Revisited with CAC

We demonstrate how the four example cases from Section 1.1 will execute as
complement aware components enforcing the Default Policy with complementary
ASCII. Assume we are using a complement aware web browser. First, according
to steps 1 and 2 on Figure 3, all user inputs are converted into complement
characters by the server upon arrival. Developer code is encoded in standard
characters. We describe each case as we begin step 3 on Figure 3, as the ap-
plication begins to execute. In the example cases, we will show all complement
characters with underlines.

In case one, first the application generates Welcome user as HTML at lines 16
to 18. At line 24, the application constructs the SQL query insert into messages
values (�user�, �hello�) and sends it to the DBMS to be executed. During parsing
of the SQL query, the complement aware DBMS enforces the Default Policy
by using full comparison to match all sensitive tokens in SQL. The tokens user
and hello are recognized as literal strings (albeit with a non-standard character
set). The values user and hello are stored in the database. When lines 27 to 34
are executed, the application generates HTML to display the contents of the
database. A SQL query select * from messages where username != �user� is
generated at line 27 and the query is passed to the DBMS at line 28. Aside from
the literal user, the SQL tokens in this query are encoded entirely in standard
characters; each string representing a token matches the intended token using full
comparison, so the query is executed. During the execution of the SQL query,
value comparison is used to evaluate the WHERE clause. Since under value
comparison, user, user, user, etc. are equal to user, rows containing any of those
entries are not selected. Other rows with usernames not equal to user under value
comparison are selected as desired. Similarly, when the PHP interpreter performs
the comparison at line 31, it uses value comparison, which works correctly – the
values admin, admin, admin, admin, etc. are all equivalent to each other under
value comparison so messages posted by any of these variants are excluded from
the output. The generated HTML is then sent to the complement aware web

90 R. Mui and P. Frankl

browser, which parses the HTML (Steps 4, 5 and 6 on Figure 3). To enforce
the Default Policy, full comparison is used during parsing to match HTML tags.
Since user and hello are in complement characters while HTML tags are in
standard characters, they cannot be matched as any tag under full comparison
during parsing and the Default Policy is enforced. After parsing, the characters
are then rendered by the web browser, at this point value comparison is used in
principle, so complement characters are made to look the same as their standard
counterparts on the user’s screen.

The executions of cases two, three, four or any other input proceed similarly
as case one. We will briefly discuss how the attacks from each case are prevented.

In case two, the SQL query insert into messages values (�user�, �hello�);drop
table messages;−−�) is constructed and sent to the database parser at line
24. Full comparison is used during parsing. No substring of hello�);drop table
messages;−− matches any sensitive tokens in SQL because under full compari-
son, ′ is not equal to ′,) is not equal to), etc. Therefore the entire input string
is recognized as the default token (string literal) and is stored in the database
just like any other string the user provides. The injection attack fails.

In case three, value Welcome <script>document.location=�http://poly.edu�
</script> is generated as HTML at lines 16-18. When the page is parsed by the
complement aware web browser, the HTML parser uses full comparison. No tags
are matched by the parser because <script> is not equal to <script> under full
comparison. So the browser does not interpret the injected tag as the beginning
of a script. Instead, this string is rendered literally on the screen and the reflected
XSS attack fails.

Case four is the same as case three except that the attack string is stored in
the database as well. Like before, the input does not match any tokens in SQL
or any HTML tags under full comparison during parsing. The string is stored
literally in the database and is displayed literally in the client’s web browser.

This example only shows the prevention of SQL injection and cross-site script-
ing, however it’s important to note that our technique is designed to be general
and it can be used against other types of web application injections as well. With
complementary character coding, wherever user input is being used to construct
statements in a language that is interpreted by other components (XML inter-
preters, eval, etc), security policies for those components can be defined and
complement aware versions of the component can be implemented to prevent
injection attacks.

5 Implementation

We describe our implementation of a complement aware web server with LAMP
(Linux Apache MySQL PHP) and a complement aware web browser with Fire-
fox. The implementation is done in complementary ASCII. Our implementation
of LAMP enforces the Default Policy, while our implementation of Firefox is
able to enforce customized security policies through specified allowed token sets.
The complement aware LAMP server incorporates the use of HTTP content

Complementary Character Coding 91

negotiation to be backwards compatible with unmodified browsers as well, as
discussed in section 3.3. The key effort is implementing value comparison at the
right places, since full comparison is already done by default.

We begin with an installation of LAMP with an 8 bit character encoding. For
simplicity, we used the Latin-1 character set. Latin-1’s first 128 characters are
exactly the same as the standard characters in complementary ASCII. We use
the other 128 characters to represent complement characters and modify the way
they are displayed. We modified PHP to encode the contents of GET and POST
input arrays into complement characters at the point they are initialized. We
modified the PHP interpreter so that the bytecode instructions for comparison
used value comparison. The parser continues to use full comparison. PHP string
functions are modified to support complementary ASCII. For MySQL, the query
execution engine was modified to use value comparison, while the parser contin-
ued to use full comparison. The content negotiation module and HTTP filter are
implemented with an Apache output filter. Since we are using the Default Policy,
the filter simply converts all complement characters to a safe representation by
encoding them using HTML numeric character references.

Our implementation of the server is sufficient for performing our experiments.
A complete implementation would for example, convert everything that comes
from the user (such as � SERVER[�PATH INFO�]) into complement characters.

We have modified Firefox 3.5 to be complement aware and enforce a cus-
tomized security policy specified from an allowed token set, as described in
section 3.2. If a tag name contains only standard characters, it is interpreted
normally. If a tag name contains complement characters and it exists in the al-
lowed token set, then the corresponding tag is interpreted normally. If the tag
name contains complement characters and it does not exist in the allowed token
set, then the tag is not interpreted and is rendered literally.

6 Evaluation

Our experimental evaluation has two objectives: 1) to confirm that the tech-
nique is effective against attacks without causing defects, and 2) to measure
the runtime overhead resulting from using our implementation. Two sets of test
data were used. The SQL Injection Application Testbed [29] has been used for
evaluating various techniques developed by other researchers [2,11,12,28,30]. It
consists of a large number of test cases on a series of open source applications. It
contains two types of test cases: the ATTACK set which contains SQL injection
attacks, and the LEGIT set which contains legitimate inputs. The second bench-
mark is from ARDILLA [17], a technique which generates cases of SQL injection
and XSS attacks automatically. This test set contains cases of SQL injections,
and both reflected and persistent cross site scripting attacks on a set of open
source applications. The programs are LAMP applications. Links to the bench-
mark programs can be found in [17,29]. The experiments were performed on a
dual core 2 GHz laptop with 3 GB of RAM running our LAMP implementation
based on Ubuntu 9.04, Apache 2.2.13, MySQL 5.1.39, and PHP 5.2.11.

92 R. Mui and P. Frankl

Table 1. Summary of SQL Injection Application Testbed and ARDILLA test set

LOC SQL Reflected Persistent Legit
Injection XSS XSS

SQLIA Testbed
bookstore 16,959 5474 – – 608
classifieds 10,949 5590 – – 576
empldir 5658 6388 – – 660
events 7,242 5606 – – 900
portal 16,453 5686 – – 1080

ARDILLA
schoolmate 8,181 6 10 2 –
webchess 4,722 12 13 0 –
faqforge 1,712 1 4 0 –

geccbblite 326 2 0 4 –

Table 1 summarizes the benchmarks. The first column contains the names of
the applications. The second column contains the number of lines of code (LOC)
from each application. Columns 3–5 show the numbers of test cases targeting
each type of attack (SQL injection, reflected cross-site scripting, persistent cross-
site scripting.) Column 6 shows the number of test cases representing legitimate
inputs (not attempted attacks.)

For the much larger SQL Injection Application Testbed, we manually identi-
fied the queries that the developer intended to execute for each web page. For
example on a Login page the only query is of the form SELECT * FROM mem-
bers WHERE username = �?�AND password = �?�. (Here question marks denote
values dependent on user inputs.) A successful SQL injection attack would result
in execution of a query with a different structure. We used scripts to execute the
ATTACK test cases targeting each page using the CAC prototype, and to check
that queries in the database logs matched the intended forms. All the queries
were of the intended forms, which shows that the prototype prevented all of the
attempted SQL injection attacks from the test suite.

We executed the LEGIT test cases on both the CAC prototype and a standard
configuration with identical initial environments, and compared the generated
HTML using value comparison. The results of the two implementations were
identical by value comparison, except for current time-stamps generated by one
page; this shows that the prototype handled these non-attack inputs normally
without functionality defects.

We ran the ARDILLA test cases manually. For each test case we checked
the database states, database logs and the output HTML for any signs of SQL
injection or XSS. We again found no signs of injection attacks. We also found
no functionality defects caused by our implementation.

We then measured the response times to determine server side overhead. We
expected the overhead of the technique to be small, since the only sources of
overhead are from the encoding of user inputs into complement characters and
the use of value comparison, each of which was implemented in a few instructions.
Our evaluation is done by comparing the difference in runtime between the
original LAMP installation that our implementation is based on, and our CAC
implementation both with and without the use of the HTTP filter to measure

Complementary Character Coding 93

Table 2. Result of Timing Evaluation

Default LAMP CAC without Percent Overhead CAC with filter Percent Overhead
(seconds) filter (seconds) (without filter) (seconds) (with filter)

bookstore 6.816 ± 0.055 6.867 ± 0.058 0.74% 6.935 ± 0.061 1.74%
classifieds 6.852 ± 0.057 6.873 ± 0.095 0.32% 6.915 ± 0.069 0.93%
empldir 10.166 ± 0.075 10.149 ± 0.066 -0.17% 10.183 ± 0.081 0.17%
events 17.745 ± 0.186 17.723 ± 0.181 -0.12% 17.760 ± 0.183 0.09%
portal 45.581 ± 0.202 45.905 ± 0.196 0.71% 45.794 ± 0.228 0.47%

the overhead of our content negotiation technique. We only use the LEGIT set
from the SQL Injection Application Testbed for this, since successful attacks
from the ATTACK set on the original installation would cause different paths
of execution, and produce irrelevant timing results.

We ran this test set on each setup 100 times and computed the average run
time and the 95% confidence interval. The results are shown in Table 2. The first
column contains the names of the applications. The second column contains the
average time of the original LAMP installation over 100 runs along with its
95% confidence interval. The third column contains the average time of our
complement aware server implementation without passing through the HTTP
filter (interacting with a complement aware web browser). The fourth column
contains the percentage difference between columns two and three. The fifth
column contains the average time of our complement aware server through the
HTTP filter (interacting with a legacy web browser) to show the overhead of
our backwards compatibility technique.

These results show a performance improvement of complementary character
coding compared to existing dynamic tainting techniques. For example, the av-
erage overhead of WASP [12] over the same benchmark is listed as 6%, while the
worst case overhead of our technique is no more than 2%. Since overhead were on
the order of milliseconds per request, other factors such as database operations,
network delay, etc. will easily dominate it when our technique is deployed for
real world applications.

7 Related Work

Researchers have proposed many other techniques against web injection attacks.
Dynamic tainting techniques [6,10,12,23,24,26,27,37] have the most similarity to
our technique. Dynamic tainting techniques are runtime analyses that involve
the marking of every string within a program with taint variables and propagat-
ing them across execution. Attacks are detected when a tainted string is used as
a sensitive value. As discussed in section 3, the difference between our technique
and traditional dynamic tainting techniques is that complementary character
coding provides character level taint propagation across component boundaries
of web applications without the need of code instrumentation and the overhead
of maintaining extra data structures to propagate taint information. Another
difference is that while previous dynamic tainting techniques implement taint

94 R. Mui and P. Frankl

sinks using code instrumentation to detect attacks, our technique delegates en-
forcement of the security policy to the parser of each component.

Sekar proposed a technique of black-box taint inference to address some of the
limitations with dynamic tainting [28], where the input/output relations of com-
ponents are observed and maintained to prevent attacks. Su and Wassermann
provided a formal definition of input injection attacks and developed a technique
to prevent them involving comparing parse trees with an augmented grammar
[30]. Bandhakavi, Bisht, Madhusudan, Venkatakrishnan developed CANDID [2],
a dynamic approach to detect SQL injection attacks where candidate clones of a
SQL query, one with user inputs and one with benign values, are compared dur-
ing parsing. Louw and Venkatakrishnan proposed a technique to prevent cross
site scripting [20] where the application sends two copies of output HTML to
a web browser for comparison, one with user inputs and one with benign val-
ues. Bisht and Venkatakrishnan proposed a technique called XSS-GUARD [3],
in which shadow pages and their parse trees are being compared at the server.
Buehrer, Weide, and Sivilotti developed a technique involved with comparing
parse trees [5] to prevent SQL injection attacks.

Static techniques [1,11,14,16,19,31,34,35] employ the use of various static code
analysis techniques to locate sources of injection vulnerabilities in code. The
results are either reported as output or instrumented with monitors for runtime
protection, others employ the use of machine learning [13,33]. Martin, Livshits,
and Lam developed PQL [21], a program query language that developers can
use to find answers about injection flaws in their applications and suggested
that static and dynamic techniques can be developed to solve these queries.

Boyd and Keromytis developed a technique called SQLrand [4] to prevent SQL
injection attacks based on instruction set randomization. SQL keywords are ran-
domized at the database level so attacks from user input become syntactically
incorrect SQL statements. A proxy is set up between the web server and the
database to perform randomization of these keywords using a key. Van Gundy
and Chen proposed a technique based on instruction set randomization called
Noncespaces against cross site scripting [9]. Nadji, Saxena and Song developed
a technique against cross site scripting called Document Structure Integrity [22]
by incorporating dynamic tainting at the application and instruction set ran-
domization at the web browser. Kirda, Kruegel, Vigna and Jovanovic developed
Noxes [18], a client side firewall based approach to detect possibilities of a cross
site scripting attack using special rules. Jim, Swamy, and Hicks proposed a cross
site scripting prevention technique called browser-enforced embedded policies
[15] where a web browser receives instructions from the server over what scripts
it should or should not run.

Interpolique [8] is a framework for sanitizing sensitive inputs by replacing their
values with Base64 encodings, along with calls to components’ Base64 decoding
functions. Like our technique, Interpolique converts sensitive inputs into forms
that do not match any tokens of component languages. However, unlike our
technique, Interpolique requires developers to identify variable uses that should
be transformed.

Complementary Character Coding 95

8 Conclusion and Future Work

In this paper, we have presented complementary character coding and comple-
ment aware components, a new approach to dynamic tainting for preventing a
wide variety of web application injection attacks. In our approach, two encodings
are used for each character, standard characters and complement characters. Un-
trusted data coming from users is encoded with complement characters, while
trusted developer code is encoded with standard characters. Complementary
character coding allows taint information about each character to be propagated
across component boundaries seamlessly. Components are modified to enforce se-
curity policies, which are characterized by sets of allowed tokens, for which user
input characters should not be permitted. Each complement aware component
enforces its policy by using full comparison to match sensitive tokens during
parsing. Elsewhere they use value comparison to preserve functionality. This al-
lows them to safely execute attempted injection attacks as normal inputs. While
ideally, the technique would be used with complement aware components on
both the server side and the client side, it is backward compatible with existing
browsers through HTTP content negotiation and server-side filtering. Whether
deployed with complement aware browser or with a legacy browser, it provides
protection against stored XSS attacks.

We have implemented a prototype for LAMP and Firefox. An experimental
evaluation on the prototype prevented all SQL injection, reflected and stored
cross-site scripting injection attacks and executed legitimate inputs normally
in the benchmarks studied with only small overhead. Directions of future work
include extending the prototype to use complementary Unicode, incorporating
techniques to deal with taint propagation via control flow, and exploring other
applications of complementary character coding and its extended version through
the use of multiple taint bits.

Acknowledgments. This research was partially supported by the US
Department of Education GAANN grant P200A090157, National Science Foun-
dation grant CCF 0541087, and the Center for Advanced Technology in Telecom-
munications sponsored by NYSTAR. We thank the reviewers for their helpful
comments.

References

1. Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C.,
Vigna, G.: Saner: Composing static and dynamic analysis to validate sanitization
in web applications. In: SP 2008: Proceedings of the 2008 IEEE Symposium on
Security and Privacy, pp. 387–401. IEEE Computer Society, Washington, DC, USA
(2008)

2. Bandhakavi, S., Bisht, P., Madhusudan, P., Venkatakrishnan, V.N.: Candid: pre-
venting SQL injection attacks using dynamic candidate evaluations. In: CCS 2007:
Proceedings of the 14th ACM Conference on Computer and Communications Se-
curity, pp. 12–24. ACM, New York (2007)

96 R. Mui and P. Frankl

3. Bisht, P., Venkatakrishnan, V.N.: XSS-GUARD: Precise dynamic prevention of
cross-site scripting attacks. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137,
pp. 23–43. Springer, Heidelberg (2008)

4. Boyd, S.W., Keromytis, A.D.: SQLrand: Preventing SQL injection attacks. In:
Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 292–
302. Springer, Heidelberg (2004)

5. Buehrer, G., Weide, B.W., Sivilotti, P.A.G.: Using parse tree validation to prevent
SQL injection attacks. In: SEM 2005: Proceedings of the 5th International Work-
shop on Software Engineering and Middleware, pp. 106–113. ACM, New York
(2005)

6. Chin, E., Wagner, D.: Efficient character-level taint tracking for Java. In: Proceed-
ings of the 2009 ACM Workshop on Secure Web Services, SWS 2009, pp. 3–12.
ACM, New York (2009)

7. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.
In: ISSTA 2007: Proceedings of the 2007 International Symposium on Software
Testing and Analysis, pp. 196–206. ACM, New York (2007)

8. Kaminsky, D.: Interpolique, http://dankaminsky.com/interpolique/

9. Gundy, M.V., Chen, H.: Noncespaces: Using randomization to enforce information
flow tracking and thwart cross-site scripting attacks. In: NDSS (2009)

10. Haldar, V., Chandra, D., Franz, M.: Dynamic taint propagation for Java. In: AC-
SAC 2005: Proceedings of the 21st Annual Computer Security Applications Con-
ference, pp. 303–311. IEEE Computer Society, Washington, DC, USA (2005)

11. Halfond, W.G.J., Orso, A.: Amnesia: analysis and monitoring for neutralizing SQL-
injection attacks. In: ASE 2005: Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, pp. 174–183. ACM, New York
(2005)

12. Halfond, W.G.J., Orso, A., Manolios, P.: Using positive tainting and syntax-aware
evaluation to counter SQL injection attacks. In: SIGSOFT 2006/FSE-14: Proceed-
ings of the 14th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pp. 175–185. ACM, New York (2006)

13. Huang, Y.W., Huang, S.K., Lin, T.P., Tsai, C.H.: Web application security assess-
ment by fault injection and behavior monitoring. In: WWW 2003: Proceedings of
the 12th International Conference on World Wide Web, pp. 148–159. ACM, New
York (2003)

14. Huang, Y.W., Yu, F., Hang, C., Tsai, C.H., Lee, D.T., Kuo, S.Y.: Securing web
application code by static analysis and runtime protection. In: WWW 2004: Pro-
ceedings of the 13th International Conference on World Wide Web, pp. 40–52.
ACM, New York (2004)

15. Jim, T., Swamy, N., Hicks, M.: Defeating script injection attacks with browser-
enforced embedded policies. In: WWW 2007: Proceedings of the 16th International
Conference on World Wide Web, pp. 601–610. ACM, New York (2007)

16. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting
web application vulnerabilities (short paper). In: SP 2006: Proceedings of the 2006
IEEE Symposium on Security and Privacy, pp. 258–263. IEEE Computer Society,
Washington, DC, USA (2006)

17. Kieyzun, A., Guo, P.J., Jayaraman, K., Ernst, M.D.: Automatic creation of SQL
injection and cross-site scripting attacks. In: ICSE 2009: Proceedings of the 2009
IEEE 31st International Conference on Software Engineering, pp. 199–209. IEEE
Computer Society, Washington, DC, USA (2009)

 http://dankaminsky.com/interpolique/

Complementary Character Coding 97

18. Kirda, E., Kruegel, C., Vigna, G., Jovanovic, N.: Noxes: a client-side solution for
mitigating cross-site scripting attacks. In: SAC 2006: Proceedings of the 2006 ACM
Symposium on Applied Computing, pp. 330–337. ACM, New York (2006)

19. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications with
static analysis. In: SSYM 2005: Proceedings of the 14th Conference on USENIX
Security Symposium, pp. 18–18. USENIX Association, Berkeley (2005)

20. Louw, M.T., Venkatakrishnan, V.N.: Blueprint: Robust prevention of cross-site
scripting attacks for existing browsers. In: SP 2009: Proceedings of the 2009 30th
IEEE Symposium on Security and Privacy, pp. 331–346. IEEE Computer Society,
Washington, DC, USA (2009)

21. Martin, M., Livshits, B., Lam, M.S.: Finding application errors and security flaws
using PQL: a program query language. SIGPLAN Not. 40(10), 365–383 (2005)

22. Nadji, Y., Saxena, P., Song, D.: Document structure integrity: A robust basis for
cross-site scripting defense. In: NDSS (2009)

23. Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross-site scripting
prevention with dynamic data tainting and static analysis. In: Proceeding of the
Network and Distributed System Security Symposium, NDSS 2007 (2007)

24. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automati-
cally hardening web applications using precise tainting. In: Sasaki, R., Qing, S.,
Okamoto, E., Yoshiura, H. (eds.) SEC, pp. 295–308. Springer, Heidelberg (2005)

25. OWASP Top Ten Project,
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

26. Perl security: Taint mode, http://perldoc.perl.org/perlsec.html#Taint-mode
27. Pietraszek, T., Berghe, C.V., Chris, V., Berghe, E.: Defending against injection

attacks through context-sensitive string evaluation. In: Valdes, A., Zamboni, D.
(eds.) RAID 2005. LNCS, vol. 3858, pp. 124–145. Springer, Heidelberg (2006)

28. Sekar, R.: An efficient black-box technique for defeating web application attacks.
In: NDSS (2009)

29. SQL Injection Application Testbed,
http://www.cc.gatech.edu/~whalfond/testbed.html

30. Su, Z., Wassermann, G.: The essence of command injection attacks in web appli-
cations. In: POPL 2006: Conference record of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 372–382. ACM, New
York (2006)

31. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: Taj: effective taint
analysis of web applications. In: PLDI 2009: Proceedings of the 2009 ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pp.
87–97. ACM, New York (2009)

32. Unicode Consortium, http://unicode.org/
33. Valeur, F., Mutz, D., Vigna, G.: A learning-based approach to the detection of

SQL attacks. In: Julisch, K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp.
123–140. Springer, Heidelberg (2005)

34. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injection
vulnerabilities. In: PLDI 2007: Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 32–41. ACM, New
York (2007)

35. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In:
ICSE 2008: Proceedings of the 30th International Conference on Software Engi-
neering, pp. 171–180. ACM, New York (2008)

 http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
 http://perldoc.perl.org/perlsec.html#Taint-mode
http://www.cc.gatech.edu/~whalfond/testbed.html
http://unicode.org/

98 R. Mui and P. Frankl

36. World Wide Web Consortium: RFC 2616 Section 12: Content Negotiation,
http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html

37. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: a practical
approach to defeat a wide range of attacks. In: USENIX-SS 2006: Proceedings
of the 15th Conference on USENIX Security Symposium. USENIX Association,
Berkeley (2006)

Appendix A: Detailed Description of Figures 1 and 2. Case one is an ex-
ample of a normal execution. Lines 7 and 8 get the user’s inputs from the HTTP
request for this page. Lines 10 to 13 begin generation of an HTML page that will
eventually be sent to the user’s browser. A greeting is generated as HTML at
lines 16 to 18. At lines 21 to 24, an SQL insert statement is generated then sent
to MySQL, which inserts data provided by the user into the database. Lines 27
to 34 generate a SQL query, send it to MySQL, then iterate through the result
set, generating HTML to display the contents of the database (excluding mes-
sages from the admin and the user). The web server sends the generated HTML
to the user’s browser, which parses it and displays the welcome message and
the table on the user’s screen. We will assume the database is not compromised
initially, so no attacks occurred.

Case two is an example of a SQL injection attack. The SQL code being exe-
cuted at line 23 becomes insert into messages values (�user�, �hello�);drop table
messages;−−�), since there is no input validation. This results in the deletion
of the table messages from the database. By modifying the attack string an
attacker can construct and execute other malicious SQL code as well.

Case three is an example of a reflected cross site scripting attack. The unsani-
tized user input (a script) is included in the HTML at line 17. When the HTML
is parsed by the browser, it will recognize the script tags and send the enclosed
script to its Javascript engine, which will parse it and execute it. In this case
the script redirects the user to another website. An attacker can exploit this by
inducing users to provide inputs like case three, causing redirection to another
malicious web page which steals personal information.

Case four is an example of a persistent cross site scripting attack. At line 23,
the attack script is stored in the database. It is sent to any user visiting the
application when lines 27 to 34 are executed. This is a more severe form of cross
site scripting because it affects everyone visiting the web page.

Appendix B: Illustration of Architecture from Figure 3. We present two
scenarios to the architecture from Figure 3 in detail. Scenario (1) uses a comple-
ment aware web browser. Scenario (2) uses a non-complement aware web browser
to demonstrate our content negotiation mechanism for backwards compatibility.
For both scenarios, we assume the complement aware components implement
the Default Policy as their security policies.

Scenario 1: In step 1, a HTTP request along with standard URL encoded user
inputs are sent to the server by a complement aware web browser. The request
is URL encoded as specified by the HTTP protocol, identifying itself as comple-
ment aware with the Accept-Charset header. In step 2, the server converts the

 http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html

Complementary Character Coding 99

user input into complementary ASCII/Unicode as complement characters. The
input conversion module returns complement characters for all possible inputs.
In step 3, web application executes with user inputs in complement charac-
ters, while developer code is in standard characters. Value comparison is used
within the application, so it functions normally. The application constructs the
HTML output by mixing developer code, user inputs, and values obtained from
the database. In step 4, this output is sent to the content negotiation module,
which checks the Accept-Charset header of the HTTP request to see if the client
browser is complement aware. Since the browser is complement aware in scenario
(1), the application output is sent back to the client browser as the HTTP re-
sponse, labeling the output character set as complementary ASCII/Unicode. In
step 5, the complement aware browser receives the HTML output, recognizes the
output character set as complementary ASCII/Unicode and parses the output
accordingly. During parsing the browser’s security policy is enforced. Because
the Default Policy is used, full comparison is used to match all HTML tags,
comments, etc. Consequently, any such tokens that are tainted, whether they
came directly from this user’s input or whether they’d been stored previously
then retrieved from the database, are treated as default tokens, i.e. string literals.
After parsing, the page is then rendered on the screen where value comparison is
used in principle; this means that complement characters are made to look like
their default counterparts on the screen.

Scenario 2: The browser does not support complementary character coding.
Beginning in step 7, the browser sends an URL encoded HTTP request to the
server, similar to step 1. However, the request does not identify itself as comple-
ment aware at the Accept-Charset header; it accepts UTF-8 instead. The input
conversion in step 2 and execution of application code in step 3 are the same as
in scenario (1). In step 4, the application output is sent to the content negotia-
tion module, which checks the Accept-Charset header of the HTTP request to
see if the client web browser is complement aware. Since the web browser in this
scenario does not identify itself as complement aware, the output is sent to an
HTTP filter, which applies the Default Policy for HTML, while converting its
character encoding to UTF-8. For example, the filter can escape tainted charac-
ters occurring in HTML tags using HTML numeric character references. Finally,
the new output is sent to the browser in step 8 and rendered normally in step 9.

Automatic and Precise Client-Side Protection

against CSRF Attacks

Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank Piessens

IBBT-DistriNet
Katholieke Universiteit Leuven

3001 Leuven, Belgium
{philippe.deryck,lieven.desmet}@cs.kuleuven.be

Abstract. A common client-side countermeasure against Cross Site
Request Forgery (CSRF) is to strip session and authentication infor-
mation from malicious requests. The difficulty however is in determining
when a request is malicious. Existing client-side countermeasures are
typically too strict, thus breaking many existing websites that rely on
authenticated cross-origin requests, such as sites that use third-party
payment or single sign-on solutions.

The contribution of this paper is the design, implementation and
evaluation of a request filtering algorithm that automatically and
precisely identifies expected cross-origin requests, based on whether they
are preceded by certain indicators of collaboration between sites. We
formally show through bounded-scope model checking that our algorithm
protects against CSRF attacks under one specific assumption about the
way in which good sites collaborate cross-origin. We provide experimental
evidence that this assumption is realistic: in a data set of 4.7 million
HTTP requests involving over 20.000 origins, we only found 10 origins
that violate the assumption. Hence, the remaining attack surface for
CSRF attacks is very small. In addition, we show that our filtering does
not break typical non-malicious cross-origin collaboration scenarios such
as payment and single sign-on.

Keywords: CSRF, web security, browser security.

1 Introduction

From a security perspective, web browsers are a key component of today’s
software infrastructure. A browser user might have a session with a trusted
site A (e.g. a bank, or a webmail provider) open in one tab, and a session with a
potentially dangerous site B (e.g. a site offering cracks for games) open in another
tab. Hence, the browser enforces some form of isolation between these two origins
A and B through a heterogeneous collection of security controls collectively
known as the same-origin-policy [18]. An origin is a (protocol, domain name,
port) triple, and restrictions are imposed on the way in which code and data
from different origins can interact. This includes for instance restrictions that
prevent scripts from origin B to access content from origin A.

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 100–116, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automatic and Precise Client-Side Protection against CSRF Attacks 101

An important known vulnerability in this isolation is the fact that content
from origin B can initiate requests to origin A, and that the browser will treat
these requests as being part of the ongoing session with A. In particular, if the
session with A was authenticated, the injected requests will appear to A as part
of this authenticated session. This enables an attack known as Cross Site Request
Forgery (CSRF): B can initiate effectful requests to A (e.g. a bank transaction,
or manipulations of the victim’s mailbox or address book) without the user being
involved.

CSRF has been recognized since several years as one of the most impor-
tant web vulnerabilities [3], and many countermeasures have been proposed.
Several authors have proposed server-side countermeasures [3,4,10]. However,
an important disadvantage of server-side countermeasures is that they require
modifications of server-side programs, have a direct operational impact (e.g. on
performance or maintenance), and it will take many years before a substantial
fraction of the web has been updated.

Alternatively, countermeasures can be applied on the client-side, as browser
extensions. The basic idea is simple: the browser can strip session and au-
thentication information from malicious requests, or it can block such requests.
The difficulty however is in determining when a request is malicious. Existing
client-side countermeasures [9,5,12,13,16,19] are typically too strict: they block
or strip all cross-origin requests of a specific type (e.g. GET, POST, any). This
effectively protects against CSRF attacks, but it unfortunately also breaks many
existing websites that rely on authenticated cross-origin requests. Two important
examples are sites that use third-party payment (such as PayPal) or single sign-
on solutions (such as OpenID). Hence, these existing client-side countermeasures
require extensive help from the user, for instance by asking the user to define
white-lists of trusted sites or by popping up user confirmation dialogs. This is
suboptimal, as it is well-known that the average web user can not be expected
to make accurate security decisions.

This paper proposes a novel client-side CSRF countermeasure, that includes
an automatic and precise filtering algorithm for cross-origin requests. It is
automatic in the sense that no user interaction or configuration is required.
It is precise in the sense that it distinguishes well between malicious and non-
malicious requests. More specifically, through a systematic analysis of logs of
web traffic, we identify a characteristic of non-malicious cross-origin requests
that we call the trusted-delegation assumption: a request from B to A can be
considered non-malicious if, earlier in the session, A explicitly delegated control
to B in some specific ways. Our filtering algorithm relies on this assumption:
it will strip session and authentication information from cross-origin requests,
unless it can determine that such explicit delegation has happened.

We validate our proposed countermeasure in several ways. First, we formalize
the algorithm and the trusted-delegation assumption in Alloy, building on the
formal model of the web proposed by [1], and we show through bounded-scope
model checking that our algorithm protects against CSRF attacks under this
assumption. Next, we provide experimental evidence that this assumption is

102 P. De Ryck et al.

realistic: through a detailed analysis of logs of web traffic, we quantify how
often the trusted-delegation assumption holds, and show that the remaining
attack surface for CSRF attacks is very small. Finally, we have implemented our
filtering algorithm as an extension of an existing client-side CSRF protection
mechanism, and we show that our filtering does not break typical non-malicious
cross-origin collaboration scenarios such as payment and single sign-on.

In summary, the contributions of this paper are:

– The design of a novel client-side CSRF protection mechanism based on
request filtering.

– A formalization of the algorithm, and formal evidence of the security of the
algorithm under one specific assumption, the trusted-delegation assumption.

– An implementation of the countermeasure, and a validation of its com-
patibility with important web scenarios broken by other state-of-the-art
countermeasures.

– An experimental evaluation of the validity of the trusted-delegation assump-
tion.

The remainder of the paper is structured as follows. Section 2 explains the
problem using both malicious and non-malicious scenarios. Section 3 discusses
our request filtering mechanism. Section 4 introduces the formalization and
results, followed by the implementation in Section 5. Section 6 experimentally
evaluates the trusted-delegation assumption. Finally, Section 7 extensively
discusses related work, followed by a brief conclusion (Section 8).

2 Cross-Origin HTTP Requests

The key challenge for a client-side CSRF prevention mechanism is to distinguish
malicious from non-malicious cross-origin requests. This section illustrates the
difficulty of this distinction by describing some attack scenarios and some
important non-malicious scenarios that intrinsically rely on cross-origin requests.

2.1 Attack Scenarios

A1. Classic CSRF Figure 1(a) shows a classic CSRF attack. In steps 1–4, the
user establishes an authenticated session with site A, and later (steps 5–8) the
user opens the malicious site E in another tab of the browser. The malicious
page from E triggers a request to A (step 9), the browser considers this
request to be part of the ongoing session with A and automatically adds
the necessary authentication and session information. The browser internally
maintains different browsing contexts for each origin it is interacting with. The
shade of the browser-lifeline in the figure indicates the origin associated with the
browsing context from which the outgoing request originates (also known as the
referrer). Since the attack request originates from an E browsing context and
goes to origin A, it is cross-origin.

For the attack to be successful, an authenticated session with A must exist
when the user surfs to the malicious site E. The likelihood of success can be

Automatic and Precise Client-Side Protection against CSRF Attacks 103

(a) Classic CSRF (b) Link injection

Fig. 1. CSRF attack scenarios

increased by making E content-related to A, for instance to attack a banking
site, the attacker poses as a site offering financial advice.

A2. Link Injection. To further increase the likelihood of success, the attacker
can inject links to E into the site A. Many sites, for instance social networking
sites, allow users to generate content which is displayed to other users. For such a
site A, the attacker creates a content item which contains a link to E. Figure 1(b)
shows the resulting CSRF scenario, where A is a social networking site and E is
the malicious site. The user logs into A (steps 1–4), opens the attacker injected
content (steps 5–8), and clicks on the link to E (step 9) which launches the CSRF
attack (step 13). Again, the attack request is cross-origin.

2.2 Non-malicious Cross-Origin Scenarios

CSRF attack requests are cross-origin requests in an authenticated session.
Hence, forbidding such requests is a secure countermeasure. Unfortunately, this
also breaks many useful non-malicious scenarios. We illustrate two important
ones.

F1. Payment Provider. Third-party payment providers such as PayPal or Visa
3D-secure offer payment services to a variety of sites on the web.

Figure 2(a) shows the scenario for PayPal’s Buy Now button. When a user
clicks on this button, the browser sends a request to PayPal (step 2), that
redirects the user to the payment page (step 4). When the user accepts the
payment (step 7), the processing page redirects the browser to the dispatch page
(step 10), that loads the landing page of the site that requested the payment
(step 13).

104 P. De Ryck et al.

(a) Payment scenario (b) Central authentication scenario

Fig. 2. Non-malicious cross-origin scenarios

Note that step 13 is a cross-origin request from PayPal to A in an
authenticated session, for instance a shopping session in web shop A.

F2. Central Authentication. The majority of interactive websites require some
form of authentication. As an alternative to each site using its own authentication
mechanism, a single sign-on service (such as OpenID or Windows Live ID)
provides a central point of authentication.

An example scenario for OpenID authentication using MyOpenID is shown in
Figure 2(b). The user chooses the authentication method (step 1), followed by a
redirect from the site to the authentication provider (step 4). The authentication
provider redirects the user to the login form (step 6). The user enters the required
credentials, which are processed by the provider (step 10). After verification, the
provider redirects the browser to the dispatching page (step 12), that redirects
to the processing page on the original site (step 14). After processing the
authentication result, a redirect loads the requested page on the original site
(step 16).

Again, note that step 16 is a cross-origin request in an authenticated session.
These two scenarios illustrate that mitigating CSRF attacks by preventing

cross-origin requests in authenticated sessions breaks important and useful web
scenarios. Existing client-side countermeasures against CSRF attacks [5,13,16]
either are incompatible with such scenarios or require user interaction for these
cases.

Automatic and Precise Client-Side Protection against CSRF Attacks 105

3 Automatic and Precise Request Stripping

The core idea of our new countermeasure is the following: client-side state (i.e.
session cookie headers and authentication headers) is stripped from all cross-
origin requests, except for expected requests. A cross-origin request from origin
A to B is expected if B previously (earlier in the browsing session) delegated to
A. We say that B delegates to A if B either issues a POST request to A, or if B
redirects to A using a URI that contains parameters.

The rationale behind this core idea is that (1) non-malicious collaboration
scenarios follow this pattern, and (2) it is hard for an attacker to trick A into
delegating to a site of the attacker: forcing A to do a POST or parametrized
redirect to an evil site E requires the attacker to either identify a cross-site
scripting (XSS) vulnerability in A, or to break into A’s webserver. In both these
cases, A has more serious problems than CSRF.

Obviously, a GET request from A to B is not considered a delegation, as it is
very common for sites to issue GET requests to other sites, and as it is easy for
an attacker to trick A into issuing such a GET request (see for instance attack
scenario A2 in Section 2).

Unfortunately, the elaboration of this simple core idea is complicated some-
what by the existence of HTTP redirects. A web server can respond to a
request with a redirect response, indicating to the browser that it should resend
the request elsewhere, for instance because the requested resource was moved.
The browser will follow the redirect automatically, without user intervention.
Redirects are used widely and for a variety of purposes, so we cannot ignore them.
For instance, both non-malicious scenarios in Section 2 heavily depend on the
use of redirects. In addition, attacker-controlled websites can also use redirects
in an attempt to bypass client-side CSRF protection. Akhawe et al. [1] discuss
several examples of how attackers can use redirects to attack web applications,
including an attack against a CSRF countermeasure. Hence, correctly dealing
with redirects is a key requirement for security.

The flowgraph in Figure 3 summarizes our filtering algorithm. For a given
request, it determines what session state (cookies and authentication headers)
the browser should attach to the request. The algorithm differentiates between
simple requests and requests that are the result of a redirect.

Simple Requests. Simple requests that are not cross-origin, as well as expected
cross-origin requests are handled as unprotected browsers handle them today.
The browser automatically attaches the last known client-side state associated
with the destination origin (point 1). The browser does not attach any state to
non-expected cross-origin requests (point 3).

Redirect Requests. If a request is the consequence of a redirect response, then the
algorithm determines if the redirect points to the origin where the response came
from. If this is the case, the client-side state for the new request is limited to the
client-side state known to the previous request (i.e. the request that triggered
this redirect) (point 2). If the redirect points to another origin, then, depending

106 P. De Ryck et al.

Fig. 3. The request filtering algorithm

on whether this cross-origin request is expected or not, it either gets session-state
automatically attached (point 1) or not (point 3).

When Is a Request Expected?. A key element of the algorithm is determining
whether a request is expected or not. As discussed above, the intuition is: a cross-
origin request from B to A is expected if and only if A first delegated to B by
issuing a POST request to B, or by a parametrized redirect to B. Our algorithm
stores such trusted delegations, and an assumption that we rely on (and that we
refer to as the trusted-delegation assumption) is that sites will only perform such
delegations to sites that they trust. In other words, a site A remains vulnerable to
CSRF attacks from origins to which it delegates. Section 6 provides experimental
evidence for the validity of this assumption.

The algorithm to decide whether a request is expected goes as follows.
For a simple cross-origin request from site B to site A, a trusted delegation

from site A to B needs to be present in the delegation store.
For a redirect request that redirects a request to origin Y (light gray) to

another origin Z (dark gray) in a browsing context associated with some origin α,
the following rules apply.

1. First, if the destination (Z) equals the source (i.e. α = Z) (Figure 4(a)),
then the request is expected if there is a trusted delegation from Z to Y in
the delegation store. Indeed, Y is effectively doing a cross-origin request to
Z by redirecting to Z. Since the browsing context has the same origin as
the destination, it can be expected not to manipulate redirect requests to
misrepresent source origins of redirects (cfr next case).

2. Alternatively, if the destination (Z) is not equal to the source (i.e. α �= Z)
(Figure 4(b)), then the request is expected if there is a trusted delegation
from Z to Y in the delegation store, since Y is effectively doing a cross-
origin request to Z. Now, the browsing context might misrepresent source

Automatic and Precise Client-Side Protection against CSRF Attacks 107

(a) (b) (c)

Fig. 4. Complex cross-origin redirect scenarios

origins of redirects by including additional redirect hops (origin X (white) in
Figure 4(c)). Hence, our decision to classify the request does not involve X.

Finally, our algorithm imposes that expected cross-origin requests can only use
the GET method and that only two origins can be involved in the request chain.
These restrictions limit the potential power an attacker might have, even if the
attacker successfully deceives the trusted-delegation mechanism.

Mapping to Scenarios. The reader can easily check that the algorithm blocks
the attack scenarios from Section 2, and supports the non-malicious scenarios
from that section. We discuss two of them in more detail.

In the PayPal scenario (Figure 2(a)), step 13 needs to re-use the state already
established in step 2, which means that according to the algorithm, the request
from PayPal to A should be expected. A trusted delegation happens in step 2,
where a cross-origin POST is sent from origin A to PayPal. Hence the GET
request in step 13 is considered expected and can use the state associated with
origin A. Also note how the algorithm maintains the established session with
PayPal throughout the scenario. The session is first established in step 3. Step
4 can use this session, because the redirect is an internal redirect on the PayPal
origin. Step 8 can use the last known state for the PayPal origin and step 10 is
yet another internal redirect.

In the link injection attack (Figure 1(b)), the attack happens in step 13 and is
launched from origin E to site A. In this scenario, an explicit link between A and
E exists because of the link injected by the attacker. This link is however not
a POST or parametrized redirect, so it is not a trusted delegation. This means
that the request in step 10 is not considered to be expected, so it can not access
the previously established client-side state, and the attack is mitigated.

4 Formal Modeling and Checking

The design of web security mechanisms is complex: the behaviour of (same-
origin and cross-origin) browser requests, server responses and redirects, cookie
and session management, as well as the often implicit threat models of web

108 P. De Ryck et al.

security can lead to subtle security bugs in new features or countermeasures. In
order to evaluate proposals for new web mechanisms more rigorously, Akhawe
et al. [1] have proposed a model of the Web infrastructure, formalized in Alloy.

The base model is some 2000 lines of Alloy source code, describing (1) the essen-
tial characteristics of browsers, web servers, cookie management and the HTTP
protocol, and (2) a collection of relevant threat models for the web. The Alloy
Analyzer – a bounded-scope model checker – can then produce counterexamples
that violate intended security properties if they exist in a specified finite scope.

In this section, we briefly introduce Akhawe’s model and present our extensions
to the model. We also discuss how the model was used to verify the absence of
attack scenarios and the presence of functional scenarios.

4.1 Modeling Our Countermeasure

The model of Akhawe et al. defines different principals, of which GOOD and
WEBATTACKER are most relevant. GOOD represents an honest principal, who follows
the rules imposed by the technical specifications. A WEBATTACKER is a malicious
user who can control malicious web servers, but has no extended networking
capabilities.

The concept of Origin is used to differentiate between origins, which
correspond to domains in the real world. An origin is linked with a server on
the web, that can be controlled by a principal. The browsing context, modeled
as a ScriptContext, is also associated with an origin, that represents the origin
of the currently loaded page, also known as the referrer.

A ScriptContext can be the source of a set of HTTPTransaction objects,
which are a pair of an HTTPRequest and HTTPResponse. An HTTP request and
response are also associated with their remote destination origin. Both an HTTP
request and response can have headers, where respectively the CookieHeader

and SetCookieHeader are the most relevant ones. An HTTP request also has a
method, such as GET or POST, and a queryString, representing URI parameters.
An HTTP response has a statusCode, such as c200 for a content result or c302

for a redirect. Finally, an HTTP transaction has a cause, which can be none,
such as the user opening a new page, a RequestAPI, such as a scripting API, or
another HTTPTransaction, in case of a redirect.

To model our approach, we need to extend the model of Akhawe et al. to
include (a) the accessible client-side state at a certain point in time, (b) the
trusted delegation assumption and (c) our filtering algorithm. We discuss (a)
and (b) in detail, but due to space constraints we omit the code for the filtering
algorithm (c), which is simply a literal implementation of the algorithm discussed
in Section 3.

Client-Side State. We introduced a new signature CSState that represents a
client-side state (Listing 1.1). Such a state is associated with an Origin and
contains a set of Cookie objects. To associate a client-side state with a given
request or response and a given point in time, we have opted to extend the
HTTPTransaction from the original model into a CSStateHTTPTransaction. Such
an extended transaction includes a beforeState and afterState, respectively

Automatic and Precise Client-Side Protection against CSRF Attacks 109

representing the accessible client-side state at the time of sending the request and
the updated client-side state after having received the response. The afterState

is equal to the beforeState, with the potential addition of new cookies, set in
the response.

1 sig CSState {
2 dst: Origin,
3 cookies: set Cookie
4 }
5

6 sig CSStateHTTPTransaction extends HTTPTransaction {
7 beforeState : CSState,
8 afterState : CSState
9 } {

10 //The after state of a transaction is equal to the before state + any additional cookies set in
the response

11 beforeState·dst = afterState·dst
12 afterState·cookies = beforeState·cookies + (resp·headers & SetCookieHeader)·thecookie
13

14 // The destination origin of the state must correspond to the transaction destination origin
15 beforeState·dst = req·host
16 }

Listing 1.1. Signatures representing our data in the model

Trusted-delegation Assumption. We model the trusted-delegation assumption as
a fact, that honest servers do not send a POST or parametrized redirect to web
attackers ((Listing 1.2).

1 fact TrustedDelegation {
2 all r : HTTPRequest | {
3 (r·method = POST || some (req·r)·cause & CSStateHTTPTransaction)
4 &&
5 ((some (req·r)·cause & CSStateHTTPTransaction && getPrincipalFromOrigin[(req·r)·cause·req·

host] in GOOD) || getPrincipalFromOrigin[transactions·(req·r)·owner] in GOOD)
6 implies
7 getPrincipalFromOrigin[r·host] not in WEBATTACKER
8 }
9 }

Listing 1.2. The fact modeling the trusted-delegation assumption

4.2 Using Model Checking for Security and Functionality

We formally define a CSRF attack as the possibility for a web attacker (defined in
the base model) to inject a request with at least one existing cookie attached to it
(this cookie models the session/authentication information attached to requests)
in a session between a user and an honest server (Listing 1.3).

We provided the Alloy Analyzer with a universe of at most 9 HTTP events
and where an attacker can control up to 3 origins and servers (a similar size as
used in [1]). In such a universe, no examples of an attacker injecting a request
through the user’s browser were found. This gives strong assurance that the
countermeasure does indeed protect against CSRF under the trusted delegation
assumption.

110 P. De Ryck et al.

1 pred CSRF[r : HTTPRequest] {
2 //Ensure that the request goes to an honest server
3 some getPrincipalFromOrigin[r·host]
4 getPrincipalFromOrigin[r·host] in GOOD
5

6 //Ensure that an attacker is involved in the request
7 some (WEBATTACKER·servers & involvedServers[req·r]) || getPrincipalFromOrigin[(

transactions·(req·r))·owner] in WEBATTACKER
8

9 // Make sure that at least one cookie is present
10 some c : (r·headers & CookieHeader)·thecookie | {
11 //Ensure that the cookie value is fresh (i·e· that it is not a renewed value in a redirect

chain)
12 not c in ((req·r)·∗cause·resp·headers & SetCookieHeader)·thecookie
13 }
14 }

Listing 1.3. The predicate modeling a CSRF attack

We also modeled the non-malicious scenarios from Section 2, and the Alloy
Analyzer reports that these scenarios are indeed permitted. From this, we can
also conclude that our extension of the base model is consistent.

Space limitations do not permit us to discuss the detailed scenarios present
in our model, but the interested reader can find the complete model available
for download at [6].

Table 1. CSRF benchmark

Test scenarios Result
HTML 29 cross-origin test scenarios �
CSS 12 cross-origin test scenarios �
ECMAScript 9 cross-origin test scenarios �
Redirects 20 cross-origin redirect scenarios �

5 Implementation

We have implemented our request filtering algorithm in a proof-of-concept add-
on for the Firefox browser, and used this implementation to conduct an extensive
practical evaluation. First, we have created simulations for both the common
attack scenarios as well as the two functional scenarios discussed in the paper
(third party payment and centralized authentication), and verified that they
behaved as expected.

Second, in addition to these simulated scenarios, we have verified that the
prototype supports actual instances of these scenarios, such as for example the
use of MyOpenID authentication on sourceforge.net.

Third, we have constructed and performed a CSRF benchmark1, consisting of
70 CSRF attack scenarios to evaluate the effectiveness of our CSRF prevention

1 The benchmark can be applied to other client-side solutions as well, and is
downloadable at [6].

Automatic and Precise Client-Side Protection against CSRF Attacks 111

technique (see Table 1). These scenarios are the result of a CSRF-specific study
of the HTTP protocol, the HTML specification and the CSS markup language
to examine their cross-origin traffic capabilities, and include complex redirect
scenarios as well. Our implementation has been evaluated against each of these
scenarios, and our prototype passed all tests successfully.

The prototype, the scenario simulations and the CSRF benchmark suite are
available for download [6].

6 Evaluating the Trusted-Delegation Assumption

Our countermeasure drastically reduces the attack surface for CSRF attacks.
Without CSRF countermeasures in place, an origin can be attacked by any other
origin on the web. With our countermeasure, an origin can only be attacked by
another origin to which it has delegated control explicitly by means of a cross-
origin POST or redirect. We have already argued in Section 3 that it is difficult
for an attacker to cause unintended delegations. In this section, we measure the
remaining attack surface experimentally.

We conducted an extensive traffic analysis using a real-life data set of
4.729.217 HTTP requests, collected from 50 unique users over a period of 10
weeks. The analysis revealed that 1.17% of the 4.7 million requests are treated
as delegations in our approach. We manually analyzed all these 55.300 requests,
and classified them in the interaction categories summarized in Table 2.

For each of the categories, we discuss the resulting attack surface:

Third Party Service Mashups. This category consists of various third party
services that can be integrated in other websites. Except for the single sign-on
services, this is typically done by script inclusion, after which the included
script can launch a sequence of cross-origin GET and/or POST requests
towards offered AJAX APIs. In addition, the service providers themselves
often use cross-origin redirects for further delegation towards content delivery
networks.
As a consequence, the origin A including the third-party service S becomes
vulnerable to CSRF attacks from S. This attack surface is unimportant, as
in these scenarios, S can already attack A through script inclusion, a more
powerful attack than CSRF.

In addition, advertisement service providers P that further redirect to
content delivery services D are vulnerable to CSRF attacks from D whenever
a user clicks an advertisement. Again, this attack surface is unimportant: the
delegation from P to D correctly reflects a level of trust that P has in D,
and P and D will typically have a legal contract or SLA in place.

Multi-origin Websites. Quite a number of larger companies and organi-
zations have websites spanning multiple origins (such as live.com - mi-
crosoft.com and google.be - google.com). Cross-origin POST requests and
redirects between these origins make it possible for such origins to attack
each other. For instance, google.be could attack google.com. Again, this attack

112 P. De Ryck et al.

Table 2. Analysis of the trusted-delegation assumption in a real-life data set of
4.729.217 HTTP requests

requests POST redir.
Third party service mashups 29.282 (52,95%) 5.321 23.961
Advertisement services 22.343 (40,40%) 1.987 20.356
Gadget provider services (appspot, mochibot, gmodules, . . .) 2.879 (5,21%) 2.757 122
Tracking services (metriweb, sitestat, uts.amazon, . . .) 2.864 (5,18%) 411 2.453
Single Sign-On services (Shibboleth, Live ID, OpenId, . . .) 1.156 (2,09%) 137 1.019
3rd party payment services (Paypal, Ogone) 27 (0,05%) 19 8
Content sharing services (addtoany, sharethis, . . .) 13 (0,02%) 10 3

Multi-origin websites 13.973 (25,27%) 198 13.775
Content aggregators 8.276 (14,97%) 0 8.276
Feeds (RSS feeds, News aggregators, mozilla fxfeeds, . . .) 4.857 (8,78%) 0 4.857
Redirecting search engines (Google, Comicranks, Ohnorobot) 3.344 (6,05%) 0 3.344
Document repositories (ACM digital library, dx.doi.org, . . .) 75 (0,14%) 0 75

False positives (wireless network access gateways) 1.215 (2,20%) 12 1.203
URL shorteners (gravatar, bit.ly, tinyurl, . . .) 759 (1,37%) 0 759
Others (unclassified) 1.795 (3,24%) 302 1.493
Total number of 3rd party delegation initiators 55.300 (100%) 5.833 49.467

surface is unimportant, as all origins of such a multi-origin website belong
to a single organization.

Content Aggregators. Content aggregators collect searchable content and
redirect end-users towards a specific content provider. For news feeds and
document repositories (such as the ACM digital library), the set of content
providers is typically stable and trusted by the content aggregator, and
therefore again a negligible attack vector.
Redirecting search engines register the fact that a web user is following a
link, before redirecting the web user to the landing page (e.g. as Google does
for logged in users). Since the entries in the search repository come from
all over the web, our CSRF countermeasure provides little protection for
such search engines. Our analysis identified 4 such origins in the data set:
google.be, google.com, comicrank.com, and ohnorobot.com.

False Positives. Some fraction of the cross-origin requests are caused by
network access gateways (e.g. on public Wifi) that intercept and reroute
requests towards a payment gateway. Since such devices have man-in-the-
middle capabilities, and hence more attack power than CSRF attacks, the
resulting attack surface is again negligible.

URL Shorteners. To ease URL sharing, URL shorteners transform a short-
ened URL into a preconfigured URL via a redirect. Since such URL short-
ening services are open, an attacker can easily control a new redirect target.
The effect is similar to the redirecting search engines; URL shorteners are
essentially left unprotected by our countermeasure. Our analysis identified 6
such services in the data set: bit.ly, gravatar.com, post.ly, tiny.cc, tinyurl.com,
and twitpic.com.

Others(unclassified). For some of the requests in our data set, the origins
involved in the request were no longer online, or the (partially anonymized)
data did not contain sufficient information to reconstruct what was happen-
ing, and we were unable to classify or further investigate these requests.

Automatic and Precise Client-Side Protection against CSRF Attacks 113

In summary, our experimental analysis shows that the trusted delegation
assumption is realistic. Only 10 out of 23.592 origins (i.e. 0.0042% of the
examined origins) – the redirecting search engines and the URL shorteners –
perform delegations to arbitrary other origins. They are left unprotected by
our countermeasure. But the overwhelming majority of origins delegates (in our
precise technical sense, i.e. using cross-origin POST or redirect) only to other
origins with whom they have a trust relationship.

7 Related Work

The most straightforward protection technique against CSRF attacks is server-
side mitigation via validation tokens [4,10]. In this approach, web forms are
augmented with a server-generated, unique validation token (e.g. embedded
as a hidden field in the form), and at form submission the server checks the
validity of the token before executing the requested action. At the client-side,
validation tokens are protected from cross-origin attackers by the same-origin-
policy, distinguishing them from session cookies or authentication credentials
that are automatically attached to any outgoing request. Such a token based
approach can be offered as part of the web application framework [14,7], as a
server-side library or filter [15], or as a server-side proxy [10].

Recently, the Origin header has been proposed as a new server-side coun-
termeasure [3,2]. With the Origin header, clients unambiguously inform the
server about the origin of the request (or the absence of it) in a more privacy-
friendly way than the Referer header. Based on this origin information, the server
can safely decide whether or not to accept the request. In follow-up work, the
Origin header has been improved, after a formal evaluation revealed a previously
unknown vulnerability [1]. The Alloy model used in this evaluation also formed
the basis for the formal validation of our presented technique in Section 4.

Unfortunately, the adoption rate of these server-side protection mechanisms
is slow, giving momentum to client-side mitigation techniques as important (but
hopefully transitional) solutions. In the next paragraphs, we will discuss the
client-side proxy RequestRodeo, as well as 4 mature and popular browser addons
(CsFire, NoScript ABE, RequestPolicy, and CSD2). In addition, we will evaluate
how well the browser addons enable the functional scenarios and protect against
the attack scenarios discussed in this paper (see Table 3).

RequestRodeo [9] is a client-side proxy proposed by Johns and Winter. The
proxy applies a client-side token-based approach to tie requests to the correct
source origin. In case a valid token is lacking for an outgoing request, the request
is considered suspicious and gets stripped of cookies and HTTP authorization

headers. RequestRodeo lies at the basis of most of the client-side CSRF solutions
[5,12,13,16,19], but because of the choice of a proxy, RequestRodeo often lacks
context information, and the rewriting technique on raw responses does not scale
well in a web 2.0 world.
2 Since the client-side detection technique described in [17] is not available for

download, the evaluation is done based on the description in the paper.

114 P. De Ryck et al.

Table 3. Evaluation of browser-addons

Functional scenarios Attack scenarios
F1. Payment

Provider
F2. Central

Authentication
A1. Classic

CSRF
A2. Link
Injection

CsFire [5] × × � �
NoScript ABE [13] a × × � �
RequestPolicy [16] �� b �� b �c �c

Client-Side Detection [17] × × � �
Our Approach � � � �
a ABE configured as described in [8]
b Requires interactive feedback from end-user to make the decision
c Requests are blocked instead of stripped, impacting the end-user experience

CsFire [5] extends the work of Maes et al. [11], and strips cookies and HTTP
authorization headers from a cross-origin request. The advantage of stripping
is that there are no side-effects for cross-origin requests that do not require
credentials in the first place. CsFire operates autonomously by using a default
client policy which is extended by centrally distributed policy rules. Additionally,
CsFire supports users creating custom policy rules, which can be used to blacklist
or whitelist certain traffic patterns. Without a central or user-supplied whitelist,
CsFire does not support the payment and central authentication scenario.

To this extent, we plan to integrate the approach presented in this paper to
the CsFire Mozilla Add-On distribution in the near future.

NoScript ABE [13], or Application Boundary Enforcer, restricts an application
within its origin, which effectively strips credentials from cross-origin requests,
unless specified otherwise. The default ABE policy only prevents CSRF attacks
from the internet to an intranet page. The user can add specific policies, such
as a CsFire-alike stripping policy [8], or a site-specific blacklist or whitelist.
If configured with [8], ABE successfully blocks the three attack scenarios, but
disables the payment and central authentication scenario.

RequestPolicy [16] protects against CSRF by blocking all cross-origin requests.
In contrast to stripping credentials, blocking a request can have a very
noticeable effect on the user experience. When detecting a cross-origin redirect,
RequestPolicy injects an intermediate page where the user can explicitly allow
the redirect. RequestPolicy also includes a predefined whitelist of hosts that are
allowed to send cross-origin requests to each other. Users can add exceptions to
the policy using a whitelist. RequestPolicy successfully blocks the three attack
scenarios (by blocking instead of stripping all cross-origin requests) and requires
interactive end-user feedback to enable the payment and central authentication
scenario.

Finally, in contrast to the CSRF prevention techniques discussed in this paper,
Shahriar and Zulkernine proposes a client-side detection technique for CSRF [17].
In their approach, malicious and benign cross-origin requests are distinguished
from each other based on the existence and visibility of the submitted form or
link in the originating page, as well as the visibility of the target. In addition,
the expected content type of the response is taken into account to detect false
negatives during execution. Although the visibility check closely approximates
the end-user intent, their technique fails to support the script inclusions of

Automatic and Precise Client-Side Protection against CSRF Attacks 115

third party service mashups as discussed in Section 6. Moreover, without taking
into account the delegation requests, expected redirect requests (as defined in
Section 3) will be falsely detected as CSRF attacks, although these requests are
crucial enablers for the payment and central authentication scenario.

8 Conclusion

We have proposed a novel technique for protecting at client-side against CSRF
attacks. The main novelty with respect to existing client-side countermeasures is
the good trade-off between security and compatibility: existing countermeasures
break important web scenarios such as third-party payment and single-sign-on,
whereas our countermeasure can permit them.

Acknowledgements. This research is partially funded by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science Policy, IBBT, IWT,
the Research Fund K.U. Leuven and the EU-funded FP7-projects WebSand and
NESSoS.

References

1. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal
foundation of web security. In: IEEE Computer Security Foundations Symposium,
pp. 290–304 (2010)

2. Barth, A., Jackson, C., Hickson, I.: The web origin concept (November 2010),
http://tools.ietf.org/html/draft-abarth-origin-09

3. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: 15th ACM Conference on Computer and Communications Security, CCS 2008
(2008)

4. Burns, J.: Cross site reference forgery: An introduction to a common web
application weakness. In: Security Partners, LLC (2005)

5. De Ryck, P., Desmet, L., Heyman, T., Piessens, F., Joosen, W.: CsFire: Transparent
client-side mitigation of malicious cross-domain requests. In: Massacci, F., Wallach,
D., Zannone, N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 18–34. Springer,
Heidelberg (2010)

6. De Ryck, P., Desmet, L., Piessens, F., Joosen, W.: Automatic and precise client-
side protection against csrf attacks - downloads (2011), https://distrinet.cs.
kuleuven.be/software/CsFire/esorics2011/

7. Django. Cross site request forgery protection (2011), http://docs.

djangoproject.com/en/dev/ref/contrib/csrf/

8. Informaction Forums. Which is the best way to configure ABE? (July 2010),
http://forums.informaction.com/viewtopic.php?f=23\&t=4752

9. Johns, M., Winter, J.: RequestRodeo: client side protection against session riding.
In: Proceedings of the OWASP Europe 2006 Conference, refereed papers track,
Report CW448, pp. 5–17 (2006)

10. Jovanovic, N., Kirda, E., Kruegel, C.: Preventing cross site request forgery attacks.
In: IEEE International Conference on Security and Privacy in Communication
Networks (SecureComm), pp. 1–10 (2006)

http://tools.ietf.org/html/draft-abarth-origin-09
https://distrinet.cs.kuleuven.be/software/CsFire/esorics2011/
https://distrinet.cs.kuleuven.be/software/CsFire/esorics2011/
http://docs.djangoproject.com/en/dev/ref/contrib/csrf/
http://docs.djangoproject.com/en/dev/ref/contrib/csrf/
http://forums.informaction.com/viewtopic.php?f=23&t=4752

116 P. De Ryck et al.

11. Maes, W., Heyman, T., Desmet, L., Joosen, W.: Browser protection against
cross-site request forgery. In: Proceedings of the First ACM Workshop on Secure
Execution of Untrusted Code, pp. 3–10. ACM, New York (2009)

12. Mao, Z., Li, N., Molloy, I.: Defeating cross-site request forgery attacks with browser-
enforced authenticity protection. In: Dingledine, R., Golle, P. (eds.) FC 2009.
LNCS, vol. 5628, pp. 238–255. Springer, Heidelberg (2009)

13. Giorgio Maone. Noscript 2.0.9.9 (2011), http://noscript.net/
14. Ruby on Rails. Actioncontroller::requestforgeryprotection (2011), http://api.

rubyonrails.org/classes/ActionController/RequestForgeryProtection.

html

15. Owasp. Csrf guard (October 2008), http://www.owasp.org/index.php/CSRF_

Guard

16. Samuel, J.: Requestpolicy 0.5.20 (2011), http://www.requestpolicy.com
17. Shahriar, H., Zulkernine, M.: Client-side detection of cross-site request forgery

attacks. In: 2010 IEEE 21st International Symposium on Software Reliability
Engineering (ISSRE), pp. 358–367 (November 2010)

18. Zalewski, M.: Browser security handbook (2010), http://code.google.com/p/

browsersec/wiki/Main

19. Zeller, W., Felten, E.W.: Cross-site request forgeries: Exploitation and prevention.
Technical report, Princeton University (2008)

http://noscript.net/
http://api.rubyonrails.org/classes/ActionController/RequestForgeryProtection.html
http://api.rubyonrails.org/classes/ActionController/RequestForgeryProtection.html
http://api.rubyonrails.org/classes/ActionController/RequestForgeryProtection.html
http://www.owasp.org/index.php/CSRF_Guard
http://www.owasp.org/index.php/CSRF_Guard
http://www.requestpolicy.com
http://code.google.com/p/browsersec/wiki/Main
http://code.google.com/p/browsersec/wiki/Main

Timing Is Everything:
The Importance of History Detection

Gunnar Kreitz

KTH – Royal Institute of Technology
gkreitz@kth.se

Abstract. In this work, we present a Flow Stealing attack, where a
victim’s browser is redirected during a legitimate flow. One scenario is
redirecting the victim’s browser as it moves from a store to a payment
provider. We discuss two attack vectors.

Firstly, browsers have long admitted an attack allowing a malicious
web page to detect whether the browser has visited a target web site by
using CSS to style visited links and read out the style applied to a link.
For a long time, this CSS history detection attack was perceived as having
small impact. Lately, highly efficient implementations of the attack have
enabled malicious web sites to extract large amounts of information.
Following this, browser developers have deployed measures to protect
against the attack. Flow stealing demonstrates that the impact of history
detection is greater than previously known.

Secondly, an attacker who can mount a man-in-the-middle attack
against the victim’s network traffic can also perform a flow stealing
attack.

Noting that different browsers place different restrictions on cross-frame
navigation through JavaScript window handles, we suggest a stricter pol-
icy based on pop-up blockers to prevent Flow Stealing attacks.

Keywords: Web Security, Flow Stealing, CSS History Detection.

1 Introduction

In this paper we discuss an attack related to when a user’s session is transfered
between two different sites. One scenario in which such transfers occur is when
a user moves from a store, store.com, to a payment provider, pay.com. We use
this as a running example throughout the paper.

A typical integration mechanism is that the store sends information about the
purchase to the payment provider (at least the total amount to be paid) and gets
a transaction ID. The store then redirects the user to the payment provider with
the transaction ID, either by a GET or POST request1. In this paper, we outline
1 Several payment providers also provide lightweight integration where the store

directly redirects the customer with information about the purchase instead of
a transaction ID. This does not materially affect the attack, so we consider this
equivalent to sending a transaction ID.

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 117–132, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

118 G. Kreitz

an attack where an attacker at this point redirects the user’s browser to the same
payment provider, but with a different transaction ID. The attacker could also
choose to redirect the user to a malicious site stealing the user’s credit card
details, at the risk of such a redirect being more easily detectable by the victim.
We refer to this class of hijacking the user’s session as it transfers cross-domain
as Flow Stealing.

The steps in a typical version of the attack are as follows:

1. Victim visits evil.com, and follows link to store.com
2. Victim interacts with store.com, eventually reaching checkout
3. store.com creates transaction on pay.com, which assigns transaction ID iu
4. store.com redirects victim to pay.com with transaction ID iu.
5. evil.com detects that victim hits pay.com
6. evil.com creates transaction on pay.com, which assigns transaction ID ia
7. evil.com redirects the victim’s tab to pay.com with transaction ID ia

To the victim, the flow appears normal. She follows a link to store.com which
opens in a new tab. The site is legitimate, so all interaction and security indi-
cators such as certificates function as they would normally. When she goes to
pay, she is transfered to the legitimate pay.com site, also with intact security
indicators. The only indicator of the attack is in the payment information dis-
played by pay.com. What the difference is, how prominent it is, or if there even
is one, depends on the information associated with the transaction that pay.com
displays. This in turn often depends on the amount of detail about the purchase
communicated from store.com to pay.com when it initializes the transaction.

Two questions arise: firstly, how does the attacker redirect the browser, and
secondly, how does the attacker know when to redirect? We address these in
Section 2 and Section 3. In one version, our attacker makes use of an old and
well-known security hole, CSS history detection [1], in order to time her attack.
To be able to redirect the victim’s browser, the attacker needs JavaScript running
in the browser and a window handle to the window which is to be redirected.

1.1 Attacker and Victim Model

We consider two forms of attackers: an attacker running a web page, and an
attacker who can mount man-in-the-middle (MITM) attacks against the vic-
tim’s network traffic. Our primary focus is on an attacker operating a web site,
evil.com, visited by the victim. We assume that the attacker can convince vic-
tims to click on a link from evil.com to store.com and buy something. This
means that our attacker could make some money (legally) by hosting adver-
tisements or participating in an affiliate program. We remark that our attacker
is weaker compared to the traditional attacker model in many CSRF and XSS
attacks, as the attacker only needs the victim to follow a legitimate link to a
well-known site.

We also consider a network attacker who can intercept and modify the victim’s
network traffic. There are several ways in which an attacker could get this ability.
For an attacker on the same local network as the victim, the attacker can utilize

Timing Is Everything: The Importance of History Detection 119

standard tools such as ARP or DHCP spoofing to get access to the victim’s
traffic. Alternatively, an attacker could set up a Tor exit node and thereby mount
MITM attacks against anonymous victims. Given MITM access to the victim’s
network communication, all information sent and received over http can trivially
be attacked, but our focus is on pages protected by https, a protocol intended
to protect against network attacks. We do not assume that the network attacker
can trick the victim into visiting her web site, so the network attacker is not
strictly stronger than our normal attacker.

We consider a potential victim of our attack who follows the guidelines taught
by the security community. She will only provide sensitive information over https,
but not before verifying that the certificate is authentic. In addition to a security-
conscious victim, we assume that the attacked flow is on domains served only
over https.

1.2 Our Contribution

In this paper, we describe a new type of attack which we call flow stealing. Our
attack makes new use of a well-known security issue in the CSS specification to
time the execution of a redirection attack. By timing the redirection precisely,
the attacker can give the victim a false sense of security by having her browse
well-known sites before the attack is executed. This new use of an old attack
emphasizes the importance of closing also minor security holes where the im-
pact is not fully understood. Most major browsers have now closed the CSS
history detection hole in their latest stable versions. However, flow stealing at-
tacks can also be performed as a man-in-the-middle attack. Our flow stealing
attack highlights a part of typical web flows which is difficult to protect using
current mechanisms, namely legitimate cross-domain redirects.

We identify several scenarios in which the attack can be mounted, and we
suggest new protection mechanisms which can be used to prevent flow stealing,
as well as similar attacks. In particular, we point out the dangers of allowing
JavaScript to navigate and close windows to which it holds a window handle
and propose a new policy based on pop-up blocking.

1.3 Related Works

Flow stealing shares some similarities with cross-site request forgery (CSRF)
and session fixation attacks. A related form of CSRF is the login CSRF attack,
described by Barth et al. [2]. In a login CSRF attack, the attacker logs the
victim on to a legitimate site using an account controlled by the attacker. The
purpose of this is for the attacker to extract or use information stored by the
victim’s activity on the site. Examples of such abuse includes stealing the search
history of the victim, or using stored credit card details to transfer money or
make purchases.

As discussed in [2], the login CSRF attack is an example of vulnerabilities
in session initialization. Another type of vulnerability in the same class is that
of session fixation, where the attacker tricks the victim into logging in on a
legitimate site with a session ID known to the attacker. The attacker can then

120 G. Kreitz

visit the legitimate site using the same session ID and then be logged in as the
victim.

Also similar in spirit to flow stealing is the tabnabbing attack by Raskin [3].
In this attack, a malicious site detects when the victim is not looking at it and
then replaces its content with a phishing site looking like a login or error message
page at a legitimate site.

2 Redirecting the Victim’s Tab

How can the attacker redirect the victim’s browser? Firstly, this requires the
attacker to get the victim’s browser to run malicious JavaScript. This is easily
accomplished for an attacker who convinces the victim to visit evil.com, as
the page can contain the JavaScript required for the attack. A network attacker
using a man-in-the-middle attack can insert malicious JavaScript into any page
or script content served over unprotected http. For more details, see Section 2.2

Furthermore, the script needs to have a window handle to the tab in which the
victim is visiting store.com, and later pay.com. If the victim opened the tab by
clicking a link on evil.com, the attacker’s JavaScript can store a window handle
to the tab. We defer discussion of the man-in-the-middle case to Section 2.2.

Many browsers permit JavaScript to freely navigate any top-level window
handles it holds. One notable exception is Opera which does not allow a window
w1 to navigate a window w2 to which it has a handle if w2 is currently browsed
to a https page at a domain different from w1. There is a simple way for our
attack to get around this restriction in Opera, but it does make the attack easier
to detect for the victim. We discuss the circumvention in Section 2.1.

We remark that once an attacker’s JavaScript has a window handle to a
window, it retains its rights over that window regardless of what happens. In
particular, a user manually typing in a different address in the navigation bar
does not revoke any of the opener’s privileges.

2.1 Working around Opera’s Navigation Restrictions

Opera prevents a window from navigating another window via a window handle
in some scenarios. In our flow stealing attack, we need to change the address of
the victim’s window when it goes to pay.com, which we assume is served over
https. Thus, we propose a slightly different variation when attacking the Opera
browser.

If a window w1 wants to navigate the window w2 to some address, it can
accomplish a similar effect which may not be noticed if it closes window w2 and
navigates itself to the address it wanted window w2 to go to. We are not aware
of any browser placing restrictions on closing windows via a JavaScript handle.
Depending on the victim’s configuration and how many tabs she has open, this
“navigation” may be more or less noticeable.

If the attacker can close window w2, why not simply open another window
with the right address in its place? The answer is that such an attempt will likely
be prevented by a pop-up blocker. All mainstream browsers today prevent sites

Timing Is Everything: The Importance of History Detection 121

from arbitrarily opening new tabs, unless the action is initiated by a user action
such as a mouse click.

2.2 Page Modification by a Network Attacker

In our attacker model, we consider a network attacker who is not assumed to
be able to entice victims to visit her web site. Thus, the network attacker needs
some other way to get JavaScript running in the victim’s browser, as well as a
window handle to a window where the victim then makes a purchase.

Most web browsing is still done over http, instead of https. However, we
assume that both store.com and pay.com have invested in security and are
served only over https. Thus, the network attacker cannot perform man-in-the-
middle attacks against these domains directly.

Our network attacker can, however, easily modify any other page the vic-
tim visits over http. Thus, an attacker can write a proxy inserting malicious
JavaScript into all pages the victim visits over http. To make this attack effi-
cient, we assume that the attacker wants to adapt the JavaScript as little as
possible to the page the attack is inserted into.

We begin with a discussion on what the JavaScript should do. We assume that
the network attacker wants to avoid detection, and thus not modify any user-
visible behavior of web sites. This means that she will want to insert JavaScript
on the page such that it captures a window reference to any window opened
by the page. A page can be opened for one of two reasons, either by the user
clicking on a link with the target attribute set to “_blank”, or by JavaScript
on the page calling window.open.

Thus, the attack flow for our network attacker is as follows:

1. Victim visits http://example.com
2. Attacker’s proxy inserts JavaScript into returned example.com page
3. Victim clicks on link to example2.com, opening in new window
4. Attacker’s JavaScript captures a reference to the opened window

in which situation the network attacker is almost in the same position as when
the victim visits evil.com and follows a link from there.

We start with links using the target attribute to open a new window. The
attacker can insert JavaScript which executes when the page is loaded, and which
loops through all anchor tags on the web page. When it reaches an anchor tag
with target set to _blank, it modifies the tag to call a JavaScript function
opening the window and storing the window handle when clicked. We remark
that as these tags are easily detectable if the attacker parses the page, it would
be easy to make this modification statically as part of a man-in-the middle attack
as well. We present a simplified JavaScript example in Figure 1.

Handling windows opened by JavaScript on the original web site at first ap-
pears more difficult. To detect when windows may be opened could involve dy-
namic analysis of JavaScript code. However, there is an easy way to capture
references opened by JavaScript on the original page.

122 G. Kreitz

window . real_open = window . open ;
window . open = funct ion (URL, name , specs , r ep l a c e) {

var openedWindow = real_open . apply (th i s , arguments) ;
storeReferenceAndStartTiming (openedWindow) ;
r e tu rn openedWindow ;

}

funct ion modifyLinks () {
var l i n k s = document . getElementsByTagName (" a ") ;
f o r (i =0; i<l i n k s . l ength ; i++) {

i f (l i n k s [i] . ge tAt t r ibute (" t a r g e t ") == "_blank ") {
l i n k s [i] . s e tA t t r i bu t e (" onCl ick " , "window . open (\"" +

l i n k s [i] . ge tAt t r ibu te (" h r e f ") + "\") ; r e tu rn f a l s e ; ") ;
}

}
}
window . onload = modifyLinks ;

Fig. 1. Simplified JavaScript code to capture window references from non-malicious
pages

To do this, we use a technique which has been used by Phung et al. [4] to
construct a security mechanism for policy enforcement in JavaScript. The tech-
nique is based on the observation that even built-in functions can be aliased by
user-defined functions in JavaScript. Thus, the malicious JavaScript can replace
the window.open method with a JavaScript function which calls the original
window.open method and stores a copy of the returned window handle before
returning it to the caller. Slightly simplified JavaScript code illustrating the
principle is shown in Figure 1.

3 Timing the Attack

We now turn to the question of how the attacker can learn when the victim is
redirected to pay.com. We present two mechanisms for accomplishing this. The
first, and easiest method builds on the well-known CSS history detection attack
to periodically poll whether the pay.com URL has become visited. The second
method is based on traffic analysis by a network attacker.

3.1 CSS History Detection

An early feature in web browsers is the distinction between a visited and an
unvisited link. With the advent of Cascading Style Sheets (CSS), the creator
of a web site gained the ability to decide how the two types of links would be
rendered. It was soon realized [5] that this feature could be abused by a web
site to determine of its visitor had also visited some other site. The CSS 2.1
specification [6, Section 5.11.2] notes the vulnerability and states that browsers
may treat all links as unvisited or implement other counter-measures.

Timing Is Everything: The Importance of History Detection 123

We remark that while an attacker can test if a visitor has visited a specific
URL, she cannot extract the full browsing history of the visitor. In particular,
she does not learn anything about URLs she cannot guess. The rate at which
the attacker can test URLs is also an issue as it limits the privacy exposure
of the attack. Here, the increasing prevalence of Web 2.0 applications and the
accompanying optimization in general JavaScript performance has benefited an
attacker. Speeds of 30000 tested URLs/second have been reported by Janc and
Olejnik [1] with their optimized version of the attack.

Recall that the integration with a payment provider is typically done by set-
ting up a transaction and then redirecting the user to the payment provider
with a unique transaction ID assigned by the payment provider. The attacker is
not able to predict the transaction ID, so if it had been a part of the URL, the
attacker would not be able to use the CSS history detection attack to learn when
the user visited the payment provider. However, common practice is to send the
transaction ID to the payment provider as a POST parameter to a static URL,
which allows our attack to work.

History detection attacks have been studied in the academic literature, and
several demonstration web sites [7,8] have been created to raise awareness of the
issue. Wondracek et al. [9] showed that stolen history data can also be used for
a de-anonymization attack against users of social network sites. Jakobsson and
Stamm [10] discussed the potential of using history detection in phishing attacks.
Benevolent uses of the history detection attack have also been discussed. One
example is to guess at which OpenID provider a user has to ease OpenID-logins
[11], and another is to detect if a user has visited malicious sites and may have
had malware installed [12].

The threat to user privacy is the most well-known implication of history de-
tection. When coupled with fast testing, a non-trivial part of the user’s visiting
patterns can be extracted. This allows for testing of URLs containing location
information such as zip codes entered on e.g., weather sites. In their real-world
experiment Janc and Olejnik [1] noted that they could detect the US zip code
for 9.2% of tested users.

3.2 Using History Detection to Learn When the Victim Reaches a
Page

In our application of the history detection attack, we are not interested in the
victim’s browsing history but rather in what the victim is currently doing. In
particular, we want to know when the victim’s current browsing session reaches
a target page (e.g., the landing page of a payment provider). To accomplish this,
we can use the history detection attack to frequently poll the status of the target
page to detect when it changes from unvisited to visited.

This use of history detection requires that the target page is marked as unvis-
ited in the browser when the attack begins. Thus, the attack is easier to perform
the quicker the browser forgets about visited links, in total contrast to privacy
attacks which benefit from longer history retention. The CSS specification leaves
it up to the implementor to select for how long a link will be treated as visited,

124 G. Kreitz

and the major browsers have selected different periods. Internet Explorer and
Safari stores history for 20 days, and Firefox for 90 days. Opera does not limit
the time, but rather limits the number of stored entries to 1000. Chrome does
not remove visited status, except when explicitly requested by the user.

Thus, our flow stealing attack is best suited to attacking pages which users
trust, but which they visit rarely. We believe that payment providers fall in this
category for many users.

3.3 Limitations of CSS History Detection

There are several ways in which the victim can be protected from the way we use
CSS history detection in this attack. Firstly, Baron [13] has proposed a mecha-
nism to close the CSS history detection security hole. The most basic mechanism
involved is that the data returned by the JavaScript getComputedStylemethod
always return data as if the link had been unvisited. Furthermore, it prevents
visited status of link from affecting which pictures are loaded, the layout of
the page, and the time it takes to render a page to prevent a number of side-
channel attacks. This proposal (or similar defenses) has been implemented in
Firefox 4, Internet Explorer 9, as well as in browsers based on the WebKit ren-
dering engine, such as Chrome and Safari. This means that in the latest versions
mainstream browsers, with the exception of Opera, have closed the CSS history
detection hole. Users may not always be able to upgrade to the latest version,
for various reasons. For instance, Internet Explorer 9 is not supported on Win-
dows XP, which will prevent many users from upgrading. Also, even if they
could, some users simply refuse to upgrade their browsers. There is also a risk of
regressions, or other history detection techniques being discovered. For instance,
Weinberg et al. [14] reports that beta versions of Firefox 4 were vulnerable to
CSS history detection through a debugging feature.

There are some techniques a user can deploy to protect herself, apart from
switching or upgrading their browser. A user may choose to configure their
browser not to store any browsing history. However, this comes at a usabil-
ity price. Firefox users may also choose to install the SafeHistory extension [15]
which essentially applies the same-origin policy to visited status on links, only
treating a link as visited if it has been visited by a link from the current domain.

CSS history detection is not the only history detection attack that has been
proposed against web browsers. In [16], Felten and Schneider discuss timing
attacks to determine if cacheable elements of pages are present in the victim’s
cache. However, such attacks are not suitable to our history detection usage
where we are not interested if the victim has historically visited a site, but rather
in detecting the moment in time when a specific page is visited. Cache timing
attacks cause the tested object to be cached, and thus the same object cannot
be tested twice, making the attack unsuitable for repeated polling. Similarly,
the history detection attacks building on user interaction of [14] cannot be used
in our scenario. We remark that there is a companion extension to SafeHistory
called SafeCache [15] to protect against cache timing attacks.

Timing Is Everything: The Importance of History Detection 125

3.4 Network Based Timing

In the case of a network attacker who has access to the victim’s network traf-
fic, there are alternative timing mechanism for the cases when the CSS history
detection timing mechanism does not work. As we assume that all the victim’s
browsing of store.com and pay.com is via https, the attacker is unable to di-
rectly observe how the victim interacts with the target domains. However, https
does not protect against an attacker learning that the victim is visiting a certain
domain, or the sizes of requests and responses.

There are several ways for the network attacker to learn when the victim
visits pay.com. The first is by simply observing the victim’s DNS traffic. When
the attacker sees the victim’s computer performing a DNS lookup for the IP
address of pay.com, she can assume that the victim’s browser is going to request
something from that domain. However, if the victim frequently visits pay.com,
she may already have the IP address cached in her browser, and thus not issue a
DNS lookup when visiting the domain again. Another mechanism for the attacker
is to look up the IP addresses of servers for pay.com and then trigger the attack
when she sees the victim’s computer connecting to one of those IP addresses on
the https port.

Both these mechanisms may trigger the attack too early if other pages include
elements from the pay.com domain, for instance if store.com includes a pay.com
logo on their payment page. While this type of logo inclusion does occur, we
remark that it is common practice for stores to host payment logos on their own
servers, or for static content such as logos to be hosted on separate domains.

The attacker can learn if the store features pay.com logos served directly by
pay.com servers by simply visiting the store herself before beginning the attack.
If this is the case, she can perform a more thorough flow inspection and instead
of just looking for a connection establishment to the right IP and port, analyze
the number of bytes sent in each direction and the number of connections made
to distinguish between the victim fetching a logo and visiting the landing page
at the payment provider.

Communicating Back to Victim’s Browser. When discussing the alternate
timing mechanism available to the network attacker, we stated that the attacker
“triggers the attack”. However, the attacker is located as a man-in-the-middle
to the victim’s network traffic, and to trigger the attack, she must activate
code running as JavaScript in a tab in the victim’s browser. How is the trigger
information communicated back to the victim’s browser?

We remark that in our network attacker scenario, the malicious JavaScript has
been inserted by the attacker on a web page not controlled by the attacker. Thus,
the malicious JavaScript is prevented by the same-origin policy from directly
communicating with the attacker-controlled server at evil.com via convenient
mechanisms such as XMLHttpRequest.

However, as the attacker is mounting a man-in-the-middle attack on the vic-
tim’s network traffic, this problem can be circumvented by the attacker inter-
cepting and responding to requests to some specific path, regardless of what host

126 G. Kreitz

the path is supposed to be located at. This allows the JavaScript inserted by
the attacker to use XMLHttpRequest to periodically send a request to a path
which the attacker will intercept. The attacker will not forward such requests,
but instead respond with a boolean value indicating if the flow stealing redirect
should be activated. There are several other options available, such as periodi-
cally loading images from evil.com and using the size of the returned images
as a one-way communication channel to the JavaScript running in the victim’s
browser.

4 Impact and Feasibility of Flow Stealing

We have now described our proposed flow stealing attack, showing how it can
be performed both by an attacker operating a web site as well as by a network
attacker who can intercept the victim’s network traffic. Apart from the conditions
imposed by the type of attacker, the feasibility of the attack also depends on the
victim’s browser.

4.1 Browser Features

Our flow stealing attack combines two different vulnerabilities. Firstly, the at-
tacker must be able to monitor when the victim is directed to pay.com. The
primary mechanism for accomplishing this is by using a well-known history de-
tection hole. Secondly, the attacker must at that point in time redirect the victim
to pay.com with a new transaction ID.

While the redirection part is crucial for the flow stealing attack, the CSS
history detection vulnerability is not needed for network attackers, as discussed
in Section 3.4.

All mainstream browsers allow the redirection part of our attack. However,
on the Opera browser, the attacker cannot simply redirect the victim’s tab, but
must instead close the tab and redirect another tab as discussed Section 2.1.
This makes the attack more noticeable, as an alert victim may notice that a tab
closed and become suspicious and abort the transaction.

To explore the feasibility of our attack, we have tested recent versions of
browsers to see if the classic CSS-based history detection attack works, and
what restriction they place on cross-domain window navigation through window
handles. We present our results in Table 1. In the table, “CSS History Detection”
indicates if the CSS history detection attack works. Redirection indicates if a
window handle can always be redirected via JavaScript (“Permissive”) or not
(“Restricted”). The browsers were tested on Windows 7. We do not believe any
of the results depend on the operating system the browser is run on.

4.2 Experiences with a Proof-of-Concept

In addition to testing the individual pieces of our flow stealing attack, we have
also developed a proof-of-concept implementation of the attack as performed by
a web-site hosting attacker. We consider the simplest version of attack which can

Timing Is Everything: The Importance of History Detection 127

Table 1. Summary of browser’s susceptibility to flow stealing

Browser CSS History Detection Window Navigation
Firefox 3.6.15 Yes Permissive
Firefox 4.0.1 No Permissive
IE 8.0.7600.16385 Yes Permissive
IE 9.0.8112.16421 No Permissive
Chrome 10.0.648.151 No Permissive
Safari 5.0.4 No Permissive
Opera 11.11 Yes Restricted

be performed with a static html containing JavaScript for the attack using the
CSS history detection timing mechanism. In our proof-of-concept, we replaced
store.com with the donation page of a charity, to simplify testing (the donation
page of the charity contains a link directly to the payment provider).

In our proof-of-concept, the transaction set up by the attacker has the attacker
as the recipient instead of the charity. The recipient information is displayed by
the payment provider, so an alert victim could notice that their flow had been
hijacked by an attacker. To reduce the risk of this, an attacker could register
names with the payment provider which are similar, or look identical [17], to the
stores or charities that she will attack.

Another option for stealthy attacks is for the attacker to herself set up a
purchase on store.com. She then records the transaction ID used by store.com
when referring her to pay.com. By using this transaction ID in the attack, the
attacker tricks the victim into paying for the her goods. In this scenario, the only
indication to the victim that an attack is ongoing is if the information displayed
on pay.com on what the purchase concerns differs from what she expected.

Guessing the Price. To make the attack convincing to the victim, the attacker
needs to set up a transaction with the exact same cost that the victim expected.
It seems likely that a large fraction of users would notice if the payment provider
listed a different price compared to the store. We have not implemented any tech-
niques for creating a transaction with the correct price in our proof-of-concept.

There are several ways for an attacker to guess the price. The easiest way is
to attack subscription services or stores which sell a specific item or service for
a fixed price, or a small number of different options so that the attacker can
simply guess at the most common price. One such example is online streaming
services such as Hulu, Napster, Netflix, and Spotify.

For stores with larger inventories, the attacker can use the CSS history detec-
tion attack to determine what items the victim has browsed and/or put in her
shopping basket, depending on the URL scheme employed by the store. In the
network attack scenario, traffic analysis on the number of requests and size of
responses as the victim browses store.com may be used instead.

128 G. Kreitz

5 Proposed Counter-Measures

In this section, we discuss a simple server-side defense against CSS history de-
tection that can be applied by payment providers for their landing page. We
also discuss the information displayed to users of payment sites. We proceed to
discuss the problem of frame navigation as it applies to top-level frames and pro-
pose a new policy based on pop-up blocking. Finally, we discuss why traditional
CSRF defenses do not protect against flow stealing.

We note that our attack uses JavaScript to perform the redirection attack,
so users can protect themselves against flow stealing by disabling JavaScript.
However, this does remove functionality from a large number of web sites, so
most users are unlikely to do so.

5.1 Closing the CSS History Detection Hole

We are happy that almost all of the mainstream browsers now have closed the
CSS history detection hole. By closing this hole, attackers are denied the easiest
route for performing flow stealing attacks. However, for various reasons, users are
not always able to upgrade to the newest version of software in a timely manner.
To protect users which are not able to upgrade, we propose that high-profile sites
such as payment providers should consider implementing a server-side defense.

While landing pages of payment providers are external URLs in the nomen-
clature of [10], they could apply a protection technique by recommending sites
linking to them to insert a random number in the link, which is simply ignored
by the payment provider. As most payment providers want to help stores to very
easily integrate payments, standard practice seems to be to provide some static
HTML code to be included on the store’s web site. Such code could include
JavaScript code to generate a random number in the browser which is inserted
into the URL of the landing page in a way that is ignored by the payment
provider. This would prevent the link from being guessable, and thus detectable
via CSS history detection.

5.2 Payment Provider Pages

The key place where the victim could detect that a flow stealing attack was
ongoing is in the information shown by legitimate payment providers. It is im-
portant to provide as clear feedback as possible to end users of payment sites
on who the recipient of the payment is, and what the payment concerns. For
instance, the payment provider could indicate if the recipient is a company, a
charity, or an individual.

In a typical payment provider integration, the information on the purchase
depends on what information is sent from the store to the payment provider
when setting up the transaction. Thus, stores can assist in making flow stealing
attacks easier to detect by including more information. For instance, this may
include the purchaser’s username on the store, or the shipping address.

Timing Is Everything: The Importance of History Detection 129

5.3 Limiting Window Manipulation via Window Handles

There is a difference in policy between browsers on what limits are applied to
how a page can change the URL of another window to which it has a JavaScript
window handle. Opera restricts such navigation based on the current location
of the frame, and protects frames navigated to https sites from being navigated
from another window. In Chrome, Firefox, Internet Explorer, and Safari, the
opener is allowed to freely navigate an opened window, and in some of them,
also other windows apart from the opener.

Frame navigation has previously been showed as being dangerously permis-
sive in the context of embedded frames and iframes by Barth et al. [18], which
influenced browser developers to implement a more restrictive policy. They note
that top-level frames are often exempt from the browser’s frame navigation pol-
icy, and that top-level frames are less vulnerable as their URL is shown in the
location bar.

While it is true that top-level frames are less vulnerable than embedded
frames, there is still a danger in permissive policies for navigation of top-level
frames. We cannot trust a user to, at every point in time in their browsing ses-
sion, validate that the location in the location bar is correct. For instance, we
cannot expect users to note if their location is changed to a similarly looking
URL, or identical looking URL via a homograph attack [17]. Neither can we
expect users to notice if opaque identifiers in sessions are replaced.

The fact that different policies have been implemented in different browsers
indicates that it is unlikely that a large number of pages rely on the most permis-
sive policies for their functionality. The only policy restricting our flow stealing
attack is Opera’s. However, as we discussed in Section 2.1, Opera’s policy is still
sufficiently permissive that it allows flow stealing attacks by closing the window
and redirecting the window running the attacking JavaScript. Thus, we argue
that a replacement policy should not only restrict navigation, but rather all ac-
tions affecting the window, including closing it and resizing it (an attacker could
emulate closing by resizing to a very small size).

We are not aware of any important applications where a window w1 needs
to modify another window w2 where the modification is not prompted by user
interaction with window w1. For what types of user interaction would a user
expect w1 to modify the state of another window w2? We argue that in any user
interaction that would not allow w1 to open a new window, w1 should not be
allowed to modify the state of another window either. In mainstream browsers
today, the situations in which w1 is allowed to open a window is restricted by a
pop-up blocker. We believe a user would not expect w1 to modify any windows
unrelated to it, a policy already implemented in the Firefox browser which limits
navigation to the opener window.

As far as we know, each mainstream browser implements its own algorithm
for pop-up blocking, a feature enabled by default. Thus, most web sites have
been adapted to page manipulations allowed by the pop-up blocking policies

130 G. Kreitz

of browsers. We are not aware of any detailed descriptions of pop-up blocking
algorithms, but they appear to work satisfactorily in major browsers. Accord-
ing to Chen [19], browser developers are hesitant to specify the exact policies
used as that may prevent them from modifying the policy later, if a loophole is
discovered.

Thus, we propose the following policy for controlling a window via a window
handle:

Policy 1 (Window navigation, Proposed). A window w1 can modify (e.g.,
navigate, close, or resize) another window w2 only if it is the opener of w2, and
the pop-up blocker policy currently allows w1 to open a window.

Furthermore, we believe that rights to a window should be relinquished entirely
if the user manually navigates (e.g., by entering a new URL in the address
bar) the tab. Currently, this does not appear to affect the rights granted to the
JavaScript holding the handle to the window, but we believe it would match the
user’s expectation more closely that the opener retains no special privileges if
the user navigates the window.

5.4 Traditional CSRF Defenses Do Not Prevent Flow Stealing

Our flow stealing attack has some similarities to traditional CSRF attacks, so one
may wonder if traditional CSRF defenses protect against flow stealing as well.
Sadly, the answer is no, and new techniques are needed to protect against flow
stealing. We briefly mention the two major CSRF defenses from the literature
and discuss why they do not protect against flow stealing. At the core of the
problem is that in flow stealing the victim’s browser is redirected at a point in
time where the control is passed between sites operated by two different entities.
Thus, the hijacked request is legitimately a cross-site request.

The most common class of CSRF defense consists of a secret validation token
that must be sent along with all state-modifying requests, and that is matched to
the user’s session. There are several different implementations of this technique,
and there are some subtleties in implementing the protection correctly, cf. [2].
Such tokens are designed to protect flows internally on web-sites, and are not
immediately applicable to cross-site flows.

A second technique is based on inspecting either the Referer or the Origin
HTTP header. Typically, this is described as only allowing requests if the host in
the header matches the current host, but the policy could easily be extended to
allowing external requests from some specific set of domains. As an example, a
payment provider may require that users making payments to store.com come
to pay.com with an Origin header set to store.com. However, this does not
prevent flow stealing, as the attacker can register as a merchant with the payment
provider and redirect via the correct domain for that merchant. The attacker can
also redirect the victim to a fake payment site instead of the legitimate site, thus
bypassing any controls that could be implemented by a payment provider.

Timing Is Everything: The Importance of History Detection 131

6 Conclusion and Future Work

In conclusion, we have demonstrated an attack on current web browser imple-
mentations. The attack uses the CSS history detection attack, which has been
publicly documented for about a decade, to time a redirection attack. By redi-
recting the tab the victim is using at a point where the victim legitimately
expects to perform some security critical action, the victim can be tricked into
doing something more sensitive than what can be achieved by e.g. phishing. We
hope that our attack further aids in demonstrating the importance of closing the
CSS history detection hole, and future holes with similar impact.

As future work, we propose developing a proof-of-concept version of the net-
work attack as well. The purpose of such a proof-of-concept prototype would be
to show that while closing the CSS history detection hole is an important step, it
is also important to further limit JavaScript cross-site frame navigation, as well
as deploying https as a default for a larger fraction of Internet sites. We note that
other proof-of-concept attacks such as Firesheep [20] have been able to quickly
raise public awareness of security issues and caused deployment improvements
at large sites.

Acknowledgments. I would like to thank Emil Hesslow for great discussions,
development of a proof-of-concept, and his JavaScript expertise.

References

1. Janc, A., Olejnik, L.: Web Browser History Detection as a Real-World Privacy
Threat. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010.
LNCS, vol. 6345, pp. 215–231. Springer, Heidelberg (2010)

2. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM Conference on Computer and
Communications Security, pp. 75–88. ACM, New York (2008)

3. Raskin, A.: Tabnabbing: A new type of phishing attack,
http://www.azarask.in/blog/post/a-new-type-of-phishing-attack/

4. Phung, P.H., Sands, D., Chudnov, A.: Lightweight self-protecting javascript. In:
Li, W., Susilo, W., Tupakula, U.K., Safavi-Naini, R., Varadharajan, V. (eds.) ASI-
ACCS, pp. 47–60. ACM, New York (2009)

5. Ruderman, J.: Bug 57351 - css on a:visited can load an image and/or reveal if
visitor been to a site, https://bugzilla.mozilla.org/show_bug.cgi?id=57351

6. W3C: Cascading style sheets level 2 revision 1 (CSS 2.1) specification,
http://www.w3.org/TR/CSS2/

7. Anonymous: Did you watch porn (2010), http://www.didyouwatchporn.com/
8. Janc, A., Olejnik, L.: What the internet knows about you (2010),

http://www.wtikay.com/
9. Wondracek, G., Holz, T., Kirda, E., Kruegel, C.: A practical attack to de-anonymize

social network users. In: IEEE Symposium on Security and Privacy, pp. 223–238.
IEEE Computer Society, Los Alamitos (2010)

10. Jakobsson, M., Stamm, S.: Invasive browser sniffing and countermeasures. In: Carr,
L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M. (eds.) WWW, pp. 523–532.
ACM, New York (2006)

http://www.azarask.in/blog/post/a-new-type-of-phishing-attack/
https://bugzilla.mozilla.org/show_bug.cgi?id=57351
http://www.w3.org/TR/CSS2/
http://www.didyouwatchporn.com/
http://www.wtikay.com/

132 G. Kreitz

11. Kennedy, N.: Sniff browser history for improved user experience (2008),
http://www.niallkennedy.com/blog/2008/02/browser-history-sniff.html

12. Jakobsson, M., Juels, A., Ratkiewicz, J.: Remote harm-diagnostics,
http://www.ravenwhite.com/files/rhd.pdf

13. Baron, L.D.: Preventing attacks on a user’s history through CSS :visited selectors,
http://dbaron.org/mozilla/visited-privacy

14. Weinberg, Z., Chen, E.Y., Jayaraman, P.R., Jackson, C.: I still know what you
visited last summer. In: IEEE Symposium on Security and Privacy (2011)

15. Jackson, C., Barth, A., Bortz, A., Shao, W., Boneh, D.: Protecting browsers from
DNS rebinding attacks. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.)
ACM Conference on Computer and Communications Security, pp. 421–431. ACM,
New York (2007)

16. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: ACM Conference
on Computer and Communications Security, pp. 25–32 (2000)

17. Holgers, T., Watson, D.E., Gribble, S.D.: Cutting through the confusion: A mea-
surement study of homograph attacks. In: USENIX Annual Technical Conference,
General Track, pp. 261–266. USENIX (2006)

18. Barth, A., Jackson, C., Mitchell, J.C.: Securing frame communication in browsers.
Commun. ACM 52, 83–91 (2009)

19. Chen, R.: The internet explorer pop-up blocker follows guidelines, not rules,
http://blogs.msdn.com/b/oldnewthing/archive/2007/08/31/4656351.aspx

20. Butler, E.: Firesheep, http://codebutler.com/firesheep

http://www.niallkennedy.com/blog/2008/02/browser-history-sniff.html
http://www.ravenwhite.com/files/rhd.pdf
http://dbaron.org/mozilla/visited-privacy
http://blogs.msdn.com/b/oldnewthing/archive/2007/08/31/4656351.aspx
http://codebutler.com/firesheep

Reclaiming the Blogosphere, TalkBack: A Secure

LinkBack Protocol for Weblogs

Elie Bursztein1, Baptiste Gourdin1,2, and John C. Mitchell1

1 Stanford University
2 LSV,ENS-Cachan

{elie,bgourdin,jcm}@cs.stanford.edu

Abstract. A LinkBack is a mechanism for bloggers to obtain auto-
matic notifications when other bloggers link to their posts. LinkBacks
are an important pillar of the blogosphere because they allows blog posts
to cross-reference each other. Over the last few years, spammers have
consistently tried to abuse LinkBack mechanisms as they provide an
automated way to inject spam into blogs. A recent study shows that a
single blog may receive tens of thousands of spam LinkBack notifications
per day. Therefore, there is a great need to develop defenses to protect
the blogosphere from spammer abuses. To address this issue, we intro-
duce TalkBack, a secure LinkBack mechanism. While previous methods
attempt to detecting LinkBack spam using content analysis, TalkBack
uses distributed authentication and rate limiting to prevents spammers
from posting LinkBack notifications.

1 Introduction

Since their emergence over a decade ago [15], blogs have become a major form
of communication, with more than 184 million blogs read by more than 346
million readers in 2008 [14]. Along with widespread legitimate use for commu-
nicating information and opinions, blogs have naturally attracted two forms of
spam (unwanted postings): comment spam and LinkBack spam. Comment spam
is an extension of traditional email spam and can be mitigated by requiring users
to authenticate before commenting, or to solve CAPTCHAs [4]. On the other
hand, LinkBack spam is specific to blogs. LinkBack mechanisms [23] are used
to automatically insert cross-references between blogs. A new blog post citing
an older one on a different blog can send a LinkBack notification to insert
a link in the older post automatically. LinkBack notifications are an intrinsic
part of the blogosphere, and a key ingredient used in blog ranking [21]. Be-
cause LinkBack notifications are automated, CAPTCHAs [22] and registration
requirements cannot be used to defend against spam. So far, very little research
has been conducted on LinkBack spam specifically, and only general anti-spam
techniques based on content analysis are currently used.

A recent study [5] reveals that LinkBack spam is a huge issue as a single blog
may receive tens of thousands of spam LinkBack notifications per day. Further,
it found that LinkBack spammers skillfully use anti-spam-analysis techniques

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 133–149, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

134 E. Bursztein, B. Gourdin, and J.C. Mitchell

that foil content analysis by inserting random words to escape Bayesian filters.
Because LinkBacks are concise, with very little content to analyze, it is difficult
to filter LinkBack content by applying content-based filtering techniques.

To combat notification spam, in this paper, we introduce TalkBack a secure
LinkBack mechanism based on public-key cryptography. TalkbBack departs from
the previous approaches as it tackles the LinkBack spam problem at its root: in-
stead of detecting spam via content analysis, TalkBack is designed to prevent
spammers from posting LinkBack notifications. TalkBack creates two lines of
defense. The first one is a lightweight PKI [1] (Public Key Infrastructure) that
ensures the identity of blogs by using public-key cryptography, and makes it hard
for spammers to register a fake blog. As a second line of defense, TalkBack en-
forces a global rate limiting system that ensures that with a single blog identity,
a spammer cannot massively spam any collection of participating blogs. An ad-
ditional benefit of adopting TalkBack is that bloggers can leverage the TalkBack
PKI infrastructure to build secure and reliable whitelists and blacklists of blogs.
We believe that by combining TalkBack with the other anti-spam mechanisms
based on content analysis already in place, the blogosphere will have efficient
defense in depth against the assault of spammers.

We have developed, tested and evaluated all the components needed for blog
sites and bloggers to adopt TalkBack quickly, with additional attention directed
toward Wordpress, the leading blog platform. To make TalkBack readily avail-
able to bloggers, we have developed a Wordpress plugin that is available from the
standard Wordpress plugin directory http://ly.tl/tb. A full implementation
of the TalkBack protocol is also available as an open-souce PHP library, main-
tained and freely available from google code (http://ly.tl/tbs), and an oper-
ating talkback authority is implemented and maintained at https://talkback.
stanford.edu.

2 Background

In this section we summarize the way LinkBack mechanisms work, how they are
abused by spammers, and some reasons why spammers do so.

The term Blog is a contraction of the term web-log. Blogs can be used for
any topic but are often used by bloggers to share and exchange information and
personal opinions on subjects that range from personal life to video games, pol-
itics, and wine. The Blogosphere is a collective term referring to all blogs and
their interconnections, coined in 1999 by Brad L. Graham as a joke [6]. The blo-
gosphere can be viewed as a graph, with blogs as nodes and edges corresponding
to LinkBacks between blogs.

LinkBack mechanisms are used to produce a link from one blog post to
another that references it. For instance if Blog B discussing French wine cites a
post on Blog A about Bordeaux wine, a LinkBack mechanism allows Blog B to
notify Blog A about this citation. As a result of this LinkBack notification, Blog
A may then display a link back to Blog B (hence the name LinkBack). There are
three main LinkBack mechanisms, which differ in their implementation details,

http://ly.tl/tb
http://ly.tl/tbs
https://talkback.stanford.edu
https://talkback.stanford.edu

Reclaiming the Blogosphere, TalkBack 135

that are currently used. These three mechanism are TrackBack [3], PingBack
[12] and RefBack [23]. Note that for the largest blog platform Blogger, Google
provides a specific LinkBack implementation based on Google Infrastructure.
These LinkBack mechanisms were designed to help blog readers navigate from
one post to other relevant posts. Every LinkBack mechanism is implemented
into two parts: the auto-discovery mechanism and the notification page:

The auto-discovery mechanism embeds a <link> tag or a small Resource
Description Framework (RDF) fragment in each blog post to tell other blogs to
which page they should submit their LinkBack notification. RDF is a family of
World Wide Web Consortium (W3C) specifications designed as a metadata data
model, that are used as a general method for conceptual description or modeling
of information in web resources.

The notification page is the web page dedicated to collecting LinkBacks
notification and processing them. For example, the TrackBack notification is
an HTTP POST request sent to the notification page which contains four post
values: the post title, its URL, an excerpt, and the blog name. An example of a
TrackBack [3] post request is:

POST http://www.example.com/TrackBack/5

Content-Type: application/x-www-form-urlencoded

title=Foo&url=http://www.bar.com/&

excerpt=My+Excerpt&blog_name=Foo

Blog Spam. Because LinkBack notifications provide an automated way to insert
links into other bloggers’ blogs, it is not surprising that malicious users began
using it soon after it appeared. There are two main motivations for abusing
LinkBack mechanisms: search engine optimization, and spam to lure users to
malicious sites. One of the major spam-blocker providers, Akismet [18], reported
blocking around 15 million LinkBack spams a day in April 2009, in comparison
with 1.8 million legitimate LinkBacks. Hence it seems that the percentage of blog
spam is slightly lower (90%) than the 98% spam reported for email [8]. However
blog spam is more pernicious because it is asymmetric: one spam LinkBack
notification might lure thousands of blog readers to a malicious site, whereas
delivered email spam usually reaches at most one user.

3 Threat Analysis

In this section we introduce the attacker and threat model that TalkBack needs
to address. These models are based on the conclusions of our blog spam study [5].
For this longitudinal study of TrackBack spam, 10 million samples from a massive
spam campaign over a one-year period where collected and analyzed. Based on
the analysis of blog spammers’ behavior and resources, we believe that TalkBack
needs to block the efforts of a sophisticated adversary that will not be fooled
by simple defenses. In particular, we believe that in order to be effective, Talk-
Back must be able to thwart an attacker that is ressourceful, knowledgable and
adaptative and accordingly should assume an adversary with perfect knowledge
of the protocol and a lot of IPs, Domains and CPU power at his disposal.

136 E. Bursztein, B. Gourdin, and J.C. Mitchell

While important to the operation of blogs, our threat model does not address
system, services or web attacks because they cannot be addressed directly by a
LinkBack mechanism. Therefore, TalkBack focuses on LinkBack threats, which
are:

– Blog Spoofing: The attacker should not be able to spoof a blog identity. In
particular, the attacker should not be able to impersonate a real blog because
otherwise it is not possible to use whitelisting or blacklisting mechanisms.
TalkBack must ensure the identity of a notification sender.

– Cried Wolf attack: The attacker should not be able to report legitimate
notifications as a spam otherwise he will be able to prevent legitimate users to
use TalkBack by reporting them as spammer. To address this attack when
a notification is reported as spam, TalkBack must verify the sender and
receiver identities.

– LinkBack modification: The attacker should not be able to mount a
person-in-the-middle attack that alters the content of a LinkBack in order
to spam a blog or abusively report a legitimate user. Accordingly, TalkBack
needs to ensure LinkBack integrity.

– LinkBack replay: It should not be possible to resend or replay a notifica-
tion. This is central to enforcing a rate limiting system.

– Accumulation attack: It should not be possible for an attacker to accu-
mulate posting authorizations, over an extended period of time, in order to
use them all at once to perform a massive “Blitzkrieg” spam.

– Spamming in breadth: A Spammer can send a few or even a single spam
to many blogs, in a way that each blog will only see a negligible amount
of the spam and cannot rate limit it. Therefore the rate limiting and spam
detection systems need to be global.

– Spamming in depth: Spammer can use many IP addresses and URLs to
send spam, which makes blacklisting very hard. Therefore, TalkBack must
restrict a sender to a single blog identity so that we can leverage identity-
based blacklisting and whitelisting.

4 Overview

In this section, we give an overview of how TalkBack works. In particular, we de-
scribe how TalkBack addresses the threat of spammer notifications, the key steps
required to post a TalkBack notification, how multiple authorities are handled
and how TalkBack compares to the other LinkBack mechanisms.

The key idea of TalkBack is to prevent spammers from posting LinkBacks,
or make it prohibitively costly to do so. As mentioned previously, based on our
blog spam study [5], we do not consider content analysis effective when used
alone. In a nutshell, TalkBack can be viewed as a lightweight PKI (Public Key
Infrastructure) [1] that authenticates bloggers, blogs and LinkBacks. The blog-
ger and blog identities are verified by a registration mechanism (Sec. 5) that ties a

Reclaiming the Blogosphere, TalkBack 137

Table 1. LinkBack mechanisms comparaison

RefBack PingBack TrackBack TalkBack

Trigger Mechanism
Visit from
the sender

site

Code executed
at posting time

Code executed
at posting time

Code executed
at posting time

Notification via HTTP referer XML-RPC call HTTP POST HTTP POST

Information sent none
- S post URL
- R post URL

- S post URL
- S site name
- S post title
- S post excerpt

- S post URL
- S site name
- S post title
- S post excerpt
- Seed Token
- S Public key
- R Public key
- Signature

Auto-discovery
mechanism

none LINK Tag
Tag

in the body
LINK Tag

S Authenticity - - - �
R Authenticity - - - �
Integrity - - - �
Confidentiality - - - �

Blogger and his blog to a public-key. This public key is used in every notification
to ensure that a spammer can’t spoofs a blog identity, modifies its content, or
replays it.

The blog registration process uses various security checks to ensure that the
blogger is the blog’s real owner. It also implements security mechanisms to make
sure that it is not possible to register a blog automatically. As a defense in
depth mechanism, TalkBack uses a rate limiting system that ensures that even
if a spammer is able to successfully register a blog, the amount of spam he can
send with it is limited. To ensure that the authority is not a contention point,
TalkBack was designed to work with multiples authorities.

TalkBack is also designed to accommodate any blogger’ additional privacy
needs with a confidentiality mode that encrypts notification content and makes
sure that no information is disclosed to anyone (including the authority) except
the receiver.

Posting a LinkBack. Once blogs are successfully registered with an authority,
posting a LinkBack is achieved in at most four steps (Diagram 1). In the Talk-
Back protocol there are three participants (three if the sender and the receiver
refer to the same authority) :

1. A: The sender authority, which is used to authenticate the sender and
enforce rate limiting.

2. S : The sender, which is the blog that wants to send the LinkBack notifica-
tion

3. R: The receiver, which is the blog that receives and processes the LinkBack
notification.

138 E. Bursztein, B. Gourdin, and J.C. Mitchell

ReceiverSender

Sender
Authority

1. Seed
request

3. TalkBack
posting

4. TalkBack
reporting

2.Auto-Discovery

Receiver
Authority

5. Receiver
validation

Fig. 1. TalkBack protocol overview

4. A′: The receiver authority, which might be different from the sender au-
thority and is used to authenticate the receiver.

The five steps used to send a LinkBack are depicted in diagram 1. Here is what
happens during these steps:

1. The sender (S) requests a seed from the authority. This seed is used to
prevent accumulation attacks, replay attacks, and to enforce rate limiting
(Sec 7).

2. The sender (S) crawls the receiver (R) blog as usual, discovers the notifica-
tion URL (Sec 6) and in addition fetches the receiver (R) public key used to
authenticate the receiver in the LinkBack and to encrypt data (Sec 7).

3. The sender (S) uses the seed fetched at step 1 along with the notification
URL and public key fetched at step 2 to build and send the secure LinkBack
to the receiver (R).

4. The receiver (R) performs security verification on the received LinkBack and
eventually forwards it to the authority A to ensure that the LinkBack and
sender S are still valid.

5. If the receiver (R) authority (A′) is different from the sender (S) author-
ity (A), then the sender authority contacts the receiver authority to fetch
and validate the receiver (R) identity. To improve performance, the receiver
public key is cached. Note that there is a RESTful API in place that al-
lows authorities to communicate. For clarity and because communication
between authorities is straightforward, we assume for the rest of the paper
that authorities (A) and (A′) are the same.

Reclaiming the Blogosphere, TalkBack 139

As we will see in the sections 6 and 8, TalkBack provides numerous additional
features, such as caching and whitelisting, designed to reduce the workload.
Accordingly, in some cases posting a LinkBack only requires performing the
Step 3.

Comparison with Other Mechanisms. As shown in the table 1, TalkBack
is the only LinkBack mechanism that provides security features. None of the
other mechanisms provide a way to ensure sender and receiver authenticity, or
LinkBack integrity and confidentiality. To ensure that TalkBack will be a widely
adopted standard, it has been design to be robust, lightweight, easy to implement
and compatible with web standards. This is why we choose, like PingBack, to use
the standard HTML tag <link> to embedded the discovery mechanism and the
blog public key (Sec 6). This choice ensures that adding this information does
not interfere with the page validity and makes the required information easily
retrievable by a crawler. Similarly we choose to use, like TrackBack, the HTTP
POST method to post notifications because the success of the RESTful API
support the fact that using the HTTP POST method is the easiest way to send
data from one web service to another. Finally, one can observe that TalkBack
is backwards-compatible with the TrackBack mechanism which is currently the
most popular LinkBack method. This is meant to ensure that the transition to
the TalkBack method can be done smoothly without breaking existing systems.

5 Blog Registration

In this section, we describe the registration process that a blogger needs to
complete before she is allowed to send or receive TalkBack notifications. The
goal of this registration is two-fold, it aims at both linking the user identity to
a blog URL and at linking the blog URL to a public key. We also describe the
update process that the blogger can use to tell the authority that the blog’s
public key has changed.

The registration process is accomplished in four steps:

1. Authority Selection: First the user has to choose from a list which author-
ity he wish to enroll with. Currently the only available option is to use our
authority (http://...) but both our open-source library and Wordpress
plugin are already able to handle multiples authorities. Adding an authority
is as simple as adding its public key and URL in the plugin configuration
file and push the update to the user via the Wordpress update system.

2. Turing Test: The second part of the registration aims at preventing au-
tomated registration.To do so, we ask the user to solve a CAPTCHA [22].
During this phase we also ask for a name, blog URL, a password, and an
email address. Note that our Wordpress plugin reuses the information sup-
plied by the user when setting up Wordpress. Accordingly the registration
process is almost completely automated the user should only have to verify
the information and supply a password. At the end of this stage the author-
ity asks other authorities is they have already the blog enrolled. If it is the

http://...

140 E. Bursztein, B. Gourdin, and J.C. Mitchell

case, then the registration process is aborted and the user is redirected to
the authority she is already enrolled with.

3. Identity Verification: The third part of the process involves verifying the
user by sending an email to the supplied email address. The user is then
required to click on an URL that embeds a secret token in its parameters.
Because this is a crude and only partly effective identity verification, we give
an incentive to the user to provide a stronger form of identity verification,
as explained below.

4. Blog Ownership Verification: The last part of the registration process
ensures that the user registers a blog that he owns. This step is very close
to the blog reclaiming process used by Technorati [21] and various analytic
tools such as Google Analytics: we ask the user to add a random string to
his blog index page headers. The random string is embedded into the header
by adding the following meta tag:

<meta name=TalkBack-Id" content="random-string" />

Once the users says he is ready, we crawl the blog URL, verify that the
string is present and fetch the public key and link it to the user identity.
Our Wordpress plugin takes care of generating the blog private/public key
pair and add the necessary header. The public key fetched at this step is the
one that will be used to identify the blog and verify TalkBack notification
signature validity.

Note here that the authority never sees the user’s private key. As a matter of
fact this key is intentionally not part of the generation process for two reasons:
First, this limits the incentive to compromise the authority database: even with
its content, the attacker will not be able to forge notifications.

Secondly, it limits the trust that the user needs to have in the authority – the
authority is not able to post notifications on the user’s behalf because they must
be signed by her private key.

TalkBack’s rate limiting system is reputation-based: the better the user repu-
tation, the more TalkBack notifications she is allowed to send per day. The user’s
reputation can increases in two ways: first, every time the user sends a talkback
notification and this notification is not reported by the receiver as spam, the
user’s reputation increases toward a maximum. Secondly, the user can increase
her reputation by providing stronger proof of her identity. For instance, we en-
vision that the user will be able to link her Facebook or Twitter account to her
blog account to have a higher limit1. In case of spam reports the reputation of
the user decreases until the account is locked. The rate limiting enforcement and
the lockout system are designed to mitigate the harm that a spammer can do
by stealing the user’s private key or registering a fake blog.

Additionally, recall here that taking over the user’s account does not allow the
attacker to post TalkBack notifications on user’s behalf because the authority
does not know the user’s private key. Similarly attackers can’t perform a “cry

1 This feature is not yet implemented.

Reclaiming the Blogosphere, TalkBack 141

wolf attack” and abusively report legitimate notifications as spam, because a
blogger can only report notifications actually received and proves her identity
by signing the report with her private key.

6 Auto-Discovery

In this section we show how the auto-discovery and notification mechanism for
TalkBack is implemented.

Similarly to the PingBack method, the URL for the notification mechanism is
embedded in each blog post using a <link> tag. For example, if the blog’s URL
is “myblog.com” then in each post, there will be an auto-discovery link which
look like this:

<link rel="alternate" type="talkback-notification/plain|encrypted|both"

href="http://myblog.com/notify.htm?id=%postid" />

The rel parameter is used to tell the sender which kind of TalkBacks the blog
accepts. The three acceptable policies are:

1. Plain: This policy indicates that the blog only accepts TalkBack notifica-
tions that are signed for authenticity and integrity but not encrypted (con-
fidentiality). Confidentiality requires extra computation and is not useful if
the blog is public because the content of the TalkBack will ultimately be
displayed on a public blog post.

2. Encrypted: This policy indicates that the blog only accepts TalkBack no-
tifications that are signed for authenticity and integrity and encrypted to
ensure confidentiality. This is useful when one wants to preserve notification
confidentiality. In this case even the authority (Sec 7) is unable to read it!

3. Both: This policy indicates that the blog is accepting both plain and en-
crypted TalkBack notifications.

This URL contains a variable: %postid which is an internal ID used by the
blog to know to which post the notification is referring to. To be able to send a
notification the sender also needs the receiver’s public key, if he doesn’t have it,
he can fetch it by looking to the link tag:

<link rel="alternate" type="talkback-crypto/publicList-hashList"
href="http://myblog.com/talkback-key">

The rel parameter is used to indicate to the sender which cryptographic algo-
rithms the blog supports. There are two lists of algorithms separated by a -
(dash):

1. PublicList: This is the list used to tell which public key cryptographic
algorithms the blog supports. If the blog supports multiple algorithms, they
are separated by a , (comma). Currently TalkBack uses RSA, but we hope
in the future to use elliptic curves (EC) when they become more widely
available as this will decrease the size of the public keys and thus reduce the
network load.

142 E. Bursztein, B. Gourdin, and J.C. Mitchell

2. HashList: The hash list specifies which hash functions can be used. Cur-
rently, TalkBack uses SHA1. In the future TalkBack will support the upcom-
ing SHA3 standard.

Note that, as explained in the threat model section, we assume that the attacker
will be able to fetch any public information so we don’t even try to prevent him
from doing so. Instead we rely on the Kerckhoffs’ principle and base the security
of TalkBack on the security of the keys used.

7 Protocol

In this section, we describe how the TalkBack core protocol works step by step
(Diag 1). To do so, we use a formal representation that abstracts away some
implementation details for the purpose of clarity. Note that, like every other
LinkBack protocol, TalkBack is fully automated and does not require any blogger
intervention. The blog engine takes care of sending notifications automatically
when a blogger writes a blog post. OurWordpress plugin hook into the Wordpress
notification system to do so.

Notation. We take the following conventions: Ar denotes the receiver Talk-
Back authority, As the sender TalkBack authority, S the sender of the TalkBack
notification, and R the receiver of the TalkBack notification.

For message direction, we write R → A to say that the TalkBack receiver (R)
sends a message to the TalkBack authority (A). For encryption, we use {n}A

to denote that the nonce n is encrypted with the public key of A. For the sake
of clarity, we take the convention that the signature is applied to all the nonces
located on the left-hand of the signature symbols. For example n1, n2, n3, SigA

is equivalent to n1, n2, n3, Sig(n1, n2, n3)A. Finally the letter on the left is used
to indicate whether the message is used for the plain version P , the encrypted
version E , or both versions B of TalkBack.

Step 1: Seed Request. In the first step the sender S requests a seed from the
authority As that will be used to generate the tokens used in the next step. The
seed request goes as follows:

B: S → As {ts, H(TB)}As, PkS , SigS

B: As ← S {Rs, Rn, Rt}S , SigAs

First, S sends a seed request that contains its public key PkS used to be identified
and the hash (H(TB)) of the four TalkBack content variables which are title,
excerpt, URL, blog name. The sender public key (PkS) is used to identify the
sender blog and the timestamp to introduce randomness. In return, the sender
(S) receives from our authority As a random seed (Rs), the number of TalkBack
notifications (Rn) he is allowed to use this seed for and the seed expiration time
(Rt). Note here that the number of notifications allowed for a given seed depends
on the user reputation and the version used. The rationale behind this decision
is that if the user chooses to use the secure version to ensure confidentiality, it
is unlikely that he will notify a lot of blogs.

Reclaiming the Blogosphere, TalkBack 143

The seed is used to enforce the rate limiting system: since the blogger can only
use the seed to generate a limited number of tokens, he will not be able to spam
the blogosphere massively. Using a seed decreases the network load as only one
request/response to the authority is sufficient to acquire all the tokens needed
to post the notification for a given post. In case the user exceeds his quota of
notifications, which should not happen often for an honest user as it is relatively
large, he has the ability to visit the authority to reset his quota by solving a
CAPTCHA. Of course, we rate limit the number of times the user can reset his
quota. The security rationale behind allowing users to reset their quotas is that
if we make it as expensive for the spammer to reset the quota than creating a
blog, he will have no incentive to use this functionality.

Step 2: Discovery and Token Generation. Once the sender has acquired the
random seed (Rs) and the number of TalkBack notifications (Rn) he is allowed
to send, he crawls all the links embedded in his blog post and discover those
who point to blogs that use TalkBack thanks to the discovery mechanism. For
each notification that needs to be sent, the following standard S/Key generation
algorithm [7] is used to compute the required unique token from the seed.

Step 3–4: Posting Notifications. Now that the sender has the list of URL
he needs to send notifications to and the associated tokens, he will start post-
ing these notifications. Each TalkBack notification is posted using the following
protocol:

P : S → R H(TB), Tx, ts, PkAs, PkS, PkR, SigS TB
E : S → R {H(TB)}As, Tx, ts, PkAs, PkS , PkR, SigS, {TB}R

P : R→ Ar TB, Tx, ts, PkAs, PkS, PkR, SigS, SigR

E : R→ Ar {H(TB)}As, Tx, ts, PkAs, PkS , PkR, SigS, SigR

B: R← Ar D, ts2, SigR, SigAr

In the plain (P) version, the sender (S) does a HTTP POST to the receiver
(R) notification page discovered in the previous step. The sender sends the four
content variables (TB) which are the title, excerpt, URL and the blog name, the
unique token Tx generated during the previous step, ts the notification creation
time, the sender public key PkS , and the receiver public key PkR. Everything is
signed with the sender private key (SigS). Sending the sender authority public
key (PkA) is needed to support multiple authorities: the receiver uses it to
know which authority to contact to validate the TalkBack. The encrypted (E)
version sends the four content variables encrypted {TB}R with the receiver’s
public key R and the encrypted hash of the four content variables {H(TB)}A

with the sender authority’s public key. The receiver can verify the talkback
content integrity by hashing and encrypting it with the authority public key
and finally compare these two encrypted hashes. This hash is needed to ensure
that the attacker does not tamper with the encrypted content and to prove to
the authority that the encrypted content is really what the sender sent. Please
note that we intentionally did not include the encrypted variables as part of

144 E. Bursztein, B. Gourdin, and J.C. Mitchell

the signature to ensure that the receiver does not have to forward them to the
authority while validating the notification.This is not an integrity issue because
the hash of encrypted variables is signed and acts therefore as the signature itself.
Finally it is worthwhile to note that it is necessary to include the receiver’s public
key (PkR) in the notification and as part of the signature because otherwise the
spammer will be able to perform a “cry wolf attack” and report an arbitrary
sender even if this one never sent him a notification directly.

In the second step the receiver (R) verifies that the TalkBack is valid by
verifying that that receiver public-key (PkR) is his own key and that the verifies
the sender signature is valid. If the TalkBack is valid, he signs it and forwards
it to the sender authority for validation.

Finally, in both (B) cases the authority A answers whether the notification is
valid or not (D) and the reason for rejection if needed. To decide if a notification
is valid the authority verifies the following elements:

– Signatures: The authority verifies that the signatures match the public
keys present in the notification and the notification integrity with them.

– Token: The authority verifies three things about the random token Tx: First,
that it is indeed associated with the sender’s public key, secondly that it
wasn’t used before, and finally, that it is not expired.

– Sender Authenticity: The authority is able to verify the sender’s authen-
ticity by correlating two things : first that the signature matches the public
key present in the TalkBack, which means that the sender knows the private
key, and secondly that the token matches the seed request made by this
sender. No one is able to change the sender’s public key embedded into the
notification because it will invalidate the sender’s signature.

– Receiver Authenticity: The receiver’s authenticity is ensured by the fact
the the signature matches the public key present in the notification. The
receiver’s public key was put in the notification by the sender and therefore
can’t be swapped with another one without invalidating the sender’s signa-
ture. Therefore, if the sender’s and the receiver’s signatures are valid it is a
valid TalkBack.

8 Optimizations

In this section, we present some optimizations that have be implemented to
improve TalkBack’s performance. These optimizations aim at reducing blogs
and authority workload.

The first optimization that is used to improve TalkBack performance is to use
notification batch processing. Upon receiving a notification, the receiving blog
instead of forwarding it immediately to the authority for validation, puts it in a
queue and waits until the queue is full or a maximum age is reached to send to
the authority. Queuing decreases both the workload and the network load as it
only uses a single pipelined connection between the blog and our authority. Our
Wordpress plugin allows bloggers to customize the queuing behavior in terms of
queue size and maximum time before processing to accommodate their needs.

Reclaiming the Blogosphere, TalkBack 145

As a second optimization, a blogger can also leverage the TalkBack PKI to
build a whitelist of blogs that he trusts and for which he will accept TalkBack
notifications without validating them with the authority. Using sender public-
keys to build a whitelist is more simple and robust than using a password or a
“secret URL” as it does not requires the use of a shared secret that needs to be
exchanged and can be leaked. Then, on a regular basis the blog can check the
authority revocation list to see which keys in the whitelist have been revoked
and for what reasons. Whitelisting decreases the blog and authority workload.
The main downside of whitelisting is that once a blog is whitelisted, the blogger
will be able to flood this particular blog with notifications as the rate limiting
is enforced by the authority, so the blogger should only whitelist trusted blogs.
Our Wordpress plugin already support this form of whitelisting.

9 Performance

To evaluate the efficiency of the TalkBack approach and facilitate adoption, we
have implemented the protocol in an open-source PHP library (http://ly.tl/
tbs), are maintaining an authority https://talkback.stanford.edu on a ded-
icated 16 core server and are providing a Wordpress plugins to make TalkBack
readily available to bloggers (http://ly.tl/tb). The TalkBack blog-side im-
plementation in PHP is around 5000 lines of PHP and uses openSSL and mcrypt
as crypto engines. Mcrypt is used to provide backward comparability to PHP
version < 5.3.

In order to evaluate how TalkBack will scale, we have performed two evalua-
tions: the first one to understand how well an authority can scale and the second
evaluation to determine how well the receiving blog-side process will scale.

To understand how well authorities scale, we have evaluated how many Talk-
Backs a single authority (ours) is able to process per second. To make sure that

N
um

be
r

of
 T

al
kb

ac
k

by
 s

ec
on

ds

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Number of senders

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Fig. 2. Number of TalkBacks processed by second by Authority

http://ly.tl/tbs
http://ly.tl/tbs
https://talkback.stanford.edu
http://ly.tl/tb

146 E. Bursztein, B. Gourdin, and J.C. Mitchell

N
um

be
r

of
 T

al
kb

ac
k

by
 s

ec
on

ds

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Number of senders

0 5 10 15 20 25 30 35

Fig. 3. Number of TalkBacks processed by second by the receiving blog

the bottleneck was on the authority, we generated ahead of time 100 000 Talk-
Backs and used several senders/machines to send them at once to the authority.
The senders are not actual blogs but custom php scripts that use our library. As
visible on figure 2, as the number of senders increases the number of TalkBacks
processed increases until it reach a plateau around 2800 TalkBacks a second.
This benchmark is properly evaluated on a 24-hour basis, because blogs notifi-
cation is spread relatively evenly across a 24-hours period [20], due to timezone
variations and blogger habits. Accordingly the fact that our authority using a
single frontend is able to process around 242 Million TalkBacks a day makes us
confident that even though TalkBack is designed to allow multiple authorities
our authority alone with additional frontends will be able to sustain the entire
blogosphere that currently consists of around 180 Million blogs [14].

We conducted a similar experiment to see how fast a receiving blog is able to
process TalkBack notifications. To make this test realistic, we used as a receiving
blog Wordpress 3.0 (the latest version) equipped with our plugin. As in the
previous test senders are custom scripts that send 1000 talkback notifications as
fast as possible. We also used a more standard hardware platform as the blog
was hosted on a 2.4GHz Intel quad core. As visible in figure 3 a single blog is
able to process more than 1000 TalkBacks a second which is more than enough
even for very high traffic blog. It is unlikely that a single blog will received more
than 84 millions notifications a day.

10 Additional Relevant work

In this section we present relevant work to our approach.

Reclaiming the Blogosphere, TalkBack 147

TrackBack Validator. The WordPress TrackBack Validator [19] looks at the
sender URL to validate that the post contains the URL of the receiver. This
approach increases the network load because each receiver will look at the
sender’s page leaving the blog vulnerable to a DDOS attack.

Reputation System. Using a reputation system alone for TrackBack spam is
ineffective because an attacker may change the blog URL for every posts. There-
fore any long-term classification based on TrackBack is bound to fail because
there is no way to prevent spoofing (under the current TrackBack specification).

IP Blacklisting. While blacklisting based on IP might currently work as the
spammers today seem to use only a small number of IPs, it is not a sustainable
solution because in the long run, it is likely that spammers will use botnets and
therefore have a huge pool of IPs.

Rate Limiting. Rate limiting at the blog level is not effective because a blog
does not have a global view of the situation and therefore cannot stop spammers
that target a huge number of blogs and post only once to each of them with the
same IP.

More Relevant Work. Previous studies of spam email report that around 120
billions spam emails are sent every day [8]. In [9] and [11], the authors study a
spam campaign by infiltrating the Storm botnet, while [2] analyzes the revenue
generated by Storm spam. A DOS defense study [13] notes that ideas spread
more quickly in the blogosphere than by email. In previous work on linkback
spam, [16] examines ways that the language appearing in a blog can be used
as a blocking defense. Similarly, [17] studies how the language of web pages,
including blogs, can be used to detect spam. In [10] the authors use Support
Vector Machines (SVM) to classify blog spam.

11 Conclusion

We propose a secure LinkBack protocol called TalkBack. This protocol is de-
signed to prevent unauthorized LinkBack notifications by verifying blogs’ au-
thenticity and by imposing a rate limiting system. Although TalkBack adds
cryptographic operations to the main LinkBack actions, we believe this level of
defensive effort is appropriate, given the result reported by previous study of
blog spam activity [5]. We have implemented and are maintaining the required
TalkBack authority. We also provide an open-source library for integrating Talk-
Back into blog engines and a Wordpress plugin that makes TalkBack readily
available to bloggers. Our performance evaluation shows that a single authority
can sustains the entire blogosphere which makes TalkBack a viable option to
defend against spammer.

148 E. Bursztein, B. Gourdin, and J.C. Mitchell

References

1. Adams, C., Lloyd, S.: Understanding PKI: Concepts, Standards, and Deployment
Considerations, 2nd edn. Addison-Wesley, Reading (2002)

2. Akass, C.: Storm worm ’making millions a day (February 2008),
http://www.pcw.co.uk/personal-computer-world/news/2209293/

strom-worm-making-millions-day

3. Apart, S.: Trackback technical specification (2004), http://www.sixapart.com/

pronet/docs/trackback_spec

4. Apart, S.: Six apart guide to comment spam (2006), http://www.sixapart.com/
pronet/comment_spam

5. Bursztein, E., Lam, P., Mitchell, J.C.: Trackback spam: Abuse and prevention. In:
Cloud Computing Security Workshop (CCSW 2009). ACM, New York (2009)

6. Graham, B.L.: Bradland must see http comments. blog (September 1999), http://
www.bradlands.com/weblog/comments/september_10_1999/

7. Haller, N.M.: The s/key one-time password system. In: Symposium on Network &
Distributed Systems Security, Internet Society (1994)

8. Ironport. Internet security trends (2008), http://www.ironport.com/

securitytrends

9. Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G.M., Paxson, V.,
Savage, S.: Spamalytics: an empirical analysis of spam marketing conversion. In:
CCS 2008: Proceedings of the 15th ACM Conference on Computer and Communi-
cations Security, pp. 3–14. ACM, New York (2008)

10. Kolari, P., Java, A., Finin, T., Oates, T., Joshi, A.: Detecting spam blogs: A ma-
chine learning approach. In: 2006 Proceedings of the 21st National Conference on
Artificial Intelligence, AAAI (2006)

11. Kreibich, C., Kanich, C., Levchenko, K., Enright, B., Voelker, G., Paxson, V.,
Savage, S.: Spamcraft: An inside look at spam campaign orchestration. In: LEET.
USENIX (2009)

12. Langridge, S., Hickson, I.: Pingback 1.0. Technical report, Hixie (2002)
13. Matrawy, A., Somayaji, A., Oorschot, P.C.: Mitigating network denial-of-service

through diversity-based traffic management. In: Ioannidis, J., Keromytis, A.D.,
Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 104–121. Springer, Heidelberg
(2005)

14. McCann, U.: Power to the people - social media tracker wave.3 (2008), http://
www.universalmccann.com/Assets/wave_3_20080403093750.pdf

15. McCullagh, D., Broache, A.: Blogs turn 10 who is the father? (2010), http://news.
cnet.com/2100-1025_3-6168681.html

16. Mishne, G., Carmel, D., Lempel, R.: Blocking blog spam with language model
disagreement. In: Proceedings of the First International Workshop on Adversarial
Information Retrieval on the Web, AIRWeb (2005)

17. Ntoulas, A., Manasse, M.: Detecting spam web pages through content analysis. In:
Proceedings of the World Wide Web Conference, pp. 83–92. ACM Press, New York
(2006)

18. Automattic Production. Askimet trackback statistics (2010), http://akismet.

com/stats/

19. Sandler, D., Thomas, A.: Trackback validator (2009), http://seclab.cs.rice.

edu/proj/trackback/

 http://www.pcw.co.uk/personal-computer-world/news/2209293/strom-worm-making-millions-day
 http://www.pcw.co.uk/personal-computer-world/news/2209293/strom-worm-making-millions-day
http://www.sixapart.com/pronet/docs/trackback_spec
http://www.sixapart.com/pronet/docs/trackback_spec
http://www.sixapart.com/pronet/comment_spam
http://www.sixapart.com/pronet/comment_spam
http://www.bradlands.com/weblog/comments/september_10_1999/
http://www.bradlands.com/weblog/comments/september_10_1999/
http://www.ironport.com/securitytrends
http://www.ironport.com/securitytrends
http://www.universalmccann.com/Assets/wave_3_20080403093750.pdf
http://www.universalmccann.com/Assets/wave_3_20080403093750.pdf
http://news.cnet.com/2100-1025_3-6168681.html
http://news.cnet.com/2100-1025_3-6168681.html
http://akismet.com/stats/
http://akismet.com/stats/
http://seclab.cs.rice.edu/proj/trackback/
http://seclab.cs.rice.edu/proj/trackback/

Reclaiming the Blogosphere, TalkBack 149

20. Sia, K.C., Cho, J., Cho, H.K.: Efficient monitoring algorithm for fast news alerts.
IEEE Transactions on Knowledge and Data Engineering, 950–961 (2007)

21. Technorati. Technorati top 100 blogs (2011), http://technorati.com/pop/blogs/
22. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: Captcha: Using hard ai

problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656.
Springer, Heidelberg (2003)

23. Wikipedia. Linkback (2011), http://en.wikipedia.org/wiki/Linkback

 http://technorati.com/pop/blogs/
http://en.wikipedia.org/wiki/Linkback

A Systematic Analysis of XSS Sanitization in
Web Application Frameworks

Joel Weinberger, Prateek Saxena, Devdatta Akhawe,
Matthew Finifter, Richard Shin, and Dawn Song

University of California, Berkeley

Abstract. While most research on XSS defense has focused on techniques for
securing existing applications and re-architecting browser mechanisms, sanitiza-
tion remains the industry-standard defense mechanism. By streamlining and au-
tomating XSS sanitization, web application frameworks stand in a good position
to stop XSS but have received little research attention. In order to drive research
on web frameworks, we systematically study the security of the XSS sanitization
abstractions frameworks provide. We develop a novel model of the web browser
and characterize the challenges of XSS sanitization. Based on the model, we sys-
tematically evaluate the XSS abstractions in 14 major commercially-used web
frameworks. We find that frameworks often do not address critical parts of the
XSS conundrum. We perform an empirical analysis of 8 large web applications
to extract the requirements of sanitization primitives from the perspective of real-
world applications. Our study shows that there is a wide gap between the abstrac-
tions provided by frameworks and the requirements of applications.

1 Introduction

Cross-site scripting (XSS) attacks are an unrelenting threat to existing and emerging
web applications. Major web services such as Google Analytics, Facebook and Twitter
have had XSS issues in recent years despite intense research on the subject [34, 52, 61].
Though XSS mitigation and analysis techniques have enjoyed intense focus [6, 7, 12,
13, 33, 36, 37, 39, 41, 43, 44, 47, 49, 50, 59, 64, 66, 68], research has paid little or
no attention to a promising sets of tools for solving the XSS riddle—web application
frameworks—which are gaining wide adoption [18, 21, 22, 28, 35, 42, 48, 55, 58, 69,
71]. Many of these frameworks claim that their sanitization abstractions can be used
to make web applications secure against XSS [24, 69]. Though possible in principle,
this paper investigates the extent to which it is presently true, clarifies the assumptions
that frameworks make, and outlines the fundamental challenges that frameworks need
to address to provide comprehensive XSS defense.

Researchers have proposed defenses ranging from purely server-side to browser-
based or both [6, 13, 37, 43, 47, 64]. However, sanitization or filtering, the practice of
encoding or eliminating dangerous constructs in untrusted data, remains the industry-
standard defense strategy [45]. At present, each web application needs to implement
XSS sanitization manually, which is prone to errors [7, 51]. Web frameworks offer a
platform to automate sanitization in web applications, freeing developers from existing
ad-hoc and error-prone manual analysis. As web applications increasingly rely on web

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 150–171, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Systematic Analysis of XSS Sanitization in Web Application Frameworks 151

frameworks, we must understand the assumptions web frameworks build on and the
security of their underlying sanitization mechanisms.

XSS sanitization is deviously complex; it involves understanding how the web
browser parses and interprets web content in non-trivial detail. Though immensely im-
portant, this issue has not been fully explained in prior XSS research. For instance, prior
research does not detail the security ramifications of the complex interactions between
the sub-languages implemented in the browser or the subtle variations in different in-
terfaces for accessing or evaluating data via JavaScript’s DOM API. This has important
implications on the security of XSS sanitization, as we show through multiple exam-
ples in this paper. For instance, we show examples of how sanitization performed on
the server-side can be effectively “undone” by the browser’s parsing of content into the
DOM, which may introduce XSS vulnerabilities in client-side JavaScript code.

A web framework can address XSS using sanitization if it correctly addresses all the
subtleties. Whether existing frameworks achieve this goal is an important question and
a subject of this paper. A systematic study of today’s web frameworks should evaluate
their security and assumptions along the following dimensions to quantify their benefits:

– Context Expressiveness. Untrusted data needs to be sanitized differently based on
its context in the HTML document. For example, the sanitization requirements of a
URI attribute are different from those of an HTML tag. Do web frameworks provide
sanitizers for different contexts that applications commonly use in practice?

– Auto-sanitization and Context-Sensitivity. Applying sanitizers in code automati-
cally, which we term auto-sanitization, shifts the burden of ensuring safety against
XSS from developers to frameworks. However, a sanitizer that may be safe for
use in one context may be unsafe for use in another. Therefore, to achieve security,
auto-sanitization must be context-sensitive; otherwise, as we explain in Section 3.1,
it may provide a false sense of security. To what extent do modern web frameworks
offer context-sensitive auto-sanitization?

– Security of Dynamic Client-Side Evaluation. AJAX applications have significant
client-side code components, such as in JavaScript. There are numerous subtleties
in XSS sanitization because client-side code may read values from the DOM. Do
frameworks support complete mediation on DOM accesses in client-side code?

Contributions and Approach. We explain the challenges inherent in XSS sanitization.
We present a novel model of the web browser’s parsing internals in sufficient detail to
explain the subtleties of XSS sanitization. Our model is the first to comprehensively
conceptualize the difficulties of sanitization. Our browser model includes details of the
sub-languages supported by HTML5, their internal interactions, and the transductions
browsers introduce on content. We provide examples of XSS scenarios that result.

This paper is a first step towards initiating research on secure web frameworks. It sys-
tematically identifies the features and pitfalls in XSS sanitization abstractions of today’s
web frameworks and the challenges a secure framework must address. We compare ex-
isting abstractions in frameworks to the requirements of web applications, which we de-
rive by an empirical analysis. We study 14 mature, commercially used web frameworks
and 8 popular open-source web applications. We establish whether the applications we
study could be migrated to use the abstractions of today’s web frameworks. We quantify
the security of the abstractions in frameworks and clarify the liability developers will

152 J. Weinberger et al.

continue to take even if they were to migrate their applications to today’s frameworks.
We provide the first in-depth study of the gap between the sanitization abstractions pro-
vided by web frameworks and what web applications require for safety against XSS. We
conclude that though web frameworks have the potential to secure applications against
XSS, most existing frameworks fall short of achieving this goal.

2 A Systematic Browser Model for XSS

We formulate XSS with a comprehensive model of the browser’s parsing behavior in
Section 2.1. We discuss the challenges and subtleties XSS sanitization must address in
Section 2.2, and how web frameworks could offer a potential solution in Section 2.3.
We outline our evaluation objectives and formulate the dimensions along which we
empirically measure the security of web frameworks in Section 2.4.

2.1 Problem Formulation: XSS Explained

Web applications mix control data (code) and content in their output, generated by
server-side code, which is consumed as client-side code by the web browser. When data
controlled by the attacker is interpreted by the web browser as if it was code written by
the web developer, an XSS attack results. A canonical example of an XSS attack is
as follows. Consider a blogging web application that emits untrusted content, such as
anonymous comments, on the web page. If the developer is not careful, an attacker can
input text such as <script>...<script>, which may be output verbatim in the server’s
output HTML page. When a user visits this blog page, her web browser will execute
the attacker controlled text as script code.

XSS sanitization requires removal of such dangerous tags from the untrusted data.
Unfortunately, not all cases are as simple as this <script> tag example. In the rest
of this section, we identify browser features that make preventing XSS much more
complicated. Previous research has indicated that this problem is complex, but we are
not aware of an in-depth, systematic problem formulation.

The Browser Model. We present a comprehensive model of the web browser’s pars-
ing behavior. While the intricacies of browser parsing behavior have been discussed
before [70], a formal model has not been built to fully explore its complexity. We
show this model in Figure 1. Abstractly, the browser can be viewed as a collection
of HTML-related sub-grammars and a collection of transducers. Sub-grammars corre-
spond to parsers for languages such as URI schemes, CSS, HTML, and JavaScript (the
rounded rectangles in Figure 1). Transducers transform or change the representation of
the text, such as in HTML-entity encoding/decoding, URI-encoding, JavaScript Uni-
code encoding and so on (the unshaded rectangles in Figure 1). The web application’s
output, i.e., HTML page, is input into the browser via the network; it can be directly
fed into the HTML parser after some pre-processing or it can be fed into JavaScript’s
HTML evaluation constructs. The browser parses these input fragments in stages—
when a fragment is recognized as a term in another sub-grammar, it is shipped to the
corresponding sub-grammar for reparsing and evaluation (e.g., edge 2). For example,

A Systematic Analysis of XSS Sanitization in Web Application Frameworks 153

HTML parser

HTML page

Document

JavaScript parser

CSS parser

URI parser

1. PCDATA

CDATA

JavaScript
runtime

<style>

2. <script>

4. URI attributes

JS expressions
url()

HTML entity decoder

5. javascript: URIs

inline styles

3. event handlers

Network

Content type dispatch

Character set encoder/decoder

text/html

da
ta
:

U
R

Is

text/javascript text/css

JavaScript code

6. innerHTML/document.write

CSS stylesheet

HTML
entity

decoder

7. DOM APIs

Fig. 1. Flow of Data in our Browser Model. Certain contexts such as PCDATA and CDATA directly
refer to parser states in the HTML 5 specification. We refer to the numbered and underlined edges
during our discussion in the text.

while the top-level HTML grammar identifies an anchor (<a>) tag in the HTML doc-
ument, the contents of the href attribute are sent to the URI parser (edge 4). The URI
parser handles a javascript: URI by sending its contents to the JavaScript parser (edge
3), while other URIs are sent to their respective parsers.

2.2 Subtleties and Challenges in XSS Sanitization

The model shows that the interaction between sub-components is complex; burdening
developers with fully understanding their subtleties is impractical. We now describe a
number of such challenges that correct sanitization-based defense needs to address.

Challenge 1: Context Sensitivity. Sanitization for XSS defense requires knowledge
of where untrusted input appears structurally and semantically in the web application.
For example, simple HTML-entity encoding is a sufficient sanitization procedure to
neutralize XSS attacks when is placed inside the body of an HTML tag, or, in the
PCDATA (edge 1) parsing context, as defined by HTML5 [30]. However, when data is
placed in a resource URI, such as the src or href attribute of a tag, HTML-encoding is
insufficient to block attacks such as via a javascript: URI (edge 4 and 5). We term the
intuitive notion of where untrusted data appears as its context. Sanitization requirements
vary by contexts. Frameworks providing sanitization primitives need to be mindful of
such differences from context to context. The list of these differences is large [29].

154 J. Weinberger et al.

Challenge 2: Sanitizing Nested Contexts. We can see in the model that a string in a
web application’s output can be parsed by multiple sub-parsers in the browser. We say
that such a string is placed in nested contexts. That is, its interpretation in the browser
will cause the browser to traverse more than one edge shown in Figure 1.

Sanitizing for nested contexts adds its own complexity. Consider an embed-
ding of an untrusted string inside a script block, such as <script> var x = ‘

UNTRUSTED DATA’...</script>. In this example, when the underlined data is read by
the browser, it is simultaneously placed in two contexts. It is placed in a JavaScript
string literal context by the JavaScript parser (edge 2) due to the single quotes. But, be-
fore that, it is inside a <script> HTML tag (or RCDATA context according to the HTML
5 specification) that is parsed by the HTML parser. Two distinct attack vectors can be
used here: the attacker could use a single quote to break out of the JavaScript string con-
text, or inject </script> to break out of the script tag. In fact, sanitizers commonly fail
to account for the latter because they do not recognize the presence of nested contexts.

Challenge 3: Browser Transductions. If dealing with multiple contexts is not arduous
enough, our model highlights the implicit transductions that browsers perform when
handing data from one sub-parser to another. These are represented by edges from
rounded rectangles to unshaded rectangles in Figure 1. Such transductions and browser-
side modifications can, surprisingly, undo sanitization applied on the server.

Consider a blog page in which comments are hidden by default and displayed only
after a user clicks a button. The code uses an onclick JavaScript event handler:

<div class=‘comment-box’onclick=‘displayComment(" UNTRUSTED",this)’>

... hidden comment ... </div>

The underlined untrusted comment is in two nested contexts: the HTML attribute and
single-quoted JavaScript string contexts. Apart from preventing the data from escaping
out of the two contexts separately (Challenge 2), the sanitization must worry about an
additional problem. The HTML 5 standard mandates that the browser HTML-entity
decode an attribute value (edge 3) before sending it to a sub-grammar. As a result, the
attacker can use additional attack characters even if the sanitization performs HTML-
entity encoding to prevent attacks. The characters " will get converted to " before
being sent to the JavaScript parser. This will allow the untrusted comment to break out
of the string context in the JavaScript parser. We call such implicit conversions browser
transductions. Full details of the transductions are available in Appendix A.

Challenge 4: Dynamic Code Evaluation. In principle, the chain of edges traversed
by the browser while parsing a text can be arbitrarily long because the browser can
dynamically evaluate code. Untrusted content can keep cycling through HTML and
JavaScript contexts. For example, consider the following JavaScript code fragment:
function foo(untrusted) {

document.write("<input onclick=’foo(" + untrusted + ")’ >");

}

Since untrusted text is repeatedly pumped through the JavaScript string and HTML
contexts (edges 3 and 6 of Figure 1), statically determining the context traversal chain
on the server is infeasible. In principle, purely server-side sanitization is not sufficient
for context determination because of dynamic code evaluation. Client-side sanitization

A Systematic Analysis of XSS Sanitization in Web Application Frameworks 155

is needed in these cases to fully mitigate potential attacks. Failure to properly sanitize
such dynamic evaluation leads to the general class of attacks called DOM-based XSS or
client-side code injection [60]. In contrast to Challenges 2 and 3, such vulnerabilities are
caused not by a lack of understanding the browser, but of frameworks not understanding
application behavior.

Another key observation is that browser transductions along the edges of Figure 1
vary from one edge to another, as detailed in Appendix A. This mismatch can cause
XSS vulnerabilities. During our evaluation, we found one such bug (Section 3.2). We
speculate that JavaScript-heavy web applications are likely to have such vulnerabilities.

Challenge 5: Character-Set Issues. Successfully sanitizing a string at the server side
implicitly requires that the sanitizer and the browser are using the same character set
while working with the string. A common source of XSS vulnerabilities is a mismatch
in the charset assumed by the sanitizer and the charset used by the browser. For example,
the ASCII string +ADw- does not have any suspicious characters. But when interpreted
by the browser as UTF-7 character-set, it maps to the dangerous < character: this mis-
match between the server-side sanitization and browser character set selection has led
to multiple XSS vulnerabilities [62].

Challenge 6: MIME-Based XSS, Universal XSS, and Mashup Confinement.
Browser quirks, especially in interpreting content or MIME types [10], contribute their
own share of XSS vulnerabilities. Similarly, bugs in browser implementations, such as
capability leaks [26] and parsing inconsistencies [9], or in browser extensions [11] are
important components of the XSS landscape. However, these do not pertain to sanitiza-
tion defenses in web frameworks. Therefore, we consider them to be out-of-scope for
this study.

2.3 The Role of Web Frameworks

Web application development frameworks provide components to enable typical work
flows in web application development. These frameworks can abstract away repetitive
and complex tasks, freeing the developer to concentrate on his particular scenario. Con-
sider session management, a common feature that is non-trivial to implement securely.
Most web application frameworks automate session management, hiding this complex-
ity from the developer. Similarly, web application frameworks can streamline and hide
the complexity of XSS sanitization from the developer. In fact, increased security is
often touted as a major benefit of switching to web application frameworks [24, 69].

Frameworks can either provide XSS sanitization routines in a library or they can
automatically add appropriate sanitization code to a web application. We term the latter
approach auto-sanitization. In the absence of auto-sanitization, the burden of calling
the sanitizers is on the developer, which we have seen is an error-prone requirement.
On the other hand, auto-sanitization, if incorrectly implemented, can give a false sense
of security because a developer may defer all sanitization to this mechanism.

2.4 Analysis Objectives

In theory, use of a web application framework should free the developer from the com-
plexities of XSS sanitization as discussed earlier and illustrated in Figure 1. If true, this

156 J. Weinberger et al.

requires the framework to grapple with all these complexities instead. We abstract the
most important challenges into the following three dimensions:

– Context Expressiveness and Sanitizer Correctness. As we detailed in Challenge
1, sanitization requirements change based on the context of the untrusted data. We
are interested in investigating the set of contexts in which untrusted data is used
by web applications, and whether web frameworks support those contexts. In the
absence of such support, a developer will have to revert to manually writing saniti-
zation functions. The challenges outlined in Section 2.1 make manually developing
correct sanitizers a non-starter. Instead, we ask, do web frameworks provide correct
sanitizers for different contexts that web applications commonly use in practice?

– Auto-sanitization and Context-Sensitivity. Providing sanitizers is only a small
part of the overall solution necessary to defend against XSS attacks. Applying
sanitizers in code automatically, which we term auto-sanitization, shifts the bur-
den of ensuring safety against XSS from developers to frameworks. The benefit
of this is self-evident: performing correct sanitization in framework code spares
each and every developer from having to implement correct sanitization himself,
and from having to remember to perform that sanitization everywhere it should be
performed. Furthermore, correct auto-sanitization needs to be context-sensitive—
context-insensitive auto-sanitization can lead to a false sense of security. Do web
frameworks offer auto-sanitization, and if so, is it context-sensitive?

– Security of Client-Side Code Evaluation. Much of the research on XSS has
focused on the subtleties of parsing in HTML contexts across browsers. But
AJAX web applications have significant client-side code components, such as in
JavaScript. There are numerous subtleties in XSS sanitization because client-side
code may read values from the DOM. Sanitization performed on the server-side
may be “undone” during the browser’s parsing of content into the DOM (Chal-
lenge 3 and Challenge 4). Do frameworks support complete mediation on DOM
accesses in client-side code?

In this study, we focus solely on XSS sanitization features in web frameworks and ig-
nore all other framework features. We also do not include purely client-side frameworks
such as jQuery [1] because these do not provide XSS protection mechanisms. Addition-
ally, untrusted data used in these libraries also needs server-side sanitization.

3 Analysis of Web Frameworks and Applications

In this section, we empirically analyze web frameworks and the sanitization abstrac-
tions they provide. We show that there is a mismatch in the abstractions provided by
frameworks and the requirements of applications.

We begin by analyzing the “auto-sanitization” feature—a security primitive in which
web frameworks sanitize untrusted data automatically—in Section 3.1. We identify the
extent to which it is available, the pitfalls of its implementation, and whether developers
can blindly trust this mechanism if they migrate to or develop applications on existing
auto-sanitizing frameworks. We then evaluate the support for dynamic code evaluation

A Systematic Analysis of XSS Sanitization in Web Application Frameworks 157

via JavaScript in frameworks in Section 3.2. In the previous section, we identified sub-
tleties in the browser’s DOM interface. In Section 3.2, we discuss whether applications
adequately understand it to prevent XSS bugs.

Frameworks may not provide auto-sanitization, but instead may provide sanitizers
that developers can manually invoke. Arguably, the sanitizers implemented by frame-
works would be more robust than the ones implemented by the application developer.
We evaluate the breadth of contexts for which each framework provides sanitizers, or
the context expressiveness of each framework, in Section 3.3. We also compare it to the
requirements of the applications we study today to evaluate whether this expressiveness
is enough for real-world applications.

Finally, we evaluate frameworks’ assumptions regarding correctness of sanitization
and compare these to the sanitization practices in security-conscious applications.

Methodology and Analysis Subjects. We examine 14 popular web application frame-
works in commercial use for different programming languages and 8 popular PHP web
applications ranging from 19 KLOC to 532 KLOC in size. We used a mixture of manual
and automated exploration to identify sanitizers in the web application running on an
instrumented PHP interpreter. We then executed the application again along paths that
use these sanitization functions and parsed the outputs using an HTML 5-compliant
browser to determine the contexts for which they sanitize. Due to space constraints, this
paper focuses solely on the results of our empirical analysis. A technical report provides
the full details of the techniques employed [65].

3.1 Auto-Sanitization: Features and Pitfalls

Auto-sanitization is a feature that shifts the burden of ensuring safety against XSS from
the developer to the framework. In a framework that includes auto-sanitization, the ap-
plication developer is responsible for indicating which variables will require sanitiza-
tion. When the page is output, the web application framework can then apply the correct
sanitizer to these variables. Our findings, summarized in Table 1, are as follows:

– Of the 14 frameworks evaluated, only 7 support some form of auto-sanitization.
– 4 out of the 7 auto-sanitization framework apply a “one-size-fits-all” strategy to

sanitization. That is, they apply the same sanitizer to all flows of untrusted data
irrespective of the context into which the data flows. We call this context-insensitive
sanitization, which is fundamentally unsafe, as explained later.

– We measure the fraction of application output sinks actually protected by context-
insensitive auto-sanitization mechanism in 10 applications built on Django, a popu-
lar web framework. Table 2 presents our findings. The mechanism fails to correctly
protect between 14.8% and 33.6% of an application’s output sinks.

– Only 3 frameworks perform context-sensitive sanitization.

No Auto-Sanitization. Only half of the studied frameworks provide any auto-
sanitization support. In those that don’t, developers must deal with the challenges of
selecting where to apply built-in or custom sanitizers. Recent studies have shown that
this manual process is prone to errors, even in security-audited applications [25, 51].

158 J. Weinberger et al.

Table 1. Extent of automatic sanitization support in the frameworks we study and the pointcut
(set of points in the control flow) where the automatic sanitization is applied

Language Framework, Plugin, or Feature Automatically
Sanitizes in HTML
Context

Performs Context-
Aware Sanitization

Pointcut

PHP CodeIgniter • Request Reception
VB, C#, C++, F# ASP.NET Request Validation [5] • Request Reception
Ruby xss terminate Rails plugin [67] • Database Insertion
Python Django • Template Processing
Java GWT SafeHtml • • Template Processing
C++ Ctemplate • • Template Processing
Language-neutral ClearSilver • • Template Processing

We also observed instances of this phenomenon in our analysis. The following example
is from a Django application called GRAMPS.

Example 1
{% if header.sortable %}

{% endif %}

The developer sanitizes a data variable placed in the href attribute but uses the
HTML-entity encoder (escape) to sanitize the data variable header.url. This is an
instance of Challenge 2 outlined in Section 2. In particular, this sanitizer fails to prevent
XSS attack vectors such as javascript: URIs.

Insecurity of Context-Insensitive Auto-Sanitization. Another interesting fact about
the above example is that even if the developer relied on Django’s default auto-
sanitization, the code would be vulnerable to XSS attacks. Django employs context-
insensitive auto-sanitization, i.e., it applies the same sanitizer (escape) irrespective of
the output context. escape, which does an HTML entity encode, is safe for use in HTML
tag context but unsafe for other contexts. In the above example, applying escape, auto-
matically or otherwise, fails to protect against XSS attacks. Auto-sanitization support
in Rails [67], .NET (request validation [5]) and CodeIgniter are all context-insensitive
and have similar problems.

Context-insensitive auto-sanitization provides a false sense of security. On the other
hand, relying on developers to pick a sanitizer consistent with the context is error-prone,
and one XSS hole is sufficient to subvert the web application’s integrity. Thus, because
it covers some limited cases, context-insensitive auto-sanitization is better protection
than no auto-sanitization.

We measure the percentage of output sinks protected by context-insensitive
auto-sanitization in 10 Django-based applications that we randomly selected for fur-
ther investigation [23]. We statically correlated the automatically applied sanitizer to
the context of the data; the results are in Table 2. The mechanism protects between
66.4% and 85.2% of the output sinks, but conversely permits XSS vectors in 14.8% to
33.6% of the contexts, subject to whether attackers control the sanitized data or not.
We did not determine the exploitability of these incorrectly auto-sanitized cases, but we
observed that in most of these cases, developers resorted to custom manual sanitization.

A Systematic Analysis of XSS Sanitization in Web Application Frameworks 159

Table 2. Usage of auto-sanitization in Django applications. The first 2 columns are the number of
sinks in the templates and the percentage of these sinks for which auto-sanitization has not been
disabled. Each remaining column shows the percentage of sinks that appear in the given context.

Web Application No.
Sinks

% Auto-
sanitized
Sinks

% Sinks
not san-
itized
(marked
safe)

% Sinks
manually
sanitized

%
Sinks in
HTML
Context

% Sinks
in URI
Attr.
(excl.
scheme)

% Sinks
in URI
Attr.
(incl.
scheme)

% Sinks
in JS
Attr.
Context

% Sinks
in JS
Number
or String
Context

% Sinks
in Style
Attr.
Context

GRAMPS Ge-
nealogy Man-
agement

286 77.9 0.0 22.0 66.4 3.4 30.0 0.0 0.0 0.0

HicroKee’s
Blog

92 83.6 7.6 8.6 83.6 6.5 7.6 1.0 0.0 1.0

FabioSouto.eu 55 90.9 9.0 0.0 67.2 7.2 23.6 0.0 1.8 0.0
Phillip Jones’
Eportfolio

94 92.5 7.4 0.0 73.4 11.7 12.7 0.0 2.1 0.0

EAG cms 19 94.7 5.2 0.0 84.2 0.0 5.2 0.0 0.0 10.5
Boycott
Toolkit

347 96.2 3.4 0.2 71.7 1.1 25.3 0.0 1.7 0.0

Damned Lies 359 96.6 3.3 0.0 74.6 0.5 17.8 0.0 0.2 6.6
oebfare 149 97.3 2.6 0.0 85.2 6.0 8.0 0.0 0.0 0.6
Malaysia
Crime

235 98.7 1.2 0.0 77.8 0.0 1.7 0.0 20.4 0.0

Philippe
Marichal’s web
site

13 100.0 0.0 0.0 84.6 0.0 15.3 0.0 0.0 0.0

An auto-sanitization mechanism that requires developers to sanitize diligently is self-
defeating. Developers should be aware of this responsibility when building on such a
mechanism.

Context-Sensitive Sanitization. Context-sensitive auto-sanitization addresses the
above issues. Three web frameworks, namely GWT, Google Clearsilver, and Google
Ctemplate, provide this capability. In these frameworks, the auto-sanitization engine
performs runtime parsing, keeping track of the context before emitting untrusted data.
The correct sanitizer is then automatically applied to untrusted data based on the tracked
context. These frameworks rely on developers to identify untrusted data. The typical
strategy is to have developers write code in templates, which separate the HTML con-
tent from the (untrusted) data variables. For example, consider the following simple
template supported by the Google Ctemplate framework:

Example 2
{{%AUTOESCAPE context="HTML"}}
<html><body><script> function showName() {
document.getElementById("sp1").textContent = "Name: {{NAME}}";} </script>
Click to display name.

Homepage: {{PAGENAME}} </body></html>

Variables that require sanitization are surrounded by {{ and }}; the rest of the text is
HTML content to be output. When the template executes, the engine parses the output
and determines that {{NAME}} is in a JavaScript string context and automatically ap-
plies the sanitizer for the JavaScript string context, namely :javascript_escape. For
other variables, the same mechanism applies the appropriate sanitizers. For instance,
the variable {{URI}} is sanitized with the :url_escape_with_arg=html sanitizer.

160 J. Weinberger et al.

3.2 Security of Client-Side Code Evaluation

In Section 2, we identified subtleties of dynamic evaluation of HTML via JavaScript’s
DOM API (Challenge 4). The browser applies different transductions depending on the
DOM interface used (Challenge 3 and listed in Appendix A). Given the complexity
of sanitizing dynamic evaluation, we believe web frameworks should provide support
for this important class of XSS attack vectors too. Ideally, a web framework could
incorporate knowledge of these subtleties, and provide automatic sanitization support
during JavaScript code execution.

Support in Web Frameworks. The frameworks we studied do not support sanitiza-
tion of dynamic flows. Four frameworks support sanitization of untrusted data used in
a JavaScript string or number context (Table 3). This support is only static: it can en-
sure that untrusted data doesn’t escape out during the parsing by the browser, but such
sanitization can’t offer any safety during dynamic code evaluation, given that dynamic
code evaluation can undo previously applied transductions (Challenge 4).

Context-insensitivity issues with auto-sanitization also extend to JavaScript code.
For example, Django uses the context-insensitive HTML-escape sanitizer even in
JavaScript string contexts. Dangerous characters (e.g., \n,\r,;) can still break out
of the JavaScript string literal context. For example, in the Malaysia Crime Applica-
tion (authored in Django), the crime.icon variable is incorrectly auto-sanitized with
HTML-entity encoding and is an argument to a JavaScript function call.

Example 3
map.addOverlay(new GMarker(point, {{ crime.icon }}))

Awareness in Web Applications. DOM-based XSS is a serious problem in web ap-
plications [49, 50]. Recent incidents in large applications, such as vulnerabilities in
Google optimizer [46] scripts and Twitter [60], show that this is a continuing problem.
This suggests that web applications are not fully aware of the subtleties of the DOM
API and dynamic code evaluation constructs (Challenge 3 and 4 in Section 2).

To illustrate this, we present a real-world example from one of the applications we
evaluated, phpBB3, showing how these subtleties may be misunderstood by developers.

Example 4
text = element.getAttribute(’title’);
// ... elided ...
desc = create_element(’span’, ’bottom’);
desc.innerHTML = text;
tooltip.appendChild(desc);

In the server-side code, which is not shown here, the application sanitizes the title

attribute of an HTML element by HTML-entity encoding it. If the attacker enters a
string like <script>, the encoding converts it to <script>. The client-side code
subsequently reads this attribute via the getAttribute DOM API in JavaScript code
(shown above) and inserts it back into the DOM via the innerHTML method. The vul-
nerability is that the browser automatically decodes HTML entities (through edge 1 in
Figure 1) while constructing the DOM. This effectively undoes the server’s sanitization

A Systematic Analysis of XSS Sanitization in Web Application Frameworks 161

Table 3. Sanitizers provided by languages and/or frameworks. For frameworks, we also include
sanitizers provided by standard packages or modules for the language.

Language Framework HTML
tag con-
tent or
non-URI
attribute

URI At-
tribute
(excluding
scheme)

URI At-
tribute
(including
scheme)

JS
String

JS Num-
ber or
Boolean

Style At-
tribute or
Tag

Perl
Mason [2, 42] • •
Template Toolkit [58] • •
Jifty [35] • •

PHP

CakePHP [15] • •
Smarty Template Engine [55] • • •
Yii [32, 69] • •
Zend Framework [71] • •
CodeIgniter [19, 20] • •

VB, C#, C++, F# ASP.NET [4] • •
Ruby Rails [48] • •
Python Django [22] • • • •
Java GWT SafeHtml [28] • • •
C++ Ctemplate [21] • • • • • •
Language-neutral ClearSilver [18] • • • • •

in this example. The getAttribute DOM API reads the decoded string (e.g., <script>)
from the DOM (edge 7). Writing <script> via innerHTML (edge 6) results in XSS.

This bug is subtle. Had the developer used innerText instead of innerHTML to write
the data, or used innerHTML to read the data, the code would not be vulnerable. The
reason is that the two DOM APIs discussed here read different serializations of the
parsed page, as explained in Appendix A.

The prevalence of DOM-based XSS vulnerabilities and the lack of framework sup-
port suggest that this is a challenge for web applications and web frameworks alike.
Libraries such as Caja and ADsafe model JavaScript and DOM manipulation but tar-
get isolation-based protection such as authority safety, not DOM-based XSS [3, 14].
Protection for this class of XSS requires further research.

3.3 Context Expressiveness

Having analyzed the auto-sanitization support in web frameworks for static HTML eval-
uation as well as dynamic evaluation via JavaScript, we turn to the support for manual
sanitization. Frameworks may not provide auto-sanitization but instead may provide
sanitizers which developers can call. This improves security by freeing the developer
from (re)writing complex, error-prone sanitization code. In this section, we evaluate the
breadth of contexts for which each framework provides sanitizers, or the context expres-
siveness of each framework. For example, a framework that provides built-in sanitizers
for more than one context, say in URI attributes, CSS keywords, JavaScript string con-
texts, is more expressive than one that provides a sanitizer only for HTML tag context.

Expressiveness of Framework Sanitization Contexts. Table 3 presents the expres-
siveness of web frameworks we study and Table 4 presents the expressiveness required
by our subject web applications. The key insights are:

162 J. Weinberger et al.

– We observe that 9 out of the 14 frameworks do not support contexts other than the
HTML context (e.g., as the content body of a tag or inside a non-URI attribute) and
the URI attribute context. The most common sanitizers for these are HTML entity
encoding and URI encoding, respectively.

– 4 web frameworks, ClearSilver, Ctemplate, Django, and Smarty, provide appropri-
ate sanitization functions for emitting untrusted data into a JavaScript string. Only 1
framework, Ctemplate, provides a sanitizer for emitting data into JavaScript outside
of the string literal context. However, the sanitizer is a restrictive whitelist, allow-
ing only numeric or boolean literals. No framework we studied allows untrusted
JavaScript code to be emitted into JavaScript contexts. Supporting this requires a
client-side isolation mechanism such as ADsafe [3] or Google’s Caja [14].

– 4 web frameworks, namely Django, GWT, Ctemplate, and Clearsilver, provide san-
itizers for URI attributes in which a complete URI (i.e., including the URI protocol
scheme) can be emitted. These sanitizers reject URIs that use the javascript:

scheme and accept only a whitelist of schemes, such as http:.

– Of the frameworks we studied, we found only one that provides an interface for
customizing the sanitizer for a given context. Yii uses HTML Purifier [32], which
allows the developer to specify a custom list of allowed tags. For example, a devel-
oper may specify a policy that allows only tags. The other frameworks (even
the context-sensitive auto-sanitizing ones) have sanitizers that are not customiz-
able. That is, untrusted content within a particular context is always sanitized the
same way. Our evaluation of web applications strongly invalidates this assumption,
showing that applications often sanitize data occurring in the same context differ-
ently based on other attributes of the data.

The set of contexts for which a framework provides sanitizers gives a sense of how
the framework expects web applications to behave. Specifically, frameworks assume
applications will not emit sanitized content into multiple contexts. More than half of
the frameworks we examined do not expect web applications to insert content with
arbitrary schemes into URI contexts, and only one of the frameworks supports use of
untrusted content in JavaScript Number or Boolean contexts. Below, we challenge these
assumptions by quantifying the set of contexts for which applications need sanitizers.

Expressiveness of Contexts and Sub-context Variance in Web Applications. We
examined our 8 subject PHP applications, ranging from 19 to 532 KLOC, to understand
what expressiveness they require and whether they could, theoretically, migrate to the
existing frameworks. We systematically measure and enumerate the contexts into which
these applications emit untrusted data. Table 4 shows the result of this evaluation. We
observe that nearly all of the applications insert untrusted content into all of the outlined
contexts. Contrast this with Table 3, where most frameworks support a much more
limited set of contexts with built-in sanitizers.

More surprisingly, we find that applications often employ more than one sanitizer for
each context. That is, an abstraction that ties a single sanitizer to a given context may be
insufficient. We term this variation in sanitization across code paths sub-context vari-
ance. Sub-context variance evidence suggests that directly migrating web applications

A Systematic Analysis of XSS Sanitization in Web Application Frameworks 163

Table 4. The web applications we study and the contexts for which they sanitize

Application Description LOC HTML
Context

URI
Attr.
(excl.
scheme)

URI
Attr.
(incl.
scheme)

JS Attr.
Context

JS Num-
ber or
String
Context

No.
Sani-
tizers

No.
Sinks

RoundCube IMAP Email Client 19,038 • • • • • 30 75
Drupal Content Management System 20,995 • • • • • 32 2557
Joomla Content Management System 75,785 • • • • 22 538
WordPress Blogging Application 89,504 • • • • 95 2572
MediaWiki Wiki Hosting Application 125,608 • • • • • 118 352
PHPBB3 Bulletin Board Software 146,991 • • • • • 19 265
OpenEMR Medical Records Management 150,384 • • • 18 727
Moodle E-Learning Software 532,359 • • • • • 43 6282

to web frameworks’ (auto-) sanitization support may not be directly possible given that
even context-sensitive web frameworks rigidly apply one sanitizer for a given context.

Sub-context variance is particularly common in the form of role-based sanitization,
where the application applies different sanitizers based on the privilege of the user. We
found that it is common to have a policy in which the site administrator’s content is sub-
ject to no sanitization (by design). Examples include phpBB, WordPress, Drupal. For
such simple policies, there are legitimate code paths that have no sanitization require-
ments. To illustrate this, we present a real-world example from the popular WordPress
application which employs different sanitization along different code paths.

Example 5
WordPress, the popular blogging application, groups users into roles. A user in the
author role can create a new post on the blog with most non-code tags permitted.
An anonymous commenter, on the other hand, can only use a small number of text
formatting tags. In particular, the latter cannot insert images in comments while an
author can insert images in his post. Note that neither can insert <script> tags, or
any other active content. In both cases, untrusted input flows into HTML tag context,
but the sanitizer applied changes as a function of the user role.

Most auto-sanitizing frameworks do not support such rich abstractions to support
auto-sanitization specifications at a sub-context granularity. Nearly all sanitization li-
braries (not part of web frameworks) are customizable. However, their connection to
special role-based sanitization (or similar cases) are not supported presently. We believe
that web frameworks can fill this gap. Only 1 framework, Yii, provides the flexibility to
handle such customizations using the HTMLPurifier sanitization library. Unfortunately,
Yii only provides this flexibility for the HTML tag context.

3.4 Enabling Reasoning of Sanitizer Correctness

Prior research on web applications has shown that developing sanitization functions,
especially custom sanitizers, is tricky and prone to errors [7]. We investigate how the
sanitizers in web frameworks handle this issue. We compare the structure of the san-
itizers used in frameworks to the structure we observe in our subject applications and
characterize the ground assumptions that developers should be aware of.

164 J. Weinberger et al.

Blacklists vs. Whitelists. We find that most web frameworks structure their sanitizers
as a declarative-style whitelist of code constructs explicitly allowed in untrusted con-
tent. For instance, one sanitization library employed in the Yii is HTML-Purifier [32],
which permits a declarative list of HTML elements like event attributes of special tags in
untrusted content. All of the web applications we studied also employ this whitelisting
mechanism, such as the KSES library used in Wordpress [38]. Such sanitizers assume
that the whitelist is only contains a well understood and safe subset of the language
specification, and does not permit any unsafe structures.

In contrast, we find that only 1 subject web framework, viz. CodeIgniter, employs
a blacklist-based sanitization approach. Even if one verifies that all the elements on a
blacklist conform to an unsafe subset of the language specification, the sanitizer may
still allow unsafe parts of the language. For example, CodeIgniter’s xss_clean func-
tion removes a blacklist of potentially dangerous strings like document.cookie that
may appear in any context. Even if it removes all references to document.cookie,
there still may be other ways for attacker code to reference cookies, such as via
document[‘cookie’].

Correctness of the sanitizers used is fundamental to the safety of the sanitization
based strategy used in web frameworks. Based on the above examples, we claim that it
is easier to verify that a whitelist policy is safe and recommend frameworks adopt such
a strategy.

HTML Canonicalization. Essential to the safety of sanitization-based defense is that
the user’s browser parse the untrusted string in a manner consistent with the parsing
applied by the sanitizer. For instance, if the context-determination in the frameworks
differs from the actual parsing in the browser, the wrong sanitizer could be applied by
the framework.

We observe that frameworks employ a canonicalization strategy to ensure this prop-
erty; the web frameworks identify a ‘canonical’ subset of HTML-related languages into
which all application output is generated. The assumption they rely on is that this canon-
ical form parses the same way across major web browsers. We point out explicitly that
these assumptions are not systematically verified today and, therefore, framework out-
puts may still be susceptible to XSS attacks. For example, a recent XSS vulnerability in
the HTML Purifier library (used in Yii) was traced back to “quirks in Internet Explorer’s
parsing of string-like expressions in CSS [31].”

Finally, we point out that sanitization-based defense isn’t the only alternative—
proposals for sanitization-free defenses, such as DSI [43], BLUEPRINT [59] and the
Content Security Policy [56] have been presented. Future frameworks could consider
these. Verifying the safety of the whitelist-based canonicalization strategy and its as-
sumptions also deserves research attention.

4 Related Work

XSS Analysis and Defense. Much of the research on cross-site scripting vulnerabil-
ities has focused on finding XSS flaws in web applications, specifically on server-
side code [7, 33, 36, 39–41, 44, 66, 68] but also more recently on JavaScript

A Systematic Analysis of XSS Sanitization in Web Application Frameworks 165

code [8, 27, 49, 50]. These works have underscored the two main causes of XSS vulner-
abilities: identifying untrusted data at output and errors in sanitization by applications.
There have been three kinds of defenses: purely server-side, purely browser-based, and
those involving both client and server collaboration.

BLUEPRINT [59], SCRIPTGARD [51] and XSS-GUARD [13] are three server-side
solutions that have provided insight into context-sensitive sanitization. In particular,
BLUEPRINT provides a deeper model of the web browser and points out that browsers
differ in how the various components communicate with one another. The browser
model detailed in this work builds upon BLUEPRINT’s model and more closely upon
SCRIPTGARD’s formalization [51]. We provide additional details in our model to de-
mystify the browser’s parsing behavior and explain subtleties in sanitization that the
prior work did not address.

Purely browser-based solutions, such as XSSAuditor, are implemented in modern
browsers. These mechanisms are useful in nullifying common attack scenarios by ob-
serving HTTP requests and intercepting HTTP responses during the browser’s parsing.
However, they do not address the problem of separating untrusted from trusted data, as
pointed out by Barth et al. [12].

BEEP, DSI and NonceSpaces investigated client-server collaborative defenses. In
these proposals, the server is responsible for identifying untrusted data, which it reports
to the browser, and the browser ensures that XSS attacks can not result from parsing
the untrusted data. While these proposals are encouraging, they require browser and
server modifications. The closest practical implementation of such client-server defense
architecture is the recent content security policy specification [56].

Correctness of Sanitization. While several systems have analyzed server-side code,
the SANER [7] system empirically showed that custom sanitization routines in web
applications can be error-prone. FLAX [50] and KUDZU [49] empirically showed that
sanitization errors are not uncommon in client-side JavaScript code. While these works
highlight examples, the complexity of the sanitization process remained unexplained.
Our observation is that sanitization is pervasively used in emerging web frameworks as
well as large, security-conscious applications. We discuss whether applications should
use sanitization for defense in light of previous bugs.

Techniques for Separating Untrusted Content. Taint-tracking based techniques [16,
36, 44, 53, 63, 68] as well as security-typed languages [17, 47, 54, 57] aim to address the
problem of identifying and separating untrusted data from HTML output to ensure that
untrusted data gets sanitized before it is output. Web templating frameworks, some of
which are studied in this work, offer a different model in which they coerce developers
into explicitly specifying trusted content. This offers a fail-closed design and has seen
adoption in practice because of its ease of use.

5 Conclusions and Future Work

We study the sanitization abstractions provided in 14 web application development
frameworks. We find that frameworks often fail to comprehensively address the sub-
tleties of XSS sanitization. We also analyze 8 web applications, comparing the saniti-

166 J. Weinberger et al.

zation requirements of the applications against the abstractions provided by the frame-
works. Through real-world examples, we quantify the gap between what frameworks
provide and what applications require.

Auto-sanitization Support and Context Sensitivity. Automatic sanitization is a step
in the right direction. For correctness, auto-sanitization needs to be context-sensitive:
context-insensitive sanitization can provide a false sense of security. Our application
study finds that applications do, in fact, need to emit untrusted data in multiple contexts.
However, the total number of contexts used by applications in our study is limited,
suggesting that frameworks only need to support a useful subset of contexts.

Security of Client-side Code Evaluation. DOM-based XSS is a serious challenge in
web applications, but no framework supports sanitization for dynamic evaluation on
the client. Application developers must be particularly alert when using the DOM API.
Of particular relevance to XSS sanitization is the possibility of the browser “undoing”
server-side sanitization, making the application vulnerable to DOM-based XSS.

Context Expressiveness and Sanitizer Correctness. Some frameworks offer sanitiza-
tion primitives as library functions the developer can invoke. We find that most frame-
works do not provide sufficiently expressive sanitizers, i.e., the sanitizers provided do
not support all the contexts that applications use. For instance, applications emit un-
trusted data into URI attribute and JavaScript literal contexts, but most of the frame-
works we study do not provide sanitizers for these contexts. As a result, application
developers must implement these security-critical sanitizers themselves, a tedious and
error-prone exercise. We also find that sub-context variance, such as role-based sanitizer
selection, is common. Only one of the frameworks we examined provides any support
for this pattern, and its support is limited.

Finally, our study identifies the set of assumptions fundamental to frameworks.
Namely, frameworks assume that their sanitizers can be verified for correctness, and
that HTML can be canonicalized to a single, standard form. Developers need to be
aware of these assumptions before adopting a framework.

Future Directions. As we outline in this work, the browser’s parsing and transforma-
tion of the web content is complex. If we develop a formal abstract model of the web
browser’s behavior for HTML 5, sanitizers can be automatically checked for correct-
ness. Our browser model is a first step in this direction. We identify that parts of the
web browser are either transducers or language recognizers. There have been practical
guides for dealing with these issues, but a formal model of the semantics of browsers
could illuminate all of the intricacies of the browser [70]. Verification techniques and
tools for checking correctness properties of web code is an active area of research.

If one can show the correctness of a framework’s sanitizers, we can prove the security
and correctness for code generated from it. Though existing auto-sanitization mecha-
nisms are weak today, they can be improved. Google AutoEscape is one attempt at this
type of complete sanitization but is currently limited to a fairly restrictive templating
language [21]. If these abstractions can be extended to richer web languages, it would

A Systematic Analysis of XSS Sanitization in Web Application Frameworks 167

provide a basis to build web applications secure from XSS from the ground up—an
important future direction for research.

Acknowledgments. This material is based on work partially supported by the National
Science Foundation (NSF) under Grants No. 0311808, No. 0832943, No. 0448452, No.
0842694, and No. CCF-0424422, and a NSF Graduate Research Fellowship, as well as
by the Air Force Office of Scientific Research under Grant No. A9550-09-1-0539. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science
Foundation.

References

1. jQuery, http://jquery.com/
2. Aas, G.: CPAN: URI::Escape, http://search.cpan.org/~gaas/URI-1.56/URI/

Escape.pm

3. Adsafe : Making javascript safe for advertising, http://www.adsafe.org/
4. How To: Prevent Cross-Site Scripting in ASP.NET, http://msdn.microsoft.com/

en-us/library/ff649310.aspx

5. Microsoft ASP.NET: Request Validation – Preventing Script Attacks, http://www.asp.
net/LEARN/whitepapers/request-validation

6. Athanasopoulos, E., Pappas, V., Krithinakis, A., Ligouras, S., Markatos, E., Karagiannis, T.:
xJS: practical XSS prevention for web application development. In: Proceedings of the 2010
USENIX Conference on Web Application Development (2010)

7. Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.:
Saner: Composing Static and Dynamic Analysis to Validate Sanitization in Web Applica-
tions. In: Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA (2008)

8. Bandhakavi, S., King, S.T., Madhusudan, P., Winslett, M.: Vex: Vetting browser extensions
for security vulnerabilities (2010)

9. Baron, D.: Mozilla’s quirks mode, https://developer.mozilla.org/en/mozilla’s_
quirks_mode

10. Barth, A., Caballero, J., Song, D.: Secure content sniffing for web browsers or how to stop
papers from reviewing themselves. In: Proceedings of the 30th IEEE Symposium on Security
and Privacy, Oakland, CA (May 2009)

11. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting browsers from extension vulnera-
bilities (2009)

12. Bates, D., Barth, A., Jackson, C.: Regular expressions considered harmful in client-side xss
filters. In: Proceedings of the 19th International Conference on World Wide Web, WWW
2010, pp. 91–100. ACM, New York (2010)

13. Bisht, P., Venkatakrishnan, V.: XSS-GUARD: precise dynamic prevention of cross-site
scripting attacks. In: Detection of Intrusions and Malware, and Vulnerability Assessment,
pp. 23–43 (2008)

14. Google-caja: A source-to-source translator for securing javascript-based web content,
http://code.google.com/p/google-caja/

15. CakePHP: Sanitize Class Info, http://api.cakephp.org/class/sanitize
16. Chin, E., Wagner, D.: Efficient character-level taint tracking for java. In: Proceedings of

the 2009 ACM Workshop on Secure Web Services, SWS 2009, pp. 3–12. ACM, New York
(2009)

http://jquery.com/
http://search.cpan.org/~gaas/URI-1.56/URI/Escape.pm
http://search.cpan.org/~gaas/URI-1.56/URI/Escape.pm
http://www.adsafe.org/
http://msdn.microsoft.com/en-us/library/ff649310.aspx
http://msdn.microsoft.com/en-us/library/ff649310.aspx
http://www.asp.net/LEARN/whitepapers/request-validation
http://www.asp.net/LEARN/whitepapers/request-validation
https://developer.mozilla.org/en/mozilla's_quirks_mode
https://developer.mozilla.org/en/mozilla's_quirks_mode
http://code.google.com/p/google-caja/
http://api.cakephp.org/class/sanitize

168 J. Weinberger et al.

17. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Secure web ap-
plications via automatic partitioning. In: Proceedings of Twenty-First ACM SIGOPS Sym-
posium on Operating Systems Principles, pp. 31–44. ACM, New York (2007)

18. ClearSilver: Template Filters, http://www.clearsilver.net/docs/man_filters.hdf
19. CodeIgniter/system/libraries/Security.php, http://bitbucket.org/ellislab/

codeigniter/src/tip/system/libraries/Security.php

20. CodeIgniter User Guide Version 1.7.2: Input Class, http://codeigniter.com/user_
guide/libraries/input.html

21. Ctemplate: Guide to Using Auto Escape, http://google-ctemplate.googlecode.com/
svn/trunk/doc/auto_escape.html

22. django: Built-in template tags and filters, http://docs.djangoproject.com/en/dev/
ref/templates/builtins

23. Django sites : Websites powered by django, http://www.djangosites.org/
24. The Django Book: Security, http://www.djangobook.com/en/2.0/chapter20/
25. Finifter, M., Wagner, D.: Exploring the Relationship Between Web Application Development

Tools and Security. In: Proceedings of the 2nd USENIX Conference on Web Application
Development. USENIX (June 2011)

26. Finifter, M., Weinberger, J., Barth, A.: Preventing capability leaks in secure javascript sub-
sets. In: Proc. of Network and Distributed System Security Symposium (2010)

27. Guha, A., Krishnamurthi, S., Jim, T.: Using static analysis for ajax intrusion detection. In:
Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp.
561–570. ACM, New York (2009)

28. Google Web Toolkit: Developer’s Guide – SafeHtml, http://code.google.com/

webtoolkit/doc/latest/DevGuideSecuritySafeHtml.html

29. Hansen, R.: XSS cheat sheet (2008)
30. Hickson, I.: HTML 5 : A vocabulary and associated apis for html and xhtml, http://www.

w3.org/TR/html5/

31. HTML Purifier Team: Css quoting full disclosure (2010), http://htmlpurifier.org/
security/2010/css-quoting

32. HTML Purifier : Standards-Compliant HTML Filtering, http://htmlpurifier.org/
33. Huang, Y.W., Yu, F., Hang, C., Tsai, C.H., Lee, D.T., Kuo, S.Y.: Securing web application

code by static analysis and runtime protection. In: Proceedings of the 13th International
Conference on World Wide Web, WWW 2004, pp. 40–52. ACM, New York (2004)

34. Jean, J.: Facebook CSRF and XSS vulnerabilities: Destructive worms on a social network,
http://seclists.org/fulldisclosure/2010/Oct/35

35. JiftyManual, http://jifty.org/view/JiftyManual
36. Jovanovic, N., Krügel, C., Kirda, E.: Pixy: A static analysis tool for detecting web application

vulnerabilities (short paper). In: IEEE Symposium on Security and Privacy (2006)
37. Kirda, E., Kruegel, C., Vigna, G., Jovanovic, N.: Noxes: a client-side solution for mitigat-

ing cross-site scripting attacks. In: Proceedings of the 2006 ACM Symposium on Applied
Computing, pp. 330–337. ACM, New York (2006)

38. KSES Developer Team: Kses php html/xhtml filter, http://sourceforge.net/

projects/kses/

39. Livshits, B., Lam, M.S.: Finding security errors in Java programs with static analysis. In:
Proceedings of the Usenix Security Symposium (2005)

40. Livshits, B., Martin, M., Lam, M.S.: SecuriFly: Runtime protection and recovery from Web
application vulnerabilities. Tech. rep., Stanford University (September 2006)

41. Martin, M., Lam, M.S.: Automatic generation of XSS and SQL injection attacks with goal-
directed model checking. In: 17th USENIX Security Symposium (2008)

42. The Mason Book: Escaping Substitutions, http://www.masonbook.com/book/

chapter-2.mhtml

http://www.clearsilver.net/docs/man_filters.hdf
http://bitbucket.org/ellislab/codeigniter/src/tip/system/libraries/Security.php
http://bitbucket.org/ellislab/codeigniter/src/tip/system/libraries/Security.php
http://codeigniter.com/user_guide/libraries/input.html
http://codeigniter.com/user_guide/libraries/input.html
http://google-ctemplate.googlecode.com/svn/trunk/doc/auto_escape.html
http://google-ctemplate.googlecode.com/svn/trunk/doc/auto_escape.html
http://docs.djangoproject.com/en/dev/ref/templates/builtins
http://docs.djangoproject.com/en/dev/ref/templates/builtins
http://www.djangosites.org/
http://www.djangobook.com/en/2.0/chapter20/
http://code.google.com/webtoolkit/doc/latest/DevGuideSecuritySafeHtml.html
http://code.google.com/webtoolkit/doc/latest/DevGuideSecuritySafeHtml.html
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://htmlpurifier.org/security/2010/css-quoting
http://htmlpurifier.org/security/2010/css-quoting
http://htmlpurifier.org/
http://seclists.org/fulldisclosure/2010/Oct/35
http://jifty.org/view/JiftyManual
http://sourceforge.net/projects/kses/
http://sourceforge.net/projects/kses/
http://www.masonbook.com/book/chapter-2.mhtml
http://www.masonbook.com/book/chapter-2.mhtml

A Systematic Analysis of XSS Sanitization in Web Application Frameworks 169

43. Nadji, Y., Saxena, P., Song, D.: Document structure integrity: A robust basis for cross-site
scripting defense. In: NDSS (2009)

44. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically harden-
ing web applications using precise tainting. In: 20th IFIP International Information Security
Conference (2005)

45. XSS Prevention Cheat Sheet, http://www.owasp.org/index.php/XSS_(Cross_Site_
Scripting)_Prevention_Cheat_Sheet

46. Pullicino, J.: Google XSS Flaw in Website Optimizer Explained (December
2010), http://www.acunetix.com/blog/web-security-zone/articles/

google-xss-website-optimizer-scripts/

47. Robertson, W., Vigna, G.: Static enforcement of web application integrity through strong
typing. In: Proceedings of the 18th Conference on USENIX Security Symposium, SSYM
2009, pp. 283–298. USENIX Association, Berkeley (2009)

48. Ruby on Rails Security Guide, http://guides.rubyonrails.org/security.html
49. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic execution

framework for javascript. In: Proceedings of the 2010 IEEE Symposium on Security and
Privacy, SP 2010, pp. 513–528. IEEE Computer Society, Washington, DC, USA (2010)

50. Saxena, P., Hanna, S., Poosankam, P., Song, D.: FLAX: Systematic discovery of client-side
validation vulnerabilities in rich web applications. In: 17th Annual Network & Distributed
System Security Symposium NDSS (2010)

51. Saxena, P., Molnar, D., Livshits, B.: Scriptgard: Preventing script injection attacks in legacy
web applications with automatic sanitization. Tech. rep., Microsoft Research (September
2010)

52. Schmidt, B.: Google Analytics XSS Vulnerability, http://spareclockcycles.org/

2011/02/03/google-analytics-xss-vulnerability/

53. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about dynamic taint
analysis and forward symbolic execution (but might have been afraid to ask). In: Proceed-
ings of the 2010 IEEE Symposium on Security and Privacy, SP 2010, pp. 317–331. IEEE
Computer Society, Washington, DC, USA (2010)

54. Seo, J., Lam, M.S.: Invisitype: Object-oriented security policies (2010)
55. Smarty Template Engine: escape, http://www.smarty.net/manual/en/language.

modifier.escape.php

56. Stamm, S.: Content security policy (2009), https://wiki.mozilla.org/Security/

CSP/Spec

57. Swamy, N., Corcoran, B., Hicks, M.: Fable: A language for enforcing user-defined security
policies. In: Proceedings of the IEEE Symposium on Security and Privacy (May 2008)

58. Template::Manual::Filters, http://template-toolkit.org/docs/manual/Filters.

html

59. Mike, T.L., Venkatakrishnan, V.N.: BluePrint: Robust Prevention of Cross-site Scripting At-
tacks for Existing Browsers. In: Proceedings of the IEEE Symposium on Security and Pri-
vacy (2009)

60. TwitPwn: DOM based XSS in Twitterfall (2009), http://www.twitpwn.com/2009/07/
motb-08-dom-based-xss-in-twitterfall.html

61. Twitter: All about the “onMouseOver” incident, http://blog.twitter.com/2010/09/
all-about-onmouseover-incident.html

62. UTF-7 XSS Cheat Sheet, http://openmya.hacker.jp/hasegawa/security/utf7cs.
html

63. Venema, W.: Taint support for PHP (2007), ftp://ftp.porcupine.org/pub/php/

php-5.2.3-taint-20071103.README.html

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.acunetix.com/blog/web-security-zone/articles/google-xss-website-optimizer-scripts/
http://www.acunetix.com/blog/web-security-zone/articles/google-xss-website-optimizer-scripts/
http://guides.rubyonrails.org/security.html
http://spareclockcycles.org/2011/02/03/google-analytics-xss-vulnerability/
http://spareclockcycles.org/2011/02/03/google-analytics-xss-vulnerability/
http://www.smarty.net/manual/en/language.modifier.escape.php
http://www.smarty.net/manual/en/language.modifier.escape.php
https://wiki.mozilla.org/Security/CSP/Spec
https://wiki.mozilla.org/Security/CSP/Spec
http://template-toolkit.org/docs/manual/Filters.html
http://template-toolkit.org/docs/manual/Filters.html
http://www.twitpwn.com/2009/07/motb-08-dom-based-xss-in-twitterfall.html
http://www.twitpwn.com/2009/07/motb-08-dom-based-xss-in-twitterfall.html
http://blog.twitter.com/2010/09/all-about-onmouseover-incident.html
http://blog.twitter.com/2010/09/all-about-onmouseover-incident.html
http://openmya.hacker.jp/hasegawa/security/utf7cs.html
http://openmya.hacker.jp/hasegawa/security/utf7cs.html
ftp://ftp.porcupine.org/pub/php/php-5.2.3-taint-20071103.README.html
ftp://ftp.porcupine.org/pub/php/php-5.2.3-taint-20071103.README.html

170 J. Weinberger et al.

64. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross site scripting
prevention with dynamic data tainting and static analysis. In: Proceeding of the Network and
Distributed System Security Symposium (NDSS), vol. 42. Citeseer (2007)

65. Weinberger, J., Saxena, P., Akhawe, D., Finifter, M., Shin, R., Song, D.: An empirical anal-
ysis of xss sanitization in web application frameworks. Tech. Rep. UCB/EECS-2011-11,
EECS Department, University of California, Berkeley (February 2011)

66. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages. In:
Proceedings of the Usenix Security Symposium (2006)

67. xssterminate, http://code.google.com/p/xssterminate/
68. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: A practical approach to

defeat a wide range of attacks. In: Proceedings of the 15th USENIX Security Symposium,
pp. 121–136 (2006)

69. Yii Framework: Security, http://www.yiiframework.com/doc/guide/1.1/en/

topics.security
70. Zalewski, M.: Browser security handbook. Google Code (2010), http://code.google.

com/p/browsersec/wiki/Part1
71. Zend Framework: Zend Filter, http://framework.zend.com/manual/en/zend.

filter.set.html

A Transductions in the Browser

Table 5 details browser transductions that are automatically performed upon reading
or writing to the DOM. The DOM property denotes the various aspects of an element
accessible through the DOM APIs, while the access method describes the specific part
of the API through which a developer may edit or examine these attributes. Excepting
“specified in markup”, the methods are all fields or functions of DOM elements.

Table 6 describes the specifics of the transducers employed by the browser. Except
for “HTML entity decoding”, the transductions all occur in the parsing and serialization
processes triggered by reading and writing these properties as strings. When writing to
a property, the browser parses the string to create an internal AST representation. When
reading from a property, the browser recovers a string representation from the AST.

Textual values are HTML entity decoded when written from the HTML parser to the
DOM via edge 1 in Figure 1. Thus, when a program reads a value via JavaScript, the
value is entity decoded. In some cases, the program must re-apply the sanitization to
this decoded value or risk having the server’s sanitization negated.

One set of DOM read access APIs creates a serialized string of the AST representa-
tion of an element, as described in Table 6. The other API methods simply read the text
values of the string versions (without serializing the ASTs to a string) and perform no
canonicalization of the values.

The transductions vary significantly for the DOM write access API as well, as de-
tailed in Table 5. Some writes cause input strings to be parsed into an internal AST
representation, or apply simple replacements on certain character sequences (such as
URI percent-decoding), while others store the input as is.

In addition, the parsers in Figure 1 apply their own transductions internally on cer-
tain pieces of their input. The CSS and JavaScript parsers unescape certain character
sequences within string literals (such as Unicode escapes), and the URI parser applies
some of its own as well (undoing percent-encoding).

http://code.google.com/p/xssterminate/
http://www.yiiframework.com/doc/guide/1.1/en/topics.security
http://www.yiiframework.com/doc/guide/1.1/en/topics.security
http://code.google.com/p/browsersec/wiki/Part1
http://code.google.com/p/browsersec/wiki/Part1
http://framework.zend.com/manual/en/zend.filter.set.html
http://framework.zend.com/manual/en/zend.filter.set.html

A Systematic Analysis of XSS Sanitization in Web Application Frameworks 171

Table 5. Transductions applied by the browser for various accesses to the document. These sum-
marize transductions when traversing edges connected to the “Document” block in Figure 1.

DOM property Access method Transductions on reading Transductions on writing

data-* attribute
get/setAttribute None None
.dataset None None
specified in markup N/A HTML entity decoding

src, href attributes
get/setAttribute None None
.src, .href URI normalization None
specified in markup N/A HTML entity decoding

id, alt, title, type, lang, class get/setAttribute None None
dir attributes .[attribute name] None None

specified in markup N/A HTML entity decoding

style attribute
get/setAttribute None None
.style.* CSS serialization CSS parsing
specified in markup N/A HTML entity decoding

HTML contained by node .innerHTML HTML serialization HTML parsing
Text contained by node .innerText,

.textContent
None None

HTML contained by node, including
the node itself

.outerHTML HTML serialization HTML parsing

Text contained by node, surrounded by
markup for node

.outerText None None

Table 6. Details regarding the transducers mentioned in Table 5. They all involve various parsers
and serializers present in the browser for HTML and its related sub-grammars.

Type Description Illustration

HTML entity decoding Replacement of character entity references with the actual
characters they represent.

&→ &

HTML parsing Tokenization and DOM construction following the HTML
parsing rules, including entity decoding as appropriate.

<p>></p> → HTML element P with
body >

HTML serialization Creating a string representation of an HTML node and its
children.

HTML element P with body > →
<p>></p>

URI normalization Resolving the URI to an absolute one, given the context in
which it appears.

/article title →
http://www.example.com/
article%20title

CSS parsing Parsing CSS declarations, including character escape de-
coding as appropriate.

color: \72\65\64→ color: red

CSS serialization Creating a canonical string representation of a CSS style
declaration.

“color:#f00” → “color: rgb(255,
0, 0); ”

Who Wrote This Code? Identifying the Authors

of Program Binaries

Nathan Rosenblum, Xiaojin Zhu, and Barton P. Miller

University of Wisconsin,
Madison, Wisconsin

{nater,jerryzhu,bart}@cs.wisc.edu

Abstract. Program authorship attribution—identifying a programmer
based on stylistic characteristics of code—has practical implications for
detecting software theft, digital forensics, and malware analysis. Au-
thorship attribution is challenging in these domains where usually only
binary code is available; existing source code-based approaches to attri-
bution have left unclear whether and to what extent programmer style
survives the compilation process. Casting authorship attribution as a
machine learning problem, we present a novel program representation
and techniques that automatically detect the stylistic features of binary
code. We apply these techniques to two attribution problems: identifying
the precise author of a program, and finding stylistic similarities between
programs by unknown authors. Our experiments provide strong evidence
that programmer style is preserved in program binaries.

1 Introduction

Program authorship attribution has immediate implications for the security com-
munity, particularly in its potential to significantly impact applications like pla-
giarism detection [17] and digital forensics [13]. The central thesis of authorship
attribution is that authors imbue their works with an individual style; while at-
tribution research has historically focused on literary documents [7], computer
programs are no less the product of a creative process, one in which opportunities
for stylistic expression abound. Previous studies of program authorship attribu-
tion have been limited to source code [6, 10], and rely on surface characteristics
like spacing and variable naming, both of which reflect the essentially textual
nature of program source. In many domains, such as analysis of commercial soft-
ware or malware, source code is usually unavailable. Program binaries, however,
retain none of the surface characteristics used in source code attribution; such
details are stripped away in the compilation process. Adapting program author-
ship attribution to the binary domain—to identify known malware authors or
detect new ones, e.g., or to discover theft of commercial software—requires new
ways to recognize the style of individual authors.

We have developed novel authorship attribution techniques that automatically
discover the stylistic characteristics of binary code. We adopt a machine learning
approach, defining a large number of simple candidate features and using training

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 172–189, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Who Wrote This Code? Identifying the Authors of Program Binaries 173

data to automatically discover which features are indicative of programmer style.
This approach avoids the problem of choosing good stylistic features a priori,
which has been the focus of source code attribution [18], and which is the primary
challenge for attribution in the binary domain. We apply our techniques to two
related binary code authorship problems: identifying the author of a program out
of a set of candidates, and grouping programs by stylistic similarity, respectively
developing classification and clustering models that build on stylistic features of
binary code.

In this paper, we explore various aspects of these previously unstudied prob-
lems, examining trade-offs in different program representations and several at-
tribution scenarios. This study demonstrates that programmer style is reflected
in binary code, and lays the groundwork for authorship attribution applications
in a variety of domains. Our paper makes the following contributions:

– We introduce the problem of binary code authorship attribution and de-
fine a program representation in terms of stylistic features that differentiate
different programmers; we provide an algorithm for automatically selecting
stylistic features using a set of simple feature templates that cover a broad
range of program details.

– We formulate two program authorship tasks: (1) discriminating between
programs written by different authors (authorship identification), and (2)
grouping together stylistically similar programs (authorship clustering). We
use information derived from the authorship identification task to improve
the performance of authorship clustering.

– We evaluate binary program authorship attribution on several large sets of
programs from the Google Code Jam programming competition1 and from
student projects from an undergraduate operating systems course at the
University of Wisconsin. Our results show that programmer style is preserved
through the compilation process; a classifier trained on stylistic features can
discriminate among programs written by ten different authors with 81%
accuracy.

1.1 Overview

Our authorship attribution techniques are based on the hypothesis that pro-
grammer style is preserved throughout the compilation process, as suggested
by the differences depicted in Figure 1 between implementations of the same
functionality by two different programmers. Evaluating this hypothesis requires
solving two problems: (1) choosing a program representation broad enough to
capture any residual stylistic characteristics, and (2) selecting those representa-
tional elements that actually reflect programmer style. The second problem is
particularly important for authorship clustering; author identity is just one prop-
erty of many for a given program, and if the representation reflects more than

1 http://code.google.com/codejam/

http://code.google.com/codejam/

174 N. Rosenblum, X. Zhu, and B.P. Miller

(a) (b)

Fig. 1. The control flow graphs for two implementations of the same program by differ-
ent authors. Program (a) is implemented as many small subroutines and makes use of
several C++ STL classes; program (b) is almost entirely implemented as a monolithic
C function.

just stylistic characteristics, a clustering algorithm may group programs accord-
ing to some other property, such as program functionality. Rather than design
complicated features to capture specific facets of programmer style, we define a
large number of simple features that capture local and global code details at the
instruction and control flow level. We adopt a machine learning approach to the
problem, letting the data determine the features which best capture authorship;
this data-driven policy informs our high-level workflow:

1. We collect several large corpora of programs with known authorship; these
programs provide a ground truth, which is used to discover the stylistically
important features of binary code, as well as reference points on which to
evaluate authorship attribution techniques.

2. Using existing software for recursive traversal parsing [14], we extract a con-
trol flow graph and the instruction sequence for each binary, which we use
as a basis for the features we describe in the following section.

3. A subset of the features that correlate with programmer style is selected. We
compute the mutual information between features and programmer identity
on a training set of labeled programs, ranking features according to their
correlation with particular programmers. This approach is heuristic and does
not take into consideration the interaction between multiple features; the
learning algorithms we apply to this feature representation are responsible
for refining the stylistic importance of these features.

4. We use the training set of labeled programs to build an authorship classifier
based on support vector machines [3]. The classifier chooses the most likely
author of a program based on its stylistic feature representation.

5. Classification is not possible for collections of programs with no training
data; instead, we use the k-means clustering algorithm [1] to group pro-
grams together by stylistic similarity. To avoid clustering according to the
wrong property (e.g. program functionality), we transfer knowledge between
a supervised domain (a set of programs with different authors) to this unsu-
pervised domain: we use the large margin nearest neighbors algorithm [20] to

Who Wrote This Code? Identifying the Authors of Program Binaries 175

learn a distance metric over a labeled set of programs, then used this metric
to transform the unlabeled data prior to clustering.

In the following sections, we describe our binary code representation (2) and
formally state the models and procedures we use for author classification (3)
and clustering (4). We evaluate our techniques over several large program data
sets (5), exploring several trade-offs inherent in binary authorship attribution.
We conclude with a discussion of issues raised by this study and future directions
for attribution research (6) and a review of the related literature (7).

2 Binary Code Representation

We base our binary code representation on instruction-level and structural char-
acteristics of programs. The first step in obtaining this representation is to parse
the program binary. We use the ParseAPI [14] library to extract instructions
and build interprocedural control flow graphs from binaries, where a CFG is a
directed graph G = (V, E, τ) defined by:

– the basic block nodes V comprising the executable code,
– the edges E ⊆ V × V representing control flow, and
– a labeling function τ : E → T corresponding to the type of the edge.

The control flow graph and underlying machine code form the basis for feature
templates : patterns that instantiate into many concrete features of a particular
binary. We first describe two feature templates, idioms and graphlets, used in our
previous work on toolchain provenance [16], and then introduce new templates
that capture additional properties of the binary. We stress that these features
are not designed to capture any specific notion of programmer style, but rather
to express many different characteristics of binary code; we use machine learning
algorithms to pick out the stylistically significant features.

2.1 Idioms

The idiom feature template captures low-level details of the instruction sequence
underlying a program. Idioms are short sequences of instructions, possibly with
wildcards, which we have previously used to recognize compiler-specific code
patterns; for example, the idiom

u1 = (push ebp | * | mov esp,ebp)

describes a stack frame set-up operation. Idioms are an abstraction of the true
instruction sequence, insofar as instruction details such as immediate operands
and memory addresses are elided. The idiom template we use for authorship
attribution describes all possible sequences of 1–3 instructions, and is intended
to capture stylistic characteristics that are reflected in the order of instructions
output by the compiler.

176 N. Rosenblum, X. Zhu, and B.P. Miller

cpuid
jmp L2
...

L1:
cmp ecx,edx
jle L1

L2:
mov eax, 0x5
sysenter

(a)

σ3 σ1

σ1

τ3

τ2

τ1

(b)

Fig. 2. A code example and a corresponding graphlet. The node colors σ are determined
by the instructions in each block (for example, both of the blocks represented by ()
nodes contain system instructions). Edge labels τ indicate control flow edge type (for
example, τ3 represents the jle conditional branch and τ1 is its fall-through edge).

2.2 Graphlets

While idioms capture instruction-level details, graphlet features represent details
of program structure. Graphlets are three-node subgraphs of the control flow
graph that reflect the local structure of the program. A graphlet feature tem-
plate also defines a coloring function σ : V → C, where C is the set of possible
colors for a particular graphlet template. For example, the instruction summary
graphlets we use for toolchain provenance recovery (and which we adopt here)
color nodes according the various classes of instructions occurring in a basic
block, as illustrated in Figure 2. We refer the reader to our previous work for
details of the instruction summary coloring function and algorithms for efficient
graphlet matching [16].

In the current study, graphlet features are a bridge between the instruction-
level representation (using colors based on instruction classes) and the program
structure (the local control flow); however, these features may miss stylistic
characteristics that are visible only in high-level program structure. We could
attempt to capture such characteristics by defining graphlet-like features using
larger subgraphs, but there is an essential tension between the expressiveness
of such features and the computational complexity of the subgraph matching
problem. Instead, we introduce two additional graphlet-based features, super-
graphlets and call graphlets, that are defined over transformations of the original
control flow graph.

2.3 Supergraphlets

Supergraphlets are analogous to instruction summary graphlets defined over
a collapsed control flow graph, as illustrated in Figure 3. The graph collapse
operation merges each node in the graph with a random neighbor. The edge set
and color of the collapsed node represent the union of the edge sets and colors of
the original nodes. A three-node graphlet instantiated from the collapsed graph
is thus an approximate representation of six nodes in the original CFG. This
process can be repeated recursively to obtain the desired long-range structural
coverage. Note that because random neighbors are selected, we do not obtain

Who Wrote This Code? Identifying the Authors of Program Binaries 177

σ3 σ1

σ1

σ2

σ3 σ1

σ3 σ1

σ1,2

(a)

σ1

σ2

σ3

fprintf

local

fopen

(b)

Fig. 3. Graphlet-based features of transformations of the control flow graph. Super-
graphlets (a) represent control flow relationships in a graph where the neighbors of the
middle three nodes have been collapsed ; the color of one collapsed node () reflects the
union of two nodes with different colors. Call graphlets (b) are defined over a graph
reduced to blocks containing call instructions.

all possible supergraphlets of the original graph; in keeping with our general
approach to code representation, we rely on the vast number of features to
capture any authorship characteristics in the program. Selecting neighbors to
collapse at random avoids systematically biasing the collapse operation towards
particular control flow structure.

2.4 Call Graphlets

Recursively collapsing the control flow graph and extracting supergraphlet fea-
tures only loosely approximates arbitrarily long-range program structure. Call
graphlets are designed to directly capture both interprocedural control flow and
a program’s interaction with external libraries. Call graphlets are defined over a
new graph Gc containing only those nodes that contain call instructions, with
edges Ec = {(v, v′) : v � v′}, where � indicates the existence of a path
in the original control flow graph. Call graphlets admit the coloring function
σc : V c → {L, local}, where L is a predefined set of external library functions
and local is a special value meaning any internal function within the program
binary. Internal functions receive a single, generic color because, unlike calls to
external libraries, they are not comparable across different programs. While L
could be restricted to a set of specific library functions, in practice we let it
extend to the entire set of library routines called by programs in our corpus and
rely on feature selection to eliminate irrelevant call graphlet features.

2.5 N-grams and External Interaction

To cast as wide a net as possible in our search for good authorship features, we
define several more features that are relaxations of those described above. Byte
n-grams are short strings of three or four bytes, and can be thought of as a relax-
ation of the idiom instruction abstractions: using the raw bytes, n-grams capture
specific instruction opcodes and immediate and memory operands. Library call

178 N. Rosenblum, X. Zhu, and B.P. Miller

Table 1. The number of concrete features instantiated by each feature template for
a representative corpus of 1,747 C and C++ binaries comprising 27MB of code. Each
template captures one or more instruction-level, control-flow, or external library inter-
action properties of the code.

Code Property

Feature # Instruction Control flow External

N-grams 391,056 �
Idioms 54,705 �
Graphlets 37,358 � �
Supergraphlets 117,997 � �
Call graphlets 8,062 � �
Library calls 152 �

features simply count the number of invocations of the set of L external library
functions used in the call graphlet features, eliminating structural characteristics.

Table 1 summarizes our binary code feature templates and the number of each
instantiated in a typical corpus. Our algorithms automatically select a subset of
these features based on the training data, as we describe in the following section.

3 Author Classification

In author classification, we assume that there exists a known set of program-
mers of interest, and that training data are available in the form of samples of
programs written by each programmer. We model program binaries as a collec-
tion of the features described in the previous section in order to discriminate
between programs written by different authors. To be precise, given a known
set of program authors Y and a set of M training programs P1, · · · ,PM with
author labels y1, · · · , yM , the task of the classifier is to learn a decision function
that assigns a label y ∈ Y to a new program, indicating the identity of the most
likely author.

A programPm is represented by a integral-valued feature vector xm describing
the features that occur in the program. Feature vectors summarize a set of
feature functions f ∈ Φ that indicate the presence of that feature evaluated over
a feature-specific domain in the binary. For example, the function

ffprintf(Pm, cj) =

{
1 if call site cj in Pm calls fprintf

0 otherwise

tests for a particular library call and is defined over the domain of call sites in
the program; idiom feature functions

fι(Pm, aj) =

{
1 if idiom ι exists at instruction offset aj in Pm

0 otherwise

Who Wrote This Code? Identifying the Authors of Program Binaries 179

are defined over the domain of instruction offsets in the binary. The feature
vector xm for a program counts up the |Φ| features

xm =

⎛
⎜⎜⎝
∑

Dom(f1) f1(Pm, ·)∑
Dom(f2) f2(Pm, ·)

· · ·∑
Dom(fn) f|Φ|(Pm, ·)

⎞
⎟⎟⎠

evaluated at every point in the domain Dom(fi) of the particular feature.
The number of feature functions in Φ is quite large; using feature vectors that

summarize all possible features would increase both training cost and the risk
that the learned parameters would overfit the data—that is, that the resulting
classifier would fail to generalize to new programs. Because our feature tem-
plates are not designed to highlight particular stylistic characteristics, we expect
that many features will be of little value for authorship attribution. We there-
fore perform a simple form of feature selection, ranking features by the mutual
information between the feature and the true author label. More precisely, we
compute

I(Φ,Y) =
∑
f∈Φ

∑
y∈Y

p(f, y) log
(

p(f, y)
p(f)p(y)

)
on the training set, where p(f) and p(y) are the empirical expectations of fea-
tures and author labels, respectively, and p(f, y) is the co-occurrence of these
variables. Mutual information measures the decrease in uncertainty about one
variable as a function of the other; features that are positively correlated with
only a single programmer will score high under this criterion, while features that
are distributed uniformly over programs by all authors will have low mutual in-
formation. The number of features to retain is chosen through cross-validation:
we split the training data into ten folds, reserving one fold as a tuning set, then
train a classifier on the remaining folds and evaluate its accuracy on the tuning
set. By performing cross-validation on data represented by varying numbers of
the features ranked highest by mutual information, we automatically select a
subset of features that produce good authorship classifiers.

There are many different models that can be used to classify data such as
ours. We use linear support vector machines (SVMs) [3], which scale well with
high-dimensional data and have shown good performance in our experience with
other classification tasks for binary programs. Two-class SVMs are usually for-
mulated with labels y ∈ {−1,+1}, and compute a weight vector w that solves
the following optimization problem:

min
w,ξ,b

1
2
‖ w ‖2 + C

n∑
i

ξi s.t. yi(wTx− b) ≥ 1− ξi, ξi ≥ 0.

Such binary SVMs can be easily extended to the case of K classes by training K
different binary classifiers with weight vectors w1, · · · ,wK ; the classifier assigns
a new example the label k ∈ [1, K] that leads to the largest margin, i.e.

argmax
k

wT
k x.

180 N. Rosenblum, X. Zhu, and B.P. Miller

●
● ●

●

●
●

●
●●

●

●
●
●
●
●
●

●
●●
●

(a)

●
● ●

●

●
●

●
●●

●

●
●
●
●
●
●

●
●●
●

(b)

●● ●●●●●●●●●●●●●●● ●● ●

(c)

Fig. 4. The hazards of unsupervised clustering. Assuming that the data belong to true
classes y1 () and y2 () and two clusters are formed, the correct cluster partition (a)
is no more likely than the alternative (b). Using the distance metric (1 0

0 0) is equivalent
to transforming the data as in (c), where the clustering decision is unambiguous.

We use the LIBLINEAR support vector machine implementation [4] for au-
thorship classification. We scale the feature vectors to the interval [0, 1]; scaling
prevents frequently occurring features from drowning the contribution of rarer
ones, while preserving the sparsity of the feature vectors. In our evaluation sec-
tion, we examine the contribution of each feature template to overall classifier
performance.

4 Author Clustering

Clustering is an unsupervised learning technique that groups data by similarity.
For authorship attribution, clustering corresponds to the task of finding stylisti-
cally similar programs without assuming particular authors are present. In many
ways, clustering is harder than classification: without training data, it is gener-
ally not possible to tell whether particular features are more or less useful for
relating the data, which leads to the possibility that clustering algorithms will
arrive at clusters that reflect a different property than what was desired. This
issue is particularly challenging for authorship clustering, where we have a large
number of features and no assurance that they reflect only programmer style
and not, for example, program functionality.

One way to encourage the formation of authorship clusters is to transform the
feature space such that stylistically similar programs are closer to one another;
equivalently, we can define a d× d distance metric A such that the Mahalanobis
distance [12] between two feature vectors xa,xb in Rd is

DA(xa,xb) =
√
(xa − xb)T A(xa − xb).

If a particular metric can be found such that stylistically similar programs are
close under that metric, then clustering techniques will do better at forming
authorship clusters. Figure 4 illustrates this solution with a simple example.

We observe that stylistic features, if they are general, can be learned from
any set of authors; although the programs to be clustered may have no train-
ing data, we can derive a metric from a different collection of programs with

Who Wrote This Code? Identifying the Authors of Program Binaries 181

author labels. More precisely, consider two sets of programs {P1, · · · ,P�} and
{P�+1, · · · ,P�+u}, with known author labels {y1, · · · , y�}; the authors for the
unlabeled programs may or may not coincide with those of the labeled programs.
Both sets of programs are represented using the feature vectors we describe in
the previous section. We define a two part algorithm for transferring stylistic
knowledge from the labeled data to the unlabeled data:

1. Learn a metric A over � labeled programs P1, · · · ,P� such that the distance
in the feature space between two programs with the same author is always
less than the distance between two programs with different authors.

2. Cluster u unlabeled programs P�+1, · · · ,P�+u using the distance function
DA.

We use the large margin nearest neighbors (LMNN) algorithm [20] to learn the
style metric. LMNN learns the metric by optimizing the margin for nearby pro-
grams in the feature space, making it complementary to the k-means algorithm
we use for clustering.

5 Evaluation

We investigate several aspects of authorship attribution in our evaluation: (1)
the extent to which our techniques recover author style in program binaries, (2)
the trade-offs involved in imprecise classification (i.e., tolerating some false posi-
tives), and (3) whether and how much stylistic clustering of one set of programs
can be improved by using information derived from another, unrelated set. Our
evaluation shows that:

– The binary code features we introduce effectively capture programmer style.
Our classifier achieves accuracies of 81% for ten distinct authors (10% accu-
racy is expected for labels selected by random chance) and 51% when dis-
criminating among almost 200 authors (0.5% for random chance). These re-
sults show that a strong author style signal survives the compilation
process.

– The authorship classifier offers practical attribution with good accuracy, if
a few false positives can be tolerated. The correct author is among the top
five 95% of the time for a data set of 20 authors, and 81% of the time when
100 authors are represented.

– Stylistic knowledge derived from supervised authorship classification can be
transferred to authorship clustering, improving cluster quality. The cluster
assignments improve by 20% when clustering uses a stylistic metric.

5.1 Methodology

We obtain training and evaluation programs from the Google Code Jam pro-
gramming competition and from an undergraduate operating systems course at

182 N. Rosenblum, X. Zhu, and B.P. Miller

Table 2. Corpora used for model training and evaluation. Each binary is the imple-
mentation by a particular author of one of the program types for a given corpus.

Corpus Authors Program Types Binaries Prog./Author Dist.

4 16

Code Jam 2010 191 23 1,747

Code Jam 2009 93 22 834

CS537 Fall 2009 32 7 203

the University of Wisconsin (CS537). These data sets have author labels for
each program, which can be challenging to obtain for other data sources like
open source projects. They are also parallel corpora: each data set contains
implementations by different authors of a small number of program types repre-
senting particular functionality (i.e., contest solutions for Code Jam, and
programming projects for CS537). Parallel corpora allow us to control for con-
founding variables like program functionality during evaluation. Table 2 sum-
marizes our data sets.

To create a data representation suitable for learning and evaluation, we pro-
cess the binaries in each corpus with the ParseAPI parsing library to obtain con-
trol flow graphs and the underlying instructions. We eliminate statically linked
library functions and other known binary code snippets that are unrelated to the
program author.2 We then exhaustively enumerate all of the features described
in Section 2, using the occurrence of these features along with the known au-
thorship labels to compute the mutual information for each feature. We select
a subset of features using the cross-validation procedure described in Section 3.
We use the top 1,900 features for modeling and evaluation of the Code Jam data;
1,700 features are used for CS537.

Our evaluation methodology involves both standard ten-fold cross-validation
and random subset testing, depending on the experiment:

– For classification of the entire data set (e.g. 191-way classification for the
Code Jam 2010 data), we use ten-fold cross-validation.

– When evaluating how classification accuracy behaves as a function of the
number of authors represented in the data, we randomly draw a subset Ys ⊆
Y of authors and use their programs in the test. We cannot test all possible
combinations of |Ys| authors; instead, we repeat the test 20 times and expect
relatively high variance for small sets of authors. We approach the clustering
evaluation similarly.

5.2 Classification

We evaluate authorship classification to determine (1) how much each feature
template contributes to attribution, and (2) how accurately the identity of a
2 Our data preparation procedure is fully described in our supplementary materials

at http://pages.cs.wisc.edu/~nater/esorics-supp/

http://pages.cs.wisc.edu/~nater/esorics-supp/

Who Wrote This Code? Identifying the Authors of Program Binaries 183

Features

A
c
c
.

500 2500 4500

0
.0

0
.5

1
.0

●

●

● ●
●

● n−grams

idioms

graphlets

call gr.

supergr.

libcalls

combined

(a)

Authors

A
c
c
.

25 100 175

0
.0

0
.5

1
.0

exact

correct in top 5

(b)

Fig. 5. Evaluation of authorship classification on the Code Jam 2010 data set. In
Figure (a) we show cross-validation accuracy over all 191 authors for classifiers trained
using individual feature templates, as well as the combined classifier. Figure (b) depicts
accuracy using the best combination of features as the true number of authors in the
data set is increased for both the exact () and relaxed () evaluations.

particular author can be inferred using a model based on our feature templates.
For the former question, our experience led us to expect that simple feature
templates that instantiate large numbers of features (e.g., idioms) would be more
useful in authorship modeling. For the latter question, we hypothesized that
discriminating among authors would become increasingly difficult with larger
author populations.

Figure 5a depicts the cross-validation accuracy of models trained with varying
numbers of the best features (by mutual information) derived from each tem-
plate. Our intuition is borne out by these results: the individual contributions
of simple idiom and n-gram features exceed those of the other templates. The
best classifier uses a combination of all of the feature templates, achieving 51%
accuracy on the full Code Jam data set.

Experiments confirm our hypothesis that author classification becomes harder
for larger populations. Figure 5b depicts classifier performance as a function
of the number of authors included in a subset of the data; classifier accuracy
decreases as the author population size grows. In cases where precise author
identification is infeasible, predicting a small set of likely authors can help to
focus further investigation and analysis. In Figure 5b, this relaxed accuracy
measure is plotted for a classifier that returns the top five most likely authors.

Table 3 lists exact and relaxed cross-validation accuracy for authorship classi-
fication on each corpus. The CS537 data present a significantly harder challenge
for authorship attribution, due to two factors. First, there are fewer programs
per author (4–7) than in the other data sets (8–16), making this a fundamen-
tally harder learning problem. More importantly, the programs in this data set
do not reflect only the work of individual programmers; students in the course
were often provided with substantial amounts of partially implemented skeleton
code, and also worked closely with the course professor follow an often rigid

184 N. Rosenblum, X. Zhu, and B.P. Miller

Table 3. Classification results averaged over 20 randomly selected subsets of 20 authors

Code Jam 2009 Code Jam 2010 CS537
Acc. spread Acc. spread Acc. spread

0 1 0 1 0 1

Exact .778 .768 .384
Top 5 .947 .937 .843

specification at the sub-module level. Despite these challenges, our attribution
techniques recover significant stylistic characteristics in this data set.

5.3 Clustering

We evaluated authorship clustering to determine (1) how well the clusters reflect
the ground truth program authorship, and (2) whether stylistic characteristics
learned from one set of authors can improve the clustering of programs written by
different authors (i.e., how well stylistic knowledge generalizes). Unlike classifiers,
clustering algorithms have no notion of candidate labels, so cluster assignments
are evaluated against the ground truth authors with measures based on cluster
agreement : whether (a) programs by the same author are assigned to the same
cluster, and (b) programs by different authors are assigned to different clusters.
We computed several common measures of cluster agreement, including Adjusted
Mutual Information (AMI), Normalized Mutual Information (NMI), and the
Adjusted Rand Index (ARI); we prefer AMI because it is stable across different
numbers of clusters, easing comparison of different data sets [19]. All of the
measures we use take values in the range [0, 1], where higher scores indicate
better cluster agreement.

We performed several experiments to evaluate authorship clustering:

1. We randomly selected N authors from the Code Jam 2010 corpus and used
LMNN to learn a distance metric over the feature space. We then randomly
selected 30 different authors and clustered their programs using k-means
with and without transforming the data with the learned metric. Since there
are multiple sources of randomness in this experiment (both in selecting the
data sets and in the k-means clustering algorithm), we repeated the experi-
ment 20 times and computed the average AMI. Figure 6a depicts clustering
improvement over the un-transformed data as a function of N . As expected,
using more training authors to compute a metric leads a greater improve-
ment. We conclude that stylistic information derived from one set of authors
can be transferred to improve clustering of programs written by a different
set of authors.

2. We performed a similar set of experiments with the number of authors used
to compute the metric fixed at 30 to evaluate whether the clustering im-
provement is affected by the number of test set authors. Figure 6b shows
that that the improvement due to incorporation of the stylistic metric is
nearly invariant for a range of test set sizes.

Who Wrote This Code? Identifying the Authors of Program Binaries 185

●

●
●

●

●●●●
●

●

●
●

●

●

●

●●
●
●●

●

●●

●

●●
●

●

●

●

●
●
●

●●
●●●●●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

Training set authors

C
lu

s
te

r
im

p
ro

v
e
m

e
n
t

(%
)

2 30 60

0
1

0
2

0
3

0

(a)

●

●

●

●
●
●

●

●

●
●

●
●

●
●

●
●
●●

●

●

●

●

●

●

●●●

●

●

●●
●
●

●

●●
●
●

●●

●

●

●
●
●

●

●●
●

●

●
●●

●
●

●
●
●

●

Test set authors

C
lu

s
te

r
im

p
ro

v
e
m

e
n
t

(%
)

2 30 60

0
1

0
2

0
3

0

(b)

Fig. 6. Clustering with metric learning. The improvement over the original clustering
(AMImetric −AMIorig.)/AMIorig. is illustrated as a function of the number of training
authors (a) and the true number of testing authors (b).

Table 4. Cluster evaluation measures for 10 test authors, using metrics learned from
30 different authors

ami ami spread nmi spread ari spread

0 1 0 1 0 1

no transformation .510 .637 .406
learned metric .606 .723 .480

Table 4 compares the results of clustering 10 authors’ programs with and without
metric transformation. The cluster quality measures we compute are highly vari-
able, due to the random nature of training and test set selection and the inherent
randomness in the clustering algorithm; nonetheless, the improvement offered by
the learned metric is significant at a 95% confidence level for all measures.

6 Discussion

Our evaluation shows that programmer style is preserved in program binaries,
and can be recovered using techniques that automatically select stylistic code
features with which to model program authorship. The SVM-based classifier we
introduce can identify the correct author out of tens of candidates with good
accuracy, though discriminating among a large number of authors is likely to
be more limited. Nonetheless, we argue that our techniques offer a practical
solution to program author identification: when discriminating among programs
written by 100 authors, the correct author is ranked among the top five most
likely 81% of the time, reducing the number of candidates by 95%. Moreover,
our evaluation of unsupervised author clustering using stylistic metrics derived
from the classification problem shows that programs can be effectively clustered
by programmer style even when no training data are available for the authors
in question.

186 N. Rosenblum, X. Zhu, and B.P. Miller

The conclusions we draw are subject to limitations inherent in empirical stud-
ies. In particular, threats to internal validity apply to our claim that our tech-
niques isolate programmer style, rather than some other program property like
program functionality. We addressed this issue by using a parallel corpus, where
each author implemented the same programs; the fact that our authorship classi-
fier is able to learn to recognize an author’s programs despite differing function-
ality mitigate this threat. Our domain transfer results for authorship clustering
provide further evidence that our techniques recover programmer style.

In this study, we assume that a program has a single author. This assumption
may be violated in many scenarios, such as when programmers collaborate or
when programs are assembled from commodity components. The binary code
representation we use is not inherently restricted to representing the program as
a single unity; our features could just as easily describe individual compilation
units, functions, or arbitrary sequences of binary code, for example using the
sequential model we have previously used to recover program provenance [15, 16].
The extension of authorship attribution to multiple authors and a sub-program
model is an open question, and is the focus of our ongoing research.

The nature of the features underlying our authorship models suggests several
additional directions for future research. Our use of many simple, uninformed
binary code features provides much of the power of our approach, but makes
understanding the resulting models difficult: it is not clear how to map from
instruction idioms and control flow graphlets to conceptual notions of high-level
programmer style (the appendix illustrates this difficulty with some example
features). A related concern is whether malicious agents can obfuscate programs
in such a way that our techniques become ineffective. The former question in-
forms the latter: understanding how binary code features map to source-level
constructs could facilitate techniques to obscure stylistic variations.

7 Related Work

Previous work on program authorship attribution has focused almost exclusively
on source code-level attribution. The use of code metrics like variable naming
conventions, comment style, and program organization has been proposed several
times [5, 18]; Krsul and Spafford [10] show the feasibility of this approach in
a small pilot study. More recently, Hayes and Offutt [6] found further evidence
that programmers can be distinguished through aggregate textual characteristics
like average use of particular operators, placement of semicolons, and comment
length.

Structural malware classification and behavioral clustering share many chal-
lenges with authorship attribution, as all three techniques involve extracting
salient characteristics from binary code. The instruction-level features we use
are similar to those used in malware classification [2, 8, 9], particularly n-grams;
our idiom features differ from features based on instruction sequences through
the use of wildcards and the abstraction of low-level details like the opcode and
immediate values. The instruction summary colors we use in the graphlet fea-
tures are inspired by a technique to identify polymorphic malware variants [11].

Who Wrote This Code? Identifying the Authors of Program Binaries 187

Although some of the binary code representations we use are similar to exist-
ing work, our techniques are largely orthogonal: malware classification seeks to
extract characteristics specific to a program or a family of programs with re-
lated behavior, while our authorship attribution techniques must discover more
general properties of author style.

Authorship falls into the broad category of program provenance: those de-
tails that characterize the process through which the program was produced.
Our previous investigation of toolchain provenance [15, 16] heavily informs this
work, providing a general framework for extracting the characteristics of pro-
gram binaries as well as providing the base representations on which we build
more sophisticated authorship features. The current paper investigates a higher
level of the provenance hierarchy, moving beyond those program properties that
are attributable to the production toolchain.

8 Conclusion

We have presented techniques to extract stylistic characteristics from program
binaries to perform authorship attribution and to cluster programs according
to programmer style. Our authorship attribution techniques identify the correct
author out of a set of 20 candidates with 77% accuracy, and rank the correct
author among the top five 94% of the time. These techniques enable analysts to
determine, for example, whether a new program sample is likely to have been
written by a person of interest, or to test for the existence of multiple, stylisti-
cally dissimilar authors in a collection of programs. Framing authorship attribu-
tion and clustering as machine learning problems, we designed instruction- and
structure-based representations of binary code that automatically capture binary
code details that reflect programmer style. We developed program clustering
techniques that transfer stylistic knowledge across different domains, assigning
new programs to clusters based on stylistic similarity with no training data. The
results of our evaluation strongly support our claim that programmer style is
preserved through the compilation process, and can be recovered from charac-
teristics of the code in program binaries. Our approach to discovering stylistic
features builds on our previous research into recovering toolchain provenance,
and is part of a general framework for information retrieval in program binaries,
with applications in security and software forensics.

Acknowledgments. We thank the anonymous reviewers for their insightful
comments and suggestions. This research funded in part by Department of
Homeland Security grant FA8750-10-2-0030 (funded through AFRL), National
Science Foundation grants CNS-0716460 OCI-1032341, and Department of En-
ergy grants DE-SC0004061 and DE-SC0002154.

References

[1] Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

188 N. Rosenblum, X. Zhu, and B.P. Miller

[2] Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware
malware detection. In: IEEE Symposium on Security and Privacy (S&P 2005),
Oakland, CA (May 2005)

[3] Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20 (1995)

[4] Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR:
A library for large linear classification. Journal of Machine Learning Research 9,
1871–1874 (2008)

[5] Gray, A., Sallis, P., MacDonell, S.: Software forensics: Extending authorship anal-
ysis techniques to computer programs. In: 3rd Biennial Conference of the Inter-
national Association of Forensic Linguists, Durham, NC (September 1997)

[6] Hayes, J.H., Offutt, J.: Recognizing authors: an examination of the consistent
programmer hypothesis. Software Testing, Verification and Reliability (2009)

[7] Juola, P.: Authorship attribution. Foundations and Trends in Information Re-
trieval (December 2006)

[8] Karim, M., Walenstein, A., Lakhotia, A., Parida, L.: Malware phylogeny genera-
tion using permutations of code. Journal in Computer Virology 1, 13–23 (2005)

[9] Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables
in the wild. Journal of Machine Learning Research 7, 2721–2744 (2006)

[10] Krsul, I., Spafford, E.H.: Authorship analysis: identifying the author of a program.
Computers & Security 16(3), 233–257 (1997)

[11] Krügel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm
detection using structural information of executables. In: Valdes, A., Zamboni, D.
(eds.) RAID 2005. LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006)

[12] Mahalanobis, P.C.: On the generalised distance in statistics. In: Proceedings Na-
tional Institute of Sciences of India, vol. 2 (1936)

[13] Palmer, G.: A road map for digital forensic research. Technical Report DTR-T001-
01 FINAL, Digital Forensics Research Workshop, DFRWS (2001)

[14] Paradyn Project. ParseAPI: An application program interface for binary parsing
(2011), http://paradyn.org/html/parse0.9-features.html

[15] Rosenblum, N.E., Miller, B.P., Zhu, X.: Extracting compiler provenance from pro-
gram binaries. In: 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analy-
sis for Software Tools and Engineering (PASTE 2010), Toronto, Ontario, Canada
(June 2010)

[16] Rosenblum, N.E., Miller, B.P., Zhu, X.: Recovering the toolchain provenance of
binary code (2011). In: 20th International Symposium on Software Testing and
Analysis (ISSTA), Toronto, Ontario, Canada (July 2011)

[17] Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for docu-
ment fingerprinting. In: ACM SIGMOD International Conference on Management
of Data, San Diego, CA (June 2003)

[18] Spafford, E.H., Weeber, S.A.: Software forensics: Can we track code to its authors?
Technical Report CSD-TR-92-010, Purdue University (February 1992)

[19] Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: is a correction for chance necessary? In: 26th Annual International
Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada (June
2009)

[20] Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research (February 2009)

http://paradyn.org/html/parse0.9-features.html

Who Wrote This Code? Identifying the Authors of Program Binaries 189

A Stylistic Feature Examples

The binary code features we describe in this paper are a powerful tool for cap-
turing characteristics of programmer style, but can be difficult to interpret. To
illustrate this difficulty, consider the following idiom features, ranked by the mag-
nitude of their weights w in an SVM-based classifier that discriminates among
ten different program authors (these idioms are among the top twenty features
by magnitude):

Idiom w

push rbx | * | lea rax, [mem] 0.213638
push rbx | sub rsp, [imm] | lea rax, [mem] 0.213638
sub rsp, [imm] | * | mov [mem], rsi 0.180291
mov rdi, rax | * | mov rax, [imm] 0.179203
call rip | mov xmm, rax | mov rdi, rax 0.173018
jnz rip | mov xmm, rax | mov rdi, rax 0.165779
mov rax, [imm] | call rip | mov xmm, rax 0.153061
sub rsp, [imm] | * | mov rsi, [imm] 0.148890
mov xmm, eax | * | mov rdi, [imm] -0.133057
* | sub rsp, [imm] | mov [mem], [imm] 0.131137

While some patterns emerge (IP-relative branching and calls appear to be a
telling characteristic), it is difficult to translate from simple instruction patterns
to a meaningful, high-level understanding of programming style; our models
require hundreds or thousands of these features to capture program authorship.
Other highly-weighted features offer similar barriers to interpretation; there are
several three- and four-byte N-grams among the most discriminative features in
this model, and the highest-weighted feature is the instruction summary graphlet

σ3 σ2

σ1

call call

where σ1 = {jump}, σ2 = {call,lea,mov}, and σ3 = {arith, call, mov, stack},
which is hardly sufficient to reach any conclusion about programming style.

The contribution of some features is easier to judge, for example the exter-
nal library features (Section 2.5). The use of sprintf and several of the C++
iostream operators are heavily weighted (within the top ten), suggesting that
programmer preference for particular APIs or standard library functions may be
a good indicator of style. Nonetheless, this feature type alone is insufficient (see
Section 5.2) for authorship attribution and extracting high-level interpretations
of programmer style from low-level code features is an open problem.

Secure and Efficient Protocols for Iris and Fingerprint
Identification

Marina Blanton1 and Paolo Gasti2

1 Department of Computer Science and Engineering, University of Notre Dame
2 Department of Information and Computer Science, University of California, Irvine

Abstract. Recent advances in biometric recognition and the increasing use of
biometric data prompt significant privacy challenges associated with the possible
misuse, loss, or theft of biometric data. Biometric matching is often performed by
two mutually distrustful parties, one of which holds one biometric image while
the other owns a possibly large biometric collection. Due to privacy and liabil-
ity considerations, neither party is willing to share its data. This gives rise to
the need to develop secure computation techniques over biometric data where
no information is revealed to the parties except the outcome of the comparison
or search. To address the problem, in this work we develop and implement the
first privacy-preserving identification protocol for iris codes. We also design and
implement a secure protocol for fingerprint identification based on FingerCodes
with a substantial improvement in the performance compared to existing solu-
tions. We show that new techniques and optimizations employed in this work
allow us to achieve particularly efficient protocols suitable for large data sets and
obtain notable performance gain compared to the state-of-the-art prior work.

1 Introduction

Recent advances in biometric recognition make the use of biometric data more prevalent
for authentication and other purposes. Today large-scale collections of biometric data
include face, fingerprint, and iris images collected by the US Department of Homeland
Security (DHS) from visitors through its US-VISIT program [21], iris images collected
by the United Arab Emirates (UAE) Ministry of Interior from all foreigners and also
fingerprints and photographs from certain types of travelers [23], and several others.
While biometry serves as an excellent mechanism for authentication and identification
of individuals, such data is undeniably extremely sensitive and must be well protected.
Furthermore, once leaked biometric data cannot be revoked or replaced. For these
reasons, biometric data cannot be easily shared between organizations or agencies.
However, there could be legitimate reasons to carry out computations on biometric data
belonging to different entities. For example, a non-government agency may need to
know whether a biometric it possesses appears on the government watch-list. In this
case the agency would like to maintain the privacy of the individual if no matches are
found, and the government also does not want to release its database to third parties.

The above requires carrying out computation over biometric data in a way that keeps
the data private and reveals only the outcome of the computation. In particular, we study

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 190–209, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Secure and Efficient Protocols for Iris and Fingerprint Identification 191

the problem of biometric identification, where a client C is in a possession of a biomet-
ric X and a server S possesses a biometric database D. The client would like to know
whether X appears in the database D by comparing its biometric to the records in D.
The computation amounts to comparing X to each Y ∈ D in a privacy-preserving man-
ner. This formulation is general enough to apply to a number of other scenarios, ranging
from a single comparison of X and Y to the case where two parties need to compute
the intersection of their respective databases. We assume that the result of comparing
biometrics X and Y is a bit, and no additional information about X or Y should be
learned by the parties as a result of secure computation. With our secure protocols, the
outcome can be made available to either party or both of them; for concreteness in our
description, we have the client learn the outcome of each comparison.

In this work we assume that both the client’s and the server’s biometric images have
been processed and have representations suitable for biometric matching, i.e., each raw
biometric image has been processed by a feature extraction algorithm. For the types of
biometric considered in this work, this can be performed for each image independently
and we do not discuss this further.

Prior Work. Literature on secure multi-party computation is extensive. Starting from
the seminal work on garbled circuit evaluation [39], it has been known that any function
can be securely evaluated by representing it as a boolean circuit. Similar results are also
known for securely evaluating any function using secret sharing techniques (e.g., [36])
or homomorphic encryption (e.g., [11]). In the last several years a number of tools
have been developed for automatically creating a secure protocol from a function de-
scription written in a high-level language. Examples include Fairplay [30], VIFF [14],
TASTY [18], and others. It is, however, well-known that custom optimized protocols
are often constructed for specific applications due to the inefficiency of generation so-
lution. Such custom solutions are known for a wide range of application (e.g., set oper-
ations [29,17], DNA matching [38], k-means clustering [9], etc.), and this work focuses
on secure biometric identification using iris codes and fingerprints. Furthermore, some
of the optimizations employed in this work can find their uses in protocol design for
other applications, as well as general compilers and tools such as TASTY [18].

With the growing prevalence of applications that use biometrics, the need for secure
biometric identification was recognized in the research community. A number of recent
publications address the problem of privacy-preserving face recognition [16,37,33].
This problem was first treated by Erkin et al. [16], where the authors designed a privacy-
preserving face recognition protocol based on the Eigenfaces algorithm. The perfor-
mance of that solution was consequently improved by Sadeghi et al. [37]. More
recently, Osadchy et al. [33] designed a new face recognition algorithm together with
its privacy-preserving realization called SCiFI. The design targeted to simultaneously
address robustness to different viewing conditions and efficiency when used for secure
computation. As a result, SCiFI is currently recognized as the best face identification
algorithm with efficient privacy-preserving realization. SCiFI takes 0.31 sec (during the
online phase) [33] to compare two biometrics, and therefore would take about 99 sec to
compare a biometric to a database of 320 images (which is the database size used in the
experiments in several prior publications).

192 M. Blanton and P. Gasti

Another very recent work by Barni et al. [3] designs a privacy-preserving protocol for
fingerprint identification using FingerCodes [25]. FingerCodes use texture information
from a fingerprint to compare two biometrics. The algorithm is not as discriminative as
fingerprint matching techniques based on location of minutiae points, but it was chosen
by the authors as particularly suited for efficient realization in the privacy-preserving
framework. As of the time of this writing, similar results for other types of biometrics
or other fingerprint matching techniques are not available in the literature. We narrow
this gap by providing a secure two-party protocol for widely used iris identification, as
well as address fingerprint identification. Our protocols follow the standard algorithms
for comparing two biometrics, yet they are very efficient and outperform the state-of-
the-art protocols with a notable reduction in the overhead.

Bringer et al. [8] describe a biometric-based authentication mechanism with privacy
protection of biometric, where the Hamming distance is used as the distance metric.
The authentication server is composed of three entities that must not collude, and one
of them, the matcher, learns the computed Hamming distance. In our work, however,
no information beyond the outcome of the comparison is revealed, the computation
itself is more complex and corresponds to the actual algorithm used for iris code com-
parisons, and there is no need for additional or third-party entities. Barbosa et al. [2]
extend the framework with a classifier to improve authentication accuracy and propose
an instantiation based on Support Vector Machine using homomorphic encryption.

Our Contributions. In this work we treat the problem of privacy preserving biomet-
ric identification. We develop new secure protocols for two types of biometric, iris and
fingerprints, and achieve security against semi-honest adversaries. While iris codes are
normally represented as binary strings and use very similar matching algorithms, there
is a variety of representations and comparison algorithms for fingerprints. In this paper,
we study FingerCodes that use fixed-size representations and an efficient comparison
algorithm. 1 Our protocols were designed with efficiency in mind to permit their use on
relatively large databases, and possibly in real time. While direct performance compari-
son of our protocols and the results available in the literature is possible only in the case
of FingerCode, we can use complexity of the computation to draw certain conclusions.
The results we achieve in this work are as follows:

1. Our secure FingerCode protocol is extremely fast and allows the parties to com-
pare two fingerprints X and Y using a small fraction of a second. For a database
of 320 biometrics, the online computation can be carried out in 0.45 sec with the
communication of 279KB. This is an over 30-fold improvement in both communi-
cation and computation over the privacy-preserving solution of [3], as detailed in
Section 5, and a significant improvement over an adaptation of [37] to this context.

2. Iris codes use significantly longer representations (thousands of bits) and require
more complex transformation of the data. Despite the length and complexity, our
solution allows two iris codes to be compared in 0.15 sec. With respect to the state-
of-the-art face recognition protocol SCiFI, which also relies on Hamming distance

1 We also construct a secure protocol for minutiae-based fingerprint comparisons, but its descrip-
tion and implementation appear in the full version of this work [7] due to space constraints.

Secure and Efficient Protocols for Iris and Fingerprint Identification 193

computation, our protocol achieves lower overhead despite the fact that the compu-
tation involves an order of magnitude larger number of more complex operations.

2 Description of Computation

In what follows, we assume that client C holds a single biometric X and server S
holds a database of biometrics D. The goal is to learn whether C’s biometric appears
in S’s database without learning any additional information. This is accomplished by
comparing X to each biometric Y ∈ D, and as a result of each comparison C learns a
bit that indicates whether the comparison resulted in a match.

Iris. Let an iris biometric X be represented as an m-bit binary string. We use Xi to
denote i-th bit of X . In iris-based recognition, after feature extraction, biometric match-
ing is normally performed by computing the Hamming distance between two biometric
representations. Furthermore, the feature extraction process is such that some bits of
the extracted string X are unreliable and are ignored in the matching process. Infor-
mation about such bits is stored in an additional m-bit string, called mask, where its
i-th bit is set to 1 if the i-th bit of X should be used in the matching process and
is set to 0 otherwise. For biometric X , we use M(X) to denote the mask associated
with X . Often, a predetermined number of bits (e.g., 25% in [20] and 35% in [4]) is
considered unreliable in each biometric template. Thus, to compare two biometric rep-
resentations X and Y , their Hamming distance takes into account the respective masks.
That is, if the Hamming distance between two iris codes without masks is computed as:
HD(X, Y) = (||X ⊕ Y ||)/m = (

∑m
i=1 Xi⊕Yi)/m, the computation of the Hamming

distance that uses masks becomes [15]:

HD(X, M(X), Y, M(Y)) =
||(X ⊕ Y) ∩M(X) ∩M(Y)||

||M(X) ∩M(Y)|| (1)

In other words, we have HD(X, M(X), Y, M(Y)) =
∑m

i=1((Xi⊕Yi)∧M(Xi)∧M(Yi))∑m
i=1(M(Xi)∧M(Yi))

.
Throughout this work, we assume that the latter formula is used and simplify the nota-
tion to HD(X, Y). Then the computed Hamming distance is compared with a specific
threshold T , and the biometrics X and Y are considered to be a match if the distance
is below the threshold, and a mismatch otherwise. The threshold T is chosen based on
the distributions of authentic and impostor data. (In the likely case of overlap of the two
distributions, the threshold is set to achieve the desired levels of false accept and false
reject rates based on the security goals.)

Two iris representations can be slightly misaligned. This problem is caused by head
tilt during image acquisition. To account for this, the matching process attempts to
compensate for the error and rotates the biometric representation by a fixed amount
to determine the lowest distance. Each biometric is represented as a two-dimensional
array, therefore a circular shift is applied to each row by shifting its representation
by a small fixed number of times, which we denote by c. The minimum Hamming
distance across all runs is then compared to the threshold. That is, if we let LSj(·) (resp.,
RSj(·)) denote a circular left (resp., right) shift of the argument by a fixed number of
bits (2 bits in experiments conducted by the biometrics group at our institution, where

194 M. Blanton and P. Gasti

application of the Gabor filter during feature extraction results in a complex number,
which is quantized into a 2-bit value), the matching process becomes:

min(HD(X, LSc(Y)), . . ., HD(X, LS1(Y)), HD(X, Y),

HD(X, RS1(Y)), . . ., HD(X, RSc(Y)))
?
< T

(2)

Throughout this work we assume that the algorithms for comparing two biometrics are
public, as well as any constant parameters such as T . Our protocols, however, maintain
their security and performance guarantees if the (fixed) thresholds are known only to
the server who owns the database.

Fingerprints. Work on fingerprint identification dates many years back with a number
of different approaches currently available (see, e.g., [31] for an overview). The most
popular and widely used techniques extract information about minutiae from a finger-
print and store that information as a set of points in the two-dimensional plane. Fin-
gerprint matching can also be performed using a different type of information extracted
from a fingerprint image. One example is FingerCode [25] which uses texture informa-
tion from a fingerprint scan to form fingerprint representation X . While FingerCodes
are not as distinctive as minutiae-based representations and are best suited for use in
combination with minutiae to improve the overall matching accuracy [31], FingerCode-
based identification can be implemented very efficiently in a privacy-preserving proto-
col. In particular, each FingerCode consists of a fixed number m elements of � bits each.
Then FingerCodes X = (x1, . . ., xm) and Y = (y1, . . ., ym) are considered a match if
the Euclidean distance between their elements is below the threshold T :√∑m

i=1
(xi − yi)2

?
< T (3)

Barni et al. [3] was the first to provide a privacy-preserving protocol for FingerCode-
based biometric identification. We show that the techniques employed in this work im-
prove both computation and communication of the protocol of [3] by a large factor.

3 Preliminaries

Security Model. We use the standard security model for secure two-party computation
in presence of semi-honest participants (also known as honest-but-curious or passive).
In particular, it means that the parties follow the prescribed behavior, but might try to
compute additional information from the information obtained during protocol execu-
tion. Security in this setting is defined using simulation argument: the protocol is secure
if the view of protocol execution for each party is computationally indistinguishable
from the view simulated using that party’s input and output only. This means that the
protocol execution does not reveal any additional information to the participants. The
definition below formalizes the notion of security for semi-honest participants:

Definition 1. Let parties P1 and P2 engage in a protocol π that computes function
f(in1, in2) = (out1, out2), where ini and outi denote input and output of party Pi,
respectively. Let VIEWπ(Pi) denote the view of participant Pi during the execution

Secure and Efficient Protocols for Iris and Fingerprint Identification 195

of protocol π. More precisely, Pi’s view is formed by its input, internal random coin
tosses ri, and messages m1, . . ., mt passed between the parties during protocol execu-
tion, i.e., VIEWπ(Pi) = (ini, ri, m1, . . ., mt). We say that protocol π is secure against
semi-honest adversaries if for each party Pi there exists a probabilistic polynomial
time simulator Si such that {Si(ini, f(in1, in2))} ≡ {VIEWπ(Pi), outi}, where “≡”
denotes computational indistinguishability.

Homomorphic Encryption. Our constructions use a semantically secure additively
homomorphic encryption scheme. In an additively homomorphic encryption scheme,
Enc(m1) ·Enc(m2) = Enc(m1 +m2) which also implies that Enc(m)a = Enc(a ·m).
While any encryption scheme with the above properties (such as the well known Paillier
encryption scheme [34]) suffices for the purposes of this work, the construction due to
Damgård et al. [13,12] (DGK) is of particular interest here. We also note that in Paillier
encryption scheme, a public key consists of a k-bit RSA modulus N = pq, where p and
q are prime, and an element g whose order is a multiple of N in Z∗

N2 . Given a message

m ∈ ZN , encryption is performed as Enc(m) = gmrn mod N2, where r
R← ZN and

notation a
R← A means that a is chosen uniformly at random from the set A. In DGK

encryption scheme [13,12], which was designed to work with small plaintext spaces
and has shorter ciphertext size than other randomized encryption schemes, a public key
consists of (i) a (small, possibly prime) integer u that defines the plaintext space, (ii)
k-bit RSA modulus N = pq such that p and q are k/2-bit primes, vp and vq are t-bit
primes, and uvp|(p− 1) and uvq|(q − 1), and (iii) elements g, h ∈ Z∗

N such that g has
order uvpvq and h has order vpvq . Given a message m ∈ Zu, encryption is performed

as Enc(m) = gmhr mod N , where r
R← {0, 1}2.5t. We refer the reader to the original

publications [34] and [13,12], respectively, for any additional information.

Garbled Circuit Evaluation. Originated in Yao’s work [39], garbled circuit evaluation
allows two parties to securely evaluate any function represented as a boolean circuit.
The basic idea is that, given a circuit composed of gates, one party P1 creates a garbled
circuit by assigning to each wire two randomly chosen keys. P1 also encodes gate in-
formation in a way that given keys corresponding to the input wires (encoding specific
inputs), the key corresponding to the output of the gate on those inputs can be recov-
ered. The second party, P2, evaluates the circuit using keys corresponding to inputs of
both P1 and P2 (without learning anything in the process). At the end, the result of the
computation can be recovered by linking the output keys to the bits which they encode.

Recent literature provides optimizations that reduce computation and communica-
tion overhead associated with circuit construction and evaluation. Kolesnikov and
Schneider [27] describe an optimization that permits XOR gates to be evaluated for
free, i.e., there is no communication overhead associated with such gates and their eval-
uation does no involve cryptographic functions. This optimization is possible when the
hash function used for creating garbled gates can be assumed to be correlation robust
(see [28,27] for more detail). Under the same assumptions, Pinkas et al. [35] addition-
ally give a mechanism for reducing communication complexity of binary gates by 25%:
now each gate can be specified by encoding only three outcomes of the gate instead of
all four. Finally, Kolesnikov et al. [26] improve the complexity of certain commonly

196 M. Blanton and P. Gasti

used operations such as addition, multiplication, comparison, etc. by reducing the num-
ber of non-XOR gates: adding two n-bit integers requires 5n gates, n of which are
non-XOR gates; comparing two n-bit integers requires 4n gates, n of which are non-
XOR gates; and computing the minimum of t n-bit integers (without the location of the
minimum value) requires 7n(t− 1) gates, 2n(t− 1) of which are non-XOR gates.

With the above techniques, evaluating a non-XOR gates involves one invocation of
the hash function (which is assumed to be correlation robust). During garbled circuit
evaluation, P2 directly obtains keys corresponding to P1’s inputs from P1 and engages
in the oblivious transfer (OT) protocol to obtain keys corresponding to P2’s inputs.

Oblivious Transfer. In 1-out-of-2 Oblivious Transfer, OT 2
1 , one party, the sender,

has as its input two strings m0, m1 and another party, the receiver, has as its input a
bit b. At the end of the protocol, the receiver learns mb and the sender learns nothing.
Similarly, in 1-out-of-N OT the receiver obtains one of the N strings held by the sender.
There is a rich body of research literature on OT, and in this work we use its efficient
implementation from [32] as well as techniques from [24] that reduce a large number
of OT protocol executions to κ of them, where κ is the security parameter. This, in
particular, means that obtaining the keys corresponding to P2’s inputs in garbled circuit
evaluation by P2 incurs only small overhead.

4 Secure Iris Identification

As indicated in equation 1, computing the distance between two iris codes involves per-
forming the division operation. While techniques for carrying out this operation using
secure multi-party computation are known (see, e.g., [1,9,6,10]), their performance in
practice even using very recent results is far from satisfactory for this application As an
example, Blanton [5] reports that two-party evaluation of garbled circuits produced by
Fairplay takes several seconds for numbers of length 24–28 bits, but circuits for longer
integers could not be constructed due to the rapidly increasing memory requirements
of Fairplay. Hoens et al. [19] report that building a multi-party division protocol us-
ing homomorphic encryption alone requires on the order of an hour to carry out the
operation for 32-bit integers. Fortunately, in our case the computation can be rewrit-
ten to completely avoid this operation and replace it with multiplication. That is, using
the notation HD(X, Y) = ||(X ⊕ Y) ∩ M(X) ∩ M(Y)|| / ||M(X) ∩ M(Y)|| =
D(X, Y) / M(X, Y), instead of testing whether HD(X, Y)

?
< T , we can test whether

D(X, Y)
?
< T · M(X, Y). While the computation of the minimum distance as used

in equation 2 is no longer possible, we can replace it with equivalent computation that
does not increase its cost. Now the computation becomes:(
D(X, LSc(Y))

?
< T ·M(X, LSc(Y))

)
∨· · ·∨

(
D(X, RSc(Y))

?
< T ·M(X, RSc(Y))

)
(4)

When this computation is carried over real numbers, T lies in the range [0, 1]. In our
case, we need to carry the computation over the integers, which means that we “scale
up” all values with the desired level of precision. That is, by using � bits to achieve

Secure and Efficient Protocols for Iris and Fingerprint Identification 197

desired precision, we multiply D(X, Y) by 2� and let T range between 0 and 2�. Now
2�D(X, Y) and T ·M(X, Y) can be represented using �logm�+ � bits.

Security. Due to space constraints, we defer the security analysis of our iris identifica-
tion protocol, described in Sections 4.1 and 4.2 below, to Appendix A.

4.1 Base Protocol

In what follows, we first describe the protocol in its simplest form. Section 4.2 presents
optimizations and the resulting performance of the protocol.

In our solution, the client C generates a public-private key pair (pk, sk) for a ho-
momorphic encryption scheme and distributes the public key pk. This is a one-time
setup cost for the client for all possible invocations of this protocol with any number
of servers. During the protocol itself, the secure computation proceeds as specified in
equation 4. In the beginning, C sends its inputs encrypted with pk to the server S. At
the server side, the computation first proceeds using homomorphic encryption, but later
the client and the server convert the intermediate result into a split form and finish the
computation using garbled circuit evaluation. This is due to the fact that secure two-
party computation of the comparison is the fastest using garbled circuit evaluation [26],
but the rest of the computation in our case is best performed on encrypted values.

To compute D(X, Y) =
∑m

i=1(Xi⊕Yi)∧M(Xi)∧M(Yi) using algebraic compu-
tation, we use Xi⊕Yi = Xi(1−Yi)+(1−Xi)Yi and obtain D(X, Y) =

∑m
i=1(Xi(1−

Yi)+ (1−Xi)Yi)M(Xi)M(Yi). M(X, Y) is computed as
∑m

i=1 M(Xi)M(Yi). Then
if S obtains encryptions of XiM(Xi), (1−Xi)M(Xi), and M(Xi) for each i from C,
the server will be able to compute D(X, Y) and M(X, Y) using its knowledge of the
Yi’s and the homomorphic properties of the encryption. Figure 1 describes the protocol,
in which after receiving C’s encrypted values S produces Enc(M(Xi))’s and proceeds
to compute D(X, Y j) and M(X, Y j) in parallel for each Y in its database, where Y j

denotes biometric Y shifted by j positions and j ranges from−c to c. At the end of steps
3(a).i and 3(a).ii the server obtains Enc(2�D(X, Y j)+rj

S) for a randomly chosen rj
S of

its choice, and at the end of step 3(a).iii S obtains Enc(T ·M(X, Y j)+tjS) for a random
tjS of its choice. The server sends these values to the client who decrypt them. Therefore,
at the end of step 3(a) C holds rj

C = 2�D(X, Y j) + rj
S and tjC = T ·M(X, Y j) + tjS

and S holds −rj
S and −tjC , i.e., they additively share 2�D(X, Y j) and T ·M(X, Y j).

What remains to compute is 2c + 1 comparisons (one per each Y j) followed by 2c
OR operations as specified by equation 4. This is accomplished using garbled circuit
evaluation, where C enters rj

C ’s and tjC ’s and S enters rj
S’s and tjS’s and they learn a

bit, which indicates whether Y was a match.
Note that since rj

C ’s, rj
S’s, tjC ’s and tjS’s are used as inputs to the garbled circuit and

will need to be added inside the circuit, we want them to be as small as possible. There-
fore, instead of providing unconditional hiding by choosing tjS and rj

C from Z∗
N (where

N is from pk), the protocol achieves statistical hiding by choosing these random values
to be κ bits longer than the values that they protect, where κ is a security parameter.

198 M. Blanton and P. Gasti

Input: C has biometric X, M(X) and key pair (pk, sk); S has a database D composed of Y ,
M(Y) biometrics.
Output: C learns what records in D resulted in match with X if any, i.e., it learns a bit as a
result of comparison of X with each Y ∈ D.
Protocol steps:

1. For each i = 1, . . ., m, C computes encryptions 〈ai1, ai2〉 = 〈Enc(XiM(Xi)), Enc((1−
Xi)M(Xi))〉 and sends them to S.

2. For each i = 1, . . ., m, S computes encryption of M(Xi) by setting ai3 = ai1 · ai2 =
Enc(XiM(Xi)) · Enc((1−Xi)M(Xi)) = Enc(M(Xi)).

3. For each record Y in the database, S and C perform the following steps in parallel:
(a) For each amount of shift j = −c, . . ., 0, . . ., c, S rotates the bits of Y by the appro-

priate number of positions to obtain Y j and proceeds with all Y j ’s in parallel.
i. To compute (Xi ⊕ Y j

i)M(Xi)M(Y j
i) = (Xi(1 − Y j

i) + (1 −
Xi)Y

j
i)M(Xi)M(Y j

i) in encrypted form, S computes bj
i = a

(1−Y
j
i)M(Y

j
i)

i1 ·
a

Y
j
i M(Y

j
i)

i2 = Enc(XiM(Xi)(1− Y j
i)M(Y j

i) + (1−Xi)M(Xi)Y
j

i M(Y j
i)).

ii. S adds the values contained in bj
i ’s to obtain bj =

∏m
i=1 bj

i = Enc(
∑m

i=1(Xi ⊕
Y j

i)M(Xi)M(Y j
i)) = Enc(||(X ⊕ Y j) ∩M(X) ∩M(Y j)||). S then “lifts

up” the result, blinds, and randomizes it as cj = (bj)2
� · Enc(rj

S), where rj
S

R←
{0, 1}�log m�+�+κ, and sends the resulting cj to C.

iii. To obtain T (||M(X) ∩M(Y j)||), S computes dj
i = a

M(Y
j
i)

i3 = Enc(M(Xi) ·
M(Y j

i)) and dj = (
∏m

i=1 dj
i)

T = Enc(T (
∑m

i=1 M(Xi)M(Y j
i))). S blinds

and randomizes the result as ej = dj ·Enc(tj
S), where tj

S

R← {0, 1}�log m�+�+κ,
and sends ej to C.

iv. C decrypts the received values and sets rj
C = Dec(cj) and tj

C = Dec(ej).
(b) C and S perform 2c + 1 comparisons and OR of the results of the comparisons using

garbled circuit. C enters rj
C’s and tj

C’s, S enters −rj
S’s and −tj

S’s, and C learns

bit b computed as
∨c

j=−c((r
j
C − rj

S)
?
< (tj

C − tj
S)). To achieve this, S creates the

garbled circuit and sends it to C. C obtains keys corresponding to its inputs using OT,
evaluates the circuit, and S sends to C the key-value mapping for the output gate.

Fig. 1. Secure two-party protocol for iris identification

4.2 Optimizations

Pre-computation and Offline Communication. Similar to prior literature on se-
cure biometric identification [16,37,33,3], we distinguish between offline and online
stages, where any computation and computation that does not depend on the inputs
of the participating parties can be moved to the offline stage. In our protocol, first
notice that most modular exponentiations (the most expensive operation in the encryp-
tion scheme) can be precomputed. That is, the client needs to produce 2m encryp-
tions of bits. Because both m and the average number of 0’s and 1’s in a biometric
and a mask are known, the client can produce a sufficient number of bit encryptions
in advance. In particular, X normally will have 50% of 0’s and 50% of 1’s, while
75% (or a similar number) of M(X)’s bits are set to 1 and 25% to 0 during bio-
metric processing. Let p0 and p1 (q0 and q1) denote the fraction of 0’s and 1’s in

Secure and Efficient Protocols for Iris and Fingerprint Identification 199

an iris code (resp., its mask), where p0 + p1 = q0 + q1 = 1. Therefore, to have a
sufficient supply of ciphertexts to form tuples 〈ai1, ai2〉, the client needs to precom-
pute (2q0 + q1(p1 + ε) + q1(p0 + ε))m = (1 + q0 + 2q1ε)m encryptions of 0 and
(q1(p1 + ε) + q1(p0 + ε))m = q1(1 + 2ε)m encryptions of 1, where ε is used as a
cushion since the number of 0’s and 1’s in X might not be exactly p0 and p1, respec-
tively. Then at the time of the protocol the client simply uses the appropriate ciphertexts
to form its transmission.

Similarly, the server can precompute a sufficient supply of encryptions of rj
S’s and

tjS’s for all records. That is, the server needs for produce 2(2c + 1)|D| encryptions of
different random values of length �logm� + � + κ, where |D| denotes the size of the
database D. The server also generates one garbled circuit per record Y in its database
(for step 3(b) of the protocol) and communicates the circuits to the client. In addition,
the most expensive part of the oblivious transfer can also be performed during the offline
stage, as detailed below.

Optimized Multiplication. Server’s computation in steps 3(a).i and 3(a).iii of the pro-
tocol can be significantly lowered as follows. To compute ciphertexts bj

i , S needs to

calculate a
(1−Y j

i)M(Y j
i)

i1 · aY j
i M(Y j

i)
i2 . Since the bits Y j

i and M(Y j
i) are known to S, this

computation can be rewritten using one of the following cases:

– Y j
i = 0 and M(Y j

i) = 0: in this case both (1 − Y j
i)M(Y j

i) and Y j
i M(Y j

i) are
zero, which means that bj

i should correspond to an encryption of 0 regardless of ai1

and ai2. Instead of having S create an encryption 0, we set bj
i to the empty value,

i.e., it is not used in the computation of bj in step 3(a).ii.
– Y j

i = 1 and M(Y j
i) = 0: the same as above.

– Y j
i = 0 and M(Y j

i) = 1: in this case (1 − Y j
i)M(Y j

i) = 1 and Y j
i M(Y j

i) = 0,
which means that S sets bj

i = ai1.
– Y j

i = 1 and M(Y j
i) = 1: in this case (1 − Y j

i)M(Y j
i) = 0 and Y j

i M(Y j
i) = 1,

and S therefore sets bj
i = ai2.

The above implies that only q1m ciphertexts bj
i need to be added in step 3(a).ii to form

bj (i.e., q1m − 1 modular multiplications to compute the hamming distance between
m-element strings).

Similar optimization applies to the computation of dj
i and dj in step 3(a).iii of the

protocol. That is, when M(Y j
i) = 0, dj

i is set to the empty value and is not used in the
computation of dj ; when M(Y j

i) = 1, S sets dj
i = ai3. Consequently, q1m ciphertexts

are used in computing dj .
To further reduce the number of modular multiplications, we can adopt the idea

from [33], which consists of precomputing all possible combinations for ciphertexts at
positions i and i + 1 and reducing the number of modular multiplications used during
processing a database record in half. In our case, the value of bj

i b
j
i+1 requires com-

putation only when M(Y j
i) = M(Y j

i+1) = 1. In this case, computing ai1a(i+1)1,
ai1a(i+1)2, ai2a(i+1)1, and ai2a(i+1)2, for each odd i between 1 and m− 1 will cover
all possibilities. Note that these values need to be computed once for all possible shift

200 M. Blanton and P. Gasti

amounts of the biometrics (since only server’s Y ’s are shifted). Depending on the distri-
bution of the set bits in each M(Y), the number of modular multiplication now will be
between q1m/2 (when M(Yi) = M(Yi+1) for each odd i) and m(q0 +(1− 2q0)/2) =
m/2 (when M(Yi) �= M(Yi+1) for as many odd i’s as possible). This approach can be
also applied to the computation of dj (where only the value of ai3a(i+1)3 needs to be
precomputed for each odd i) resulting in the same computational savings during com-
putation of the hamming distance. Furthermore, by precomputing the combinations of
more than two values additional savings can be achieved during processing of each Y .

Optimized Encryption Scheme. As it is clear from the protocol description, its per-
formance crucially relies on the performance of the underlying homomorphic encryp-
tion scheme for encryption, addition of two encrypted values, and decryption. Instead
of utilizing a general purpose encryption scheme such as Paillier, we turn our atten-
tion to schemes of restricted functionality which promise to offer improved efficiency.
In particular, the DGK additively homomorphic encryption scheme [13,12] was de-
veloped to be used for secure comparison, where each ciphertext encrypts a bit. In
that setting, it has faster encryption and decryption time than Paillier and each cipher-
text has size k using a k-bit RSA modulus (while Paillier ciphertext has size 2k). To
be suitable for our application, the encryption scheme needs to support larger plain-
text sizes. The DGK scheme can be modified to work with longer plaintexts. In that
case, at decryption time, one needs to additionally solve the discrete logarithm prob-
lem where the base is 2-smooth using Pohlig-Hellman algorithm. This means that
decryption uses additional O(n) modular multiplications for n-bit plaintexts. Now
recall that in the protocol we encrypt messages of length �logm� + � + κ bits. The
use of the security parameter κ significantly increases the length of the plaintexts.
We, however, notice that the DGK encryption can be setup to permit arithmetic on
encrypted values such that all computations on the underlying plaintexts are carried
modulo 2n for any n. For our protocol it implies that (i) the blinding values rj

S and
tjS can now be chosen from the range [0, 2n−1], where n = �logm�+�, and (ii) this
provides information-theoretic hiding (thus improving the security properties of the
protocol). This observation has a profound impact not only on the client decryption
time in step 3(a).iv (which decreases by about an order of magnitude), but also on the
consecutive garbled circuit evaluation, where likewise the circuit size is significantly
reduced in size.

Circuit Construction. We construct garbled circuits using the most efficient tech-
niques from [35] and references therein. By performing addition modulo 2n and elim-
inating gates which have a constant value as one of their inputs, we reduce the com-
plexity of the circuit for addition to n − 1 non-XOR gates and 5(n − 1) − 1 total
gates. Similarly, after eliminating gates with one constant input, the complexity of the
circuit for comparison of n-bit values becomes n non-XOR gates and 4n − 2 gates
overall. Since in the protocol there are two additions and one comparison per each j
followed by 2c OR gates, the size of the overall circuit is 14(n− 1)(2c+1)+ 2c gates,
(3n − 2)(2c + 1) + 2c of which are non-XOR gates. Note that this circuit does not

Secure and Efficient Protocols for Iris and Fingerprint Identification 201

Table 1. Breakdown of the performance of the iris identification protocol. Time is expressed in
milliseconds unless otherwise stated, and communication overhead in KB.

Offline Online
Setup enc circuit total enc circuit total

Server c = 5 1398 + 71/rec 1780 + 8.5/rec 3178 + 79.5/rec 108 + 148/rec 1.2/rec 89 + 149.2/rec
c = 0 1398 + 6.5/rec 1457 + 0.7/rec 2855 + 7.2/rec 108 + 13.6/rec 0.1/rec 89 + 13.7/rec

Client c = 5 11.93s 1693 + 3.4/rec 13.62s + 3.4/rec 20/rec 2.6/rec 22.6/rec
c = 0 11.93s 1055 + 0.3/rec 12.99s + 0.3/rec 1.8/rec 0.2/rec 2.0/rec

Comm c = 5 512 11.6 + 22.1/rec 524 + 22.1/rec 0.5 + 2.7/rec 17.2/rec 0.5 + 19.9/rec
c = 0 512 11.6 + 2/rec 524 + 2/rec 0.5 + 0.2/rec 1.6/rec 0.5 + 1.8/rec

use multiplexers, which are required (and add complexity) during direct computation
of minimum.

Oblivious Transfer. The above circuit requires each party to supply 2n(2c + 1) input
bits, and a new circuit is used for each Y in D. Similar to [18], the combination of
techniques from [24] and [32] achieves the best performance in our case. Let the server
create each circuit and the client evaluate them. Using the results of [24], performing
OT 2

1 the total of 2n(2c + 1)|D| times, where the client receives a κ-bit string as a re-
sult of each OT for a a security parameter κ, can be reduced to κ invocations of OT 2

1

(that communicates to the receiver κ-bit strings) at the cost of 4κ · 2n(2n + 1)|D| bits
of communication and 4n(2c + 1) applications of a hash function for the sender and
2n(2c+1) applications for the receiver. Then κ OT 2

1 protocols can be implemented us-
ing the construction of [32] with low amortized complexity, where the sender performs
2 + κ and the receiver performs 2κ modular exponentiations with the communication
of 2κ2 bits and κ public keys. The OT protocols can be performed during the offline
stage, while the additional communication takes place once the inputs are known.

Further Reducing Online Communication. If transmitting 2m ciphertexts during
the online stage of the protocol (which amounts to a few hundred KB for our set of
parameters) constitutes a burden, this communication can be performed at the offline
stage before the protocol begins. This can be achieved using the technique of [33].
We refer the reader to the full version [7] for details of applying this technique to our
solution.

4.3 Implementation and Performance

We implemented the secure iris identification protocol in C using MIRACL library [22]
for cryptographic operations. The implementation used DGK encryption scheme [13,12]
with a 1024-bit modulus and another security parameter t set to 160, as suggested
in [13,12]. To simplify comparisons with prior work, throughout this work we use
k = 1024 security parameter for public-key cryptography and κ = 80 for symmet-
ric and statistical security. The experiments were run on an Intel Core 2 Duo 2.13 GHz
with 3GB of RAM and gcc version 4.4.5 on Linux.

Table 1 shows performance of the secure iris identification protocol and its compo-
nents. The performance was obtained using the following set of parameters: the size of
iris code and mask m = 2048 (this value of m is used in commercial iris recognition

202 M. Blanton and P. Gasti

software), 75% of bits are reliable in each iris code, and the length n of values is 20 bits.
All optimizations described earlier in this section were implemented. In our implemen-
tation, upon receipt of client’s data, the server precomputes all combinations for pairs of
ciphertexts bibi+1 in step 3(a).ii (one-time cost of the total of 4(m/2) modular multipli-
cations) and all combinations of 4 elements didi+1di+2di+3 in step 3(a).iii (one-time
cost of 11(m/4) modular multiplications). This cuts the server’s time for processing
each Y by more than a half. Furthermore, the constant overhead associated with the
OT (circuit) can be reduced in terms of both communication and computation for both
parties if public-key operations are implemented over elliptic curves.

The table shows performance using different configurations with the amount of ro-
tation c = 5 and no rotation with c = 0 (this is used when the images are well aligned,
which is the case for iris biometrics collected at our institution). In the table, we divide
the computation and communication into offline precomputation and online protocol
execution. No inputs are assumed to be known by any party at precomputation time.
Some of the overhead depends on the server’s database size, in which case the computa-
tion and communication are indicated per record (using notation “/rec”). The overhead
associated with the part of the protocol that uses homomorphic encryption is shown
separately from the overhead associated with garbled circuits. The offline and online
computation for the part based on homomorphic encryption is computed as described
in Section 4.2. For circuits, garbled circuit creation, communication, and some of OT
is performed at the offline stage, while the rest of OT (as described in Section 4.2) and
garbled circuit evaluation takes place during the online protocol execution.

It is evident that our protocol design and optimizations allow us to achieve notable
performance. In particular, comparison of two iris codes, which includes computation of
2(2c+1) = 22 Hamming distances over 2048-bit biometrics in encrypted form, is done
in 0.15 sec. This is noticeably lower than 0.3 sec online time per record reported by the
best currently known face recognition protocol SCiFI [33], which computes a single
Hamming distance over 900-bit values. That is, despite an order of magnitude larger
number of operations and more complex operations such as division, computation of
minimum, etc., we are able to outperform prior work by roughly 50%. This in particular
implies that using the techniques suggested in this work (and DGK encryption scheme
in particular) performance of SCiFI and other existing protocols can be improved to
a fraction of the previously reported time. When iris images are well aligned and no
rotation is necessary our protocol requires only 14 msec online computation time and
under 2KB of data to compare two biometrics.

5 Secure Fingerprint Identification

In this section we illustrate how a number of the techniques developed in this work
for iris identification can be applied to other types of biometric computations such as
FingerCodes. In particular, we show that the efficiency of the secure protocol for Fin-
gerCode identification [3] can be improved by an order of magnitude.

The computation involved in FingerCode comparisons is very simple, which results
in an extremely efficient privacy-preserving realization. Similar to [3], we rewrite the
computation in equation 3 as

∑m
i=1(xi − yi)2 =

∑m
i=1(xi)2 +

∑m
i=1(yi)2

Secure and Efficient Protocols for Iris and Fingerprint Identification 203

Input: C has biometric X = (x1, . . ., xm) and DGK encryption key pair (pk, sk); S has a
database D composed of biometrics Y = (y1, . . ., ym).
Output: C learns what records in D resulted in match with X if any, i.e., it learns a bit as a
result of comparison of X with each Y ∈ D.
Protocol steps:

1. C computes and sends to S encryptions Enc(−2x1), . . ., Enc(−2xm), Enc(
∑m

i=1 x2
i).

2. For each Y = (y1, . . ., ym) ∈ D, S and C perform in parallel:
(a) S computes the encrypted distance d between X and Y as d = Enc(

∑m
i=1 x2

i) ·
Enc(

∑m
i=1 y2

i) · ∏m
i=1 Enc(−2xi)

yi = Enc(
∑m

i=1(xi − yi)
2), blinds it as d′ =

d · Enc(rS), where rS
R← {0, 1}n, and sends d′ to C.

(b) C decrypts the value it receives and sets rC = Dec(d′).

(c) C and S engage in a secure protocol that computes ((rC − rS) mod 2n)
?
< T 2 using

garbled circuit evaluation. S creates the circuit and sends it to C along with the key-
value mapping for the output gate. C obtains keys corresponding to its inputs from S
using OT, evaluates the circuit, and learns the result.

Fig. 2. Secure two-party protocol for FingerCode identification

−
∑m

i=1 2xiyi < T 2. In our protocol, the Euclidean distance is computed using ho-
momorphic encryption, while the comparisons are performed using garbled circuits.
The secure FingerCode protocol is given in Figure 2: the client contributes encryp-
tions of−2xi and

∑
(xi)2 to the computation, while the server contributes

∑
(yi)2 and

computes encryption of −2xiyi from −2xi. Note that by using Enc(−2xi) instead of
Enc(xi), the server’s work for each Y is reduced since negative values use significantly
longer representations. The protocol in Figure 2 uses DGK encryption with the plain-
text space of [0, 2n − 1]. To be able to represent the Euclidean distance, we need to set
n = �logm�+ 2�+ 1, where � is the bitlength of elements xi and yi. This implies that
all computation on plaintexts is performed modulo 2n; for instance, 2n − 2xi is used
in step 1 to form Enc(−2xi). The circuit used in step 2(c) takes two n-bit values, adds
them modulo 2n, and compares the result to a constant as described in Section 4.2.

Finally, some of the computation can be performed offline: for the client it includes
precomputing the random values used in the m + 1 ciphertexts it sends in step 1 (com-
putation of hr mod N), and for the server includes precomputing Enc(rS) and prepar-
ing a garbled circuit for each Y , as well as one-time computation of random values for
Enc(

∑m
i=1(yi)2) since the reuse of such randomness does not affect security. The client

and the server also perform some of OT functionality prior to protocol initiation.
In the FingerCode protocol of [3], each fingerprint in the server’s database is repre-

sented by c FingerCodes that correspond to different orientations of the same finger-
print, which improves the accuracy of matching. The protocol of [3], however, reports
all matches within the c FingerCodes corresponding to the same fingerprint, and this is
what our protocol in Figure 2 computes. If it is desirable to output only a single bit for
all c instances of a fingerprint, it is easy to modify the circuit evaluated in step 2(c) of
the protocol to compute the OR of the bits produced by the original c circuits.

Security. The security of this protocol is straightforward to show and we omit the
details of the simulator from the current description.

204 M. Blanton and P. Gasti

Table 2. Breakdown of the performance of the FingerCode identification protocol. Time is ex-
pressed in milliseconds and communication overhead in KB.

Offline Online
enc circuit total enc circuit total

Server 3.6 + 3.9/rec 1448 + 0.37/rec 1451.6 + 4.3/rec 0.22 + 1.37/rec 0.05/rec 0.22 + 1.42/rec
Client 61 1025 + 0.15/rec 1086 + 0.15/rec 4.7 + 0.92/rec 0.16/rec 4.7 + 1.08/rec
Comm 0 11.6 + 1.26/rec 11.6 + 1.26/rec 2.12 + 0.12/rec 0.74/rec 2.12 + 0.86/rec

Implementation and Performance. The FingerCode parameters can range as m =
16–640, � = 4–8, and c = 5. We implement the protocol using parameters m = 16
and � = 7 (the same as in [3]) and therefore n = 19. The performance of our secure
FingerCode identification protocol is given in Table 2. No inputs (X or Y) are assumed
to be known at the offline stage when the parties compute randomization values of
the ciphertexts. For that reason, a small fixed cost is inquired in the beginning of the
protocol to finish forming the ciphertext using the data itself. We also note that, based
on our additional experiments, by using Paillier encryption instead of DGK encryption,
the server’s online work increases by an order of magnitude, even if packing is used.

It is evident that the overhead reported in the table is minimal and the protocol is well
suited for processing fingerprint data in real time. In particular, for a database of 320
records used in prior work (64 fingerprints with 5 FingerCodes each used in [3]), client’s
online work is 0.35 sec and the server’s online work is 0.45 sec, with online commu-
nication of 279KB. As can be seen from these results, computation is no longer the
bottleneck and this secure two-party protocol can be carried out extremely efficiently.
Compared to the solution in [3] that took 16 sec for the online stage with the same setup,
the computation speed up is by a factor of 35. Communication efficiency, however, is
what was specifically emphasized in the protocol of [3] resulting in 10101KB online
overhead for a database of size 320. Our solution therefore improves such result by a
factor of 35. We also would like to note that all offline work in [3] is for ciphertext
precomputation (since no garbled circuits are used) and is non-interactive, while in our
protocol circuit transmission and input-independent portions of OT can be done prior
to the protocol itself and involve interaction. We, however, note that the overall (offline
and online) computation for |D| = 320 is 1.48 sec for the client and 3.27 sec for the
server with the total of 692KB communication, which is still at least several times lower
than the online portion of the time and communication in [3].

Privacy-preserving face recognition techniques by Sadeghi et al. [37] can also be
adapted to perform secure FingerCode comparisons. They were developed for a differ-
ent context, but also involve computing Euclidean distances using homomorphic en-
cryption, followed by garbled circuits-based comparisons of the results. (Comparison
of face images also includes projecting a client’s face to a different vector space as the
first step of the protocol, but it is not needed here.) The authors of [37] use Paillier
homomorphic encryption for distance computation, where packing of multiple values
into a single ciphertext is used at certain points of the protocol. In particular, ciphertext
d′ that the server sends to the client in step 2(b) contains up to t = �k−κ

n � distances
(for k-bit modulus and statistical security parameter κ), where t = 49 in our case. This
results in fewer Enc(rS) to form, transmit, and decrypt.

Secure and Efficient Protocols for Iris and Fingerprint Identification 205

When we compare communication of our protocol with that based on techniques
of [37], we obtain that the initial transmission of client biometric is lower by a factor
of 2 in our protocol. The circuit size, and thus corresponding work and communica-
tion, is slightly larger in [37] due to handling of additional κ bits per t distances. The
communication associated with transmission of encrypted blinded distances, however,
is significantly lower in [37] due to packing. Overall, we obtain that communication
of both solutions is very similar because the communication overhead is heavily domi-
nated by garbled circuits. For the distance computation, [37] report runtime of 6.08 sec
for the client and 0.47 sec for the server for |D| = 320, while distance computation
in our protocol (including precomputation) is 0.36 sec for the client and 1.69 sec for
the server for the same |D|. In [37] the number of dimensions m = 12, while we have
m = 16, but the length of values is n = 50 in [37], while we have n = 19. The compu-
tation itself in [37] is more expensive (including interaction between the parties, which
we do not have) due to the need to transform client’s data, but faster machines are used.

To obtain a better insight on how performance of Paillier encryption with packing
compares to that of DGK encryption for our application, we implemented our protocol
using techniques of [37] (note that distance computation is more efficient than what is
described in [37]). We used a 1024-bit modulus and a number of optimizations sug-
gested in [34] for best performance. In particular, small generator g = 2 was used
to achieve lower encryption time, and decryption is sped up using pre-computation
and Chinese remainder computation (see [34], section 7 for more detail). For opti-
mally packed values which result in the lowest overhead per record, we obtain that
the server’s precomputation is 31.9 + 1.31/rec (all in msec), server’s online work is
1.0 + 24.68/rec, client’s precomputation is 545.4, and client’s online work is 509.6 +
0.22/rec. For |D| = 320, we obtain the client’s overall runtime of 1.13 sec and server’s
runtime of 8.24 sec, where the increase in time compared to the performance in [37]
can be explained by larger m and slower machines (note that this is the opposite of
what is reported in [37]; the server clearly performs the majority of distance computa-
tion work). We obtain that our approach is faster by a factor of almost 5 than the use
of Paillier encryption with packing as suggested in [37] and online work is faster by a
factor of 9.3. And as previously described, the circuit overhead of [37] is slightly larger
due to the need to achieve statistical hiding of computed distances.

6 Conclusions

The protocol design presented in this work suggests certain principles that lead to an
efficient implementation of a privacy-preserving protocol for biometric identification:
(i) representation of client’s biometric plays an important role; (ii) operations that ma-
nipulate bits are the fastest using tools other than encryption; (iii) a proper tuning of
encryption tools can result in a significant speedup. Using these principles and a num-
ber of new techniques in this work we develop and implement secure protocols for iris
and fingerprint identification that use standard biometric recognition algorithms. The
optimization techniques employed in this work allow us to achieve notable performance
results for different secure biometric identification protocols.

In particular, we develop the first privacy-preserving two-party protocol for iris codes
using current biometric recognition algorithms. Despite the length of iris codes’

206 M. Blanton and P. Gasti

representation and the complexity of their processing, our protocol allows a secure
comparison between two biometrics to be performed in 0.15 sec with communication of
under 18KB. Furthermore, when the iris codes are known to be well-aligned and their
rotation is not necessary, the overhead decreases by an order of magnitude to 14 msec
computation and 2KB communication per comparison.

Two FingerCodes used for fingerprint recognition can be compared at low cost,
which allowed us to develop an extremely efficient privacy-preserving protocol. Com-
paring two fingerprints requires approximately 1 msec of computation, allowing thou-
sands of biometrics to be processed in a matter of seconds. Communication overhead
is also very modest with less than 1KB per biometric comparison. Compared to prior
privacy-preserving implementation of FingerCode [3], we simultaneously improve on-
line computation and communication by a factor of more than 30.

Acknowledgments. We would like to thank Keith Frikken for suggestion to reduce
communication of the iris identification protocol from 3m to 2m ciphertexts. We would
also like to thank Stefan Katzenbeisser and the anonymous reviewers for their insightful
comments and observations. Portions of this work were sponsored by the Air Force
Office of Scientific Research grant AFOSR-FA9550-09-1-0223.

References

1. Atallah, M., Bykova, M., Li, J., Frikken, K., Topkara, M.: Private collaborative forecasting
and benchmarking. In: ACM Workshop on Privacy in the Electronic Society (WPES), pp.
103–114 (2004)

2. Barbosa, M., Brouard, T., Cauchie, S., de Sousa, S.M.: Secure biometric authentication with
improved accuracy. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107,
pp. 21–36. Springer, Heidelberg (2008)

3. Barni, M., Bianchi, T., Catalano, D., Di Raimondo, M., Labati, R., Failla, P., Fiore, D.,
Lazzeretti, R., Piuri, V., Scotti, F., Piva, A.: Privacy-preserving fingercode authentication.
In: ACM Workshop on Multimedia and Security (MM&Sec), pp. 231–240 (2010)

4. Barzegar, N., Moin, M.: A new user dependent iris recognition system based on an area
preserving pointwise level set segmentation approach. EURASIP Journal on Advances in
Signal Processing, 1–13 (2009)

5. Blanton, M.: Empirical evaluation of secure two-party computation models. Technical Report
TR 2005-58, CERIAS, Purdue University (2005)

6. Blanton, M., Aliasgari, M.: Secure computation of biometric matching. Technical Report
2009-03, Department of Computer Science and Engineering, University of Notre Dame
(2009)

7. Blanton, M., Gasti, P.: Secure and Efficient Protocols for Iris and Fingerprint Identification.
Cryptology ePrint Archive, Report 2010/627 (2010), http://eprint.iacr.org/

8. Bringer, J., Chabanne, H., Izabachène, M., Pointcheval, D., Tang, Q., Zimmer, S.: An Ap-
plication of the Goldwasser-Micali Cryptosystem to Biometric Authentication. In: Pieprzyk,
J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 96–106. Springer,
Heidelberg (2007)

9. Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: ACM Conference on Com-
puter and Communications Security (CCS), pp. 486–497 (2007)

10. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R. (ed.)
FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010)

http://eprint.iacr.org/

Secure and Efficient Protocols for Iris and Fingerprint Identification 207

11. Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty computation from threshold homomor-
phic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300.
Springer, Heidelberg (2001)

12. Damgård, I., Geisler, M., Krøigård, M.: A correction to efficient and secure comparison for
on-line auctions. Cryptology ePrint Archive, Report 2008/321 (2008)

13. Damgård, I., Geisler, M., Krøigård, M.: Homomorphic encryption and secure comparison.
Journal of Applied Cryptology 1(1), 22–31 (2008)

14. Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty compu-
tation: Theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

15. Daugman, J.: How iris recognition works. IEEE Transactions on Circuits and Systems for
Video Technology 14(1), 21–30 (2004)

16. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-
preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS,
vol. 5672, pp. 235–253. Springer, Heidelberg (2009)

17. Frikken, K.B.: Privacy-preserving set union. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS,
vol. 4521, pp. 237–252. Springer, Heidelberg (2007)

18. Henecka, W., Kogl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: Tool for Au-
tomating Secure Two-partY computations. In: ACM Conference on Computer and Commu-
nications Security (CCS), pp. 451–462 (2010)

19. Hoens, T., Blanton, M., Chawla, N.: A private and reliable recommendation system using
a social network. In: IEEE International Conference on Information Privacy, Security, Risk
and Trust (PASSAT), pp. 816–825 (2010)

20. Hollingsworth, K., Bowyer, K., Flynn, P.: The best bits in an iris code. IEEE Transactions on
Pattern Analysis and Machine Intelligence 31(6), 964–973 (2009)

21. U.S. DHS US-VISIT, http://www.dhs.gov/files/programs/usv.shtm
22. Multiprecision Integer and Rational Arithmetic C/C++ Library,

http://www.shamus.ie/
23. IrisGuard Press Release, http://cl.ly/3KIB
24. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In:

Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)
25. Jain, A., Prabhakar, S., Hong, L., Pankanti, S.: Filterbank-based fingerprint matching. IEEE

Transactions on Image Processing 9(5), 846–859 (2000)
26. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and

applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.)
CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009)

27. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In:
Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)

28. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation efficiently with
security against malicious adversaries. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg (2008)

29. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer,
Heidelberg (2004)

30. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay – a secure two-party computation sys-
tem. In: USENIX Security Symposium, pp. 287–302 (2004)

31. Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Hanbook of Fingerprint Recognition, 2nd edn.
Springer, Heidelberg (2009)

32. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 448–457 (2001)

http://www.dhs.gov/files/programs/usv.shtm
http://www.shamus.ie/
http://cl.ly/3KIB

208 M. Blanton and P. Gasti

33. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: SCiFI – A system for secure face iden-
tification. In: IEEE Symposium on Security and Privacy, pp. 239–254 (2010)

34. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

35. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is prac-
tical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer,
Heidelberg (2009)

36. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest major-
ity. In: ACM Symposium on Theory of Computing (STOC), pp. 73–85 (1989)

37. Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: Efficient privacy-preserving face recognition.
In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 229–244. Springer, Heidelberg
(2010)

38. Troncoso-Pastoriza, J., Katzenbeisser, S., Celik, M.: Privacy preserving error resilient DNA
searching through oblivious automata. In: ACM Conference on Computer and Communica-
tions Security (CCS), pp. 519–528 (2007)

39. Yao, A.: How to generate and exchange secrets. In: IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 162–167 (1986)

A Security Analysis of the Iris Protocol

Security of the iris protocol relies on the security of the underlying building blocks.
In particular, we need to assume that (i) the DGK encryption scheme is semantically
secure (which was shown under a hardness assumption that uses subgroups of an RSA
modulus [13,12]); (ii) garbled circuit evaluation is secure (which was shown assuming
that the hash function is correlation robust [27], or if it is modeled as a random ora-
cle); and (iii) the oblivious transfer is secure as well (to achieve this, techniques of [24]
require the hash function to be correlation robust and the use of a pseudo-random num-
ber generator, while techniques of [32] model the hash functions as a random oracle
and use the computational Diffie-Hellman (CDH) assumption). Therefore, assuming
the security of the DGK encryption, CDH, and using the random oracle model for hash
functions is sufficient for our solution.

To show the security of the protocol, we sketch how to simulate the view of each
party using its inputs and outputs alone. If such simulation is indistinguishable from
the real execution of the protocol, for semi-honest parties this implies that the protocol
does not reveal any unintended information to the participants (i.e., they learn only the
output and what can be deduced from their respective inputs and outputs).

First, consider the client C. The client’s input consists of its biometric X , M(X) and
the private key, and its outputs consists of a bit b for each record in S’s database D. A
simulator that is given these values simulates C’s view by sending encrypted bits of C’s
input to the server as prescribed in step 1 of the protocol. It then simulates the messages
received by the client in step 3(a).iii using encryptions of two randomly chosen strings
rj
C and tjC of length n. The simulator next creates a garbled circuit for the computation

given in step 3(b) that, on input client’s rj
C ’s and tjC ’s computes bit b, sends the circuit to

the client, and simulates the OT. It is clear that given secure implementation of garbled
circuit evaluation in the real protocol, the client cannot distinguish simulation from
real protocol execution. Furthermore, the values that C recovers in step 3(a).iv of the

Secure and Efficient Protocols for Iris and Fingerprint Identification 209

protocol are distributed identically to the values used in the real protocol execution that
uses DGK encryption (and they are statistically indistinguishable when other encryption
schemes are used).

Now consider the server’s view. The server has its database D consisting of Y , M(Y)
and the threshold T as the input and no output. In this case, a simulator with access to D
first sends to S ciphertexts (as in step 1 of the protocol) that encrypt bits of its choice.
For each Y ∈ D, S performs its computation in step 3(a) of the protocol and forms
garbled circuits as specified in step 3(b). The server and the simulator engage in the OT
protocol, where the simulator uses arbitrary bits as its input to the OT protocol and the
server sends the key-value mapping for the output gate. It is clear that the server cannot
distinguish the above interaction from the real protocol execution. In particular, due to
semantic security of the encryption scheme S learns no information about the encrypted
values and due to security of OT S learns no information about the values chosen by
the simulator for the garbled circuit.

Linear Obfuscation to Combat Symbolic

Execution

Zhi Wang1, Jiang Ming2, Chunfu Jia1, and Debin Gao3

1 College of Information Technical Science, Nankai University, China
zwang@mail.nankai.edu.cn, cfjia@nankai.edu.cn

2 College of Information Sciences & Technology, Pennsylvania State University, USA
mingjiangpku@gmail.com

3 School of Information Systems, Singapore Management University, Singapore
dbgao@smu.edu.sg

Abstract. Trigger-based code (malicious in many cases, but not nec-
essarily) only executes when specific inputs are received. Symbolic ex-
ecution has been one of the most powerful techniques in discovering
such malicious code and analyzing the trigger condition. We propose a
novel automatic malware obfuscation technique to make analysis based
on symbolic execution difficult. Unlike previously proposed techniques,
the obfuscated code from our tool does not use any cryptographic oper-
ations and makes use of only linear operations which symbolic execution
is believed to be good in analyzing. The obfuscated code incorporates
unsolved conjectures and adds a simple loop to the original code, mak-
ing it less than one hundred bytes longer and hard to be differentiated
from normal programs. Evaluation shows that applying symbolic execu-
tion to the obfuscated code is inefficient in finding the trigger condition.
We discuss strengths and weaknesses of the proposed technique.

Keywords: Software obfuscation, symbolic execution, malware
analysis.

1 Introduction

Symbolic execution was proposed as a program analysis technique more than
three decades ago [21]. In recent years, symbolic execution has advanced a lot.
It is usually combined with dynamic taint analysis and theorem proving, and
is becoming a powerful technique in security analysis of software programs. In
particular, symbolic execution has been shown to be useful in discovering trigger-
based code (malicious in many cases, although not necessarily) and finding the
corresponding trigger condition [3].

To fight against the state-of-the-art malware analyzers, Sharif et al. proposed
a conditional code obfuscation scheme that obfuscates equality conditions that
rely on inputs by introducing one-way hash functions [35]. It was shown that
analyzers based on symbolic execution are hard to reason about the value of input
that satisfies the equality condition. However, admitted by the authors, using
cryptographic functions in the obfuscation might improve malware detection [35].

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 210–226, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Linear Obfuscation to Combat Symbolic Execution 211

ai =

{
n for i = 0

f(ai−1) for i > 0

where f(n) =

{
n/2 if n ≡ 0 (mod 2)

3n + 1 if n ≡ 1 (mod 2)

Fig. 1. Collatz conjecture: ai will eventually reach 1 regardless of the value of n

In this paper, we challenge the requirement of using cryptographic functions
in obfuscation to make symbolic execution difficult, and propose a novel auto-
matic obfuscation technique that makes use of linear unsolved conjectures. There
are a few advantages of using only linear operations in the obfuscation without
any cryptographic ones. First, the obfuscated code becomes less suspicious in
malware detection. The obfuscated code produced by our technique only adds
a simple loop to the code, making the resulting obfuscated code similar to le-
gitimate programs that employ, e.g., simple number sorting algorithms. Second,
such simple obfuscated code makes it possible for our technique to be combined
with other obfuscation and polymorphism techniques to achieve stronger pro-
tection. Third, the size of the obfuscated code is less than one hundred bytes
longer than the original program.

Many unsolved conjectures (e.g., the Collatz conjecture [23], see Figure 1) in-
volve some simple linear operations on integers that loop for an unknown number
of times. Such operations are usually fast and commonly used in basic algorithms
in computer science. They are perfect candidates to be used in obfuscations to
make symbolic execution difficult because symbolic execution is usually weak
and inefficient in analyzing loops, in particular, the number of times the loop
body executes [25,19,9,10,8,27,38,30,3].

Another advantage of using these unsolved conjectures is that they can be
used to obfuscate inequality conditions, a case the previous proposal is unable
to handle [35]. Although some inequality conditions could be transformed to
(a set of) equality conditions, it might become impractical when the inequality
range is big.

We propose and implement an automatic obfuscator to incorporate unsolved
conjectures into trigger conditions in program source code. Extensive evaluations
show that symbolic execution would take hundreds of hours in order to figure
out the trigger condition.

The rest of the paper is organized as follows. Section 2 discusses the back-
ground of symbolic execution, unsolved conjectures, and related work. We detail
our threat model and give an overview of the steps in our obfuscation technique
in Section 3. Detailed implementation of our obfuscator is explained in Section 4.
We show the evaluation results of the obfuscated code and discuss strengths and
weaknesses in Section 5. Finally we conclude in Section 7.

212 Z. Wang et al.

2 Background and Related Work

In this section, we briefly discuss existing work on symbolic execution, its ap-
plication, and limitations in handling loops. We also discuss related work on
obfuscating software programs. At the end of the section, we outline some un-
solved conjectures in mathematics which we make use of in our obfuscator.

2.1 Symbolic Execution and Its Applications

Forward symbolic execution has been extensively utilized in various security
analysis techniques [33]. Automatic testing leverages forward symbolic
execution to achieve high code coverage and automatic input generation
[9,10,8,19,27,25,34,18]. Most of these applications automatically generate inputs
to trigger well-defined bugs, such as integer overflow, memory errors, null pointer
dereference, etc. Recent work shows that forward symbolic execution can be
used to generate succinct and accurate input signatures or filters to block ex-
ploits [6,14,4,5]. Previous work has also proposed several improvements to en-
hance white-box exploration on the programs that rely on string operations [39,7]
and lift the symbolic constraints from the byte level to the protocol level [6].
Malware analysis leverages forward symbolic execution to capture information
flows through binaries [12,28,40,2]. Brumley et al. proposed MineSweeper [3]
that utilizes static analysis and symbolic execution to detect trigger conditions
in malware and trigger-based behavior.

2.2 Limitation of Symbolic Execution in Unrolling Loops

Most existing forward symbolic execution techniques have limitations in travers-
ing branches in a loop, particularly when symbolic variables are used as the
bound. Typically, only a fixed number of times or a fixed amount of time is
spent to approximate the analysis [25,19,9,10,8,27,38,30,3]. Several approaches
improve this loop unrolling strategy. LESE [32] introduces new symbolic vari-
ables to represent the number of times each loop executes and links symbolic
loop variables to symbolic inputs with known input grammar. RWset [1] prunes
redundant loop paths by tracking all the reads and writes performed by the
checked code. We exploit this weakness of symbolic execution in handling loops
to propose our novel obfuscator that uses only linear operations. In Section 6,
we discuss the resilient of our obfuscator to these advancements in dealing
with loops.

2.3 Binary Obfuscation

Different approaches for binary obfuscation have been developed, and the main
purpose is to improve resistance to static analysis [26,31,29,35,24]. Collberg et al.
performs binary obfuscation by code transformation [11]. Popov et al. obfuscates
binary by replacing branch instructions with trap and bogus code [31]. Moser
et al. propose opaque constants to evade static analysis. The main difference
between our approach and existing work is that our goal is to impede forward

Linear Obfuscation to Combat Symbolic Execution 213

symbolic execution. Sharif et al. presented an advanced work to attack symbolic
execution by encrypting code that is conditionally dependent on input [35], which
is the closest to our approach. However encrypting the original code introduces
data bytes rarely observed. Our work introduces only linear operations and is
less susceptible to statistical de-obfuscation techniques.

2.4 Unsolved Conjectures

Unsolved conjectures are unproven propositions or theorems that appear to be
correct and have not been disproven. The Collatz conjecture, also known as
the 3x + 1 conjecture [23] asserts that starting from any positive integer n (see
Figure 1), repeated iterations of this function eventually produces the value 1.
The 3x + 1 conjecture and its variations are simple to state but hard to be
proven [15,23,20]. Conway proved that such 3x + 1 problems can be formally
undecidable [13]. The 3x + 1 conjecture has been tested and found to always
reach 1 for all integers ≤ 20 · 258 in 2009 [37].

Some other examples of unsolved conjectures that we can use in our obfuscator
include
5x + 1 conjecture:

f(n) =

⎧⎪⎨
⎪⎩

n/2 if n ≡ 0 (mod 2)

n/3 if n ≡ 0 (mod 3)

3n + 1 else

Matthews conjecture:

f(n) =

⎧⎪⎨
⎪⎩

7n + 3 if n ≡ 0 (mod 3)

(7n + 2)/3 if n ≡ 1 (mod 3)

(n − 2)/2 if n ≡ 2 (mod 3)

7x + 1 conjecture:

f(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n/2 if n ≡ 0 (mod 2)

n/3 if n ≡ 0 (mod 3)

n/5 if n ≡ 0 (mod 5)

7n + 1 else

Juggler Sequence:

ai =

{
	a1/2

i−1
 if ai−1 ≡ 0 (mod 2)

	a3/2
i−1
 if ai−1 ≡ 1 (mod 2)

These conjectures are similar to the Collatz conjecture in that they all con-
verge to a fixed value regardless of the value of the starting integer, see Table 1.

Table 1. Convergence of unsolved conjectures

Conjecture Convergence Modular Operand

3x + 1 1 mod 2 Integer
5x + 1 1 mod 2, 3 Integer
7x + 1 1 mod 2, 3, 5 Integer

Matthews 0 mod 3 Integer
Juggler 1 mod 2 Floating point, Integer

3 Overview of Our Obfuscator

Our proposed obfuscation technique complicates symbolic execution by intro-
ducing a spurious input variable and a loop from unsolved conjectures. The
additional spurious input variable affects the control flow of the program in such
a way that the trigger condition of the malicious behavior depends on this newly
added input variable. Therefore, the additional input variable has to be modeled

214 Z. Wang et al.

as a symbol in symbolic execution. A loop introduced by an unsolvable conjec-
ture is added to the control flow, typically at the trigger condition. This loop
adds a huge number of possible execution paths (growing exponentially) to the
program execution, and takes symbolic execution a long time to figure out the
original trigger condition.

Note that the introduction of the spurious input variable and the unsolved
conjecture do not hide the malicious behavior, a goal some existing obfuscator
tries to achieve [35]. What our obfuscator tries to do is to hide the condition
under which the malicious behavior is triggered, but not the behavior itself, al-
though our obfuscator could be used in conjunction with other tools to achieve
both. In addition, we try to hide the trigger condition without using crypto-
graphic operations so that the obfuscated code is less suspicious.

Figure 2 demonstrates the idea with a simple example. Figure 2a shows a
simple code segment where do_m() is some malicious behavior with a trigger
condition x==30. This is a program easily analyzed with symbolic execution.
Figure 2b shows a code segment with a while loop. In the loop body, the variable
y is updated in different ways according to certain condition on y. This code
segment is hard to be analyzed by symbolic execution because the value of y
depends on the number of times the loop body gets executed, which is hard to
be figured out.

Now if we try to obfuscate the code segment in Figure 2a by introducing
a spurious variable and a loop as shown in Figure 2b, we can see that the
trigger condition of the malicious behavior is no longer static but depends on the
spurious variable, whose value depends on the number of times the body executes
(see Figure 2c). Intuitively, this is hard to analyze with symbolic execution.

However, there is one important issue we have not discussed — how do we
make sure that the semantics of the program does not change after the obfusca-
tion. In other words, although symbolic execution has a hard time figuring out
the number of times the body executes in the loop, are we (as the programmer)

i f (x == 30) {
do m () ;

}

(a) Malicious code
with trigger condi-
tion

whi l e (y > 1){
i f (y % 2 == 1){

y = 3 ∗ y + 1 ;
}
e l s e {

y = y / 2 ;
}

}

(b) Collatz conjecture

// x : use r input
// y : spu r i ou s v a r i a b l e

y = x + 1000 ;
wh i l e (y > 1){

i f (y % 2 == 1){
y = 3 ∗ y + 1 ;

}
e l s e {

y = y / 2 ;
}
i f ((x − y > 28) &&

(x + y < 32)){ // cond .
do m () ;
break ;

}
}

(c) Obfuscated code

Fig. 2. An example

Linear Obfuscation to Combat Symbolic Execution 215

able to figure that out? Answer is yes, thanks to the unsolved conjecture as
shown in Figure 1. This unsolved conjecture simply says that y will converge
to 1 regardless of its initial value. With this, we can work out the condition
(cond. as in Figure 2c) to be introduced in the obfuscated code under which the
malicious behavior executes.

Note that our proposed obfuscator might be susceptible to pattern recognition,
assuming that the unsolved conjecture we use is known. This could be solved by
randomly choosing various unsolved conjectures, variations to cond. according
to the particular unsolved conjecture used, or combining with other existing
obfuscation techniques (e.g., opaque constants [29]). We discuss this further in
Section 6.

4 Implementation

Having explained the basic idea as introducing a spurious input variable and
adding a loop from unsolved conjectures, we turn to the implementation details
in this section. Here we assume that the source code is available for obfuscation.
The same idea can be easily applied to binaries since the obfuscated code we
insert is simple and involves linear operations only.

4.1 Adding a Spurious Variable

In most cases, only variables derived from program inputs are taken as symbolic
variables in symbolic execution [18,10,2]. We therefore have to make inserted
spurious variables dependent upon program inputs.

This is not difficult since the Collatz conjecture hold regardless of the initial
value of the variable. For example, if we assume that x represents a program
input, our spurious variable y can be made dependent on it by y = x + c where
c is a constant, or y = x+ gettimeofday(), or y = x+ rand() where the relation
between y and x is more complicated.

However, it is not the case that the more complicated the relationship between
y and x is, the longer symbolic execution takes. Symbolic execution does not
support some complex operations, e.g., pointer manipulations, floating point
operations, etc. When it is obvious that the variable is impossible to reason
about symbolically, concrete values will be used to simplify the constraints to
continue the symbolic execution. Therefore, we want to make the dependence
complicated but not to the extent of being skipped by symbolic execution. We
use linear polynomial with normal operations in our experiments (see Section 5).
In the example shown in Figure 2, we simply use y = x + 1000.

4.2 Choosing an Unsolved Conjecture

Some requirements when choosing an unsolved conjecture include

– Convergent: the loop converges.
– Partially decidable: although no proof exists, it has been tested that the

terminating condition is known under certain range.

216 Z. Wang et al.

– Machine implementable: it can be easily implemented in common pro-
gramming languages.

– Simple/Linear: the implementation is simple and involves linear operations
only.

All the examples shown in Section 2 satisfy these requirements.
Although the objective of our obfuscation is to confuse symbolic execution but

not to combat pattern recognition, program analysts who know our obfuscation
technique might create signatures of the unsolved conjectures and the corre-
sponding convergence values to de-obfuscate the program. We discuss two ways
of introducing variations to make such pattern recognition difficult. Section 6
also discusses the similarity of an implementation of the unsolved conjecture
with the implementation of simple arithmetic algorithms.

In order to use the unsolved conjecture to obfuscate the malicious code, we
need to insert a trigger condition within the loop under which the malicious
behavior will execute. Intuitively, this trigger condition is related to the converge
value of the conjecture (see Table 1), which is a constant regardless of the starting
integer value. We can introduce variations to the trigger condition, y == 1 in
the case of Collatz conjecture, by backtracking a few rounds before the loop
actually terminates. For example, y == 2 can be used as the trigger condition
when we backtrack one round, and y == 4 for two rounds.

Another variation we can introduce is for the condition of the loop. This
condition is actually unimportant as long as it allows the loop to continue before
reaching the trigger condition. Therefore, it can be chosen from a large number
of options, including conditions on the converge value (e.g., while (y > 1)),
conditions on the max stopping time of loops (e.g., for (i=0; i<1000; i++)),
etc. For Collatz conjecture, the stopping times of positive integers from 1 to 231

are all less than 1000.

4.3 Inserting Trigger-Based Malicious Code into the Unsolved
Conjecture

Now we have introduced a new spurious variable y = x + 1000 (Section 4.1)
and an unsolved conjecture with a trigger condition y == 1 (Section 4.2). The
next is to insert the malicious code into the unsolved conjecture and to modify
the trigger condition accordingly to preserve the semantics of the original code.
Depending on the original trigger condition of the malicious code, we modify it
in three different ways.

– > or ≥ (e.g., x ≥ 30): Since the spurious variable is always greater than
or equal to 1 in the loop, x− y ≥ 30− 1.

– < or ≤ (e.g., x ≤ 30): Similarly, we have x + y ≤ 30 + 1.
– == (e.g., x == 30): This is equivalent to the intersection of two inequalities

x ≥ 30∩x ≤ 30, and therefore we have x+y ≥ 31∩x−y ≤ 29 (also equivalent
with the code segment shown in Figure 2c).

We implement the automatic obfuscator which takes input the original source
code in C and output obfuscated code to be compiled. We apply the obfuscator on

Linear Obfuscation to Combat Symbolic Execution 217

Table 2. Overhead in size of obfuscated binaries

Malware Size of original binary
Increase in size (bytes) after obfuscation

Before memory alignment After memory alignment

Blaster 29,426 72 64
Mydoom 28,240 46 64
NetSky 36,182 60 64

three malware samples, Blaster [22], MyDoom [16], and NetSky [36] to evaluate
the overhead in size in the obfuscated binaries. Table 2 shows the results.

Blaster is a worm that exploits the DCOM RPC vulnerability. It only triggers
its malicious behavior (DoS attack against windowsupdate.com) if the system
date falls into the range of Aug 16 and Aug 31. The trigger condition in the
original code is implemented by two if statements which are both obfuscated
by our technique. We find that the obfuscated binary code increases by 72 and
64 bytes in its size before and after memory alignment, respectively.

Mydoom is a mass-mailing worm that performs a DoS attack on Feb 1, 2004
starting at 16:09:18 UTC. NetSky is another mass-mailing worm that uses its
own SMTP engine to send itself to the email addresses it finds on compromised
systems. It only launches the attack on Oct 11 2004. We obfuscate the trigger
condition (date and time) for these two malware samples, and find that the in-
crease in size is also 64 bytes after memory alignment, which is hardly noticeable.

5 Security Evaluation

In this section, we first test the effectiveness of our obfuscation on an example
with one branch condition, the running example as shown in Figure 2, to eval-
uate its resistance to symbolic execution. Although this example is very simple,
results show that there is very little likelihood to find the trigger input by rea-
soning about the obfuscated code symbolically. We then continue to discuss if
the evaluation results on such a simple example are general in other more com-
plicated programs. We used a machine with a six-core processor running at 3.0
GHz and 4 GB of RAM to do symbolic execution.

5.1 Strategy Used by Program Analyzers

In order to evaluate the effectiveness of our obfuscator in confusing automatic
program analyzers that employ symbolic execution, we first discuss the strategy
used by the automatic program analyzer.

Recall that the objective of our obfuscation is to hide the trigger condition
but not the malicious behavior. Also recall we assume that the program analyzer
does not find out the trigger condition by pattern matching due to the variations
we introduce to the trigger condition; see Section 4.2. An automatic program
analyzer’s strategy is described as follows.

windowsupdate.com

218 Z. Wang et al.

1. Pick an initial program input y0;
2. Dynamically monitor the execution of the program under the chosen input

yi. If the malicious behavior is observed, the trigger condition is found to be
yi;

3. Collect the branch conditions along the execution trace and negate the last
condition on the trace;

4. Use a solver to solve for a new program input that satisfies the new sequence
of conditions (with the last one negated) as well as the immediate condition
of the malicious behavior (cond. as in Figure 2c). Let yi+1 equal to the new
input if it can be found and go to step 2; if the new input cannot be found,
negate the next (towards the start of the sequence) condition and send it to
the solver until a new input can be found.

In the example as shown in Figure 2c, the trigger condition is y == 1030 (i.e.,
x == 30). Assume that the program analyzer picks y = 1158 as the initial input,
which will result in a sequence of true/false results in evaluating the condition
y % 2 == 1 in each iteration of the loop. Table 3 shows the value of y, the eval-
uation result of the condition in some of the iterations for the trigger condition
y == 1030 and an initial input of y == 1158.

Table 3. Dynamic traces with an initial input of 1030 and 1158

y = 1030 y = 1158

iteration y y % 2 == 1 iteration y y % 2 == 1 STP result

1 1030 false 1 1158 false

2 515 true 2 579 true

3 1546 false 3 1738 false

...

9 145 true 9 163 true

10 436 false 10 490 false

11 218 false 11 245 true true

...

123 4 false 30 4 false false

124 2 false 31 2 false false

125 1 true 32 1 true false

Table 3 also shows the result of the solver when the program analyzer tries
to find the next input. The STP solver keeps returning false, i.e., cannot find a
valid input satisfying the given condition sequence, until iteration 11. Once STP
returns the next program input, the program analyzer goes back to step 2 and
tries again.

This process terminates until the malicious behavior is observed and the trig-
ger condition is found. The reason why the last condition is negated first is
because we assume that the program analyzer is able to guess an initial input
that is close to the trigger condition. This is a reasonable assumption since the

Linear Obfuscation to Combat Symbolic Execution 219

trigger condition is usually context dependent. Under such an assumption, the
program analyzer would like to choose the next y as one that results in a very
similar program execution trace as the earlier one, which has a higher probability
of getting closer and closer to the actual trigger condition during the experiment.

5.2 Probability of Finding the Correct Trigger Condition

Assuming that the trigger condition is unique, and the solver always manages to
find the next input if there exists one that satisfies the given condition sequence
(if multiple ones satisfy the condition sequence, a random one will be returned),
we notice that the solver finds the next input exactly at iteration i where for
all j ≤ i the corresponding looping condition cj = (y%2 == 1) evaluates to the
same result as in the trigger condition. In the example shown in Table 3, this
means that for all j ∈ [1, 10], cj evaluates to the same value in both y == 1030
and y == 1158 while c11 evaluates to different values. This can be proven easily
because if the solver finds the next input any earlier, it contradicts with our
assumption that the trigger condition is unique.

To discuss the probability of finding the correct trigger condition with sym-
bolic execution, we use the following notations in Table 5.2.

Table 4. Notations used

t the trigger input (1030 in our example)

x the program input used by the analyzer

f(x) the number of iterations executed before x converges to 1

g(x) largest i s.t. for all j ≤ i, cj is the same for t and x

s(n) the number of different x s.t. g(x) = n

z(x) the time taken to find the next input x

Table 5 shows the evaluation of some random x. Intuitively, f(x) gives us an
idea how long it takes to finish monitoring the execution of the program under
input x. g(x) evaluates how close x is with the trigger input t. The difference
between f(x) and g(x) indicates the number of times the solver is invoked before
it manages to find the next valid input x. An interesting observation here shows
that z(x) is not proportional to f(x)− g(x). This is because the time taken for
the solver depends on the complexity of the conditions. z(x) is dominated by the
last few tests with complex conditions (closer to g(x)), and is therefore mainly
dependent on the value of g(x).

The last two columns in Table 5 show the value of s(n). Intuitively, the larger
s(n) is, the more likely the solver returns the next input x such that g(x) = n.
There exists some g(x) values that do not correspond to any possible x (s(g(x)) =
0), as shown in Figure 3. Since s(n) =

∑g(t)
i=n+1 s(i), the nonzero s(n) values

decrease by half with the increase of n. Therefore,

Pr (g(xk+1) = g(xk) + n) =
1
2m

220 Z. Wang et al.

Table 5. Statistics for different initial values of x picked

x f(x) g(x) z(x) s(g(x)) s(g(x) + 1)

1158 32 10 19.14s 33554431 16777215
17414 142 20 878.4s 262144 131072

1049606 153 31 878.4s 4096 2048
134218758 326 43 5178.9s 32 16
2147484678 179 50 1083.6s 2 1

1030 125 125 1

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 109

G(x)

in
pu

t v
al

ue

Max
Min
Mean
Standard Deviation
Count

Fig. 3. Distribution of initial inputs for different g(x)

where m is the number of nonzero s(g(x)) values between g(xk) and g(xk+1).
For example,

Pr(xk+1 = 17414|xk = 1158) = 262144/33554431 = 0.0078

where xk+1 is the return of our solver after monitoring the execution with input
xk.

Appendix A shows the continuous scripts of the program analyzer for initial
inputs x = 1158 and x = 1034, which confirms our intuition in the probability of
g(xk+1) shown above. This shows that it is unlikely the program analyzer gets
lucky and the solver returns the trigger condition in the beginning of the study.
More likely the program analyzer will take one step closer each time the solver
returns an input, just like the scripts shown in Appendix A. The total times
needed to find the correct trigger condition are 16871.24 and 21709.1 seconds,
respectively, for the two initial inputs.

5.3 Choice of Initial Input

Section 5.2 shows that the program analyzer most likely will take one step closer
to the trigger condition t (with an input x that has a slightly larger g(x)) every
time the solver returns an input for some particular initial input. In this section,
we show that the result presented in Section 5.2 can be generalized to other
initial inputs. Figure 3 shows the distribution of initial inputs x ∈ [1, 232] for
different g(x) for the trigger condition t = 1030. Appendix B shows that similar
distribution is found for eight random values of t.

It is obvious from Figure 3 that there are more initial values with smaller
g(x). The number of initial input values continues to drop until it reaches zero for

Linear Obfuscation to Combat Symbolic Execution 221

g(x) > 50, with a single exception when x = t which results in g(x) = g(t) = 125.
Recall that g(x) is an indication of how close x is with t, this means that there
are fewer possible values of x when it comes closer to t, which means that the
strategy of randomly picking other values of x does not usually give the program
analyzer an advantage in finding t. The strategy shown in Section 5.2 is still a
reasonably good strategy.

Looking at the mean values, we notice that it is not a continuous line, although
the mean is always around 2 × 108. It is not a close line mainly because there
exists many g(x) values that do not correspond to any possible x. As we explained
earlier, there are many scenarios where the solver might not be able to find any
inputs. A closer look into the original data reveals that the mean is always
around 216. This shows that there is very little bias in the distribution of x when
t is small, and therefore the program analyzer could not get much advantage by
choosing smaller/larger initial values.

This analysis shows that choose different initial inputs does not give the pro-
gram analyzer significant advantages, and the analysis results in Section 5.2 can
be extended to different initial inputs, as well as different trigger conditions (see
Appendix B).

6 Limitations

Our obfuscator is designed to make symbolic execution difficult in finding out a
trigger condition of malicious code. We show its effectiveness in some examples
and its security in Section 5. However, this obfuscator is not designed to solve
all obfuscation problems and there are some limitations to it.
Constants. Our obfuscator is not designed to obfuscate constants. In fact, we
introduce additional constants into the obfuscated code. To handle this problem,
our obfuscator can be used in conjunction with opaque constants [28] to hide
special characteristic of the obfuscation.
Malicious behavior. Our obfuscator is not designed to hide the malicious code,
but the condition under which the malicious code will be executed. A malware
author can introduce existing code mutation techniques, such as polymorphism
and metamorphism, to make it difficult to analyze the malicious behavior.
Pattern matching. The unsolved conjectures introduced by our obfuscator might
introduce special patterns that can be identified. Besides using different conjec-
tures shown in the section 2.4 and introducing variations as discussed in Section 4,
here we show that the control flow of our unsolved conjectures is very similar to
some common program algorithm, which makes pattern matching difficult.

Figure 4 shows that the control flow of the two code segments are similar. We
also use one of the most sophisticated binary difference analyzer, BinHunt [17]
to analyze the similarity of various binary codes, and show the results in Table 6.
Results show that our obfuscated code is very similar to the code of quick sort.

Larger set of triggered inputs. In our analysis we assume that there is a single
integer that satisfies the trigger condition, and show that symbolic execution has

222 Z. Wang et al.

(a) A quick sort algorithm (b) Our obfuscated code

Fig. 4. Control flow comparison

Table 6. Binary difference analysis (larger matching strength indicates higher
similarity)

Matching strength Our obfuscated code Select sort Bubble sort

Quick sort 0.85 0.49 0.38

a hard time figuring it out. However, the probability results may change when
there is a larger set of inputs that satisfy the trigger condition.

Execution overhead. Our obfuscator introduces some additional overhead to the
execution of the program due to the loop added. This is usually not a concern
when it is applied in a malicious program. However, it may be an issue when the
technique is used to obfuscate legitimate programs.

7 Conclusion

In this paper, we introduce a novel obfuscator that makes symbolic execution
difficult in finding trigger conditions. Our obfuscator applies the concept of un-
solved conjectures and adds a loop to the obfuscated code. Experiments show
that symbolic execution will have a hard time unrolling the loop and therefore
inefficient in figuring out the trigger condition under which certain code segment
will be executed. Our security analysis shows that there does not exist other ana-
lyzing strategy in making the analysis simpler, even when different initial inputs
are used or when the trigger condition is different.

Acknowledgments. The authors thank the anonymous reviewers for their sug-
gestions. This work was supported by the National Natural Science Foundation

Linear Obfuscation to Combat Symbolic Execution 223

of China under grant 60973141, the Natural Science Foundation of Tianjin un-
der grant 09JCYBJ00300 and the Specialized Research Fund for the Doctoral
Program of Higher Education of China under grant 20100031110030.

References

1. Boonstoppel, P., Cadar, C., Engler, D.: RWset: Attacking path explosion
in constraint-based test generation. In: Ramakrishnan, C.R., Rehof, J. (eds.)
TACAS 2008. LNCS, vol. 4963, pp. 351–366. Springer, Heidelberg (2008)

2. Brumley, D., Hartwig, C., Kang, M.G., Liang, Z., Newsome, J., Poosankam, P.,
Song, D., Yin., H.: Bitscope: Automatically dissecting malicious binaries. Technical
report cs-07-133, School of Computer Science, Carnegie Mellon University (March
2007)

3. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Poosankam, J., Song, D., Yin, H.:
Automatically identifying trigger-based behavior in malware. In: Botnet Analysis
in Defense, vol. 36 (2007)

4. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards automatic gen-
eration of vulnerability-based signatures. In: Proceedings of the 2006 IEEE Sym-
posimu on Security and Privacy (2006)

5. Brumley, D., Wang, H., Jha, S., Song, D.: Creating vulnerability signature using
weakest preconditions. In: Proceedings of the 2007 IEEE Symposium on Security
and Privacy (2007)

6. Caballero, J., Liang, Z., Poosankam, P., Song, D.: Towards generating high cov-
erage vulnerability-based signatures with protocol-level constraint-guided explo-
ration. In: Proceedings of the 12th International Symposium on Recent Advances
in Intrusion Detection (2009)

7. Caballero, J., McCamant, S., Barth, A., Song, D.: Extracting models of security-
sensitive operations using string-enhanced white-box exploration on binaries. Tech.
rep., Technical Report UCB/EECS-2009-36, EECS Department, University of Cal-
ifornia, Berkeley (March 2009)

8. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: Proceedings of the 2008
USENIX Symposium on Operating Systems Design and Implementation, OSDI
2008 (2008)

9. Cadar, C., Engler, D.: Execution generated test cases: How to make systems code
crash itself. In: Proceedings of the 12th SPIN Workshop (2005)

10. Cadar, C., Ganesh, V., Pawlowski, P., Dill, D., Engler, D.: EXE:automatically gen-
erating inputs of death. In: Proceedings of the 2006 ACM Conference on Computer
and Communications Security (CCS 2006) (2006)

11. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Technical report 148, Department of Computer Sciences, The University of
Auckland (1997)

12. Comparetti, P.M., Salvaneschi, G., Kirda, E., Kolbitsch, C., Kruegel, C., Zanero,
S.: Identifying dormant functionality in malware programs. In: Proceedings of the
2010 IEEE Symposium on Security and Privacy (2010)

13. Conway, J.H.: Unpredictable iterations. In: Proceedings of the 1972 Number The-
orey Conference (1972)

14. Costa, M., Castro, M., Zhou, L., Zhang, L., Peinado, M.: Bouncer: Securing soft-
ware by blocking bad input. In: Proceedings of the 2007 ACM Symposium on
Operating Systems Principles (SOSP) (2007)

224 Z. Wang et al.

15. Crandall, R.E.: On the ”3x + 1” problem. Mathematics of Computation 32, 1281–
1292 (1978)

16. Ferrie, P.: W32.Mydoom (2004), http://www.symantec.com/security_response/
writeup.jsp?docid=2004-012612-5422-99&tabid=2

17. Gao, D., Reiter, M.K., Song, D.: BinHunt: Automatically finding semantic differ-
ences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008.
LNCS, vol. 5308, pp. 238–255. Springer, Heidelberg (2008)

18. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: Proceedings of the ACM Conference on Programming Lanuguage Design and
Implementation (2005)

19. Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. In: Pro-
ceedings of the 15th Annual Network and Distributed System Security Symposium
(NDSS 2008) (2008)

20. Guy, R.K.: Unsolved problems in number theory. Problem Books in Mathematics
(2004)

21. King, J.C.: Symbolic execution and program testing. Commun. ACM 19, 385–394
(1976), http://doi.acm.org/10.1145/360248.360252

22. Knowles, D., Perriott, F.: W32.Blaster (2003), http://www.symantec.com/

security_response/writeup.jsp?docid=2003-081113-0229-99&tabid=2

23. Lagarias, J.C.: The 3x+1 problem and its generations. Amer. Math. Monthly 92,
3–23 (1985)

24. Lee, B., Kim, Y., Kim, J.: binOb+: a framework for potent and stealthy binary ob-
fuscation. In: Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security (2010)

25. Lee, G., Morris, J., Parker, K., Bundell, G., Lam, P.: Using symbolic execution
to guide test generation. Software Testing, Verification & Reliability 15(1), 41–61
(2005)

26. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static
disassembly. In: Proceedings of the 10th ACM Conference on Computer and Com-
munications Security (2003)

27. Molnar, D., Li, X., Wagner, D.: Dynamic test generation to find integer bugs in x86
binary linux programs. In: Proceedings of the 2009 USENIX Security Symposium
(2009)

28. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: Proceedings of the 2007 USENIX Security Symposium (2007)

29. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Proceedings of the 23rd Annual Computer Security Applications Conference
(2007)

30. Newsome, J., Brumley, D., Franklin, J., Song, D.: Replayer: Automatic protocol re-
play by binary analysis. In: Proceedings of the 13th ACM Conference on Computer
and and Communications Security (CCS 2006) (2006)

31. Popov, I.V., Debray, S.K., Andrews, G.R.: Binary obfuscation using signals. In:
Proceedings of the 2007 USENIX Security Symposium (2007)

32. Saxena, P., Poosankam, P., McCamant, S., Song, D.: Loop-extended symbolic ex-
ecution on binary programs. In: Proceedings of the 18th International Symposium
on Software Testing and Analysis (2009)

33. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: Proceedings of the 2010 IEEE Symposium on Security and Privacy
(2010)

http://www.symantec.com/security_response/writeup.jsp?docid=2004-012612-5422-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2004-012612-5422-99&tabid=2
http://doi.acm.org/10.1145/360248.360252
http://www.symantec.com/security_response/writeup.jsp?docid=2003-081113-0229-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2003-081113-0229-99&tabid=2

Linear Obfuscation to Combat Symbolic Execution 225

34. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for c. In:
Proceedings of 13th International Symposium on the Foundations of Software En-
gineering, FSE 2005 (2005)

35. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Impeding malware analysis using con-
ditional code obfuscation. In: Proceedings of the 15th Annual Network and Dis-
tributed System Security Symposium (NDSS 2008) (2008)

36. Shinotsuka, H.: W32.NetSky (2004), http://www.symantec.com/security_

response/writeup.jsp?docid=2004-030717-4718-99&tabid=2

37. Silva, T.O.: Computational verification of the 3x+1 conjecture. Tech. rep., Elec-
tronics, Telecommunications, and Informatics Department,University of Aveiro
(November 2010), http://www.ieeta.pt/~tos/3x+1.html

38. Wang, T., Wei, T., Lin, Z., Zou, W.: Intscope: Automatically detecting inte-
ger overflow vulnerability in x86 binary using symbolic execution. In: Proceed-
ings of the 16th Annual Network and Distributed System Security Symposium
(NDSS 2009) (2009)

39. Xu, R.G., Godefroid, P., Majumdar, R.: Testing for buffer overflows with length
abstraction. In: Proceedings of the 2008 International Symposium on Software
Testing and Analysis (2008)

40. Yin, H., Song, D.: Panorama: capturing system-wide information flow for malware
detection and analysis. In: ACM Conference on Computer and Communications
Security (CCS 2007) (2007)

A Contineous Scripts of the Program Analyzer When
x = 1158 and x = 1034

Table 7. Complexity of symbolic formulas and average solving time

Round x g(x) f(x) z(x) # of STP nodes x g(x) f(x) z(x) # of STP nodes

1 1158 10 32 19.14 19107 1034 3 125 707.6 127543
2 1286 11 27 13.6 17613 1022 5 63 127.6 45602
3 1542 13 35 24.2 24076 550 7 93 464.4 124144
4 2054 14 38 31.2 26042 1222 8 40 38.4 24682
5 3078 15 36 27.3 26119 646 10 101 345.8 65050
6 5126 17 55 72.2 40000 4358 11 47 64.8 29976
7 9222 18 110 469.2 84462 518 13 124 621.6 125150
8 17414 20 142 878.4 110404 7174 15 120 598.5 128339
9 33798 22 60 98.8 44059 25606 18 127 654 131941
10 66566 24 56 70.4 41148 50182 20 66 124.2 57248
11 132102 26 101 345 76491 99334 22 116 413.6 85067
12 263174 28 102 288.6 86298 197638 24 148 892.8 145560
13 525318 29 90 244 68720 4326406 26 181 1286.5 150866
14 1049606 31 153 878.4 118753 1573894 29 76 141 58221
15 2098182 32 105 350.4 76268 6292486 32 228 1999.2 185416
16 4195334 34 137 710.7 105035 12583942 34 105 319.5 81474
17 8389638 36 169 824.6 147493 25166854 36 230 1978.8 188020
18 16778246 37 82 126 71580 100664326 39 139 750 138716
19 33555462 39 171 1188 129648 1946158086 41 135 639.2 137371
20 67109894 41 172 956.3 146783 2013266950 43 183 1162 161645
21 134218758 43 326 5178.9 281345 1879049222 44 306 4034.8 243945
22 268436486 44 174 975 147574 1610613766 46 249 2151.8 199218
23 536871942 46 175 993.3 148022 3221226502 48 177 1109.4 153689
24 1073742854 48 176 1024 147881 2147484678 50 179 1083.6 150026
25 2147484678 50 179 1083.6 150026

Sum of z(x) 16871.24 21709.1

http://www.symantec.com/security_response/writeup.jsp?docid=2004-030717-4718-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2004-030717-4718-99&tabid=2
http://www.ieeta.pt/~tos/3x+1.html

226 Z. Wang et al.

B Distribution of Initial Inputs for Different Trigger
Input t

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 109

G(x)

in
pu

t v
al

ue

Max
Min
Mean
Standard Deviation
Count

(a) t =0x0000000a

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 109

G(x)

in
pu

t v
al

ue

Max
Min
Mean
Standard Deviation
Count

(b) t =0x00000020

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 109

G(x)

in
pu

t v
al

ue

Max
Min
Mean
Standard Deviation
Count

(c) t =0x00000406

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 109

G(x)

in
pu

t v
al

ue

Max
Min
Mean
Standard Deviation
Count

(d) t =0x000057f1

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 109

G(x)

in
pu

t v
al

ue

Max
Min
Mean
Standard Deviation
Count

(e) t =0x0007d57b

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 109

G(x)

in
pu

t v
al

ue

Max
Min
Mean
Standard Deviation
Count

(f) t =0x00a2355f

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 109

G(x)

in
pu

t v
al

ue

Max
Min
Mean
Standard Deviation
Count

(g) t =0x09c45b3f

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

x 109

G(x)

in
pu

t v
al

ue

Max
Min
Mean
Standard Deviation
Count

(h) t =0xc8435f73

DriverGuard: A Fine-Grained Protection on I/O

Flows

Yueqiang Cheng, Xuhua Ding, and Robert H. Deng

School of Information Systems,
Singapore Management University

{yqcheng.2008,xhding,robertdeng}@smu.edu.sg

Abstract. Most commodity peripheral devices and their drivers are
geared to achieve high performance with security functions being opted
out. The absence of security measures invites attacks on the I/O data
and consequently threats those applications feeding on them, such as
biometric authentication. In this paper, we present the design and im-
plementation of DriverGuard, a hypervisor based protection mechanism
which dynamically shields I/O flows such that I/O data are not exposed
to the malicious kernel. Our design leverages a composite of crypto-
graphic and virtualization techniques to achieve fine-grained protection.
DriverGuard is lightweight as it only needs to protect around 2% of the
driver code’s execution. We have tested DriverGuard with three input
devices and two output devices. The experiments show that DriverGuard
induces negligible overhead to the applications.

1 Introduction

Device drivers are often blamed as the main cause for system failures and security
breaches, mainly due to their enormous code size and the much higher bug rate
than other kernel code [5]. Various schemes have been proposed to improve
system reliability by isolating driver errors (e.g., Nook [25] and SafeDrive [32]),
or to defend against device I/O misuses for illegal memory accesses (e.g., BitVisor
[24] and schemes in [29]). In this paper, we study the other side of the coin: how
to protect driver operations, which is motivated by attacks on sensitive I/O
data, such as password keystrokes, fingerprint templates, sensor readings and
confidential print-outs.

As compared to applications and other kernel components such as system call
functions, driver operations or I/O flows are more attractive to malware targeted
at sensitive data for the following reasons. Firstly, there exist more loopholes to
exploit due to the complexity of I/O mechanisms and the abundance of driver
bugs. For instance, IRQ number sharing allows a malicious interrupt handler
to easily access another handler’s data. Another reason is that more drivers
handle raw data generated by or for hardware. In many applications, raw data
are more favorable to attackers as compared to derived data. For instance, a
user’s fingerprint template is life-long valid whereas a secret key derived from
the fingerprint template may remain valid only for a few hours. Furthermore,

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 227–244, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

228 Y. Cheng, X. Ding, and R.H. Deng

most commodity I/O devices nowadays are not encryption capable and raw data
are exposed to any code accessing them.

We aim to protect application-device data flows against the untrusted kernel
throughout the entire I/O lifecycle. In particular, we focus on those devices that
render raw data, e.g., sound cards and printers, or generate raw data for ap-
plications, e.g., seismic sensors and fingerprint scanners. We are less concerned
with disks and network adaptors, because these devices deal with derived data
from applications. Therefore, a simple solution to protect disk I/O and network
I/O is to encrypt the application data before and after I/O operations. In this
work, we present DriverGuard, a holistic and compact I/O protection system
making use of a combination of cryptographic and virtualization techniques.
We have implemented DriverGuard with slight changes on the drivers and the
hypervisor. Our experiments with several I/O devices demonstrate that Driver-
Guard imposes little overhead to the system and causes unnoticeable delays to
user applications. DriverGuard is complementary to many user space protec-
tion schemes such as BIND [23], Overshadow [4], PRECIP [26] and Terra [8]. A
composition of DriverGuard and a user-space protection scheme can protect the
whole lifecycle of data processing.

Our work is remarkably different from secure I/O [16,24, 29] and driver code
security. Secure I/O copes with those attacks misusing the I/O mechanism (espe-
cially DMA operations) for illegal memory accesses. Driver code security tack-
les software attacks, such as return-address attacks [3] and code injection at-
tacks [11], which gain the root privilege by attacking drivers. Although these
attacks do not necessarily target on I/O data, they are one of the threats con-
sidered in our study.

Organization. The next section discusses the related work. We present the
design of DriverGuard in Section 3, and the implementation details in Section 4.
Section 5 shows the evaluation of DriverGuard through our experiments. We
conclude the paper in Section 6.

2 Related Work

Data Flow Security. BIND [23] binds data and code and uses cryptographic
techniques to guarantee the integrity of data. However BIND is limited to derived
data. TERRA [8] builds an application specific domain with a trusted path from
the hypervisor to an application specific kernel, then to the application. Trusted
path schemes [10, 31] focus on providing a trusted GUI to user, protecting user
inputs to the intended applications. These two schemes only address security
issues at the driver-applications interface, whereas the battlefield of DriverGuard
is the entire I/O path. Bumpy [14] proposes to protect user keyboard inputs by
building a trust environment using Flicker [13]. It requires an encryption-capable
keyboard and therefore is not applicable to generic devices.

Secure I/O. Most existing results on secure I/O deal with I/O misuses where
an adversary attacks the system by exploiting the flexibility of I/O operations,
especially DMA. The schemes described below serve a different purpose from ours

DriverGuard: A Fine-Grained Protection on I/O Flows 229

and are not applicable to I/O flow protection. dAnubis [16] is a system monitor-
ing and analyzing device drivers using virtual machine introspection techniques.
BitVisor [24] is a hypervisor dedicated to I/O management and supports only
one VM. It uses a parapass-through mechanism whereby most I/O operations
from the guest pass through the hypervisor with some of them being intercepted.
The interception allows the hypervisor to protect itself and to perform security
functions. DMA security receives more attention since DMA-capable devices can
access memory without involving the CPU. In [30], a software based approach
is proposed whereby the hypervisor validates all DMA descriptors before they
are issued to the device. This approach is then extended to a hardware-based
approach by utilizing I/O memory management units (IOMMUs) in [29], which
deals with the bad-address fault, the invalid-use fault and the bad-device fault.

Hypervisor-Based System Security. Our scheme is also relevant to
hypervisor-based security systems. SecVisor [21] utilizes a small hypervisor to
prevent kernel code injection. Overshadow [4] protects device memory from un-
trusted software in user space. In HyperShield [17], a thin layer hypervisor is
plugged into a running OS without rebooting, so that it prevents illegal code ex-
ecution. Lares [19] is an architecture which establishes a secure environment for
security tools to actively monitor a guest domain. HookSafe [28] uses a hypervi-
sor to prevent kernel hooks from being hijacked. TrustVisor [12] is a tiny trusted
computing base which protects code and data integrity by leveraging hardware
features. Although these schemes take the rootkit as the adversary, they only
provide a generic protection, not geared for I/O protection. Therefore, an attack
on the I/O path might not be considered as adversarial in these schemes.

3 Design of DriverGuard

The objective of DriverGuard is to protect the confidentiality of a driver’s I/O
data from being attacked by a corrupted kernel. We remark that since I/O oper-
ations are heavily used, the low-overhead requirement is vital for the practicality
of DriverGuard.

3.1 Trust Model

The bedrock of our scheme is a trusted hypervisor beneath the guest domain.
Although there are known rootkit attacks on the hypervisor, we suppose that
secure boot-up and load-time attestation with the support of TPM [9] can ensure
the hypervisor’s security in the bootstrapping phase. The hypervisor then loads
itself into an isolated memory region with the highest privilege so as to block any
illegal accesses from a guest domain [1]. Other techniques such as HyperSafe [27]
can also be applied to ensure the hypervisor’s security. We assume the presence
of IOMMU protecting the hypervisor’s memory territory from being invaded by
DMA devices under the adversary’s control.

We do not trust the guest kernel since it is vulnerable to various attacks
such as return-oriented attacks [22,2,3] and code injection [11,21]. In our attack

230 Y. Cheng, X. Ding, and R.H. Deng

(a) An illustration of
the trust model. The
colored boxes represent
trusted components.

(b) A PCB accesses
the I/O data in plain-
text.

(c) A non-PCB, e.g.,
the memcpy() func-
tion, accesses the en-
crypted I/O data.

Fig. 1. Illustrations of DriverGuard’s trust model and the concept of PCB

model, we consider the subverted guest kernel as the adversary whose goal is
to acquire I/O data transferred by a driver. The malicious kernel can read or
write any memory region and any I/O port within the guest domain, but can
not subvert the hypervisor. The driver is treated as a benign executable which
actively demands I/O protection. We consider the scenarios that I/O requests
are issued from an application well-protected in user space. Existing schemes
such as Overshadow [4] can safeguard the application data against attacks from
other applications and the guest kernel. Figure 1(a) depicts the trust model
used in this paper. Note that hardware attacks such as bus sniffing are not
investigated in this paper. Neither is the denial-of-service attack whereby the
adversary attempts to sabotage I/O flows, instead of compromising the data.

Attacks. The attacks from the corrupted kernel are classified into two categories.
The malicious kernel can attack the device I/O controls such that the device
receives a manipulated I/O command and reads/writes data from/to regions to
the adversary’s advantage. This type of attacks requires the kernel to tamper
with I/O control related regions such as I/O ports and DMA descriptors to inject
commands or to modify the control region locations. The other type of attacks
are directly targeted on the I/O data. The kernel can attempt to access data
regions such as I/O data ports, MMIO data buffers, DMA buffers, the driver’s
memory regions and the application’s data buffer. Alternatively, the kernel can
attack the driver’s execution flow or runtime states, such as the stack.

3.2 Design Rationale

A straightforward approach is that the hypervisor arbitrates whether a control
flow can access the I/O data. It requires the hypervisor to introspect driver
operations, which is difficult to implement due to the semantic gap (e.g., lack
of details of driver operations) between the hypervisor and the driver. Consid-
ering the complexity of I/O operations, the workload on the hypervisor will
significantly downgrade the whole system performance.

DriverGuard: A Fine-Grained Protection on I/O Flows 231

Isolation is a widely used method to protect program executions. To apply
isolation on driver protection, one may propose location isolation or execution
isolation. Location isolation is to place drivers and the kernel’s I/O subsystem
a separated domain, e.g., an I/O domain and Domain 0, or the hypervisor’s
space, such that malware in the guest kernel can not attack them directly. These
approaches are efficient in terms of I/O performance. Nonetheless, the resulting
protection is weak because the TCB size is increased significantly due to the
drivers and the I/O subsystem.

In execution isolation, the drivers still reside in the untrusted guest kernel
while their executions are in a secure environment established by the hypervisor,
similar to TrustVisor [12] and Overshadow [4]. The generic execution isolation
is not applicable for driver protection, because I/O operations are featured with
frequent hardware interrupts and intensive driver-kernel interactions. Note that
if the I/O subsystem is also enclosed in execution isolation, it suffers from the
same drawback as in the location isolation approach.

We adopt the idea of execution isolation, however, at a micro-level. It is well-
known that most of the driver code is for housekeeping purposes, such as error
handling, resource allocation and cleaning up [7], with only a small portion
dealing with I/O data transferring. We further observe that among the code
for data transferring, only a few code blocks, e.g., an encoding function, need
to process the I/O data while the majority of them just move the data from
one memory location to another without necessarily knowing the content. Based
on these observations, we design DriverGuard as a fine-grained I/O protection
mechanism which distinguishes those security-sensitive driver code from the rest.
The hypervisor only needs to protect the executions of security-sensitive code
blocks (around 1% of the driver code according to our experiments) because
of the aforementioned driver code characteristics. The fine-grained protection
is coupled with a hypervisor-based access control mechanism. Different from
hypervisor introspection, access control does not impose comprehensive logics
on the hypervisor. Hence, the overall cost of DriverGuard is remarkably low. Its
performance is on par with the location isolation solution, however, the security
strength is much stronger.

3.3 Overview

By and large, DriverGuard is constructed using three lightweight protection
techniques as the building blocks: cryptography, access control and runtime pro-
tection. We use cryptographic techniques to protect all I/O data without inter-
fering with most of the driver and the kernel executions. For regions holding data
which cannot be protected by encryption, we resort to the hypervisor to enforce
access control. These plaintext data can only be accessed by a few designated
driver code blocks, whose executions are safeguarded by our runtime protection
mechanism. We refer to these code blocks as privileged code blocks (PCBs) in the
rest of the paper. By protecting the execution of PCBs, we successfully ensure
the whole I/O data security with minimal overhead since PCBs only constitute
a tiny fraction of the driver code.

232 Y. Cheng, X. Ding, and R.H. Deng

Privileged Code Block. We consider three types of PCBs in a driver. One type
of PCBs is the driver code blocks which make computation on the I/O data,
e.g., an encoding function. We call them computation-PCBs. The second type
of PCBs is the driver code blocks which issue I/O commands and parameters to
a device. We call them command-PCBs. This type of code is security sensitive
because their executions determine the locations of plaintext I/O data. The third
type of PCBs is the driver code blocks which initialize the driver’s cryptographic
key. Each driver generates its own key in the driver initialization step, such as
in module init. We call them key-PCBs.

The critical property of PCBs is that they must access critical information
in plaintext. It is desirable for a PCB’s size to be small without making any
function call to non-PCBs, because non-PCBs are unprotected and may com-
promise security. When a driver is loaded, the hypervisor is notified with the
locations of the driver PCBs and sets them as read-only in order to protect the
code integrity. A PCB is delimited by two hypercalls to request for and relin-
quish runtime protection. The runtime protection of a PCB means that when
the PCB is scheduled off from the CPU, the hypervisor seals its context and
cordons off all accesses to the data and states until it resumes its CPU control.

A high level view of DriverGuard’s protection mechanism is as follows. A
driver initially generates a secret encryption key in its key-PCB. The I/O data
remains encrypted by this key whenever the guest domain’s virtual CPU is not
controlled by the driver’s PCB. Within a computation-PCB, it may perform en-
cryption, decryption or encoding functions on the data. If a computation-PCB’s
decrypts the data, it either re-encrypts it or requests the hypervisor’s protection
when it ends. For I/O controls, the hypervisor ensures that the device’s I/O ports
or MMIO regions can only be accessed by the driver’s command-PCBs. With the
assistance of the hypervisor, the command-PCB checks whether the I/O buffer
address in use is legitimate before issuing the command to the hardware. Fig-
ures 1(b) and 1(c) illustrate the difference between a PCB’s and a non-PCB’s
I/O data accesses. Next, we explain the design of three building blocks and leave
the discussion of their integration in Section 4, since it involves the details of
I/O operations.

3.4 Access Control over Critical Regions

Since we do not rely on encryption-capable devices, encryption is not applicable
for data accessed by the hardware. To cordon off illicit accesses to those data,
we utilize the hypervisor’s access control mechanism. In general, there are two
types of regions for access control: the data regions and the control regions. The
former holds the raw data generated for or by the hardware while the latter
holds the I/O parameters for the hardware. According to their address spaces,
these regions are classified into memory regions and I/O ports, for which we
apply different access control methods by leveraging the hardware features and
the virtualization techniques available in the platform.

To intercept accesses to a protected memory region, DriverGuard sets the
attribute bits in the corresponding page table entries (PTEs), while to intercept

DriverGuard: A Fine-Grained Protection on I/O Flows 233

accesses to an I/O port, it clears the corresponding IOPL bits and sets up the
I/O bitmap. We use checkpoints1 in the rest of the paper to refer to both the
IOPL bits and the PTEs marked by the hypervisor for the purpose of access
interception. Although the aforementioned protection techniques are used in
many existing schemes, e.g., [4, 19], we are confronted with two new problems.
First, given a memory buffer address, the hypervisor must make sure that the
kernel can not bypass the checkpoint to access the region, which is challenging for
memory regions allocated by the kernel. Secondly, the hypervisor must ensure
that the sensitive I/O data is indeed placed in the region with a checkpoint.
The first problem demands a careful page table walk checking while the second
demands the I/O control integrity checking. We will present our solutions to
both problems in the next section.

3.5 Cryptographic Components

We introduce to the guest kernel a symmetric-key encryption function and a
decryption function, both of which can be called by any code. However, any write
access to these function’s code is denied by the hypervisor. We also add a key
generation function to the driver as a PCB. The security of the I/O data relies on
the secrecy of the driver’s key, rather than the secrecy of the decryption function,
which complies with the famous Kerckhoffs principle. The driver’s secret key is
securely generated based on a secret random seed supplied by the hypervisor.
The secret key is securely stored in a kernel space buffer priorly appointed by the
driver and can only be accessed by the driver’s PCBs escorted by the hypervisor.
This prevents any unauthorized code from decrypting the driver’s data, even
though the decryption function can be called arbitrarily.

3.6 PCB Execution Escorting

The third building block in DriverGuard is the runtime protection mechanism
that prevents a PCB’s execution from deviating its expected behavior. The pro-
tection is requested at the PCB’s entry and is relinquished at the exit via hy-
percalls. The hypervisor agrees to admit a control flow into the escorting only
when the request is issued from the driver’s PCB, and agrees to discharge a flow
from escorting only when the request is issued from the PCB presently under
escorting.

The PCB under the escorting is granted to access the critical data such as the
driver’s secret key and the I/O data, or to issue I/O commands. In our design,
the hypervisor lifts the checkpoints on those regions accessed by the PCB, and
restores them at the exit of escorting. Therefore, no duplicated exceptions or
page faults will be raised despite that the PCB may access the same region
multiple times within an escorted execution. An escorted PCB can be scheduled
off from the CPU for various reasons. In that case, the hypervisor intercepts this
event and restores all checkpoints. Meanwhile, it also securely saves the driver’s
1 Our definition of checkpoint has no relation with the checkpoint for rollback in dis-

tributed systems.

234 Y. Cheng, X. Ding, and R.H. Deng

0x1234

flow routine

checkpoint
lifted

0x1234 0x1234

checkpoint
restored

checkpoint
lifted

off CPU on CPU

Fig. 2. An illustration of runtime protection, where 0x1234 is an exemplary memory
address with a PTE checkpoint

runtime stack and sets up a breakpoint for the PCB’s upcoming CPU occupation.
As a result, other code’s accesses to the protected regions are denied. Figure 2
depicts a scenario of escorting. There are two methods for a PCB to restore the
protection on the data. A computation-PCB encrypts the data before it exits
from protection whereas a command-PCB requests the hypervisor to block all
accesses on the region. In the end, a hypercall is invoked by a PCB to relinquish
escorting.

4 Implementation

We build DriverGuard on top of the Xen hypervisor to protect the drivers run-
ning in a Linux guest domain. We systematically examine every step in I/O oper-
ations, from the device discovery to the application’s (or device’s) data fetching.
In order to adaptively protect the driver operations, the hypervisor needs to
store certain context information about the driver. We start with driver context
initialization since it is performed by the hypervisor during the guest domain
bootstrapping.

4.1 Driver Context Initialization

The context information of drivers is securely stored in three types of tables in
the hypervisor space. A device table specifies the management relation between
a driver and a device by paring their identifiers. For every protected driver, the
hypervisor maintains a PCB table and a region table. The former stores the
entry and exit addresses of all PCBs of the driver while the latter specifies the
memory regions and the I/O ports to protect. There are five types of regions
in the region table: 1) the application buffer; 2) the memory buffer allocated by
the driver for data processes; 3) the I/O data buffer such as DMA buffers; 4)
the control regions, including the I/O ports or MMIO regions for device control,
DMA descriptor queues, the transfer descriptor queues; and 5) the buffer holding
the driver’s secret key.

Device Table Initialization. When a guest kernel image is uncompressed, the
hypervisor inserts a hook function to the kernel to inform the hypervisor about

DriverGuard: A Fine-Grained Protection on I/O Flows 235

the device-driver association via a hypercall. The hypervisor then initializes the
device table accordingly. The hypervisor also sets the checkpoints for the kernel
structure maintaining the device-driver association. Whenever a driver takes the
ownership of a device, the hypervisor intercepts the event and updates the device
table properly.

PCB Table Initialization. The hypervisor also scans the driver code to obtain
the locations of PCBs. It records the addresses of escorting-entry hypercalls and
the addresses for escorting-relinquish hypercalls, and puts these pairs into the
PCB table. The driver’s initial code are considered as intact and the scanned
PCBs are therefore legitimate.

Region Table Initialization. The control regions used by a driver can either
be the default ones chosen by the manufacturer/the kernel or set by the driver.
In the first case, the hypervisor updates them when the driver is loaded as in
the device discovery step. In the latter case, the driver informs the hypervisor
via a hypercall about the protected regions or I/O ports.

4.2 Checkpoint Deployment

Given a memory region or an I/O port, the hypervisor sets up the corresponding
checkpoint to intercept and examine risky accesses. The detailed deployment
method is dependent on the virtualization environment. Due to the length limit,
we focus on deployment for paravirtualization domains and do not elaborate the
techniques in a hardware virtualization domain (HVM).

Memory Region Checkpoint. For a memory page P , the hypervisor walks through
the page tables according to CR3 register to locate the PTE pointing to P . The
hypervisor can set the attribute bits on the PTE to specify different access
rights. To set a page “read-only”, the PAGE RW bit is cleared; and to set a
page “non-access”, the PAGE PRESENT bit is cleared.

Because all protected regions are in kernel space, PTE updates are propagated
into the kernel portion of all other page tables in order to maintain consistency.
Note that in the paravirtualization setting, only the hypervisor updates page
tables. Therefore, those checkpoints will not be removed by the guest kernel.
The hypervisor also checks page tables to remove double mappings pointing to
protected memory regions using the method in HyperSafe [27].

I/O Port Checkpoint. I/O ports do not belong to the memory address space.
During the launch of a paravirtualization domain, the hypervisor clears the IOPL
bits of EFLAGS of the guest’s virtual CPU. Namely, it sets the I/O privilege level
to 0, such that the hardware always checks the I/O bitmap for PIO instructions
because the guest kernel runs in Ring 1. Then, the hypervisor sets the bits
corresponding to the protected I/O ports such that a PIO instruction will cause
a general protection exception.

236 Y. Cheng, X. Ding, and R.H. Deng

4.3 PCB Execution Escorting

PCB Admission. A driver’s PCB starts with the hypercall which takes as the
parameter the buffer address it requests to access. To admit a PCB, the hyper-
visor checks whether the hypercall is issued from the instruction whose address
is registered in the PCB table. If not, the hypervisor rejects the request.

For an admitted PCB, the hypervisor has two tasks. One is to set a local
breakpoint at function switch to, which is the kernel function for a CPU
context switch. The other task is for stack protection. The hypervisor allocates
a dummy stack for the PCB. Therefore, an admitted PCB has two runtime
stacks. A genuine stack is used for the PCB’s execution while the dummy stack
is used for untrusted code sharing the same execution flow due to interrupts.
Figure 3 below describes the details of the PCB admission algorithm, where
InEscorting is a flag bit indicating the current execution state.

Admission Algorithm

1) Fetch the EIP value stored at the top of the current guest kernel stack, which is the
return address of the hypercall.
2) If EIP does not match any entry in the PCB table, return error.
3) If the address of requested buffer is legitimate, then

a) set InEscorting to 1;
b) set a breakpoint at the entry of switch to function.
c) If the guest’s kernel stack segment is not a dummy stack, then

(i) allocate a dummy stack at the reserved space.
(ii) save the machine addresses of the dummy stack and the present stack as

(MA′
ss, MAss). Return 0.
d) else, switch to the corresponding genuine stack. Return 0.

6) Return -1 as an error message for admission failure.

Fig. 3. Algorithm for PCB admission

Escorting. Once a PCB is admitted by the hypervisor, its execution is escorted
and the checkpoints for the buffers it accesses are temporarily lifted. The essence
of escorting is that the hypervisor intercedes whenever the PCB is scheduled
off from the CPU, which takes place in two scenarios. One is that the PCB
relinquishes the CPU and the other is due to hardware interrupts. Both cases
open the door to attacks. We design a mechanism to intercept the CPU context
switch and to use dummy stacks for untrusted control flows. The interception is
via the interrupt handler and the exception handler as explained below.

Interrupt. To switch to a dummy stack, the hypervisor only replaces the
content of the PTE for the present stack with the machine page number of the
dummy stack allocated during admission. This change is transparent to any guest
process, since the address in ESP register remains the same. Hence, the guest

DriverGuard: A Fine-Grained Protection on I/O Flows 237

kernel is not able to access the true stack while the subsequent execution can
use the dummy stack without being affected. The algorithm for stack switching
and checkpoint restore is shown in Figure 4.

Interrupt Handler Algorithm

(1) If InEscorting = 0, return.
(2) Restore the checkpoints that are removed during escorting.
(3) Switch to the dummy stack, by setting the PTE for the guest’s stack base to point
to MA′

ss.
(4) Set InEscorting = 0. Remove the breakpoint at switch to function.
(5) Set a local breakpoint at the instruction pointed by EIP. Save the address pair in
EIP and ESP.
(6) Return and pass the control to the default interrupt handler.

Fig. 4. Interrupt handler algorithm for stack switching and checkpoint restore

Debug Exception. All breakpoints used by the hypervisor are local break-
points. Therefore, they are triggered only for the present process. There are two
types of local breakpoints used in DriverGuard. One is for the CPU context
switch interception. For this breakpoint, the hypervisor exits from escorting and
restores checkpoints, in a similar fashion to the interrupt handling.

The other type of breakpoints is to intercept the event of PCB resuming. For
this type of breakpoint, the hypervisor enters into escorting only when both EIP
and ESP values match the previously saved EIP and ESP pair. The hypervisor
can distinguish these two types of debug exceptions easily by checking whether
it is in escorting mode. The algorithm details are shown in Figure 5.

PCB Exit. To exit from the hypervisor escorting, the PCB issues another hy-
percall. The hypervisor checks if InEscorting is set. If not, it returns an error
message; otherwise, it clears InEscorting flag. The PCB should also issue a hy-
percall to protect its data if the data are left in plaintext. The hypervisor sets no
more breakpoints and will handle future interrupts and exceptions in the normal
way.

4.4 Region Access Control

A risky access to a memory region with a checkpoint causes a page fault and an
access to an I/O port with a checkpoint throws out a general protection excep-
tion. Therefore, we modify the hypervisor’s page fault routine do page fault
and the general protection exception handler do general protection. In the
former, the hypervisor gets the address of the trapped instruction from EIP reg-
ister and the address being checked from CR2 register, while in the exception
handler, the I/O port number is enclosed in the instruction.

238 Y. Cheng, X. Ding, and R.H. Deng

Debug-handler Algorithm: Breakpoint address stored in EIP, the stack address
stored in ESP

/* Exit from Escorting */
(1) If InEscorting = 1 and EIP points to the entry of switch to, then

(a) execute step (2,3,4) of the IRQ-handler algorithm.
(c) Fetch task struct->thread ->ip, which is the address of the next instruction

for resuming the present flow. Denote it by EIPr. Save (EIPr,ESP) tuple.
(d) set a local breakpoint on EIPr and return 0.

/* Enter into Escorting */
(2) If there exists a saved (EIP′,ESP′) pair, s.t. ESP′ = ESP and EIP′ = EIP, then

(a) remove the breakpoint at EIP ;
(b) Restore to the genuine stack by replacing the stack PTE with MAss.
(c) set a local breakpoint at the entry of switch to function,
(d) Set InEscorting = 1, and return 0.

(3) Return -1 as an error message.

Fig. 5. Exception handler for escorting

If the access is granted by the hypervisor, the event will not be forwarded
to the guest kernel. In that case, The legitimate flow continues to execute the
intercepted instruction without being re-scheduled as the guest kernel does not
observe this exception. For unauthorized accesses, the page fault or exception is
passed to the guest kernel. DriverGuard is compatible with memory mapping for
page sharing because the checkpoints are deployed at the PTEs. A buffer mapped
to two addresses has two PTE checkpoints. In the following, we elaborate the
details of region access control according to all types of regions except the control
region.

Application Buffer. The application data buffer is the starting or ending
point of an I/O flow. We use the system call interception applied in [18] to get
the buffer address. The technique used in [18] is to replace the first byte of the
system call handler with instruction HLT, which causes a protection exception
and passes the control to the hypervisor.

I/O Buffer. The addresses of I/O buffers are obtained within an escorted
command-PCB. Since the I/O buffer contains the data to/from the device, they
are not protected by encryption. The hypervisor blocks all accesses not from
an escorted PCB. For an input buffer containing the data from the device, the
driver always encrypts the data before moving them to other locations, whereas
for an output buffer the driver must decrypt the data after copying them to the
output buffer.

Driver Buffer. Driver buffers are for the driver to temporarily hold data for
processing. When the data in those buffers are encrypted, the hypervisor does
not set up checkpoints for them. Only when the escorted PCB is temporarily
scheduled off from the CPU, the hypervisor sets up the checkpoints against all

DriverGuard: A Fine-Grained Protection on I/O Flows 239

accesses as the data are in plaintext. In this case, the PCB notifies the hypervisor
about the buffer address.

Key Buffer. The key buffer holds the secret key used by the driver. The
hypervisor allows the key to be read only from the instructions from the encryp-
tion/decryption functions (i.e. key-PCBs) and is currently in escorting mode.
Thus, other code can not access the secret key.

4.5 Device Control Protection

The hypervisor denies all write accesses to the region not from an escorted PCB,
and maintains the consistency between the I/O buffer address specified in an
I/O command and the buffer addresses requested by the device driver. This is
because the kernel may manipulate the I/O command such that the device uses
an unprotected I/O buffer for transferring. To defeat such attacks, the driver’s
command-PCB informs the hypervisor the locations of the I/O buffers in use,
such as the DMA buffer and the DMA descriptor queue. The hypervisor inserts
them in the region table and sets up the checkpoints accordingly. Therefore, it
ensures that the I/O buffer in use is always protected.

5 Evaluation

We have implemented DriverGuard and run experiments on five char devices to
evaluate the security and performance. We tested three input devices (a USB
keyboard, a web camera and a fingerprint reader) and two output devices (a
sound card and a printer). In principle, DriverGuard is applicable to network and
disk I/O as well. Nonetheless, as argued earlier, this type of I/O can be protected
using application level data encryption. Therefore, we do not experiment with
them. To demonstrate the effectiveness of DriverGuard, we ran it against three
kernel-level keyloggers [6, 15, 20]. None of the keyloggers is able to steal the
keystroke information.

5.1 Usage of PCB

In our experiments, we manually identify all PCBs on the source code of device
drivers and the drivers in the kernel’s I/O subsystems, e.g., a host controller
driver. It is straightforward to identify command-PCBs and key-PCBs, because
key-PCBs are introduced by DriverGuard while command-PCBs are the code
accessing port I/O, MMIO or structures used by devices (e.g., frame list of
UHCI). Identifying computation-PCB requires the semantic knowledge of the
code. We trace the I/O data to spot code segments computing on the I/O data.
Note that code segments for copying or moving data are not PCBs.

Table 1 lists all the involved drivers used in our experiments and the number
of PCBs in each of them. We found that a driver typically has only around ten
PCBs and each PCB has approximately 15 lines of code without making function
calls (except the encryption and decryption functions). The total PCB code only

240 Y. Cheng, X. Ding, and R.H. Deng

Table 1. The number of PCBs and the average size for each driver used in our ex-
periments. The drivers labeled with stars are those within the kernel’s I/O subsystem.
The PCB size includes the hypercalls and the calls to the encryption and decryption
functions.

Driver Size (LOC) # of PCBs Avg. PCB
Size (LOC)

Device

keyboard driver 4964 11 17 keyboard

HID∗ 12771 13 10 keyboard

UVC driver 7838 7 11 camera

EHCI∗ 10011 6 15 camera

HDA-Intel 47825 8 6 sound card

Sound-core∗ 18722 5 4 sound card

devio 1628 7 12 printer, fingerprint reader

UHCI∗ 7600 5 14 printer, fingerprint reader

account for 1�3% of the driver code. The tiny size of PCB and its simple logic
allow for high security assurance, as compared to protecting the execution of
thousands of lines of driver code.

5.2 Performance Evaluation

We experiment DriverGuard on a PC with Intel(R) Core(TM)2 Duo CPU E7200
@2.53GHz, 2GB main memory, running Xen 4.0.0 and a PV guest domain with
Linux kernel 2.6.31.13. DriverGuard adds only 1727 SLOC to the Xen hypervisor.
Our performance evaluation includes a cost measurement of DriverGuard’s com-
ponent functions and a set of application tests with five devices. We remark that
the I/O characteristic is favorable to our scheme as data generation/rendering
devices are usually much slower than the CPU. Therefore, DriverGuard does not
affect the driver performance since the device speed is the performance bottle-
neck.

We choose 128-bit RC4 as the encryption cipher in our implementation, be-
cause RC4’s compact code is easier to protect and does not significantly ex-
pand the PCB size. We instrument the DriverGuard code to measure the CPU
cycles consumed by its main components including the escort hypercalls, the
interrupt handler do IRQ, the debug handler do debug, the page fault
handler do page fault and the general protection exception handler
do general protection. Note that the encryption cost comprises the overhead
of loading the secret key which incurs one page fault and the hypervisor’s check-
point removal. The results are shown in Table 2.

For each device we have experimented with, we measure the overhead and
evaluate whether DriverGuard causes significant delay to the driver operation
and the applications. Table 3 shows all the measured results.

Keyboard. In our experiment, we measure the time cost of the interrupt han-
dler which moves the data from the keyboard to the tty buffer. Although the

DriverGuard: A Fine-Grained Protection on I/O Flows 241

Table 2. Cost of DriverGuard components

Components do IRQ do debug do page fault do general protection Encryption
1KB

CPU cycles 844 739 961 1813 23355

Table 3. Performance overhead of protected keyboard, camera, fingerprint, printer
and sound card I/O

keyboard
code transfer

camera
waiting

fingerprint
collection

1 page
print

sound card
open

without DriverGuard 0.053ms 33.24ms 2.61s 15.74s 7.8μs

with DriverGuard 0.138ms 33.38ms 2.63s 16.19s 12.3μs

percentage 160.40% 0.42% 0.77% 2.86% 57.7%

protected keyboard I/O is more than 2 times slower than the unprotected one,
it does not affect the application because it is still negligible as compared to the
speed of human keystrokes.

Camera. The web camera in our experiment is managed by the default Linux
UVC driver. When the camera is opened by an application, it continuously col-
lects video data and sends them to the application. The UVC driver’s interrupt
handler moves and decodes the data stream from the camera into a video frame,
which resides in the driver’s buffer mapped to the user space. The user applica-
tion can directly use the frame data like normal user-space data.We measure the
time overhead of the application’s waiting time for getting new data, which is a
key factor to the quality of the generated video stream. Although the interrupt
handler in protection is much slower due to the encryption of four pages data,
the drivers spends much more time in waiting for the camera’s data generation.
Thus, the cost of the interrupt handler does not cause the overall performance
degradation. We have also tested video chatting using Empathy 2.30.2, which is
a graphic instant messenger. We do not perceive delays in the experiments.

Fingerprint-Reader. Our fingerprint reader is the Upek Touchchip finger-
print sensor. In our evaluation experiment, we choose Fingerprint GUI 2 as the
application which uses the default Linux driver devio to communicate with the
fingerprint reader. When the fingerprint reader is active, the driver’s interrupt
handler continuously loads the collected fingerprint data into its buffers, which
are then fetched by Fingerprint GUI by calling the ioctl function. In our exper-
iments, we measure the whole I/O session of fingerprint collection.

Printer. The printer in our experiments is HP Officejet 7210 and the device
driver in use is devio. The print-process opens the printer and issues ioctl to
send data to the printer. After sending out the data, it waits for a signal sent

2 http://www.n-view.net/Appliance/fingerprint/index.php

http://www.n-view.net/Appliance/fingerprint/index.php

242 Y. Cheng, X. Ding, and R.H. Deng

back by the printer to close the printer. In our experiments, we measure the
turnaround time between the printer open and the printer close. Note that the
relative overhead drops if more pages are printed out.

Sound Card. The sound card in our test is Intel Corporation 82801I (ICH9
Family) HD Audio and the driver in use is HDA Intel. We run the application
Totem which plays MP3 files. Totem places its sound data into a user space
buffer, which is mapped into the DMA buffer specified by the driver. When the
music is playing, Totem directly sends data into mapped DMA region in user
space, and issues ioctl to synchronize and update information. The hardware
fetches the data from the DMA buffer directly without the driver’s involvement.
Hence, DriverGuard is only involved in protecting the control region so that the
kernel can not change the location of the DMA buffer in use. There is no cost for
DriverGuard during music playing, though the cost in opening the sound card
is high.

6 Conclusion

We have proposed DriverGuard which is a hypervisor-based system protecting
I/O flows between devices and applications, especially for devices generating data
or rendering data. DriverGuard protects I/O device control, I/O data transfer
and a driver’s data processing, against attacks from an untrusted guest kernel.
It is featured with fine granularity protection with strong security assurance and
low overhead. It only introduces 1727 SLOC to the hypervisor and a few lines to
the driver code. DriverGuard can work jointly with user-space data protection
schemes to safeguard the entire data lifecycle.

The main drawback of our scheme is the need for manually discover PCBs from
a driver, a process which requires the domain knowledge of the I/O data flow.
In our future work, we will investigate techniques to automate PCB discovery.
We will also consider extending our work to the multi-core platform.

Acknowledgement. We are grateful to Virgil Gligor and Adrian Perrig for
their constructive suggestions. We also thank the anonymous reviewers for their
helpful comments.

References

1. Bhargava, R., Serebrin, B., Spadini, F., Manne, S.: Accelerating two-dimensional
page walks for virtualized systems. In: ASPLOS XIII: Proceedings of the 13th
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 26–35. ACM, New York (2008)

2. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go
bad: Generalizing return-oriented programming to RISC. In: Syverson, P., Jha, S.
(eds.) Proceedings of CCS 2008, pp. 27–38. ACM Press, New York (2008)

3. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: Keromytis, A., Shmatikov,
V. (eds.) Proceedings of CCS 2010, pp. 559–572. ACM Press, New York (2010)

DriverGuard: A Fine-Grained Protection on I/O Flows 243

4. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.K.: Overshadow: A virtualization-based ap-
proach to retrofitting protection in commodity operating systems. In: Proceedings
of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2008), Seattle, WA, USA (March
2008)

5. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An empirical study of op-
erating systems errors. In: Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles, SOSP 2001, pp. 73–88. ACM, New York (2001),
http://doi.acm.org/10.1145/502034.502042

6. Gadgetweb.de: How to: Building your own kernel space
keylogger (2010), http://www.gadgetweb.de/programming/

39-how-to-building-your-own-kernel-space-keylogger.html

7. Ganapathy, V., Renzelmann, M.J., Balakrishnan, A., Swift, M.M., Jha, S.: The de-
sign and implementation of microdrivers. In: Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XIII, pp. 168–178. ACM, New York (2008), http://doi.acm.
org/10.1145/1346281.1346303

8. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual
machine-based platform for trusted computing. In: Proceedings of the 9th ACM
Symposium on Operating Systems Principles, pp. 193–206. ACM, New York (2003)

9. Trusted Computing Group: TPM main specification. Main Specification Version
1.2 rev. 85 (February 2005)

10. Langweg, H.: Building a trusted path for applications using cots components. In:
In Proceedings of NATO RTO IST Panel Symposium on Adaptive Defence in
Unclassified Networks (2004)

11. Lineberry, A.: Malicious code injection via /dev/mem. In: Black Hat (March 2009)
12. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: Trustvi-

sor: Efficient tcb reduction and attestation. In: Proceedings of the 2010 IEEE Sym-
posium on Security and Privacy, SP 2010, pp. 143–158. IEEE Computer Society,
Washington, DC, USA (2010), http://dx.doi.org/10.1109/SP.2010.17

13. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An execu-
tion infrastructure for TCB minimization. In: Proceedings of the ACM European
Conference in Computer Systems (EuroSys) (April 2008)

14. McCune, J.M., Perrig, A., Reiter, M.K.: Safe passage for passwords and other
sensitive data. In: Proceedings of the Symposium on Network and Distributed
Systems Security (NDSS) (February 2009)

15. Mercenary: Kernel based keylogger (2002), http://goo.gl/7qwmr
16. Neugschwandtner, M., Platzer, C., Comparetti, P.M., Bayer, U.: danuis - dynamic

device driver analysis based on virtual machine introspection. In: Proceedings of
the 7th Detection of Intrusions and Malware & Vulnerability Assessment (2010)

17. Nomoto, T., Oyama, Y., Eiraku, H., Shingawa, T., Kato, K.: Using a hypervisor
to migrate running operating systems to secure virtual machines. In: Proceedings
of the 34th Annual IEEE Computer Software and Application Conference (2010)

18. Onoue, K., Oyama, Y., Yonezawa, A.: Control of system calls from outside of
virtual machines. In: Proceedings of Symposium of Applied Computing (2008)

19. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: An architecture for secure
active monitoring using virtualization. In: Proceedings of the 2008 IEEE Sympo-
sium on Security and Privacy, pp. 233–247. IEEE Computer Society, Washington,
DC, USA (2008), http://portal.acm.org/citation.cfm?id=1397759.1398072

http://doi.acm.org/10.1145/502034.502042
 http://www.gadgetweb.de/programming/39-how-to-building-your-own-kernel-space-keylogger.html
 http://www.gadgetweb.de/programming/39-how-to-building-your-own-kernel-space-keylogger.html
http://doi.acm.org/10.1145/1346281.1346303
http://doi.acm.org/10.1145/1346281.1346303
http://dx.doi.org/10.1109/SP.2010.17
http://goo.gl/7qwmr
http://portal.acm.org/citation.cfm?id=1397759.1398072

244 Y. Cheng, X. Ding, and R.H. Deng

20. Phrack: Writing linux kernel keylogger (2002),
http://www.phrack.org/issues.html?issue=59

21. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity oses. In: Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Principles, SOSP 2007, pp. 335–
350. ACM, New York (2007), http://doi.acm.org/10.1145/1294261.1294294

22. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: De Capitani di Vimercati, S., Syverson, P. (eds.)
Proceedings of CCS 2007, pp. 552–561. ACM Press, New York (2007)

23. Shi, E., Perrig, A., Doorn, L.V.: Bind: A fine-grained attestation service for secure
distributed systems. In: Proceedings of IEEE Symposium on Security and Privacy,
pp. 154–168 (2005)

24. Shinagawa, T., Eiraku, H., Tanimoto, K., Omote, K., Hasegawa, S., Horie, T., Hi-
rano, M., Kourai, K., Oyama, Y., Kawai, E., Kono, K., Chiba, S., Shinjo, Y., Kato,
K.: Bitvisor: a thin hypervisor for enforcing i/o device security. In: Proceedings of
the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE 2009, pp. 121–130. ACM, New York (2009), http://doi.acm.
org/10.1145/1508293.1508311

25. Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the reliability of commodity
operating systems. In: Proceedings of the Nineteenth ACM Symposium on Operat-
ing Systems Principles, SOSP 2003, pp. 207–222. ACM, New York (2003), http://
doi.acm.org/10.1145/945445.945466

26. Wang, X., Li, Z., Li, N., Choi, J.Y.: PRECIP: Towards practical and retrofittable
confidential information protection. In: Proceedings of NDSS (2008)

27. Wang, Z., Jiang, X.: Hypersafe: A lightweight approach to provide lifetime hyper-
visor control-flow integrity. In: Proceedings of IEEE Symposium on Security and
Privacy (2010)

28. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight
hook protection. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, pp. 545–554 (2009)

29. Willmann, P., Rixner, S., Cox, A.L.: Protection strategies for direct access to virtu-
alized i/o devices. In: Proceedings of USENIX Annual Technical Conference (2008)

30. Willmann, P., Shafer, J., Carr, D., Menon, A., Rixner, S., Cox, A.L., Zwaenepoel,
W.: Concurrent direct network access for virtual machine monitors. In: Proceedings
of the 13th International Symposium on High Performance Computer Architecture
(2007)

31. Ye, Z.E., Smith, S., Anthony, D.: Trusted paths for browsers. ACM Trans. Inf.
Syst. Secur. 8(2), 153–186 (2005)

32. Zhou, F., Condit, J., Anderson, Z., Bagrak, I., Ennals, R., Harren, M., Necula,
G., Brewer, E.: Safedrive: safe and recoverable extensions using language-based
techniques. In: Proceedings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI 2006, pp. 45–60. USENIX Association, Berkeley (2006),
http://portal.acm.org/citation.cfm?id=1298455.1298461

 http://www.phrack.org/issues.html?issue=59
http://doi.acm.org/10.1145/1294261.1294294
http://doi.acm.org/10.1145/1508293.1508311
http://doi.acm.org/10.1145/1508293.1508311
http://doi.acm.org/10.1145/945445.945466
http://doi.acm.org/10.1145/945445.945466
http://portal.acm.org/citation.cfm?id=1298455.1298461

Time-Storage Trade-Offs for

Cryptographically-Enforced Access Control

Jason Crampton

Royal Holloway, University of London
jason.crampton@rhul.ac.uk

Abstract. Certain classes of authorization policies can be represented
as a directed graph and enforced using cryptographic techniques. Such
techniques typically rely on the authorized user deriving a suitable de-
cryption key using a secret value and public information. Hence, it is
important to find enforcement schemes for which little public informa-
tion is required and key derivation is efficient. These parameters are
related to the number of edges and the distance between nodes in the
graph associated with the authorization policy. In this paper we con-
sider ways in which two particular types of authorization graph can be
rewritten so that the number of edges and the greatest distance between
any two nodes are reduced, thereby providing the basis for more efficient
cryptographic enforcement.

1 Introduction

In a large multi-user computer system, it is usually the case that users will require
access to resources managed by that system, such as files and printers. However,
many resources may be sensitive – computerized personnel files, for example – so
access to those resources should be restricted. One of the fundamental security
services provided by a computer system is access control, a mechanism by which
the interaction between users and protected resources is constrained. Generally,
access control is “policy-based”: an authorization policy is defined, which spec-
ifies those interactions that are authorized; every attempt by a user to interact
with a protected resource is intercepted by the access control mechanism; and
the interaction is checked to see whether it is authorized by the policy or not.

The increasing trend towards out-sourcing the storage of data has seen a
resurgence of interest in cryptographic access control, in which data is stored
encrypted (perhaps by an “honest-but-curious” third party) and may be released
in that encrypted form to any user [13]. However, only authorized users possess
or can derive the decryption key.

An information flow policy [15] is a particular type of authorization policy
that is particularly well suited to cryptographic enforcement. There are a large
number of cryptographic enforcement schemes for information flow policies in
the literature (see [11] for a survey of such schemes). The security of such schemes
is increasingly well understood [2,6] and attention has turned to their efficiency
in recent years [4,5,10,14].

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 245–261, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

246 J. Crampton

The public storage requirements of an enforcement scheme are determined by
the number of edges in the graph associated with the authorization policy, while
the worst-case time complexity of key derivation is determined by the longest
directed path in the graph. Hence, the goal of recent work has been to rewrite the
graph by adding a relatively small number edges (and possibly nodes) to produce
a graph that contains the same, but significantly shorter, paths as those in the
original graph.

In this paper, we consider the efficiency of enforcement schemes for two re-
lated types of information flow policies. The graph of the first type, which is
used to define policies for scalable multimedia formats, resembles a square grid
and has not previously been studied from the perspective of efficiency. This grid
has 2n(n − 1) edges (where n2 is the number of nodes in the grid) and the
longest path is 2(n− 1). One of our results shows that we can define an equiv-
alent authorization graph in which the number of nodes is less than 4n(n − 1)
and the longest path is 4(

√
n − 1). In fact, this result is a corollary of a much

more powerful “master” theorem, which provides a tool for constructing many
different graphs offering different trade-offs. A study of this first type of autho-
rization policy yields fresh insights into the efficient cryptographic enforcement
of temporal authorization policies, which has been the subject of considerable
research in recent years [5,10,14].

There exists a large body of work on reducing the diameter of a directed
graph [8,16,18,19]. Previous work on deriving new access control graphs that
allow for efficient cryptographic enforcement has tended to use these “off-the-
shelf” techniques. One significant advantage of our work in this paper is that we
provide explicit constructions that are specific to the graphs under consideration.
This has two advantages: it is clear how to construct the new graph, something
that has not always been the case in related work; and we are able to provide
explicit, rather than asymptotic, bounds for the number of edges and longest
path, something that suggests our results will be more useful in practice.

In the next section, we briefly describe relevant background material. In Sec. 3
we introduce a number of simple constructions that provide an insight into the
more complex constructions that we will describe in Sec. 4. The main contribu-
tion of Sec. 4 is to prove Theorem 1, which yields many interesting corollaries
that give rise to concrete cryptographic enforcement schemes. We compare our
results with related work in Sec. 5 before summarizing our contributions and
identifying interesting areas for future work.

2 Graph-Based Authorization Policies

Let G = (L, E), where L is a set of security labels and E ⊆ L × L is a set of
directed edges. Let λ : U × O → L, where λ(u) denotes the security label of a
user u ∈ U and λ(o) denotes the security label of an object o ∈ O. Then (G, λ)
defines a graph-based authorization policy, where u ∈ U is authorized for o ∈ O
if and only if there exists a directed path from λ(u) to λ(o) in G. An information
flow policy is a special case of a graph-based authorization policy, in which the
graph is defined by a security lattice [15].

Time-Storage Trade-Offs for Cryptographically-Enforced Access Control 247

A graph-based authorization policy is particularly well suited to a crypto-
graphic enforcement model. Each node x ∈ L is associated with a secret value
κ(x), and, for each edge (x, y) ∈ E, we publish Encκ(x)(κ(y)), where Encκ(M)
denotes the encryption of message M using key κ. Then any user in possession
of κ(x) can derive κ(y) in one step if (x, y) ∈ E, and for any z on a path from
x containing d edges, κ(z) can be (iteratively) derived in d steps.1

In this paper, we will consider two particular types of information flow policies,
one that is used to implement access control for scalable multimedia formats and
one that is used to implement temporal access control. It turns out that these
types of policies have very similar sets of security labels, and results for the
first type can be easily applied to policies of the second type. We discuss these
policies in more detail in Sec. 2.3 and Sec. 2.4, respectively.

2.1 Derivation-Storage Trade-Offs

We could, trivially, give a user the key associated with each label for which she
is authorized, but this type of approach is rarely used. Most of the literature
on the cryptographic enforcement of graph-based authorization policies assumes
that each user has a single secret value and the keys for which she is authorized
are derived from this secret value. For schemes of this nature, the more public
information required by the scheme, the smaller the number of key derivation
steps required in the worst case.

Consider a partially ordered set (L, �), which can be represented by a directed,
acyclic graph (L, E). There are two obvious choices for the edge set E: one is
the full partial order relation �; the second is to omit all transitive and reflexive
edges from � to obtain the covering relation, denoted �. The graph (L, �) is
called the Hasse diagram of L, and is the standard representation of L as a
directed graph [12].

It can be seen that a cryptographic enforcement scheme for a directed graph
can be used specifically to enforce an information flow policy. We may use the
graph (L, �), in which case key derivation can always be performed in one step.
In contrast, key derivation may require a number of steps when we use the
graph (L, �). The trade-off here is that the second graph contains fewer edges
and hence the number of items of public information that are required to support
key derivation is smaller. The study of these kinds of trade-offs will be the focus
of this paper.

2.2 Correctness and Security

A key assignment scheme that enforces an information flow policy for (L, �)
must be correct and it must be secure. Informally, we say a key assignment
scheme is
1 There exist cryptographic enforcement schemes that are designed specifically for

posets, rather than arbitrary directed graphs. The Akl-Taylor scheme [1] – one of
the earliest examples of cryptographic access control, which was designed to en-
force the Bell-LaPadula simple security property – is one such example. For a more
comprehensive survey of such schemes see [11].

248 J. Crampton

– correct if each user can derive the keys for which she is authorized;
– secure if no set of users can derive a key for which none of them is authorized.

Recently, the notions of key recovery and key indistinguishability have been in-
troduced to capture in more formal terms what it means for a key assignment
scheme to be secure [2,6]. The scheme described above, in which the public in-
formation is

{
Encκ(x)(κ(y)) : (x, y) ∈ E

}
, provides security against key recovery

for any reasonable choice of encryption function. Such a scheme can be extended
to one with the property of key indistinguishability by associating a secret value
σ(x) with each node x, making κ(x) a function of σ(x) and using σ(x) to derive
σ(y).

For the purposes of this paper, it is sufficient to note that given a directed,
acyclic graph G = (L, E), there exists a key assignment scheme that has the
property of key indistinguishability, the amount of storage required is propor-
tional to |E| (the cardinality of E), and the number of derivation steps required
to derive κ(y) from κ(x) is the length of the shortest path between x and y in
G. The interested reader is referred to the literature for further details [2,6].

2.3 Access Control for Scalable Multimedia Formats

Scalable multimedia formats, such as MPEG-4 [17] and JPEG2000 [9], consist
of two components: a non-scalable base component and a scalable enhancement
component. Decoding the base component will yield low quality results. The
quality of the decoded data can be improved by decoding the enhancement
component as well as the base component. The enhancement component may
comprise multiple “orthogonal” layers, orthogonal in the sense that each layer
controls a distinct aspect of the quality of the encoded content. The MPEG-4
FGS (fine granularity scalability) format [17], for example, has a bit-rate layer
and a peak signal-to-noise ratio (PSNR) layer.

For scalable multimedia formats with two orthogonal layers, such as MPEG-4
FGS and JPEG 2000, each user and multimedia objected is associated with some
pair (x, y) (see [20] for further details). A user associated with (x, y) should be
able to decrypt a multimedia stream associated with (x′, y′), whenever x′ � x
and y′ � y. We will assume that each layer has the same number of levels,
although it is straightforward to generalize our results. Without loss of generality,
we will associate each level with an integer between 1 and n. Hence, the set of
security labels is defined by the set

Dn
def= {(x, y) : 1 � x, y � n}

with (x, y) � (x′, y′) if and only if x � x′ and y � y′. The Hasse diagram of
(Dn, �) has the form of a diamond, as illustrated in Figure 1(a) for the case
n = 4.

2.4 Temporal Authorization Policies

As its name suggests, temporal access control restricts access on the basis of
time. The use of cryptographic enforcement for temporal authorization policies

Time-Storage Trade-Offs for Cryptographically-Enforced Access Control 249

(1,1)

(1,2)

(1,3)

(1,4)

(2,1)

(3,1)

(4,1)

(2,2)

(3,2) (2,3)

(4,2) (3,3) (2,4)

(4,3) (3,4)

(4,4)

(a) (D4, �)

[1,1] [2,2] [3,3] [4,4]

[2,3][1,2] [3,4]

[2,4][1,3]

[1,4]

(b) (T4,⊆)

Fig. 1. The Hasse diagrams of (D4, �) and (T4,⊆)

was suggested by Bertino et al. [7]. We assume that time is divided into n
intervals, each of which is represented by a clock “tick” identified with an integer
between 1 and n. Users and objects are associated with an interval comprising
t � n consecutive natural numbers. We write [x, y] to denote the interval x, x +
1, . . . , y−1, y. The interval [x, x] corresponds to a unit interval representing clock
tick x. A user authorized for interval [x, y] must be able to derive keys for all
intervals of the form [x′, y′], x � x′ � y′ � y.

Henceforth, we write Tn to denote the set of intervals in [1, n]: that is,

Tn
def= {[x, y] : 1 � x � y � n} .

We denote the set of all intervals by Tn because the Hasse diagram of the partially
ordered set (Tn,⊆) is a triangular grid, as illustrated in Fig. 1(b). We may refer
to Tn as an n-triangle. A node of the form [x, x] ∈ Tn will be called a leaf
node. The set of leaf nodes corresponds to the totally ordered set of time points
1 < 2 < · · · < n.

3 Basic Constructions for Dm

We first define the notion of an enforcing set of edges. Given a directed, acyclic
graph G = (L, E), we write E∗ to denote the transitive closure of E: that is,
(x, y) ∈ E∗ if and only if there exists a path from x to y in G.

Definition 1. Given two authorization graphs G1 = (L, E1) and G2 = (L, E2),
we say that G1 and G2 are equivalent if E∗

1 = E∗
2 . Given a partially ordered set

(L, �), we say E ⊆ L × L is an enforcing set of edges for (L, �) if (L, E) is
equivalent to (L, �).

In particular, (L, E) enforces the same information flow policy as (L, �).

250 J. Crampton

Definition 2. Given an enforcing set of edges E for a set of nodes L, we define
the distance between x and y to be the length of the shortest path in (L, E)
between x and y. We define the diameter of E to be the maximum distance
between any two nodes in (L, E).

In general, we wish to find an enforcing set of edges for Dm, which we will
denote by E♦(m), such that the cardinality of E♦(m) is small and the diameter
of E♦(m) is small. For a fixed method of generating a set of edges for Dm, we
write e♦(m) and d♦(m) to denote the cardinality of E♦(m) and the diameter of
(Dm, E♦(m)), respectively. For Tm, we define E�(m), e�(m) and d�(m) in an
analogous fashion. When it is clear from context that we are referring to Dm,
we will omit ♦; similarly we will omit � when no confusion can occur.

We first note that there exists a lower bound on e�(m). In particular, it is
easy to establish the following result.

Proposition 1. The cardinality of any enforcing set for Tm must be at least
m(m− 1).

A very similar result was proved by Crampton [10]. Briefly, the proof is by
contradiction: we assume that there exists an enforcing set for Tm of cardinality
less than m(m − 1). From this assumption it follows that at least one node in
Tm has out-degree less than 2, from which we can prove that this cannot be an
enforcing set of edges (either because one node can reach too many leaf nodes
or because one node cannot reach sufficient leaf nodes).

It follows, by symmetry, that an enforcing set of edges for Dm must have
cardinality at least 2m(m− 1). Clearly, there exists an enforcing set of edges for
Dm of cardinality 2m(m− 1) and diameter 2(m− 1) corresponding to the graph
(Dm, �), illustrated in Figure 1(a) for m = 4.

3.1 Binary Decomposition

Proposition 2. There exists an enforcing set of edges E♦(m) for (Dm, �) such
that e♦(m) = m2 logm and d♦(m) = 2 logm.2

Proof. We first consider D2m, splitting it into four copies of Dm, as shown in
Fig. 2. We label the four copies of Dm in the following way:

D0,0 = {[x, y] : 1 � x, y � m} , D1,0 = {[x + m, y] : 1 � x, y � m} ,

D0,1 = {[x, y + m] : 1 � x, y � m} , D1,1 = {[x + m, y + m] : 1 � x, y � m} .

Evidently, for each pair (x, y), 1 � x, y � m, there exist four related nodes in
D2m: [x, y] ∈ D0,0, [x+m, y] ∈ D1,0, [x, y+m] ∈ D0,1 and [x+m, y+m] ∈ D1,1.
Then for each pair (x, y), where 1 � x, y � m, we add the following four edges:

– for every node [x+m, y+m] ∈ D1,1 we add two edges, one to [x+m, m] ∈ D1,0

and one to [m, y + m] ∈ D0,1;

2 All logarithms are base 2, unless explicitly stated otherwise.

Time-Storage Trade-Offs for Cryptographically-Enforced Access Control 251

Fig. 2. Connecting nodes in copies of Dm contained in D2m

– for every node [x + m, y] ∈ D1,0 we add an edge to [m, y] ∈ D0,0;
– for every node [x, y + m] ∈ D0,1 we add an edge to [x, m] ∈ D0,0.

Figure 2 illustrates these edges for one particular pair (x, y); the four related
nodes are shaded. In total, therefore, we add 4m2 edges, since there are m2

choices for the pair (x, y). We now recursively apply this construction to each
copy of Dm. Hence, e♦(2m) satisfies the recurrence relation

e♦(2m) = 4m2 + 4e♦(m) and e♦(1) = 0,

from which it follows that e♦(m) = m2 logm.
Moreover, the diameter of D2m is two greater than the diameter of Dm (since

we can get from any node in D1,1 to a node in any other copy of Dm in at most
two hops). Hence, the diameter d♦(2m) satisfies the recurrence relation

d♦(2m) = 2 + d♦(m) with d♦(1) = 0,

from which we deduce that d♦(m) = 2 logm. ��

3.2 Linear Decomposition

Atallah et al. noted that Tm can be regarded as two orthogonal sets of total
orders (each set comprising total orders of cardinality 1, 2, . . . , m). This means
that techniques to reduce the diameter of a total order can be applied to Tm,
as shown to good effect by Atallah et al. In this section, we discuss how these
techniques can be applied to Dm, in preparation for the schemes in Sec. 4.

We write Cm to denote the total order (or chain) comprising m elements. The
graph (Cm, �) contains m−1 edges and has diameter m−1. We will write E�(m)
to denote an enforcing set of edges for Cm, e�(m) to denote the cardinality of
E�(m) and d�(m) to denote the diameter of (Cm, E�(m)).

252 J. Crampton

(a) (b)

Fig. 3. Chain partitions of Dm

Proposition 3. Given an enforcing set of edges E�(m), there exists an enforc-
ing set of edges E♦(m) such that

e♦(m) = 2me�(m) and d♦(m) = 2d�(m).

Proof. Dm can be viewed as two orthogonal sets of chains, each of length m,
illustrated in Fig. 3(a). We may label the chain {(x, y) : 1 � y � m} as C1

x and
the chain {(y, x) : 1 � y � m} as C2

x. Then E♦(m) is simply 2m copies of E�(m).
Clearly this is an enforcing set of edges for Dm: if (x, y) � (x′, y′) we simply

traverse the edge set for C1
x′ from (x′, y′) to (x′, y) and then traverse the edge set

for C2
y from (x′, y) to (x, y). Moreover, the distance between (x′, y′) and (x, y)

is no greater than 2d�(m). ��

The following result was proved by Bodlaender et al. [8] and, independently, by
Atallah et al. [3].

Proposition 4. There exists an enforcing set of edges for Cm such that
e�(m) � m logm and d�(m) = 2.

The result is proved using an explicit, recursive construction. Cm is split into
two chains of length

⌊
m−1

2

⌋
and a single median node. An edge is added between

every node in the upper chain to the median node and an edge is added from
the median node to every node in the lower chain. Hence, it is possible to get
from every node in the upper half to every node in the lower half in exactly two
hops. The construction is then applied recursively to the two shorter chains. It
is clear that e�(m) � m + 2e�(m/2) and d�(m) = 2.

The two propositions above immediately yield the following result.

Corollary 1. There exists a set of enforcing set of edges for Dm such that

e♦(m) � 2m2 logm and d♦(m) = 4.

One disadvantage with the decomposition described in Proposition 3 is that the
edge set is not symmetric about the horizontal axis of symmetry, because each
chain crosses this axis at different relative positions. Since Tm can be viewed as

Time-Storage Trade-Offs for Cryptographically-Enforced Access Control 253

the upper half of Dm, it would be useful if we had an enforcing set of edges for
Dm that was symmetric about this axis.

Hence, we consider a second decomposition of Dm into chains, illustrated in
Fig. 3(b), which yields an enforcing set of edges when Bodlaender’s scheme is
applied to each chain. In this case, the median node of each chain is on the
axis of symmetry and the resulting scheme will be symmetric about this axis, as
desired. We then have the following result.

Proposition 5. For all m 	 2, there exists an enforcing set of edges for Dm

such that

e♦(m) = 4

(
m−1∑
i=1

i + e�(i)

)
and d♦(m) � 4.

Proof. There are two sets of chains in the partition illustrated in Figure 3(b).
Each set contains chains of length 2m − 1, 2m − 3, . . . , 1. For each chain, we
connect each node in the chain to the median node (which lies on the long
diagonal); this requires 2m− 2, 2m− 4, . . . , 2 edges. We now apply Bodlaender’s
scheme to each of the chains above and below the long diagonal, which are of
length m− 1, m− 2, . . . , 1. Therefore, the total number of edges required is

2

(
m−1∑
i=1

2i + 2
m−1∑
i=1

e�(i)

)

The result now follows.
Clearly, the diameter of the resulting set of edges is no greater than 4, since

we require at most two hops in one set of chains and at most two hops in the
other set of chains. ��

Corollary 2. For all m 	 2, there exists an enforcing set of edges for Tm such
that

e♦(m) = 2

(
m−1∑
i=1

i + e�(i)

)
and d♦(m) � 4.

Note that, for this construction we may conclude that the number of edges
required for Tm is half the number required for Dm because the construction is
symmetric about the long diagonal of Dm. However, we cannot conclude that
the number of hops required for Tm is half that required for Dm.

4 Additive Decomposition

In this section we explore an alternative to linear decomposition. In particular,
we introduce the notion of additive decomposition and prove the following result.

Theorem 1. Given an enforcing set of edges for Da and Db, we can construct
an enforcing set of edges for Dab such that

e♦(ab) = a2e♦(b) + b2e♦(a) and d♦(ab) = d♦(a) + d♦(b).

254 J. Crampton

This “master” theorem immediately yields the following corollaries. Other, sim-
ilar results could be derived: we choose these results because they will be used
in the comparison with related work in Sec. 5.

Corollary 3. There exists a set of enforcing set of edges for Dm such that
e♦(m) = 5

4m2 logm and d♦(m) = logm.

Proof. It is easy to see that there exists an enforcing set of edges for D2 of
cardinality 5 and diameter 1. Then, for m = 2k, we set a = 2 and b = 2k−1 = m/2
to obtain

e♦(m) = 4e♦
(m

2

)
+

5
4
m2 and d♦(m) = 1 + d♦

(m

2

)
,

from which the results follow. ��

Corollary 4. For m 	 2, there exists an enforcing set of edges for Dm such
that e♦(m) < 4m(m− 1) and d♦(m) = 4(

√
m− 1).

Proof. In this case, setting a = b =
√

m and applying Theorem 1, we obtain

e♦(m) = me♦(
√

m) + me♦(
√

m) = 2me♦(
√

m) and d♦(m) = 2d♦(
√

m).

Trivially, there exists an enforcing set of edges for D√
m of cardinality

2
√

m(
√

m− 1) and diameter 2(
√

m− 1). Hence, we have

e♦(m) = 4m
√

m(
√

m− 1) < 4m(
√

m− 1)(
√

m + 1) = 4m(m− 1).

Obviously, d♦(m) = 4(
√

m− 1). ��

Corollary 5. For m 	 4, there exists an enforcing set of edges for Dm such
that e♦(m) � 2m2(logm− 1) and d♦(m) = 4 log logm.

Proof. Note, by Corollary 1, that there exists an enforcing set of edges for D√
m

of cardinality less than or equal to m logm (since log
√

m = 1
2 logm). Then

setting a = b =
√

m, as in the proof of the previous corollary, we obtain the
recurrence relations

e♦(m) � m2 logm + me♦(
√

m) and d♦(m) = 4 + d♦(
√

m).

Moreover, using the chain partition of Fig. 3(a), we can construct an edge set
for D4 that contains 32 edges and has diameter 4 (as illustrated in Fig. 4).
The desired results immediately follow, the first by induction on m, the second
directly from the recurrence relation. ��

Figure 4 illustrates enforcing edge sets for D4 and D16 constructed using Corol-
lary 5. The figure also includes the 2-hop edge set for C4 on which the whole
construction is based. The enforcing set of edges for D4 comprises 8 copies of
the edge set for C4. For clarity, the graph for D16 only includes the 32 edges
connecting the maximal nodes in each D4 supernode.

Time-Storage Trade-Offs for Cryptographically-Enforced Access Control 255

Fig. 4. Enforcing edge sets for D4 and D16 with O (log log m) key derivation

We now explain the intuition behind Theorem 1. For m = ab, we first partition
Dm into blocks of the form Db. We call these blocks “supernodes”. The set of
supernodes forms a copy of Da. Given an enforcing set of edges for Da we can use
this set of edges to connect nodes in different supernodes together. In particular,
for every node in a copy of Db we connect it to a single node in those copies of
Db to which it would be connected using the enforcing set of edges for Da. The
construction is illustrated in Fig. 5(a) for the case m = 3b and a collection of
nodes with the same relative position within each copy of Db. In this illustration
we are using the simplest enforcing set of edges for D3; specifically, the one
that resembles a diamond-shaped grid.3 However, we could use any suitable set
of enforcing edges to bridge the gaps between the supernodes. In Fig. 4, for
example, we use a scheme for D4 that uses 8 copies of a scheme for C4. Finally,
we construct an edge set for each of the supernodes using the scheme for Db. We
now formally prove Theorem 1.

3 The binary decomposition described in Sec. 3 corresponds to the special case a = 2.

256 J. Crampton

Db

(a) Edges connecting supernodes

Db

(b) A key derivation path

Fig. 5. Dm as copies of Db, where m = 3b

Proof (of Theorem 1). Partition the set Dab into copies of Db and label each
copy D

(α,β)
b , where 1 � α, β � a. That is, the labels are taken from the partially

ordered set (Da, �). By assumption, we have an enforcing set of edges E♦(a) for
(Da, �). For a node (x, y) ∈ D

(α,β)
b we add an edge to a node (x′, y′) ∈ D

(α′,β′)
b

if and only if

1. (x′, y′) ⊆ (x, y),
2. ((α, β), (α′, β′)) ∈ E♦(a), and
3. for all (x′′, y′′) such that (x′, y′) ⊂ (x′′, y′′) ⊆ (x, y), (x′′, y′′) �∈ D

(α′,β′)
b .

The first condition requires that (x, y) be authorized for (x′, y′); the second that
there is an edge in the enforcing set for Da; and the final condition requires that
D

(α′,β′)
b contains no node larger than (x′, y′) for which (x, y) is authorized. A

consequence of the above conditions is that (x, y) ∈ D
(α,β)
b is connected to at

most one (x′, y′) ∈ D
(α′,β′)
b for all (α′, β′) � (α, β).

Each copy of Db contains b2 nodes. Hence, we require b2 copies of E♦(a) to
connect the copies of Db. In addition, we require a2 copies of the enforcing set
of edges for Db. In summary, e♦(m) = a2e♦(b) + b2e♦(a), as required.

Note that the distance between any two nodes is determined by the distance
between any two supernodes (as determined by the enforcing set of edges for
Da) and the distance between two nodes within a supernode (as determined by
the enforcing set of edges for Db). That is d♦(m) = d♦(a)+ d♦(b). A typical key
derivation path is illustrated in Fig. 5(b). ��
We can also generalize Theorem 1, as stated in the following result.

Theorem 2. Let m =
∏t

i=1 ai. Then there exists an enforcing set of edges such
that

e♦(m) = m2
t∑

i=1

1
a2

i

e♦(ai) and d♦(m) =
t∑

i=1

d♦(ai).

Time-Storage Trade-Offs for Cryptographically-Enforced Access Control 257

Proof. We prove the result by induction on t. Clearly the result holds for t = 1.
Now suppose that the result holds for all t < T and consider m =

∏T
i=1 ai.

Writing a = a1 and b = m/a1, we have, by Theorem 1,

e♦(m) =
(

m

a1

)2

e♦(a1) + a2
1e♦

(
m

a1

)

=
(

m

a1

)2

e♦(a1) + a2
1

m2

a2
1

T∑
i=2

1
a2

i

e♦(ai) by inductive hypothesis

= m2
T∑

i=1

1
a2

i

e♦(ai)

as required. The result for d♦(m) can also be proved by induction. ��

We conclude this section with two results: the first is analogous to Theorem 1, the
second relates enforcing sets of edges for Dm and Tm. The relationships between
E♦(m) and E�(m) are not quite as straightforward as one might assume, for the
following reasons:

– constructing E�(m) by halving E♦(m) (slicing away all the nodes and edges
below the long diagonal) may require more than half the number of edges in
E♦(m);

– constructing E♦(m) from two copies of E�(m) may result in a set of edges
with a diameter that is twice d�(m), which is sub-optimal.

Theorem 3. Given an enforcing set of edges for Ta and Tb, we can construct
an enforcing set of edges for Tab such that

e�(ab) = a2e�(b) + b2e�(a)
d�(ab) = max {d�(a) + d�(b), d�(a) + 2d�(b)− 1} .

Proof. Given an enforcing set of edges for Ta and Tb, we can construct an en-
forcing set of edges for Db such that e♦(b) = 2e�(b) and d♦(b) = 2d�(b), simply
by creating two copies of E�(b) and glueing the leaf nodes together. Moreover,
we can partition Tab into ta−1 copies of Db, where tn denotes the nth triangle
number 1

2n(n + 1), and a copies of Tb. Hence, we have

e�(ab) = b2e�(a) +
1
2
a(a− 1)e♦(b) + ae�(b);

replacing e♦(b) by 2e�(b) we obtain the required result. Now suppose that x, y ∈
Tab with x > y. Then

– either x and y each belong to copies of Db, in which case we require at most
d�(a)− 1 + d♦(b) = d�(a)− 1 + 2d�(b) steps to get from x to y,

– or x belongs to a copy of Db and y belongs to a copy of Tb, in which case we
require at most d�(a) + d�(b) steps to get from x to y.

258 J. Crampton

The result follows. ��

Theorem 4. Let m = ab. Given a set of enforcing edges for Ta, Tb, Da and Db

such that d�(a) < d♦(a) and d�(b) < d♦(b), there exists a set of enforcing edges
E�(m) such that

e�(m) < b2e�(a) +
1
2
a(a + 1)e♦(b) and d�(m) � d♦(a) + d♦(b)− 2.

Proof. The result for e�(m) follows because Tm is contained in Ta copies of Db.
The result for d�(m) follows because for x, y ∈ Tm with x > y we have

– either x and y each belong to copies of Db, in which case we require at most
d�(a)− 1 + d♦(b) steps to get from x to y,

– or x belongs to a copy of Db and y belongs to a copy of Tb, in which case we
require at most d�(a) + d�(b) steps to get from x to y.

Therefore, given enforcing sets of edges E�(a), E�(b) and E♦(b), we have

d�(ab) = max {d�(a) + d�(b), d�(a)− 1 + d♦(b)} .

Given that d�(b) < d♦(b), then we may conclude that

d�(ab) = d�(a) + d♦(b)− 1.

And given d�(a) < d♦(a), then we may also conclude that

d�(ab) � d♦(a) + d♦(b)− 2.

��

5 Comparison with Related Work

We are not aware of any results in the literature on improving the efficiency
of cryptographic enforcement schemes for Dm. However, there is a considerable
body of work on the efficiency of schemes for Tm [5,6,10,14]. Our results in
this paper are directly comparable to this prior work, with the exception of the
work of Crampton [10]. This latter work solves a slightly simpler problem, which
requires that it should be possible to get from node [x, y] ∈ Tm to all nodes of
the form [z, z], where z ∈ [x, y]. However, Crampton’s work does provide the
inspiration for the binary and additive decomposition techniques used in this
paper.

In Fig. 6(a) we summarize some of our results for Dm and in Fig. 6(b) we
summarize known results for Tm. Theorems 3 and 4 show that, to a good first
approximation, our constructions for Tm require half the number of edges as
those for Dm and the diameter is reduced by 2. For example, we can use the
first row in Fig. 6(a) to deduce that there exists a scheme for Tm such that
e�(m) ≈ m2 logm and d�(m) = 4 log logm− 2.

Time-Storage Trade-Offs for Cryptographically-Enforced Access Control 259

e♦(m) d♦(m)

Corollary 1 2m2 log m 4

Corollary 5 2m2(log m− 1) 4 log log m

Corollary 3 5
4
m2 log m log m

Proposition 2 m2 log m 2 log m

Corollary 4 4m(m− 1) 4(
√

m− 1)

(a) Our results for Dm

e�(m) d�(m)

[14, §3.1] O (m2 log m log log m
)

3

[5, §4] O (m2 log m
)

4

[5, §4] O (m2
) O (log∗ m)

[14, §3.1] O (m2 log m
) O (log∗ m)

[14, §3.1] O (m2
) O (log m log∗ m)

(b) Existing results for Tm

Fig. 6. New and existing results for Dm and Tm

At first sight, our results do not appear to improve on those in the literature.
However, there are a number of reasons why we believe our results are important
and useful. First, they provide explicit bounds for the storage and derivation
costs, something which other schemes do not. Secondly, the constructions of our
enforcing edge sets are very simple to describe and implement. It is a measure
of the complexity of existing work in this area that we have not been able to
determine what multiplicative constants and lower terms are “hidden” by the O
expressions in Fig. 6(b). For large values of m, it is clearly useful to understand
the asymptotic behavior, but, for smaller (and arguably more relevant) values
of m, our approach is more informative. And for values of m that are likely to
be of practical interest, it is surely more valuable to know the exact complexity
of the scheme and to have simple constructions for the enforcing set of edges.

6 Concluding Remarks

Temporal authorization policies and policies for controlling access to layered
multimedia content are examples of policies that are suitable for cryptographic
enforcement. The out-sourcing of data storage and the encryption of layered
multimedia content makes the efficient cryptographic enforcement of such poli-
cies increasingly important. In this paper, we have studied the trade-offs that
are possible between the space required for the information that is used to derive
decryption keys and the time taken to derive those keys. We have specified ex-
plicit constructions for two different authorization graphs (Dm, �) and (Tm,⊆)

260 J. Crampton

and illustrated the relationship between these two graphs, making use of this
relationship to derive schemes for Tm from those we have constructed for Dm.

There are a number of interesting questions that remain for future work. First,
it would be interesting to know whether the construction of an enforcing set of
edges for Tm from a set for Dm is the optimal strategy or can we do better
by working directly with Tm. Second, the construction for D16 from copies of
D4, illustrated in Fig. 4, requires fewer edges than would be obtained by directly
applying the result in Corollary 5. This is because the number of edges derived in
Corollary 1, and used in Corollary 5, is not a tight bound. We hope to investigate
bottom-up approaches (rather than the top-down approach used in the proof of
Corollary 5) to determine tighter upper bounds on the number of edges required
for a scheme with O (log logm) key derivation. Third, we have not considered
the trade-offs that are possible if we assume that users may possess more than
one secret value. Atallah et al. [5] and De Santis et al. [14] have each considered
these issues for Tm and shown that substantial improvements in e�(m) or d�(m)
are possible. We hope to address these questions in the near future.

Acknowledgements. The author would like to thank the anonymous referees
for their helpful comments.

References

1. Akl, S., Taylor, P.: Cryptographic solution to a problem of access control in a
hierarchy. ACM Transactions on Computer Systems 1(3), 239–248 (1983)

2. Atallah, M., Blanton, M., Fazio, N., Frikken, K.: Dynamic and efficient key man-
agement for access hierarchies. ACM Transactions on Information and System
Security 12(3), 1–43 (2009)

3. Atallah, M., Blanton, M., Frikken, K.: Key management for non-tree access hier-
archies. In: Proceedings of 11th ACM Symposium on Access Control Models and
Technologies, pp. 11–18 (2006)

4. Atallah, M., Blanton, M., Frikken, K.: Efficient techniques for realizing geo-spatial
access control. In: Proceedings of the 2007 ACM Symposium on Information, Com-
puter and Communications Security, pp. 82–92 (2007)

5. Atallah, M., Blanton, M., Frikken, K.: Incorporating temporal capabilities in ex-
isting key management schemes. In: Proceedings of the 12th European Symposium
on Research in Computer Security, pp. 515–530 (2007)

6. Ateniese, G., De Santis, A., Ferrara, A., Masucci, B.: Provably-secure time-bound
hierarchical key assignment schemes. Cryptology ePrint Archive, Report 2006/225
(2006), http://eprint.iacr.org/2006/225.pdf

7. Bertino, E., Carminati, B., Ferrari, E.: A temporal key management scheme for se-
cure broadcasting of XML documents. In: Proceedings of the 8th ACM Conference
on Computer and Communications Security, pp. 31–40 (2002)

8. Bodlaender, H., Tel, G., Santoro, N.: Trade-offs in non-reversing diameter. Nordic
Journal of Computing 1(1), 111–134 (1994)

9. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding
system: An overview. IEEE Transactions on Consumer Electronics 46(4), 1103–
1127 (2000)

http://eprint.iacr.org/2006/225.pdf

Time-Storage Trade-Offs for Cryptographically-Enforced Access Control 261

10. Crampton, J.: Practical constructions for the efficient cryptographic enforcement
of interval-based access control policies. To appear in ACM Transactions on Infor-
mation and System Security (2011), http://arxiv.org/abs/1005.4993

11. Crampton, J., Martin, K., Wild, P.: On key assignment for hierarchical access
control. In: Proceedings of 19th Computer Security Foundations Workshop, pp.
98–111 (2006)

12. Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge
University Press, Cambridge (2002)

13. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM Transactions
on Database Systems 35(2) (2010)

14. De Santis, A., Ferrara, A., Masucci, B.: New constructions for provably-secure time-
bound hierarchical key assignment schemes. Theoretical Computer Science 407(1-
3), 213–230 (2008)

15. Denning, D.: A lattice model of secure information flow. Communications of the
ACM 19(5), 236–243 (1976)

16. Dushnik, B., Miller, E.: Partially ordered sets. American Journal of Mathemat-
ics 63, 600–610 (1941)

17. Li, W.: Overview of fine granularity scalability in MPEG-4 video standard. IEEE
Transactions on Circuits and Systems for Video Technology 11(3), 301–317 (2001)

18. Thorup, M.: Shortcutting planar digraphs. Combinatorics, Probability & Comput-
ing 4, 287–315 (1995)

19. Yao, A.C.: Space-time tradeoff for answering range queries (extended abstract). In:
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,
pp. 128–136 (1982)

20. Zhu, B., Feng, S., Li, S.: An efficient key scheme for layered access control of
MPEG-4 FGS video. In: Proceedings of the 2004 IEEE International Conference
on Multimedia and Expo., vol. 1, pp. 443–446 (2004)

http://arxiv.org/abs/1005.4993

Socially Constructed Trust for
Distributed Authorization

Steve Barker1 and Valerio Genovese2,3,�

1 King’s College London, UK
2 University of Torino, Italy

3 University of Luxembourg, Luxembourg

Abstract. We describe an approach for distributed access control that is based
on the idea of using a community-constructed repository of expressions of propo-
sitional attitudes. We call this repository an oracle. Members of a community
may consult the oracle and use the expressions of belief and disbelief in proposi-
tions that are expressed by community members about requesters for access to re-
sources. Our conceptual model and access control policies are described in terms
of a computational logic and we describe an implementation of the approach that
we advocate.

1 Introduction

An important aspect that makes distributed access control different to centralized sce-
narios, is that a reference monitor may have insufficient knowledge of requesters to
decide whether to grant or deny access to a guarded resource. Hence, the reference
monitor may need to “complete” its knowledge by relying on the testimony supplied to
it by one or more trusted third parties.

Logic has had a prominent role to play in the specification, reasoning and enforce-
ment of access control policies in which testimonial knowledge is distributed among
several peers (also called principals). In particular, logic programming has been used
for specifying policies and for implementing primitives to aggregate principals’ knowl-
edge.1 However, such primitives present serious challenges when dealing with real-
world, highly-distributed, large-scale and open access control scenarios like e-trading
systems, social networks or microdata publishing platforms (e.g., Twitter). In such
cases, the reference monitor may need to remotely access the testimonial knowledge
of large communities of principals and this knowledge may be temporarily missing
(e.g., some remote source is not available) or even conflicting (e.g., two principals in
the same community provide contradictory information). Unfortunately, existing access
control primitives to aggregate distributed knowledge do not scale to large communi-
ties of principals and provide limited support for dealing with incomplete or conflicting
information. In this paper we address the following research question: How to define an
access control framework in which testimonial knowledge results from the aggregating
of information issued by communities of principals?

� Valerio Genovese is supported by the National Research Fund, Luxembourg.
1 Examples of such primitives are delegation structures [18], boolean principals [1], dynamic or

static thresholds [23,17].

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 262–277, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Socially Constructed Trust for Distributed Authorization 263

This main question reduces to a number of subquestions: How to aggregate testimony
and reason with individual and aggregated testimony? How to define and implement
operators to query remote knowledge bases? How to deal with conflicting information
that stems from the aggregation of principals’ testimonial warrant? How to define a
specification language that admits nonmonotonic access control policy formulation?
What operational methods can be used to evaluate access requests in a correct and
computationally viable manner?

In answering these questions we describe an architecture that is based on the idea of
using logical databases called “oracles” that speak-for a community on matters relat-
ing to requesters of access to resources. We present an access control framework based
on Answer Set Programming (ASP) which extends the meta-model of access control
introduced in [4] in several ways. We introduce primitives to accommodate the
community-based view that we propose. In particular, we take testimonial knowledge
as being expressed in the form of propositional attitudes reports of type “principal A
believes ψ” or “principal A disbelieves ψ”. Such testimonial knowledge is collectively
stored by oracles. Finally, we extend the ASP system DLV [16] to include scalable prim-
itives for querying several different remote knowledge bases during policy evaluation.

The remainder of the paper is organized as follows. In Section 2, we describe some
details on which our policy specification language is based. In Section 3, we describe
the architecture of our proposed system and the types of rules we allow for policy
specification. In Section 4, we describe examples of the use of access control policy
specifications by “oracles” and, in Section 5, we describe examples of the use of speci-
fications of access control policies by reference monitors (called “acceptors”) that make
use of (or choose to accept) the policy information that is maintained by oracles. In
Section 6, we describe some practical issues of relevance to our approach. In
Section 7, we describe related work and, in Section 8, we draw conclusions and suggest
further work.

2 A Community Security Language

In this section, we introduce the main syntactic and semantic concepts of our Community
Security Language (CSL). The main sorts of constants for CSL are: a countable set C
of categories, where c0, c1, . . . are (strings) that are used to denote arbitrary category
identifiers; a countable set P of principals, where p0, p1, . . . are used to identify users,
organizations, processes, . . . ; a countable set Σ ⊆ P of sources of testimonial knowl-
edge, where s0, s1, . . . are (strings) used to denote arbitrary sources of testimony; a
countable set A of named atomic actions, where a0, a1, . . . are (strings) used to denote
arbitrary action identifiers; and a countable set R of resource identifiers, where r0, r1,
. . . denote arbitrary resources; r(t1, . . . , tn) is an arbitrary n-place relation that repre-
sents an “information resource” where ti (1 ≤ i ≤ n) is a term (a term is a function, a
constant or a variable).

Informally, a category is any of several fundamental and distinct classes or groups to
which entities may be assigned (cf. [4]). Roles, security classifications, security clear-
ances, status levels etc., which are used in various access control models (see, for ex-
ample, [6,8,22]), are particular instances of what we call categories. The categories of

264 S. Barker and V. Genovese

interest, for what we propose, are application-specific and are determined by usage (in-
dividual, community or universal) rather than being defined by necessary and sufficient
conditions. In financial applications, for example, there may be general categories like
“creditworthy” or “bad debtor” that are part of the shared ontology of a community that
is interested in testimonial knowledge about e-traders, for instance.

The part of CSL that we use to specify access control policies is centered on three
theory-specific predicates, pca, arca and par, which have following meanings (cf. [4]):
pca(p, c) iff the principal p ∈ P is assigned to the category c ∈ C; arca(a, r, c) iff the
privilege of performing action a ∈ A on resource r ∈ R is assigned to the category
c ∈ C; par(p, a, r) iff the principal p ∈ P is authorized to perform the action a ∈ A on
resource r ∈ R. The par relation is defined in terms of arca and pca by the following
rule: ∀p, a, r, c(arca(a, r, c) ∧ pca(p, c) → par(p, a, r,)) that reads as follows: “If a
principal p is assigned to a category c to which the privilege to perform action a on
resource r has been assigned, then p is authorized to perform the a action on r”.

In our community-based approach to testimonial knowledge, multiple testifiers may
make assertions of their propositional attitudes [21] to a community-based repository
(a database) of assertions, which is maintained by an oracle and constitutes a store of
propositional attitudes as a set of triples (si, α, ψ) such that: si (1 ≤ i ≤ n) is a source
of assertions in a community of sources Σ = {s1, . . . , sn} of testimonial knowledge.
ψ is a proposition; α is a propositional attitude that a source si has in relation to ψ (e.g.,
si “believes” ψ, si “disbelieves” ψ).

The triples (si, α, ψ) are used to represent a particular type of that-clause expressed
in terms of a particular predicate, the pca predicate. In CSL, we represent proposi-
tional attitudes by using a 3-place assertion predicate. That is, assertion(si, α, ψ)
is included, in a repository maintained by an oracle, to express that the source si has
the propositional attitude α in relation to ψ, e.g., si “believes that” ψ is represented
as assertion(si, believes, ψ). For example, KAlice may believe that KBob is a “bad
debtor”.

We restrict attention to the propositional attitudes “believes” and “disbelieves” in
this paper. We interpret si believes ψ to be source si holding ψ to be “true”; by si

disbelieves ψ we intend disbelieves to mean that si rejects the belief that ψ. In the case
of believes and disbelieves, the propositional attitudes are subjective; they are used to
express the opinions of a testimonial source.

Believes and disbelieves are propositional attitudes that a source may have in relation
to the atomic proposition ψ or its negation, ¬ψ. In this paper, we assume the following
(asymmetric) semantics for believes/disbelieves. If a source si asserts that it disbelieves
ψ (¬ψ) then that does not commit si to asserting that it believes ¬ψ (ψ). However, a
source si that asserts that it believes ψ (¬ψ) implicitly asserts that it disbelieves¬ψ (ψ).
In our approach, ψ is a proposition on a principal-category assignment, i.e., pca(p, c).
A source s believing that ¬pca(p, c) believes that ψ should be prohibited from being
assigned to the category c and so s must disbelieve that ψ can be assigned to c (oth-
erwise, s would not be rational). Similarly, a source s that believes that pca(p, c) must
disbelieve ¬pca(p, c). A source that does not assert what its propositional attitude is in
relation to pca(p, c) is said to suspend its judgement on the assignment of the principal
p to category c (suspension is appropriate in the case where, for instance, s has no in-
formation about a principal-category assignment or s has conflicting evidence on what

Socially Constructed Trust for Distributed Authorization 265

the assignment should be). Suspension of judgement by source s on the attitude α in
relation to proposition ψ just means, in our scheme, that there is no assertion(s, α, ψ)
fact in an oracle’s repository.

Another way of understanding our intended semantics is in terms of normative ought
assertions. The testifier si disbelieving pca(p, c) means that si asserts that the belief
that the principal p is assigned to the category c ought to be rejected by the community.
That is, disbelieving is the way in which testifiers express their dissenting to the beliefs
of other testifiers in a community. The example that follows illustrates the different
epistemic positions, expressed in terms of ought, that we allow.

Example 1. Consider the following scenario, in which there are four contributors of
community testimony (Kα, Kβ , Kγ and Kδ) on a principal KAlice and one category
preferred:

The contributor Kα believes that KAlice ought to be assigned to the category
preferred because KAlice satisfies Kα’s criterion for that assignment. In con-
trast, it is Kβ’s position that the community ought to disbelieve the assertion
that KAlice has preferred status (i.e., Kβ recommends rejecting the asser-
tion that KAlice should be held to be categorized as preferred). The testifier
Kγ has had several bad experiences with KAlice and therefore Kγ asserts that
it believes that KAlice is definitely not to be assigned to the preferred cate-
gory. Finally, Kδ’s position is that KAlice ought not to be categorized as defi-
nitely not preferred, but Kδ does not want to assert that KAlice is definitely
preferred.

For this policy, the following assertions are included in an oracle’s repository of testi-
mony:

assertion(Kα, believes, pca(KAlice, preferred)).
assertion(Kβ, disbelieves, pca(KAlice, preferred)).
assertion(Kγ , believes,¬pca(KAlice, preferred)).
assertion(Kδ, disbelieves,¬pca(KAlice, preferred)).

Notice that it is up to a community to decide what propositional attitudes it wishes to
admit and how those attitudes are to be understood in the community. We also note that
propositional attitudes may be tensed, e.g., “believed”, indexed by time, and epistem-
ically guarded (e.g., weakly believed or strongly disbelieved), but we do not consider
such possibilities in this paper because of limitations on space.

3 Distributed Architecture for Policy Specification

In Figure 1, the architecture of our abstract access control framework is illustrated in
overview. There are four main types of entities: resources, acceptors, oracles and con-
tributors. As we have said, assertions of propositional attitudes on pca definitions are
contributed by community members to oracles and are then used by acceptors, of an
oracle’s assertions, to define authorizations in terms of par. Acceptors act as reference
monitors and define the policy to access a guarded resource. Oracles serve a commu-
nity of contributors (i.e., principals) in terms of making assertions that are of value to
acceptors in evaluating access requests. Contributors or other external principals may

266 S. Barker and V. Genovese

AcceptorResource

Oracle_1

Oracle_n

Contributors

Contributors

Fig. 1. Abstract Model

request access to resources that are protected by acceptors As our concern is to capture
a community-based view of testimony, we need to be able to talk about all members
of a community having a particular propositional attitude α on proposition ψ, or some
source having attitude α on ψ, or the majority attitude on ψ being α. For that, we add
“counting operators” to CSL. These operators range over the pca predicate and have
a semantics that may be informally understood as follows: �α(pca(p, c)) is “true” iff
every source of testimonial knowledge in a community Σ has the attitude α in relation
to the assignment of a principal p to category c; ♦α(pca(p, c)) is “true” iff some source
of testimonial knowledge in Σ has the attitude α in relation to pca(p, c); Mα(pca(p, c))
is “true” iff the majority of sources of testimonial warrant in Σ have the attitude α on
pca(p, c). As we restrict attention to the propositional attitudes “believes” and “disbe-
lieves” in this paper, assertions about aggregations of pca will henceforth be expressed
in the form ©B+

(pca(p, c)) or ©B−
(pca(p, c)) where © ∈ {�, ♦, M} and B+ is

short for “believes that” and B− is short for “disbelieves that”. In addition, we intro-
duce into CSL a particular connective @ for external query evaluation over remote
policy bases such that ϕ @ ω expresses that: “At remote source ω, ϕ is true”, where ϕ
can be either a literal or an aggregate function.

For the specification of the access control policies that we will introduce, we use
standard ASP-DLV syntax with aggregate functions (in the sense of [10]). An aggregate
function has the form f(S) where S is a set, and f is a function name from the set of
function names {#count,#sum,#max, #min,#times}.

Definition 1 (Access Control Policy). An access control policy is a set of rules of the
form h ← b1, . . . , bn where, h is a literal L or a counting operator applied to an
instance of©pca(,) with © ∈ {�α, �α, Mα}; α ∈ {B+, B−} and;

bi := (not)L | (¬)© (¬)pca(,) | assertion(, , (¬)pca(,)) | L @ ω |
Lg ≺1 f(S) ≺2 Rg | Lg ≺1 f(S) @ ω ≺2 Rg

We note that Lg ≺1 f(S) ≺2 Rg is an aggregate atom where f(S) is an aggregate
function, ≺1,≺2∈ {=, <,≤, >,≥}; Lg and Rg (called left guard, and right guard,
respectively) are terms; and ¬ is strong negation [3]. We use aggregates and compari-
son operators on the numbers of sources of testimonial knowledge to allow acceptors
to specify flexibly and in high-level terms the degrees of testimonial support that are
required by them in deciding access requests (e.g., whether all, some, or a majority of
testifiers have the attitude α with respect to pca(p, c)). As is conventional, variables in
policy rules will appear in the upper case; constants are in lower case. We also restrict

Socially Constructed Trust for Distributed Authorization 267

attention to policies with non-recursive aggregates [12] that are defined as a finite set of
safe stratified clauses. This means that our access control policies have a unique answer
set. We assume that all community members express their access control policies in a
language that has a unique answer set as its intended meaning.

A policy rule of the form⊥ ← b1 . . . bn (where⊥ is falsum and denotes an arbitrary
contradiction) is called a constraint; a constraint is to be understood (informally) as
asserting that it is impossible for b1 . . . bn to be “true” (or provable) simultaneously.

The pca predicate occurring, within the scope of a counting operator, may be negated
by using the strong negation operator ¬ (but not the weak negation operator not [3]).
On this, we may have: �α(¬pca(p, c)) is “true” for a community Σ iff every source of
testimonial knowledge in Σ adopts the attitude α on principal p not being assigned to
category c; ♦α(¬pca(p, c)) is “true” for a community Σ iff some source of testimonial
knowledge in Σ adopts the attitude α on principal p not being assigned to category c;
Mα(¬pca(p, c)) is “true” for a community Σ iff the majority of sources of testimonial
knowledge in Σ have the attitude α about principal p not being assigned to category
c; Moreover, strong negation may be applied to the counting operators that we admit:
¬�α(pca(p, c)) is “true” for a community Σ iff it is not the case that every source of tes-
timonial knowledge in Σ asserts that it has the attitude α on pca(p, c); ¬♦α(pca(p, c))
is “true” for a community Σ iff no source of testimonial knowledge in Σ asserts that it
has the attitude α about pca(p, c); ¬Mα(pca(p, c)) is “true” for a community Σ iff it is
not the case that the majority of sources of testimonial knowledge in Σ assert that they
have the attitude α about pca(p, c).

The meanings above for ¬�α, ¬♦α and ¬Mα extend to ¬pca(p, c). For example,
¬�α(¬pca(p, c)) is “true” for a community Σ iff not every source of testimonial knowl-
edge in Σ has the attitude α on the proposition ¬pca(p, c) (and mutatis mutandis for
the other cases).

It should be noted that, for any literal L, not L and not ¬L are the only uses of the
nonmonotonic negation-as-failure (NAF) not operator that we allow in CSL, iterated
modalities are not permitted in the form of CSL used in this paper, and uses of double
¬-negation are not permitted at all in CSL.

By using counting functions, we are able to define the semantics of �α, ♦α, vari-
ous forms of the Mα operator, additional operators for policy specification and a range
of comparison conditions on the assertions made by contributing testifiers. We also al-
low arithmetic and comparison operators in the set, {<,≤, >,≥,+,−,÷,×} in CSL.
These operators, which have their usual interpretation on numbers, may also be used
to express access control requirements, e.g., if the number of testifiers that believe that
pca(Kα, c′) holds exceeds the number that believe ¬pca(Kα, c′) by at least 5 then
source s′ accepts that Kα is assigned to the category c′. Moreover, several connections
between operators can be identified, e.g., ♦αpca(P, C) ← �αpca(P, C) holds for a
non-empty community of testifiers and additional operators may be added to more ex-
pressive forms of CSL. For example, Wα pca(p, c) may be introduced to define a “mi-
nority” operator, possibly expressed in terms of Mα: Wαpca(p, c)← ¬Mαpca(p, c).

As we have said, a community decides what operators, propositional attitudes, and
literals it wishes to talk in terms of when expressing access control requirements and
therefore what general rules (axioms) apply to the community of users. The following
set of rules apply to the interpretation of community security that we have described

268 S. Barker and V. Genovese

(where the notation (¬)pca(p, c) is to be understood as allowing either ¬pca(p, c) or
pca(p, c) literals to be expressed, but not both):

(1) ⊥ ← L ∧ ¬L
(2) ⊥ ← ¬© (¬)pca(P, C) ∧©(¬)pca(P, C)
(3) ¬♦α¬pca(P, C)← �αpca(P, C)
(4) ¬�α¬pca(P, C)← ♦αpca(P, C)
(5) ⊥ ← assertion(S, believes, pca(P, C)), assertion(S, disbelieves, pca(P, C))
(6) assertion(S, disbelieves,¬pca(P, C))← assertion(S, believes, pca(P, C))
(7) assertion(S, disbelieves, pca(P, C))← assertion(S, believes,¬pca(P, C))
(8) ¬♦B−

((¬)pca(P, C))← �B+
((¬)pca(P, C))

(9) �B−
(pca(P, C))← �B+

(¬pca(P, C))
(10) ¬♦B+

(pca(P, C))← �B−
(pca(P, C))

Constraint (1) is standard in ASP languages and forces truth assignments to literals to
be consistent. Rule (2) is similar to (1) but it applies to any of the operators that we
admit (i.e., © ∈ {�α, ♦α, Mα}). Rules (3) and (4) model the duality of the � and ♦
operators. Constraint (5) says that no source in a community of testifiers can have the
propositional attitude of both believing and disbelieving pca(P, C). Rules (6) and (7)
capture the semantics of the consequences of believing principal-category assignments,
which we described above. Rules (8), (9) and (10) describe the duality of � and ♦ for
the counting operators.

4 Oracle Policy Specification

In this section, we illustrate, by examples, the use of oracle policy assertions and the
different representations of pca that oracles may specify. The example that follows il-
lustrates the former.

Example 2. Consider the following fragment of policy information I1 that needs to be
represented by an oracle, denoted by ω:

Every contributor source of testimonial knowledge, to ω, believes that the prin-
cipal Kα is assigned to the category c1 ∈ C, there is at least one contributor
source of testimonial knowledge on assertions of principal-category assign-
ments that believes that the principal Kβ is assigned to c2 ∈ C, the major-
ity of contributor sources of testimonial knowledge on assertions of principal-
category assignments believe that the principal Kγ is assigned to c3 ∈ C, every
contributor source of testimonial knowledge believes that the principal Kδ is
not assigned to c4 ∈ C, and no contributor source says that the principal Kε is
assigned to the category c5 ∈ C.

To represent the information in I1, the oracle ω may include the following assertions
on aggregated testimony:

�B+
(pca(Kα, c1)). ♦B+

(pca(Kβ , c2)). MB+
(pca(Kγ , c3)).

�B+
(¬pca(Kδ, c4)). ¬�B+

(pca(Kε, c5)).

Socially Constructed Trust for Distributed Authorization 269

In Example 2, the oracle ω expresses its community-based testimony in aggregated
form. It should be clear that CSL is intended to be a high-level specification policy
language for community-based testimony. This is one reason why we choose to define
�, ♦ and M in terms of counting functions rather than using count explicitly in policy
specifications. An atom like �B+

(pca(Kα, c1)) is a simplification of a requirement to
“count the number of community members that believe that Kα ought to be assigned
to the category c1 and if this count is greater than the total number of contributors then
the atom is true”. The need to have higher-level operators becomes more acute when a
range of majority operators is admitted in CSL.

The next example, illustrates what is possible in terms of policy representation by
combining individual assertions on testimony with aggregate testimony from remote
sources.

Example 3. Consider the following policy information I2 maintained by an oracle ω:
The consequent MB+

(pca(P, c5)) holds if the majority of sources of testimo-
nial knowledge for the oracle ω1 believe that P is assigned to the category
c6 ∈ C, the majority of sources of testimonial knowledge for the oracle ω2 dis-
believe that P is assigned to c7 ∈ C, and it fails to be the case that ω’s specific
contributor source s′ believes ¬pca(P, c5).

To represent the information in I2, ω may use the following access control policy rule:

MB+
(pca(P, c5))←MB+

(pca(P, c6)) @ ω1, M
B−

(pca(P, c7)) @ ω2,
not(assertion(s′, B+,¬pca(P, c5))).

A feature of our approach is that different definitions of the �, ♦ and M operators
can be naturally accommodated. For example, the careful reader will have noted that, in
what we have said thus far, implicitly an oracle maintains a unary relation source (say),
the extension of which is the domain of identifiers of sources from which the oracle
gathers its testimonial knowledge. In this case, “every source” has the attitude α in
relation to pca(p, c) implies quantification over the elements in the extension of source.
Similarly, ♦αpca(p, c) corresponds to existential quantification over the elements in the
extension of source. However, as intimated, these are not the only possibilities. Instead
of source/1, for example, an oracle may maintain a binary form, source(s, c), with
the following semantics: s is a source of testimonial knowledge on the category c. In
this case, quantification is possible with respect to sources that make assertions about
particular categories. The difference between source(s) and source(s, c) is needed if
it is the case that not all sources that contribute to the oracle’s “knowledge” necessary
make assertions about the category c. In the case where source(s, c) is relevant, the
semantics of � changes to the following:

�α
c (pca(p, c)) is “true” according to an oracle ω iff every source that declares

to ω that it is a source of testimonial knowledge on c has the attitude α in
relation to pca(p, c).

The next example, illustrates the potential use of this additional operator.

Example 4. An oracle ω may express the following access control policy information
using CSL:

assertion(ω, B+, pca(P, C))← source(S, C), not(assertion(S, B+,¬pca(P, C)))
assertion(ω, B+,¬pca(P, C))← source(S, C), not(assertion(S, B+, pca(P, C)))

270 S. Barker and V. Genovese

As it is defined, ¬pca(P, C) holds according to ω if some source S of testimonial
knowledge on the assignment of a principal P to the category C does not believe that
the principal P is assigned to C or if some source of testimonial knowledge on C does
not believe that ¬pca(P, C) holds.2

The Mα operator may also be defined in multiple ways, e.g., the oracle ω may specify,

MB+
(pca(P, c0))← (#count{S : assertion(S, B+, pca(P, c1)} @ ω1) >

(#count{S : assertion(S, B+, pca(P, c2))} @ ω2)

to express that the majority of the community contributors of testimonial knowledge
believe pca(P, c0) if the number of contributors to the oracle ω1 that believe pca(P, c1)
is greater than the number of contributors to the oracle ω2 that believe pca(P, c2). Per-
haps, for example, ω assigns a principal P to the category c0 (the potential customer
category, say) if the number of testifiers that contribute opinions to the oracle ω1 believe
that P is assigned to the category c1 (the preferred customer category, say) and their
collective opinion outweighs the number of sources of testimony, that contribute to ω2,
that believe that P is assigned to the category c2 (a blacklisted category, say).

5 Acceptor Policy Specification

Having described oracle-based access control policy specification in the previous sec-
tion, we now describe local policy formulation by acceptor agents that make use of an
oracle’s assertions. In CSL, an acceptor agent defines the par relation (i.e., authoriza-
tions) thus: par(P, A, R)← pca(P, C), arca(A, R, C).

That is, the principal P has the access privilege A (or P can perform the action A)
on the resource R if P is assigned to a category C to which the permission (A, R) is
assigned. For example, a principal categorized as “sales manager” is authorized to read
the “monthly sales file” msf if the permission (read, msf) is assigned to members of
the “sales manager” category. The categories that an acceptor chooses to use to define
authorizations that apply locally are defined by it in terms of the categories used to
classify principals within a community of sources of testimonial knowledge.

Example 5. Consider the following local access control policy requirements of an ac-
ceptor of assertions on principal-category assignments, which are defined with respect
to a remotely located oracle ω:

For a principal P to be assigned to the acceptor’s local category c0, all con-
tributors to the oracle ω must believe that pca(P, c1) and at least one member
of the community must believe that P is assigned to the category c2 (accord-
ing to ω). Moreover, the specific contributor s0 must assert (via ω) that P is
assigned to the category c3 and the specific contributor s1 must assert (via ω)
that she disbelieves that P should not be assigned to the category c4.

2 Note that the repository of assertions that is maintained by an oracle may contain assertions
made by any source in a community including an oracle.

Socially Constructed Trust for Distributed Authorization 271

To represent these access control requirements, the following policy specification may
be defined by an acceptor:

pca(P, c0)← �B+(pca(P, c1)) @ ω, ♦B+(pca(P, c2)) @ ω.
assertion(s0, B

+, pca(P, c3)) @ ω, assertion(s1, B
−,¬pca(P, c4,)) @ ω.

Although we take each arca definition to be local to the acceptor site that controls
access to the resource, a community-based approach to arca specifications is possible.
It is also possible for acceptors to specify¬arca definitions, to express that a permission
is not to be assigned to a category or the permission is denied. When ¬arca definitions
are used, variants of par are possible (e.g., to represent “open” or “closed” policies with
different conflict resolution strategies). For example,

par(P, A, R)← pca(P, C), not ¬arca(A, R, C).

may be used to express that a principal P has the A access privilege on resource R if P
is assigned to a category C and the (A, R) permission is not denied to C.

Moreover, par definitions may be specialized depending on the particular assertions
stored by oracles. The example that follows next illustrates this.

Example 6. Consider the following acceptor site’s specification of two forms of autho-
rizations:

par1(P, A, r1)←MB+(pca(P, C)) @ ω, arca(A, r1, C).
par2(P, A, r2)←MB+(pca(P, c′)) @ ω,¬♦B−

(pca(P, c′))@ ω, arca(A, r2, c
′).

The definition of par1 may be read as follows: “any principal P is permitted to perform
any action A on the resource r1 if the majority of contributors to oracle ω believe that
pca(P, C) holds and arca(A, r1, C) holds locally”. The definition of par2 says: “Any
principal P is permitted to perform any action A on the resource r2 if the majority of
contributors to ω believe that pca(P, c′) (i.e., the principal is assigned to category c′),
none of ω’s contributors disbelieve pca(P, c′) at ω, and arca(A, r2, c

′) holds locally.

The sceptical reader may argue that our approach violates the privacy of principals
whose category assignments are shared in an oracle. Nevertheless, we envisage princi-
pals being able to opt-out of this type of information sharing if they wish. The sceptic
may argue that our use of the nonmonotonic not operator is “unsafe” because authoriza-
tions may hold by default, in the absence of knowledge. However, negation-as-failure
is used iff it is appropriate for specific policies and for specific definitions of authoriza-
tions, e.g., where access is allowed in the absence of a disbelief holding. The sceptic
may suggest that what we propose bears no relation to “real” access control models or
policies. However, policies defined in terms of RBAC, MAC, DAC, Attribute-based ac-
cess control, status-based access control etc. can all be represented within our category-
based framework (cf. [4]). That is, what we describe is an approach that extends access
control models to the community-based level that we are introducing. The sceptic may
argue that CSL is merely an abstract specification language for expressing distributed
access control policies and that CSL has an equivalent representation in existing policy
specification languages. However, as we will show next, policies that are specified in
CSL translate into (various) practical languages for implementation and in the related
work section we explain why CSL differs to existing proposals of policy specification
languages.

272 S. Barker and V. Genovese

6 Practical Issues

In this section, we present secommunity,3 an implementation of our framework in the
DLV system and some performance measures for it. We then consider proving proper-
ties of policies in our scheme. In what follows, DLV code fragments are presented us-
ing monospace font. Henceforth, we view acceptors, oracles and contributors as DLV
knowledge bases (KBs). Counting operators can be implemented by using DLV count-
ing functions. For instance, �B+

, ♦B+
and MB+

can be defined as follows4:

box(believes, pca(P, C)):-assertion(, believes, pca(P, C)),
#count{S : assertion(S, believes, pca(P, C)), source(S)} = R,

#count{Y : source(Y)} = R.
diamond(pca(P, C)):-assertion(S, believes, pca(P, C)), source(S).
majority(pca(P, C)):-assertion(, believes, pca(P, C)),
#count{S : assertion(S, believes, pca(P, C)), source(S)} = R1,

#count{S : source(S)} = R2, R3 = R2/2, R1 > R3.

To represent the distributed aspect of our approach, we defined in DLV-Complex5 two
external predicates (also called built-ins):

– #at(IP, G) which reads as: “At the remote DLV source indexed by IP, literal G
holds.”

– #f at(IP, {P : Conj}, PX), which has several readings depending on the aggregate
function f. For instance, If f = count, then PX is unified with the value V, the
sum of the elements in {P : Conj} at the remote DLV source indexed by IP, i.e.,
#count{P : Conj} = V.6

For each external predicate (e.g., #at, #count at) we associated a C++ program that
queries the remote DLV knowledge base indexed by IP. For instance, the rule

L :- #count at(“IP”, “S : assertion(S, believes, pca(p, c))”, PX), PX> 3

reads as follows: “If the remote KB located at address IP contains at least three sources
that believe that p is assigned to category c, then literal L holds true”. Due to space con-
straints, we do not discuss the implementation details.7 In order to assess the overhead
caused by the evaluation of external predicates, we studied the relationship between ex-
ecution time and the number of external predicates necessary to evaluate a given rule.
In particular, we consider the evaluation of rules of the type

(Tn) L :- #count(IP, S : assertion(S, believes, pca(p1, c1)), PX), . . . ,
#count(IP, S : assertion(S, believes, pca(pn, cn)), PX), PX > m

Informally, the literal L holds by rule (Tn) if there are at least m sources at a remote
KB (located at IP) that believe pca(p1, c1), pca(p2, c2), . . . , pca(pn, cn). In Figure 2,

3 A preliminary version of secommunity with a simplified language has been presented as a
short paper in [5].

4 It may be that counting operators depend on other remote knowledge bases as in Example 3.
5 https://www.mat.unical.it/dlv-complex
6 Similarly for f ∈ {sum, times, min, max}.
7 A working implementation with source code, documentation and examples is available at
http://www.di.unito.it/˜genovese/tools/secommunity/index.html

http://www.di.unito.it/~genovese/tools/secommunity/index.html

Socially Constructed Trust for Distributed Authorization 273

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

re
sp

on
se

 ti
m

e
(m

s)

remote queries (#n)

KB size: 100
KB size: 200
KB size: 300
KB size: 400
KB size: 500

Fig. 2. Scalability of External Predicates

we report the main results of our experiments.8 For every instance of rule Ti·5 (with
1 ≤ i ≤ 20), we plot five points representing the average and the standard deviation of
the amount of time (in milliseconds) needed to evaluate 30 runs of Ti·5 on five different
KBs of increasing numbers of belief assertions. In the first KB, there are 100 sources
that believe pca(p1, c1), . . . , pca(pn, cn), in the second the sources supporting pca are
200, and so on up to 500. The results reported in Figure 2 offer some evidence to suggest
that our approach is scalable for realistic applications. It is important to note that the
time to compute in DLV-Complex Tn grows linearly in n and that the time to compute
a given rule Ti grows linearly in the size of the KB. We note too that it takes about four
seconds to query 100 times a remote KB of 500 assertions with the external predicate
#count.

An important practical aspect of our approach is that CSL admits the possibility of
proving properties of policies. To support this assertion, we briefly describe two (of
several) types of policy-proof analysis in our framework: authorization and rule-based
policy analysis.

Definition 2 (Access Control Problems). Consider a policy represented by a set of
CSL rules Π and a set of facts D then,

– The authorization problem consists in determining whether a principal p0 is autho-
rized to access resource r0, which necessitates computing the answer set of Π ∪D
and checking whether par(p0, a0, r0) is contained in it.

– The rule-based policy analysis problem consists in taking as input the answer set of
a policy and checking whether it is closed under a policy property that is expressible
as a rule in CSL.

Theorem 1 (Complexity of Access Control Problems). Given a policy Π ∪ D, the
problems reported in Definition 2 can be solved in time polynomial in the size of D.

8 We conduct our tests on the WAN of University of Torino, the client is a Mac Book Pro with
a Intel Core 2 Duo, 4 GB of RAM running Mac OS X 10.6.5. As a server we used a Linux
workstation with AMD Athlon, 2 GB of RAM running Ubuntu 10.4.

274 S. Barker and V. Genovese

Proof. (Sketch) Both problems are data complexity problems [2] for which it is known
that the complexity of stratified ASP logic programs is polynomial. Moreover, from [12],
the types of aggregate functions admitted in CSL do not increase the complexity of non-
disjunctive ASP programs.

Suppose next that an acceptor’s policy Π∪D is described by a single file “policy.txt”,
which contains the policy expressed as a list of secommunity rules and a set of facts.
The authorization problem can be solved by letting DLV compute the answer set α
of Π ∪ D by running it on policy.txt and then parsing the DLV output looking for
the required occurrence of par in α. On the rule-based policy analysis, suppose that a
policy administrator wishes to check whether the answer set of policy.txt is closed
under a given CSL rule H ← L1 ∧ . . . ∧ Ln. Then, it is sufficient to run DLV on
policy.txt extended with constraint :-L1, . . . , Ln, not H9 and to check whether the
resulting answer set is empty (i.e., the policy does not satisfy the property) or not (i.e.,
the policy satisfies the property). Suppose next that a policy administrator wanted to
check on policy.txt that for any principal p, if p is authorized on action a1 over re-
source r1 then, p is authorized also on action a2 over resource r2. For that, it is sufficient
to run DLV on policy.txt by adding :-par(P, a1, r1), not par(P, a2, r2) as a con-
straint. Additionally, suppose that a check of a static separation of duty property of the
following type is required: “no principal can be granted for both action a1 and action
a2 over the same resource r1”. For that, it is sufficient to run DLV on policy.txt by
adding the following constraint :-par(P, a1, r1), par(P, a2, r1).

As a final remark, we emphasize that policy properties like safety and availability [7]
follow from the soundness and completeness results of the DLV framework w.r.t. stable
model semantics.

7 Related Work

We have described an extension to the work from [4] that allows for multiple distributed
access control policies to be represented in a common framework and that allows for
different propositional attitudes to be expressed by agents in relation to propositions
of relevance to access control. The work described in [4] is concerned neither with
distributed access control nor with propositional attitudes.

On the literature on logic programming for access control, our work is related to Ja-
jodia et al.’s specification of the flexible authorization framework in logic programming
terms [14] and to Barker and Stuckey’s CLP-based approach [7] for access control
policy specification. However, both of these approaches assume a centralized access
control system and neither of them can express the range of policies that can be ex-
pressed in terms of the meta-model that we described in [4]. Neither approach allows
for explicit negation to be used in policy specification, a community-based view of tes-
timonial knowledge for authorization, the use of propositional attitudes for expressing
policy information, or the use of a range of counting operators for policy specification.

The RT [18] family of trust management languages is also related to our proposal.
However, RT is Datalog-based and the various RT languages do not admit the pos-
sibility of sources issuing negative assertions and they do not admit a default form of

9 Notice that L1, . . . , L2 may also be remote querying operators or aggregate functions.

Socially Constructed Trust for Distributed Authorization 275

negation. RT is based on a monotonic semantics. RT also does not take account of
the idea of a community-based source of knowledge (role names could refer to oracles
but a doxastic element would need to be added to RT to capture what we propose)
or different strengths of knowledge expressed in terms of community-based assertions.
SD3 [15] and Binder [11] are also monotonic, Datalog-based languages for express-
ing policies for distributed access control. As such, neither of these approaches allows
for nonmonotonic access controls that we have considered in this paper. The work by
Wang and Zhang [23] uses ASP, as we do, for distributed access control policy specifi-
cation, but their work is based on the use of ASP to implement a variant of D2LP [18].
Our focus is quite different. We also note that RT T allows for threshold structures that
require principals from a single set to agree on an entity having a role’s attribute. In
CSL, policy requirements that require all contributors to an oracle must agree that a
principal-category assignment holds, but also disbeliefs, degrees of disagreement be-
tween believers and disbelievers, etc. can be expressed and so too can negated forms of
belief and disbelief.

There are several additional logic-based languages (e.g., ABLP logic, DKAL and
SecPAL) that, like Binder, attach special importance to a says construct (or a variant of
it). Put simply, A says p is used to associate a principal with an utterance p. At a superfi-
cial level, the reader might suggest that A says p means A “believes” p (though that this
doxastic interpretation is to be adopted it is far from being a universal view and SecPAL,
in particular, assumes that principals assert “facts” not beliefs) and that a says-logic en-
ables the concepts expressed in CSL to be equivalently represented. However, none of
ABLP logic, DKAL or SecPAL consider disbeliefs or the subtleties of the interactions
between beliefs and disbeliefs. In contrast, we give two distinctions between beliefs and
disbeliefs and we give axioms to make plain the formal relationships between them. We
also make clear how we interpret the notion of suspension (of beliefs). None of ABLP
logic, DKAL or SecPAL are concerned with the notion of trust being grounded in a
community view and being represented by using assertions expressed using aggregates.
Moreover, all reasoning methods for these logics are local, i.e., they do not offer prim-
itives to query distributed knowledge bases. A notable exception is Soutei [20], which
is an extension of Binder that accepts remote fetching of assertions. However, Soutei is
monotonic, it is based on says modality, it does not support aggregate functions and it
is not clear that it offers a client-server architecture that can be deployed in real-world
scenarios (e.g., the Internet).

Our work is also related to efforts, like SPKI/SDSI [9], that are concerned with cer-
tified authorization in distributed computing contexts. On this, Howell and Kotz [13]
discuss “beliefs” in the context of their formalization of a variant of SPKI/SDSI, but
our reading of their notion of belief suggests that what they have in mind is quite differ-
ent to our interpretation of “believes that”. Howell and Kotz give no formal definition
of what they take “belief” to mean in their formalization of distributed authorization;
they appear to assume beliefs to be synonymous with assertions of propositions, rather
than being an indicator of an epistemic attitude to a proposition. The work by Liau et
al. on BIT logic [19] is related to ours in the sense that beliefs in propositions may be
expressed in a logic for representing policies for trust management. However, the social
aspect of testimony is not considered by Liau et al.

276 S. Barker and V. Genovese

There have been many approaches to trust management that are based on measures
of trust (or disbelief or distrust) that are (often) expressed by using real numbers in
the interval [−1, 1] as measures of belief/disbelief in some proposition. However, it is
often far from clear how, for example, the assignment of trust measures to propositions
can be precisely and uncontroversially allocated and it is not clear how changes in
evidence justify changes in measures of belief/disbelief. In contrast, we argue that the
three epistemic positions that we allow (belief, disbelief and suspension of judgement)
provides a basis for defining a meaningful semantics for community-based, distributed
access control policies.

8 Conclusions and Further Work

We argued that for some (not all) applications, socially constructed testimony may be
usefully employed for distributed access control (that relying on individual, authori-
tative sources of testimony is not always appropriate). On this, we have described an
approach for socially constructed trust.

We have taken testimonial knowledge as being expressed in the form of a testifier’s
propositional attitude in relation to propositions about principal-category assignments
and we view trust in terms of community beliefs. For access control policy specification,
we introduced CSL (Section 3). By adopting a weak negation operator, nonmonotonic
policies can be represented in our framework. Acceptors and oracles express access
control policy information by using the same specification language. Scalability issues
are addressed by subdividing the task of providing testimony between contributors to
a community view. For the shared conceptual framework, we extend the meta-model
for access control as defined in [4]. To illustrate our approach, we gave a number of
examples of oracle-based access control representation (Section 4) and acceptor-based
authorization policies (Section 5). We described an ASP-based implementation of our
approach (Section 6) and we presented some performance measures for this implemen-
tation of our approach that offer evidence of its scalability (Section 6). We argued (in
Section 7) that our approach offers something different to existing approaches that either
do not consider the community aspect of testimonial knowledge or that do recognize the
importance of community constructed knowledge but express aggregated assertions in
terms of measures of “reputation”.

In future work, we propose to investigate community membership issues (e.g., how
to address the effects of changes to the community). Thus far, we have only consid-
ered a “democratic” form of community in which every contributor’s assertions have
the same weight. Accommodating variable measures of authority in terms of the as-
sertions that contributors make to the community view is another issue that requires
further investigation. We also intend to investigate issues relating to temporally con-
strained propositional attitude reports and we propose to include additional types of
propositional attitudes (e.g., “knows that” p by proof of p) in extended forms of our
framework.

Acknowledgements. The authors would like to thank Daniele Rispoli for the
implementation of the external predicates of secommunity.

Socially Constructed Trust for Distributed Authorization 277

References

1. Abadi, M.: Access control in a core calculus of dependency. Electr. Notes Theor. Comput.
Sci. 172, 5–31 (2007)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

3. Baral, C., Gelfond, M.: Logic programming and knowledge representation. J. Log. Pro-
gram. 19/20, 73–148 (1994)

4. Barker, S.: The next 700 access control models or a unifying meta-model? In: Procs. of
SACMAT, pp. 187–196 (2009)

5. Barker, S., Genovese, V.: Secommunity: A framework for distributed access control. In:
Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 297–303. Springer,
Heidelberg (2011)

6. Barker, S., Sergot, M.J., Wijesekera, D.: Status-based access control. ACM Trans. Inf. Syst.
Secur. 12(1) (2008)

7. Barker, S., Stuckey, P.: Flexible access control policy specification with constraint logic pro-
gramming. ACM Trans. Inf. Syst. Secur. 6(4), 501–546 (2003)

8. Bell, D.E., LaPadula, L.J.: Secure computer system: Unified exposition and multics interpre-
tation. MITRE-2997 (1976)

9. Clarke, D.E., Elien, J.-E., Ellison, C.M., Fredette, M., Morcos, A., Rivest, R.L.: Certificate
chain discovery in SPKI/SDSI. J. Computer Security 9(4), 285–322 (2001)

10. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate functions in disjunctive
logic programming: Semantics, complexity, and implementation in DLV. In: Procs. of IJCAI,
pp. 847–852 (2003)

11. DeTreville, J.: Binder, a logic-based security language. In: Proc. IEEE Symposium on Secu-
rity and Privacy, pp. 105–113 (2002)

12. Faber, W., Leone, N.: On the complexity of answer set programming with aggregates. In:
Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 97–
109. Springer, Heidelberg (2007)

13. Howell, J., Kotz, D.: A formal semantics for SPKI. In: Cuppens, F., Deswarte, Y., Gollmann,
D., Waidner, M. (eds.) ESORICS 2000. LNCS, vol. 1895, pp. 140–158. Springer, Heidelberg
(2000)

14. Jajodia, S., Samarati, P., Sapino, M., Subrahmaninan, V.: Flexible support for multiple access
control policies. ACM TODS 26(2), 214–260 (2001)

15. Jim, T.: SD3: A trust management system with certified evaluation. In: IEEE Symp. Security
and Privacy, pp. 106–115 (2001)

16. Leone, N., Faber, W.: The DLV project: A tour from theory and research to applications and
market. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
53–68. Springer, Heidelberg (2008)

17. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: A logic-based approach to distributed
authorization. ACM Trans. Inf. Syst. Secur. 6(1), 128–171 (2003)

18. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-management frame-
work. In: Procs. of IEEE Symposium on Security and Privacy, pp. 114–130 (2002)

19. Liau, C.-J.: Belief, information acquisition, and trust in multi-agent systems–a modal logic
formulation. Artif. Intell. 149(1), 31–60 (2003)

20. Pimlott, A., Kiselyov, O.: Soutei, a logic-based trust-management system. In: Hagiya, M.
(ed.) FLOPS 2006. LNCS, vol. 3945, pp. 130–145. Springer, Heidelberg (2006)

21. Russell, B.: On denoting. Mind 149(1), 479–493 (1905)
22. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control models. IEEE

Computer 29(2), 38–47 (1996)
23. Wang, S., Zhang, Y.: Handling distributed authorization with delegation through answer set

programming. Int. J. Inf. Sec. 6(1), 27–46 (2007)

Fully Secure Multi-authority Ciphertext-Policy

Attribute-Based Encryption without Random
Oracles

Zhen Liu1,2,�, Zhenfu Cao1,�, Qiong Huang3, and Duncan S. Wong2,
and Tsz Hon Yuen4

1 Shanghai Jiao Tong University, Shanghai, China
{liuzhen@,zfcao@cs.}sjtu.edu.cn

2 City University of Hong Kong, Hong Kong S.A.R., China
{zhenliu7@student.,duncan@}cityu.edu.hk

3 South China Agricultural University, Guangzhou, China
csqhuang@alumni.cityu.edu.hk

4 The University of Hong Kong, Hong Kong S.A.R., China
thyuen@cs.hku.hk

Abstract. Recently Lewko and Waters proposed the first fully secure
multi-authority ciphertext-policy attribute-based encryption (CP-ABE)
system in the random oracle model, and leave the construction of a fully
secure multi-authority CP-ABE in the standard model as an open prob-
lem. Also, there is no CP-ABE system which can completely prevent
individual authorities from decrypting ciphertexts. In this paper, we
propose a new multi-authority CP-ABE system which addresses these
two problems positively. In this new system, there are multiple Cen-
tral Authorities (CAs) and Attribute Authorities (AAs), the CAs issue
identity-related keys to users and are not involved in any attribute re-
lated operations, AAs issue attribute-related keys to users and each AA
manages a different domain of attributes. The AAs operate indepen-
dently from each other and do not need to know the existence of other
AAs. Messages can be encrypted under any monotone access structure
over the entire attribute universe. The system is adaptively secure in the
standard model with adaptive authority corruption, and can support
large attribute universe.

Keywords: Attribute based encryption, ciphertext-policy, multi-authority.

1 Introduction

In traditional cryptosystems, messages are encrypted for receivers who are
identified by the keys they are holding. The same holds for Identity-Based En-
cryption (IBE) [20,3] where user public keys are binary strings, such as email
� The authors are supported by the National Nature Science Foundation of China No.

61033014, No. 60970110 and No. 60972034, and by the National 973 Program No.
2007CB311201.

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 278–297, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Fully Secure Multi-authority Ciphertext-Policy ABE w/o ROs 279

addresses, which uniquely identify the users. In some applications that require
access control, messages are required to be encrypted for multiple receivers who
are identified by their roles, rather than their actual identities. For example,
Alice may want to encrypt some message to all PhD students and alumni in the
Department of Computer Science of University X, that is, she wants to do the
encryption with an access policy such as (“UNIV.X.COMPUTER SCIENCE”
AND (“UNIV.X.PhD STUDENT” OR “UNIV.X.ALUMNI”)), so that only
those receivers whose attributes satisfy this policy can perform the decryption
successfully. As a counterexample, suppose Bob is a Computer Science under-
graduate student, he cannot decrypt even if he colludes with another student,
say Tom, who is a PhD student but in the Mathematics department.

Attribute-Based Encryption (ABE) [19] provides a solution to the application
above. In ABE (Ciphertext-Policy ABE or CP-ABE as an example), an access
policy defined over a set of attributes is associated with each encrypted mes-
sage, and each user in the system has a private key obtained from an authority
(e.g., the UNIV.X Registry) corresponding to the user’s attributes (or creden-
tials). If a user’s attributes satisfy the access policy of a ciphertext, the user
can decrypt the ciphertext. In most of the ABE systems [10,18,2,7,9,21,11,17],
attributes are managed by a single authority. In some applications however,
this may not desirable. For example, Alice encrypts a message with access
policy (“UNIV.X.COMPUTER SCIENCE” AND “UNIV.X.ALUMNI” AND
“GOOGLE.ENGINEER”) so that only receivers who are the computer science
alumni of University X and currently working as an engineer for Google can
decrypt. The authority UNIV.X Registry may only manage attributes for the
students, staff and alumni of University X, while Google Registry may be the
authority handling its employees’ attributes. A single-authority ABE may not
be appropriate in this scenario.

Multi-authority ABE systems are proposed to address this issue. For the
systems in [5,14,6,15,16], they are selectively secure where the adversary has
to commit to the access policy before seeing the public parameters. Recently
in [13], Lewko and Waters proposed a new one. Although their system may
become inefficient for large attribute universe, it is the first fully secure multi-
authority ABE system and is proven secure in the random oracle model.
Multi-authority ABE also helps alleviate the extent of trust on authorities. In a
single-authority ABE system [19,10,18,2,7,9,21,11,17], the authority can decrypt
all ciphertexts. In some multi-authority ABE systems [5,15,16], there is still a
central authority which can decrypt all ciphertexts. In [14,6], the multi-authority
ABE systems do not have a central authority. They are Key-Policy ABE (KP-
ABE), and the techniques do not seem to apply to CP-ABE. In the multi-
authority CP-ABE [13], no single authority can decrypt all ciphertexts and each
authority can only decrypt ciphertexts that the associated access policy can be
satisfied by the authority’s own domain of attributes. For example, although nei-
ther UNIV.X Registry nor Google Registry alone can decrypt a ciphertext with
access policy (“UNIV.X.ALUMNI” AND “GOOGLE.ENGINEER”), UNIV.X
Registry can decrypt a ciphertext with access policy (“UNIV.X.COMPUTER
SCIENCE” AND “UNIV.X.ALUMNI”).

280 Z. Liu et al.

Table 1. A Comparison between existing work and this work

Multi- Adaptively Standard Prevent Decryption Support Large KP/CP
Authority Secure Model by Individual Attribute

Authorities Universe

[19,10,18] × × √ × √
KP

[2] × × × × √
CP

[7,9,21] × × √ × √
CP

[11,17] × √ √ × √
KP+CP

[5]
√ × √ × √

KP

[14]
√ × √ √ √

KP

[6]
√ × √ √ √

KP

[15,16]
√ × √ × √

CP

[13]
√ √ × Partially × CP

this work
√ √ √ √ √

CP

1.1 Our Results

We propose a new multi-authority CP-ABE system which has multiple Central
Authorities (CAs) and Attribute Authorities (AAs). The CAs issue identity-
related keys to users but do not involve in any attribute-related operations. AAs
issue attribute-related keys to users. Each AA manages a different attribute
domain and operates independently from other AAs. A party may join the system
to be an AA by simply registering itself to the CAs, and then publishing its
attribute-related public parameters. In the proposed system, no authority can
independently decrypt any ciphertext. We show that the system is adaptively
secure in the standard model which captures adaptive authority corruption. Its
access policy can be any monotone access structure and the system supports
large attribute universe. The efficiency of the system is also comparable to the
corresponding single-authority CP-ABE system. Table 1 shows a comparison in
properties and security levels between current ABE systems and this new system.

1.2 System Architecture

Fig. 1 shows the architecture of the multi-authority CP-ABE system. The sys-
tem has D Central Authorities, CA1, . . . , CAD, and K Attribute Authorities,
AA1, . . . , AAK . Each AA manages a different domain of attributes (e.g., AA1

manages U1, and so on). When a user joins the system, each CA issues an
identity-related key to the user. Then the user obtains an attribute-related key
corresponding to the attributes that the user entitled from an AA (e.g., UNIV.X
Registry). In practice, one may imagine that there could have multiple CAs
run by different organizations while all of them are governed under some ordi-
nance made by the government, then universities and companies can join the
system as AAs. Each AA manages its own attribute domain and the AAs op-
erate independently from each other. The trust on the CAs by the users in the
system can also be alleviated as it is unlikely to have all the CAs collude if some
appropriate governmental policies and business measures are put into place to
govern the practice of the CAs.

Fully Secure Multi-authority Ciphertext-Policy ABE w/o ROs 281

User

Fig. 1. Architecture of Multi-Authority CP-ABE

1.3 Related Work

Attribute-Based Encryption (ABE) was introduced by Sahai and Waters [19]
and classified into Key-Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-
ABE) by Goyal et al. [10]. In KP-ABE, attributes are associated with ciphertexts
and formulas (or policies) defined over attributes are associated with users’ secret
keys. In CP-ABE, attributes are associated with users’ secret keys and policies
are associated with ciphertexts. The single-authority ABE systems proposed in
[19,10,18] are KP-ABE, those proposed in [2,7,9,21] are CP-ABE, and [11,17]
cover both KP-ABE and CP-ABE.

Chase [5] proposed the first multi-authority ABE system where there are
one CA (Central Authority) and multiple AAs (Attribute Authorities). The CA
issues identity-related keys to users and the AAs manage attributes and issue
attribute-related keys. A user’s keys from different AAs are linked together by
the user’s global identifier. The expressiveness of the system is limited and only
“AND” policy between the AAs is supported. Also, the CA can decrypt all
ciphertexts. Lin et al. [14] remove the CA using a threshold technique where the
set of authorities is fixed ahead of time and all authorities must interact during
the system setup. The system cannot defend against collusion attack by m or
more users where m is a system parameter chosen at setup. Chase and Chow
[6] also remove the central authority using a distributed PRF (pseudo random
function) technique. However, the expressiveness is as limited as the original
Chase’s system, and their technique does not seem to apply to CP-ABE. While
[5,14,6] focus on KP-ABE, Müller, Katzenbeisser, and Eckert [15,16] proposed
the first multi-authority CP-ABE system where there are one CA and multiple
AAs. The AAs operate independently from each other and therefore is flexible
and practical. However, the CA in the system can still decrypt all ciphertexts.

In [13], Lewko and Waters proposed a new multi-authority CP-ABE
system. Different from all previous multi-authority ABE systems, which are all

282 Z. Liu et al.

selectively secure, this new system is adaptively secure. The system is expres-
sive, supporting any monotone access structures. There is no central authority
and each authority in the system operates independently from other authorities.
The system is proven secure in the random oracle model, and does not efficiently
support large attribute universe. In addition, each authority can still indepen-
dently decrypt ciphertexts, if the associated access policies can be satisfied by
the attributes managed by the authority.

Paper Organization. In the next section, we define the multi-authority CP-ABE
and formalize its security model. Some background such as number-theoretic
assumptions and access structures are reviewed in Sec. 3. Our scheme is described
in Sec. 4, and some extensions are proposed in Sec. 5. In Sec. 6, the scheme is
compared with some existing schemes and the paper is concluded in Sec. 7.

2 Definition and Security Model

There are three sets of entities in a Multi-Authority Ciphertext-Policy Attribute-
Based Encryption (MA-CP-ABE) system: (1) Central Authorities (CAs), (2)
Attribute Authorities (AAs) and (3) users. Let CA1, . . . , CAD be central au-
thorities and D = {1, . . . , D} the index set of the CAs, that is, using d ∈ D
to denote the index of central authority CAd. Let AA1, . . . AAK be attribute
authorities and K = {1, . . . , K} the index set of the AAs. Each user has a global
identifier denoted as gid. The CAs are responsible for issuing keys to users
according to their global identifiers. The AAs are responsible for issuing keys
corresponding to attributes, and each AA manages a different attribute domain
(e.g., AAi manages attributes for a university registry, AAj manages attributes
for a company registry, etc.). Let Uk be the attribute domain managed by AAk

where Ui∩Uj = ∅ for all i �= j ∈ K, and U =
⋃K

k=1 Uk be the attribute universe.

2.1 Definition

An MA-CP-ABE system consists of the following seven algorithms:

GlobalSetup(λ) → (GPK). The algorithm takes as input the security parameter
λ and outputs the global public parameter GPK of the system.

CASetup(GPK, d) → (CPKd, CAPKd, CMSKd). Each CAd runs the algorithm
with GPK and its index d as input, and produces master secret key CMSKd

and public parameters (CPKd, CAPKd). CAPKd will be used by AAs only.
AASetup(GPK, k, Uk)→ (APKk, ACPKk, AMSKk). EachAAk runs the algorithm

with GPK, its index k and its attribute domain Uk as input, and produces
master secret key AMSKk and public parameters (APKk, ACPKk). ACPKk

will be used by CAs only.
Encrypt(M, A, GPK, {CPKd|d ∈ D}, {APKk}) → CT . The algorithm takes as

input a message M , an access policy A defined over the attribute universe
U , the global public parameter GPK, CAs’ public parameters {CPKd|d ∈ D},
and the related AAs’ public parameters {APKk}. It outputs a ciphertext CT
which contains the access policy A.

Fully Secure Multi-authority Ciphertext-Policy ABE w/o ROs 283

CKeyGen(gid, GPK, {ACPKk|k ∈ K}, CMSKd) → (ucskgid,d, ucpkgid,d). When a
user with global identifier gid visits CAd for obtaining a key, CAd runs the
algorithm, which takes as input gid, GPK, {ACPKk|k ∈ K}, and CAd’s mas-
ter secret key CMSKd. It outputs a user-central-key (ucskgid,d, ucpkgid,d),
where ucpkgid,d is called user-central-public-key .

AKeyGen(att, {ucpkgid,d|d ∈ D}, GPK, {CAPKd|d ∈ D}, AMSKk) → uaskatt,gid

or ⊥. When a user requests a secret key for attribute att from AAk, AAk runs
the algorithm, which takes as input att, {ucpkgid,d|d ∈ D}, GPK, {CAPKd|d ∈
D} and AMSKk. If all ucpkgid,ds are valid, the algorithm outputs a user-
attribute-key uaskatt,gid, otherwise it outputs ⊥. For a user gid with at-
tribute set Sgid, the user’s decryption-key is defined as

DKgid = ({ucskgid,d, ucpkgid,d|d ∈ D}, {uaskatt,gid|att ∈ Sgid}).

Decrypt(CT, GPK, {APKk}, DKgid) → M or ⊥. The algorithm takes as input a
ciphertext CT associated with access policy A, GPK, the related attribute
authorities’ public parameters {APKk}, and a decryption-key DKgid with
attribute set Sgid. If Sgid satisfies the access policy A, the algorithm outputs
the message M , otherwise it outputs ⊥ indicating the failure of decryption.

2.2 Security Model

The security of MA-CP-ABE is defined by the following game run between a
challenger B and an adversary A. A can corrupt CAs and AAs by specifying
Kc ⊂ K and Dc ⊂ D after seeing the public parameters1, where D \ Dc �= ∅ and
K \ Kc �= ∅. Without loss of generality, we assume that A corrupts all CAs but
one, i.e., |D \ Dc| = 1.

Setup
– GlobalSetup, CASetup(GPK, d) (d = 1, . . . , D) and AASetup(GPK, k, Uk)
(k = 1, . . . , K) are run by the challenger B. GPK, {CPKd, CAPKd|d ∈ D}
and {APKk, ACPKk|k ∈ K} are given to the adversary A.

– A specifies an index d∗ ∈ D as the only uncorrupted CA and specifies a
set Kc ⊂ K of AAs to be corrupted where K\Kc �= ∅. Let Dc = D\{d∗}.
{CMSKd|d ∈ Dc} and {AMSKk|k ∈ Kc} are given to A.

Key Query Phase 1. User-central-key and user-attribute-key can be obtained
by querying the following oracles:
CKQ(gid, d) where d = d∗: A queries with a pair (gid, d), where gid is a

global identifier and d = d∗, and obtains the corresponding user-central-
key (ucskgid,d∗ , ucpkgid,d∗).

1 This is stronger than the static corruption model used in [5,6,13], where the adversary
has to specify the authorities to corrupt before seeing the public parameters. But on
the other aspect, it is weaker than the model in [13], where the corrupted authorities
are set by the adversary.

284 Z. Liu et al.

AKQ(att, {ucpkgid,d|d ∈ D}, k) where k ∈ K \ Kc: A queries with (att,
{ucpkgid,d|d ∈ D}, k), where k ∈ K \ Kc is the index of an uncorrupted
AA, {ucpkgid,d|d ∈ D} are gid’s user-central-public-keys, and att is an
attribute in Uk. The oracle returns a user-attribute-key uaskatt,gid or ⊥
if {ucpkgid,d} are invalid.

Challenge Phase. A submits two equal-length messages M0, M1, and an ac-
cess policy A. B flips a random coin β ∈ {0, 1} and sends to A an encryption
of Mβ under A.

Key Query Phase 2. A further queries as in Key Query Phase 1.
Guess. A submits a guess β′ for β.

For a gid, the related attribute set is defined as

Sgid = {att | AKQ(att, {ucpkgid,d|d ∈ D}, k) is made by A}.

A wins the game if β′ = β under the restriction that there is no Sgid such that
Sgid ∪ (

⋃
kc∈Kc

Ukc) can satisfy the challenge access policy A. The advantage of
A is defined as |Pr[β = β′]− 1/2|.

Definition 1. An MA-CP-ABE system is secure if for all polynomial-time ad-
versary A in the game above, the advantage of A is negligible.

Remarks: We assume that a user with global identifier gid requests for the
central key from each CAd only once, i.e., for each gid there is only one set
of user-central-keys, {ucpkgid,d|d ∈ D}. This is not a restriction, but can help
simplify the system description. Using obscure notations such as ucpkgid,d,t and
Sgid,d,t where t is a time stamp can remove this assumption. In the security
model above, A has the master secret keys {CMSKd|d ∈ Dc}, so the user only
needs to query CKQ(gid, d∗) for getting (ucskgid,d∗ , ucpkgid,d∗), and the user can
generate {(ucskgid,d, ucpkgid,d)|d ∈ Dc} if they are needed for querying AKQ.

3 Background

3.1 Access Policy

Definition 2 (Access Structure [1]). Let {P1, P2, . . . , Pn} be a set of par-
ties. A collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀ B,C : if B ∈ A and
B ⊆ C then C ∈ A. An access structure (respectively, monotone access struc-
ture) is a collection (respectively, monotone collection) A of non-empty subsets
of {P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn} \ {∅}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In ABE, the role of the parties is taken by the attributes. Thus, the access
structure A contains the authorized sets of attributes. As of previous work in
ABE, we focus on monotone access structures in this paper. It is shown in [1]
that any monotone access structure can be realized by a linear secret sharing
scheme. Here we use the definition from [1,21].

Fully Secure Multi-authority Ciphertext-Policy ABE w/o ROs 285

Definition 3 (Linear Secret-Sharing Schemes (LSSS) [21]). A secret
sharing scheme Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix A called the share-generating matrix for Π. The matrix

A has l rows and n columns. For i = 1, . . . , l, the ith row of A is labeled by
a party ρ(i)(ρ is a function from {1, . . . , l} to P). When we consider the
column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared and
r2, . . . , rn ∈ Zp are randomly chosen, then Av is the vector of l shares of the
secret s according to Π. The share (Av)i belongs to party ρ(i).

It is shown in [1] that every linear secret-sharing scheme according to the above
definition also enjoys the linear reconstruction property, defined as follows: Sup-
pose that Π is an LSSS for access structure A. Let S ∈ A be an authorized set,
and let I ⊂ {1, 2, . . . , l} be defined as I = {i : ρ(i) ∈ S}. There exist constants
{ωi ∈ Zp}i∈I such that if {λi} are valid shares of any secret s according to Π ,
then

∑
i∈I ωiλi = s. Furthermore, these constants {ωi} can be found in time

polynomial in the size of the share-generating matrix A. For any unauthorized
set, no such constants exist. In this paper, we use LSSS matrix (A, ρ) to express
an access policy associated to a ciphertext.

3.2 Number-Theoretic Assumptions

Our MA-CP-ABE system works on composite order bilinear groups [4]. Let
G be the group generator, which takes a security parameter λ and outputs
(p1, p2, p3, G, GT , e) where p1, p2, p3 are distinct primes, G and GT are cyclic
groups of order N = p1p2p3, and e : G ×G → GT is a map such that: (1) (Bi-
linear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab, (2) (Non-Degenerate) ∃g ∈ G
such that e(g, g) has order N in GT . Assume that group operations in G and
GT as well as the bilinear map e are computable in polynomial time with re-
spect to λ. Let Gp1 , Gp2 and Gp3 be the subgroups of order p1, p2 and p3 in G,
respectively. Note that for any hi ∈ Gpi and hj ∈ Gpj where i �= j, e(hi, hj) = 1.

For an element T ∈ G, T can (uniquely) be written as the product of an
element of Gp1 , an element of Gp2 , and an element of Gp3 , and they are referred
to as the “Gp1 part of T ”, “Gp2 part of T ” and “Gp3 part of T ”, respectively.
In the assumptions below, let Gp1p2 and Gp1p3 be the subgroups of order p1p2

and p1p3 in G, respectively. Similarly, an element in Gp1p2 can be written as the
product of an element of Gp1 and an element of Gp2 , and an element in Gp1p3

can be written as the product of an element of Gp1 and an element of Gp3 .

Assumption 1 (Subgroup decision problem for 3 primes). [12] Given a
group generator G, define the following distribution: G = (N = p1p2p3, G, GT , e)

R←− G, g
R←− Gp1 , X3

R←− Gp3 , D = (G, g, X3), T1
R←− Gp1p2 , T2

R←− Gp1 . The
advantage of an algorithm A in breaking Assumption 1 is:

Adv1G,A(λ) := |Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]|.

Definition 4. G satisfies Assumption 1 if Adv1G,A(λ) is a negligible function
of λ for any polynomial time algorithm A.

286 Z. Liu et al.

Assumption 2. [12] Given G, define the following distribution: G = (N =
p1p2p3, G, GT , e) R←− G, g, X1

R←− Gp1 , X2, Y2
R←− Gp2 , X3, Y3

R←− Gp3 , D =

(G, g, X1X2, X3, Y2Y3), T1
R←− G, T2

R←− Gp1p3 . The advantage of an algorithm
A in breaking Assumption 2 is:

Adv2G,A(λ) := |Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]|.

Definition 5. G satisfies Assumption 2 if Adv2G,A(λ) is a negligible function
of λ for any polynomial time algorithm A.

Assumption 3. [12] Given G, define the following distribution: G = (N =
p1p2p3, G, GT , e) R←− G, α, s

R←− ZN , g
R←− Gp1 , X2, Y2, Z2

R←− Gp2 , X3
R←−

Gp3 , D = (G, g, gαX2, X3, g
sY2, Z2), T1 = e(g, g)αs, T2

R←− GT . The advantage
of an algorithm A in breaking Assumption 3 is:

Adv3G,A(λ) := |Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]|.

Definition 6. G satisfies Assumption 3 if Adv3G,A(λ) is a negligible function
of λ for any polynomial time algorithm A.

4 Our Multi-authority CP-ABE

4.1 Outline

Before describing our construction of MA-CP-ABE, we briefly review the CP-
ABE scheme of [11] below, and then outline the ideas behind our construction.

Setup(λ, U) → (PK, MSK). Let G be a bilinear group of order N = p1p2p3,
and Gpi be the subgroup of order pi in G. Randomly choose α, a ∈ ZN and
g ∈ Gp1 . For each attribute att ∈ U , randomly choose satt ∈ ZN . Let X3 be a
generator of Gp3 . The public parameters are PK = (N, g, ga, e(g, g)α, Tatt =
gsatt ∀att ∈ U), and the master secret key is MSK = (α, X3).

KeyGen(MSK, S, PK)→ SK. The algorithm randomly chooses r ∈ ZN , R0, R
′
0 ∈

Gp3 , and for each att ∈ S it randomly picks Ratt ∈ Gp3 . The secret key is:
K = gαgarR0, L = grR′

0, Katt = T r
attRatt ∀att ∈ S.

Encrypt((A, ρ), PK, M) → CT . A is an l × n matrix and ρ maps each row
Ax of A to an attribute ρ(x). The algorithm chooses a random vector v =
(s, v2, . . . , vn) ∈ Zn

N , and for each row Ax of A, it randomly picks rx ∈ ZN .
The ciphertext is: 〈C = M · e(g, g)αs, C′ = gs, Cx = gaAx·vT−rx

ρ(x) , C′
x =

grx ∀x ∈ {1, 2, . . . , l}〉 along with (A, ρ).
Decrypt(CT, PK, SK) → M . The algorithm computes constants ωx ∈ ZN such

that
∑

ρ(x)∈S ωxAx = (1, 0, . . . , 0), then

e(C′, K)
/ ∏

ρ(x)∈S

(
e(Cx, L) · e(C′

x, Kρ(x))
)ωx = e(g, g)αs.

Then M can be recovered as C/e(g, g)αs.

Now we outline the ideas used in our construction of MA-CP-ABE. We start
with building a one-CA-multi-AA system.

Fully Secure Multi-authority Ciphertext-Policy ABE w/o ROs 287

One Central Authority and Multiple Attribute Authorities. In the Key-
Gen algorithm of the underlying CP-ABE system, K and L are uncorrelated to
any attributes, and ∀att ∈ S

Katt = T r
attRatt

= (gsatt)rRatt = (gr)sattRatt = (LR′−1
0)sattRatt = LsattR′−satt

0 Ratt

= LsattR′
att

i.e., Katt can be computed from L and satt without knowing the value of r. We
can get a one-CA-multi-AA system as shown in Fig. 2, where different attribute
authorities manage different domains of attributes and a central authority holds
the master secret key and generates K and L for users.

While the L is submitted to AAs by the users, the malicious users may launch
a collusion attack by submitting the same L. e.g., LBob = LTom will allow them
put their attribute keys together to decrypt some ciphertexts that they are not
authorized to. To defend against this attack, the AAs should verify whether the L
is really issued by the CA to the corresponding user. A signature scheme, which
is existentially unforgeable under adaptive chosen message attacks (UF-CMA)
[8] can be introduced, that is, an adversary cannot generate a valid signature
for a new message. Müller, Katzenbeisser, and Eckert [15,16] proposed a similar
construction based on Waters’ CP-ABE [21]. Their system is selectively secure
with non-adaptive key query and the collusion attack above is not considered.

Using signature scheme in multi-authority CP-ABE system was also discussed
by Lewko and Waters [13], in a way that, the AAs certify users’ identities and
their attributes, and a CA issues attribute keys to users according to their
identity-attribute certificates. As they mentioned, the CA is demanding as all
attribute keys are issued by the CA. Also, the CA will know all the attributes
of each user.

Multiple Central Authorities and Multiple Attribute Authorities. In
the above one-CA-multi-AA system, the CA can decrypt all ciphertexts because
it holds the master secret key α. We use a (D, D) threshold policy to distribute
the master secret key to D central authorities to get a multi-CA-multi-AA system
as shown in Figure 3. Each central authority (CAd) publishes a e(g, g)αd and
holds the αd secretly. The encryptor masks M by

∏
e(g, g)αds. A user gid with

attribute set Sgid will visit each CAd to get (Kgid,d, Lgid,d), and then submit
{Lgid,d | d ∈ D} to related {AAk} where Sgid ∩ Uk �= ∅. For any attribute
att ∈ Sgid ∩ Uk, AAk will generate Katt,gid,d from Lgid,d for each d ∈ D, and
issue {Katt,gid,1, . . . , Katt,gid,D} to gid.

However, this is insecure when some CAs are corrupted, e.g., two malicious
users, Bob and Tom, corrupt CA1. Assume a1 ∈ STom, a2 /∈ STom, a2 ∈ SBob.
Normally Tom should not get Ka2,Tom,D to reconstruct e(g, g)αDs for a cipher-
text associated with policy (a1 AND a2). But Bob can make LBob,1 = LTom,D

because he controls CA1, then submits (a2, LBob,1) to AAK , and AAK will
use LBob,1(actually, LTom,D) to generate Ka2,Bob,1 for “Bob”, which is actually
Ka2,Tom,D for Tom.

288 Z. Liu et al.

User

Fig. 2. One-CA-Multi-AA

User

Fig. 3. Multi-CA-Multi-AA

Our solution is to have AAk check if CAd has honestly generated Lgid,d.
In our construction, when CAd generates a Lgid,d = grR′, it must generate
Γgid,d,k = V r

k,dR for each k ∈ K for showing the knowledge of r. This idea is
also borrowed from the underlying CP-ABE scheme. In particular, given (L =
grR′

0, Katt = T r
attRatt ∀att ∈ S) and Tatt′ where att′ /∈ S, an attacker cannot

construct Katt′ = T r
att′Ratt′ .

4.2 Construction

GlobalSetup(λ) → (GPK). Let G be a bilinear group of order N = p1p2p3 (3
distinct primes), and Gpi be the subgroup of order pi in G. The algorithm
randomly chooses g, h ∈ Gp1 . Let X3 be a generator of Gp3 .
The global public parameter is published as GPK = (N, g, h, X3, Σsign),
where Σsign = (KeyGen, Sign, Verify) is the description of an UF-CMA secure
signature scheme.

CASetup(GPK, d) → (CPKd, CAPKd, CMSKd). CAd runs the KeyGen algorithm
of Σsign to generate sign key pair (SignKeyd, VerifyKeyd), and chooses a ran-
dom exponent αd ∈ ZN .
CAd publishes its public parameter CPKd = e(g, g)αd , CAPKd = VerifyKeyd.
CAd sets its master secret key CMSKd = (αd, SignKeyd).

AASetup(GPK, k, Uk) → (APKk, ACPKk, AMSKk). For each att ∈ Uk, AAk ran-
domly chooses satt ∈ ZN and sets Tatt = gsatt . For each d ∈ D, AAk ran-
domly chooses vk,d ∈ ZN and sets Vk,d = gvk,d .
AAk publishes its public parameter APKk = {Tatt|att ∈ Uk}, ACPKk =
{Vk,d|d ∈ D}.
AAk sets its master secret key AMSKk = ({satt|att ∈ Uk}, {vk,d|d ∈ D}).

Encrypt(M, A = (A, ρ), GPK, {CPKd|d ∈ D}, {APKk})→ CT . M is the message
to be encrypted, A is the access policy which is expressed by an LSSS matrix
(A, ρ), where A is an l×n matrix and ρ maps each row Ax of A to an attribute
ρ(x). Here it is required that ρ will not map two different rows to a same
attribute.

Fully Secure Multi-authority Ciphertext-Policy ABE w/o ROs 289

The algorithm chooses a random vector v = (s, v2, . . . , vn) ∈ Zn
N , and for

each x ∈ {1, 2, . . . l}, it randomly picks rx ∈ ZN . Let Ax · v be the inner
product of the xth row of A and the vector v. The ciphertext is

C = M ·
D∏

d=1

e(g, g)αd·s, C′ = gs,

{Cx = hAx·vT−rx

ρ(x) , C
′
x = grx | x ∈ {1, 2, . . . l}}

along with the access policy A = (A, ρ).
CKeyGen(gid, GPK, {Vk,d|k ∈ K}, CMSKd)→ (ucskgid,d, ucpkgid,d). When a user

submits his gid to CAd to request the user-central-key,CAd randomly chooses
rgid,d ∈ ZN and Rgid,d, R

′
gid,d ∈ Gp3 , then sets

ucskgid,d = gαdhrgid,dRgid,d, Lgid,d = grgid,dR′
gid,d.

For k = 1 to K, CAd randomly picks Rgid,d,k ∈ Gp3 and computes

Γgid,d,k = V
rgid,d

k,d Rgid,d,k.

CAd computes σgid,d = Sign(SignKeyd, gid||d||Lgid,d||Γgid,d,1|| . . . ||Γgid,d,K).
Let ucpkgid,d = (gid, d, Lgid,d, {Γgid,d,k | k ∈ K}, σgid,d).

AKeyGen(att, {ucpkgid,d|d ∈ D}, GPK, {VerifyKeyd|d ∈ D}, AMSKk)→ uaskatt,gid

or ⊥. When a user submits his {ucpkgid,d|d ∈ D} to AAk to request the user-
attribute-key for attribute att ∈ Uk,
1. For d = 1 to D, AAk parses ucpkgid,d into (gid, d, Lgid,d, {Γgid,d,k|k ∈

K}, σgid,d) and checks whether

valid← Verify(VerifyKeyd, gid||d||Lgid,d||Γgid,d,1|| . . . ||Γgid,d,K , σgid,d)
(1)

e(g, Γgid,d,k) = e(Vk,d, Lgid,d) �= 1. (2)

If there is any failure, AAk outputs ⊥ to user to imply the submitted
{ucpkgid,d|d ∈ D} are invalid.

2. For d = 1 to D, AAk randomly picks R′
att,gid,d ∈ Gp3 , and sets

uaskatt,gid,d = (Γgid,d,k)satt/vk,dR′
att,gid,d. (3)

Note that

uaskatt,gid,d = (Γgid,d,k)satt/vk,dR′
att,gid,d

= (V rgid,d

k,d Rgid,d,k)satt/vk,dR′
att,gid,d

= (gvk,d·rgid,dRgid,d,k)satt/vk,dR′
att,gid,d

= T
rgid,d

att (Rgid,d,k)satt/vk,dR′
att,gid,d

As (Rgid,d,k)satt/vk,dR′
att,gid,d is in Gp3 and R′

att,gid,d is randomly chosen,
we can write

uaskatt,gid,d = T
rgid,d

att Ratt,gid,d. (4)

290 Z. Liu et al.

Without knowing the value of rgid,d, by running (3), AAk can compute
the value as (4).

3. AAk outputs user-attribute-key uaskatt,gid to user where

uaskatt,gid =
D∏

d=1

uaskatt,gid,d =
D∏

d=1

T
rgid,d

att Ratt,gid,d

= T
∑D

d=1 rgid,d

att

D∏
d=1

Ratt,gid,d

= T
∑D

d=1 rgid,d

att Ratt,gid

(5)

Decrypt(CT, GPK, {APKk}, DKgid) → M . The ciphertext CT is parsed into
〈C, C′, {Cx, C′

x|x ∈ {1, 2, . . . , l}}, A = (A, ρ)〉, and the decryption-key DKgid

is parsed into ({ucskgid,d, ucpkgid,d|d ∈ D}, {uaskatt,gid|att ∈ Sgid}).
The algorithm computes

– ucskgid =
D∏

d=1

ucskgid,d = g
∑D

d=1 αdh
∑D

d=1 rgid,d

D∏
d=1

Rgid,d = gαhrgidRgid,

with α =
∑D

d=1 αd, rgid =
∑D

d=1 rgid,d and Rgid =
D∏

d=1

Rgid,d.

– Lgid =
D∏

d=1

Lgid,d = g
∑D

d=1 rgid,d

D∏
d=1

R′
gid,d = grgidR′

gid,

with R′
gid =

D∏
d=1

R′
gid,d.

Note that ∀att ∈ Sgid, uaskatt,gid = T
∑D

d=1 rgid,d

att Ratt,gid = T
rgid

att Ratt,gid.
If Sgid satisfies the access policy (A, ρ), the algorithm computes constants
ωx ∈ ZN such that

∑
ρ(x)∈Sgid

ωxAx = (1, 0, . . . , 0). Then it computes

e(C′, ucskgid)
/ ∏

ρ(x)∈Sgid

(
e(Cx, Lgid) · e(C′

x, uaskρ(x),gid)
)ωx = e(g, g)αs.

While C = M ·
∏D

d=1 e(g, g)αd·s = M · e(g, g)s
∑D

d=1 αd = M · e(g, g)sα , M
can be recovered from C

/
e(g, g)αs.

In the above system, it is required that an attribute appears at most once in
an LSSS matrix (A, ρ). This restriction is crucial to the security proof. As in
[11], we call such a system as a One-Use system, and we can use the encoding
technique in [11] to extend our system to a Multi-Use system. In Appendix A,
we analyze the security of the system above.

5 Extensions

5.1 Large Universe Construction

In the construction in Sec.4.2, the size of the public parameters of AAk is linear
in |Uk|. We can modify our scheme to get a large universe construction by using

Fully Secure Multi-authority Ciphertext-Policy ABE w/o ROs 291

a technique similar to that in [10]. For each AAk, let nk denote the maximum
size of the set Sgid ∩ Uk for any user gid. In addition, we let H : {0, 1}∗ → ZN

be a collision-resistant hash function so that we can use arbitrary strings as
attributes, and let ψ : U $→ K be a function that maps an attribute to the index
of the corresponding attribute authority. The AASetup(GPK, k, Uk) algorithm is
modified to

AASetup(GPK, k, nk)
AAk chooses nk + 1 random exponents ak,0, ak,1, . . . , ak,nk

∈ ZN and sets
Fk,i = gak,i(i = 0, 1, . . . , nk).
For each d ∈ D, AAk randomly chooses vk,d ∈ ZN and sets Vk,d = gvk,d .
AAk publishes its public parameter APKk = {Fk,i | i = 0, 1, . . . , nk}, ACPKk

= {Vk,d | d ∈ D}.
AAk sets its master secret key AMSKk = ({ak,i | i = 0, 1, . . . , nk}, {vk,d | d ∈
D}).

Let qk(x) =
nk∑
i=0

ak,ix
i, Fk(x) = gqk(x) =

nk∏
i=0

(Fk,i)x
i

, and for any att ∈ {0, 1}∗,

satt = qψ(att)(H(att)), Tatt = Fψ(att)(H(att)). Then Tatt = gsatt . Note that for
any att ∈ {0, 1}∗, the encryptor can compute Tatt from public parameters, and
the corresponding AAk can compute satt from its master secret key.

5.2 Improving Performance and Robustness

In the construction in Sec.4.2, the trust on each central authority is minimized
so that the central authorities could not decrypt any ciphertext unless all central
authorities are involved. However, the robustness of the system is limited. Each
central authority must remain active because a user must obtain his user-central-
keys from each central authority. A threshold policy will be an effective way to
balance the trust on each central authority and the robustness of the system.

The Setup phase is executed by a trusted party. The trusted party chooses a
random α ∈ ZN and determines a threshold policy (D, Δ) where 1 < D ≤ Δ,
then generates Δ shares α1, α2, . . . , αΔ. αd is securely distributed to CAd to be
its master secret key. The trusted party publishes e(g, g)α and (D, Δ) to global
public parameters, and then discards α.

In such a system, the encryptor will mask plaintext M with e(g, g)αs. A user
needs to visit any D central authorities to obtain his user-central-keys so that
he can get his decryption-key.

Only when D central authorities are involved, they can decrypt a ciphetext.
The system will work until more than Δ − D central authorities fail. When
D = Δ, it is the system proposed in Sec.4.2.

The detail of such a system will be presented in the full version.

6 Comparison

In Table 2, we compare the single-authority CP-ABE in [11], the multi-authority
CP-ABE in [13] and our MA-CP-ABE system. In the table, l is the number of

292 Z. Liu et al.

Table 2. Comparison

CP-ABE MA-CP-ABE Our
Scheme in [11] Scheme in [13] MA-CP-ABE

Standard Model
√ × √

Multi-Authority × √ √
Prevent Decryption × Partially

√
by Individual Authorities

Size of Ciphertext 2l + 2 3l + 1 2l + 2

Size of SK |S|+ 2 |S| |S|+ D(K + 2)

Pairing computation 2|I |+ 1 2|I | 2|I |+ 1
of decryption

Size of PK |U |+ 3 2|U | |U |+ 3 + D

Large Universe
√ × √

Construction

rows of the LSSS matrix (A, ρ), S is the attribute set of the secret key, |I| is
the number of rows of (A, ρ) that are used in the decryption, U is the attribute
universe, D is the number of CAs, and K is the number of AAs. All the three
systems are fully secure, and realize any LSSS access structure.

In [11], the authority can decrypt all ciphertexts; in [13], no authority can
decrypt all ciphertexts, but each authority can independently decrypt some ci-
phertexts; in our MA-CP-ABE scheme, no authority can independently decrypt
any ciphertext. While the user and the encryptor will not use the public param-
eters CAPKd and ACPKk, we do not count them in the size of PK. The total size
of these keys is D + D ·K. The size of PK of our system shown in the table is
that of the construction in Sec.4.2. For the large universe construction in Sec.5.1,
the size of PK is

∑K
k=1(nk + 1) + 3 + D which is not related to the size of U .

It is worth noticing that introducing multiple CAs is to prevent some CAs from
decrypting ciphertexts. Hence D could be a small value.

7 Conclusion

In this work, we constructed a multi-authority CP-ABE scheme where different
domains of attributes are managed by different attribute authorities and no au-
thority can independently decrypt any ciphertext. The proposed system is proved
fully secure in the standard model, realizes any monotone access structure, and
has almost same efficiency as the underlying CP-ABE scheme. In addition, the
proposed system can be extended to support large attribute universe.

References

1. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer
Society, Los Alamitos (2007)

Fully Secure Multi-authority Ciphertext-Policy ABE w/o ROs 293

3. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

4. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

5. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

6. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority
attribute-based encryption. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM
Conference on Computer and Communications Security, pp. 121–130. ACM, New
York (2009)

7. Cheung, L., Newport, C.C.: Provably secure ciphertext policy abe. In: Ning, P.,
di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and
Communications Security, pp. 456–465. ACM, New York (2007)

8. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

9. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded Ciphertext Policy Attribute
Based Encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

10. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) ACM Conference on Computer and Communications Security, pp.
89–98. ACM, New York (2006)

11. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: Attribute-based encryption and (Hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

12. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

13. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

14. Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute
based encryption without a central authority. In: Chowdhury, D.R., Rijmen, V.,
Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 426–436. Springer, Hei-
delberg (2008)

15. Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption.
In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer,
Heidelberg (2009)

16. Müller, S., Katzenbeisser, S., Eckert, C.: On multi-authority ciphetext-policy
attribute-based encryption. Bulletin of the Korean Mathematical Society 46(4),
803–819 (2009)

17. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

294 Z. Liu et al.

18. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F.
(eds.) ACM Conference on Computer and Communications Security, pp. 195–203.
ACM, New York (2007)

19. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

20. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

21. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

A Security Analysis

Let Π denote the main construction, we modify Π to Π ′ as follows.

– In the AKeyGen algorithm, it outputs uaskatt,gid = {uaskatt,gid,d|d ∈ D}
rather than uaskatt,gid =

∏D
d=1 uaskatt,gid,d. i.e., gid’s decryption-key is

DKgid =({ucskgid,d, ucpkgid,d|d ∈ D}, {uaskatt,gid | att ∈ Sgid})
=({ucskgid,d, ucpkgid,d|d ∈ D}, {{uaskatt,gid,d|d ∈ D}|att ∈ Sgid})
=({ucskgid,d, ucpkgid,d|d ∈ D}, {{uaskatt,gid,d|att ∈ Sgid}|d ∈ D})
={(ucskgid,d, ucpkgid,d, {uaskatt,gid,d|att ∈ Sgid})|d ∈ D}
={uskgid,d|d ∈ D}

where uskgid,d = (ucskgid,d, ucpkgid,d, {uaskatt,gid,d|att ∈ Sgid}) is called gid’s
user-key related to d.

– In the Decrypt algorithm,
1. For d = 1 to D, the algorithm uses uskgid,d to reconstruct e(g, g)αds:

e(C′, ucskgid,d)
/ ∏

ρ(x)∈Sgid

(
e(Cx, Lgid,d) · e(C′

x, uaskρ(x),gid,d)
)ωx = e(g, g)αds.

(6)
2. The algorithm recovers M by

M = C
/ D∏

d=1

e(g, g)αds. (7)

Note that the user and the attacker will get more information in Π ′, the security
of Π ′ will imply the security of Π . We show the security of Π ′ in the following.

In the security model, CAd∗ is the only uncorrupted central authority and
no Sgid ∪ (

⋃
kc∈Kc

Ukc) can satisfy the challenge access policy. It means that the
adversary could not request keys to form a uskgid,d∗ to reconstruct e(g, g)αd∗s.
In our proof, the challenger will respond the adversary as in real attack for all
key queries related to d �= d∗. On the key queries related to d∗, we use the proof
technique of [11] to provide the answers.

Fully Secure Multi-authority Ciphertext-Policy ABE w/o ROs 295

Before we give our proof, we need to define two additional structures: semi-
functional ciphertexts and keys. We choose random values zatt ∈ ZN associated
to the attributes.

Semi-functional Ciphertext. A semi-functional ciphertext is formed as fol-
lows. Let g2 denote a generator of Gp2 and c a random exponent modulo N .
Besides the random vector v = (s, v2, . . . , vn) and the random values {rx|x ∈
{1, 2, . . . , l}}, we also choose a random vector u = (u1, u2, . . . , un) ∈ Zn

N and
random values {γx ∈ ZN |x ∈ {1, 2, . . . , l}}. Then:

C′ = gsgc
2, {Cx = hAx·vT−rx

ρ(x)g
Axu+γxzρ(x)
2 , C′

x = grxg−γx

2 | x ∈ {1, 2, . . . , l}}.

Semi-functional Key. For a gid, a semi-functional user-key uskgid,d∗ will take

on one of two forms. Exponents rgid,d∗ , δ, b ∈ ZN , {wk,d∗ ∈ ZN |k ∈ K}, and ele-
ments Rgid,d∗ , R′

gid,d∗ ∈ Gp3 , {Ratt,gid,d∗ ∈ Gp3 |att ∈ Sgid}, {Rgid,d∗,k ∈ Gp3 |k ∈
K} are chosen randomly.

– Type 1:
The user-central-key (ucskgid,d∗ , ucpkgid,d∗) is formed as

ucskgid,d∗ = gαd∗hrgid,d∗ Rgid,d∗gδ
2, Lgid,d∗ = grgid,d∗R′

gid,d∗gb
2,

Γgid,d∗,k = V
rgid,d∗
k,d∗ Rgid,d∗,kg

bwk,d∗
2 (k = 1, 2, . . .K),

σgid,d∗ = Sign(SignKeyd∗ , gid||d∗||Lgid,d∗ ||Γgid,d∗,1|| . . . ||Γgid,d∗,K),
ucpkgid,d∗ = (gid, d∗, Lgid,d∗ , {Γgid,d∗,k|k ∈ K}, σgid,d∗).

∀att ∈ Sgid, the derived uaskatt,gid,d∗ is formed as

uaskatt,gid,d∗ = T
rgid,d∗
att Ratt,gid,d∗gbzatt

2 .

– Type 2:
The user-central-key (ucskgid,d∗ , ucpkgid,d∗) is formed as

ucskgid,d∗ = gαd∗hrgid,d∗ Rgid,d∗gδ
2, Lgid,d∗ = grgid,d∗R′

gid,d∗ ,

Γgid,d∗,k = V
rgid,d∗
k,d∗ Rgid,d∗,k(k = 1, 2, . . .K),

σgid,d∗ = Sign(SignKeyd∗ , gid||d∗||Lgid,d∗ ||Γgid,d∗,1|| . . . ||Γgid,d∗,K),
ucpkgid,d∗ = (gid, d∗, Lgid,d∗ , {Γgid,d∗,k|k ∈ K}, σgid,d∗).

∀att ∈ Sgid, the derived uaskatt,gid,d∗ is formed as

uaskatt,gid,d∗ = T
rgid,d∗
att Ratt,gid,d∗ .

Note that both the semi-functional user-keys of type 1 and type 2 satisfy (1)
and (2), and that type 2 is a special case of type 1 with b = 0.

When a normal uskgid,d∗ and a semi-functional ciphertext, or a semi-functional
uskgid,d∗ and a normal ciphertext, are used in computation (6), e(g, g)αd∗s is got,

296 Z. Liu et al.

and this value could be used in the computation (7). When a semi-functional
uskgid,d∗ and a semi-functional ciphertext are used in computation (6), e(g, g)αd∗s·
e(g2, g2)cδ−bu1 is got. The additional term e(g2, g2)cδ−bu1 will hinder the compu-
tation (7). We call a semi-functional user-key of type 1 nominally semi-functional
if cδ − bu1 = 0.

The security of Π ′ relies on Assumptions 1, 2, 3. We use a hybrid argu-
ment over a sequence of games. The first game GameReal is the real security
game. In the final game GameFinal, all user-keys related d∗, {uskgid,d∗}, are
semi-functional of type 2 and the ciphertext is a semi-functional encryption of a
random message, independent of the two messages provided by A.

GameReal. The challenge ciphertext is normal. All CKQs are answered with
normal user-central-key. All AKQs are answered with user-attribute-key gen-
erated by running the normal AKeyGen algorithm.

Game0. The challenge ciphertext is semi-functional. All CKQs are answered
with normal user-central-key. All AKQs are answered with user-attribute-key
generated by running the normal AKeyGen algorithm.

Let q denote the number of CKQ made by A. For j from 1 to q, we consider the
following games:

Gamej,1. In this game, the challenge ciphertext is semi-functional. The first
j−1 CKQs are answered with semi-functional user-central-key of type 2; the
jth CKQ is answered with semi-functional user-central-key of type 1; and the
remaining CKQs are answered with normal user-central-key. All AKQs are
answered with user-attribute-key generated by running the normal AKeyGen
algorithm.

Gamej,2. In this game, the challenge ciphertext is semi-functional. The first
j−1 CKQs are answered with semi-functional user-central-key of type 2; the
jth CKQ is answered with semi-functional user-central-key of type 2; and the
remaining CKQs are answered with normal user-central-key. All AKQs are
answered with user-attribute-key generated by running the normal AKeyGen
algorithm.

GameFinal. In this game, the challenge ciphertext is a semi-functional encryp-
tion of a random message, independent of the two messages provided by the
adversary. All CKQs are answered with semi-functional user-central-key of
type 2. All AKQs are answered with user-attribute-key generated by running
the normal AKeyGen algorithm.

Note that in all the games, all AKQs are answered with user-attribute-key
generated by running normal AKeyGen algorithm. In the proofs, we will show
that the derived uaskatt,gid,d∗ is decided by the corresponding user-central-key
(ucskgid,d∗ , ucpkgid,d∗), i.e., if (ucskgid,d∗ , ucpkgid,d∗) is semi-functional of type 1
(respectively, type 2), then the derived uaskatt,gid,d∗ is also semi-functional of
type 1 (respectively, type 2). Consequently, uskgid,d∗ is decided by the corre-
sponding (ucskgid,d∗ , ucpkgid,d∗) as well. Note that in Game0 all user-central-
keys related to d∗ are normal and in Gameq,2 all user-central-keys related to
d∗ are semi-functional of type 2. It means that in Game0 all user-keys uskgid,d∗

Fully Secure Multi-authority Ciphertext-Policy ABE w/o ROs 297

L1 L2 L3 L2 L3 L3 L4

Fig. 4. Indistinguishable games. L1 denotes Lemma 1, and so on.

are normal and in Gameq,2 all user-keys uskgid,d∗ are semi-functional of type
2. We show these games are indistinguishable in the following four lemmas (see
Fig. 4), the proofs of which will appear in the full version.

Lemma 1. Given a UF-CMA signature scheme Σsign, suppose there exists a
poly-time algorithm A such that GameRealAdvA − Game0AdvA = ε. We can
construct a poly-time algorithm B with advantage ε in breaking Assumption 1.

Lemma 2. Use Game0,2 to denote Game0. Given a UF-CMA signature scheme
Σsign, suppose there exists a poly-time algorithm A such that Gamej−1,2AdvA−
Gamej,1AdvA = ε. We can construct a poly-time algorithm B with advantage
negligibly close to ε in breaking Assumption 2.

Lemma 3. Given a UF-CMA signature scheme Σsign, suppose there exists a
poly-time algorithm A such that Gamej,1AdvA −Gamej,2AdvA = ε. We can
construct a poly-time algorithm B with advantage ε in breaking Assumption 2.

Lemma 4. Given a UF-CMA signature scheme Σsign, suppose there exists a
poly-time algorithm A such that Gameq,2AdvA −GameFinalAdvA = ε. We can
construct a poly-time algorithm B with advantage ε

D in breaking Assumption 3.

Theorem 1. If the signature scheme Σsign is UF-CMA secure and Assumptions
1, 2, and 3 hold, then our MA-CP-ABE scheme is secure.

Proof. If Assumptions 1, 2 and 3 hold, and the signature scheme Σsign is UF-
CMA secure, then we have shown by the previous lemmas that the real security
game is indistinguishable from GameFinal, in which the value of β is information-
theoretically hidden from the adversary. Hence the adversary can not attain a
non-negligible advantage in breaking Π ′, which implies the adversary can not
attain a non-negligible advantage in breaking our MA-CP-ABE scheme Π . ��

How to Aggregate the CL Signature Scheme

Dominique Schröder�

University of Maryland, USA
schroeder@me.com

www.dominique-schroeder.de

Abstract. We present an aggregate signature scheme whose public key
consists of only two group elements. It is therefore the first sequential ag-
gregate signature scheme with short keys in the standard model. Our con-
struction relies on the Camenisch-Lysyanskaya signature scheme (Crypto
2004) and is provably secure under the LRSW assumption. Moreover, we
develop a novel aggregation technique that we call aggregate-extension
technique. The basic idea is to extend the aggregate by a single element
and to use this additional space to “store” some information that would
be lost due to the compression of the signatures. We believe that this
technique might be of independent interest.

1 Introduction

Aggregate signature schemes allow the combination of several signatures into
a single element, the aggregate, that has roughly the same size as an ordi-
nary signature. Here, we consider the sequential case where a signer receives
an aggregate-so-far, adds its own signature to the aggregate and forwards the
aggregate (containing the new signature) to the next signer. The size of the ag-
gregate is independent of the number of signers, i.e., it has the roughly the same
size as an ordinary signature scheme. Typical applications for such schemes are
sensor networks where communication is prohibitively expensive [2]. Since the
transmission range of each sensor is limited, the sensor forwards its data to the
next sensor node towards the base station. Moreover, each sensor signs its mea-
surement to prevent attackers from raising a false alarm. One example of such
a monitoring network is the Tsunami early warning system that is already in
operation in the Indian Ocean [23]. Further applications are the compression of
certificate chains [10] and secure routing protocols, such as the Secure Border
Gateway Protocol (S-BGP) [6].

Public-Key Size. Efficiency refers to three kinds of costs: computational, stor-
ing data, and the cost of communication. In practice, however, computational
costs play a minor role due to the rapid growth of computational power over
the last decades. On the other hand, the costs of transmitting data and of stor-
ing data are essential in practice. Consequently, an entire branch of research in

� Supported in part by a DAAD postdoctoral fellowship.

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 298–314, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

How to Aggregate the CL Signature Scheme 299

cryptography focuses on minimizing the size of transmitted data, such as short
signatures, e.g., [11,14,13,8,22] and short group signatures, e.g., [9,14].

For aggregate signature schemes the size of the public key is an important
measurement. The reason is that in most of the applications the public-keys
are transported with the aggregate and bandwidth is expensive. Neven already
pointed out that optimizing the transmitted data means reducing the size of all
three elements, rather than only considering the size of the aggregate σ [31].
The size of the data transmitted from user to user increases thus linearly in the
number of users; as it is difficult to reduce the message size (which is often fixed
— consider for example the measurements of the water level of the Tsunami early
warning system), and because the aggregate σ is constant, reducing the key size
is the only way to reduce the size of the transmitted data. Additionally, Lu et
al. mention in their paper that “large keys negates any benefit from reducing
the signature size in a certificate chain, since the keys must be included in the
certificate” [27]. In this paper, we present the first sequential aggregate signature
scheme with short keys in the standard model.

As an example, we consider the size of an aggregate generated by 20 signers;
a comparison of the size for the different schemes is given in the last column of
Table 1. For the calculation of the values we assume that the size of each element
on an elliptic curve has 160 bits and that the messages have 160 bits as well. In
the case of RSA group elements we assume that the moduls has 1024 bits. Thus,
in the case of BGLS we transmit (20 + 20 + 1) ∗ 160 = 6560 bits. Note, that
our construction is not as efficient as the LOSSW sequential aggregate signature
scheme from a computational point of view1, but it reduces the key-size — and
thus the size of the transmitted data.

Our Approach. We show how to aggregate the Camenisch-Lysyanskaya signa-
ture scheme. The public key of their scheme has only two group elements and
it does not rely on the random oracle heuristic. We briefly recall the CL signa-
ture scheme to explain why aggregation of this scheme is not straightforwardly
possible. A signature σ = (a, b, c) on a message M consists of three elements
gr, gr y, gr (x+Mxy), where r is a random element, and the values x and y are
stored in the private key. Unfortunately, common aggregation techniques fail in
this case. If we try to aggregate the signature by simply multiplying different
signatures together, then we end up with different signatures having a different
randomness. One solution would be to rely on a global counter such that all
signers share the same randomness. It is well known, however, that global coun-
ters are always difficult to realize. Instead, we pick up an idea of Lu et al. [27]
and let the (i+1)th signer “re-use” the randomness ri of the ith signer. That is,
it treats the element ai = gri as its own randomness and computes bi+1 ← a

yi+1
i

and ci+1 ← a
xi+1+Mi+1xi+1yi+1
i . It is easy to see that the tuple (ai, bi+1, ci+1)

forms a valid CL signature.
1 Chatterjee, Hankerson, Knapp, and Menezes have recently compared the efficiency of

the BGLS aggregate signature scheme with the LOSSW aggregate signature scheme
[15]. The comparison shows that evaluating n pairings is not as expensive as one
might have expected.

300 D. Schröder

Table 1. Comparison of aggregate signature schemes

Scheme ROM KOSK Size SK/PK Signing Verification Trans-Data 20 Users

BGLS [10] YES NO 1 1/1 1E nP 6560 bits
LMRS-1 [28] YES NO 1 1/1 nE 2nE 24,704 bits
LMRS-2 [28] YES NO 1 1/1 nM 4nM 24,704 bits
Neven [31] YES NO 1 1/1 1E + 2 nM 2 nM 24,704 bits

LOSSW [27] NO YES 2 162/162 2P + n�M 2P + n�M ∼63KB
Section 3.4 NO YES 4 2/2 nP + 2nE nP+nE 9760 bits

We use the following notation: ROM means that the security proof is given in the
random oracle model and “KOSK” indicates that the security is proven in the certified-
key model, where the adversary has to proof knowledge about the private keys. Sizes
of the aggregate or of the keys are given as the number of objects (group elements,
ring elements). Note that the size of an RSA group elements is roughly 10 times the
size of an elliptic curve element. n denotes the number of participants, P a pairing
computation, E a (multi)-exponentiation, M for a multiplication and � for the output
length of a collision resistant hash function. These values, except for the last row, are
a verbatim copy of [31].

Now, multiplying the tuples (ai, bi, ci) and (ai, bi+1, ci+1) component wise
together in order to aggregate these signatures is still not sufficient. We illus-
trate the problem on the following toy examples and suggest a new aggregation
technique that we call aggregate-extension technique. Let ga, gb be public keys
and let gsa (resp. gsb) denote the signatures under the keys ga (resp. under
the key gb). Now, think about a verification equation that computes a non-
generate, bilinear map e(ga gb, gsagsb) to verify both signatures. The upcom-
ing problem results from the properties of the bilinear map: e(ga gb, gsagsb) =
e(ga, gsagsb)·e(gb, gsagsb) = e(ga, gsa)·e(ga, gsb)·e(gb, gsa)·e(gb, gsb). If we con-
sider the pairs e(ga, gsb) and e(gb, gsa), then we have two signatures that must
verify under the wrong keys, which is impossible. To handle these elements, we
slightly extend the aggregate by a single group element D. This element serves
as a “programmable memory” which stores these (undesired) elements. In the
example the “memory” element D would have the form gasb+bsa and the corre-
sponding equation would have the form e(gagb, gsagsb)·e(g, gasb+bsa)−1. Finally,
we apply the aggregate extension technique to the CL signature scheme.

Knowledge-of-Secret-Key. As shown in Figure 1, our construction is secure
in the knowledge-of-secret-key setting (KOSK), where the adversary must prove
knowledge of each private key corresponding to any maliciously generated public
key. This setting can be implemented through a CA that asks the user to perform
a proof-of-knowledge of the secret key when registering a public key. Alterna-
tively, all user can generate their keys jointly [30], or the public keys come with
an extractable non-interactive proof of knowledge. While the construction of Lu
et al. [27] relies also on this assumption, it is clear that a solution outside the
KOSK is desirable. We refer the reader to [5,3,34] for a comprehensive discussion
about this setting.

How to Aggregate the CL Signature Scheme 301

Related Work. Boneh et al. [10] introduced the concept of aggregate signatures
and gave a first instantiation that is provably secure in the random oracle model.
At Eurocrypt 2004, Lysyanskaya et al. suggested the concept of sequential aggre-
gate signatures, proposed a formal security model, and gave a first solution based
on general assumptions [28] that is also secure in the random oracle. The first
instantiation that is secure in the standard model, but in a model that is weaker
than one of [28], was proposed by Lu et al. [27]. Neven suggested at Eurocrypt
2008 the notion of sequential aggregate signed data, which generalized sequential
aggregate signature in the sense that these scheme compress the whole data [31].
Fischlin et al. adopt the notion of history-freeness from Eikemeyer et al. [18] to
the case of sequential aggregate signatures [19]. The basic idea is to allow the
aggregate-so-far only depend (explicitly) on the local message and signing key,
but not on the previous messages and public keys in the sequence. The benefit
of this notion is that one does not need to take care about the key management
and that expensive verification queries are not necessary anymore. Eikemeyer
et al. considered the notion of history-freeness only in the context of aggregate
message authentication codes [25]. Multisignatures are similar in the sense that
a group of signers sign the same message [24]. Many researches suggested dif-
ferent solutions, such as, e.g., [21,33,32]. However, the size of the multisignature
proposed by some solutions grows linear in the number of signers [24] and some
such schemes cannot be considered as secure [21]. Boldyreva simplified and gen-
eralized the security model of [30]. The author also gave the first solution that
does not require a priori knowledge of a subgroup of signers and that is provably
secure in the random oracle [5]. The first solution that is secure in the standard
model has been suggested by Lu et al. [27]. Recently, Boldyreva et al. introduced
the concept of ordered multisignatures [7], where the signers attest to a common
message as well as to the order in which they signed.

2 Preliminaries

Notations. If x is a string then |x| denotes its length, and if S is a set |S| denotes
its size. By a1‖ . . . ‖an we denote a string encoding of a1, . . . , an from which
a1, . . . , an are uniquely recoverable. If A is an algorithm then y ← A(x1, x2, . . .)
denotes the operation of running A on inputs x1, x2, . . . and letting y denote the
output of A. Unless otherwise indicated, we assume that all algorithms run in
probabilistic polynomial-time and refer to them as being efficient.

2.1 Bilinear Groups

We denote by G and GT two multiplicative groups of prime order p and consider
g ∈ G such that: all group operations can be computed efficiently; g is a generator
of G; e is a bilinear pairing: G × G → GT , i.e., e is an efficiently computable
map satisfying the following properties:

– Non-degeneracy: e (g, g) �= 1 and is thus a generator of GT ;
– Bilinearity: ∀u, v ∈ G, ∀a, b ∈ Z: e

(
ua, vb

)
= e (u, v)ab.

302 D. Schröder

As a result of the bilinearity, it holds that e(ga, g) = e(g, g)a = e(g, ga).

Definition 1 (Bilinear-Group Generation). The algorithm G that outputs
(descriptions of) p, G, GT , e as above is called bilinear-group generation algorithm,
and G is a bilinear group.

2.2 Signature Scheme

Definition 2 (Signature Scheme). A signature scheme DS = (PKg, Kg, Sig,
Vf) is a tuple of algorithms:

Parameter Generation. PKg(1λ) returns some global information I.
Key Generation. Kg(I) outputs a keypair (sk, pk).
Signing. The input of the signing algorithm Sig(sk, M) is a signing key sk and

a message M ; it outputs a signature σ.
Verification. Vf(pk, M, σ) outputs 1 iff σ is a signature on M under pk.

The security of signature schemes is proven against existential forgery under
adaptive chosen message attacks (EU-CMA) due to Goldwasser, Micali, and
Rivest [20]. In this model, an adversary adaptively invokes a signing oracle and
is successful if it outputs a signature on a fresh message.

Definition 3 (Unforgeability). A signature scheme DS is unforgeable under
adaptive chosen message attacks (EU-CMA) if for any efficient algorithm A the
probability that the experiment ForgeDS

A evaluates to 1 is negligible (as a function
of λ), where

Experiment ForgeDS
A (λ)

I ← PKg(1λ)
(sk, pk)← Kg(I)
(m∗, σ∗)← ASig(sk,·)(pk)
Return 1 iff Vf(pk, m∗, σ∗) = 1 and A has never queried Sig(sk, ·) about m∗.

A signature scheme DS is (t, qS , ε)-secure if no adversary running in time at most
t, invoking the signing oracle at most qS times, outputs a valid forgery (m∗, σ∗)
with probability larger than ε.

2.3 The CL Signature Scheme

The signature scheme due to Camenisch and Lysyanskaya has been introduced
at CRYPTO 2004 and its security relies on the interactive LRSW assumption
[14]. The LRSW assumption, due to Lysyanskaya, Rivest, Sahai, and Wolf, is
hard in the generic group model (as defined by Shoup [35]) [29]. Moreover, it
is widely established and it is the basis for many constructions such as, e.g.,
[14,1,4,12,16,26].

Assumption (LRSW Assumption). Suppose that G is group of prime order
p and that g is a generator of G. Let X, Y ∈ G such that X = gx and Y = gy

How to Aggregate the CL Signature Scheme 303

for some x, y ∈ Zp and let ρ := (p, G, GT , g, e, X, Y) and let OX,Y be an oracle
that on input a value M ∈ Zp outputs a triplet (a, ay, a(x+Mxy)) for a randomly
chosen a ∈ G. Then for all efficient algorithms AOx,y , ν(λ) defined as follows is
a negligible function (in λ):

Prob[x ← Zp ; y ← Zp ; X ← gx ; Y ← gy;

(Q, M, a, b, c)← AOx,y (ρ) : M �∈ Q ∧ a ∈ G ∧ b = ay ∧ c = ax+Mxy] = ν(λ),

where Q is the set of oracle queries. Based on this assumption, the signature
scheme consists of the following algorithms:

Parameter Generation. PKg(1λ) executes the bilinear-group generation al-
gorithm G to obtain output (p, G, GT , e), it chooses generator g ∈ G and
returns I = (p, G, GT , e, g).

Key Generation. Kg(I) picks two random elements x ← Zp and y ← Zp. It
sets X ← gx and Y ← gy. The private key is sk = (I, x, y) and the public
key is pk = (I, X, Y).

Signing. The input of the algorithm Sig(sk, M) is a secret key sk = (I, x, y) and
a message M ∈ Zp. It selects a random element r ← Zp and computes the
signature σ = (a, b, c)← (gr, gr y, gr (x+Mxy)).

Verification. To check that σ = (a, b, c) is a valid signature on message M ∈ Zp

under a public-key pk = (I, X, Y), the algorithm Vf(pk, M, σ) verifies that

e(a, Y) = e(g, b) and e(X, a) · e(X, b)M = e(g, c) hold.

The CL-signature scheme is provably secure in the standard model, assuming
that the LRSW assumption holds.

Proposition 1 ([14]). If the LRSW assumption is hard relative to G, then the
CL-signature scheme is unforgeable under adaptively chosen message attacks.

3 Sequential Aggregate Signature

Boneh et al. proposed a new signature primitive called an aggregate signature
[10]. Aggregate signature generalize multisignatures [24] as they combine several
signatures, on distinct messages from different users, into a single signature that
has roughly the same size as an ordinary signature. In such a scheme, the indi-
vidual users generate their signature independently in advance. The signatures
are then combined into a single aggregate by a third, maybe untrusted, party.

Sequential aggregate signature schemes (SAS) are different in the sense that
aggregation is performed sequentially. Each individual signer gets as input an
aggregate-so-far σ′ and “adds” its own signature onto the aggregate. Signing
and aggregation are therefore a combined process. The resulting aggregate has
roughly the same size as a standard signature.

More formally, the input of the aggregate-signing algorithm is a secret key sk,
a message Mi to be signed and an aggregate-so-far tuple (σ′,M,pk). This tuple

304 D. Schröder

consists of an aggregate σ′, of a sequence of messages M = (M1, . . . , Mi−1), and
of a sequence of public keys pk = (pk1, . . . , pki−1). This algorithm outputs a new
aggregate σ for message and public key sequences M||M := (M1, . . . , Mi−1, Mi)
and pk||pk := (pk1, . . . , pki−1, pki), such that the aggregate has roughly the same
size as an ordinary signature.

3.1 Definition

Definition 4 (Sequential Aggregate Signature). A sequential aggregate
signature scheme is a tupple of efficient algorithms SAS = (SeqPKg, SeqKg,
SeqAgg, SeqAggVf), where:

System Parameter. SeqPKg(1λ) returns the system parameters I.
Key Generation. SeqKg(I) generates a key pair (sk, pk).
Signature Aggregation. The input of the aggregation algorithm SeqAgg is

a tuple (sk, Mi, σ
′,M,pk) consisting of a secret key sk, a message Mi ∈

{0, 1}∗, an aggregate σ′, and sequences M = (M1, . . . , Mi−1) of messages
and pk = (pk1, . . . , pki−1) of public keys. It computes the aggregate σ for
the message sequence M||M = (M1, . . . , Mi−1, Mi) and the key sequence
pk||pk = (pk1, . . . , pki−1, pki).

Aggregate Verification. The algorithm SeqAggVf(σ,M,pk) takes as input an
aggregate σ, a sequence of messages M = (M1, . . . , M�), as well as a sequence
of public keys pk = (pk1, . . . , pk�). It returns a bit.

The sequential aggregate signature scheme is complete if for any finite sequence
of key pairs (sk, pk), (sk1, pk1), . . . , (skn, pkn) ← SeqKg(1λ), for any (finite) se-
quence M1, . . . , Mn of messages with Mi ∈ {0, 1}∗, for any σ ← SeqAgg(sk, M, σ′,
M,pk) with SeqAggVf(σ′,M,pk) = 1 or σ′ = ∅, we have SeqAggVf(σ,M‖M,
pk‖pk) = 1.

3.2 Security Model

The security of a sequential aggregate signature is defined in the chosen-key
model. Thereby, the adversary gets as input a single key (referred to as the
challenge key pkc), it is allowed to choose all other keys, and has access to a
sequential aggregate signing oracle OSeqAgg and to a key registration oracle
RegKey. The input of the oracle OSeqAgg is a message M to be signed under the
challenge key skc, an aggregate-so-far σ′, on a set of messages M, under public
key sequence pk; the oracle then outputs a new aggregate σ that contains also
the signature σ′ on the challenge message M . The second oracle RegKey takes
as input a private key sk and the corresponding public key pk. The task for the
adversary is to output a sequential aggregate signature such that the aggregate
contains a signature on a “fresh” messageMc for the challenge key pkc. A message
is “fresh” in the usual sense, namely that it has not been sent to the aggregate
signing oracle [27]. Note that the requirement that the challenge public-key pkc

has not been registered, i.e., pkc �∈ C, can be dropped in the KOSK because the
adversary would have to compute the corresponding private key skc to ask such
a question. Here, however, we keep this restriction to simplify the proof.

How to Aggregate the CL Signature Scheme 305

Definition 5 (Aggregate-Unforgeable). A sequential aggregate signature
scheme SAS = (SeqPKg, SeqKg, SeqAgg, SeqAggVf) is aggregate-unforgeable if
for any efficient algorithm A the probability that the experiment SeqForgeSAS

A
evaluates to 1 is negligible (as a function of λ), where

Experiment SeqForgeSAS
A (λ)

I ← SeqPKg(1λ)
(skc, pkc)← SeqKg(I)
(pk∗,M∗, σ∗)← ARegKey(·,·),OSeqAgg(skc,···)(pkc)
Let C denote the list of all certified key (sk1, pk1), . . . , (sk�, pk�)

and let Mc be the message that corresponds to pkc.
Return 1 iff pki �= pkj for all i �= j and SeqAggVf(pk∗,M∗, σ∗) = 1 and

pkc �∈ C and A has never sent Mc to OSeqAgg(skc, · · ·).
A sequential aggregate signature scheme DS is (t, qS , qN , ε)-aggregate unforgeable
if no adversary running in time at most t, invoking the signing oracle at most
qS times, registering at most qN keys, outputs a valid forgery (pk∗,M∗, σ∗) with
probability larger than ε.

3.3 Intuition for the Construction

We consider signers who have unique key-pairs as in our signature scheme, con-
sisting of two private values x, y, and two public keys X = gx, Y = gy for a
shared generator g of a group G. Thereby the signature consists of three group
elements A, B, and C. We view the element A = gr as the randomness; B = gry

as a “commitment” to the randomness; and C = gr(x+Mxy) as the signature on
the message M .

An aggregate in our case consists of four group elements A, B, C, D where
the first three elements A, B, C play the same role as in the standard signature
scheme. The element D serves as a programmable “memory”. We illustrate the
necessity for this element on the following example, where a second user wishes to
aggregate his signature on a message M2 onto the aggregate σ1 = (A1, B1, C1).
Let (ski, pki) = ((xi, yi), (gxi , gyi)) denote the key-pair of the i-th user (here
for i = 1, 2) and let M2 be the message to be signed. This second user first
views A1 = gr as the randomness to be used for his signature. It then computes
B ← B1 ·Ay2

1 = gr(y1+y2) and C ← C1 ·Ax2
1 AM2x2y2

1 = gr(x1+M1x1y1+x2+M2x2y2).
If we now wish to verify that both signatures are valid, we must to check that:∏

i

(
e(Xi, A) · e(Xi, B)Mi

)
= e(g, A)x1+x2 · e(g, B)M1x1+M2x2 = e(g, C)

holds. Unfortunately, this is not the case, because an “error” occurs during the
evaluation of the second bilinear map:

e(g, B)M1x1+M2x2 = e(g, B)M1x1 · e(g, B)M2x2

= e(g, Ay1+y2)M1x1 · e(g, Ay1+y2)M2x2

= e(g, A)M1y1x1+M1y2x1 · e(g, A)M2y1x2+M2y2x2 .

306 D. Schröder

In fact, the evaluation results in two “noisy” elements: M1y2x1 and M2y1x2. We
now program the element D such that it cancels all these elements out.

3.4 The Construction

An aggregate σ := (A, B, C, D) on messages M := (M1, . . . , M�) under public
keys pk := (pk1, . . . , pk�) has the form:

A = gr ; B =
∏

i

gr yi ; C =
∏

i

gr(xi+Mixiyi) ; D =
∏
i�=j

gMixiyj ;

where A may be seen as some “shared” randomness. The scheme SAS = (SeqPKg,
SeqKg, SeqSign, SeqVf) is defined as follows:

Parameter Generation. PKg(1λ) chooses two suitable groups G, GT , a gen-
erator g ∈ G and returns I = (G, GT , g, e).

Key Generation. For a particular signer, algorithm SeqKg(I) picks x ← Zp

and y ← Zp and sets X ← gx as well as Y ← gy. It returns sk as (I, x, y)
and pk as pk = (I, X, Y).

Sequential Signing. Algorithm SeqAgg takes as input a secret signing key sk =
(I, x, y), a message M ∈ Zp, an aggregate-so-far σ′, a sequence of messages
M = (M1,Mi), and a sequence of public keys pk = (pk1, . . . , pki). The
algorithm first checks that |M| = |pk| and that SeqVf(σ′,M,pk) = 1. If so,
it parses σ′ as (A′, B′, C′, D′), and it sets

w1 ← A′ ; w2 ← B′ · (A′)y ; w3 ← C′ · (A′)x+Mxy ;

and w4 ← D′ ·

⎛
⎝ i∏

j=1

X
yMj

j · Y xM
j

⎞
⎠ .

Note that the first signer uses (1, 1, 1, 1) as the aggregate-so-far. The tuple
(w1, w2, w3, w4) forms a valid aggregate signature (for our algorithm) on
messages M||M under public keys pk||pk. Now, we have to re-randomize
the aggregate, or an attacker could forge 2:

r̃ ← Z∗
p ; A← wr̃

1 ; B ← wr̃
2 ; C ← wr̃

3 ; D ← w4.

It follows easily that σ = (A, B, C, D) is also a valid aggregate on messages
M||M under public keys pk||pk with randomness gr r̃.

2 In particular, consider an adversary that chooses some random keys (x, y), a message
M , and a randomness r. It computes the signature as an honest signer and sends it
as an aggregate-so-far to the oracle (having the secret keys (xc, yc)) together with a
challenge message Mc. If the oracle does not re-randomize the aggregate, then the
adversary receives an element C = gr(x+Mxy+xc+Mcxcyc). As the adversary knows
the randomness r, it can easily obtain the value XYc = gxcyc and can forge a
signature on an arbitrary message.

How to Aggregate the CL Signature Scheme 307

Aggregate Verification. The input of algorithm SeqVf consists of a sequence
of public keys pk = (pk1, . . . , pk�), a sequence of message M = (M1, . . . , M�)
and an aggregate σ. It parses the aggregate σ as (A, B, C, D). It first checks
that |M| = |pk| and that no public key appears twice in pk. Afterwards, it
validates the structure of the elements A, B, and D:

e(A,
∏

i

Yi) = e(g, B) and
∏
i�=j

e(Xi, Yj)Mi = e(g, D),

and proves that C is formed correctly:∏
i

(
e(Xi, A) · e(Xi, B)Mi

)
· e(A, D)−1 = e(g, C) .

If all equations are valid, SeqVf outputs 1; otherwise it returns 0.

Completeness follows inductively.

Performance and Symmetric Verification. The verification equation of el-
ement C suggests that, for N signers, a total number of 3N pairings have to be
computed. However, this is not the case. We chose to present the computation
in this form for the sake of esthetics. A more computationally efficient version
of the verification equation is the following:

e(
∏

i

Xi, A) · e(
∏

i

XMi

i , B) · e(A, D)−1 = e(g, C)

which is identical to the one above, but which requires the computation of only
three pairings irrespective of the number of signers. A more efficient variant for
the verification of the element D is the following∏

i

e(XMi

i ,
∏
j

Yi) = e(g, D).

This equation involves only n pairing computations (instead of n2/2).
Our construction has the additional feature, similar to [10,27], that the veri-

fier does not need to know the order in which the aggregate was created. This
property, sometimes called symmetric verification, is useful for several applica-
tions such as, e.g., building an optimistic fair exchange out of any sequential
two-party multisignature as shown by Dodis et al. [17].

Applications to Ordered Multisignature. In a multisignature scheme a
group of signers sign the same message such that the signature has roughly
the same size as an ordinary signature. Recently, Boldyreva, Gentry, O’Neill,
and Yum generalized multisignatures to ordered multisignatures (OMS). This
primitives has the additional property that the adversary cannot re-order the
position of honest signers [7]. The authors also suggest a generic transforma-
tion that turns every aggregate signature scheme into an orderd multisignature
scheme. The idea is to encode the position of each signer into the message, i.e.,

308 D. Schröder

suppose the the signer is at position i and wishes to sign the common messsage
M , then it runs the aggregate signing algorithm on the message M‖i. Applying
this transformation to our scheme yields also the first OMS with short keys in
the standard model.

3.5 Proof of Security

In this section we prove the security of our scheme.

Theorem 1. The aggregate signature scheme is (t, qC , qS , n, ε)-secure with re-
spect to Definition 4, if the CL-signature scheme (t′, q′, ε′) unforgeable on G,
where

t′ = t + O(qC + nqS + n) and q′ = qS and ε′ = ε .

Proof. We use a proof by contradiction. Suppose that A is an adversary which
forges the sequential aggregate signature scheme. We then show how to construct
an algorithm B that breaks the unforgeability of the underlying CL-signature
scheme.

Setup. The algorithm B gets as input a public-key pkc = (I, X, Y). It initializes
the query list C ← ∅ and runs a black-box simulation of the attacker A on
input pkc.

Certification Queries. If algorithm A wishes to certify a public key pk =
(I, X, Y), it hands over the corresponding secret key sk = (I, x, y). Algorithm
B verifies that (x, y) is the private key corresponding to pk. If so, it adds
(sk, pk) to the list of certified keys, i.e., C ← C ∪ (sk, pk). Otherwise, it
rejects the query.

Signature Queries. Whenever the algorithm A invokes its aggregate signing
oracle SeqAgg(sk, ·) on: a message M , an aggregate-so-far σ′, a sequence of
messages M′, and a sequence of public keys pk′, then algorithm B behaves
as follows: it first checks that σ′ is a valid aggregate on messages M′ un-
der public keys pk′; afterwards, it checks that all public keys pk ∈ pk are
certified, that each key appears only once, and that |pk′| = |M′|. If any
of these conditions is violated, then B returns invalid. In the following let
|M′| = |pk′| =: q.

Otherwise, algorithm B invokes its own signing oracle Sig(skc, ·) on M
and receives the output signature σ. Note that σ is also an aggregate on
message M under the public key pkc. Next, algorithm B “adds” the missing
q signatures onto the aggregate. More precisely, it sets: σ0 ← σ, M0 ← M ,
and pk0 ← pkc, and it executes σi ← SeqAgg(ski, Mi, σi−1,Mi−1,pki−1),
where Mi−1 = (M1, . . . , Mi−1) and pki−1 = (pk1, . . . , pki−1) for i = 1, . . . , q.
Observe that this is possible since all public keys in pk are registered, and
that each private key is stored in C. Afterwards, B returns the aggregate
σ ← σi on messages M←M′||M under public keys pk← pk′||pk.

Output. Finally A stops, eventually outputting a valid forgery σ′ on messages
M∗ under public keys pk∗. This forgery is valid if the following relations
hold:

How to Aggregate the CL Signature Scheme 309

– |pk∗| = |M∗|;
– SeqVf(σ∗,M∗,pk∗) = 1,
– pkc ∈ pk∗ say at index ic,
– all keys in pk∗ except for the challenge key pkc are registered,
– A never queried its sequential signing oracle about the message Mic .

W.l.o.g. we assume that the challenge key pkc is stored at the first position
in pk∗, i.e., ic = 1 and let |pk∗| =: q. Just as in the case of [27], this is not a
restriction, because the verification equation does not take into account the
order of the participants.
Next, for each 2 ≤ i ≤ q let (I, xi, yi) be the secret key corresponding to
pki = (I, Xi, Yi). Algorithm B computes:

a∗ ← A∗ ; b∗ ← B∗ ·
(
(A∗)

∑ q
i=2 yi

)−1

; c∗ ← C∗ ·
(
(A∗)

∑ q
i=2 xi+Mixiyi

)−1

,

and outputs (M∗, σ∗)← (M1, (a∗, b∗, c∗)).

For the analysis, first note that B is efficient since A runs in polynomial-time
and since the attacker B performs a perfect simulation from A’s point of view.
In the following, we show that B succeeds whenever A does. Thus, we have to
show firstly that algorithm B outputs a valid CL-signature, and secondly, that
B has never queried the message to its signing oracle. The second condition
follows easily from the assumption that A outputs a valid forgery. For the first
property we show that we can divide all other signatures out such that only the
signature for the challenge key remains. Consider the first verification equation
of the aggregate signature scheme. We know that:

e(A∗,
∏

i

Yi) = e(gr,
∏

i

gyi) = e(g,
∏

i

gryi) = e(g,
∏

i

(A∗)yi) = e(g, B∗) (1)

for some r; this implies that:

e(g, b∗) = e
(

g, B∗ ·
(
(A∗)

∑ q
i=2 yi

)−1
)

= e (g, B∗) · e
(

g,
(
(A∗)

∑ q
i=2 yi

)−1
)

(1)
= e(A∗,

q∏
i=1

Yi) · e
(

g,
(
(A∗)

∑ q
i=2 yi

)−1
)

= e(A∗, g
∑q

i=1 yi)) · e
(

A∗,
(
g
∑ q

i=2 yi

)−1
)

= e(A∗, g
∑q

i=1 yi)) · e(A∗, (g
∑ q

i=2 yi)−1) = e(A∗, g
∑q

i=1 yig
∑q

i=2 −yi)
= e(a∗, Y1) .

Now, the second and third verification equations of the aggregate signature
scheme prove that:∏

i�=j

e(Xi, Yj)M
∗
i = e(g, g)

∑
i�=j M∗

i xiyj = e(g, g
∑

i�=j M∗
i xiyj)

= e(g,
∏
i�=j

gM∗
i xiyj) = e(g, D∗)

310 D. Schröder

and that:

∏
i

[
e(Xi, A

∗) · e(Xi, B
∗)M

∗
i

]
· e(A∗, D∗)−1 = e(g, C∗) . (2)

This implies that:

e(g, c∗) = e(g, C∗) · e
(

g,
(
(A∗)

∑ q
i=2 xi+M∗

i xiyi

)−1
)

(2)
=
∏

i

[
e(Xi, A

∗) · e(Xi, B
∗)M

∗
i

]
·

· e(A∗, D∗)−1 · e
(

g,
(
(A∗)

∑ q
i=2 xi+M∗

i xiyi

)−1
)

.

Observe that e(g, B∗)
(1)
= e(g,

∏
i(A

∗)yi) = e(g,
∏

i gryi) and thus,

∏
i

e(Xi, B
∗)M

∗
i =

∏
i

e(g, B∗)M
∗
i xi =

∏
i

e(g,
∏

i

gryi)M
∗
i xi . (3)

Next, we replace the index i of the product
∏

i gryi with j. Using the results of
these equations, we have the following:

e(g, c∗) =
∏

i

[
e(Xi, A

∗) · e(Xi, B
∗)M

∗
i

]
·

· e(A∗, D∗)−1 · e
(

g,
(
(A∗)

∑ q
i=2 xi+M∗

i xiyi

)−1
)

(3)
=
∏

i

[e(A∗, Xi)] ·
∏

i

⎡
⎣e(g,

∏
j

gryj)M
∗
i xi

⎤
⎦ · e(A∗,

∏
i�=j

gM∗
i xiyj)−1·

· e
(

A∗,
(
g
∑q

i=2 xi+M∗
i xiyi

)−1
)

=
∏

i

[e(A∗, Xi)] · e(A∗,
∏

i

∏
j

gM∗
i xiyj) · e(A∗,

∏
i�=j

gM∗
i xiyj)−1·

· e
(

A∗,
(
g
∑q

i=2 xi+M∗
i xiyi

)−1
)

.

In the following, we divide the products e(A∗,
∏

i

∏
j gM∗

i xiyj) into two parts; the
first part consists of all factors for which i = j, while the second part contains
the remaining factors:

How to Aggregate the CL Signature Scheme 311

e(g, c∗) =
∏

i

[e(A∗, Xi)] · e(A∗,
∏
i=j

gM∗
i xiyj

∏
i�=j

gM∗
i xiyj)·

e(A∗,
∏
i�=j

gM∗
i xiyj)−1 · e

(
A∗,

(
g
∑q

i=2 xi+M∗
i xiyi

)−1
)

=
∏

i

[e(A∗, Xi)] · e(A∗,
∏
i=j

gM∗
i xiyj)·

· e(A∗,
∏
i�=j

gM∗
i xiyj) · e(A∗,

∏
i�=j

gM∗
i xiyj)−1 · e

(
A∗,

(
g
∑q

i=2 xi+M∗
i xiyi

)−1
)

=

q∏
i=1

[
e(A∗, Xi) · e(A∗, gM∗

i xiyi)
]
·

q∏
i=2

e

(
A∗,

(
Xi · gM∗

i xiyi

)−1
)

=

q∏
i=1

[
e(A∗, Xi) · e(A∗, gM∗

i xiyi)
]
·

q∏
i=2

[
e
(
A∗, (Xi)

−1
) · e(A∗,

(
gM∗

i xiyi

)−1
)]

= e(A∗, X1) · e(A∗, gM∗
1 x1y1) ·

q∏
i=2

[
e(A∗, Xi) · e(A∗, gM∗

i xiyi)
]
·

·
q∏

i=2

[
e
(
A∗, (Xi)

−1) · e(A∗,
(
gM∗

i xiyi

)−1
)]

= e(A∗, X1) · e(A∗, gM∗
1 x1y1) ·

q∏
i=2

[
e(A∗, Xi) · e(A∗, gM∗

i xiyi)
]
·

·
q∏

i=2

[
e (A∗, (Xi))

−1 · e
(
A∗,

(
gM∗

i xiyi

))−1
]

= e(A∗, X1) · e(A∗, gM∗
1 x1y1) ·

q∏
i=2

[
e(A∗, Xi) · e(A∗, gM∗

i xiyi)
]
·

·
q∏

i=2

[
e (A∗, (Xi)) · e

(
A∗,

(
gM∗

i xiyi

))]−1

= e(A∗, X1) · e(A∗, gM∗
1 x1y1)

= e(A∗, X1) · e(gr, gM∗
1 x1y1) · e(A∗, X1) · e(gx1 , gry1)M∗

1

= e(a∗, X1) · e(X1, b
∗)M∗

1

as desired. Thus, B succeeds whenever A does.

Acknowledgments. The author thanks Heike Schröder, Cristina Onete,
Markus Rückert, and the anonymous reviewers for valuable comments. This work
was partially supported by the US Army Research Laboratory and the UK Min-
istry of Defence under Agreement Number W911NF-06-3-0001. The views and
conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied,
of the US Army Research Laboratory, the US Government, the UK Ministry of

312 D. Schröder

Defense, or the UK Government. The US and UK Governments are authorized
to reproduce and distribute reprints for Government purposes, notwithstanding
any copyright notation herein.

References

1. Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable rfid tags via insub-
vertible encryption. In: Proceedings of the Annual Conference on Computer and
Communications Security (CCS), pp. 92–101. ACM, New York (2005)

2. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 411–422. Springer, Heidelberg (2007)

3. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: ACM Conference on Computer and Communications Security
2006, pp. 390–399. ACM Press, New York (2006)

4. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

5. Boldyreva, A.: Efficient threshold signatures, multisignatures and blind signatures
based on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.)
PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

6. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure rout-
ing. In: Proceedings of the Annual Conference on Computer and Communications
Security (CCS 2007), pp. 276–285. ACM Press, New York (2007)

7. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: New multiparty signature
schemes for network routing applications. ACM Transactions on Information and
System Security (TISSEC) 12(1) (2008)

8. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh as-
sumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (2008)

9. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

10. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

11. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

12. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.:
How to win the clonewars: Efficient periodic n-times anonymous authentication. In:
Proceedings of the Annual Conference on Computer and Communications Security
(CCS), pp. 201–210. ACM Press, New York (2006)

13. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263.
Springer, Heidelberg (2007)

How to Aggregate the CL Signature Scheme 313

14. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

15. Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing two pairing-
based aggregate signature schemes. Cryptology ePrint Archive, Report 2009/060
(2009), http://eprint.iacr.org/

16. Damg̊ard, I., Dupont, K., Pedersen, M.Ø.: Unclonable group identification. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 555–572. Springer,
Heidelberg (2006)

17. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer,
Heidelberg (2007)

18. Eikemeier, O., Fischlin, M., Götzmann, J.F., Lehmann, A., Schröder, D., Schröder,
P., Wagner, D.: History-free aggregate message authentication codes. In: Garay,
J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 309–328. Springer,
Heidelberg (2010)

19. Fischlin, M., Lehmann, A., Schröder, D.: History-free sequential aggregate signa-
tures. Cryptology ePrint Archive, Report 2011/231 (2011), http://eprint.iacr.
org/

20. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

21. Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital mul-
tisignature. IEE Proceedings of Computers and Digital Techniques 141(5), 307–313
(1994)

22. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008)

23. IOC: Ioc tsunami website (2009), http://ioc3.unesco.org/, http://ioc3.

unesco.org/indotsunami/

24. Itakura, K., Nakamura, K.: A public key cryptosystem suitable for digital multisig-
natures. NEC Research & Development 71, 1–8 (1983)

25. Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In: Malkin, T.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 155–169. Springer, Heidelberg (2008)

26. Kiayias, A., Zhou, H.-S.: Concurrent blind signatures without random oracles. In:
De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 49–62. Springer,
Heidelberg (2006)

27. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

28. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

29. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Walker,
M. (ed.) Cryptography and Coding 1999. LNCS, vol. 1746, pp. 184–199. Springer,
Heidelberg (1999)

30. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract. In: ACM Conference on Computer and Communications Security 2001,
pp. 245–254. ACM Press, New York (2001)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://ioc3.unesco.org/
 http://ioc3.unesco.org/indotsunami/
 http://ioc3.unesco.org/indotsunami/

314 D. Schröder

31. Neven, G.: Efficient sequential aggregate signed data. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (2008)

32. Ohta, K., Okamoto, T.: A digital multisignature scheme based on the fiat-shamir
scheme. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS,
vol. 739, pp. 139–148. Springer, Heidelberg (1993)

33. Okamoto, T.: A digital multisignature schema using bijective public-key cryptosys-
tems. ACM Trans. Comput. Syst. 6(4), 432–441 (1988)

34. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007)

35. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

Key Exchange in IPsec Revisited:

Formal Analysis of IKEv1 and IKEv2

Cas Cremers

ETH Zurich, Switzerland
cas.cremers@inf.ethz.ch

Abstract. The IPsec standard aims to provide application-transparent
end-to-end security for the Internet Protocol. The security properties of
IPsec critically depend on the underlying key exchange protocols, known
as IKE (Internet Key Exchange).

We provide the most extensive formal analysis so far of the current
IKE versions, IKEv1 and IKEv2. We combine recently introduced for-
mal analysis methods for security protocols with massive parallelization,
allowing the scope of our analysis to go far beyond previous formal analy-
sis. While we do not find any significant weaknesses on the secrecy of the
session keys established by IKE, we find several previously unreported
weaknesses on the authentication properties of IKE.

Keywords: Security protocols, IPsec, IKE, IKEv1, IKEv2, Formal
analysis, protocol interaction, multi-protocol attacks.

1 Introduction

IPsec [19] is an IETF protocol suite that provides Internet Protocol (IP) security.
In particular, IPsec provides confidentiality, data integrity, access control, and
data source authentication [17]. In contrast to, e. g., SSL/TLS [12], IPsec pro-
vides end-to-end security in an application-transparent way, i. e., without having
to change each application separately. IPsec was developed in conjunction with
IPv6, and any compliant implementation of IPv6 must support IPsec. For IPv4,
IPsec is an optional extension.

The main goal of IPsec is to provide for each packet a means to guarantee
origin authentication, integrity, and confidentiality. Additionally, IPsec may pro-
vide identity protection for the communicating parties. IPsec implements this
by setting up for each communication a so-called Security Association, which
essentially boils down to establishing a session key, which is used to provide the
three main security properties for the subsequently transmitted messages. Per-
haps surprisingly, establishing such a session key in IPsec is an involved process
with a large amount of options to choose from, such as various sub-protocols,
cryptographic methods, and optional fields. The protocol suite responsible for
this key establishment phase is known as IKE (Internet Key Exchange). Ac-
cording to its specification, IKE performs “mutual authentication between two
parties and establishes an IKE security association” [17].

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 315–334, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

316 C. Cremers

Currently, there are two versions of IKE. The original design, IKEv1 [15], was
criticised for its complexity and large amount of options. Its successor, IKEv2
[17, 16], is significantly simpler and seems to provide at least the same level of
security, but still offers a large amount of options.

When IKEv1 was proposed, it was analyzed by several groups, e. g., [29,30,32,
25,14]. Given that recent years have seen many new developments in methods to
analyze security protocols, as well as the establishment of many strong security
notions for key exchange protocols, one might expect that IKE is a prime candi-
date for an updated analysis. Surprisingly, only limited analysis was performed,
e. g., [26] for some sub-protocols of IKEv2.

Contributions. We provide the most comprehensive formal analysis of IKE so
far. This includes providing the first complete analysis of unintended interactions
between pairs of protocols in IKE, and analyzing IKE with respect to formaliza-
tions of advanced cryptographic security notions [5,22]. We find a large number
of previously unreported logical weaknesses. In general, these weaknesses do not
lead to violations of the main security goals, but show that strong authentication
properties are not always achieved. Our analysis thus provides a more precise
view on the security properties provided by the IKE protocols.

We provide full details of our tests and protocol models online [10].

Overview. We give background on the IKE protocols and describe previous anal-
yses of IKE in Section 2. We describe the setup and details of our analysis in
Section 3. In Section 4 we provide an overview of the results of our analysis
and describe both rediscovered and newly found weaknesses. Possible fixes and
remaining issues are discussed in Section 5. Finally, we conclude in Section 6.

In the Appendix we describe the used adversary models and give the full
analysis results for multi-protocol attacks.

2 Background on IKE

In this section we provide background on the IKEv1 and IKEv2 protocols and
their intended security properties. Additionally we give an overview of related
work, in particular previous analyses of these protocol standards.

A Security Association (SA) is the establishment of a secure transmission ses-
sion between two network entities. This amounts to establishing a set of shared
attributes, which typically include the chosen cryptographic algorithms and one
or more keys for encrypting/decrypting traffic. The main purpose of IKE within
IPsec is to establish a security association, more specifically the IPsec SA, be-
tween two authenticated IPsec peers. The IPsec SA includes traffic keys that
can be used for a secure IPsec tunnel.

Key Exchange in IPsec Revisited: Formal Analysis of IKEv1 and IKEv2 317

Notation. We denote the (plaintext) headers in each IKE message by HDRi for
some i. We write {m}sk(X) to denote the digital signature of the agent X of the
message m, and {m}pk(X) for the public key encryption of m with X ’s public
key. For a key K that is not of the form sk(X) or pk(X), {m}K denotes the
symmetric encryption of m with key K. Fresh random values, usually referred
to as Nonces, are denoted as NX when created by the agent X . IDX denotes (a
representation of) the identity of agent X . The short-term Diffie-Hellman private
key of agent A, also known as the ephemeral private key, is written as xA and
the corresponding ephemeral public key is written as gxA . We write prfK(m)
to denote the application of the pseudorandom function prf to the message m,
optionally keyed with K. CKYA and CKYB respectively denote the initiator’s
and responder’s cookie, which are also included in the headers. Following the
standard, we denote the proposals for negotiating security parameters by SA in
the protocol descriptions.

2.1 IKE Version 1 (IKEv1)

The design of IKEv1 [15] is based on the Oakley protocol [27] and ISAKMP [24].
The protocol is essentially an authenticated key exchange protocol with addi-
tional payloads that supports multiple cryptographic algorithms and which is
split into two distinct phases. In phase 1 an ISAKMP SA is established that is
used in phase 2 to set up an IPsec SA.

In phase 1, the peers are authenticated and a shared secret key is established.
The shared secret key is derived from the exchanged Diffie-Hellman tokens. Phase
1 can be performed in one of the following two modes: Main Mode (MM) and
Aggressive Mode (AM). Main Mode provides identity protection (i. e., an adver-
sary cannot determine from the messages who the participating agents are) and
only exchanges security parameters with authenticated peers. The Main Mode
protocol consists of six messages. In contrast, Aggressive Mode offers no identity
protection and may exchange some security parameters with peers before they
are authenticated, but requires only three messages.

For both MM and AM, IKEv1 supports three types of underlying key infras-
tructures, based on respectively symmetric cryptography, digital signatures, and
public key cryptography. For public key cryptography there are two different
types of protocol, one of which is supposed to replace the other but has been
retained for compatibility purposes. The combination of the two modes with the
four key types yields eight phase 1 protocols to establish a shared key.

Example 1 (IKEv1 Aggressive Mode with digital signatures). The IKEv1 AM
protocol with digital signatures proceeds as follows:

1. A → B : HDR1, SA, gxA , NA, IDA

2. B → A : HDR2, SA, gxB , NB, IDB,
{prfK(gxB , gxA ,CKYB,CKYA, IDB)}sk(B)

3. A → B : HDR3, {prfK(gxA , gxB ,CKYA,CKYB, IDA)}sk(A)

where K is a shorthand for prf (NA,NB)(g
xAxB).

318 C. Cremers

After the completion of phase 1, the resulting shared secret is used to derive
several shared secret keys. In what follows, these are denoted by SKEYIDx

where x identifies the specific key.
The shared secret keys established in phase 1 are used in phase 2 to establish

or update the session keys for the IPsec tunnel. This second phase is called Quick
Mode (QM), and consists of three protocols. The first protocol provides perfect
forward secrecy (PFS),i. e., revealing the long-term keys does not compromise
the security of past sessions, but no identity protection. The second provides no
perfect forward secrecy but is more efficient than the first, and the third provides
identity protection. In IKEv1, AM and MM are always directly followed by QM.

Example 2 (IKEv1 Quick Mode without perfect forward secrecy). Let M-ID de-
note a message identifier and let KAB and KBA be the appropriate symmetric
traffic encryption keys derived from the secret established in phase 1.

1. A → B : HDR1, { prf SKEYIDa
(M-ID,SA, N ′

A),SA, N ′
A }KAB

2. B → A : HDR2, { prf SKEYIDa
(M-ID, N ′B,SA, N ′

A),SA, N ′
B }KBA

3. A → B : HDR3, prf SKEYIDa
(0,M-ID, N ′

A, N ′
B)

The resulting new keying material is defined as prf SKEYIDd
(protocol, SPI, N ′

A,
N ′

B), where protocol and SPI are taken from the ISAKMP SA proposals.

2.2 IKE Version 2 (IKEv2)

IKEv2 [17, 16] was designed to add new features, address some weaknesses in
IKEv1 and, at the same time, provide a cleaner design. In IKEv2 there are only
three sub-protocols in phase 1. These are based on digital signatures, MAC’s, and
EAP (Extensible Authentication Protocol). Similar to IKEv1, Diffie-Hellman ex-
ponents and nonces are exchanged and used to compute several shared secret
keys. For example, the initiator i will use SKei (for encryption), SKai (for au-
thentication), and SKpi (for the authentication payload). Similarly, the respon-
der r will use SKer, SKar, and SKpr.

The phase 1 protocols establish an IKE SA (similar to IKEv1’s ISAKMP SA)
and a first child SA (similar to IKEv1’s IPsec SA). Hence, contrary to IKEv1, an
SA that can be used for IPsec (the child SA) is directly available after the first
phase. The specification of the first phase protocols contains optional fields, and
allows for initiators and responders to use different authentication mechanisms.

Example 3 (IKEv2 phase 1 with digital signatures). Let SAi1 and SAr2 denote
the supported cryptographic algorithms and let SAi2 and SAr2 denote IPsec
SA proposals. In this example, we write {m}SKx to denote that m is integrity
protected and encrypted using SKax and SKex. TSi and TSr denote traffic
selectors and are not directly relevant for our analysis. Similarly, SPIi and
SPIr denote Security Parameter Indexes. Furthermore, we define

Key Exchange in IPsec Revisited: Formal Analysis of IKEv1 and IKEv2 319

AUTHi = {SAi1, gxA , NA, NB, prf SKpi
(IDA)}sk(A)

AUTHr = {SAr1, gxB , NB, NA, prf SKpr
(IDB)}sk(B)

Then, the protocol proceeds as follows:

1. A → B : HDR1, SAi1, gxA , NA

2. B → A : HDR2, SAr1, gxB , NB

3. A → B : HDR3, {IDA, IDB,AUTHi , SAi2, TSi, TSr}SK

4. B → A : HDR4, {IDB,AUTHr , SAr2, TSi, TSr}SK

The second phase in IKEv2 is known as Child Mode. The purpose of Child Mode
is to re-key previous (IKE or child) SA’s or to establish additional child SA’s. For
Child Mode, there are only two protocols, one of which provides Perfect Forward
Secrecy. These are similar to their IKEv1 phase 2 counterparts, but consist only
of two messages. For further details we refer to [17].

2.3 Intended Security Properties

The IKE standards mention the following intended properties of the protocols:

1. To obtain authenticated keying material for use with ISAKMP and for other
security associations [15, p. 1].

2. To achieve the security goals provided by Oakley [27]: perfect forward secrecy
for keys, identity protection, and authentication [15, p. 2].

3. To perform mutual authentication [17, p. 5].

The standards do not contain more detailed descriptions of these properties.

2.4 Previous Analyses of IKE

IKEv1 has been analyzed before by several authors. In 1999, Meadows performed
a large case-study of IKEv1 using the NRL protocol analyzer [25], a formal proto-
col analysis tool. Her analysis uncovered many subtle properties and weaknesses
at the logical level. In 2000, Perlman and Kaufman performed a manual analy-
sis of IKEv1 [29, 30]. Their analysis covered not only the logical level, but also
many different other aspects of the protocol, leading to a significant critique
of the standard. Many of their suggestions were included in the design of the
IKEv2 standard. Zhou analyzed further issues of the IKEv1 standard [32] and
suggests amendments for the weaknesses he finds. In 2001 and 2002, Canetti
and Krawczyk analyzed selected sub-protocols of IKE in the cryptographic set-
ting [6,5], e. g., showing that a variant of IKEMain Mode with signatures satisfies
a form of cryptographic key-exchange security.

In contrast, there has only been very limited analysis of IKEv2. In 2003, three
sub-protocols of IKEv2 were formally analyzed in the context of the AVISPA
project [1, 26]. They found that an IKEv2 sub-protocol suffers from a weakness
that was already pointed out on a related IKEv1 protocol by Meadows.

320 C. Cremers

3 Formal Analysis of IKEv1 and IKEv2

In this section we describe the setup of our analysis. The results will be de-
scribed in Section 4. Similar to the approach taken by Meadows for her analysis
of IKEv1 [25], we follow the line of work by Dolev and Yao [13]. Hence we focus
on the detection of logical vulnerabilities of protocols, and assume that cryp-
tography is perfect in the sense that, for example, the adversary learns nothing
from an encrypted message unless he knows the decryption key. This can be
seen as a separation of concerns: we rely on the stated properties of the used
cryptographic algorithms. A second assumption is that the adversary has full
control over the network, and can intercept or modify all messages, or inject
his own.

Our analysis covers significantly more security aspects than the earlier for-
mal analyses of IKE. Along the lines of the security notions for key exchange
first explored by Bellare and Rogaway [3], we also consider various advanced
security properties, such as perfect forward secrecy, key compromise imperson-
ation, and known-key attacks. Here we follow the formalizations by Basin and
Cremers [2]. Additionally, we consider interactions between sub-protocols, which
are an instance of multi-protocol attacks [18, 11].

Formal analysis tool and extensions. In our analysis we used Scyther [8], a formal
protocol analysis tool. In particular, we exploited two of its features: analyzing
protocol properties with respect to various adversary models [2], and support
for multi-protocol analysis [11].

For the analysis of IKE, we extended the Scyther tool with two features. First,
we provided support for checking agreement as defined by Lowe [23]. Scyther’s
built-in notions of authentication, (weak) aliveness and synchronisation1, were
respectively too weak and too strong in the context of IKE. Second, because the
scope of our analysis is currently not feasible on standard computing hardware,
we developed infrastructure for performing large-scale parallel analysis for multi-
processor computing clusters. We will return to this issue in Section 3.

Protocol models. A critical step in the formal analysis consists of providing ab-
stract models of the protocols under investigation, such that they can be ana-
lyzed within the formal framework underlying the tool [9]. The abstract protocol
models should include all security-relevant information. It is critical to find a bal-
ance here between precision (i. e., complexity) of the models and feasibility of
the analysis.

For our models, we abstracted the security association proposals into arbitrary
choices (but checking that the recipient and sender agree on the contents of the
proposal). Similarly, we abstracted from the public key certificates and assume
that they have been pre-distributed in a secure manner, which is justifiable as
‘our models do not consider concepts such as key revocation.

Within the formal framework, the commutativity property of the
Diffie-Hellman exchange ((ga)b = (gb)a) currently cannot be modeled precisely,
1 This can be considered similar to the notion of “matching histories”, and requires

messages to have been sent exactly as received, as well as in the correct order.

Key Exchange in IPsec Revisited: Formal Analysis of IKEv1 and IKEv2 321

Table 1. Overview of IKEv1 protocol mod-
els. The bottom four protocols are not part of
the standard, but are improvements suggested
in [30]

name mode

encrypt
last

message

separate
encryp-
tions

ikev1-sig-m MM
ikev1-sig-a1 AM N
ikev1-sig-a2 AM Y

ikev1-pk-m MM N Y
ikev1-pk-m2 MM N N
ikev1-pk-a1 AM N Y
ikev1-pk-a12 AM Y Y
ikev1-pk-a2 AM N N
ikev1-pk-a22 AM Y N

ikev1-pk2-m MM N Y
ikev1-pk2-m2 MM N N
ikev1-pk2-a AM N Y
ikev1-pk2-a2 AM N N

ikev1-psk-m MM
ikev1-psk-a AM

ikev1-quick QM
ikev1-quick-noid QM
ikev1-quick-nopfs QM

ikev1-sig-a-perlman1 AM N
ikev1-sig-a-perlman2 AM Y
ikev1-sig-m-perlman MM
ikev1-psk-m-perlman MM

Table 2. Overview of IKEv2
protocol models

name mode
optional
identity

ikev2-sig SIG Y
ikev2-sig2 SIG N
ikev2-mac MAC Y
ikev2-mac2 MAC N
ikev2-eap EAP Y
ikev2-eap2 EAP N
ikev2-sigtomac SM Y
ikev2-sigtomac2 SM N
ikev2-mactosig SM Y
ikev2-mactosig2 SM N
ikev2-child C
ikev2-child-nopfs C

and we therefore underapproximate this property by giving the adversary the ca-
pability of rewriting such exponentiations at fixed subterm positions, which are
derived from the protocol specification. Full details can be found in the protocol
models. Our underapproximation ensures soundness of the attacks that we find.

In Table 1 we list the models of the sub-protocols that we consider for IKEv1.
The first column shows the names which are meant to be self-explanatory as far
as possible, including the underlying cryptographic mode in the name (hence
pk and pk2 for the two public-key variants, and sig and psk for signatures and
pre-shared keys, respectively). The second column shows the mode. For phase 1
we have “MM” for Main Mode and “AM” for Aggressive Mode. For phase 2 we
have “QM” for Quick Mode. The third column, “encrypt last message”, marks
protocol variants in which the last message is encrypted by the session key. The
fourth column, “separate encryptions”, refers to an ambiguity in the specification:
in one message, it is required that a nonce and an ID are encrypted. This can

322 C. Cremers

be interpreted in two ways: first encrypt each separately, and then concatenate
the result, or alternatively, first concatenate the nonce and ID and then encrypt
the result. For our analysis, we have modeled both interpretations. For Quick
Mode, there are three variants. The first two are Diffie-Hellman based exchanges
with and without the optional identity fields. The third variant uses plain nonces
instead of Diffie-Hellman and can be used when perfect forward secrecy (PFS)
is not required. Besides the protocol models described in the IKEv1 and IKEv2
standards, we also modeled four variants suggested by Perlman and Kaufman.

Similarly, Table 2 lists the sub-protocols modeled for IKEv2. The main modes
here are “SIG”, “MAC”, and “EAP”, denoting digital signatures, MACs, and
Extensible Authentication Protocol (EAP), respectively. Additionally, “SM” de-
notes the variants in which one agent uses a different mode than the peer within
the same sub-protocol. Finally, “C” denotes Child Mode, which is IKEv2’s vari-
ant of the re-keying phase. The third column marks the variants in which optional
identity fields are omitted in the specification.

Our full protocol models are publicly available at [10].

Security properties. As stated before, the IKE standards do not provide detailed
descriptions of the intended properties. One of the contributions of our work
is therefore to establish more precisely which properties are guaranteed by the
protocols. In our analysis, we consider the following basic security properties.

Aliveness. If an agent a executes a role of the protocol, thinking he ran it with
b, then b has indeed performed an action (and is therefore “alive”). This is
a very weak authentication property.

Weak agreement. Aliveness, where additionally b assumes that he is commu-
nicating with a, and hence they both “agree” on the agents involved in the
protocol.

Agreement (on a list of terms S). This implies weak agreement and addi-
tionally, b is indeed performing the role that a assumes. Finally, a and b
agree on the values in S, e. g., they agree on the computed session key.

Secrecy (of a term t). The term t, e. g., a computed session key, will not be-
come known to the adversary.

More formally, for the first three properties, we follow the definitions given in [23],
and for the final property, we follow [2]. The supposed security properties are
specified in the protocol description by means of claim events, such that they
can be analyzed by the Scyther tool.

Following [2], we combine basic security properties with adversary models. We
consider a total of 10 adversary models, which include the standard Dolev-Yao
model, as well as abstract versions of the adversary capabilities considered in the
CK model [5] and the eCK model [22], which are commonly used security models
for proving the security of authenticated key exchange protocols. We informally
describe these models in Appendix A.

Combining the above basic security properties with the appropriate adversary
model, we analyze the protocols with respect to the following properties.

Key Exchange in IPsec Revisited: Formal Analysis of IKEv1 and IKEv2 323

(Perfect) Forward Secrecy. We consider secrecy of a term (typically a session
key) occurring in a session s whilst allowing the adversary to compromise
the long-term keys of all agents after s has been completed. Thus, the com-
promise of the long-term keys should not lead to the compromise of session
keys (or any session-specific secret) from earlier sessions.

Weak Perfect Forward Secrecy. Similar to Perfect Forward Secrecy above,
but slightly weaker: if he did not actively interfere in the session s, then he
may compromise the long-term keys of agents. This notion was introduced
in [20] as a variant of Perfect Forward Secrecy suitable for a class of implicitly
authenticated key exchange protocols, such as HMQV.

(resilience to) Key Compromise Impersonation. If the adversary is able
to compromise the long-term keys of an agent a, he should not be able to
impersonate as an arbitrary agent to a. This can be modeled by analyzing
authentication properties in the presence of an adversary capable of compro-
mising the actor’s long-term keys.

(resilience to) known session key attacks. If the adversary learns a session
key, this should not allow him to attack other sessions. Here we follow Bellare
and Rogaway [3] and analyze secrecy of a particular session key in the pres-
ence of an adversary that can compromise all session keys of non-matching
sessions. We will return to the concept of matching sessions when discussing
the results.

Using the same mechanism, i. e., combining basic security properties with adver-
sary models, allows us to analyze protocols with respect to abstract versions of
cryptographic security notions, such as the previously mentioned CK and eCK
models. Full details and formal specifications of the protocol execution model
and the various adversary capabilities can be found in [2].

Multi-protocol attacks. We also considered possible protocol interactions in the
context of a standard Dolev-Yao adversary (i. e., with static corruption). When
(sub-)protocols that are executed in parallel share the same long-term keys, the
interaction between the protocols can enable multi-protocol attacks [18, 11]. As
already pointed out in [25], given the many sub-protocols in IKE, unforeseen
protocol interactions cannot be excluded. However, analysing all possible inter-
actions is significantly harder than their individual analysis, and therefore not
all possible interactions were considered by Meadows in [25].

In our analysis we consider all possible interactions between pairs of subpro-
tocols in IKEv1 and IKEv2. In theory, attacks could be possible that require
interactions among three or more protocols [11] but this is currently infeasible
to analyze in our setup.

Analysis hardware. Our analysis would not have been feasible without using a
significant amount of hardware. The enabling factor for our analysis was the high-
performance cluster of ETH Zurich, called Brutus [31]. Brutus is a heterogeneous
system with several types of compute nodes. Currently, Brutus has a total of 9912
processor cores in 1108 compute nodes. The majority of the compute nodes are

324 C. Cremers

four quad-core AMD Opteron 8380 CPUs with 32 GB of RAM. In our tests we
used a maximum of 128 processor cores in parallel, due to default usage limits.

Our analysis mostly consisted of a large number of relatively small tasks, such
as analyzing a single protocol property with respect to a particular adversary
model, and hence could be easily parallelized. The set of tests for analyzing
all protocols with respect to all adversary models, excluding the multi-protocol
analysis, took about a day of computation on the cluster. The multi-protocol
analysis for all two-protocol combinations with respect to a single adversary
model took just over two days. To put these numbers into perspective, on a
single desktop machine these computations would have taken at least two orders
of magnitude more time, thus requiring about a year of computation time. Of
course, in practice, the situation is worse: in some cases the test results revealed
modeling errors, whose fixing required partial recomputation of the results. Thus,
we used the Brutus cluster therefore much longer than three days, and analysis
using a single machine would not have been feasible.

4 Results

Our analysis automatically rediscovers known weaknesses but also discovers
many new weaknesses, as shown in Tables 3 and 4. We briefly discuss the redis-
covered weaknesses, before explaining in detail the newly discovered weaknesses.

4.1 Automatically Rediscovered Weaknesses

(K1) Reflection attack on IKEv1 Main Mode with digital signatures
or pre-shared keys. In [14], Ferguson and Schneier report a reflection attack
on IKEv1 Main Mode when used with digital signatures or pre-shared keys. The

Table 3. Overview of attacks on properties of IKEv1 sub-protocols in the presence
of a standard Dolev-Yao adversary. A dagger (†) denotes that the attacks require self-
communication.

Protocol Roles Violated properties Classification

ikev1-pk-m2 I Agreement, Weakagree (†) N1
ikev1-pk2-m2 I Agreement, Weakagree (†) N1
ikev1-psk-m I Agreement, Weakagree (†) K1
ikev1-psk-m-perlman I Agreement, Weakagree (†) K1
ikev1-quick-noid I,R Aliveness, Agreement, Weakagree K2
ikev1-quick-nopfs I,R Aliveness, Agreement, Weakagree K2
ikev1-sig-a-perlman1 I Agreement, Weakagree N2
ikev1-sig-a-perlman2 I Agreement, Weakagree N2
ikev1-sig-a1 I Agreement, Weakagree N2
ikev1-sig-a2 I Agreement, Weakagree N2
ikev1-sig-m I Agreement, Weakagree (†) K1
ikev1-sig-m R Agreement, Weakagree N3
ikev1-sig-m-perlman I Agreement, Weakagree K1

Key Exchange in IPsec Revisited: Formal Analysis of IKEv1 and IKEv2 325

Table 4. Overview of attacks on properties of IKEv2 sub-protocols with respect to a
Dolev-Yao style adversary (INT)

Protocol Roles Violated properties Classification

ikev2-child I,R Aliveness, Agreement, Weakagree N4
ikev2-child-nopfs I,R Aliveness, Agreement, Weakagree N4
ikev2-sig2 R Agreement, Weakagree K3
ikev2-sigtomac2 R Agreement, Weakagree K3

attack is a simple reflection that requires that an initiator may accept her own
identity as the peer. We will refer to the case in which an agent accepts her
own identity as the peer as the self-communication scenario. In this case, the
authenticators in the protocol become equal, and the adversary simply sends
all messages coming from the initiator back to her, unchanged. In this case
weak agreement fails, because there is no agent performing the responder role.
Secrecy of the key is still guaranteed. Such a self-communication scenario may
be relevant under some circumstances, as argued, e. g., in [4]. However, it is clear
that self-communication is not prohibited by the specification of IKEv1 and
should therefore be considered a legitimate use. When self-communication is not
possible, e. g., because identity-inequality checks are implemented for both roles,
the attack pointed out by Ferguson and Schneier is no longer possible.

(K2) Reflection Attack on IKEv1 Quick Mode. Meadows reported a reflec-
tion attack on IKEv1 Quick Mode [25]. Because of the symmetry of the messages,
and the possibility of leaving out some optional identities, the recipients of mes-
sages cannot determine directly whether they sent these messages themselves
(possibly in other sessions). This leads to a straightforward reflection attack,
and even allowing the reflection of messages to the responder role. Meadows ob-
served that this may be prevented by other details of the implementation, but
it is clear that there is no mechanism at the logical level to prevent reflections,
and hence this may be an issue in some implementations.

(K3) Weak Authentication for IKEv2 with Digital Signatures. The
IKEv2 digital signature mode allows identities to be omitted. As a result, an
agent may successfully complete the responder role while her peer believes that
he is in a partial run, talking to a different agent [26]. This constitutes a violation
of agreement on the agent identities. Moedersheim et al. report this as a violation
of “penultimate authentication” (We will return to this property in Section 5).
We observe that this violates strong authentication for the responder. In practice
this means that an IKEv2 responder Bob may accept an IPsec SA as valid for
Alice, even though only weak authentication is provided: it may not be the case
that Alice intended to talk to Bob. However, subsequent messages received over
the IPsec tunnel are guaranteed to provide strong authentication. We will see
an example of a similar weakness below (N2).

326 C. Cremers

4.2 Previously Unreported Weaknesses

(N1) Reflection Attack on IKEv1 Main Mode with Public Key Encryp-
tion. Our analysis reveals that the reflection attack (K1) reported by Ferguson
and Schneier, is also possible for the public key variants. Similar to their attacks,
the self-communication scenario is required for the attacks to work.

(N2) Authentication Failure on IKEv1 Aggressive Mode with Digital
Signatures. For IKEv1 Aggressive Mode with digital signatures, as described
in Example 1, we find that (weak) agreement is not guaranteed for the initiator.
The following scenario can occur:

1. A generates xA and NA and sends (for B): HDR1,SA, gxA , NA, IDA.
2. The adversary intercepts this message and changes IDA to IDC for an arbi-

trary agent C. The adversary sends the result to B: HDR1,SA, gxA , NA, IDC .
3. B accepts the message, and assumes that gxA and NA were generated by C.
4. B generates xB and NB and computes the key K = prf (NA,NB)((gxA)xB).
5. B sends the following message for C:

HDR2,SA, gxB , NB, IDB, {prfK(gxB , gxA ,CKYB,CKYA, IDB)}sk(B).
6. The adversary intercepts this message and sends it to A, who accepts it,

computing the same key K.
7. A sends (for B): HDR3, {prfK(gxA , gxB ,CKYA,CKYB, IDA)}sk(A).

Note that this message is not what B expects, and will be rejected by B.
8. A successfully completes her part of the protocol.

Consequently, agreement on the participants is not provided by this protocol:
after A finishes her initiator role with B, B was indeed running the responder
role, but B was under the assumption he was running the protocol with C. When
A finishes her role, B may still be waiting for the final message, or may have
aborted. Clearly, B will not accept the final message because he is expecting the
message to be signed by C. However, A cannot detect whether B has accepted
the final message unless additional messages are exchanged.

In practice, this means that the established ISAKMP SA provides no guar-
antees about the intended partner of the peer. In the context of IPsec, A will
next try to establish an IPsec SA using QM, which will fail, because B did not
accept the ISAKMP SA. Hence this does not result in a weakness at the IPsec
level. However, the IKEv1 specification [15] explicitly allows ISAKMP services
to directly use the ISAKMP SA, without establishing an IPsec SA. For such
services, only a weak form of authentication is guaranteed, as in (K3).

The underlying problem is that the responder’s signature only includes the
name of the sender (IDB), but not that of the (supposed) peer. The signature
therefore does not provide any information about who the responder believes he
is communicating with. This issue can be prevented by including the name of
the intended recipient inside the signature. In the above scenario, B would have
inserted IDC in step 5, and A would not have accepted the message in step 6.

Key Exchange in IPsec Revisited: Formal Analysis of IKEv1 and IKEv2 327

(N3) Authentication Failure on IKEv1 Main Mode with Digital Sig-
natures That Does not Require Self-Communication. Ferguson and
Schneier pointed out that the IKEv1 Main Mode with signatures is subject
to a reflection attack in self-communication scenarios (K1). We find that there
is another problem for the responder in this protocol, which does not involve
self-communication. Critically, the third message does not include information
on the initiator’s intended partner. Thus, when receiving the third message, the
responder cannot be sure that the message was meant for him. The attack and
its consequences are similar to (N2).

(N4) Reflection Attack on IKEv2 Phase 2 Exchange. The reflection
attack that was noted before for IKEv1 Quick Mode (K2) is also possible on the
related IKEv2 phase. This is surprising, because it could have been easily fixed
by breaking the symmetry of the messages, e. g., by including distinct constants
and checking their presence when parsing incoming messages.

Multi-protocol analysis. Our analysis of the composition of all pairs of IKE sub-
protocols showed that there are no problematic interferences between them. This
was not a priori given as the protocols do not include explicit tagging to distin-
guish between the messages of different sub-protocols. The only interaction was
between the “mixed” IKEv2 modes, where the sender of the last message can not
be sure whether his peer is expecting (or able to parse) an authentication mes-
sage of the type that he sends. However, these minor interactions clearly show
that the various sub-protocols, whose joint state is defined as their long-term
private keys, cannot be considered to be universally composable in the sense of,
e. g., [7]. The full results can be found in Table 6 in Appendix B.

Compromise analysis. We analyzed each protocol with respect to the adversary
compromise models described in Appendix A. The results are shown in Table 5.
In the top row, the abbreviated names of the adversary models are listed.

We highlight some results. The protocol variants establish perfect forward
secrecy (the Secrecy sub-column in the “AF” column, where AF is the adver-
sary model in which the adversary can compromise all long-term keys after the
session) except for those without Diffie-Hellman. Interestingly, we found that
some protocols revealed no attacks in the CK adversary model (which models
the adversary from Canetti and Krawczyk’s model for secure key exchange [5]),
even when queries such as “session-state reveal” are considered, which suggests
that computational proofs in CK for these protocols may be feasible. None of
the considered protocols is correct in the eCK adversary model (represented by
combining the columns eCK-1 and eCK-2) which also stems from the field of
secure key exchange [22]. This result confirms that the IKE protocols do not
offer any protection against the compromise of ephemeral keys (the short-term
private Diffie-Hellman exponents). Perhaps surprisingly, many protocols seem to
be vulnerable to known session-key attacks in the style of Bellare-Rogaway [3].
However, closer examination of the attacks shows that this is mainly due to a
technicality. In these known-key attacks, the adversary does not compute the ses-
sion key from another (related) session key, but rather reveals the same session

328 C. Cremers

Table 5. Analysis results for IKEv1 and IKEv2 subprotocols with respect to different
adversary models, using notation from [2] (Appendix A). Subcolumns indicate the
property considered: Secrecy, Aliveness, and Weak agreement. Property violations
that were previously reported are marked with ◦, and previously unreported violations
are marked with �.

EXT INT CA AFC AF BR CKw CK eCK-1 eCK-2
S A W S A W S A W S A W S A W S A W S A W S A W S A W S A W

Signature authenticators

ikev1-sig-a1 ◦ ◦ ◦ ◦ ◦ � ◦ � ◦ ◦ ◦ � � � ◦
ikev1-sig-a2 ◦ ◦ ◦ ◦ ◦ � ◦ � ◦ ◦ ◦ � � � ◦
ikev1-sig-a-perlman1 ◦ ◦ ◦ ◦ ◦ � ◦ � ◦ ◦ ◦ � � � ◦
ikev1-sig-a-perlman2 ◦ ◦ ◦ ◦ ◦ � ◦ � ◦ ◦ ◦ � � � ◦
ikev1-sig-m ◦ ◦ ◦ ◦ ◦ � ◦ � ◦ ◦ ◦ � � � ◦
ikev1-sig-m-perlman ◦ ◦ ◦ ◦ ◦ � ◦ � ◦ ◦ ◦ � � � ◦
ikev2-sig � �
ikev2-sig2 ◦ ◦ ◦ ◦ ◦ � ◦ � ◦ � ◦ � � � ◦
Public key authenticators

ikev1-pk-a1 ◦ ◦ ◦ ◦ ◦ � ◦ � ◦ ◦ ◦ � � � � ◦
ikev1-pk-a12 ◦ ◦ ◦ ◦ ◦ � ◦ � ◦ ◦ ◦ � � � � ◦
ikev1-pk-a2 � ◦ � � �
ikev1-pk-a22 � ◦ � � �
ikev1-pk2-a � � �
ikev1-pk2-a2 � � �
ikev1-pk-m � � � � � � � � � ◦ � � � � � �
ikev1-pk-m2 � � � � � � � � � ◦ � � � � � �
ikev1-pk2-m ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ � � � ◦
ikev1-pk2-m2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ � � � ◦
Pre-shared key authenticators

ikev1-psk-a � � � � � � � � �
ikev1-psk-m ◦ ◦ � � � ◦ ◦ ◦ � � � ◦ ◦ � � �
ikev1-psk-m-perlman ◦ ◦ � � � ◦ ◦ ◦ � � � ◦ ◦ � � �
ikev2-mac � � � � � � � � � �
ikev2-mac2 � � � � � � � � � �

Other authenticators

ikev2-eap � � �
ikev2-eap2 � � �
ikev2-mactosig � � � � � � � � � � �
ikev2-mactosig2 � � � � � � � � � � �
ikev2-sigtomac � � � � � � � � � � �
ikev2-sigtomac2 ◦ ◦ � � � ◦ ◦ � ◦ � � � � ◦ � � � � �

Phase 2 subprotocols

ikev1-quick � � � � � � � � �
ikev1-quick-nopfs ◦ ◦ ◦ ◦ � � � ◦ ◦ � ◦ ◦ ◦ ◦ � � � � ◦ ◦ ◦ ◦ � ◦ ◦
ikev1-quick-noid ◦ ◦ ◦ ◦ � � � ◦ ◦ ◦ ◦ ◦ ◦ � � � ◦ ◦ ◦ ◦ � ◦ ◦
ikev2-child �
ikev2-child-nopfs �

key at a so-called non-matching session. In our models, following [3], matching
sessions are defined as sessions whose exchanged messages are matching. Conse-
quently, known-key attacks can occur if the adversary can make an agent accept
the session key while slightly modifying some messages parts. Even when these
modifications do not have a practical impact on security, they lead to known-key
attacks in the formal model. The relevance of such attacks is mostly theoretical;
at worst, they suggest unknown-key share attacks.

Reproducing the results of the analysis. The Scyther tool, the input files, and
the test scripts we used are publicly available from [10]. Although significant

Key Exchange in IPsec Revisited: Formal Analysis of IKEv1 and IKEv2 329

computational effort was used to obtain the full results, only modest computa-
tional effort is required to reproduce individual attacks. For example, a single
standard current-generation PC (running, e. g., Linux) would suffice to reproduce
any one of the attacks described here within minutes.

5 Discussion

Our analysis reveals that many IKEv1 and IKEv2 sub-protocols do not sat-
isfy strong security properties, such as agreement. The first underlying prob-
lem is that insufficient information about the involved agents is included in the
cryptographically-protected parts of the messages. This occurs even in protocols
where identity protection is not an issue. The second underlying problem is a
lack of distinguishing tags in the protocols, enabling reflection attacks.

Along the same lines, though our analysis did not reveal any problematic inter-
action among the various sub-protocols, the lack of unique identification within
the various encrypted or signed payloads remains an issue. For example, the
IKE version number is only included in the header of messages and not included
(or checked) within any cryptographically protected message. As a result, an
active adversary can arbitrarily change version numbers and reroute encrypted
content from one protocol version into another. This significantly complicates
the problem of updating broken protocol versions, because the presence of the
old versions may still break the security of new versions, as pointed out in [11].

In cryptographic definitions of security, such as [3], the adversary can com-
promise session keys of any non-matching session. As we have seen, many of
the IKE variants are vulnerable to these attacks. These attacks may seem ar-
tificial; clearly, if the adversary learns the relevant session key (from whichever
session) then security is lost. However, there is an important issue underlying
such attacks: session keys should be computed in as few contexts as possible. The
threat of computing session keys in non-matching sessions is that it may give
the adversary unnecessarily more options to compromise the session key, e. g.,
because he can only compromise the memory of particular sessions or at certain
points in time. Protocols can be designed such that the least possible amount of
sessions compute the same session key, e. g., only in matching sessions, thereby
minimizing the window of opportunity for compromise.

The IKEv1 attack on authentication (N2) was not reported by previous for-
mal analysis. This is remarkable because the attack is within the scope of the
methods that were used by, e. g., Meadows [25]. The reason that this attack
was missed is that the property that was considered by Meadows is a much
weaker form of authentication: “The receiver A of the final message should not
have accepted security association SA as good for communication with B with-
out B having itself accepted SA.” [25]. It is clear from this formulation that
there is no requirement stated that A’s acceptance of SA for communication
with B means that B accepted SA for communication with A. Instead, Mead-
ows observed that the protocol does not satisfy “penultimate authentication”.
In our model, checking for penultimate authentication corresponds to analyzing

330 C. Cremers

whether B’s security guarantees also hold before the last message of the proto-
col is received and verified. We did not consider this property here, because we
assume implementations successfully complete individual sub-protocols before
assuming any security properties.

6 Conclusions

We have provided the most comprehensive formal analysis of IKEv1 and IKEv2
so far. Our analysis goes far beyond what was analyzed before using formal
methods and we leveraged massive parallelization to obtain our results.

Our analysis did not reveal any new critical weaknesses in the IKE protocols
with respect to the secrecy of the established keys. However, we discover several
new weaknesses. These mainly revolve around the failure of the IKE protocols
themselves to provide mutual authentication, even though the established session
keys can be considered “safe” in the sense that they will be known, at most, to
the intended partners. Hence, when using IKE, strong mutual authentication
cannot be taken for granted and in fact requires an additional step where the
session key is used, in such a way that reflection attacks (on exchanges protected
by the session key) are prevented.

As may have been expected, IKEv2 shows significantly less weaknesses than
IKEv1, and should therefore certainly be preferred over IKEv1.

The remaining weakness in IKEv2 phase 1, in which only weak authentication
is achieved, in practice means that no strong authentication guarantees are pro-
vided before a message is received over the IPsec tunnel. This could be solved by
either documenting the particular limitations of the signature-based Aggressive
Mode, or by reintroducing the required agent field in the specification.

For IKEv2 phase 2, the practical implication of the reflection attacks is that
after a phase 2 exchange, recent aliveness of the peer is not guaranteed. As
above, this is resolved once a message is subsequently received over the tunnel.
This could be mentioned in the specification, so that developers do not make
unfounded assumptions (e. g., aliveness of the peer) after a phase 2 exchange.

With respect to future work, there are several properties that are currently
out of scope of our methods. Two obvious candidates for future work are identity
protection and resilience against denial-of-service attacks. Additionally, we note
that in this analysis we focused on attack detection. Another possible goal is
formal verification, i. e., showing the absence of flaws at the logical level. This
seems out of scope for the current state-of-the-art in formal analysis. Along the
same lines it would be desirable to prove more precise properties of the individual
sub-protocols, e. g., as in [28].

Acknowledgements. The author is grateful to Adrian Kyburz, whose IKE
models and initial analysis [21] provided the starting point for this work.

Key Exchange in IPsec Revisited: Formal Analysis of IKEv1 and IKEv2 331

References

1. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J.,
Drielsma, P.H., Heám, P.C., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von
Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.:
The AVISPA Tool for the Automated Validation of Internet Security Protocols and
Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 281–285. Springer, Heidelberg (2005)

2. Basin, D., Cremers, C.J.F.: Modeling and Analyzing Security in the Presence of
Compromising Adversaries. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.)
ESORICS 2010. LNCS, vol. 6345, pp. 340–356. Springer, Heidelberg (2010)

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

4. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment, 1st
edn. Springer, Heidelberg (2003)

5. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

6. Canetti, R., Krawczyk, H.: Security Analysis of IKE’s Signature-Based Key-
Exchange Protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–
161. Springer, Heidelberg (2002)

7. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

8. Cremers, C.J.F.: The Scyther Tool: Verification, Falsification, and Analysis of Se-
curity Protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
414–418. Springer, Heidelberg (2008)

9. Cremers, C.J.F., Mauw, S.: Operational Semantics of Security Protocols. In: Leue,
S., Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools, International
Workshop. LNCS, vol. 3466, pp. 66–89. Springer, Heidelberg (2005)

10. Cremers, C., Kyburz, A.: IKEv1 and IKEv2 protocol models for the Scyther tool
(2011), http://people.inf.ethz.ch/cremersc/scyther/ike

11. Cremers, C.: Feasibility of multi-protocol attacks. In: Proc. of The First Interna-
tional Conference on Availability, Reliability and Security (ARES), pp. 287–294.
IEEE Computer Society Press, Vienna (2006)

12. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard) (August 2008), http://www.ietf.org/rfc/
rfc5246.txt (updated by RFCs 5746, 5878)

13. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(12), 198–208 (1983)

14. Ferguson, N., Schneier, B.: A Cryptographic Evaluation of IPsec. Tech. rep., Coun-
terpane Internet Security, Inc. (2000)

15. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE). RFC 2409 (Proposed
Standard) (November 1998), http://www.ietf.org/rfc/rfc2409.txt (obsoleted
by RFC 4306, updated by RFC 4109)

16. Harkins, D., Kaufman, C., Kent, S., Kivinen, T., Perlman, R.: Design Rationale
for IKEv2. IETF Internet Draft (expired) (February 2002), http://www.ietf.org/
proceedings/54/I-D/draft-ietf-ipsec-ikev2-rationale-00.txt

17. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P.: RFC 5996: Internet Key Ex-
change Protocol Version 2 (IKEv2) (September 2010), http://www.rfc-editor.

org/info/rfc5996

http://people.inf.ethz.ch/cremersc/scyther/ike
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc2409.txt
http://www.ietf.org/proceedings/54/I-D/draft-ietf-ipsec-ikev2-rationale-00.txt
http://www.ietf.org/proceedings/54/I-D/draft-ietf-ipsec-ikev2-rationale-00.txt
http://www.rfc-editor.org/info/rfc5996
http://www.rfc-editor.org/info/rfc5996

332 C. Cremers

18. Kelsey, J., Schneier, B., Wagner, D.: Protocol interactions and the chosen protocol
attack. In: Christianson, B., Lomas, M. (eds.) Proc. 5th International Workshop on
Security Protocols 1997. LNCS, vol. 1361, pp. 91–104. Springer, Heidelberg (1998)

19. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301 (Pro-
posed Standard) (December 2005), http://www.ietf.org/rfc/rfc4301.txt

20. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

21. Kyburz, A.: An automated formal analysis of the security of the Internet Key
Exchange (IKE) protocol in the presence of compromising adversaries. Master’s
thesis, ETH Zurich (November 2010)

22. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

23. Lowe, G.: A Hierarchy of Authentication Specifications. In: Proc. 10th IEEE Com-
puter Security Foundations Workshop (CSFW), pp. 31–43. IEEE Computer Society
Press, Los Alamitos (1997)

24. Maughan, D., Schertler, M., Schneider, M., Turner, J.: Internet Security Asso-
ciation and Key Management Protocol (ISAKMP). RFC 2408 (Proposed Stan-
dard) (November 1998), http://www.ietf.org/rfc/rfc2408.txt (obsoleted by
RFC 4306)

25. Meadows, C.: Analysis of the Internet Key Exchange protocol using the NRL Pro-
tocol Analyzer. In: Proceedings of the 1999 IEEE Symposium on Security and
Privacy, pp. 216–231 (1999)

26. Moedersheim, S., Drielsma, P.H., et al.: AVISPA Project Deliverable D6.2: Speci-
fication of the Problems in the High-Level Specification Language (2003), http://
www.avispa-project.org/

27. Orman, H.: The Oakley Key Determination Protocol. Tech. rep., University of
Arizona, Tucson, AZ, USA (1997); also described in RFC 2412

28. Paterson, K.G., Watson, G.J.: Plaintext-dependent decryption: A formal security
treatment of SSH-CTR. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 345–361. Springer, Heidelberg (2010)

29. Perlman, R., Kaufman, C.: Key exchange in IPSec: analysis of IKE. IEEE Internet
Computing 4(6), 50–56 (2000)

30. Perlman, R.J., Kaufman, C.: Analysis of the IPSec Key Exchange standard. In:
10th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE 2001), Cambridge, MA, USA, June 20-22, pp.
150–156. IEEE Computer Society, Los Alamitos (2001)

31. Swiss National Computing Centre: Brutus cluster, http://www.cscs.ch/index.

php

32. Zhou, J.: Further analysis of the Internet Key Exchange protocol. Computer Com-
munications 23(17), 1606–1612 (2000)

A Adversary Models

In this section we briefly describe the adversarymodels considered in this analysis
as listed in Table 5. Their formal definitions can be found in [2].

http://www.ietf.org/rfc/rfc4301.txt
http://www.ietf.org/rfc/rfc2408.txt
http://www.avispa-project.org/
http://www.avispa-project.org/
http://www.cscs.ch/index.php
http://www.cscs.ch/index.php

Key Exchange in IPsec Revisited: Formal Analysis of IKEv1 and IKEv2 333

EXT. In this model, the adversary has full control over the network but is an
outsider (EXTernal): he does not have an identity within the system and he
does not know any long-term private keys.

INT. The INT model (INTernal) models the standard Dolev-Yao model, as
used, e. g., by Lowe for his analysis of the Needham-Schroeder protocol. The
adversary has full control over the network, but he additionally has access
to some long-term private keys. This models either a malicious insider or
an adversary that has compromised some agents. For example, this allows
the adversary to perform Lowe’s man-in-the-middle attack on the Needham-
Schroeder protocol.

CA. An agent A can authenticate another agent B if B knows some secrets that
are not known to the adversary, such as B’s long-term private keys. However,
it is not necessary that A also knows some secrets. Some protocols allow for
authentication even when the long-term keys of the authenticating agent
(i. e., the verifier) are known to the adversary. The CA model (Compromised
Actor) gives the adversary full network control but also the ability to learn
the long-term keys of the authenticating agent. This adversary model is used
to model Key Compromise Impersonation (KCI) attacks.

AF and AFC. The AF and AFC adversary models correspond to an adversary
that is capable of learning all long-term private keys of the agents after
(AFter) a session, and are used to analyze Perfect Forward Secrecy and
weak Perfect Forward Secrecy. Compared to the AF model, the additional
restriction of the AFC model (AFter Correct) is that the adversary can only
learn the keys after sessions in which he did not actively interfere, i. e., in
which he was passive, which is used to model weak Perfect Forward Secrecy.

BR. The BR adversary model (Bellare-Rogaway) corresponds to an INT adver-
sary that can additionally compromise session keys of other (non-matching)
sessions, thereby modeling known-key attacks.

CK and CKw. The CK (Cannetti-Krawczyk) and CKw (Weak CK) models
correspond to a BR adversary with two additional powers. First, the adver-
sary can also compromise long-term keys after the session (as in AF, for CK,
and as in AFC, for CKw). Second, the adversary can reveal the local state
(e. g., the random numbers) generated in other sessions.

eCK-1 and eCK-2. The eCK-1 and eCK-2 models together model the eCK
adversary model (Extended CK). The eCK model is similar to the combina-
tion of the CKw and CA adversary. The main difference is that instead of
revealing the local state of other (i. e., non-matching) sessions, the adversary
can reveal the randomness generated in every session for which he did not
compromise the owner’s long-term private key.

B Multi-protocol Analysis Results

In Table 6 we give an overview of the protocol interactions. In the left column
the protocol and property considered is indicated. The markers in the top row
indicate the protocols that were considered to be running in parallel. An open dot
in the table denotes that a violation was found that requires self-communication.

334 C. Cremers

A closed dot indicates a violation that does not require self-communication. The
interferences found seem to be of a harmless nature but could trivially have
been avoided by putting appropriate unique constants in each message, i. e., by
tagging.

Table 6. Multi-protocol interactions leading to property violations. These mainly in-
volve wrong assumptions on the protocol variant that the partner is running.

N
o

P
ro

t

C
la

im

ik
ev

1
-p

k
-a

1

ik
ev

1
-p

k
-a

1
2

ik
ev

1
-p

k
-a

2

ik
ev

1
-p

k
-a

2
2

ik
ev

1
-s

ig
-a

1

ik
ev

1
-s

ig
-m

ik
ev

1
-s

ig
-m

-p
er

lm
a
n

ik
ev

2
-m

a
c

ik
ev

2
-m

a
c2

ik
ev

2
-m

a
ct

o
si
g

ik
ev

2
-m

a
ct

o
si
g
2

ik
ev

2
-s

ig

ik
ev

2
-s

ig
2

ik
ev

2
-s

ig
to

m
a
c

1 ikev1-pk-a1 I Agreement •
2 ikev1-pk-a1 I Weakagree •
3 ikev1-pk-a12 I Agreement •
4 ikev1-pk-a12 I Weakagree •
5 ikev1-pk-a2 I Agreement •
6 ikev1-pk-a2 I Weakagree •
7 ikev1-pk-a22 I Agreement •
8 ikev1-pk-a22 I Weakagree •
9 ikev1-sig-a-perlman1 R Agreement ◦
10 ikev1-sig-a-perlman1 R Weakagree ◦
11 ikev1-sig-m-perlman R Agreement •
12 ikev1-sig-m-perlman R Weakagree •
13 ikev2-mac R Agreement •
14 ikev2-mac R Weakagree •
15 ikev2-mac2 R Agreement •
16 ikev2-mac2 R Weakagree •
17 ikev2-mactosig R Agreement •
18 ikev2-mactosig R Weakagree •
19 ikev2-mactosig2 R Agreement •
20 ikev2-mactosig2 R Weakagree •
21 ikev2-sig I Agreement
22 ikev2-sig I Weakagree
23 ikev2-sig R Agreement •
24 ikev2-sig R Weakagree •
25 ikev2-sig2 I Agreement
26 ikev2-sigtomac R Agreement •
27 ikev2-sigtomac R Weakagree •

Adapting Helios for Provable Ballot Privacy

David Bernhard1, Véronique Cortier2, Olivier Pereira3,
Ben Smyth2, and Bogdan Warinschi1

1 University of Bristol, England
2 LORIA - CNRS, France

3 Université Catholique de Louvain, Belgium

Abstract. Recent results show that the current implementation of He-
lios, a practical e-voting protocol, does not ensure independence of the
cast votes, and demonstrate the impact of this lack of independence on
vote privacy. Some simple fixes seem to be available and security of the
revised scheme has been studied with respect to symbolic models.

In this paper we study the security of Helios using computational
models. Our first contribution is a model for the property known as
ballot privacy that generalizes and extends several existing ones.

Using this model, we investigate an abstract voting scheme (of which
the revised Helios is an instantiation) built from an arbitrary encryp-
tion scheme with certain functional properties. We prove, generically,
that whenever this encryption scheme falls in the class of voting-friendly
schemes that we define, the resulting voting scheme provably satisfies
ballot privacy.

We explain how our general result yields cryptographic security guar-
antees for the revised version of Helios (albeit from non-standard as-
sumptions).

Furthermore, we show (by giving two distinct constructions) that it
is possible to construct voting-friendly encryption, and therefore voting
schemes, using only standard cryptographic tools. We detail an instan-
tiation based on ElGamal encryption and Fiat-Shamir non-interactive
zero-knowledge proofs that closely resembles Helios and which provably
satisfies ballot privacy.

1 Introduction

Electronic voting protocols have the potential to offer efficient and sound tallying
with the added convenience of remote voting. It is therefore not surprising that
their use has started to gain ground in practice: USA, Norway and Estonia are
examples of countries where e-voting protocols have been, at the very least,
trialled in elections on a national scale.

Due to the sensitive nature of elections, security of e-voting protocols is crucial
and has been investigated extensively. Among the security properties that have
been identified for e-voting, perhaps the most desirable one is that users’ votes
should remain confidential. Three levels of confidentiality have been identified.
These are (in increasing strength) the following.

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 335–354, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

336 D. Bernhard et al.

– Ballot privacy: A voter’s vote is not revealed to anyone.
– Receipt–freeness: A voter cannot obtain information which can prove to a

coercer how she voted.
– Coercion resistance: Even a voter who collaborates with a coercer cannot

obtain information that proves how she voted.

Other important properties that are desirable include ballot independence
[12] (the ballots cast do not depend on each other) and end-to-end verifiabil-
ity [23,28,38] (it is possible to verify that the election process has been followed
honestly).

This paper is motivated by recent developments regarding the security of the
Helios voting scheme [45]. Starting from version 2.0 [35], Helios has been using
a variant of a classical protocol by Cramer et al. [14] incorporating tweaks pro-
posed by Benaloh [29], and has been used in real-world elections, for example
by the International Association for Cryptographic Research (IACR) to elect
its 2010 board [36], by Princeton University to elect the undergraduate student
government [46] and to elect the president of the Université Catholique de Lou-
vain [35]. Helios aims to achieve only ballot privacy and explicitly discards the
stronger confidentiality notions (which it does not satisfy) in favor of efficiency.
It turns out that the current implementation of Helios does not enforce ballot
independence (contrary to the original protocol of Cramer et al. [14]) and, as
a result, Cortier and Smyth [37,42] have exhibited several attacks against the
ballot privacy property of Helios. (The property is called “ballot secrecy” in
Cortier and Smyth’s papers.) The attacks range from simple ballot copying to
subtle reuse of parts of existing ballots, however they can all be detected (and
prevented) by public algorithms. A revised scheme has been proved secure in
a symbolic model but its security in the stronger, computational sense has not
been assessed.

Contributions. We start by providing a computational security model for ballot
privacy (Section 2). In a sense, our model generalizes and strengthens the model
of [24,26] where an attacker tries to distinguish when two ballots are swapped.
Here, we ask that the adversary cannot detect whether the ballots cast are
ballots for votes that the adversary has chosen or not. In doing so, the adversary
is allowed to control arbitrarily many players and see the result of the election.
Our model uses cryptographic games and thus avoids imposing the more onerous
constraints that other definitional styles (in particular simulability) require from
protocols.

Next we turn our attention to the revised version of Helios. Our analysis fol-
lows a somewhat indirect route: instead of directly analysing the scheme as it has
been implemented, we analyze an abstract version of Helios that follows the same
basic architecture, but where the concrete primitives are replaced with more
abstract versions. Of course, the version we analyze implements the suggested
weeding of ballots. We present this abstract scheme as a generic construction of
a voting scheme starting from encryption scheme with specific functional and
security properties (Section 3).

Adapting Helios for Provable Ballot Privacy 337

Focusing on this more abstract version brings important benefits. Firstly, we
pin-down more clearly the requirements that the underlying primitives should
satisfy. Specifically, we identify a class of voting-friendly encryption schemes
which when plugged in our construction yield voting schemes with provable
ballot privacy. Roughly speaking, such encryption schemes are IND-CCA2 secure
and have what we call a homomorphic embedding (parts of the ciphertexts can
be seen as ciphertexts of a homomorphic encryption scheme). Secondly, our
analysis applies to all voting schemes obtained as instantiations of our generic
construction. Although we analyze and propose constructions which for efficiency
reasons resort to random oracles, our generic approach also invites other (non-
random oracle based) instantiations.

Next, we show how to construct voting-friendly encryption schemes using
standard cryptographic tools (Section 4). We discuss two distinct designs. The
first construction starts from an arbitrary (IND-CPA) homomorphic encryption
scheme and attaches to its ciphertexts a zero-knowledge proof of knowledge of the
plaintext. We refer to this construction as the Enc+PoK construction. Despite
its intuitive appeal, we currently do not know how to prove that the above
design leads to an IND-CCA2 secure encryption scheme (a proprety demanded
by voting-friendliness). We therefore cannot conclude the security of our generic
scheme when implemented with an arbitrary Enc+PoK scheme. Nevertheless,
an investigation into this construction is important since the instantiation where
Enc is the ElGamal scheme and PoK is obtained using the Fiat-Shamir paradigm
applied to a Schnorr-like protocol corresponds precisely to the encryption scheme
currently used in Helios. The security of this specific construction has been
analyzed in prior work. Tsiounis and Yung [17] and Schnorr and Jakobsson [19]
demonstrate that the scheme is IND-CCA2 secure, but their proofs rely on highly
non-standard assumptions. Nevertheless, in conjunction with the security of our
main construction, one can conclude that the current implementation of Helios
satisfies ballot privacy based on either the assumption in [17] or those of [19].

We then take a closer look at the Enc+PoK construction and revisit a tech-
nical reason that prevents an IND-CCA2 security proof, first studied by Shoup
and Gennaro [16]. Very roughly, the problem is that the knowledge extractor
associated to the proof of knowledge may fail if used multiple times since its
associated security guarantees are only for constant (or logarithmically many)
uses. With this in mind, we note that a security proof is possible if the proof
of knowledge has a so called straight line extractor [22]. This type of extractor
can be reused polynomially many times. In this case, the Enc+PoK construc-
tion leads to a voting-friendly encryption scheme, whenever Enc is an arbitrary
IND-CPA homomorphic encryption scheme.

The second design uses the well-known Naor-Yung transformation [7]. We
show that if the starting scheme is an arbitrary (IND-CPA) homomorphic
encryption scheme then the result of applying the NY transform is a voting-
friendly encryption scheme. Applied generically, the transform may lead to non-
efficient schemes (one of its components is a simulation-sound zero-knowledge
proof of membership [18]). We present a related construction (where the proof of

338 D. Bernhard et al.

membership is replaced by a proof of knowledge) which can be efficiently instan-
tiated in the random oracle model. In the final section of the paper (Section 5)
we propose adopting an instantiation of Helios where the encryption-friendly
scheme is implemented as above. The computational overhead for this scheme is
reasonable (and can be further improved through specific optimization) and the
scheme comes with the formal guarantees offered by the results of this paper.

Related work. Chevallier-Mames et al. [27] present an unconditional definition
of ballot privacy but Helios cannot be expected to satisfy this definition due
to its reliance on computational assumptions. Chevallier-Mames additionally
show that their definition of unconditional ballot privacy is incompatible with
universal verifiability; however, ballot privacy and universal verifiability have
been shown to coexist under weaker assumptions, for example as witnessed by
Juels, Catalano & Jakobsson [23]. Computational definitions of ballot privacy
have been considered by Benaloh et al. [2,4,5]. These definitions however do
not come with a general characterization of the properties that an encryption
scheme should satisfy in order to ensure that they are satisfied (the corresponding
security notions did not exist at that time either). Wikström [34] considered the
general problem of secure submission of inputs with applications to mixnet-based
voting protocols. His definitions and constructions are the most closely related
to ours, and will be discussed below. Other definitions for voting systems have
been proposed in terms of UC realization of ideal voting functionalities, starting
with Groth [21], which capture privacy as part of the functionality behavior.

In addition, receipt-freeness has been considered by Benaloh & Tuinstra [11]
and Moran & Naor [25] and coercion resistance has been studied by Juels, Cata-
lano & Jakobsson [23], Küsters, Truderung & Vogt [40] and Unruh & Müller-
Quade [39]. These definitions can be used to show ballot privacy because it is
believed to be a weaker condition [11,26]; however, they are too strong for proto-
cols which only provide ballot privacy and in particular, they cannot be used to
analyse ballot privacy in Helios. Ballot privacy has also been formalized in the
symbolic model (for example, [26,33]) but the symbolic model suffers a serious
weakness: In general, a correct security proof does not imply the security of the
protocol. Cortier & Smyth [37,42] present an attack against ballot privacy in He-
lios and propose a variant of Helios which aims to prevent the attack by weeding
ballots. Their solution has been shown to satisfy ballot privacy in the symbolic
model but Cortier & Smyth acknowledge that a thorough cryptographic analysis
of the solution is necessary.

2 Ballot Privacy

Notation. Throughout this paper, we use the following notation. Assignment and
input/output of algorithms are both denoted by a left-facing arrow←. Picking a
value x uniformly at random from a set S is denoted by x

R← S. The expression
C

+← c appends c to the list C, () on its own is an empty list. We use “C” style
returns in algorithms, i.e. “Return a = b” to mean return 1 if a = b, otherwise 0.

Adapting Helios for Provable Ballot Privacy 339

A function f is called negligible if for any polynomial P , there exists η0 such
that ∀η ≥ η0, f(η) ≤ 1

P (η) .

2.1 Voting Schemes

In this section we fix a general syntax for the class of voting schemes that we
treat in this paper. In particular, our syntax encompasses several variations of
the Helios protocol.

We consider schemes for votes in a non-empty set V, and we assume ⊥ to be
a special symbol not in V that indicates that the voter has abstained. The result
of an election is then an arbitrary function ρ that takes a list of votes as input
and returns the election result. Elections are stateful, so the algorithms that we
define next use such a state. Since often, and in particular in the case of Helios,
this state is a bulletin board, in the definition below we write BB for this state
(and even refer to it as a bulletin board).

Definition 1 (Voting scheme). Algorithms (Setup, Vote, ProcessBallot, Tally)
define a voting scheme as follows.

– Setup: The setup algorithm takes a security parameter 1λ as input and re-
turns secret information x, public information y, and initializes the state
BB. We write (x, y, BB)← Setup(1λ) for this process. We assume the pub-
lic information is available to all subsequent algorithms.

– Vote: The voting algorithm takes a vote v ∈ V as input and produces as
output a ballot b (that encodes the vote). We write b ← Vote(v) for this
process.

– ProcessBallot: The ballot processing algorithm takes a candidate ballot b and
a bulletin board BB, checks the ballot for correctness (e.g. that it is well
formed, it is not a duplicate, etc.) and returns a result (accept/reject) and
the new state of the bulletin board. We write (a, BB)← ProcessBallot(BB, b)
for this process. Here a is either accept or reject.

– Tally: The tallying algorithm takes the secret information x and the bulletin
board BB and produces the election result.

For correctness of the scheme, we demand two conditions: 1) ballot tallying cor-
responds to evaluating the function ρ on the underlying votes; and 2) correctly
constructed votes will be accepted by the ballot processing algorithm. Both con-
ditions should hold with overwhelming probability and can be captured by the
experiment described in Figure 1. In this experiment, an adversary repeatedly
submits votes v1, v2, . . . ∈ V and each vote is used to construct a ballot which
is then processed. The game outputs 1 (the adversary wins) if the ProcessBallot
algorithm rejects some ballot or the result of the election does not correspond
to the votes cast. The voting scheme is correct if the algorithm outputs 1 with
at most negligible probability.

2.2 Security Model

Informally, ballot privacy is satisfied if an adversary in control of arbitrarily
many voters cannot learn anything about the votes of the remaining, honest

340 D. Bernhard et al.

Expcorr
Π (A)

(x, y,BB)← Setup
V = ()
repeat

(a, v)← A
b← Vote(v)
(r, BB)← ProcessBallot(BB, b)

V
+← v

until a = stop or r = reject
if r =“reject” or Tally(x,BB) �= ρ(V) then return 1 else return 0

Fig. 1. Experiment for defining the correctness of a voting scheme

voters beyond what can be inferred from the election result. The adversary can
read the (public) bulletin board and the communication channels between the
honest parties and the bulletin board (in other words, we assume them to be
authentic but not secret). Ballot privacy requires that the adversary is unable
to distinguish between real ballots and fake ballots, where ballots are replaced
by ballots for some fixed vote ε chosen by the adversary.

Formally, we consider an adversary that can issue two types of queries, vote
and ballot, to an oracle O. The oracle maintains two bulletin boards initialized
via the setup algorithm: BB is visible to the adversary and BB′ always contains
ballots for the real votes. A vote query causes a ballot for the given vote to be
placed on the hidden BB′. In the real world, the same ballot is placed on BB; in
the fake one a ballot for ε is placed on BB instead. A ballot query always causes
the submitted ballot to be processed on both boards. This process is defined
formally in Figure 2. The experiment on the right of Figure 2 is used to define
ballot privacy. The selection of β corresponds to the real world (β = 0) or the
fake world (β = 1). Throughout the experiment the adversary has access to BB,
but tallying is done using BB′.

Definition 2 (Ballot Privacy). We define the advantage of adversary A in
defeating ballot privacy for voting scheme Π by:

AdvBS
Π (A) = Pr[ExpBS

Π (A) = 1]− 1
2

and say that Π ensures ballot privacy if for any efficient adversary its advantage
is negligible.

We make a few remarks regarding the security model that we propose. Firstly,
we use cryptographic games rather than a simulation based definition. The
former offer well-accepted levels of security, are more flexible, and allow for
more efficient implementations. Second, we model directly the more relaxed no-
tion of vote privacy and not stronger notions like receipt-freeness or coercion
resistance [26]. While stronger notions are certainly desirable, they are more

Adapting Helios for Provable Ballot Privacy 341

vote(v)
b′ ← Vote(v)
if β = 0 then b← b′

else b← Vote(ε)
(r,BB)← ProcessBallot(b, BB)
(r′, BB′)← ProcessBallot(b′, BB′)
return (r,BB, b)

ballot(b)
(r,BB)← ProcessBallot(b, BB)
if r = accept then

(r′, BB′)← ProcessBallot(b, BB′)
return (r,BB)

ExpBS
Π (A)

(x, y, BB)← Setup(1λ)
BB′ ← BB
(ε, st)← A(y)
β ← {0, 1}
st← AO(st)
result← Tally(x,BB′)
β̂ ← A(st, result)

return β = β̂

Fig. 2. The algorithms on the left explain how the oracle processes adversary’s queries.
The experiment on the right is used to define ballot privacy.

difficult to achieve leading to rather inefficient protocols. Indeed, Helios deliber-
ately trades these stronger notions for efficiency. Finally, we emphasize that our
computational definition does not mirror existing security definitions in more
abstract models, e.g. [24]. It turns out that the direct extension of that defini-
tion to computational models seems strictly weaker than the definition that we
provide. We comment more on this point later in the paper.

3 A Generic Construction of Voting Schemes with Ballot
Privacy

In this section we present a generic construction of a voting scheme starting
from any encryption scheme with certain properties. We first fix this class of
encryption schemes (which we call voting-friendly), then give our construction
and prove its security.

3.1 Voting-Friendly Encryption

In a nutshell, a voting-friendly encryption scheme is a “(threshold) checkable
provable IND-CCA2 secure public key encryption scheme with key derivation
and a homomorphic embedding”. These rather convoluted looking requirements
are in fact not too onerous. We explain informally each of the requirements in
turn and give formal definitions. For simplicity, the presentation in this section is
for the non-threshold case, that is decryption is carried out using a single key by
a single party, as opposed to implementing decryption via an interactive process
where several parties share the keys.

Non-Interactive Zero Knowledge Proof Systems. Here we recall some basic no-
tions regarding non-interactive zero-knowledge proof systems [6]. Given language
LR defined by NP relation R we write (w, x) ∈ R if w is the witness that x ∈ LR.

342 D. Bernhard et al.

A proof system for LR is given by a pair of algorithms (Prover, Verifier) called
prover and verifier, respectively. We distinguish between proof systems in the
common reference string model (in this situation, an additional algorithm Setup
produces a common reference string accessible to both the prover and the ver-
ifier) and the random oracle model (where the setup is not required, but all
algorithms in the system have access to a random oracle). In a standard execu-
tion of the proof system, the prover and the verifier both have an element x ∈ LR

as input and in addition, the prover has as input a witness w that x ∈ LR (i.e.
R(w, x) = 1). The prover sends a single message π to the verifier who outputs
the decision to accept/reject. We call π a proof for the statement x ∈ LR. Typ-
ical requirements for such proof systems are that they should be sound (if the
input x is not in LR then the verifier rejects π with overwhelming probability)
and complete (if x is in the language then the verifier accepts π with probability
1). We write π ← Prover for the process of producing proof π when the state-
ment x and the witness w are clear from the context. A non-interactive proof
system is zero-knowledge if there exists a simulator Sim that is able to produce
transcripts indistinguishable from those of a normal execution of the protocol.
The simulator may use a trapdoor in the common reference string model, or can
program the random oracle in the random oracle model. We occasionally write
(Prover, Verifier) : R to indicate that the proof system is for the language LR.

We assume the reader is familiar with public key encryption and its associated
security notions. We write (Gen, Enc, Dec) for the key generation, encryption, and
decryption algorithms of a public key encryption scheme.

Homomorphic encryption. We also briefly recall the notion of homomorphic
encryption. An encryption scheme is homomorphic if the plaintext space is a
group and there exists an algorithm Add that takes two ciphertexts for messages
m0 and m1 and produces a ciphertext for m0◦m1 (where ◦ is the group operation
on plaintexts).

Embeddable Encryption. A crucial property for the encryption schemes that are
the focus of this section is that they have a homomorphic embedding. Informally,
this property means that it is possible to identify part(s) of the ciphertexts as
forming a ciphertext for some other encryption scheme, and this second encryp-
tion scheme is homomorphic. The ElGamal+PoK construction sketched in the
previous section is an example of an encryption scheme with an homomorphic
embedding. Indeed the e component of a ciphertext (e, π) is a ciphertext for
an homomorphic encryption scheme (ElGamal). The next definition makes this
discussion more precise.

Definition 3 (Homomorphic Embedding). We say that the homomorphic
encryption scheme Π = (EGen, EEnc, EDec, EAdd) is embedded in encryption
scheme Π ′ = (Gen, Enc, Dec), or alternatively that encryption scheme Π ′ has Π
as a homomorphic embedding if there are algorithms ExtractKey, Extract such
that for all m, pk, sk, c

EGen() = ExtractKey(Gen())

Adapting Helios for Provable Ballot Privacy 343

EEnc(m, ExtractKey(pk)) = Extract(Enc(m, pk))

Dec(c, sk) = EDec(Extract(c), sk)

Essentially, the ExtractKey algorithm maps keys (or key pairs) for the “larger”
scheme to keys for the embedded one, and the Extract algorithm extracts the
ciphertext for the embedded scheme out of ciphertext for the larger one, while
performing validity verifications at the same time.

The Extract algorithm must, by definition, produce a ciphertext that decrypts
to the same value as the input that it is given; in particular it must produce a
“ciphertext” that decrypts to ⊥ if and only if its input does. However, the Extract
algorithm does not take any secret keys as input. This implies that anyone can
check whether a ciphertext is valid (in the sense that it decrypts to something
other than ⊥) without knowing the secret key. This property forms the basis for
combining homomorphic and IND-CCA2 secure encryption in our construction.

We note that an IND-CCA2 secure cryptosystem with homomorphic embed-
ding is actually very close to a submission secure augmented (SSA) cryptosystem
as defined by Wikström [34]. Some important differences appear, though. The
most important one is that SSA cryptosystems do not require public verifiability
of the ciphertexts: it might be necessary to publish a private key augmentation
to be able to perform ciphertext validity checks. While this feature enables ef-
ficient solutions that are secure in the standard model, it is however often not
desirable in practice: it is quite useful to be able to dismiss invalid votes as soon
as they are submitted (and to resolve potential conflicts at that time) rather
than needing to wait for some partial key to be revealed. Besides, in order to
mitigate this inconvenience, SSA cryptosystems allow multiple independent aug-
mentations, which enables updating an augmentation and revealing the previous
one in order to be able to check the validity of previously submitted ciphertexts.
Our requirement of immediate public verifiability property makes this feature
unnecessary for our purpose.

We also note that in concurrent work, Persiano [44] and Smart [41] define
similar embedding concepts.

S2P Key Derivation. This property simply requires that if a key pair is produced
by the key generation algorithm of an encryption scheme then it is possible to
compute the public key from the secret key. This property will allow us to use
proofs of knowledge of the secret key corresponding to the public key.

Definition 4 (S2P Key Derivation). An encryption scheme has the S2P key
derivation property if there is an algorithm DeriveKey such that (x, y) ← Gen
implies y = DeriveKey(x).

Provable Encryption. In our generic construction voters need to certify that
various encryptions in the ballots that they produce satisfy some desirable prop-
erties (e.g. that a ciphertext encrypts 0 or 1, and not something else), and such
certification can be done via zero-knowledge proofs of knowledge. Since all of the
statements that we are interested in are NP statements, the existence of appro-
priate proof systems follows from general results [9]. Here, we make more precise

344 D. Bernhard et al.

the statements for which we demand the existence of such proof systems and
introduce some useful notation for the proof systems associated to the various
languages that we define.

In particular, it should be possible to prove knowledge of the secret key corre-
sponding to the public key, knowledge of the plaintext underlying a ciphertext,
as well as proving that a certain plaintext has been obtained by decrypting with
the key associated to the public key. To avoid complex nomenclature, we call a
scheme for which this is possible a scheme with provable encryption.

Definition 5 (Provable Encryption). An encryption scheme (Gen, Enc, Dec)
is provable if it has the S2P key derivation property and the following non-
interactive zero-knowledge proof systems exist:

1. (ProveGen, VerifyGen): R1(x, y) := y
?= DeriveKey(x)

2. (ProveEnc, VerifyEnc): R2((m, r), c) := c
?= Enc(m; r)

3. (ProveDec, VerifyDec): R3(x, (c, y, d)) := y
?= DeriveKey(x) ∧ d

?= Dec(x, c)

The above definition is for standard encryption schemes. For the case when
the encryption scheme that we need is embedded, we demand in addition the
existence of proof systems for the following two properties. The first requires that
one can prove a statement that involves plaintexts underlying several ciphertexts,
and secondly, one should be able to prove that the keys for the embedded schemes
in use have been correctly obtained from the keys of the embedding one. This
latter condition is a simple adaptation of provability as defined above.

Definition 6 (Provable Embedding). An encryption scheme (Gen, Enc, Dec)
for message space M with embedded scheme (EGen, EEnc, EDec) has embedded
provability for M ′ ⊆ MN (for some N ∈ N) if the following zero-knowledge
proof-systems exist:

1. (ProveGen, VerifyGen): R4(x, y) := y
?= DeriveKey(x)

2. (ProveEnc, VerifyEnc): R5((m1, m2, . . . , mN , r1, r2, . . . , rN), (c1, c2, . . . , cN)) :=

N∧
i=1

ci
?= Enc(mi; ri) ∧ (m1, . . . , mN) ∈M ′

3. (ProveEDec, VerifyEDec): R6(x, (y, d, c)) :=

y
?= DeriveKey(x) ∧ (x′, y′)← ExtractKey(x, y) ∧ d

?= EDec(x′, c)

In the last relation, the second conjunct is not a boolean condition, but simply
indicates that the keypair (x′, y′) is derived from (x, y) using the ExtractKey
algorithm.

The following definition states all the properties that we require from an
encryption scheme in order to be able to implement our generic voting scheme.

Adapting Helios for Provable Ballot Privacy 345

Definition 7 (Voting-Friendly Encryption). A voting-friendly encryption
scheme for vote space V is a public-key scheme for message space M with V ⊆
MN such that it is IND-CCA2 secure and has S2P key derivation, an embedded
homomorphic scheme and embedded provability for V.

Note that voting-friendly encryption requires security guarantees of both the
encryption scheme and the contained proof systems.

3.2 Our Generic Construction

In this section we describe a voting scheme based on an arbitrary voting-friendly
encryption scheme. The design idea is similar to that of Helios.

The scheme handles elections with multiple candidates. In an election with
three candidates a vote is a triple (a, b, c) such that a, b, c ∈ {0, 1} and a+b+c =
1. A ballot is then simply formed by individually encrypting each component of
the list with an IND-CCA scheme that has an homomorphic embedding, and
proving in zero-knowledge that the individual plaintexts in a ballot satisfy the
desired relation. To prevent an adversary from casting a vote somehow related
to that of an honest voter, we ensure that each ballot cast does not contain
any ciphertexts that are duplicates of ones in the ballots already on the bulletin
board. This condition is checked while processing ballots.

More formally, denote the set of ciphertexts contained in a ballot b by Cipher(b)
and the set of all ciphertexts on the bulletin board BB by Cipher(BB), that is
Cipher(BB) =

⋃
b′∈BB Cipher(b′). When submitting a ballot b, we check that

Cipher(b) ∩ Cipher(BB) = ∅.

Definition 8 (Abstract Voting Scheme). Let Π be a voting-friendly encryp-
tion scheme. The abstract voting scheme V (Π) is the construction consisting of
algorithms 1–4.

In our construction, V is the set of voters, Z is a party representing “the public”
(elements sent to Z are published) which also functions as a trusted party for
generating the initial setup parameters and T is the trustee of the election (that
receives the decryption keys).

If M is the message space of the voting-friendly encryption scheme we consider
the space of votes to be V ⊆ MN for some N ∈ N.

We consider result functions of the form ρ : V∗ → M∗ where V∗ := ∪i∈N0Vi

(this allows us to tally an arbitrary number of votes) and each component of
the range of ρ can be described by a sum of the form ρk =

∑
i∈N

ai,k · vi for
constants ai,k ∈ N. This covers the class of result functions that can be com-
puted homomorphically, including normal and weighted sums of votes but also
the special case of revealing all the votes and allows us to exploit the homo-
morphism in the tallying operation: The same operation can be performed on
homomorphic ciphertexts using the EAdd algorithm, for which we write ⊕ i.e.
a ⊕ b := EAdd(a, b). Furthermore, we can define scalar multiplication ⊗ on the
ciphertexts i.e. 2⊗ a := EAdd(a, a).

We also provide a public verification algorithm as Algorithm 5 although we
do not define this property formally.

346 D. Bernhard et al.

Algorithm 1. Setup(1λ)
Z :

params ← Setup(1λ). These parameters are implicitly available to all further algo-
rithms.
BB ← ()

T :

(x, y)← Gen(1λ)
πGen ← ProveGen(x, y)
Z ← (y, πGen)

Z :

VerifyGen(y, πGen)
?
= 1 or abort with failure.

Algorithm 2. Vote((v1, v2, . . . , vN))
∀j ∈ {1, 2, . . . , N}

cj ← Enc(y, vj)
πb

j ← ProveEnc(y, vj , cj)
bj ← (cj , π

b
j)

output b

Algorithm 3. ProcessBallot(b, BB)
if VerifyEnc(b) = 0 then return (“reject”, BB) end if
for all c ∈ Cipher(b) do

if Extract(c) = ⊥ then return (“reject”, BB) end if
if Cipher(b) ∩ Cipher(BB) �= ∅ then return (“reject”, BB) end if

end for
BB

+← b
return (“accept”, BB)

Algorithm 4. Tally(BB)
for all cj ∈ BB (j ∈ V) do e′j ← Extract(cj) end for
for all k do

e′′k ←
⊕

j∈V(aj,k ⊗ e′j) {I.e. use EAdd to compute ciphertexts for the results.}
rk ← EDec(x, e′′k)
πDec

k ← ProveEDec(x, e′′k , rk)
end for
Z ← (rk, πDec

k)k

Adapting Helios for Provable Ballot Privacy 347

Algorithm 5. Verification

Z performs the following, aborting if any of the checks (denoted by
?
=) fail. The ordering

on V is a slight abuse of notation; it represents the order the ballots were received in.
If successful, the result of the election is r.

VerifyGen(y, πGen)
?
= 1

for all j ∈ V do
(cj , π

b
j)← bj

VerifyEnc(bj)
?
= 1

(cj /∈ (cj′)j′∈V,j′<j)
?
= 1

e′j ← Extract(cj)

e′j
?

�= ⊥
end for
e′ ← EAdd(ρ, (e′j)j∈V)

VerifyEDec(r, πDec, e′) ?
= 1

We only prove ballot privacy of our construction formally; correctness follows
from the correctness of the voting-friendly encryption scheme. The following
theorem states that ballot privacy relies entirely on the security of the underlying
voting-friendly scheme.

Theorem 1. Let Π be a voting-friendly encryption scheme. Then V (Π) has
ballot privacy.

To prove the theorem we proceed in two steps. First, we strip the voting scheme
of the unnecessary details that concern verifiability, resulting in a scheme that we
call “mini-voting”. We prove that ballot privacy for this latter scheme only relies
on the IND-CCA2 security of the encryption scheme employed (which highlights
IND-CCA2 security as the crucial property needed from the underlying building
block). We then explain how to adapt the proof to show the security of V (Π).

The full proof can be found in the full version of this paper.

4 Constructions for Voting–Friendly Schemes

In the previous section we gave a generic construction of a voting scheme with
ballot privacy starting from an arbitrary voting-friendly encryption scheme. In
this section we show that such schemes can be easily constructed using standard
cryptographic tools in both the standard and the random oracle models. We
discuss three different possibilities.

Encrypt + PoK. This construction does not lead immediately to a voting-
friendly scheme but its security is highly relevant to that of Helios, and the
design idea forms the basis of a construction that we discuss later.

Under this paradigm, one attempts to construct an IND-CCA2 scheme start-
ing from an IND-CPA scheme and adding to the ciphertext a non-interactive

348 D. Bernhard et al.

proof of knowledge of the underlying plaintext. Intuitively, this ensures that
an adversary cannot make use of a decryption oracle (since he must know the
underlying plaintext of any ciphertext) hence the security of the scheme only
relies on IND-CPA security. Unfortunately, this intuition fails to lend itself to
a rigorous proof, and currently the question whether Enc+PoK yields an IND-
CCA2 scheme is widely open. A detailed treatment of the problem first appeared
in [16].

Yet, the question is important for the security of Helios: the current im-
plementation is essentially an instantiation of our generic construction with
an Enc+PoK encryption scheme. More precisely the encryption scheme Enc
is ElGamal, and the proof of knowledge is obtained by applying the Fiat-Shamir
transform to a Schnorr proof. Per the above discussion, no general results imply
that the resulting ElGamal+PoK scheme is IND-CCA2 secure (a requirement for
voting-friendliness) and our generic result does not apply. However, if one is pre-
pared to accept less standard assumptions, two existing results come in handy.
The security of the particular construction that employs ElGamal encryption
and Fiat-Shamir zero-knowledge proofs of knowledge has been investigated by
Tsiounis & Yung [17] and Schnorr & Jakobsson [19]. Both works support the
conjecture that the construction is IND-CCA2 but neither result is fully satisfac-
tory. Tsiounis & Yung make a knowledge assumption that essentially sidesteps
a crucial part in the security proof, whereas the proof of Schnorr & Jakobs-
son assumes both generic groups [13] and random oracles [10]. Nevertheless,
since using either assumption we can show that ElGamal+PoK construction is a
voting-friendly scheme, we conclude that Helios satisfies ballot privacy under the
same assumptions. Unfortunately, the security of the construction under stan-
dard assumptions is a long-standing open question. This observation motivates
the search for alternative constructions of voting-friendly schemes.

Straight-line Extractors. To motivate the construction that we discuss now, it is
instructive to explain why a proof that Enc+PoK is IND-CCA2 fails. In such a
proof, when reducing the security of the scheme to that of the underlying prim-
itive, a challenger would need to answer the decryption queries of the adversary.
Since the underlying encryption scheme is only IND-CPA secure, the only pos-
sibility is to use the proof of knowledge to extract the plaintext underlying the
queried ciphertexts. Unfortunately here the proof gets stuck. Current definitions
and constructions for proofs of knowledge only consider single statements and
the knowledge extractor works for polylogarithmically many proofs but it may
break down (run in exponential time [19]) for polynomially many. Since the IND-
CCA2 adversary is polynomially bounded answering all of its decryption queries
may thus not be feasible.

A construction that gets around this problem employs a zero-knowledge proof
of knowledge with a straight-line extractor. Such extractors do not need to
rewind the prover and in this case the Enc+PoK construction yields an IND-
CCA2 encryption scheme. This notion of extraction and a variation of the Fiat-
Shamir transform that turns a sigma-protocol into a non-interactive proof of
knowledge with a straight-line extractor in the random oracle model has recently

Adapting Helios for Provable Ballot Privacy 349

been proposed by Fischlin [22]. As above, starting with a homomorphic encryp-
tion scheme would yield a voting friendly encryption scheme. Unfortunately the
construction in that paper is not suffficiently efficient to yield a practical en-
cryption scheme.

The Naor-Yung Transformation. This transformation starts from any IND-CPA
secure encryption scheme. An encryption of message m is simply two distinct
encryptions c1 and c2 of m under the original scheme, together with a simulation-
sound zero-knowledge proof π that c1 and c2 encrypt the same message with an
extra property that we call unique applicability. Formally, we have the following
definition.

Definition 9 (Naor-Yung Transformation). Let E = (EGen, EEnc, EDec) be
a public-key encryption system. Let P = (Prove, Verify, Sim) be a non-interactive
zero-knowledge proof scheme for proving (in Camenisch’s notation [15])

PoK{(m, r1, r2) : c1 = Enc(y1, m; r1) ∧ c2 = Enc(y2, m; r2)}

with uniquely applicable proofs. Assume the input to Prove is given in the form
(m, y1, y2, r1, r2, c1, c2).

The Naor-Yung transformation [7] NY (E, P) of the encryption system is the
public-key cryptosystem defined in Algorithm 6.

Algorithm 6. Naor-Yung Transformation
Gen

(x1, y1)← EGen
(x2, y2)← EGen
return ((x1, x2), (y1, y2))

Enc((y1, y2), m; (r1, r2))

c1 ← Enc(y1, m; r1)
c2 ← Enc(y2, m; r2)
π ← Prove(m, y1, y2, r1, r2, c1, c2)
return (c1, c2, π)

Dec(c1, c2, π)

if Verify(c1, c2, π) = 1 then return EDec(x1, c2) else return ⊥ end if

Sahai [18] showed that the above transformation yields an IND-CCA2 en-
cryption scheme if the starting scheme is IND-CPA and the proof system is
simulation-sound and has uniquely applicable proofs (essentially each proof can
only be used to prove one statement).

Theorem 2 (Sahai[18]). If the zero-knowledge proof system P has uniquely
applicable proofs then the Naor-Yung transformation NY (E, P) of an IND-CPA
secure scheme E gives IND-CCA2 security.

350 D. Bernhard et al.

It turns out that if the starting encryption scheme is homomorphic, then the re-
sulting construction is a voting-friendly encryption scheme. Indeed, the resulting
scheme has a homomorphic embeding (given either the first or the second com-
ponent of the ciphertext) and it is checkable (the checking algorithm only needs
to verify the validity of π). As explained earlier, the required proof-systems for
provability of the embeding exist, from general results. One can therefore obtain
voting schemes with provable ballot privacy in the standard model starting from
any homomorphic encryption scheme that is IND-CPA secure in the standard
model.

In general, the above construction may not be very efficient (the simulation-
sound zero-knowledge proof and associated required proof-systems may be rather
heavy). In the random oracle model one can implement the above idea efficiently
by replacing the simulation-sound zero-knowledge proof (of membership) with a
zero-knowledge proof of knowledge of the message that underlies the two cipher-
texts. Interestingly, one may regard the NY transform as providing the under-
lying encryption scheme with a straight-line extractor (so our previous results
already apply).

The following theorem is a variation of the basic Naor-Yung transform applied
to our setting.

Theorem 3. If E is an IND-CPA secure homomorphic encryption scheme with
S2P key derivation and P is a zero-knowledge proof of knowledge system with
uniquely applicable proofs, then NY (E, P) is a voting friendly encryption scheme.

5 Application to the Helios Protocol

We propose an enhanced version of Helios 3.0 which is an instantiation of our
generic voting scheme with a voting-friendly encryption scheme obtained from
ElGamal encryption [1] via the NY transform [7]. The required proof of knowl-
edge is obtained via the Fiat-Shamir transform [3] applied to generalized Schnorr
proofs. In this scheme duplicate ballots would be rejected as defined in the Pro-
cessBallot procedure (Algorithm 3). We can further improve the efficiency by
reusing some components as described by [20].

Thanks to Theorems 1 and 3, we deduce that the enhanced version of Helios
3.0 (provably) preserves ballot privacy. The modification of Helios we propose
does not change the architecture nor the trust assumption of Helios and can be
easily implemented. The computational overhead is reasonable (both the length
of the messages and the time of computation would at most double and some
optimizations can be foreseen). In exchange, we get the formal guarantee that
Helios does preserve ballot privacy, a very crucial property in the context of
electronic voting. For concreteness, we prove the details of the construction, as
well as a proof of security in the full version of this paper.

We emphasize that our results go beyond proving ballot privacy of a particular
e-voting protocol. We have identified IND-CCA2 as a sufficient condition for con-
structing voting schemes satisfying our notion of ballot privacy and have given
an abstract construction of a Helios-type voting scheme from IND-CPA secure

Adapting Helios for Provable Ballot Privacy 351

homomorphic threshold encryption and non-interactive zero-knowledge proofs of
knowledge. Our construction is independent of any hardness assumptions or se-
curity models (in particular, the random oracle model). We have formalized the
concept of embeddable encryption and showed how to construct IND-CCA2 se-
cure encryption with homomorphic embedding, despite the known impossibility
of homomorphic IND-CCA2 secure encryption.

As further work, we plan to extend the definitions and proofs for threshold
encryption scheme in order to have a fully complete proof for Helios. We are
confident that our proof techniques will apply in a straightforward way. We also
wish to investigate the possibility of defining ballot privacy in a more general
way, e.g. allowing the current voting algorithm to be replaced by a protocol.
Indeed, it could the case that casting a vote or tallying the vote require more
than one step.

Acknowledgements. We are very grateful to Ben Adida for helpful discussions
on how to enhance ballot privacy in Helios.

This work was partially supported by the European Commission through the
ICT Programme under Contract ICT- 2007-216676 ECRYPT II, by the Interuni-
versity Attraction Pole P6/26 BCRYPT, and by the European Research Council
under the European Unions Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement number 258865 (ProSecure project). Olivier Pereira is a
Research Associate of the Belgian Funds for Scientific Research (F.R.S.-FNRS).

References

1. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

2. Cohen (Benaloh), J., Fischer, M.: A Robust and Verifiable Cryptographically Se-
cure Election Scheme. In: Proceedings of the 26th Symposium on Foundations of
Computer Science, pp. 372–382 (1985)

3. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

4. Cohen (Benaloh), J., Yung, M.: Distributing the Power of a Government to En-
hance the Privacy of Voters. In: Proceedings of the 5th Symposium on Principles
of Distributed Computing, pp. 52–62 (1986)

5. Cohen (Benaloh), J.: Verifiable Secret-Ballot Elections. Yale University Depart-
ment of Computer Science Technical Report number 561 (1987)

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: 20th STOC, pp. 103–112 (1988)

7. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: Proceedings of the Twenty-Second Annual ACM Symposium
on Theory of Computing (STOC 1990), pp. 42–437 (1990)

8. Schnorr, C.-P.: Efficient signature generation for smart cards. Journal of cryptol-
ogy 4, 161–174 (1991)

352 D. Bernhard et al.

9. Damg̊ard, I.B.: Non-interactive circuit based proofs and non-interactive perfect
zero-knowledge with preprocessing. In: Rueppel, R.A. (ed.) EUROCRYPT 1992.
LNCS, vol. 658, pp. 341–355. Springer, Heidelberg (1993)

10. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security (CCS 1993), pp. 62–73 (1993)

11. Benaloh, J., Tuinstra, D.: Receipt-Free Secret-Ballot Elections. In: Proceedings of
the 26th ACM Symposium on Theory of Computing, pp. 544–553 (1994)

12. Gennaro, R.: Achieving independence efficiently and securely. In: Proceedings of
the 14th Principles of Distributed Computing Symposium (PODC 1995), pp. 130–
136 (1995)

13. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

14. Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient
Multi-authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

15. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

16. Shoup, V., Gennaro, R.: Securing Threshold Cryptosystems against Chosen Ci-
phertext Attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
1–16. Springer, Heidelberg (1998)

17. Tsiounis, Y., Yung, M.: On the security of ElGamal based encryption. In: Imai, H.,
Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer, Heidelberg
(1998)

18. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: Proceedings of th 40th Annual Symposium on Foundations
of Computer Science (FOCS 1999), pp. 543–553 (1999)

19. Schnorr, C.-P., Jakobsson, M.: Security of Signed ElGamal Encryption. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 73–89. Springer, Hei-
delberg (2000)

20. Bellare, M., Boldyreva, A., Staddon, J.: Multi-recipient encryption schemes: Se-
curity notions and randomness re-use. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS,
vol. 2567. Springer, Heidelberg (2002), http://cseweb.ucsd.edu/~mihir/papers/
bbs.html

21. Groth, J.: Evaluating Security of Voting Schemes in the Universal Composabil-
ity Framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 46–60. Springer, Heidelberg (2004)

22. Fischlin, M.: Communication-Efficient Non-interactive Proofs of Knowledge with
Online Extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005)

23. Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elections.
In: Proceedings of the 4th Workshop on Privacy in the Electronic Society (WPES
2005), pp. 61–70 (2005)

24. Kremer, S., Ryan, M.D.: Analysis of an Electronic Voting Protocol in the Ap-
plied Pi Calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200.
Springer, Heidelberg (2005)

http://cseweb.ucsd.edu/~mihir/papers/bbs.html
http://cseweb.ucsd.edu/~mihir/papers/bbs.html

Adapting Helios for Provable Ballot Privacy 353

25. Moran, T., Naor, M.: Receipt-Free Universally-Verifiable Voting with Everlast-
ing Privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392.
Springer, Heidelberg (2006)

26. Delaune, S., Kremer, S., Ryan, M.D.: Coercion-Resistance and Receipt-Freeness
in Electronic Voting. In: 19th Computer Security Foundations Workshop (CSFW
2006), pp. 28–42 (2006)

27. Chevallier-Mames, B., Fouque, P., Pointcheval, D., Stern, J., Traoré, J.: On Some
Incompatible Properties of Voting Schemes. In: Proceedings of the Workshop on
Trustworthy Elections, WOTE 2006 (2006)

28. Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl Accord
(2007), http://www.dagstuhlaccord.org/

29. Benaloh, J.: Ballot Casting Assurance via Voter-Initiated Poll Station Auditing.
In: Proceedings of the Second Usenix/ACCURATE Electronic Voting Technology
Workshop (2007)

30. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

31. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a Secure Voting System.
In: Proceedings of the 29th Security and Privacy Symposium (S&P 2008), pp.
354–368 (2008)

32. Adida, B.: Helios: Web-based open-audit voting. In: 17th USENIX Security Sym-
posium, pp. 335–348 (2008),
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf

33. Backes, M., Hriţcu, C., Maffei, M.: Automated Verification of Remote Electronic
Voting Protocols in the Applied Pi-calculus. In: Proceedings of the 21st IEEE
Computer Security Foundations Symposium (CSF 2008), pp. 195–209 (2008)

34. Wikström, D.: Simplified Submission of Inputs to Protocols. In: Ostrovsky, R., De
Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 293–308. Springer,
Heidelberg (2008)

35. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.-J.: Electing a university
president using open-audit voting: Analysis of real-world use of Helios. In: Pro-
ceedings of the 2009 Conference on Electronic Voting Technology/Workshop on
Trustworthy Elections (2009)

36. International association for cryptologic research. Election page at
http://www.iacr.org/elections/2010

37. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy
Website with description and video at http://www.bensmyth.com/publications/
10-attacking-helios/ (Cryptology ePrint Archive, Report 2010/625)

38. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting proto-
cols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 389–404. Springer, Heidelberg (2010)

39. Unruh, D., Müller-Quade, J.: Universally Composable Incoercibility. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 411–428. Springer, Heidelberg (2010)

40. Küsters, R., Truderung, T., Vogt, A.: A Game-Based Definition of Coercion-
Resistance and its Applications. In: Proceedings of the 23rd IEEE Computer Se-
curity Foundations Symposium (CSF 2010), pp. 122–136 (2010)

41. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-Secure Fully Homo-
morphic Encryption, http://eprint.iacr.org/2010/560

http://www.dagstuhlaccord.org/
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
http://www.iacr.org/elections/2010
http://www.bensmyth.com/publications/10-attacking-helios/
http://www.bensmyth.com/publications/10-attacking-helios/
http://eprint.iacr.org/2010/560

354 D. Bernhard et al.

42. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy.
To appear in: Proceedings of the 24th Computer Security Foundations Symposium,
CSF 2011 (2011)

43. Küsters, R., Truderung, T., Vogt, A.: Verifiability, Privacy, and Coercion-
Resistance: New Insights from a Case Study. To appear at the 32nd Security and
Privacy Symposium, S&P 2011 (2011) (preprint)

44. Persiano, G.: About the Existence of Trapdoors in Cryptosystems. Work in
Progress, http://libeccio.dia.unisa.it/Papers/Trapdoor/

45. Helios voting. Website, http://heliosvoting.org
46. Helios Headquarters, Princeton University Undergraduate Student Government,

http://usg.princeton.edu/officers/elections-center/

helios-headquarters.html

http://libeccio.dia.unisa.it/Papers/Trapdoor/
http://heliosvoting.org
http://usg.princeton.edu/officers/elections-center/helios-headquarters.html
http://usg.princeton.edu/officers/elections-center/helios-headquarters.html

Remote Timing Attacks Are Still Practical�

Billy Bob Brumley and Nicola Tuveri

Aalto University School of Science, Finland
{bbrumley,ntuveri}@tcs.hut.fi

Abstract. For over two decades, timing attacks have been an active
area of research within applied cryptography. These attacks exploit cryp-
tosystem or protocol implementations that do not run in constant time.
When implementing an elliptic curve cryptosystem with a goal to pro-
vide side-channel resistance, the scalar multiplication routine is a critical
component. In such instances, one attractive method often suggested in
the literature is Montgomery’s ladder that performs a fixed sequence of
curve and field operations. This paper describes a timing attack vul-
nerability in OpenSSL’s ladder implementation for curves over binary
fields. We use this vulnerability to steal the private key of a TLS server
where the server authenticates with ECDSA signatures. Using the tim-
ing of the exchanged messages, the messages themselves, and the signa-
tures, we mount a lattice attack that recovers the private key. Finally, we
describe and implement an effective countermeasure.

Keywords: Side-channel attacks, timing attacks, elliptic curve cryptog-
raphy, lattice attacks.

1 Introduction

Side-channel attacks utilize information leaked during the execution of a pro-
tocol. These attacks differ from traditional cryptanalysis attacks since side-
channels are not part of the rigorous mathematical description of a cryptosystem:
they are introduced by implementation aspects and are not modeled as input
and/or output of the cryptosystem. A timing attack is a side-channel attack that
recovers key material by exploiting cryptosystem implementations that do not
run in constant time: their execution time measured by the attacker is somehow
state-dependent and hence key-dependent.

In light of these attacks, implementations of elliptic curve cryptosystems that
execute in environments where side-channels are a threat seek to fix the execution
time of various components in said implementation. Perhaps the most critical
is that of scalar multiplication that computes the k-fold sum of a point with

� The work described in this paper has been supported in part by Helsinki Doctoral
Programme in Computer Science - Advanced Computing and Intelligent Systems
(Hecse), Academy of Finland (project #122736), and the European Commission
through the ICT program under contracts ICT-2007-216499 CACE and ICT-2007-
216676 ECRYPT II.

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 355–371, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

356 B.B. Brumley and N. Tuveri

itself. Leaking any internal algorithm state during this computation can reveal
information about some of the inputs, some of which should critically remain
secret.

As a practical example of utilizing said key material, consider lattice attacks.
Lattices are mathematical objects that have many uses in cryptography from
cryptographic primitives to attacking schemes with partially known secret data.
They are generally useful for finding small solutions to underdetermined systems
of equations. Lattice methods are an effective endgame for many side-channel
attacks: combining public information with (private) partial key material derived
in the analysis phase, i.e., procured from the signal, to recover the complete
private key. Repeatedly leaking even a small amount of ephemeral key material
can allow these attacks to succeed at recovering long-term private keys.

Montgomery’s ladder is a scalar multiplication algorithm that has great po-
tential to resist side-channel analysis. The algorithm is very regular in the sense
that it always executes the same sequence of curve and field operations, regard-
less of the value that a key bit takes. Contrast this with, for example, a basic
right-to-left double-and-add scalar multiplication algorithm that only performs
point additions on non-zero key bits.

This paper describes a timing attack vulnerability in OpenSSL’s ladder im-
plementation for elliptic curves over binary fields. The timings are procured
by measuring the execution time of parts of the TLS handshake between an
attacker client and OpenSSL’s own TLS server where the server provides an
ECDSA signature on a number of exchanged messages. We utilize this timing
information to mount a lattice attack that exploits this vulnerability and recov-
ers the ECDSA private key given a small number of signatures along with said
timing data. We provide extensive experiment results that help characterize the
vulnerability. Lastly, we propose, implement, and evaluate a simple and efficient
countermeasure to the attack that proves effective.

The remainder of the paper is organized as follows. Section 2 reviews the
concept of timing attacks and selective related literature. Section 3 contains
background on elliptic curve cryptography and its implementation in OpenSSL.
Section 4 identifies said vulnerability and describes all stages of the proposed
attack. Section 5 contains the experiment and attack implementation results. We
close in Section 6 with a discussion on countermeasures and draw conclusions.

2 Timing Attacks

P. Kocher gives a number of remarkably simple timing attacks in his seminal
work [1]. Consider a right-to-left square-and-multiply algorithm for exponentia-
tion. If the exponent bit is a 1, the algorithm performs the assignments B := B ·A
then A := A2. Otherwise, a 0-bit and the algorithm performs only the assign-
ment A := A2. The attacker chooses operand A hence its value in each iteration
is known. To mount a timing attack, the attacker is tasked with finding input A
that distinguishes former cases from the latter. This could be done by choosing
A such that the former case incurs measurably increased execution time over

Remote Timing Attacks Are Still Practical 357

the entire exponentiation yet the latter case does not. Varying the number of
computer words in A could be one method to induce this behavior. Starting
with the least significant bit, the attacker repeats this process to recover the key
iteratively. In this manner, the attacker traces its way through the states of the
exponentiation algorithm using the timings as evidence. The author gives further
examples of software mechanisms that lead to timing vulnerabilities as well as
attack experiment results. The work mostly concerns public key cryptosystems
with a static key such as RSA and static Diffie-Hellman.

D. Brumley and D. Boneh [2,3] present ground breaking results, demonstrat-
ing that timing attacks apply to general software systems, defying contemporary
common belief. They mount a timing attack against OpenSSL’s implementation
of RSA decryption based on (counteracting but exploitable) time dependencies
introduced by the Montgomery reduction and the multiplication routines used
by the OpenSSL implementation. The key relevant fact about the Montgomery
reduction is that an extra reduction step may be required depending on the in-
put, while for the multi-precision integer multiplication routines (heavily used
in RSA computation) the relevant fact is that one of two algorithms with differ-
ent performances (Karatsuba and schoolbook) is used depending on the number
of words used to represent the two operands. Exploiting these two facts and
adapting the attack to work even when using the sliding window modular expo-
nentiation algorithm, the authors devise an attack that is capable of retrieving
the complete factorization of the key pair modulus.

The authors mount a real-world attack through a client that measures the
time an OpenSSL server takes to respond to RSA decryption queries during the
SSL handshake. The attack is effective between two processes running on the
same machine and two virtual machines on the same computer, in local network
environments and in case of lightly loaded servers. The authors also analyze
experiments over a WAN and a wireless link to evaluate the effects of noise on the
attacks. Finally, they devise three possible defenses and as a consequence several
cryptography libraries including OpenSSL feature RSA blinding by default as a
countermeasure. As a tangible result of their work:

– OpenSSL issued1 a security advisory;
– CVE assigned2 the name CAN-2003-0147 to the issue;
– CERT issued3 vulnerability note VU#997481.

3 Elliptic Curve Cryptography

In the mid 1980s, Miller [4] and Koblitz [5] independently proposed the use of
elliptic curves in cryptography. Elliptic curves are a popular choice for public key
cryptography because no sub-exponential time algorithm to solve discrete loga-
rithms is known in this setting for well-chosen parameters. This affords Elliptic

1 http://www.openssl.org/news/secadv_20030317.txt
2 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0147
3 http://www.kb.cert.org/vuls/id/997481

http://www.openssl.org/news/secadv_20030317.txt
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0147
http://www.kb.cert.org/vuls/id/997481

358 B.B. Brumley and N. Tuveri

Curve Cryptography (ECC) comparatively smaller keys and signatures. For the
purposes of this paper, it suffices to restrict to curves of the form

E(IF2m) : y2 + xy = x3 + a2x
2 + a6

where ai ∈ IF2m and a2 = 1 is common. NIST standardizes two types of curves
for each m ∈ {163, 233, 283, 409, 571}:

1. a6 is chosen pseudo-randomly: i.e., B-163.
2. a6 = 1 and a2 ∈ {0, 1}: Koblitz curves [6], i.e., K-163.

With Intel’s recent pclmulqdq carry-less multiplication instruction facilitating
multiplication in IF2[x], curves over binary fields are likely to become the stan-
dard choice for high-speed ECC implementations in software.

3.1 Digital Signatures

We use the following notation for the ECDSA. The parameters include a hash
function h and point G ∈ E that generates a subgroup of prime order n. In fact
#E = cn where c ∈ {2, 4} for the standard curves considered in this paper. A
common current choice for these would be roughly a 160-bit n, i.e., computations
on B-163 or K-163. Parties select a private key d uniformly from 0 < d < n and
publish the corresponding public key D = [d]G. To sign a message m, parties
select nonce k uniformly from 0 < k < n then compute the signature (r, s) by

r = ([k]G)x mod n (1)

s = (h(m) + dr)k−1 mod n. (2)

This work omits the details of signature verification as they are not particularly
relevant here. The performance bottleneck for generating these signatures is
the scalar multiplication in (1). Extensive literature exists on speeding up said
operation: a description of one common method follows.

3.2 Scalar Multiplication

The speed of an ECC implementation is essentially governed by the scalar mul-
tiplication operation that, for an integer k and point P ∈ E, computes the point
[k]P . There are many methods to carry out this computation, but we focus
on the Montgomery power ladder, originally proposed for speeding up integer
factorization using the elliptic curve method [7, Sect. 10.3.1].

López and Dahab improve the algorithm efficiency for curves over binary
fields [8]. Fig. 1 illustrates the main parts of the algorithm and is an excerpt
from the implementation in OpenSSL 0.9.8o. The nested for loop is where the
majority of the work takes place and performs one point doubling and one point
addition to process one bit of k in each iteration; assume ki = 1. The point
addition formula, i.e. implemented in the gf2m_Madd function called in Fig. 1, is

(Z0, X0) = ((X0 · Z1 + X1 · Z0)2, x · Z0 + (X0 · Z1) · (X1 · Z0))

Remote Timing Attacks Are Still Practical 359

/* find top most bit and go one past it */
i = scalar ->top - 1; j = BN_BITS2 - 1;
mask = BN_TBIT ;
while (!(scalar ->d[i] & mask)) { mask >>= 1; j--; }
mask >>= 1; j--;
/* if top most bit was at word break , go to next word */
if (!mask)

{
i--; j = BN_BITS2 - 1;
mask = BN_TBIT ;
}

for (; i >= 0; i--)
{
for (; j >= 0; j--)

{
if (scalar ->d[i] & mask)

{
if (!gf2m_Madd(group , &point ->X, x1, z1, x2, z2, ctx)) goto err;
if (!gf2m_Mdouble(group , x2, z2, ctx)) goto err;
}

else
{
if (!gf2m_Madd(group , &point ->X, x2, z2, x1, z1, ctx)) goto err;
if (!gf2m_Mdouble(group , x1, z1, ctx)) goto err;
}

mask >>= 1;
}

j = BN_BITS2 - 1;
mask = BN_TBIT ;
}

Fig. 1. Montgomery’s ladder scalar multiplication for curves over binary fields as im-
plemented in OpenSSL 0.9.8o at crypto/ec/ec2 mult.c.

and point doubling, i.e. implemented in the gf2m_Mdouble function called in
Fig. 1, is

(Z1, X1) = ((X1 · Z1)2, X4
1 + a6 · Z4

1).

An intriguing feature is that when ki = 0, the same steps are performed: only
the operands are transposed. That is, replacing Z1 with Z0 and X1 with X0

describes the above formulae for a zero bit. This means the cost per bit is fixed
at an impressive six field multiplications, one involving a constant. For curves
over binary fields, OpenSSL uses this algorithm as the default for any single
scalar multiplication, e.g., in signature generation, and in fact iterates it twice
for the sum of two scalar multiplications, e.g., in signature verification.

The ladder applied to ECC has numerous advantages: fast computation, no
large memory overhead, and a fixed sequence of curve operations. This last
feature is particularly attractive as a side-channel countermeasure. The following
quote concisely captures this [9, p. 103].

Another advantage is that the same operations are performed in every
iteration of the main loop, thereby potentially increasing resistance to
timing attacks and power analysis attacks.

360 B.B. Brumley and N. Tuveri

While this feature cannot be denied, the quoted authors duly qualify the state-
ment with potentially: the side-channel properties are those of the algorithm
implementation, not the algorithm itself. It should be noted that the ladder was
originally proposed only for efficient computation. Its potential to resist side-
channel analysis seems to be an unintentional consequence.

4 A Timing Attack

The ladder implementation in Fig. 1 introduces a timing attack vulnerability.
Denote the time required to process one scalar bit and compute one ladder step
as t: that is, one iteration of the nested for loop that performs the double and
add steps. Said time is (reasonably) independent of, for example, any given bit ki

or the Hamming weight of k. On the other hand, consider the preceding while
loop: its purpose is to find the index of the most significant set bit of k and
optimize the number of iterations of the nested for loop. As a result, there are
exactly �lg(k)�−1 ladder step executions and the time required for the algorithm
to execute is precisely t(�lg(k)�−1). This shows that there is a direct correlation
between the time to compute a scalar multiplication and the logarithm of k.

This section describes an attack exploiting this vulnerability. The attack con-
sists of two phases.

1. The attacker collects a certain amount of signatures and exploits the de-
scribed time dependency to filter a smaller set of signatures. The signatures
in the filtered set will have a high probability of being generated using secret
nonces (k) having a leading zero bits sequence whose length is greater or
equal to a fixed threshold.

2. The attacker mounts a lattice attack using the set of signatures filtered in
the collection phase to recover the secret key used to generate the ECDSA
signatures.

For this attack to succeed, we assume to be able to collect a sufficient amount of
ECDSA signatures made under the same ECDSA key, and to be able to measure,
with reasonably good accuracy, the wall clock execution time of each collected
sign operation. For concreteness we focus on the NIST curve B-163, but the
concepts can be more generally applied for any curve over a binary field, and
furthermore to any scalar multiplication implementation with a main loop that
has a constant iteration time but not a constant number of iterations.

4.1 Overview of the Collection Phase

To verify and evaluate the actual exploitability of the described time dependency
for mounting a practical side-channel attack, we implemented two different ver-
sions of the collection phase that share the same basic structure and differ only
for the sequence of operations used to perform a signature:

Remote Timing Attacks Are Still Practical 361

– a “local” attack, where the collecting process directly uses the OpenSSL
ECDSA routines, accurately measuring the time required by each sign op-
eration; this version models the collection phase in ideal conditions, where
noise caused by external sources is reduced to the minimum;

– a “remote” attack, where the collecting process uses the OpenSSL library
to perform TLS handshakes using the ECDHE ECDSA suite; this version
models a real-world use case for this vulnerability and allows to evaluate
how practical the attack is over different network scenarios.

In general, regardless of the internal implementation, the sign routines of both
versions simply return a signature, a measure of the time that was required
to generate it, and the digest value fed to the sign algorithm. The collecting
process repeatedly invokes the sign routine and stores the results in memory
using a fixed-length binary tree heap data structure, where the weight of each
element is represented by the measured time and the root element contains the
maximum, using the following algorithm:

Heap h=Heap.new(s); //fixed size=s
from 1 to t:
Result res=sign_rtn(dgst, privk);
if (!h.is_full()):
h.insert(res); //O(log n) time

else if (res.t < h.root().t):
h.root()<-res; //O(1) time
h.percolate_down();//O(log n) time

else:
; //discard res

With this algorithm we are able to store the smallest (in terms of time) s
results using a fixed amount of memory and less than O(t(1+ lg(s))) time in the
worst case; the total number of signatures collected (t) and the size of the filtered
set (s) are the two parameters that characterize the collection process. As we
expect the fastest signatures to be related to nonces with a higher number of
leading zeros, we can use the ratio t/s to filter those signatures associated with
leading zero bits sequences longer than a certain threshold.

Statistically for a random 1 ≤ k < n with overwhelming probability the most
significant bit will be set to zero since n for B-163 (and indeed many curves over
binary fields) is only negligibly over a power of two. For the next leading bits the
probability of having a sequence of zero bits of length j is equal to 2−j. Hence if
the total amount of collected signatures t is large enough, the set composed of
the quickest s results should contain signatures related to nonces with leading
zero bits sequences of length longer than lg(t/s), that are then fed to the lattice
attack phase.

4.2 Collection Phase in Ideal Conditions

This version of the collecting process was implemented to verify that the de-
scribed time dependency is actually exploitable for mounting a side-channel

362 B.B. Brumley and N. Tuveri

attack. We directly invoked the OpenSSL ECDSA routines from within the
collecting process to generate ECDSA signatures of random data, accurately
measuring the time required by each sign operation.

The high resolution timings were taken using the rdtsc instruction provided
in recent Pentium-compatible processors. As the host CPU used for testing was
dual core and supported frequency scaling, to ensure accuracy of the measure-
ments we disabled frequency scaling and forced the execution of the collecting
process on just one core.

As the time needed to generate a signature does not depend on the value of
the message digest, for simplicity and to speed up the experiments we chose to
generate multiple signatures on the same message, precalculating the message
digest just once to avoid generating a new random message for each signature.

The implemented sign routine takes as input the digest of the message to be
signed and the private key, and returns the computed signature, the time required
to compute the ECDSA signature and the number of leading zero bits in the
nonce. The latter value is obviously not used to mount the actual attack, but
used only to verify the dependency between the execution time of the signature
computation and the number of leading zero bits in the nonce.

4.3 Collection Phase over TLS

This implementation of the collecting process was developed to show a rele-
vant real-world use case for this vulnerability and to evaluate its practicality in
different network scenarios.

Here the signatures collected are those generated during the TLS handshake
using the ECDHE ECDSA cipher suite illustrated by Fig. 2. We briefly high-
light the relevant features of the messages exchanged during the portion of the
handshake targeted by this attack, referring to RFC 4492 [10] for the normative
and detailed technical description of the full protocol handshake:

– The Client initiates the handshake sending a ClientHello message to the
Server; this is a regular TLS ClientHello message, proposing the ECDHE -
ECDSA cipher suite and intended to inform the Server about the supported
curves and point formats. This message contains a random nonce generated
by the Client.

– The Server replies with a ServerHello message, selecting the proposed EC-
DHE ECDSA cipher suite and using an extension to enumerate the point
formats it is able to parse. This message contains a random nonce generated
by the Server.

– The Server sends a Certificate message, conveying an ECDSA-signed certifi-
cate containing the ECDSA-capable public key of the Server, and possibly
a certificate chain.

– The Server sends a ServerKeyExchange message, conveying the ephemeral
ECDH public key of the Server (and the relative elliptic curve domain pa-
rameters) to the Client. This message is divided in two halves, the first
one containing the Server ECDH parameters (namely the EC domain pa-
rameters and the ephemeral ECDH public key, consisting of an EC point)

Remote Timing Attacks Are Still Practical 363

Fig. 2. TLS Handshake using the ECDHE ECDSA suite described in RFC 4492

and the latter consisting of a digitally signed digest of the exchanged pa-
rameters. The digest is actually computed as SHA(ClientHello.random +
ServerHello.random + ServerKeyExchange.params), and the signature is an
ECDSA signature generated using the Server’s private key associated with
the certificate conveyed in the previous message.

– The handshake then continues, but other messages do not influence the im-
plemented attack.

This version of the collecting process uses the OpenSSL library to perform an
ECDHE ECDSA TLS handshake every time a signature is requested. The sign
routine creates a new TLS socket to the targeted IP address, configured to
negotiate only connections using ECDHE ECDSA and setting a message callback
function that is used to observe each TLS protocol message. After creating the
TLS socket the sign routine simply performs the TLS handshake and then closes
the TLS connection. During the handshake the message callback inspects each
TLS protocol message, starting a high resolution timer when the ClientHello
message is sent and then stopping it upon receiving the ServerKeyExchange
message, which is then parsed to compute the digest fed to the sign algorithm
and to retrieve the generated signature.

In designing this attack, we assumed to be unable to directly measure the ac-
tual execution time of the server-side signature generation, hence we are forced
to use the time elapsed between the ClientHello message and the ServerKeyEx-
change message as an approximation. To assess the quality of this approximation,
the collecting process takes the private key as an optional argument. If provided,

364 B.B. Brumley and N. Tuveri

the message callback will also extrapolate the nonce used internally by the server
to generate the signature and will report the number of leading zero bits in it.

Lastly, at first glance it seems possible that the Server’s computation of its
ECDHE key also influences the measured time. When creating an SSL context
within an application, the default behavior of OpenSSL is to generate a key
pair and buffer it for use before any handshake begins. This is done to improve
efficiency. OpenSSL’s internal s_server used in these experiments behaves ac-
cordingly, so in practice that step of the handshake does not affect the measured
time since only one scalar multiplication takes place server-side during these
handshake steps, namely that corresponding to the ECDSA signature. Appli-
cations can modify this behavior by passing options to the SSL context when
creating it. This is a moot point when attacking ECDH ECDSA modes.

4.4 The Lattice Attack

Using lattice methods, Howgrave-Graham and Smart show how to recover a DSA
key from a number of signatures under the same key where parts of the nonces
are known [11]. For completeness, a discussion on implementing the lattice attack
follows. Observing j signatures, rearranging (2) yields j equations of the form

mi − siki + dri ≡ 0 (mod n) (3)

for 1 ≤ i ≤ j where here mi are message digests to simplify notation. Using one
such (3) to eliminating the private key yields j − 1 equations of the form

ki + Aikj + Bi ≡ 0 (mod n) (4)

for 1 ≤ i < j and some 0 ≤ Ai, Bi < n. From here, the equations in [11] simplify
greatly since all the known bits are in the most significant positions and are in
fact all zeros: (4) should be considered the same as Equation 3 of [11]. That is,
express the nonces as ki = z′i +2λizi +2μiz′′i in their notation but all λi are zero
setting all z′i to zero and from the timings deducing all μi = 156 (for example)
setting all z′′i to zero, leaving zi as the only unknown on the right where in fact
ki = zi. This is nothing more than a rather laborious way of expressing the simple
fact that we know lg(ki) falls below a set threshold. Consider a j-dimensional
lattice with basis consisting of rows of the following matrix.⎛

⎜⎜⎜⎝
−1 A1 A2 . . . Aj−1

0 n 0 . . . 0
...

. . .
...

0 n

⎞
⎟⎟⎟⎠

From here, the implementation uses the Sage software system to produce a re-
duced basis for this lattice using the LLL algorithm [12], orthogonalize this basis
by the Gram-Schmidt process, and approximate the closest vector problem given
input vector (0, B1, B2, . . . , Bj−1) using Babai rounding [13]. This hopefully finds
the desired solutions to the unknown portions of the ki.

Remote Timing Attacks Are Still Practical 365

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 30 40 50 60 70 80

S
u
c
c
e
s
s
 p

ro
b
a
b
ili

ty

Signature count

bound: 156
bound: 157

Fig. 3. Selective lattice attack parameters and observed success probabilities

Figure 3 contains experiment results of running the lattice attack with dif-
ferent parameters based on B-163, assuming upper bounds on �lg(ki)� of μi ∈
{156, 157}. The x-axis is the signature count (j) and the y-axis the observed
lattice attack success probability. It shows that as the amount of known key ma-
terial decreases (μi increases), this mandates an increase in the lattice dimension
j (the number of such required signatures j increases), and the approximations
are less likely to hold. To effectively apply this as part of the timing attack, on
one hand the lower we set μi the less likely it is that a ki will satisfy the bound
and more signatures must be collected. On the other hand, collecting more sig-
natures increases the probability of error in the measurements, i.e., incorrectly
inferring a given signature with a low timing has a ki that satisfies the bound
and the lattice attack is more likely to fail. An interesting property of this par-
ticular lattice attack is that in fact μi does not feature in the equations used to
populate the basis matrix. In practice, this means that even if some ki does not
satisfy the bound there is still a chance the attack will succeed.

5 Results

5.1 Collection Phase Parameters

Using the first implementation of the collecting process, we were able to empiri-
cally verify the dependency between the length of the leading zero bits sequence
in the nonce and the execution time of the signature operation. Figure 4 com-
pares the distributions of the execution time required by signatures generated

366 B.B. Brumley and N. Tuveri

 0

 500

 1000

 1500

 2000

 2500
F

re
qu

en
cy

Time

<= 3
4
5
6
7
8
9

10
>= 11

Fig. 4. Dependency between number of leading zero bits and wall clock execution time
of the signature operation

using nonces with different leading zero bit sequence lengths. In the lattice at-
tack notation, seven leading zero bits corresponds to μi = 156 and six leading
zero bits μi = 157.

We then evaluated the effectiveness of the method used for filtering the signa-
tures related to nonces with longer leading zero bit sequences by using different
values for the collection phase parameters. The lattice attack phase, which takes
as input the output of the collecting process, determines the size of the filtered
set and the minimum length of the leading zero bit sequence of the nonce associ-
ated with the signature. Fixing the filtered set size to 64 signatures and varying
the total number of signatures collected by the collecting process, we evaluated
the number of “false positives” over multiple iterations, i.e., those signatures in
the filtered set generated using nonces whose leading zero bit sequence length is
below the threshold determined by the tuning of the lattice attack phase. Table 1
summarizes the obtained results and shows that the effectiveness of the filtering
method may be adjusted by varying the t/s ratio.

The number of “false positives” in the filtered set is an important parameter
of the attack. The lattice attack phase has a higher success probability if all the
signatures used to populate the matrix satisfy the constraint on the number of
leading zero bits. But as mentioned in Sec. 4, even in the presence of limited
“false positives” the lattice attack still succeeds with a small probability.

Consulting Fig. 3, setting the threshold on the minimum number of leading
zero bits to 7 we only needed 43 valid signatures to successfully perform the
lattice attack with high probability. Näıvely, this allows up to 21 “false positives”

Remote Timing Attacks Are Still Practical 367

Table 1. Observed results of the local attack

Collected signatures count (t) 4096 8192 16384
Filtered set size (s) 64 64 64
Average “false positives” count 17.92 1.48 0.05

in the filtered set obtained from the collecting process using the lattice attack
in a more fault-tolerant way:

Signatures[] filtered_set; // <-- collection_phase()
EC_point known_pubkey; // <-- server certificate

while(True)
{
tentative_privkey=lattice_attack(filtered_set[0:43]);
tentative_pubkey=generate_pub_key(tentative_priv_key);
if (tentative_pub_key == known_pubkey)
break; // successfully retrieved the priv key

randomly_shuffle(filtered_set);
}

What follows is a rough estimate for the number of required lattice attack
iterations in the presence of “false positives”. The number of iterations, and thus
the computation time, needed to correctly retrieve the private key is inversely
proportional to the probability of selecting a subset of the filtered set without
“false positives”:

Pr[subset without “false positives”] =

(
64−e
43

)(
64
43

)
where e is the number of “false positives” in the filtered set, 43 is the size of the
subsets, 64 is the size of the filtered set, the numerator is the number of possible
subsets without “false positives” in the filtered set, and the denominator is the
number of possible subsets in the filtered set. Figure 5 shows how this probability
varies with e.

5.2 Remote Attack

We used the described “remote” implementation of the collecting process to
attack TLS servers over two different network scenarios. As a reference server
we used the OpenSSL s_server configured to emulate a TLS-aware web server
using an ECDSA-capable private key. In theory, any server using the OpenSSL
ECDSA implementation to support ECDHE ECDSA TLS can be vulnerable.

The first scenario we considered consists of a collecting process running on
the same host as the server process. The messages are exchanged over the OS
TCP/IP stack using the localhost address on the loopback interface. In this sce-
nario we successfully retrieved the server private key, even repeating the tests

368 B.B. Brumley and N. Tuveri

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

P
r

(s
ub

se
t w

ith
ou

t ’
fa

ls
e

po
si

tiv
es

’)

Number of ’false positives’ in the filtered set. (e)

Fig. 5. Probability of selecting a subset without “false positives” in a filtered set with
e “false positives”

using different private keys, randomly generated using OpenSSL itself, and tar-
geting both the OpenSSL 0.9.8o and 1.0.0a versions of the reference server.

Table 2 shows that, even if unable to directly measure the execution time
of the signature computation, using the measure of the time elapsed between
the ClientHello and the ServerKeyExchange messages as an approximation and
tuning the total number of collected signatures, the attacker is able to filter a
set of signatures with a low average of “false positives”.

We also note that in the “remote” attack, only the collection phase is per-
formed online, as the lattice attack phase does not require the attacker to ex-
change messages with the attacked server, and that even collecting a total of
16384 signatures is not particularly time consuming, requiring just a few min-
utes.

Once verified that the attack is practical when run over the loopback interface
on the same host of the attacked server, we performed the same attack in a
slightly more complex network scenario: the attacker collects the signatures from
a host connected to the same network switch of the server. The tests were run
between two hosts residing in the same room in time frames with reasonably low
network loads, trying to minimize the noise introduced by external causes in the
time measures.

From Table 3 we see that the time dependency is still observable. The average
rates of “false positives” in the filtered sets increases, but from Fig. 5 this is still
easily within reach. The lattice attack can take hours to run in this case, but
again the work is offline and can be distributed. In some cases we achieved success

Remote Timing Attacks Are Still Practical 369

Table 2. Observed results of the remote attack over the loopback interface

Collected signatures count (t) 4096 8192 16384
Filtered set size (s) 64 64 64
Average “false positives” count 17.06 4.01 0.90

Table 3. Observed results of the remote attack over a switched network segment

Collected signatures count (t) 4096 8192 16384
Filtered set size (s) 64 64 64
Average “false positives” count 19.40 8.96 11.81

in only a few minutes. We also note that in this particular network environment
we cannot arbitrarily decrease the “false positives” rate by increasing the pa-
rameter t, as already with t = 16384 the average number of “false positives”
starts to increase.

This demonstrates the feasibility of the attack in a remote scenario. Natu-
rally, individual results will vary due to different network characteristics. The
attack success rate decreases dramatically with the increase of “false positives”.
Regardless, a vulnerability exploitable to perform a successful attack from the
same host where the targeted server is run poses a threat even for remote at-
tacks. For example, in virtual hosting or cloud computing scenarios an attacker
may be able to obtain access to run code on the same physical machine hosting
the target server, as suggested by [14].

6 Conclusion

This paper identifies a timing attack vulnerability in OpenSSL’s implementation
of Montgomery’s ladder for scalar multiplication of points on elliptic curves over
binary fields. This is used to mount a full key recovery attack against a TLS
server authenticating with ECDSA signatures. In response to this work, CERT
issued4 vulnerability note VU#536044. Ironically, in the end it is the regular
execution of the ladder that causes this side-channel vulnerability. For example,
a dependency on the weight of k (that might leak from, say, a simple binary
scalar multiplication method) seems much more difficult to exploit than that of
the length of k that led to full key recovery here.

The work of D. Brumley and D. Boneh [2,3] and this work are related in
that both exploit implementation features that cause variable time execution,
and that both demonstrate full key recovery in both local and remote scenar-
ios. However, the fundamental difference with the former is that the attacker
can leverage well-established statistical techniques and repeat measurements to
compensate for noise because the secret inputs are not changing, i.e., the RSA
exponent. Contrasting with the latter, the secret inputs are always distinct, i.e.,

4 http://www.kb.cert.org/vuls/id/536044

http://www.kb.cert.org/vuls/id/536044

370 B.B. Brumley and N. Tuveri

the nonces in ECDSA. The former is a stronger attack than the latter in this
respect.

Lastly, a brief discussion on countermeasures follows. One way to prevent this
attack is by computing [k]G using the equivalent value [k̂]G where

k̂ =

{
k + 2n if �lg(k + n)� = �lg n�,
k + n otherwise.

With #〈G〉 = n then [k]G = [k̂]G holds and the signature remains valid. This
essentially changes �lg(k̂)� to a fixed value. We implemented this approach as
a patch to OpenSSL and experiment results show that applying said padding
thwarts this particular attack and does not entail any performance overhead to
speak of. Note that the scope of this paper does not include microarchitecture
attacks for which additional specific countermeasures are needed.

This work further stresses the importance of constant time implementations
and rigorous code auditing, adding yet another entry to an already long list of
cautionary tales surrounding cryptography engineering.

References

1. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

2. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of
the 12th USENIX Security Symposium (2003)

3. Brumley, D., Boneh, D.: Remote timing attacks are practical. Computer Net-
works 48, 701–716 (2005)

4. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

5. Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 203–209 (1987)
6. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.

(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)
7. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.

Math. Comp. 48, 243–264 (1987)
8. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF (2m) without

precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

9. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Heidelberg (2004)

10. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Moeller, B.: Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). RFC 4492
(Informational) (2006) (updated by RFC 5246)

11. Howgrave-Graham, N., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Cryptography 23, 283–290 (2001)

12. Lenstra, A.K., Lenstra, J. H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

Remote Timing Attacks Are Still Practical 371

13. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6, 1–13 (1986)

14. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of the
16th ACM Conference on Computer and Communications Security, pp. 199–212.
ACM, New York (2009)

A Countermeasure as OpenSSL Source Code Patch

--- openssl-0.9.8o-orig/crypto/ecdsa/ecs_ossl.c 2009-12-01 19:32:16.000000000 +0200
+++ openssl-0.9.8o-patch/crypto/ecdsa/ecs_ossl.c 2011-06-08 11:23:41.188104470 +0300
@@ -144,6 +144,13 @@

}
while (BN_is_zero(k));

+ /* We do not want timing information to leak the length of k,
+ * so we compute G*k using an equivalent scalar of fixed
+ * bit-length. */
+ if (!BN_add(k, k, order)) goto err;
+ if (BN_num_bits(k) <= BN_num_bits(order))
+ if (!BN_add(k, k, order)) goto err;
+

/* compute r the x-coordinate of generator * k */
if (!EC_POINT_mul(group, tmp_point, k, NULL, NULL, ctx))
{

Multi-run Security

Arnar Birgisson and Andrei Sabelfeld

Chalmers University of Technology, 412 96 Gothenburg, Sweden

Abstract. This paper explores information-flow control for batch-job programs
that are allowed to be re-run with new input provided by the attacker. We ar-
gue that directly adapting two major security definitions for batch-job programs,
termination-sensitive and termination-insensitive noninterference, to multi-run
execution would result in extremes. While the former readily scales up to multiple
runs, its enforcement is typically over-restrictive. The latter suffers from insecu-
rity: secrets can be leaked in their entirety by multiple runs of programs that are
secure according to batch-job termination-insensitive noninterference. Seeking to
avoid the extremes, we present a framework for specifying and enforcing multi-
run security in an imperative language. The policy framework is based on track-
ing the attacker’s knowledge about secrets obtained by multiple program runs.
Inspired by previous work on robustness, the key ingredient of our type-based
enforcement for multi-run security is preventing the dangerous combination of
attacker-controlled data and secret data from affecting program termination.

1 Introduction

Imagine a scenario of a web service with a medical database at the back-end. Ana-
lysts are allowed to access the database through a web interface. The goal is to allow
deriving interesting statistics (say, by age groups or by larger residential areas) but dis-
allow leaking sensitive information about individuals. In this scenario, the server-side
program that accommodates queries has two inputs: one is the database itself, which
contains sensitive data and which is not controlled by the attacker, and the other one
is a public query that originates from a possibly malicious analyst. For the program to
function, it must have access to the entire database. At the same time, it must not reveal
sensitive data about individual entries in the database. Hence, we are interested in se-
curing information flow from secret inputs to public outputs. This problem arises both
when the code is written by non-malicious developers, in which case we want prevent
accidental leaks, and when the code is supplied by untrusted third parties, when we
want to prevent malicious leaks. Settling for the worst case, we do not appeal to trust
assumptions.

Language-based information-flow security [31] is focused on providing strong secu-
rity guarantees for underlying programs. In the context of confidentiality, it is intended
to prevent information flow from secret inputs to public outputs. The dominating base-
line security policy is noninterference [14, 19] that requires that a variation of secret
input does not result in a variation of public outputs.

However, the state of the art in the area consists of two extremes. One extreme is
batch-job program models, where programs are run only once and where the initial

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 372–391, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Multi-run Security 373

memory is the only input and the final memory is the only output. A large body of re-
search on language-based information-flow security is limited to batch-job models. In a
language-based setting, noninterference has been largely considered for batch-job mod-
els [40, 31]. Major efforts on information flow in functional [28], object-oriented [43,
8, 20], concurrent [37, 42, 30], and other languages [31] assume a batch-job model.

While securing batch-job programs without being over-restrictive is feasible, the as-
sumption that programs are run only once is often too strong. The other extreme is fully
interactive programs with channels for input/output communication. While this model
is more powerful, securing interactive programs is notoriously hard: intermediate ob-
servations can be exploited to leak information [2].

This paper explores middle ground between the extremes: batch-job programs that
are allowed to be re-run with new input provided by the attacker. We believe this model
captures many practical scenarios such as the medical database above. Our attacker
model allows issuing queries to the database as described by a batch-job program whose
secret input is the database and public input is the attacker-controlled part of the query.
The goal is to prevent the attacker from learning sensitive information by re-running the
program with modified public parameters and observing the public outcome.

Leaks via termination behavior of programs turn out to be the bottleneck for gen-
eralizing batch-job style security to multiple runs. We argue that directly adapting two
major security definitions for batch-job programs, termination-sensitive and termination-
insensitive noninterference, to multi-run execution would result in further extremes.
The former, termination-sensitive noninterference [39, 31], readily scales up to multiple
runs. This definition demands that the public outcome and termination behavior of the
underlying program do not depend on secret data. No run leaks any information about
secrets, and so we can safely re-run programs. Thus, batch-job termination-sensitive
security implies multiple-run security. However, enforcing termination-sensitive non-
interference withing being overly restrictive is far from trivial. Typically, enforcement
mechanisms (e.g., [39]) place Draconian restrictions whenever abnormal termination is
possible in sensitive context. For example, no sensitive data is allowed in loop guards.

The latter, termination-insensitive noninterference [40, 31], where secrets are al-
lowed to affect termination behavior, suffers from insecurities in the multi-run case.
Let us illustrate the problem with examples. The program

while h do skip (1)

where h contains a secret, is deemed secure. Termination-insensitive noninterference
quantifies over all possible input memories that agree on the public part and makes
sure that terminating runs agree on the public part of the final memories. The termina-
tion behavior is not considered to have a significant effect, even though the termination
depends on secret data. Although the condition quantifies over possible runs, its guar-
antees are only about differences between two single runs. The implicit assumption is
that the program is run only once. A common argument is that if a batch-job program
that satisfies termination-insensitive noninterference is run only once, then it leaks at
most one bit [2].

With the same rationale, flavors of this program are also accepted by mainstream
information-flow security tools Jif [26], FlowCaml [35], and the SPARK Examiner [9,
12] for Java, Caml, and Ada, respectively.

374 A. Birgisson and A. Sabelfeld

Similarly, the program

while h = l do skip (2)

where h contains a secret and l is an attacker-controlled public variable, is also consid-
ered secure.

However, the single-run assumption is in many cases inadequate. As in the database
scenario above, attackers are often capable of re-running the program. Further, in a
smartcard setting, the attacker may try to leak the secret key by multiple attempts of
feeding public inputs and observe the properties of public outputs. A web attacker can
initiate multiple runs of a server-side computation that involves secrets by providing a
request with public input. Similarly, the attacker can initiate multi-run computation on
the client side of an honest user by providing scripts that keep re-running after recover-
ing from divergence (rather straightforward to accomplish with the modern browsers’
interpretation of JavaScript). A recent exploit of ASP.NET analyzes the difference be-
tween error messages of multiple requests to collect information for a padding oracle
attack [29].

This ability does not make a difference for program 1 (given the value of the secret
is unchanged between the runs), but it is fatal for program 2: the attacker can learn
the entire secret by brute-force guessing the value of h with different choices for l.
Multi-run leaks are particularly devastating for single-run secure programs like:

while h&&l do skip (3)

where && is the bitwise “and” operation. By walking through the bits of h in subse-
quent runs, the attacker can learn the entire value in linear time (of the bit-size of the
secret) bit-by-bit. Thus, secrets can be leaked in their entirety by multiple runs of pro-
grams that are single-run secure. A quick experiment with a Jif-certified program that
contains a termination leak of this kind shows that it is straightforward to leak one se-
cret bit per second even on a modest modern desktop machine (tested with Jif 3.0). This
implies that a credit card number can be leaked within a minute. The Jif program and a
simple Python script that exploits its termination leak are shown in Appendix B.

Seeking to avoid the extremes, we present a framework for specifying and enforcing
multi-run security. For specification, we are inspired on knowledge-based attacker mod-
els [17, 4]. The policy framework is based on tracking the attacker’s knowledge about
secrets obtained by multiple program runs. The multi-run setting for such a framework
is novel. The framework supports possibilities for intended information release (illus-
trated by examples below). Further, it connects to quantitative security, where we reason
about how many bits of information can be leaked by multiple program runs.

For enforcement, we are inspired by previous work on robustness [41, 25, 3]. The
key ingredient of our type-based enforcement for multi-run security is preventing the
dangerous combination of attacker-controlled data and secret data from affecting pro-
gram termination. It is particularly gratifying that we can draw on the type system for
robustness for enforcing a policy that it has not been designed for. This connection
leads us to clean enforcement, providing a simple solution to a nontrivial problem of
multi-run security.

Multi-run Security 375

For information-flow tracking, we deploy data labels that combine confidentiality
and integrity information. Confidentiality distinguishes secret information from pub-
lic by high and low confidentiality labels. Integrity distinguishes untrusted information
from trusted by low and high integrity labels. For confidentiality the use of high in-
formation is more restrictive: secrets may not leak to public; and dually for integrity
use of low is restricted: untrusted data may not affect trusted. Typically, lattices [16]
are used to reason about more complex structures than low/high for confidentiality and
integrity. Of particular interest of us are product lattices that combine confidentiality
and integrity labels. In the example of a product lattice that combines two low/high
lattices, the top element is high confidentiality and low integrity. Data at this level is
most restrictive to use. The bottom element is low confidentiality and high integrity,
which may arbitrarily affect data at other levels. Integrity plays a key role for the en-
forcement: the enforcement ensures that combinations of high-confidentiality (secret)
and low-integrity (attacked-controlled) data do not affect the termination behavior.

As foreshadowed above, we extend our approach to specify and track intentional in-
formation release (or declassification). The extended enforcement guarantees that the
program does not release more information than described by escape-hatch [32] ex-
pressions. The purpose of escape hatches is to describe what is allowed to be released.
The job of the underlying security condition is to ensure than nothing else about secret
data may be learned by the attacker. For example, program

l := h%4 (4)

releases two least-significant bits about the secret variable h. When this is desired, it
is expressed in our framework by the escape-hatch expression h%4. The type system
accommodates intentional release by labeling escape-hatch expressions as low confi-
dentiality and high integrity. Hence, the program above is accepted while, for example,
program

l := h%6 (5)

is rejected because the type system detects a mismatch with the escape hatch h%4.
Next, assuming the same escape-hatch policy h%4, consider the following program:

while h%4 + l do skip (6)

This program may also release two least-significant bits about h. Indeed, the attacker
may experiment by supplying inputs −2, −1, and 0 for l and observing whether the
program diverges. Our type system rightfully accepts this program because the loop
guard h%4 + l has low integrity and low confidentiality, inheriting its restrictions from
variable l (recall that h%4 is labeled as low confidentiality and high integrity, which is
least restrictive).

A final example illustrates how intended declassification is distinguished from unin-
tended. Assuming the escape-hatch policy h, consider the program

h := h′; l := h (7)

that attempts to leak the initial value of h′ by laundering its value through the
declassified (syntactic) variable h. This program is rejected because the enforcement
mechanism detects that a variable involved in declassification has been modified.

376 A. Birgisson and A. Sabelfeld

2 Security Condition

This section presents some key definitions, in particular the definition of when we con-
sider programs multi-run secure. Command c represents a deterministic program in the
rest of the paper. As before, h and l represent secret (high) and public (low) variables.
Without loss of generality, we treat a program as a function of two inputs (secret and
public) coming from some finite domain D, to the set D ∪ {⊥}. The result c(h, l) ex-
presses the observed low output of the program, with the special value ⊥ representing
nontermination.

Definition 1 (Single-run knowledge). Let c be a program taking two inputs, a fixed
secret one vh and a (non-fixed) public one vl each from some domain D, and yielding
a public output c(vh, vl) ∈ D ∪ {⊥}.

An attacker (with full knowledge of c itself) is allowed to execute c, providing the
public input vl and observing only the public output c(vh, vl). The attacker’s knowledge
of the (fixed) secret input is then represented by the set of values that would lead to the
observed outcome. This set is written as:

kvh
(c, vl) = { x ∈ D | c(x, vl) = c(vh, vl) }

Programs with more than two inputs are modeled by collecting all secret and public
inputs into two separate tuples, and similar for programs which have more than one
output.

Note that by allowing c(vh, vl) to take the special value ⊥ (meaning that c has an
infinite derivation for those inputs), we make nontermination observable. This is im-
portant because in reality, nontermination can for example be (approximately) inferred
from programs that time out.

Assume an attacker has some previous knowledge of h, represented by the set K0 ⊆
D. Then the attacker is potentially able to increase that knowledge (which corresponds
to shrinking the set of possibilities) by running the program. The attacker’s new knowl-
edge will be the single-run knowledge intersected with the previous knowledge. Repeat-
ing this process (possibly with different low inputs) results in a sequence of increasing
knowledge (decreasing sets of possibilities). For an attacker with no initial knowledge
we can simply start with K0 = D. Obviously, a program may potentially leak more if
the attacker gets the chance to invoke it multiple times and has control over some of the
input.

The maximum knowledge attainable by the attacker is the result of the above process
repeated for every possible low input. Note that this models a powerful attacker, as
the number of possibilities is exponential in the bit-size of the input. This maximum
knowledge, or multi-run knowledge is now defined as follows.

Definition 2 (Multi-run knowledge). Let c, vh, vl, and D be as in Definition 1. The
attacker’s knowledge about vh produced by multiple runs of program c is defined as:

Kvh
(c) =

⋂
vl∈D

kvh
(c, vl)

Multi-run Security 377

To highlight the contrast between multi-run knowledge and single-run knowledge cap-
tured by the definitions, we come back to the examples from Section 1. Assume D =
{0, . . . , 255}. Recall program 1:

while h do skip

The single-run knowledge kvh
(c, vl) for this program is {0}, when c(vh, vl) = vl, and

{1, . . . , 255}, when c(vh, vl) = ⊥. The multi-run knowledge Kvh
(c) is {0}, when

vh = 0, and {1, . . . , 255}, when vh �= 0, which directly corresponds to the two cases
for the single-run knowledge. Recall now program 2:

while h = l do skip

The single-run knowledge kvh
(c, vl) for this program is {0, . . . , vl − 1, vl + 1, . . . , 255},

when c(vh, vl) = vl, and {vl}, when c(vh, vl) = ⊥. However, the multi-run knowledge
Kvh

(c) is simply {vh}, which corresponds to leaking all of vh into variable l. The inter-
section in the definition of multi-run knowledge corresponds to traversing all possible
low inputs in the attempt to match them to vh, which is a worst-case model for multi-run
attackers.

Now that we have definitions of attacker knowledge obtained after running the pro-
gram, we wish to express a policy which sets limits on this knowledge. A knowledge
policy states a lower bound on the attacker’s uncertainty by partitioning the input do-
main into classes. Each class lists values that must remain indistinguishable to the
attacker. In other words, the attacker may identify from which class the secret input
comes, but any more precision is disallowed. This view corresponds to partial re-
lease [14, 33] of information. This leads to the following definition.

Definition 3 (Knowledge-policy). A knowledge policy P for an input with domain D
is a partition of D into classes Pi:

P = {P1, . . . , Pn} Pi ⊆ D i �= j =⇒ Pi ∩ Pj = ∅ P1 ∪ . . . ∪ Pn = D

For a value v ∈ D we write [[v]]P to represent the class of P to which v belongs.

Note that as a partition of D, a policy represents an equivalence relation on values. Two
values are equivalent if they come from the same class. This equivalence relation is
often referred to as an indistinguishability relation [14, 33].

We illustrate the definition with simple examples. A policy that allows the attacker no
knowledge is simply P = {D}. A policy that allows full knowledge is {{x} |x ∈ D}.
If D is the set of unsigned 8-bit integers, then a policy that allows the attacker to know
the parity of the secret is:{

{0, 2, . . . , 254}, {1, 3, . . . , 255}
}
.

We are now ready to state the formal definition of multi-run secure programs.

Definition 4 (Multi-run security). Let c be a program that takes a secret input vh and
an arbitrary public, attacker-controlled input. c is multi-run secure (or simply secure)
with respect to a knowledge policy P if and only if [[vh]]P ⊆ Kvh

(c).

378 A. Birgisson and A. Sabelfeld

Observe that multi-run security with policy {D} corresponds to termination-sensitive
noninterference [39, 31] for single runs, which prevents the termination behavior of the
program (as well as its public output) from being affected by secrets.

Recall programs 4 and 5 from Section 1. Program 4 (l := h%4) is secure for all high
input with respect to the policy P = {{0, 4, . . .} , {1, 5, . . .}} , {2, 6, . . .} , {3, 7, . . .}.
Indeed, the multi-run knowledge from running the program has to be one of the four
sets in the policy because the attacker only learns the two least-significant bits.

On the other hand, program 5 (l := h%6) is insecure for all high input according
to the policy P . To illustrate this, take vh = 0. The multi-run knowledge K0(c) is
{0, 6, . . . }, while [[0]]P = {0, 4, . . .} which is clearly not contained in the knowledge.

As we are interested in an enforcement mechanism that allows limited leaks through
the termination channel, Definition 4 will serve as the basis for a relaxed definition
which we apply to the enforcement mechanism presented in Section 3. This relaxation
draws on ideas from quantitative security. Smith [36] defines the notion of vulnera-
bility V (X), which is the worst-case probability of guessing the value of secret X
by an adversary in one try. The measure of information quantity is then defined as
− logV (X). Based on the intuition “information leaked = initial uncertainty - remain-
ing uncertainty”, Smith defines information leakage and shows that for deterministic
programs and uniformly distributed secrets it amounts to log |S|, where |S| is the size
of the set of possible public outputs given the public input is fixed. The intuition is that
the more different observations the attacker can observe, the more secret information
about might leaked through them. In the multi-run case, the size of the set of possi-
ble outputs translates to the number of indistinguishability classes for the high input,
which, in effect, is the number of different values Kvh

(c) can take when vh varies. This
is in line with Lowe [23], who measures the number of secret behaviors distinguished
by an attacker in a nondeterministic setting. This motivation brings us to the following
definition of security of programs that operate on uniformly distributed secrets:

Definition 5 (k-bit security). Let c be a program that takes a uniformly distributed
secret input vh and an arbitrary public, attacker-controlled input vl. c is k-bit secure if
k = logn and Kvh

(c) takes at most n distinct values as vh varies.

For example, program 1 is 1-bit secure because there are only two possibilities for
Kvh

(c) as vh varies. On the other hand, program 2 is k-secure, where k is the bit size
of h because Kvh

(c) ranges over all possible singleton sets as vh varies.
1-bit security is a particularly interesting case. Intuitively it means that an attacker

can at most infer that vh is in some set A or that it is in A’s complement. In an extreme
case, either set might contain only one element, meaning the attacker would know the
exact value of that particular vh, but since there are only two possible “knowledges”
this is equivalent to the attacker being allowed only one boolean test on the secret.

Ultimately we will prove that our enforcement mechanism is multi-run secure with
respect to a policy, with the relaxation that 1-bit leaks are allowed. For simplicity we
combine Definition 4 and the 1-bit version of Definition 5 as follows.

Definition 6 (1-bit security w.r.t. a policy). Assume c, vh, vl are as in Definition 5,
and P is a knowledge policy. We say that c is 1-bit secure with respect to P if and only
if for each class Pi ∈ P , Kvh

(c) takes at most two distinct values (knowledges) K1, K2

as vh varies within Pi, and furthermore Pi ⊆ K1 ∪K2.

Multi-run Security 379

n ∈ D, x ∈ Vars , op ∈ {+,−, . . . }
e ::= n |x | e op e

c ::= skip |x := e | c; c | if e then c else c | while e do c

Fig. 1. Syntax

In other words, Kvh
(c) can vary arbitrarily for vh from different indistinguishability

classes, but within each class we only allow for revealing one additional bit of infor-
mation. The last part ensures that an attacker cannot otherwise exclude any values from
the policy class of the secret, any value considered impossible in one knowledge must
be considered possible according to the other knowledge.

3 Enforcement

We illustrate our approach to enforcement for an imperative language. To keep the
exposition clear, we have deliberately chosen a simple language, but the ideas here scale
to more complex languages. Figure 1 shows the syntax of the language. Expressions
take literals from a finite domain D (e.g., 32-bit integers) and variables from a set Vars .
We present a type system for this language such that typable programs are robust against
multi-run attacks that try to magnify single-run termination leaks into leaking more than
one bit. The type system represents a static analysis, conveniently referring to security
labels for variables and expressions as security types.

We will continue to treat programs as functions D×D → D∪{⊥}, and in concrete
examples the inputs will be represented by the variables h and l. The final value of l
will be the output for terminating programs.

The important feature of this type system is that it does not allow looping on ex-
pressions that both depend on secrets and attacker input. Thus we need to consider
both the confidentiality and integrity levels of expressions at the same time. To achieve
this we label variables with labels from the following product lattice L that combines
confidentiality and integrity.

HL
��

� ��
�

HH LL

LH

��� ���

Here a label lists first the confidentiality level and then the in-
tegrity level. For example, the attacker provided input l has level
LL (low confidentiality, low integrity) since it is both known and
controlled by the attacker, and the secret input h has level HH since
it is neither. An expression combining a secret with untrusted input
will be assigned level HL (high confidentiality, low integrity). We
use the standard symbols),�, etc. for lattice operators. This lattice has been used
for enforcing robust declassification [41, 25, 3], which demands that the attacker may
not affect what is released by programs by ensuring that only high-integrity data can
be declassified, and only in a high-integrity context. The work on robust declassifica-
tion is a direct inspiration for our treatment of the termination channel in multi-run
security. However, as we explain in Section 4, the policy that robust declassification en-
forces is rather different from our security model. Our observation that connects robust

380 A. Birgisson and A. Sabelfeld

SKIP
pc � skip

ASSIGN
lev(e) � pc � lev(x)

pc � x := e
SEQ

pc � c1 pc � c2
pc � c1; c2

IF
pc � lev(e) � c1 pc � lev(e) � c2

pc � if e then c1 else c2
WHILE

pc � lev(e) � c pc � lev(e) �= HL

pc � while e do c

Fig. 2. Typing rules

declassification with multi-run security enables us to cleanly reuse the enforcement
technique, but still requires us to show soundness with respect to our security goals.

3.1 Enforcing 1-Bit Security

We start by showing that with a simple type system, we can make sure that typable pro-
grams cannot be used to magnify termination leaks beyond the traditional one-bit limit.
The core idea is that the type system prevents information that is a mix of secrets and
untrusted inputs from affecting termination behavior, by disallowing it in loop guards.

We equip the set of variables with a function giving the label of each variable,
label : Vars → L. For expressions in general we define the function lev, assign-
ing each expression with its security level. Function lev is defined as follows, pattern
matching on the form of expression:

lev(n) = LH lev(x) = label(x) lev(e1 op e2) = lev(e1) � lev(e2)

While variables have their corresponding label as a level, literals are always low confi-
dentiality and high integrity, as we assume the program source to be public but trusted.
Other expressions take the least upper bound of their component levels.

Figure 2 gives the typing relation. The typing context consists only of the level of the
program counter, pc. This level represents expressions on which the control flow context
depends, namely if and while guards. If a command c is typable under context pc,
written pc * c, the intention is that c does not leak when executed, even if the execution
itself is conditioned on data of level pc or higher. Branches of an if-command must be
typable under the outer pc level joined with the level of the guard expression (rule IF).
The rule ASSIGN uses this to prevent implicit flows: assignments to a variable are only
allowed when both the expression and the program counter are below or at the same
level as the level of the assigned variable.

The rule WHILE propagates the level of the guard in the same way as IF, but in addi-
tion requires that the guard expression joined with the context pc is strictly below HL.
The intention here is to prevent the attacker from selectively inducing nontermination
that depends on the secret.

For example, program 1
while h do skip

is typable, because the level of the guard is HH . As we show below, this implies that it
only leaks one bit and the attacker is not able to change termination behavior by varying
the public input. Same goes for program

while l do skip

Multi-run Security 381

since although the attacker can control termination, it does not reveal anything about
the secret. The level of the guard here is LL. However program 2

while h = l do skip

is not typable, as the level of the guard is HL. Indeed, recall that the attacker is able to
try different inputs until one is found that corresponds to the secret, in which case the
whole of h is revealed.

Our goal is to prove that the type system enforces that programs leak at most one bit
(via a termination leak) even in the multi-run setting. To prove that typable programs
leak at most one bit, we will start by excluding leaks other than termination leaks. This
means that terminating programs satisfy noninterference, i.e., the observable output
is independent of the secret input. First, we show that programs typable with a high-
confidentiality pc cannot modify the low output.

Lemma 1. Let c be a program. If HL * c or HH * c, then for any choice of vh, vl ∈ D,
if c(vh, vl) �= ⊥ then c(vh, vl) = vl.

The proofs of this lemma and other statements can be found in Appendix A.
We now establish noninterference for terminating runs.

Lemma 2. Assuming a typable program c and ignoring diverging runs, c satisfies non-
interference:

∀vh, vh
′, vl ∈ D : if c(vh, vl) �= ⊥ �= c(vh

′, vl) then c(vh, vl) = c(vh
′, vl).

In particular, the above lemma tells us that (ignoring nonterminating runs), the single-
run knowledge is unaffected by variation in the secret input. Thus, considering nonter-
mination, the attacker can only observe one of two results, meaning the program only
leaks one bit. The following lemma shows that this extends to the multi-run case, by
showing that either termination depends only on the secret, or only on the public input.
This means that the attacker can not improve their knowledge of vh beyond the one bit
already leaked, by varying the public input.

Lemma 3. Assume c is a typable program. Then for arbitrary vh, vh
′, vl, vl

′ ∈ D either
one of the following condition holds.

1. Fixing the secret input, varying the public input reveals nothing:

kvh
(c, vl) = kvh

(c, vl
′)

2. Fixing the public input, varying the secret input reveals nothing:

kvh
(c, vl) = kvh

′(c, vl)

The basic idea of the proof for this lemma, is that using Lemma 2 and assuming that
neither condition holds, we can find a pair of high and low inputs that cause the program
to diverge, while either of them can be combined with other inputs to cause the program
to terminate successfully. By looking at the guard for the loop that causes divergence,
its value must be governed by both high and low data, and so it cannot possibly have

382 A. Birgisson and A. Sabelfeld

been allowed by the type system. Thus the assumption that neither condition holds must
be false. As before, the full proof is presented in Appendix A.

We can now use the above results to prove that typable programs leak at most one
bit.

Theorem 1. Assume c is a typable program. Then c leaks at most one bit, i.e., for all
vh ∈ D there are at most two distinct values for Kvh

.

3.2 Enforcing General Knowledge Policies

We now draw on ideas of delimited release [32] to change our type system so that it en-
forces a general knowledge policy. Delimited release specifies a declassification policy
as a set of expressions called escape hatches. Such expressions can refer to secret vari-
ables, but their computed values may be assigned to public variables. Thus, an escape
hatch defines what secret information may be declassified as public. Note that the value
of an escape hatch is not released automatically, but the program can use it to compute
low confidentiality information that is then released explicitly as the public output.

The knowledge policy, a partition of D, is specified with an expression eP . In terms
of delimited release, this expression is an escape hatch, and to focus on the interesting
ideas for this paper we assume it is the only one. Since the point of a policy expression
is to partition the input space of h, any useful policy expression will only depend on h.
Thus, we consider escape hatches that only involve high variables and generate policies
from escape hatches as follows:

Definition 7. An expression e, involving no other variables than h, generates a knowl-
edge policy P as follows:

P = {P1, . . . , Pn}
where for all v and v′ we have e(v) = e(v′) if and only if [[v]]P = [[v′]]P .

In order to support knowledge policies, we extend the type system with the possibility
of declassification. The escape hatch expression is explicitly declassified to have the
level LH , even though it may involve high confidentiality or low integrity variables.
We adapt the definition of lev accordingly:

lev(e) =

⎧⎪⎨
⎪⎩

LH if e = eP or e = n

label(x) if e �= eP and e = x

lev(e1) � lev(e2) if e �= eP and e = e1 op e2

The only typing rule that needs to be changed from Figure 2 is the one for assign-
ment, which disallows updates to any variable involved in the escape hatch:

ASSIGN
lev(e) � pc) lev(x) x �∈ vars(eP)

pc * x := e

This is done in order to prevent information about the secret input being laundered
through the escape hatch and is standard in delimited release [32]. See Program 7 for
an example of laundering.

Multi-run Security 383

If the high input is a tuple of multiple high inputs, as described earlier, the ASSIGN

rule should simply require that x is not one of them. We have left it as is in the interest
of readability.

We return to the examples of Section 1 to illustrate the soundness and precision of
the enforcement. Program 1 is still typable independently of escape hatches. Programs 2
and 3 are rightfully rejected in the absence of escape hatches because they might leak
the entire secret. Given the escape hatch h%4, the secure programs 4 and 6 are accepted
by the type system because declassification relabels h%4 to LH , which is under LL
in the lattice, the label of l. Given the same escape hatch, the insecure program 5 is
rejected because h%6 of type HH is assigned to variable l of type LL. Program 7 is
also rejected because variable h (which is involved in an escape hatch) is modified.

The soundness of the type system is guaranteed by the following theorem.

Theorem 2. Assume c is a typable program and eP is an escape hatch that induces a
policy P . Then c is 1-bit secure with respect to the policy P .

4 Related Work

Language-based information-flow security is a large and continuously-evolving field
[31]. We focus on discussing most related work on knowledge-based security, interac-
tive security, and declassification policies.

Knowledge-based security. Dima et al. [17] consider sets as representation of attacker’s
knowledge in nondeterministic systems. Askarov and Sabelfeld [4] present a knowledge-
based condition of gradual release for declassification, as well as enforcement for a
language with communication primitives. Gradual release allows the knowledge of the
attacker to increase only when the program passes a declassification point.

Van der Meyden [38] expresses intransitive noninterference policies using a classical
model of knowledge in terms of different agents’ views of the world [18].

Banerjee et al. [7] enhance the knowledge-based representation of attackers with
powerful program specification policies. As a result, they are able to express declassifi-
cation policies of both what can be released and where in the code.

Askarov and Sabelfeld [5] use knowledge to describe both termination-insensitive
and -sensitive security definitions with possibilities of expressing of what can be re-
leased and where, as well as dynamic enforcement for a language with dynamic code
evaluation and communication primitives.

Broberg and Sands [11] describe paralocks, a knowledge-based framework for ex-
pressing versatile declassification policies, including role-based policies.

Demange and Sands [15] allow tuning sensitivity to (non)termination depending on
the size of the secret that is involved in loop guards: looping is disallowed when loop
guards depend on secrets of small size.

None of the above approaches model the attacker’s knowledge obtained by running
the program multiple times.

Interactive security. Multi-run security is related to interactive security. In particular,
multi-run security of a batch-job program c that operates on secret variable h and public

384 A. Birgisson and A. Sabelfeld

variable l can be related to single-run security of the following interactive program:

h′ := h; while 1 do (in(l); c; out(l);h := h′)

where h′ is an auxiliary variable. This encoding allows us for direct comparison with
security definitions of interactive programs.

Le Guernic et al. [22] as well as Askarov and Sabelfeld [4] ignore diverging runs of
interactive programs, which, as pointed out previously [7, 2], always allows program
like c in the encoding above to be arbitrarily insecure.

ONeil et al. [27] investigate termination-sensitive security for programs that interact
with input/output strategies, where strategies are represented as functions that com-
pute the next input to the program based on the previous communication history. Being
termination-sensitive and declassification-free, their condition rejects all of programs 1–
7 from Section 1, if plugged to the encoding above.

Clark and Hunt [13] show that for deterministic programs, it makes no difference
whether the user is represented by a strategy or an input/output stream. Askarov et
al. [2] and Bohannon et al. [10] consider stream-based termination-insensitive security.
However, as shown in [2], brute-force attacks similar to programs 2–3 are allowed.

Köpf and Basin [21] propose an information-theoretic model for multi-run security
in the context of side-channel attacks. The timing side channel can be thought of as
a generalization of the termination channel as nontermination manifests itself as long-
lasting computation for a real-world attacker. Their model is based on refining the at-
tacker’s knowledge over multiple runs, well in line with our approach. However, as the
motivation of Köpf and Basin’s model is quantitative information leaks, they reason
about finite numbers of runs and explore the space between our single-run and multi-
run security definitions. Further, their enforcement is of rather different nature from
ours: it is based on quantitative approximation using greedy heuristic.

Askarov and Sabelfeld [5] explore stream-based definitions for both termination-
insensitive and -sensitive security in the presence of declassification policies. However,
similar to the approaches above, the termination-sensitive condition rejects programs
all of programs 1–7 and the termination-insensitive condition allows attacks 2–3, when
plugged to the encoding above.

We have studied extensions of the multi-run secure type system presented here to
interactive programs. Maintaining the 1-bit guarantee of termination-insensitive en-
forcement across all high inputs is non-trivial, as any public side effect (both input
and output) will reveal information about the program counter to an attacker. If such
an effect appears after a potentially diverging loop on high data, this will already leak
one bit before the program has stopped. We envision that full integration of robust de-
classification and delimited release for interactive programs might be promising in this
direction (see the discussion of dimensions of declassification below), but we expect
problems with permissiveness of the enforcement. This indicates a fundamental trade-
off between interactivity and security. Our paper identifies a niche, where it is possible
to gain permissiveness without sacrificing security.

Declassification. As mentioned earlier, our declassification policy is an adaptation of
delimited release [32]. Similarly to Askarov and Sabelfeld [5], we derive knowledge
sets from escape-hatch expressions. The treatment of integrity by the type system is

Multi-run Security 385

inspired by robust declassification [41, 25, 3]. Robust declassification guarantees that
the attacker may not affect what is released by programs by ensuring that only high-
integrity data can be declassified, and only in high-integrity context. In a similar spirit,
our type system demands that loop context and guards may not mix high confidential
data with attacker-controlled data.

In order to prevent unintended laundering of secrets, delimited release ensures that
values of escape-hatch expressions do not change within a single run. In general, this
guarantee does not extend over multiple runs, which potentially provides a laundering
opportunity if the expression depends on data that is provided by an attacker, or is
otherwise non-deterministic between runs. We avoid this issue at its root by not allowing
non-secrets in escape hatches.

As we have foreshadowed earlier, we are able to cleanly reuse the robust declas-
sification enforcement technique. However, note that we cannot automatically extract
soundness guarantees from soundness results for robust declassification (e.g., [25]). The
reason is that robust declassification addresses the where dimension of declassification:
ignoring exactly what is leaked, but making sure the active attacker may not affect the
declassification mechanism to leak more than the passive attacker. In contrast, our de-
classification policies are strict about what is leaked: the escape hatches describe the
upper bound on leaks in programs.

Other, less related, work on declassification is described in a recent overview of the
area [34]. The overview is organized by the dimensions of declassification.

5 Conclusions

We have showed how that extremes of insecurity (as with termination-insensitive nonin-
terference) and over-restrictiveness of enforcement (as with termination-sensitive non-
interference) can be avoided when generalizing batch-job security to multiple runs.
Addressing the problem, we have presented a knowledge-based framework for spec-
ifying and enforcing multi-run security policies. The policy framework includes possi-
bilities for declassification. The type-based enforcement tracks both confidentiality and
integrity labels and guarantees multi-run security.

We expect interesting implications of our result for multi-threaded programs. The
termination channel can be magnified in single-run multi-threaded programs in a fash-
ion similar to using multiple runs of sequential programs. Assume we have as many
threads as there are bits in secret h. Then, the multi-threaded program, where individual
thread i is described as follows

Ti : (while h&&bi do skip); out(i)

where bi contains all zeros in the boolean representation except for bit i, leaks the entire
secret in a single run. Our type-based enforcement can be straightforwardly applied to
prevent this kind of leaks by considering the thread-dependent data bi as low integrity.
We expect that whenever a collection of threads is typable according to our type system,
then the multi-threaded program that consists of the collection of threads is both single-
run and multi-run secure (for a notion of possibilistic [24, 37, 33] security suitable for
reasoning about nondeterministic programs).

386 A. Birgisson and A. Sabelfeld

As mentioned earlier, the termination channel can be seen as an instance of the tim-
ing side channel as nontermination manifests itself as long-lasting computation for a
real-world attacker. We can offer protection against timing attacks that is similar to the
protection against termination attacks: when the computation does not mix secret and
attacker-controlled data in branch guards, then the timing leaks cannot be magnified.
Otherwise, we resort to such existing approaches as cross-copying [1] and predictive
black-box mitigation [6].

Note that there is nothing fundamental about our enforcement being static. We expect
a dynamic mechanism, such as a monitor for delimited-release like policies by Askarov
and Sabelfeld [5] to be easily adaptable to dynamically track both confidentiality and
integrity in order to enforce our security condition.

Although the paper operates on a simple two-level security lattice, we do not antic-
ipate difficulties with extending our approach to arbitrary lattices. Requiring the con-
fidentiality level of a loop guard to be bounded by its integrity level gives us a way
to prevent the dangerous mix of high-confidentiality and low-integrity data to affect
the termination behavior. Other future work focuses on expressing multi-run security
for richer languages. Further, we plan to extend the framework to take into account
modifications of secret data between program runs. We are also exploring decentralized
security policies by knowledge-based representations of multiple attackers.

Acknowledgments. Thanks are due to John Hughes and Dave Sands for helpful feed-
back. This work was funded by the European Community under the WebSand project
and the Swedish research agencies SSF and VR. Arnar Birgisson is a recipient of the
Google Europe Fellowship in Computer Security, and this research is supported in part
by this Google Fellowship.

References

[1] Agat, J.: Transforming out timing leaks. In: Proc. ACM Symp. on Principles of Program-
ming Languages, pp. 40–53 (January 2000)

[2] Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninterference
leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283,
pp. 333–348. Springer, Heidelberg (2008)

[3] Askarov, A., Myers, A.: A semantic framework for declassification and endorsement. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 64–84. Springer, Heidelberg (2010)

[4] Askarov, A., Sabelfeld, A.: Gradual release: Unifying declassification, encryption and key
release policies. In: Proc. IEEE Symp. on Security and Privacy, pp. 207–221 (May 2007)

[5] Askarov, A., Sabelfeld, A.: Tight enforcement of information-release policies for dynamic
languages. In: Proc. IEEE Computer Security Foundations Symposium (July 2009)

[6] Askarov, A., Zhang, D., Myers, A.: Predictive black-box mitigation of timing channels. In:
ACM Conference on Computer and Communications Security, pp. 297–307 (2010)

[7] Banerjee, A., Naumann, D., Rosenberg, S.: Expressive declassification policies and modular
static enforcement. In: Proc. IEEE Symp. on Security and Privacy (May 2008)

[8] Banerjee, A., Naumann, D.A.: Stack-based access control and secure information flow.
Journal of Functional Programming 15(2), 131–177 (2005)

[9] Barnes, J., Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Secu-
rity. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

Multi-run Security 387

[10] Bohannon, A., Pierce, B.C., Sjöberg, V., Weirich, S., Zdancewic, S.: Reactive noninterfer-
ence. In: ACM Conference on Computer and Communications Security, pp. 79–90 (Novem-
ber 2009)

[11] Broberg, N., Sands, D.: Paralocks: role-based information flow control and beyond. In:
Proc. ACM Symp. on Principles of Programming Languages (January 2010)

[12] Chapman, R., Hilton, A.: Enforcing security and safety models with an information flow
analysis tool. ACM SIGAda Ada. Letters 24(4), 39–46 (2004)

[13] Clark, D., Hunt, S.: Non-interference for deterministic interactive programs. In: Degano,
P., Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 50–66. Springer,
Heidelberg (2009)

[14] Cohen, E.S.: Information transmission in sequential programs. In: DeMillo, R.A., Dobkin,
D.P., Jones, A.K., Lipton, R.J. (eds.) Foundations of Secure Computation, pp. 297–335.
Academic Press, London (1978)

[15] Demange, D., Sands, D.: All secrets great and small. In: Castagna, G. (ed.) ESOP 2009.
LNCS, vol. 5502, pp. 207–221. Springer, Heidelberg (2009)

[16] Denning, D.E.: A lattice model of secure information flow. Comm. of the ACM 19(5), 236–
243 (1976)

[17] Dima, C., Enea, C., Gramatovici, R.: Nondeterministic nointerference and deducible infor-
mation flow. Technical Report 2006-01, University of Paris 12, LACL (2006)

[18] Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT Press,
Cambridge (1995)

[19] Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proc. IEEE Symp. on
Security and Privacy, pp. 11–20 (April 1982)

[20] Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive informa-
tionflow control based on program dependence graphs. International Journal of Information
Security 8(6), 399–422 (2009); Supersedes ISSSE and ISoLA 2006

[21] Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel attacks.
In: ACM Conference on Computer and Communications Security, pp. 286–296 (2007)

[22] Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based confidentiality
monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 75–89.
Springer, Heidelberg (2008)

[23] Lowe, G.: Quantifying information flow. In: Proc. IEEE Computer Security Foundations
Workshop, pp. 18–31 (June 2002)

[24] McLean, J.: A general theory of composition for a class of “possibilistic” security proper-
ties. IEEE Transactions on Software Engineering 22(1), 53–67 (1996)

[25] Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification and qualified
robustness. J. Computer Security 14(2), 157–196 (2006)

[26] Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java information flow.
Software release. (July 2001), Located at http://www.cs.cornell.edu/jif

[27] O’Neill, K., Clarkson, M., Chong, S.: Information-flow security for interactive programs.
In: Proc. IEEE Computer Security Foundations Workshop, pp. 190–201 (July 2006)

[28] Pottier, F., Simonet, V.: Information flow inference for ML. ACM TOPLAS 25(1), 117–158
(2003)

[29] Rizzo, J., Duong, T.: Padding oracles everywhere (2010),
http://ekoparty.org/juliano-rizzo-2010.php

[30] Russo, A., Sabelfeld, A.: Securing interaction between threads and the scheduler. In: Proc.
IEEE Computer Security Foundations Workshop, pp. 177–189 (July 2006)

[31] Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Selected
Areas in Communications 21(1), 5–19 (2003)

http://www.cs.cornell.edu/jif
http://ekoparty.org/juliano-rizzo-2010.php

388 A. Birgisson and A. Sabelfeld

[32] Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Futatsugi, K.,
Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233, pp. 174–191. Springer,
Heidelberg (2004)

[33] Sabelfeld, A., Sands, D.: A per model of secure information flow in sequential programs.
Higher Order and Symbolic Computation 14(1), 59–91 (2001)

[34] Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. J. Computer Secu-
rity 17(5), 517–548 (2009)

[35] Simonet, V.: The Flow Caml system. Software release. (July 2003), Located at
http://cristal.inria.fr/˜simonet/soft/flowcaml

[36] Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.) FOS-
SACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

[37] Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative language.
In: Proc. ACM Symp. on Principles of Programming Languages, pp. 355–364 (January
1998)

[38] van der Meyden, R.: What, indeed, is intransitive noninterference? In: Biskup, J., López, J.
(eds.) ESORICS 2007. LNCS, vol. 4734, pp. 235–250. Springer, Heidelberg (2007)

[39] Volpano, D., Smith, G.: Eliminating covert flows with minimum typings. In: Proc. IEEE
Computer Security Foundations Workshop, pp. 156–168 (June 1997)

[40] Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis. J. Com-
puter Security 4(3), 167–187 (1996)

[41] Zdancewic, S., Myers, A.C.: Robust declassification. In: Proc. IEEE Computer Security
Foundations Workshop, pp. 15–23 (June 2001)

[42] Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program security.
In: Proc. IEEE Computer Security Foundations Workshop, pp. 29–43 (June 2003)

[43] Zheng, L., Chong, S., Myers, A.C., Zdancewic, S.: Using replication and partitioning to
build secure distributed systems. In: Proc. IEEE Symp. on Security and Privacy, pp. 236–
250 (May 2003)

Appendix A: Proofs

Proof of Lemma 1. By induction on typing derivation, c contains no assignments to l,
since those are rejected by the constraint on pc in typing rule ASSIGN. Since nontermi-
nation is excluded, the output can only be the initial value of l, namely vl. �

Proof of Lemma 2. We prove the lemma by induction on the structure of the program.

Case c = skip The statement holds because c(vh, vl) = vl for any vh, vl.

Case c = x := e The case obviously holds when x �= l. Otherwise, since c is typable
under some pc, we know that lev(e) � pc) lev(l) = LL. In particular lev(e) is either
LH or LL. From the definition of lev it is easy to show that e does not contain the high
input, so the value of e must be the same whether the high input is vh or vh

′.

Case c = c1; c2 Since c is typable under pc, then so are c1 and c2. By induction
we have that c1(vh, vl) = c1(vh

′, vl), let’s call this intermediate low output vl
′′. Then

c(vh, vl) = c2(vh, vl
′′), which again by induction is equal to c2(vh

′, vl
′′) = c(vh

′, vl).

Case c = if e then c1 else c2 By induction the theorem holds for both branches
c1 and c2. If lev(e) is LL or LH , the value of e is unaffected by the secret input being
vh or vh

′, so in either case the same branch is selected and the theorem holds.

http://cristal.inria.fr/~simonet/soft/flowcaml

Multi-run Security 389

If lev(e) is HL or HH then, since both branches are typable under pc � lev(e),
Lemma 1 gives that ci(vh, vl) = ci(vh

′, vl) = vl for both i = 1 and i = 2.

Case c = while e do c Since we know that c terminates, we can write any program
of this form as a sequence of sufficiently many if -statements with the same guard
and body. This case can thus be reduced to the cases for conditionals and sequential
composition. �

Proof of Lemma 3. Assume that condition 2 does not hold, i.e., kvh
(c, vl) �= kvh

′(c, vl)
for some choice of vh, vl and vh

′. Lemma 2 gives that if both terminate, then c(vh, vl)
and c(vh

′, vl) return the same value. Thus there are only two observable outcomes, that
value or⊥. Given our assumption, we thus know that one of the runs diverges. Relabel-
ing if necessary, we can assume that c(vh, vl) = ⊥.

Now assume that there is a choice of vl
′ such that condition 1 also does not hold.

If we can show this leads to a contradiction, either assumption is false and the theo-
rem holds. Since c(vh, vl) = ⊥, this must mean that c(vh, vl

′) terminates. Based on
our assumptions, the facts can be summarized as follows: c(vh, vl) does not terminate;
c(vh

′, vl) terminates; and c(vh, vl
′) terminates.

Consider the while loop that causes c(vh, vl) to diverge, and in particular its guard
expression e. We start by noting that if lev(e)) HH then its valuation can not be
affected by the value of l. This is easy to prove (for expressions in general) from our
type system, but laborious so for the sake of our discussion we leave out a precise proof.
Symmetrically, if lev(e)) LL then its value can not depend on the value of h.

The typing rule for loops guarantees that the guard expression is not HL, so either
we have e) HH or e) LL. In the first case, c(vh, vl

′) cannot terminate, since e will
always evaluate to the same values (it is evaluated many times) as in c(vh, vl). In the
second case, c(vh

′, vl) must similarly diverge.
Both cases contradict at least one of our assumptions, so one of them is false. �

Proof of Theorem 1. The proof is by contradiction. Assume that there are three values
vh1, vh2, vh3 that would generate three distinct multirun knowledges. If we can show
that at least two of Kvhi

(c), for i = 1, 2, 3, must coincide then we have the contradiction
we need. If v1, . . . , vn is an enumeration of D, then we can write the three multi-run
knowledges as follows.

Kvh1(c) = kvh1(c, v1) ∩ kvh1(c, v2) ∩ · · · ∩ kvh1(c, vn)
Kvh2

(c) = kvh2
(c, v1) ∩ kvh2

(c, v2) ∩ · · · ∩ kvh2
(c, vn)

Kvh3(c) = kvh3(c, v1) ∩ kvh3(c, v2) ∩ · · · ∩ kvh3(c, vn)

Consider any “column” from this layout, say kvhi
(c, vk) for some k and i = 1, 2, 3.

If the (single-run) knowledges in this column are not all equal, we start by noting that
there can be only two possibilities. Lemma 2 gives that if c(vhi, vk) terminates, then the
result is unique, so only that value and ⊥ can be observed, and thus only two distinct
knowledges are possible in the column. Let’s call them A and B and say kvh1(c, vk) =
kvh2

(c, vk) = A and kvh3
(c, vk) = B (we can rearrange the indexes if necessary).

Now Lemma 3 tells us that since the knowledges differ by altering the secret input, they
cannot differ by altering the low input. This means that in this case all the single-run

390 A. Birgisson and A. Sabelfeld

knowledges in the same “row” are the same and we obtain that Kvh1
(c) = Kvh2

(c) =
A and Kvh3

(c) = B. Note that it is enough for only one column to contain different
values to force this equality in the rows.

On the other hand, if each column has three equal knowledges, then it is clear that
Kvh1(c) = Kvh2(c) = Kvh3(c). In either case at least two of them must be equal. �

Proof of Theorem 2. To profe this theorem, we apply the same approach as for Theo-
rem 1. This includes proving a modified version of Lemma 2 where instead of letting
high inputs be arbitrary, we restrict them to one indistinguishability class of the policy.
We’ll note the use of these lemmas, and how their proofs differ from above, as we use
them.

First we observe that during any derivation of the program c, the variable h remains
constant and equal to vh, since the modified type system disallows updates to it. This in
turn means, that since eP mentions no variables besides h, that it also remains constant.
We can use this to show that ignoring diverging runs, c is non-interferent when secrets
are taken from the same policy class. I.e.

∀vh, vh
′, vl ∈ D :

if c(vh, vl) �= ⊥ �= c(vh
′, vl) and [[vh]]eP = [[vh

′]]eP

then c(vh, vl) = c(vh
′, vl).

where [[v]]eP represents the value of eP when the variable h is assigned the value v.
The notation becomes clear when one considers the fact that this value represents the
policy indistinguishability class of v. The proof of this statement is the same as the
proof of Lemma 2, with a minor change: In the case for assignment, one must note that
the typing judgement LL * x := eP holds, regardless of lev(x). This case is harmless,
since the extra condition of [[vh]]eP = [[vh

′]]eP provides that the same value will be
assigned in both cases. A similar argument must, and can easily be made for Lemma 1.

After establishing this, the rest of the proof follows exactly the same argument as
the proof of Theorem 1. We assume towards a contradiction, that there exists three
secret inputs vh1, vh2, vh3, all belonging to the same security class, which give rise
to three distinct multi-run knowledges Kvh1 , Kvh2 , Kvh3 . We arrange their definitions
as intersections of single-run knowledges as above, and note that either each single-
run knowledge in a particular column is the same (i.e. the observed outcome does not
depend on the secret input) or that all single-run knowledges in one line are equal (the
observed outcome does not depend on the public input). In the latter case, all multi-
run knowledges must be equal, and in the second one the non-interference above for
terminating runs thus gives that there can be only two observable outputs. �

Appendix B: Multi-run Exploit

The following type-safe Jif [26] program contains a termination leak that can be ampli-
fied to leak more bits with multiple runs.
public class Leaky {

public Leaky() {}

Multi-run Security 391

public static void main{}(principal p, String[]{} args)
throws (SecurityException)

{
int{Alice:} secret = 42;
int{} input;

try {
input = Integer.parseInt(args[0]);
while (0 != (secret & (1 << input))) { }

}
catch (NullPointerException ignored) {}
catch (ArrayIndexOutOfBoundsException ignored) {}
catch (NumberFormatException ignored) {}

}

}

A simple Python program can be used to make the 32 invocations of the above pro-
gram needed to leak the complete secret.

import subprocess, time, sys, os

JIF_DIR = "../../../jif-3.3.1"

def run_with_timeout(command, timeout):
proc = subprocess.Popen(command, bufsize=0,

stdout=subprocess.PIPE,
stderr=subprocess.PIPE)

start = time.time()
while start + timeout > time.time() and proc.poll() is None:

time.sleep(0.1)

if proc.poll() is None:
proc.terminate()
return None

out, err = proc.communicate()
return out, err, proc.returncode

if __name__ == "__main__":
secret = 0
for bit in range(32):

print "Checking bit %d... " % bit,
r = run_with_timeout(

["jif",
"-classpath", os.path.join(JIF_DIR, "tests"),
"Leaky", str(bit)],

1)
if r is None:

This indicates timeout, assume non-termination
secret = secret | (1 << bit)
print "1"

else:
This indicates normal termination
print "0"

print "Secret is: %d" % secret

Automated Information Flow Analysis of

Virtualized Infrastructures

Sören Bleikertz1, Thomas Groß1, Matthias Schunter1, and Konrad Eriksson2

1 IBM Research - Zurich
{sbl,tgr,mts}@zurich.ibm.com

2 InfraSight Labs
konrad.eriksson@infrasightlabs.com

Abstract. The use of server virtualization has been growing steadily,
but many enterprises still are reluctant to migrate critical workloads to
such infrastructures. One key inhibitor is the complexity of correctly con-
figuring virtualized infrastructures, and in particular, of isolating work-
loads or subscribers across all potentially shared physical and
virtual resources. Imagine analyzing systems with half a dozen virtu-
alization platforms, thousands of virtual machines and hundreds of thou-
sands of inter-resource connections by hand: large topologies demand tool
support.

We study the automated information flow analysis of heterogeneous
virtualized infrastructures. We propose an analysis system that performs
a static information flow analysis based on graph traversal. The system
discovers the actual configurations of diverse virtualization environments
and unifies them in a graph representation. It computes the transitive
closure of information flow and isolation rules over the graph and diag-
noses isolation breaches from that. The system effectively reduces the
analysis complexity for humans from checking the entire infrastructure
to checking a few well-designed trust rules on components’ information
flow.

1 Introduction

Large-scale virtualized infrastructures and cloud deployments are a common and
still growing phenomenon. The goals of server virtualization include high utiliza-
tion of today’s hardware, fast deployment of new virtual machines and load
balancing through migration of existing virtual machines. Virtualized infrastruc-
tures provide standardized computing, virtual networking, and virtual storage re-
sources. Correspondingly, infrastructure clouds provide simple machine creation
and migration mechanisms as well as seemingly unlimited scalability, while the
costs incurred are only proportional to the resources actually used.

The growth of IT infrastructures and the ease of machine creation have lead
to substantial numbers of servers being created (server sprawl). Furthermore,
then led to large and complex configurations that arise by rank growth and evo-
lution rather than by advance planning and design. Indeed, the configuration

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 392–415, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automated Information Flow Analysis of Virtualized Infrastructures 393

Fig. 1. Illustration of the overwhelming complexity of a mid-size infrastructure with
1,300 VMs

complexity often exceeds the analysis and management capabilities of human
administrators. We depict an example for a mid-size infrastructure in Figure 1.
This, by itself, calls for automated security analysis of virtualized infrastructures.
The high complexity of an analysis is amplified when considering security prop-
erties such as isolation, because then the analysis of individual resources must
be complemented with an analysis of their composition.

In addition, virtualization providers often aim at establishing multi-tenancy,
that is, the capability to host workloads from different subscribers on the same
infrastructure. Also, they provide an open environment, in which arbitrary sub-
scribers can register without trust between subscribers being justified. Therefore,
we need to assume that workloads as well as VMs are under the control of an
adversary, and that an adversary will use overt and covert channels in its reach.

Industry partially approaches isolation with automated management and de-
ployment systems constraining the users’ actions. However, these mechanisms
can fail, lack enforcement, or be circumvented by human intervention.

1.1 Contributions

The goal of this paper is to study automated information flow analysis for large-
scale heterogeneous virtualized infrastructures. We aim at reducing the analysis
complexity for human administrators to the specification of a few well-designed

394 S. Bleikertz et al.

trust assumptions and leave the extrapolation of these assumptions and analysis
of information flow behavior to the tools.

We propose an information flow analysis tool for virtualized infrastructures.
The tool is capable of discovering and unifying the actual configurations of dif-
ferent virtualization systems (Xen, VMware, KVM, and IBM’s PowerVM1) and
running a static information flow analysis based on explicitly specified trust
rules. Our analysis tool models virtualized infrastructures faithfully, indepen-
dent of their vendor, and is efficient in terms of absence of false negatives as well
as adjustable false positive rates.

Our approach transforms the discovered configuration input into a graph rep-
resenting all resources, such as virtual machines, hypervisors, physical machines,
storage and network resources. The analysis machinery takes a set of graph
traversal rules as additional input, which models the information flow and trust
assumptions on resource types and auxiliary predicates. It checks for information
flow by computing a transitive closure on an information flow graph coloring with
the traversal rules as policy. From that, the tool diagnoses isolation breaches and
provides refinement for a root causes analysis. The challenge of information flow
analysis for virtualized infrastructures lays in the faithful and complete unified
modeling of actual configurations, a layered analysis that maintains complete-
ness and correctness through all stages, and a suitable refinement to infer the
root causes for isolation breaches.

Our method applies strict over-abstraction to minimize false negatives. This
means that we only assume absence of flows for components that are known
to isolate. This enables us to reduce the analysis correctness to the correctness
of the traversal rules. As this method accepts an increase in the false positive
rate, we allow administrators to fine-tune the trust assumptions with additional
traversal rules and constraint predicates to obtain a suitable overall detection
rate.

We report on a case study for a mid-sized infrastructure of a financial institu-
tion production environment in §7.

1.2 Applications

Our technique is applicable to the isolation analysis of complex configurations of
large virtualized datacenters. Such datacenters include different types of server
hardware, implementations of virtual machine monitors, as well as physical and
virtual networking and storage resources.

Let us consider a simplified version of such a configuration in Figure 2(a). This
simplified version includes the following hardware: A IBM pSeries1 server, an x86
server, a virtual networking infrastructure providing VLANs, and a Storage Area
Networking providing virtual storage volumes. The virtual resources (networks,
storage, machines, and virtual firewalls) are depicted inside these hardware re-
sources. Keep in mind that sizable real-world configurations contain thousands
of virtual machines and hundreds of thousands of connections.

Figure 2(b) depicts a desired isolation topology for this example: we have three
example virtual security zones “Intranet”, “DMZ”, and “Internet”. Furthermore,

Automated Information Flow Analysis of Virtualized Infrastructures 395

Storage Area Network(s)

vF
W

A
1

vF
W

A
2

V
M

B
1

V
M

B
2

V
M

B
3

V
M

B
4

IBM pSeries

LPARs

KVM Virtual

Machines

Physical

Networks

Intranet
DMZ

Internet

(a) Architecture Overview

vFWA2
VMsVMsVMs

Zone

“Intranet”

VMsVMsVMs
Zone

“DMZ”

VMsVMsVMs

Zone

“Internet” vFWA1 Guardians

Guardians

(b) Isolation Zones

Fig. 2. An example setup of a virtualized datacenter with an isolation policy for three
virtual security zones

we permit communication between Intranet and DMZ that is mediated by a
trusted guardian, such as a virtual firewall vFWA2. Similarly, firewall vFWA1

moderates and restricts the communication between the Intranet and Internet
zones, respectively. The isolation analysis must check that there do not exist
components that connect two zones or are shared by two zones, while not being
trusted to sufficiently mediate direct and covert information flows.

Note that we focus on validating the virtualized infrastructure’s configura-
tion. Once we have guaranteed that no undesired information flow exists except
through the specified guardians, we would need to employ techniques from fire-
wall filtering analysis, e.g. [17,18,28], to ensure that the guardians have been
configured correctly.

2 Related Work

Virtual systems introduce several new security challenges [7]. Two important
drivers that inspired our work are the increase of scale and the transient nature
of configurations that render continuous validation more important.

The first area of related work is security of virtual machine monitors. This
knowledge is needed to underpin the user’s individual decisions whether to trust
a given component. Analysis of well-known attacks such as jailbreaks [27] al-
lows one to detect vulnerable configurations. This includes information leakage
vulnerabilities of today’s infrastructure clouds that allow covert or overt com-
munication between multiple tenants that should be isolated. Examples include
co-hosting validation [21] and cache-based side channels [1,20].

To our knowledge, there do not exist any research contributions on the static
high-level information flow analysis in virtualized infrastructures. Still, we draw
inspiration from information flow analysis such as research in separation [12,23],
channel control [22], and non-interference [8,9,16,24]. We discuss these influences
on our own definition on structural information control in §3. More often than
not, we find research in this space focused on the information flow between high
and low variables and not on the information flow in larger topologies.

396 S. Bleikertz et al.

A second area of related work is reachability analysis in networks and the
related configuration analysis of firewalls. Our isolation analysis draws from
known work on reachability analysis. Analyzing firewalls and complex network
infrastructures allows one to decide to what extent two known networks are con-
nected. In particular, Al-Shaer et al. [2,13,29] analyze entire network infrastruc-
tures including packet filters, transformers, and routers. In [5], it was shown how
reachability analysis can be applied to infrastructure clouds. Firewall configura-
tion analysis allows the understanding and validation of firewall rules [17,18,28].
While this work focuses on the TCP/IP level, our goal is to ensure ’physical’ iso-
lation by ensuring that VLANs and virtual networks are disjoint. This approach
is similar to the approach proposed in [14]. If L2 networks are connected while
isolation is implemented on the TCP/IP level, we see potential to further extend
our work by using these concepts for TCP/IP isolation analysis that is then fed
into our analysis concept.

This area of research is also important for modeling the behavior of imper-
fect guardians. Whereas this paper assumes that guardians always make correct
decisions and stop dangerous information flow, reachability and firewall config-
uration analyses allow one to model imperfections as explicit traversal rules.
Guardians with packet inspection and stateful analysis may even discover illegal
information flow hidden in legal flows.

Whereas earlier security analyses considered stand-alone elements of a virtu-
alized infrastructure, a tool-supported information flow analysis of a full virtu-
alized environment is still missing, not to speak of complex heterogeneous and
large-scale virtualized infrastructures with a diversity of underlying platforms.
The research areas of information flow and reachability analysis underpin our
efforts, yet so far have not produced a mechanized approach for this problem
statement.

3 A Model for Isolation Analysis

In our work, we consider overt and covert channels. Covert channels [15] are not
intended for information transfer at all, yet seem to be a common phenomenon
in virtualized infrastructures. Requiring the absence of all covert channels from
hypervisors, physical hosts and resources will render many resulting system im-
practical. Therefore, we allow administrators to specify a certain amount of
covert channel information flow as tolerable.

In the quest for a suitable requirements definition, we review information flow
types [25,15,21,8,9,24,16,10,23,12,11] in Appendix A. At this point, we note i.
that we need intransitivity and ii. that channel control [22] captures our re-
quirement to specify exceptions to the general zoning requirements. Thus, we
introduce a property we call structural information control that essentially lifts
channel control to topology:

Definition 1 (Structural Information Control). A static system topology
provides structural information control with respect to a set of information flow

Automated Information Flow Analysis of Virtualized Infrastructures 397

assumptions on system nodes if there does not exist an inter-zone information
flow unless mediated by a dedicated guardian.

Observe that we aim at the detection of isolation breaches (information flow
traces), which renders our approach loosely similar to model checking, and not
at the verification of absence of information flow, which would be similar to
theorem proving.

3.1 Modeling Isolation

Modeling Configurations. Our static information flow analysis is graph-
based. Each element of a virtualization configuration is represented by (at least)
one vertex (VMs, VM hosts, virtual storage, virtual network). Connections be-
tween elements are represented by edges in the graph and model potential infor-
mation flow. Note that our approach requires completeness of the edges: While
not all edges may later actually constitute information flows, we require that all
relations that allow information flow are actually modeled as an edge.

The vertices of the graph are typed: our model distinguishes VM nodes, VM
host nodes, storage and network nodes, etc.

Definition 2 (Graph Model). Let T ⊂ Σ+ a set of vertex types and P ⊂ Σ+

a set of vertice properties. A virtualization graph model contains a set of typed
vertices V ⊂ V := (Σ+ × T × P) and a set of edges E ⊆ (V × V). A vertice v
is a triple of label, type and properties set (l, t, p) ∈ V. An edge e is a pair of
start and end vertice (vi, vj) ∈ (V × V). A set of edges E is called valid with
respect to a set of vertices V ′, if E ⊆ (V ′×V ′). A graph (V̄ , Ē) is called a valid
subgraph of graph (V, E), if V̄ ⊆ V and Ē ⊆ E is valid with respect to V̄ . An
edge set E ⊆ E is called a path if the edges and their respective vertices form a
connected valid sub-graph of (V, E).

We represent complex structures of the virtualization infrastructure by sub-
graphs of multiple vertices. For instance, we construct guardians such as firewalls
with complex information flow rules by a firewall vertex connected to multiple
port vertices.

Information is output at one or more information source nodes, propagates
according to traversal rules along the nodes and edges of the graph, and is
consumed at an information sink. We treat information sources as independent
and information as untyped and unqualified.

Definition 3 (Information Sources and Sinks). For a set of vertices V , we
define a set of information sources V̂ ⊆ V and a set of information sinks V̆ ⊆ V .
A vertice v̂ ∈ V̂ is called information source, a vertice v̆ ∈ V̆ information sink.

Modeling Information Flow Assumptions. A traversal rule models an as-
sumption on information flow from one vertex type to another vertex type. For
instance, a traversal rule will specify that if a VM host is connected to a storage
provider, this edge constitutes a direct information flow and is to be traversed.
Also, a traversal rule may specify that if two VMs are connected to the same

398 S. Bleikertz et al.

VM host, this implies the risk of covert channel communication and, therefore,
constitutes an information flow.

Definition 4 (Traversal Rules). For the set of vertice types T ⊂ Σ+ and a set
of vertice properties P ⊂ Σ+, the traversal rules are a propositional function of
source type, destination type, source properties, and destination properties over
a type relation R and a predicate P :

fT,P : (T× T× P× P)→ {stop, follow} :

fT,P(ti, tj , pi, pj) :=

{
(ti, tj) ∈ R ∧ P (pi, pj) follow

(ti, tj) �∈ R ∨ ¬P (pi, pj) stop

We call traversal rules simple, if P is always true.

Definition 5 (Completeness). For the set of vertice types T ⊂ Σ+ and a
set of vertice properties P ⊂ Σ+, traversal rules fT,P are called complete if R
and P associated to fT,P are complete. We call a default rule a completion of
incomplete traversal rules fT,P, if it maps all undetermined cases to either stop
or follow. We call non-default rules explicit.

Whereas completeness is a property of a set of traversal rules, we define cov-
erage as in how far a set of traversal rules determines the analysis of a graph
deterministically without invoking the default rule.

Definition 6 (Coverage). For the set of vertice types T ⊂ Σ+ and a set of
vertice properties P ⊂ Σ+, consider a virtualization graph (V, E) as in Def. 2
and the subset of edges E′ ⊆ E that are matched by explicit traversal rules fT,P.
We call the quotient of number of explicitly matched edges to total number of
edges coverage: c = |E′| / |E|

Observe that a complete coverage, that is, c = 100% is significant for achieving
a low false-positive rate.

The traversal rules specify general assumptions on information flow in virtual-
ized environments and, thereby, embodies a part of the overall trust assumptions.
The specification of traversal rules is therefore orthogonal to the isolation policy
of a system. Whereas our system comes with a root set of traversal rules as base
line trust assumptions, we allow users to specify multiple sets of user-defined
traversal rules and thereby user-defined trust assumptions.

Similar to the tainted variable method for static information flow analysis, we
employ the metaphor of color propagation. We associate colors to information
sources v̂ ∈ V̂ and to vertices that have received information flow from a certain
source by the evaluation of traversal rules fT,P. The total information flow of a
system is the transitive closure of the graph traversal governed by the traversal
rules fT,P. This means, that the information flow from any source to any sink
can be efficiently statically analyzed by a reachability analysis between source
and sink.

We define graph coloring recursively.

Automated Information Flow Analysis of Virtualized Infrastructures 399

Definition 7 (Graph Coloring). Let traversal rules fT,P, a graph (V, E) and
an information source v̂ ∈ V̂ ⊆ V with color c be given. Then, v̂ is colored
with c by definition. A vertice v ∈ V is colored with c, if there exists an edge
e = (·, v) ∈ E, which is colored with c. An edge e = (vs, vd) ∈ E with vs =
(·, ts, ps) and vd = (·, td, pd) is colored with c iff (i) vs is colored with c and (ii)
fT,P(ts, td, ps, pd) = follow.

4 Isolation Analysis of Virtual Infrastructures

We apply the foundations from the preceding section to virtualized infrastruc-
tures. Our approach (see Figure 3) consists of four steps organized into two
phases: 1) building a graph model from platform-specific configuration informa-
tion and 2) analyzing the resulting model. The graph model is formally defined
in Def. 2.

Fig. 3. Overview over the analysis flow

The first phase of building a graph model is realized using a discovery step
that extracts configuration information from heterogeneous virtualized systems,
and a translation step that unifies the configuration aspects in one graph model.
For the subsequent analysis, we apply the graph coloring algorithm defined in
Def. 7 parametrized by a set of traversal rules and a zone definition. The assess-
ment of the resulted colored graph model enables a diagnosis of the virtualized
infrastructure with respect to isolation breaches.

4.1 Discovery

The goal of the discovery phase is to retrieve sufficient information about the con-
figuration of the target virtualized infrastructure. To this end, platform-specific
data is obtained through APIs such as VMware VI, XenAPI, or libVirt, and
then aggregated in one discovery XML file. The target virtualized infrastruc-
ture, for which we will discover its configuration, is specified either as a set of
individual physical machines and their IP addresses, or as one management host
that is responsible for the infrastructure (in the case of VMware’s vCenter or
IBM pSeries’s HMC). Additionally, associated API or login credentials need to
be specified.

For each physical or management host given in the infrastructure specification,
we will employ a set of discover probes that are able to gather different aspects

400 S. Bleikertz et al.

of the configuration. We realized multiple hypervisor-specific probes for Xen,
VMware, IBM’s PowerVM, and LibVirt. Furthermore, if the management VM is
running Linux1, we also employ probes for obtaining Linux-specific configuration
information. Currently, we do not discover the configuration of the physical
network infrastructure. However, the framework easily be extended beyond the
existing probes or use configuration data from a third-party source.

4.2 Transformation into a Graph Model

We translate the discovered platform-specific configuration into a unified graph
representation of the virtualization infrastructure, the realization model. The re-
alization model is an instance of the graph model defined in Def. 2. It expresses
the low-level configuration of the various virtualization systems and includes the
physical machine, virtual machine, storage, and network details as vertices. We
generate the realization model by a translation of the platform-specific discovery
data. This is done by so-called mapping rules that obtain platform-specific con-
figuration data and output elements of our cross-platform realization model. Our
tool then stitches these fragments from different probes into a unified model that
embodies the fabric of the entire virtualization infrastructure and configuration.

For all realization model types in T (cf. Def. 8), we have a mapping rule that
maps hypervisor-specific configuration entries to the unified type and, therefore,
establishes a node in the realization model graph. We obtain a complete iteration
of elements of these types as graph nodes. The mapping rules also establish the
edges in the realization model.

This approach obtains a complete graph with respect to realization model
types. Observe that configuration entries that are not related to realization model
types are not represented in the graph. This may introduce false negatives if there
exist unknown devices that yield further information flow edges. To test this, we
can introduce a default mapping rule to include all unrecognized configuration
entries as dummy nodes.

4.3 Coloring through Graph Traversal

The graph traversal phase obtains a realization model and a set of information
source vertices with their designated colors as input. According to Def. 7, the
graph coloring outputs a colored realization model, where a color is added to a
node if permitted by an appropriate traversal rule. We use the following three
types of traversal rules (see Def. 4 and the definition of traversal rules below)
that are stored in a ordered list. We apply a first-matching algorithm to select
the appropriate traversal rule for a given pair of vertices.

Flow rules model the knowledge that information can flow from one type of
node to another if an edge exists. For example, a VM can send information
onto a connected network. These rules model the “follow” of Def. 4. Isolation
rules model the knowledge that certain edges between trusted nodes do not
allow information flow. For example, a trusted firewall is known to isolate, i.e.,
information does not flow from the network into the firewall. These rules model
the “stop” of Def. 4. Default rule means that ideally, either isolation or else flow

Automated Information Flow Analysis of Virtualized Infrastructures 401

rules should exist for all pairs of types and all conditions, that is, we want to
achieve complete coverage according to Def. 6: For any edge and any two types,
the explicit traversal rules should determine whether this combination allows
or disallows flow. In practice, the administrator may lack knowledge for certain
types. As a consequence, we included a default rule as completion. Here, we
establish a default flow rule: whenever two types are not covered by an isolation
or flow rule, then we default to “follow”. To be on the safe side, i.e., reducing
false negatives, we assume that flow is possible along this unknown type of edges.

Given this set of rules, we then traverse the realization model by applying the
set of traversal rules and color the graph according to information flows from
a given source. The traversal starts from the information sources and computes
the transitive closure over the traversal rule application to the graph.

4.4 The Traversal Rules

The graph coloring algorithm requires a set of traversal rules that model infor-
mation flows, isolation properties, and trust assumptions. We will propose a set
of rules and explain their purposes, and leave the correctness argument to the
security analysis in §5.2 and a detailed discussion in Appendix B.2.

Definition 8 (Traversal Rule). Let F be a set of follow types {stop, follow},
T′ ⊂ T be a set of realization model types {Port, NetworkSwitch, Physical-
Switch, ManagementOS, PhysicalDevice, VirtualMachine, VirtualMachineHost,
StorageController, PhysicalDisk, FileSystem, File, any}, and D be a set of flow
directions {⇒,⇐,⇔}, where ⇒ and ⇐ denote a unidirectional, and ⇔ a bi-
directional flow. A traversal rule is a tuple (f, t0, t1, d, P, g) with f ∈ F , t0, t1 ∈
T′, d ∈ D, P is a predicate over properties and colors of the realization model,
and g is a color modification function. During graph coloring (see Def. 7), g can
transform the color c of a colored vertex v̂ while coloring a new vertex v, i.e.,
c(v) = g(c(v̂)).

The traversal rules specified in Table 1 are a ordered list of rules (as defined in
Def. 8). In case the condition is left empty, a true predicate is assumed, and in
case the color modification is empty, g is the identity function.

Definition 9 (Matching Rule). Given a traversal rule (f, t0, t1, d, P, g) as
defined in Def. 8 and a source and destination vertex from the graph traversal:
vs and vd respectively. The rule matches iff i) (t0 = t(vs) ∨ t0 = any) ∧ (t1 =
t(vd)∨ t1 = any) where t(v) denotes the type of a given vertex v, ii) d ∈ {⇒,⇔},
iii) P = true.

The first-matching algorithm iterates over the ordered list of traversal rules (Ta-
ble 1) and applies the matching rule defined in Def. 9. If the matching evaluates
to true, the iteration stops and the matched rule is returned. The matching of
the traversal rules induces a function representation of the traversal rules as
defined in Def. 4.

Our trust assumptions are specified in the rules namely, Rule 1, Rule 2, Rule 3,
and Rule 4. These model that VLANs are isolated on physical switches, that the

402 S. Bleikertz et al.

Table 1. Traversal Rules

Type Flow
Condition
+Color Modification

Trust Rules

1 stop PhysicalSwitch ⇒ Port Has any vlan color
2 stop ManagementOS ⇔ any
3 stop PhysicalMachine ⇔ PhysicalDevice
4 stop V irtualMachine ⇔ V irtualMachineHost

Network Switches

5 stop Port ⇔ NetworkSwitch Port is disabled

VLAN

6 follow Port ⇒ NetworkSwitch Port has VLAN tagging with tag $VLAN
+ Create vlan-$VLAN

7 follow NetworkSwitch ⇒ Port Port’s VLAN tag matches color’s one
+Remove vlan-$VLAN

8 follow NetworkSwitch ⇒ Port Port is trunked
9 stop NetworkSwitch ⇒ Port Port’s VLAN tag mismatches color’s one
10 stop NetworkSwitch ⇒ Port Has any vlan color

Storage

11 stop StorageController ⇒ PhysicalDisk
12 stop FileSystem ⇒ File

Default

13 follow any ⇔ any

privilege VM and the physical machine are trusted and do not leak information,
and that we exclude cross-VM covert channels (see §5.2).

Rule 5 simply stops an information flow if a network port is disabled. Rule 6
and Rule 7 model the VLAN en- and decapsulation of network traffic. Traffic with
a VLAN tag is modeled as a new color vlan with the VLAN tag appended, which
is created in case of encapsulation and removed in case of decapsulation. In the
case of VMware, the VLAN tag for a VM is modeled as a non-zero defaultVLAN
property of the port. Rule 8 specifies that if a port is marked as trunked, which
is required in the case of VMware to allow traffic from the VMs to the physical
network interface, the VLAN traffic is also allowed to flow. Otherwise, if the vlan
color tag mismatches the port’s VLAN tag, we isolate and stop the information
flow (see Rule 9). This also applies to Rule 10, which is the default isolation rule
for VLAN traffic, if one of the previous rules did not match.

On the storage side, we model the behavior of the storage controller not to leak
information from one disk to another with Rule 11. Furthermore, the filesystem
will not leak information from one file to another (Rule 12).

The default rule Rule 13 allows any information flow that was not handled by
a previous rule due to the first-matching algorithm.

We make three observations about the traversal rules: First, administrators
can modify existing and specify further traversal rules, for instance, to relax
trust assumptions or to model known behavior of specific components. Sec-
ond, traversal rules serve as generic interface to include analysis results of other

Automated Information Flow Analysis of Virtualized Infrastructures 403

information flow tools into the topology analysis (e.g., firewall information flow
analysis). Third, the behavior of explicit guardians (see Def. 1) is introduced
by traversal rules specific to these nodes. For instance, the guardians in the
exemplary Figure 2, §1.2, would receive a stop-rule.

4.5 Detecting Undesired Information Flows

The goal of the detection phase is to produce meaningful outputs for system
administrators. For detecting undesired information flows, we color a set of in-
formation sources that mark types of critical information that must not leak. The
idea of the color spill method is to introduce nodes called ‘sinks’ (see Def. 3).
Each sink is colored with a subset of the colors corresponding to the information
that it is allowed to receive. In practice, the administrator provides a list of clus-
ters or zones that shall be isolated, and we add/mark sources and sinks according
to the isolation policy with respect to these zones. In our example from Figure 2,
§1.2, we would mark nodes from the zones “Intranet” (V MB1, V MB2, V MB3)
and “Internet” (V MB4) as sources and the guardians of the opposite zones
(vFWA1, vFWA2) as sinks, to determine isolation breaches in both directions.
After the transitive closure of the traversal rules, we check whether any addi-
tional colors “spilled” into a given sink. If a sink gets connected to an additional
color, then we have found a potential isolation breach. You could imagine the
dedicated color sinks as a honey pot, waiting for colors from other zones to spill
over.

Observe that the detection of a color spill only indicates the existence of a
breach and between which zones (source-sink pairs) it has occurred. The color
flow can be visualized and of some use for administrators to fix the problem. In
addition, we study different refinement methods for root-cause analysis, in order
to pinpoint critical edges responsible for the information flow in a industry case
study (§7).

5 Security Analysis of the Automated Information Flow
Analysis

Definition 10 (System Assumptions). We assume correctness of discov-
ery/translation and isolation behavior as defined in §4.4.
– Completeness of Discovery: We assume that the configuration output of vir-

tualized infrastructures contains all elements that might solicit information
flow (cf. §4.1)

– Correct Translation Modules: We assume that the discovery modules analyz-
ing concrete systems are capable to correctly identify configuration elements
that translate to vertices and edges in the realization model (cf. §4.2).

– Hypervisor Separation: We assume that the hypervisor sufficiently prevents
cross-VM information flow through covert channel down to a tolerable level
(cf. Rule 4, §4.4).1

1 This assumption is modeled by the hypervisor traversal rules and can be explicitly
specified by administrators.

404 S. Bleikertz et al.

– VLAN Separation by Physical Switches: We assume that physical switches
isolate different VLANs from each other (cf. Rule 1, §4.4).

5.1 Reduction to Correctness of the Traversal Rules

The graph coloring establishes the following events through a transitive closure
of traversal rules fT,P over a graph (V, E) with sources V̂ and sinks V̆ .

Definition 11 (Events). Wlog., we model admissible colors of an information
sink v̆ ∈ V̆ as colors associated with v̆. Then we have:

– We call an event B an isolation breach if a information sink v̆ ∈ V̆ is colored
with an inadmissible color of a information source v̂ ∈ V̂ such that v̂ �= v̆.

– We call an event A an alarm if an isolation audit reports an information flow
between a distinct information source v̂ ∈ V̂ and information sink v̆ ∈ V̆ .

– We call the set of events ¬A ∧ B a false negative.
– We call the set of events A ∧ ¬B a false positive.

Corollary 1 (Structural Information Control). Under the assumptions
from Def. 10 and correct traversal rules fT,P, from the absence of false nega-
tives in an isolation analysis (¬A ∧ B = ∅) follows that a breach of structural
information control is indicated by an alarm event A.

Because we modeled the mediation by dedicated guardians explicitly by traversal
rules and inter-zone information flow by B events, this is by construction.

Note that the goal of the analysis system is to detect isolation breaches, that
is, breaches of structural information control. We cannot prove an absence of in-
formation flow, i.e., verify structural information control, but only detect attack
states. We optimize the detection thereof by minimizing the false negative rate
through reduction to correct traversal rules (making sure we miss as few breaches
as possible) and maximizing the Bayesian detection rate through mitigation of
false positives (finding the actual needles in the haystack).

Theorem 1 (Reduction to Traversal Rules, proven in Appendix B.1).
The correct isolation modeling by traversal rules fT,P implies absence of false
negatives.

5.2 Correctness of the Given Traversal Rules

The correctness of the traversal rules from Table 1, §4.4 remains to be shown,
where we need to analyze on two levels: i. correctness of individual rules and ii.
correctness of their composition.

Individual Rules. We examine the traversal rules in detail in Appendix B.2
and highlight the most important points here.

– Network : We model correct implementation of physical switches (Rule 5),
VLAN en- and decapsulation and lift the properties of cryptographic secure
channels (e.g., [6,19]) to VLAN tags (Rules 1, and 8, to 10).

Automated Information Flow Analysis of Virtualized Infrastructures 405

– Physical Machine, Hypervisor, VM Stack : We claim secure isolation by man-
agement OS and physical machine (Rules 2 and 3) as well as cross-VM isola-
tion (Rule 4). The former rules are elementary for virtualization security, the
latter rule is arguable as it models the hypervisor’s multi-tenancy capability
and needs to be reconsidered depending on the actual environment (cf. [21,1]
and discussion in Appendix B.2).

– Storage: We model secure separation by physical disks as well as by the file
system (Rules 11 and 12), where the latter rule is systematically enforced by
virtualization vendors (e.g., [26]) and can be checked automatically [30].

Correct Traversal Rule Composition. The composition establishes the fol-
lowing robustness principles:

– Explicit Knowledge Model : The explicit traversal rules model all and only
known facts about information flow and isolation. Thus, traversal rules focus
on preventing false negatives introduced by invalid assumptions.

– Strict Over-abstraction: When in doubt, the traversal rules must be a con-
servative estimate towards information flow, that is, model a super-set of
potential information flow. By that, traversal rules will never introduce false
negatives at the cost of additional false positives.

– Default-Traversal Behavior : The default rules establishing completion on the
traversal rules must all be default-follow rules, that is, evaluate undetermined
cases to 1 and log such results. Thus, the completion will only introduce false
positives but never false negatives.

We conclude that the traversal rule robustness principles are all lined up to
fence off false negatives, yet at the cost of false positives. Whereas this trade-off
benefits a conservative security analysis, it impacts its effectiveness, as becomes
manifest in its overall detection rate.

5.3 Overall Detection Rate

The overall detection rate of an analysis system establishes a relation between
alarm and breach events, A and B, as defined in Def. 11. We analyze the effec-
tiveness of the analysis system, in particular with respect to rejection of false
positives, whose influence through the base-rate fallacy rate was established by
Axelsson [3] in the area of intrusion detection systems.

Definition 12 (Detection Rates). The detection rate is P[A|B], alarm con-
tingent on breach, obtainable by testing the analysis system against scenarios
known to constitute a B event. The false alarm rate is P[A|¬B], the false posi-
tive rate, obtainable analogously. The false negative rate is P[¬A|B] = 1−P[A|B].
The Bayesian detection rate is P[B|A], that is the rate with which an alarm event
implies an actual breach event. The all-is-well rate is P[¬B|¬A], that is the rate
with which the absence of an alarm implies that all is well.

406 S. Bleikertz et al.

Our goal is to maximize the Bayesian detection rate and the all-is-well rate,
which we determine with Bayes Theorem:

P[B|A] = P[B] · P[A|B]
P[B] · P[A|B] + P[¬B] · P[A|¬B]

If we assume that the rate of breaches is low compared to the rate of non-
breaches, P[B] P[¬B], we see that the false positive rate P[A|¬B] dominates the
denominator of the Bayesian detection rate. This analysis asks for caution. Even
though the focus on absence of false negatives implies a conservative security
analysis, the presence of false positives can diminish the effectiveness of the
analysis system easily.

Conjecture 1. The correctness of the traversal rules determines the absence of
false negative events. The coverage of explicit correct traversal rules determines
the absence of false positive events.

Although the absence of false negatives is important for the system’s security,
effectiveness requires the absence of false positives, as well. This is to ensure that
administrators are able to find the actual breaches in the set of all alarm events.
Therefore, administrators need to fine-tune the traversal rules to maximize cov-
erage and, thus, the Bayesian detection rate.

5.4 Discussion

The transitive closure over the graph coloring securely lifts the isolation anal-
ysis to an analysis of the traversal rules fT,P. Therefore, the correctness of the
traversal rules becomes a make-or-break criterion for the analysis method and
impacts the detection rate.

We observe a complexity reduction: the simple traversal rules have a complex-
ity of their relation R ⊆ T×T. In practice, |T| |V | as well as |T|2 |E| ≤ |V |2,
with the number of properties set for fT,P being small. Therefore, the complex-
ity of analyzing the traversal rules fT,P is much smaller than the complexity of
isolation analysis. This allows administrators to explicitly model and thoroughly
and efficiently check their knowledge and trust assumptions about information
flow and isolation.

Because our traversal rules base on the principle of over-abstraction, that is,
resort to default-traversal in undetermined cases, the method excludes false neg-
atives, at the cost of additional false positives. The method is therefore always on
the conservative side, even though we are well aware that the false positive rate
impacts the overall detection rate [3]. We provide the general analysis framework
and offer user-defined traversal rules to fine-tune the analysis method to reduce
false positives and maximize the Bayesian detection rate. Also, we experiment
with refinement methods for a subsequent root-cause analysis to pinpoint critical
information flow edges.

In principle, our tool is in a similar situation as the first intrusion detection
systems. There do not exist standardized data sets to quantify and calibrate

Automated Information Flow Analysis of Virtualized Infrastructures 407

false positive and false negative rates. We approach this situation by obtaining
real-world data from third parties and are currently testing the analysis method
in sizable real-world customer deployments, such as the case study discussed
below, to establish the detection rates.

6 Implementation

We have implemented a prototype of our automated information flow analysis
in Java1 that consists of roughly twenty thousand lines of code. Furthermore,
we have additional scripts written in Python that perform post-processing for
visualization purposes and refinement for root-cause analysis. The prototype
consists of two main programs, that is, the discovery, and a processing and
analysis program. The result of the discovery is written into an XML file and is
used as the input for the analysis.

6.1 Discovery

The functionality of the discovery and its different probes were already outlined
in §4.1. There exist different ways to implement a discovery probe. A probe
can establish a secure console (SSH) connection to the virtualized host or the
management console where commands are executed and the output is processed.
Typically, the output is either XML, which is stored in the discovery XML file di-
rectly, or the output has to be parsed and transformed into XML. As alternative
to the secure console, a probe can connect to a hypervisor-specific API, such as
a web service, that provides information about the infrastructure configuration.

We illustrate the discovery procedure with VMware as example. Here, the
discovery probe connects to vCenter to extract all configuration information of
the managed resources. It does so by querying the VMware API with the retrie-
veAllTheManagedObjectReferences() call, which provides a complete iteration of
all instances of ExtensibleManagedObject, a base class from which other managed
objects are derived. We ensure completeness by fully serializing the entire object
iteration into the discovery XML file, including all attributes.

6.2 Processing

The processing program consists of the transformation of the discovery XML
into the realization model, the graph coloring, and the analysis of the colored
realization graph.

The realization model is a class model that is used for generating Java class
files. During the transformation of the XML into the realization model, instances
of these classes are created, their attributes set, and linked to instances of other
classes according to the mapping rules (cf. §4.2). Again, we illustrate this process
for VMware. Each mapping rule embodies knowledge of VMware’s ontology of
virtualized resources to configuration names, for instance, that VMware calls
storage configuration entries storageDevice. The edges are encoded implicitly by
XML hierarchy (for instance, that a VM is part of a physical host) as well as

408 S. Bleikertz et al.

explicitly by Managed Object References (MOR). The mapping rules establish
edges in the realization model for all hierarchy links and for all MOR links
between configuration entries for realization model types.

The traversal rules used for the graph coloring (cf. §4.3 and §4.4) are specified
in XML. Intermediate results, such as the paths of the graph coloring, can be
captured and used for further processing, i.e., visualization. We implemented
Python scripts that generate input graphs for the Gephi visualization frame-
work 2, such as illustrated in Figure 1.

7 Case Study

We launched a case study with a global financial institution for a performance
evaluation and for further validation of detection rates and behavior in large-
scale heterogeneous environments. The analyzed virtualized infrastructure is
based on VMware and consists of roughly 1,300 VMs, the corresponding re-
alization model graph of 25,000 nodes and 30,000 edges. The production system
has strong requirements on isolation between clusters of different security levels,
such as high-security clusters, normal operational clusters, backup clusters and
test clusters. In addition, we can work with a comprehensive inventory of virtu-
alized resources that serves as specification of an ideal state (machine placement,
zone designation and VLAN configuration) and as basis for alarm validation.

We examine preliminary lessons learned, where we first consider the operation
of the tool itself. The phases discovery, transformation to realization model and
graph coloring executed successfully. The visualization of all results presented a
challenge as a 25,000-node/30,000-edge graph overburdened the built-in visual-
ization of the tool.

From a performance perspective, the discovery of the infrastructure using the
VMware probe in combination with vCenter requires about seven minutes, and
results in a discovery XML file with a size of 61MB. The discovery was performed
in a production environment, where network congestion and other tools using
the same vCenter can have a negative effect on the discovery performance. The
overall analysis of the infrastructure using the discovery XML file requires 53
seconds, where 46 seconds are spent on the graph coloring. This demonstrates a
reasonable performance for the discovery and analysis of a mid-sized infrastruc-
ture, such as the one in our case study.

From a security perspective, the tool indeed found several realistic isolation
breaches, which we highlighted by adding virtual edges between breached clus-
ters. All isolation breaches constituted potential information flows. By that we
could show actual breaches between high-security, normal operational and test
clusters. We have furthermore shown that the documentation of the permitted
flows was incomplete: One breach that the system identified violated the initial
policy given by the customer and was fixed by augmenting the policy.

2 http://gephi.org/

http://gephi.org/

Automated Information Flow Analysis of Virtualized Infrastructures 409

Fig. 4. Root-cause analysis of a source cluster with information flow to a sink cluster.
The tree refinement derives only the sub-graphs relevant for an isolation breach. The
“flower” is a large-scale switch.

Root-cause analysis answers the question which edges and nodes are ulti-
mately responsible for the breach. We found that color spill after a traversal
to a new cluster may hamper the subsequent root-cause analysis. We therefore
introduced multiple automated refinement mechanisms after the graph-coloring
phase to support the elimination of classes of potential root causes. First, we
benefited greatly from a process of elimination, that is, to exclude, for instance,
that information has flown over storage edges. Second, it was helpful to allow
partial coloring, in particular to stop color propagation after detecting a breach
to another cluster. Third, we introduced a reverse flow tree that captured which
path information flow took as prelude to a breach. Figure 4 depicts an example
of such a color tree: the tree is a subgraph highlighting a cross-cluster informa-
tion flow path. Fourth, we further refined this tree by extracting critical edges,
such as passed VLANs, to pinpoint routes of information flow.

In conclusion, we added a refinement phase driven by reusable Python scripts.
We obtained multiple realistic alarms and could trace their root causes. The
graph export to Gephi enabled the efficient visualization of root causes and
information flows for human validation.

8 Conclusions and Future Work

We demonstrated an analysis system that discovers the configuration of complex
heterogeneous virtualized infrastructures and performs a static information flow
analysis. Our approach is based on a unified graph model that represents the

410 S. Bleikertz et al.

configuration of the virtualized infrastructure and a graph coloring algorithm
that uses a set of traversal rules to specify trust assumptions and information
flow properties in virtualized systems. Based on the colored graph model, the
system is able to diagnose isolation breaches, which would violate the customer
isolation requirements in multi-tenant datacenters. We showed in our security
analysis that we can reduce the correctness and detection rate to the correctness
and coverage of the graph traversal rules. Based on existing research and systems
knowledge, we submit that the present traversal rules are natural and correct.

To make this a comprehensive solution for validating virtual infrastructures
in practice, there are several open questions. The first area of future work is the
kind of information flows the system can model. Whereas it is currently restricted
to a binary decision, i.e., whether information flows or not, future work may
include different flow types (traffic types) and the bandwidth of covert channels.
We also pursue research on topological covert channels, i.e., to what extent the
composition of components with associated information flow rules exceeds the
information flow risks of individual components. Part of this area is the modeling
of imperfect guardians. For instance, firewalls let certain kinds of traffic pass and
block others. We can build on the results of firewall and reachability analyses
discussed in §2 to capture the behavior of such guardians and transform it into
detailed guardian- and flow-type-specific traversal rules.

The second open problem is a platform-independent language to express se-
curity requirements and trust assumptions. In our current system, isolation as-
sumptions and rules are provided in XML format, and a domain-specific language
could ease the specification of requirements for customers. Bleikertz and Groß [4]
proposed a first formal language to that end.

A third area of future work is to extend our approach towards other config-
uration properties, such as dependability. Today, misconfiguration of redundant
components (network, disks, machines) often is only detected if the main com-
ponent fails. We believe that our approach can be used to validate the correct
configuration of such backup components to ensure correct fail-over. In addition,
dynamic analysis becomes more important with increasing size of the topology
and change frequency. Our current approach performs a static analysis of a given
configuration state. A dynamic analysis can be emulated by running multiple
static analyses and comparing the resulting realization models. However, a truly
dynamic analysis needs to analyze small configuration changes and efficiently
determine their effect on the topology.

Acknowledgments. We would like to thank Ray Valdez, Michael Steiner, Ste-
fan Berger, and Dimitrios Pendarakis of the IBM Watson Research Center for
valuable feedback and productive collaboration during our research. The research
leading to these results has received funding from the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) under grant agreement n257243
(TClouds project: http:/www.tclouds-project.eu).

http:/www.tclouds-project.eu

Automated Information Flow Analysis of Virtualized Infrastructures 411

References

1. Aciiçmez, O.: Yet another microarchitectural attack: exploiting i-cache. In: CSAW
2007: Proceedings of the 2007 ACM Workshop on Computer Security Architecture,
pp. 11–18. ACM, New York (2007)

2. Al-Shaer, E., Marrero, W., El-Atawy, A., ElBadawi, K.: Global Verification and
Analysis of Network Access Control Configuration. Tech. rep., DePaul University
(2008)

3. Axelsson, S.: The base-rate fallacy and the difficulty of intrusion detection. ACM
Trans. Inf. Syst. Secur. 3(3), 186–205 (2000)

4. Bleikertz, S., Groß, T.: A virtualization assurance language for isolation and de-
ployment. In: Proceedings of the 12th IEEE International Symposium on Policies
for Distributed Systems and Networks (IEEE POLICY 2011). IEEE, Los Alamitos
(2011)

5. Bleikertz, S., Schunter, M., Probst, C.W., Pendarakis, D., Eriksson, K.: Security au-
dits of multi-tier virtual infrastructures in public infrastructure clouds. In: Proceed-
ings of the 2010 ACM Workshop on Cloud Computing Security, CCSW 2010, pp.
93–102. ACM, New York (2010), http://doi.acm.org/10.1145/1866835.1866853

6. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002), extended version in IACR Cryptology ePrint
Archive 2002/059, http://eprint.iacr.org/

7. Garfinkel, T., Rosenblum, M.: When Virtual is Harder than Real: Security Chal-
lenges in Virtual Machine Based Computing Environments. In: HOTOS 2005:
Proceedings of the 10th Conference on Hot Topics in Operating Systems, p. 20.
USENIX Association, Berkeley (2005)

8. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20. IEEE, Los Alamitos (1982)

9. Gray III, J.W.: Toward a mathematical foundation for information flow security.
In: IEEE Symposium on Security and Privacy, pp. 21–35. IEEE, Los Alamitos
(1991)

10. Haigh, J.T., Young, W.D.: Extending the non-interference version of MLS for SAT.
In: IEEE Symposium on Security and Privacy, p. 60. IEEE, Los Alamitos (1986)

11. Jacob, J.: Separability and the detection of hidden channels. Inf. Process. Lett. 34,
27–29 (1990), http://portal.acm.org/citation.cfm?id=79804.79852

12. Kelem, N.L., Feiertag, R.J.: A Separation Model for Virtual Machine Monitors. In:
IEEE Symposium on Security and Privacy, pp. 78–86. IEEE, Los Alamitos (1991)

13. Khakpour, A.R., Liu, A.: Quarnet: A Tool for Quantifying Static Network Reach-
ability. Tech. Rep. MSU-CSE-09-2, Department of Computer Science, Michigan
State University, East Lansing, Michigan (January 2009)

14. Krothapalli, S.D., Sun, X., Sung, Y.W.E., Yeo, S.A., Rao, S.G.: A toolkit for au-
tomating and visualizing VLAN configuration. In: SafeConfig 2009: Proceedings
of the 2nd ACM Workshop on Assurable and Usable Security Configuration, pp.
63–70. ACM, New York (2009)

15. Lampson, B.W.: A note on the confinement problem. Communications of the
ACM 16(10), 613–615 (1973)

16. Mantel, H.: Information flow control and applications - bridging a gap -. In: Oliveira,
J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 153–172. Springer, Heidelberg
(2001)

http://doi.acm.org/10.1145/1866835.1866853
http://eprint.iacr.org/
http://portal.acm.org/citation.cfm?id=79804.79852

412 S. Bleikertz et al.

17. Marmorstein, R., Kearns, P.: A Tool for Automated iptables Firewall Analysis.
In: ATEC 2005: Proceedings of the USENIX Annual Technical Conference, p. 44.
USENIX Association, Berkeley (2005)

18. Mayer, A., Wool, A., Ziskind, E.: Fang: A Firewall Analysis Engine. In: SP 2000:
Proceedings of the 2000 IEEE Symposium on Security and Privacy, p. 177. IEEE,
Washington, DC, USA (2000)

19. Mödersheim, S., Viganò, L.: Secure pseudonymous channels. In: Backes, M., Ning,
P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 337–354. Springer, Heidelberg
(2009)

20. Percival, C.: Cache missing for fun and profit (May 2005),
http://www.daemonology.net/papers/htt.pdf

21. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My
Cloud: Exploring Information Leakage in Third-Party Compute Clouds. In: CCS
2009: Proceedings of the 16th ACM Conference on Computer and Communications
Security, pp. 199–212. ACM, New York (2009)

22. Rushby, J.: Design and verification of secure systems. In: Proceedings of the Eighth
ACM Symposium on Operating Systems Principles, SOSP 1981, pp. 12–21. ACM,
New York (1981), http://doi.acm.org/10.1145/800216.806586

23. Rushby, J.: Proof of separability a verification technique for a class of security
kernels. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) International Symposium
on Programming 1982. LNCS, vol. 137, pp. 352–367. Springer, Heidelberg (1982)

24. Rushby, J.: Noninterference, transitivity, and channel-control security policies.
Tech. rep., SRI International (December 1992),
http://www.csl.sri.com/papers/csl-92-2/

25. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21, 2003 (2003)

26. VMware: Providing LUN Security (March 2006),
http://www.vmware.com/pdf/esx_lun_security.pdf

27. Wojtczuk, R.: Adventures with a certain Xen vulnerability (in the PVFB backend)
(October 2008),
http://invisiblethingslab.com/pub/xenfb-adventures-10.pdf

28. Wool, A.: Architecting the Lumeta Firewall Analyzer. In: SSYM 2001: Proceedings
of the 10th Conference on USENIX Security Symposium, p. 7. USENIX Associa-
tion, Berkeley (2001)

29. Xie, G., Zhan, J., Maltz, D., Zhang, H., Greenberg, A., Hjalmtysson, G., Rexford,
J.: On static reachability analysis of IP networks. In: INFOCOM 2005: 24th Annual
Joint Conference of the IEEE Computer and Communications Societies, March 13-
17, vol. 3, pp. 2170–2183. IEEE, Los Alamitos (2005)

30. Yang, J., Twohey, P., Engler, D., Musuvathi, M.: Using model checking to find
serious file system errors. ACM Trans. Comput. Syst. 24, 393–423 (2006),
http://doi.acm.org/10.1145/1189256.1189259

Notes

1IBM, PowerVM and pSeries are trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Linux is a registered trade-
mark of Linus Torvalds in the United States, other countries, or both. Java is a regis-
tered trademark of Oracle and/or its affiliates. Pentium is a registered trademark of
Intel Corporation or its subsidiaries in the United States and other countries. Other
product and service names might be trademarks of IBM or other companies.

http://www.daemonology.net/papers/htt.pdf
http://doi.acm.org/10.1145/800216.806586
http://www.csl.sri.com/papers/csl-92-2/
http://www.vmware.com/pdf/esx_lun_security.pdf
http://invisiblethingslab.com/pub/xenfb-adventures-10.pdf
http://doi.acm.org/10.1145/1189256.1189259

Automated Information Flow Analysis of Virtualized Infrastructures 413

A Information Flow Types

We borrow concepts from information flow analysis, where we focus on infor-
mation flow as the deterministic propagation of discrete units of information
throughout a system.

A.1 Flow Types

Information flow analysis of multi-tenant configurations in virtualized environ-
ments analyzes overt and covert channels.3 An overt channel is intended for
communication; a principal can read or write on that channel within the limits
of some access control policy.

Lampson [15] introduced the term covert channel as a channel not intended
for information transfer at all. Consider a malware in VM Alice which attempts
to transfer information to another instance of the malware in VM Bob, both
hosted on the same hypervisor. The malware on VM Alice can, for instance,
monopolize a resource4 to transmit a bit observed by the malware on VM Bob
in performance or through-put decrease.

We perceive covert channels to be a common phenomenon in virtualized infras-
tructures. Requiring the absence of all covert channels from hypervisors, physical
hosts and resources, will render many resulting system impractical. Therefore, we
allow administrators to specify a certain amount of covert channel information
flow as tolerable.

Requirement Definition. We informally stated our security goal as isolation
between zones, which sounds similar to non-interference [8,9]. This requirement
enforces that actions in one zone do not have any effect on subsequent behavior
or outputs in another zone.

The transitivity of non-interference renders it, however, unsuitable to model
our setting, in which information flow via guardians may be permitted, whereas
the corresponding direct flow is disallowed. Agreeing to the arguments of
Rushby [24] and Mantel [16], we would need intransitive non-interference [10]
to start with. Furthermore, the existing definitions are based on traces of steps
and, thus, inherently dynamic5, whereas we aim at a high-level static information
flow analysis (its topology and communication links). Therefore, we preclude a
step/trace-based non-interference analysis.

Another candidate is the analysis for separation, e.g. [23,12]: one removes all
guardians from the system and verifies that the remaining parts are perfectly
separated; however this approach was criticized by Jacob [11].

3 This is similar to the analysis of explicit and implicit information flow on high and
low variables [25].

4 Examples include reserving a bus, launching expensive computations, flooding a
cache, sending many network packets.

5 To that end, Haigh and Young [10] have shown that it is necessary to analyze the
complete trace of actions subsequent to a given action to validate that the action is
allowed to interfere with another zone.

414 S. Bleikertz et al.

The concept of channel control [22] sounds interesting, as it captures our re-
quirement to specify exceptions to the general zoning requirements. For instance,
two zones should not communicate with each other unless a guardian mediates
and filters the communication. In our case, however, we are not studying single
channels, but a complex topology of channels.

B Security of Information Flow Analysis

B.1 Reduction to Traversal Rules

Theorem 2 (Reduction to Traversal Rules, Theorem 1). The correct
isolation modeling by traversal rules fT,P implies absence of false negatives.

We prove Theorem 1 by contradiction and induction over the length n back-trace
graph traversal. The proof by itself is straight-forward as graph coloring (Def. 7)
is a recursive definition.

Proof. Let sets of types T and properties P, a valid graph (V, E) and information
sources V̂ and sinks V̆ be given.

Suppose a false negative event N ∈ (¬A ∧ B) �= ∅. By definition, there exists
a breach, that is a sink v̆ ∈ V̆ for which holds that it is colored by a source
v̂ ∈ V̂ , v̂ �= v̆.

Initialize a set E = ∅.
Induction start n = 1: the sink v̆ is colored because of the breach event B.
Assume the induction statement true for n − 1: A colored vertice vn−1

could only have been colored if

(a) vn−1 is source v̂ with the corresponding color (then we are done and output
E) or

(b) there exists an edge e = (vn, vn−1) with vn = (·, tn, pn) and vn−1 =
(·, tn−1, pn−1) for which holds: vn is colored and the traversal rules
fT,P(tn, tn−1, pn, pn−1) evaluate to follow. Accumulate E := E ∪ {e}.

If the induction succeeds, then E is a construction of a path between source v̂
and sink v̆, thus an alarm event, A. We obtain a contradiction against N ∈ ¬A.

Consequently, for any case in which no sink-source path can be constructed,
there exists an edge e for which the traversal rules fT,P evaluate to stop. This
reduces the false negative to the correctness for the traversal rules.

B.2 Inspection of Individual Traversal Rules

First, let us analyze the rules for network switches and VLAN traffic. Rule 5 as-
sume a correct implementation of an isolation by network switches for switched-
off ports. Rules 6 and 7 establish the VLAN en- and decapsulation by network
switches and are interesting for the security analysis. The rules assign a VLAN-
specific color to information flow for in-ports with VLAN tagging and only al-
low information traversal at out-ports with matching VLAN tags. This models

Automated Information Flow Analysis of Virtualized Infrastructures 415

the VLANs’ traffic separation by encryption lifted to VLAN tags as well as a
cross-session key separation assumption, standard for secure channels: messages
encrypted under one VLAN tag cannot interfere with messages encrypt under
other VLAN tags and can only be decrypted under the same VLAN tag. We
can derive these properties from research on secure channels and their parallel
composition (in cryptography for instance Canetti and Krawczyk’s work on UC
secure channels [6]; in formal methods for instance Mödersheim and Viganò’s
formalization of secure pseudonymous channels [19].) Rule 9 stops information
flow at ports with non-matching VLAN tags accordingly. Rule 8 has informa-
tion flow follow through for trunked VLAN ports. Otherwise, we assume that the
network and physical switches securely configure and implement VLAN traffic
isolation for flows from switch to port (Rules 10 and 1). We conclude that these
assumptions are natural and model correct network behavior.

Second, let us consider the stack of physical machine, hypervisor and VMs.
Rules 2 and 3 make the assumptions that a management OS and physical host
provide secure isolation and that all information flow is accounted for explic-
itly. These assumptions are necessary for virtualization security, as information
leakage from these components can subvert the entire system’s security, and
model standard trust assumptions. Rule 4 is interesting as it assumes that hy-
pervisors sufficiently separate VMs against each other, that is, that information
flow through cross-VM covert channels can be neglected. Research results ex-
ist that highlight cross-VM covert channels, for instance [21,1]. Therefore, this
trust assumption on the hypervisor’s multi-tenancy capability must be subject to
thorough debate.6 Whereas the isolation assumptions on physical machine and
management OS are natural and well founded, we conclude that the modeling
of covert channels is a key trust decision for the hypervisor model.

Third, let us consider the information model for storage. Rule 11 models that
the storage controllers are capable of separating information flow to physical
disks, whereas Rule 12 establishes that the file system prevents cross file infor-
mation flow through its access control enforcement. The former property is sys-
tematically enforced by virtualization vendors, such as VMware [26] that do not
allow reconfiguration of storage back-ends for VMs. The latter property found
attention in research and can be checked with tool support [30]. We conclude
that both assumptions are natural to make.

6 For high-security environments, we recommend to set this rule to follow and therefore
only relying on physical separation, yet dismissing hypervisor multi-tenancy.

Scalable Analysis of Attack Scenarios�

Massimiliano Albanese1, Sushil Jajodia2, Andrea Pugliese3,
and V.S. Subrahmanian1

1 University of Maryland
{albanese,vs}@umiacs.umd.edu

2 George Mason University
jajodia@gmu.edu

3 Unversity of Calabria
apugliese@deis.unical.it

Abstract. Attack graphs have been widely used for attack modeling,
alert correlation, and prediction. In order to address the limitations of
current approaches – scalability and impact analysis – we propose a novel
framework to analyze massive amounts of alerts in real time, and measure
the impact of current and future attacks. Our contribution is threefold.
First, we introduce the notion of generalized dependency graph, which
captures how network components depend on each other, and how the
services offered by an enterprise depend on the underlying infrastruc-
ture. Second, we extend the classical definition of attack graph with the
notion of timespan distribution, which encodes probabilistic knowledge
of the attacker’s behavior. Finally, we introduce attack scenario graphs,
which combine dependency and attack graphs, bridging the gap between
known vulnerabilities and the services that could be ultimately affected
by the corresponding exploits. We propose efficient algorithms for both
detection and prediction, and show that they scale well for large graphs
and large volumes of alerts. We show that, in practice, our approach can
provide security analysts with actionable intelligence about the current
cyber situation, enabling them to make more informed decisions.

Keywords: Attack graphs, dependency graphs, vulnerability analysis,
cyber situation awareness, scalability.

1 Introduction

Attack graphs have been widely used to model the possible ways an attacker can
exploit network vulnerabilities, and to correlate alerts. There has been extensive
work on automatically deriving attack graphs from network scans [10,11]. How-
ever, existing approaches to alert correlation typically have two major limita-
tions. First, attack graphs do not provide a mechanism to evaluate the likelihood
of each attack pattern or its impact on the enterprise. Second, although scalable

� The work presented in this paper is supported in part by the Army Research Office
MURI award number W911NF-09-1-0525.

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 416–433, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Scalable Analysis of Attack Scenarios 417

generation of attack graphs has been studied [10], scalability issues with respect
to the alert correlation process have not been fully addressed yet.

In order to address the above limitations, we propose a novel framework to
analyze massive amounts of raw security data in real time, and measure the
impact of current and future attacks. First, we introduce the notion of general-
ized dependency graph, which captures how network components depend on each
other, and how the services offered by an enterprise depend on the underlying
infrastructure. Second, we extend the classical definition of attack graph with
the notion of timespan distribution, which encodes probabilistic knowledge of
the attacker’s behavior. Third, we introduce the notion of attack scenario graph,
which combines dependency and attack graphs, bridging the gap between known
vulnerabilities and the missions or services that could be affected by the corre-
sponding exploits. In the last several years, there has been significant work in
dependency modeling [13] and automatic discovery of dependencies [3]. However,
to the best of our knowledge, we are the first to combine attack and dependency
graphs to enhance situation awareness. In practice, the proposed framework pro-
vides security analysts with a more complete picture of the cyber situation. In
fact, combing attack and dependency graphs not only provides analysts with a
set of possible future scenarios, but also estimates their probability and potential
impact. Finally, in order to guarantee scalability, we propose efficient algorithms
to track and index ongoing attacks and analyze future scenarios, and show that
they scale well for large graphs and large volumes of incoming alerts.

Throughout this paper, we will use the network of Figure 1(a) as a running
example. This network offers two services, Online Shopping and Mobile Order
Tracking, and consists of three subnetworks delimited by firewalls. Two subnet-
works implement the two services, and each of them includes a host accessible
from the Internet. The third subnetwork implements the business logic, and in-
cludes a central database server. An attacker who wants to steal sensitive data
from the main database server will need to breach the firewalls and gain privi-
leges on several hosts before reaching the target. The attack graph of Figure 1(b)
shows that, once a vulnerability VC on the Mobile Application Server has been
exploited, we can expect the attacker to exploit either VD or VF . However, the
attack graph alone does not answer the following important questions: Which
vulnerability has the highest probability of being exploited? Which attack pat-
tern will have the largest impact? How can we mitigate the risk? Our framework
is designed to answer these questions efficiently.

The architecture of the proposed framework is sketched in Figure 1(c). We
assume that attack and dependency graphs are given, and combine them into
an attack scenario graph (Section 5). Incoming alerts are matched against such
data structure and indexed in real-time.

The paper is organized as follows. Section 2 discusses related work. Section 3
introduces the notion of generalized dependency graph, whereas Section 4 de-
fines probabilistic temporal attack graphs. Section 5 introduces the notion of at-
tack scenario graph, and Section 6 presents the proposed index data structure,
along with an algorithm to update the index in real-time. Section 7 presents an

418 M. Albanese et al.

(a) Example of network

host hF

host hC
host hG

host hD

Internet
1

1
1

2
1

1 exploit: VC

1 exploit: VF

1 exploit: VD

2 exploits:
V'G and V''G

(b) Example of attack graph

(c) System architecture (d) Example of dependency graph

Fig. 1. Running example and system architecture

algorithm to analyze and rank future possible scenarios. Finally, Section 8 re-
ports experimental results, and Section 9 presents conclusions.

2 Related Work

To reconstruct attack scenarios from isolated alerts, some correlation techniques
employ prior knowledge about attack strategies [5] or alert dependencies [17].
Other techniques aggregate alerts with similar attributes [21] or statistical pat-
terns [20]. To the best of our knowledge, the limitation of the nested-loop ap-
proach [22], especially for correlating intensive alerts in high-speed networks, has
not been addressed. In [19], Noel et al. adopt a vulnerability-centric approach
to alert correlation, because it can effectively filter out bogus alerts. However,
the nested loop procedure is still used in [19]. Attack scenarios broken by missed
alerts are reassembled by clustering alerts with similar attributes [18]. Designed
for a different purpose, the RUSSEL language is similar to our approach in that
the analysis only requires one-pass of processing [8].

With respect to the general problem of modeling activities, Hidden Markov
Models and their variants have been used extensively. For instance, Duong et
al. [6] introduce the Switching Hidden Semi-Markov Model, a two-layered ex-
tension of the Hidden Semi-Markov Model. Dynamic Bayesian Networks [9] and

Scalable Analysis of Attack Scenarios 419

probabilistic extensions of Petri Nets [1] have also been used for tracking and rec-
ognizing multi-agent activities. A survey of temporal concepts and data models
used in unsupervised pattern mining from symbolic temporal data is presented
in [16]. In recent years, there has been extensive research in Data Stream Man-
agement Systems [7]. However, the scope of our work is drastically different.
In fact, we are not interested in retrieving sets of data items satisfying certain
conditions and updating such sets as new data is received. Instead, we are inter-
ested in identifying sets of alerts that, with a probability above a given threshold,
constitute the “evidence” that a cyber attack occurred.

In large enterprise networks, the performance of an application may depend
on many hosts and network components. Recently, automated discovery of de-
pendencies from network traffic [2,12] has been proposed. Chen et al. [4] present
a comprehensive study of the performance and limitations of this class of depen-
dency discovery techniques, and introduce a new system, Orion, that discovers
dependencies using packet headers and timing information in network traffic.

To the best of our knowledge, there has been virtually no work on efficient
indexing to support scalable and real-time attack detection. Similarly, there has
been no work on integration of attack and dependency graphs to enhance situa-
tion awareness. In conclusion, our work differs from previous works in two major
ways. First, we provide a mechanism to index alerts and recognize attacks in
real-time. Second, we provide a mechanism to integrate attack and dependency
graphs and enable real-time scenario analysis and better security decisions.

3 Generalized Dependency Graphs

Modern distributed systems typically consist of a large number of interdependent
hardware and software components. Some dependencies may not even be explicit,
and Leslie Lamport’s famous quote “a distributed system is one in which the
failure of a computer you didn’t even know existed can render your own computer
unusable” [14] greatly captures the essence of the problem. In the following, we
will use the term network entity, or simply entity, to refer to any component of
a distributed system at any level of abstraction (e.g., subnet, host, application,
service). Dependencies amongst network entities can be broadly classified in the
following three categories: redundancy (a network entity depends on a redundant
pool of resources), graceful degradation (a network entity depends on a pool of
entities; if one fails, the system can continue to work with degraded performance),
and strict dependence (a network entity strictly depends on a pool of other
entities; if one fails, the dependent entity becomes unusable).

In order to model all possible scenarios, we first assume that the status of
each network entity can be represented as a performance indicator on a scale
from 0 to 1, 1 meaning that the entity is fully working, and 0 meaning that the
entity is unusable. We then assume the existence of a family F of functions of the
form f : [0, 1]n → [0, 1], which evaluate the performance of an entity given the
performance of the n entities it depends on. We call these functions dependency
functions, and require that f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1.

420 M. Albanese et al.

The equations below define dependency functions corresponding to the three
scenarios described above. If a dependency is described by fr, then h will be
fully operational if at least one of the entities it depends on is fully operational.
If the dependency is described by fs, all the entities need to be fully operational
for h to be fully operational.

fr(l1, . . . , ln) =

{
1, if ∃i ∈ [1, n] s.t. li = 1
0, otherwise

fd(l1, . . . , ln) = 1
n

∑n
i=1 li

fs(l1, . . . , ln) =

{
1, if ∀i ∈ [1, n] li = 1
0, otherwise

We can now introduce a generalization of dependency graphs that can capture
not only which entities depend on which other entities, but also the nature of
such dependencies. Service dependency models have been widely studied. In [13],
Kheir et al. propose a service dependency representation that enables intrusion
and response impact evaluation. However, although it is possible to automat-
ically discover dependencies [3], the task of understanding the nature of such
dependencies has not been fully automated yet. For the purpose of the pro-
posed framework, we will assume that dependency graphs generated via existing
tools are manually augmented by system administrators. Further research will
be needed to fully automate this process.

Definition 1 (Generalized Dependency Graph). A generalized dependency
graph is a labeled directed acyclic graph D = (H, Q, φ), where

– H is a set of nodes, corresponding to network entities;
– Q = {(h1, h2) ∈ H ×H | h1 depends on h2} is a set of edges;
– φ : H → F is a mapping that associates with each node h ∈ H a function

f ∈ F , s.t. the arity of f is equal to the outdegree of h1.

For each node h ∈ H we will use h· to denote the set of entities that depend on
h and ·h to denote the set of entities h depends on.

Figure 1(d) shows a dependency graph for the network of Figure 1(a). Both hE

and hF strictly depend on hG. Local database servers also depend on hG, but
they can continue to operate, with degraded performance, if hG is compromised.

Without loss of generality, we assume an arbitrary but fixed time granularity,
and use T to denote the set of all time points. We can now introduce the defi-
nition of network status function, which, for each time point t, maps a network
entity to its performance at time t.

Definition 2 (Network Status Function). Given a generalized dependency
graph D = (H, Q, φ), a network status function for D is a function s : H×T →
[0, 1] such that ∀h ∈ H and ∀t ∈ T , s(h, t) ≤ f(s(hi1 , t), . . . , s(him , t)), where
f = φ(h), and ·h = {hi1 , . . . , him} is the set of entities h depends on.
1 If h is a terminal node in the dependency graph (i.e., it does not depend on any

other node), we assume φ(h) is the constant (0-ary) function 1.

Scalable Analysis of Attack Scenarios 421

The performance of an entity h is bounded by its corresponding dependency
function, which represents a theoretical maximum. In practice, the performance
may be lower if h has been directly compromised by an attack.

4 Attack Modeling

In this section, we start by recalling the definition of attack graph presented
in [22], and then introduce the notion of probabilistic temporal attack graph.
An attack graph is a directed graph having two types of vertices, exploits and
security conditions. Exploits are host-bound vulnerabilities, whereas security
conditions refer to the network states required or implied by exploits, such as
privilege levels. In [22], an attack graph is formally defined as a directed graph
G = (V ∪C, Rr∪Ri), where V is the set of known exploits, C is the set of relevant
security conditions, and Rr and Ri denote the require and imply relationship
between exploits and security conditions, defined as Rr ⊆ C × V and Ri ⊆ V ×
C, respectively. The prepare-for relationship between exploits is the composite
relation Ri ◦Rr. For the purpose of the type of analysis we present in this paper,
we can assume, without loss of generality, that attack graphs are acyclic.

We extend the attack graph model discussed above with the notion of timespan
distribution, which encodes probabilistic knowledge of the attacker’s behavior as
well as temporal constraints on the unfolding of attacks. We assume that each
step of an attack sequence is completed within certain temporal windows after
the previous exploit has been executed, each associated with a probability.

Example 1. Suppose an attacker has gained some privileges on host hE in Fig-
ure 1. Using these privileges, he can then create the conditions to exploit a
vulnerability on the main database server. However, this will take an amount of
time depending on his skill level. The attacker will then have time to exploit the
vulnerability until the vulnerability itself is patched, or the attack is discovered.

Leversage and Byres [15] describe how to estimate the mean time to compromise
a system and relate that to the skill level of the attacker. This approach can
be generalized to estimate timespan distributions for individual vulnerability
exploits. In fact, we can assume that the time taken to exploit a vulnerability
varies with the skill level of the attacker. Additionally, some vulnerabilities are
easier to exploit than others, thus exhibiting higher probabilities. We will assume
that timespan distributions are given, as a detailed discussion on how to derive
them would be beyond the scope of this paper. The definitions of timespan
distribution and probabilistic temporal attack graph are given below.

Definition 3 (Timespan Distribution). A timespan distribution ω ∈ Ω is a
pair (I, ρ) where:

– I is a set of time intervals2 s.t. ∀[x, y] ∈ I, x ≤ y;
– ∀[x, y], [x′, y′] ∈ I s.t. [x, y] �= [x′, y′], intervals [x, y] and [x′, y′] are disjoint;

2 A time interval is a closed interval of the set T of all time points.

422 M. Albanese et al.

– ρ : I → [0, 1] is a function that associates a value ρ(x, y) ∈ [0, 1] with each
time interval [x, y] ∈ I.

Given a timespan distribution ω = (I, ρ), we use S(ω) to denote
∑

[x,y]∈I ρ(x, y),
and ω.tmax to denote max[x,y]∈I | ρ(x,y)>0 y, i.e., the maximum time point for
which ρ is not 0. We require that S(ω) ≤ 1. �
Intuitively, a timespan distribution (I, ρ) specifies a set I of disjoint time in-
tervals when a given exploit might be executed, and an incomplete probability
distribution ρ over I: ρ(x, y) is the probability that the exploit will in fact be
executed during the time interval [x, y], following the execution of the previous
exploit. ρ is not forced to be complete as the exploit might not be executed.

Definition 4 (Probabilistic Temporal Attack Graph). Given an attack
graph G = (V ∪C, Rr ∪Ri) a probabilistic temporal attack graph built on G is
a labeled directed acyclic graph A = (V, E, δ, γ) where:

– V is the finite set of vulnerability exploits in the attack graph;
– E = Ri ◦Rr;
– V s = {v ∈ V | �v′ ∈ V s.t. (v′, v) ∈ E} �= ∅, and V e = {v ∈ V | �v′ ∈ V s.t.

(v, v′) ∈ E} �= ∅, i.e., there exists at least one start node and one end node;
– δ : E → Ω is a function that associates a timespan distribution with each

edge in the graph, such that (∀v ∈ V)
∑

{v′∈V |(v,v′)∈E} S(δ(v, v′)) = 1;
– γ is a function that associates with each exploit vj ∈ V \ V s the condition

γ(vj) =
∧

ck∈C s.t. (ck,vj)∈Rr

⎛
⎝ ∨

vi∈V s.t. (vi,ck)∈Ri

νi,j

⎞
⎠,

where νi,j denotes that vj must be preceded by vi and must be executed within
one of the time intervals defined by δ(vi, vj), following the execution of vi.�

Intuitively, an edge e = (vi, vj) in a probabilistic temporal attack graph indicates
that vulnerability exploit vi prepares for exploit vj . The timespan distribution
δ(e) = (I, ρ) labeling the edge indicates how the probability that vj is executed
after vi changes with time. The condition γ(vj) labeling a node vj encodes the
dependencies between vj and the exploits preparing for it. In the original attack
graph, each exploit vj may require one or more security conditions to be satisfied,
and each such condition may be achieved through several alternative exploits.
This explains the conjunctive normal form of γ(vj). In the following, we will
often abuse notation, and use vi instead of νi,j in condition γ(vj), when vj is
clear from the context. Additionally, we say that a set V ∗ of exploits satisfies
condition γ(vj) if exploits in V ∗ are sufficient to satisfy all the security conditions
required by vi.

Attacks can be executed in many different ways, which we will refer to as
instances. The notion of attack instance is formalized in the following definition.

Definition 5 (Attack Instance). Given a probabilistic temporal attack graph
A = (V, E, δ, γ), an instance of A is a tree T = (VT , ET) over A, rooted at an
end node of A and defined as follows:

Scalable Analysis of Attack Scenarios 423

– |VT ∩ V e| = 1, i.e., there is exactly one end node of A in T ;
– (∀v ∈ VT \V s) ∃V ′ ⊂ VT s.t. V ′ satisfies γ(v) ∧ �V ′′ ⊂ V ′ s.t. V ′′ satisfies

γ(v). �

An instance is represented as a tree because each attack pattern aims at cre-
ating a certain target condition (e.g., gaining access to the database server of
Figure 1(a)), which can be achieved by executing an exploit corresponding to an
end node in the temporal attack graph (the root of the tree). Each exploit may
require one or more exploits being executed in preparation for it, and the leaves
of the tree represent exploits which depend on initial security conditions.

5 Combining Attack and Dependency Graphs

Dependency and attack graphs are great tools to analyze raw security data and
derive useful insights on the structure and weaknesses of a network. The following
example clearly shows that neither of these tools, if used alone, can provide a
cyber security analyst with enough information to make good decisions. Instead,
we need a tool that can combine information from the two graphs, also enabling
the analyst to import his risk analysis knowledge.

Example 2. Consider the network of Figure 1(a), and suppose an attacker has
compromised host hC . Based on the attack graph of Figure 2(a), an automated
system may recommend the analyst to protect host hD, as a vulnerability on
hD is the most likely to be exploited next. However, when we also consider
information in the dependency graph of Figure 1(d), this clearly turns to be the
worst choice possible. In fact, the only entity which directly depends on hD is host
hC , which is already compromised. Thus, the marginal damage caused by the
attacker exploiting hD is negligible. Conversely, exploiting the the vulnerability
on host hF , although less likely, would cause a much larger damage because it
would also disrupt the Web Server and the Online Shopping service.

The key observation behind our approach to combining attack and dependency
graphs is that the execution of a vulnerability (i.e., a node in the attack graph)
might cause a more or less severe reduction in performance in one or more
network entities (nodes in the dependency graph). This, in turn, may affect
other entities not directly affected by the exploit. We can thus introduce the
following fundamental definition.

Definition 6 (Attack Scenario Graph). Given a probabilistic temporal at-
tack graph A = (V, E, δ, γ) and a generalized dependency graph D = (H, Q, φ),
an attack scenario graph is a 4-tuple (A, D, F, η) where

– F ⊆ V ×H;
– η : F → [0, 1] is a function that associates with each pair (v, h) ∈ F a

real number in the [0, 1] interval representing the percentage reduction in the
performance of entity h caused by vulnerability exploit v. �

424 M. Albanese et al.

{(3,10),0.7}

{(1,9),0.3}

{(3,7),0.6}

{(1,3),1}

exploit VC
on host hC

exploit VD
on host hD

exploit VF
on host hF

exploit V''G
on host hG

exploit V'G
on host hG

{(1,7),0.4}

(a) Example of temporal attack graph

hG

hA,fs

hD,fdhF,fshE,fshB,fd

hC,fs

hS,fs hT,fs

vA

vE

vG

vB

vF

vC

vD
F

vD vE vF

vB vC

{(3,10),0.7}

{(1,9),0.3}

{(1,3),0.8}{(2,7),0.2}

{(1,8),1}

{(1,7),1}

{(3,7),1}{(1,3),1}

0.8

1

0.7

0.7

1

0.7

10 7

8 7

5 57 7

8

(b) Example of attack scenario graph

Fig. 2. Attack and scenario graphs

Intuitively, attack scenario graphs merge attack and dependency graphs intro-
ducing edges between vulnerability exploits and network entities encoding how
the latter are affected by the former. The numbers labeling these edges represent
the percentage reduction in the performance of an entity caused by an exploit
(if η(v, h) = 0 the edge is omitted). Figure 2(b) shows an example of attack
scenario graph for the network of Figure 1(a), where hS and hT represents the
two services offered by the enterprise.

We can use attack scenario graphs to track the evolution of an attack, monitor
the status of the network, and assess damage at the same time. Without loss of
generality, we assume that ∀h ∈ H , s(h, t0) = 1, i.e., every component of the
network is fully operational at time t0. In the following, we will abuse notation
and use si(h) to denote s(h, ti). If exploit v has been executed at time ti, we can
evaluate the status of the network at time ti as follows:

si(h) = min ((1−η(v, h)) · si−1(h), f(si(hi1), . . . , si(him))) (1)

where f = φ(h), and η(v, h) = 0 when (v, h) �∈ F . The status of the network
needs to be updated every time a successful exploit is detected. However, given
the structure of the dependency graph, we only need to update the status of com-
ponents directly or indirectly affected by the exploit. In order to assess damage,
we assume that each network entity h has a given theoretical utility u(h) (cor-
responding to the case when h is fully operational). We also assume that the
actual utility at time ti is proportional to the performance of h at time ti and is
given by ui(h) = si(h) · u(h). We then estimate the marginal damage caused by
an exploit at time ti as the loss of utility w.r.t. the situation at time ti−1.

Δdamagei =
∑
h∈H

(si−1(h)− si(h)) · u(h) (2)

Example 3. Consider the attack scenario graph of Figure 2(b). Suppose that
∀h ∈ H , s0(h) = 1 and an attacker exploits vulnerability vC at time t1. This

Scalable Analysis of Attack Scenarios 425

makes hC totally unusable (as η(vC , hC) = 1), leading to s1(hC) = 0. As hT

strictly depends on hC , we also have s1(hT) = 0. Therefore, the marginal damage
of exploit vC is Δdamage1 = 14. At time t2, the attacker may take one of two
possible steps: exploiting vD (with probability 0.7) or vF (with probability 0.3).
In the first case, Δdamage2 = 0.7 · 5 = 3.5 (hC and hT are already unusable
because of the previous exploit). In the second case, Δdamage2 = 0.7·7+8+10 =
22.9 (hF is partially compromised, making hA and hS unusable). In conclusion,
the second alternative, although less likely, can cause a much larger damage.

When attack and dependency graphs are very large (millions of nodes), portions
of them could be maintained on disk rather than in main memory. In this case,
a merged data structure would provide additional advantages over two separate
graphs. If nodes from the two graphs pertaining the same group of machines are
stored in the same block on disk, all the information needed to process alerts
from that set of machines could be loaded with a single access to disk.

6 Real-time Scenario Analysis

In this section, we formalize the problem of real-time scenario analysis, and
propose a data structure to monitor and index incoming alerts, as well as an
algorithm to update the index in real-time. For the purpose of our analysis, we
assume that each alert o is a tuple (type, ts, hsrc, hdest), where type denotes the
event type, ts ∈ T is a timestamp, and hsrc, hdest are the source and destination
host respectively. We refer to a sequence O of such alerts as the observation
sequence. Finally, we assume the existence of a function exploit : O → V that
maps alerts in O to vulnerability exploits. Informally, we define an occurrence
of an attack as a sequence of alerts constituting the evidence that a given attack
occurred. A formal definition is given below.

Definition 7 (Attack Occurrence). Given a probabilistic temporal attack
graph A = (V, E, δ, γ), and an observation sequence O, an occurrence of A in O
with probability p is a sequence O∗ = 〈o∗1, . . . , o∗k〉 ⊆ O such that:

– o∗1.ts ≤ o∗2.ts ≤ . . . ≤ o∗k.ts;
– there exists an instance T = (VT , ET) of A s.t. (∀(vi, vj) ∈ ET) ∃oi, oj ∈ O∗

s.t. exploit(oi) = vi∧ exploit(oj) = vj ∧oi.ts ≤ oj .ts, i.e., O∗ includes alerts
corresponding to all the exploits in T ;

– prob(root(VT)) ≥ p, where prob is recursively defined as

(∀v ∈ VT) prob(v) =
{
1, if v is a leaf node
Πv′∈children(v)ρ(x, y) · prob(v′)

where (I, ρ) = δ(v′, v), [x, y] ∈ I s.t. x ≤ o.ts−o′.ts ≤ y, and exploit(o) = v,
exploit(o′) = v′.

The span of the occurrence above as the time interval span(O∗) = [oi1 .ts, oik
.ts].�

426 M. Albanese et al.

In other words, an occurrence of a probabilistic temporal attack A is a sequence
of alerts indicating that all the exploits in an instance of the temporal attack
graph have been executed in the right order and satisfying all the temporal
constraints, thus enabling the attacker to achieve his target security condition.

We are interested in recognizing occurrences of attacks in real-time. Note
that multiple concurrent attacks generate interleaved alerts in the observation
sequence. In general, the problem of finding all possible occurrences of attacks is
exponential in the level of concurrency (i.e., the maximum number of concurrent
attacks), and quadratic in the number of received alerts. However, we will show
that, leveraging temporal features of attack graphs, it is possible to compute all
the valid solutions in time linear to the number of received alerts.

In order to concurrently monitor multiple types of attacks, we first merge
all probabilistic temporal attack graphs from a set A = {A1, . . . , Ak} – with
Ai = (Vi, Ei, δi, γi) and IA = {id(A1), . . . , (Ak)} – into a single multi-attack
graph M = (VM , IA, δM , γM) where (i) VM = ∪k

i=1Vi is a set of vulnerability
exploits; (ii) δM : VM × VM × IA → Ω is a function that associates a triple
(v, v′, id(Ai)) with δi(v, v′), if (v, v′) ∈ Ei, or null otherwise; (iii) γM is a func-
tion that associates each pair (v, id(Ai)) ∈ VM × IA with γi(v), if v ∈ Vi \V s

i , or
null otherwise. In the following, we will assume that an attack scenario graph
(Definition 6) is a 4-tuple (M, D, F, η), where M is a multi-attack graph, rather
than a single attack graph. We can now give the definition of attack scenario
index, a data structure that enables indexing and tracking of ongoing attacks,
and provides support for analysis of future scenarios.

Definition 8 (Attack Scenario Index). Let G = (M, D, F, η) be an attack
scenario graph, where M = (VM , IA, δM , γM) is a multi-attack graph built over a
set A={A1, . . . , Ak} of probabilistic temporal attack graphs, and D = (H, Q, φ)
is a generalized dependency graph. An attack scenario index is a 6-tuple IG =
(G, startG, endG, tablesG, sG, completedG), where:

– startG (resp. endG) : VM → 2IA is a function that associates with each node
v ∈ VM , the set of attack graph id’s for which v is a start (resp. end) node;

– For each v ∈ VM , tablesG(v) is a set of records of the form (curr, attackID,
ts0, prob, Δdamage, prev, next), where curr is a reference to an alert,
attackID ∈ IA is an attack graph id, ts0 ∈ T is a timestamp, prob ∈ [0, 1]
is the probability of the (partial) occurrence, Δdamage ∈ R is the marginal
damage, prev and next are sets of references to records in tablesG;

– sG : H → [0, 1] is the current status of the network;
– completedG : IA → 2P , where P is the set of references to records in tablesG,

is a function that associates with each attack identifier id(A) a set of refer-
ences to records in tablesG corresponding to completed occurrences of A. �

Note that G, startG, endG can be computed a-priori, given the set A of attack
graphs and the dependency graph D. All the tables that are part of the index
(tablesG) will be initially empty. As new alerts are received, they will be updated
accordingly, as described in Section 6.1. Index tables allow to track partially
completed occurrences, and each record points to an alert, as well as to previous

Scalable Analysis of Attack Scenarios 427

Algorithm 1. updateIndex(onew, IG, pt)
Input: New alert to be processed onew , attack scenario index IG, probability threshold pt.
Output: Updated attack scenario index IG.

1: vnew ← exploit(onew) // Map the new alert to a known vulnerability exploit

2: Δdamage ← 0

3: for all h ∈ H s.t. (vnew, h) ∈ F do

4: Δdamage ← Δdamage + assessDamage(h, η(vnew, h))

5: // Look at start nodes

6: if startG(vnew) �= ∅ then

7: for all id ∈ startG(vnew) do

8: add (o↑new, id, onew.ts, 1, Δdamage, ∅, ∅) to tablesG(vnew)

9: // Look at intermediate nodes

10: V ← ∅
11: for all node v ∈ VM s.t. ∃id ∈ IA, δM (v, vnew, id) �= null do

12: rfirst←min{r∈tablesG(v)|onew.ts−r.curr.ts≤ maxid∈IA|δM (v,vnew,id)�=null δM (v, vnew, id).tmax}

13: for all records r ∈ tablesG(v) s.t. r ≥ rfirst do

14: id ← r.attackID
15: if δM (v, vnew, id) �= ∅ then

16: (I, τ) ← δM (v, tnew.obs, id)

17: p ← τ(x, y) where [x, y] ∈ I and x ≤ tnew.ts − r.curr.ts ≤ y

18: if p ≥ pt then

19: V ← V ∪ {(v, r, p)}
20: if V satisfies γ(vnew) then

21: prob ← 1

22: records ← ∅
23: for all (vi, pi, ri) ∈ V ∗ s.t. V ∗ is a minimal subset of V satisfying γ(vnew) do

24: prob ← prob · ri.prob · pi

25: records ← records ∪ {r
↑
i
}

26: if prob ≥ pt then

27: rn ← (o↑new, id, min
r′∈records

r′.ts0, prob, Δdamage, records, ∅)

28: add rn to tablesG(vnew)

29: for all r′ ∈ records do

30: r′.next ← r′.next ∪ {r
↑
n}

31: // Look at end nodes

32: if id ∈ endG(vnew) then

33: add r
↑
n to completedG(id)

and successor records. Each record also stores the time at which the partial
occurrence began (ts0), and the marginal damage caused by the corresponding
exploit.

6.1 Index Update Algorithm

This section describes an algorithm (Algorithm 1, updateIndex) to update the
index when a new alert is received. The algorithm takes as input an attack
scenario index IG, a new alert onew , and a probability threshold pt.

Line 1 maps the newly received alert onew to a known vulnerability exploit
vnew. Lines 2–4 compute the marginal damage caused by exploit vnew by invoking
the assessDamage algorithm (Algorithm 2) for each network entity h ∈ H
directly affected by vnew and summing up all the contributions. Algorithm 2
starts by computing the reduction in the performance of h (Lines 1–5), and then
iteratively propagates damage assessment to all the affected nodes (Lines 7–8).

Lines 6–8 of Algorithm 1 handle the case when vnew is the start node of
an attack graph in A. A new record is added to startG(vnew) for each attack
graph in A for which vnew is a start node. Lines 10–33 look at the tables as-
sociated with the nodes that precede vnew in the temporal multi-attack graph

428 M. Albanese et al.

Algorithm 2. assessDamage(h, η)
Input: Node h in the generalized dependency graph, performance reduction η due to an exploit
Output: marginal damage assessment
1: // Update status and assess direct damage to h
2: sbefore ← sG(h)
3: sG(h) ← min((1 − η) · sG(h), φ(h)(·h))
4: safter ← sG(h)
5: Δdamage ← (sbefore − safter) · u(h)
6: // Assess damage propagation
7: for all hi ∈ h· s.t. sG(hi) > 0 do
8: Δdamage ← Δdamage + assessDamage(hi , 0)
9: return Δdamage

and check whether the new alert can be correlated to existing partially com-
pleted occurrences. For each predecessor v of vnew, Line 12 determines where
the algorithm should start scanning tablesG(v). Note that records are added
to index tables as new alerts are received, thus they are ordered by r.curr.ts,
i.e., the time at which the corresponding alert was received. Given two records
r1, r2 ∈ tablesG(v), we use r1 ≤ r2 to denote the fact that r1 precedes r2 in
tablesG(v), i.e., r1.curr.ts ≤ r2.curr.ts. To avoid scanning the entire table, only
the “most recent” records in tablesG(v) are considered, i.e., those that can still
be linked to new alerts (Line 12). On Lines 16-17, timespan distributions are
used to determine the probability p that the new alert can be linked to record r
for the attack graph identified by r.attackID, given the amount of time elapsed
between r.curr.ts and onew .ts. Since we are interested in occurrences with a
probability above the threshold pt, we discard the partial occurrence as soon as
p < pt (Line 18). Otherwise, we keep track in V of all the predecessor exploits
that can be linked to vnew, and, if the condition γ(vnew) is satisfied (Line 20), we
consider a subset V ∗ of V that minimally satisfies γ(vnew) and add a new record
rn to tablesG(v) (Lines 27-28) if the overall probability of the corresponding
(partial) occurrence is above the threshold. Additionally, we update predecessor
records to have rn as their successor (Lines 29-30). Note that rn inherits ts0 from
its predecessors; this ensures that the starting and ending times can be quickly
retrieved by looking directly at the last record for a completed occurrence. Fi-
nally, lines 32–33 check whether vnew is an end node for some attack graph. If
yes, a pointer to rn is added to completedG, telling that a new occurrence has
completed.

Algorithm updateIndex, can be used iteratively for loading an entire obser-
vation sequence at once (we refer to this variant as bulkUpdate). The following
result characterizes the time complexity of the two algorithms.

Proposition 1. Given a set A of probabilistic temporal attack graphs, a multi-
attack graph M = (VM , IA, δM , γM) over A, an attack scenario graph G, and
an attack scenario index IG = (G, startG, endG, tablesG, sG, completedG), the
worst case complexity of algorithm updateIndex (resp. bulkUpdate) is O(k|VM | ·
|A|) (resp. O(k|VM | · |A| · |O|)), where O is the observation sequence and k is the
level of concurrency, i.e., the maximum number of concurrent attacks. �

Scalable Analysis of Attack Scenarios 429

Note that the complexity result above are based on the fact that the number
of recent records in each table tablesG(v) is independent of the size of O. This
can be formally proved, and is largely confirmed by experimental results. Addi-
tionally, our experiments show that, in practice, time and space complexity are
independent of the size of the activities. This result is expected since |O| � |VM |.

7 Analysis of Future Scenarios

As Example 3 has shown, recommendations should be made to the analyst based
on a compromise between likelihood and marginal damage of possible future
scenarios. Ideally, an automated system should provide the analyst with a list
of predicted scenarios, ranked by a measure of criticality accounting for both
probability and marginal damage. The analyst would then be recommended to
take action to prevent attack steps corresponding to the scenario with the highest
criticality. In the simplest case, given a set of predicted occurrences {O∗

1 , . . . , O
∗
n},

we can estimate the criticality of O∗
i , for each i ∈ [1, n], as pi ·Δdamagei, where

pi and Δdamagei are the probability and marginal damage of O∗
i respectively.

In general, a criticality function can be defined as any function of the form
f : [0, 1]× R → R that satisfies the following monotonicity axioms:

(∀Δd ∈ R) p1 ≥ p2 ⇒ f(p1, Δd) ≥ f(p2, Δd) (3)
(∀p ∈ [0, 1]) Δd1 ≥ Δd2 ⇒ f(p, Δd1) ≥ f(p, Δd2) (4)

Example 4. Consider the two scenarios described in Example 3. According to
the simple computation model described above, their criticality is 2.45 and 6.87
respectively, confirming that protecting hF would be a wiser choice.

We propose algorithm rankFutureScenarios (Algorithm 3) to predict and rank
all possible future scenarios. We assume that the attacker’s goal is to reach a net-
work resource corresponding to the end node of an attack graph. The algorithm
takes as input an attack scenario graph IG, a time point ts, an integer k > 0, a
probability threshold pt, and a criticality function f , and returns a ranked list
of possible future attack occurrences. The algorithm considers all the record in
the index which do not have a successor yet (Lines 2-3). For each such record r,
a recursive algorithm (simGraphForward) traverses the attack graph forward,
and derives a set of partial future occurrences of length k or less along with
their probability and marginal damage assessment (Line 5). This algorithm is
straightforward and details are omitted for reasons of space. Finally, all the pre-
dicted partial occurrences are ranked using f . The following result characterizes
the time complexity of algorithms rankFutureScenarios.

Proposition 2. Given an attack scenario index IG = (G, startG, endG, tablesG,
sG, completedG) and an integer k, the worst case complexity of algorithm rank-
FutureScenarios is O(|VM |·dk), where VM is the set of exploits in the multi-attack
graph and d is the maximum out-degree of nodes in VM . �

430 M. Albanese et al.

Algorithm 3. rankFutureScenarios(IG, ts, k, pt, f)
Input: Attack scenario index IG, time ts, integer k>0, prob. threshold pt, criticality function f .
Output: List of 4-tuples (id(A), O, prob, Δdamage) ranked by f(prob, Δdamage), where id(A) ∈

IA, O is a partial occurrence, prob is the probability of O, and Δdamage is the marginal damage

1: S ← ∅
2: for all v ∈ VM do
3: for all r ∈ tablesG(v) s.t. e.next = ∅ ∧ r.curr.ts < ts ∧ r↑ /∈ completedG(r.attackID) do
4: // Find attack patterns starting at v, no longer than k, and with probability above pt

5: O ← simGraphForward(r.attackID, exploit(r.curr), k, pt)
6: for all (O, prob, Δdamage) ∈ O do
7: S ← S ∪ {(r.attackID, O, prob, Δdamage)}
8: return rankedList(S, f)

The above result, confirmed by the experiments, indicates that, although time
complexity is exponential in the number k of steps forward, the effect of the
exponential is not significant. In fact, typically |VM | � d, and k is not large.

8 Experiments

In this section, we report the results of the experiments we conducted to evaluate
the time and memory performance of the proposed index update algorithm, as
well as the performance of the rankFutureScenario algorithm.We evaluated the
system using both real and synthetic attack graphs. In both cases, we used the
attack graphs to simulate a number of attacks and generate a stream of alerts.
Specifically, we used an attack graph that was generated by scanning an existing
network with the tool described in [11]. The resulting temporal attack graph
includes 786 nodes, encompassing 64 machines. In order to test our framework
on larger graphs, we generated synthetic graphs of up to 300 thousand nodes.

Figure 3(a) shows how the time to build the entire index using the bulkUpdate
algorithm – for both synthetic and real attack graphs – increases as the number
of alerts increases. It is clear that the index building time is linear in the number
of alerts (note that both axes are on a log scale), and the algorithm can process
between 25 and 30 thousands alerts per second. Also note that there is no sig-
nificant difference between results on real and synthetic attack graphs, and that
the size of the graphs does not significantly affects the index building time, as
confirmed by Figure 3(b): when the size of the merged graph changes by orders
of magnitude, the processing time increases slightly, but remains within the same
order of magnitude. This can be easily explained by considering that, for a given
number of alerts, when the size of the graphs increases, the number of index
tables (one for each v ∈ VM) increases as well, but at the same time the average
number of occurrences of each alert and the average size of each table decrease,
keeping total memory occupancy (Figure 3(c)) and processing time (Figure 3(b))
almost constant. The slight increase in processing time can then be attributed
to the overhead of managing a larger number of tables. Figure 3(c) also indicates
that memory occupancy increases linearly with the number of alerts processed.

Finally, execution times of algorithm rankFutureScenarios for varying val-
ues of k are reported in Figure 3(d). Note that the processing time is not

Scalable Analysis of Attack Scenarios 431

100

1,000

10,000

100,000

1,000,000

1,000 10,000 100,000 1,000,000 10,000,000

In
de

x
bu

ild
in

g
tim

e
(m

s)

Number of alerts

404 nodes (real) 786 nodes (real) 10K nodes (syn) 30K nodes (syn) 100K nodes (syn)

(a) Index building time vs. |O|

100

1,000

10,000

1,000 10,000 100,000 1,000,000

In
de

x
bu

ild
in

g
tim

e
(m

s)

Number of nodes

10,000 alerts 30,000 alerts 100,000 alerts

(b) Index building time vs. |VM |

10

100

1,000

10,000

100,000

1,000 10,000 100,000 1,000,000

In
de

x
si

ze
 (K

B)

Number of nodes

10,000 alerts 30,000 alerts 100,000 alerts

(c) Index size vs. |VM |

-

50

100

150

200

250

300

- 2 4 6 8 10

Ti
m

e
(m

s)

k

1K nodes 10K nodes 100K nodes

(d) Prediction time vs. k

Fig. 3. Experimental results

significantly affected by the size of the graphs. This can be easily explained
with the same argument used above for index building time and memory. Al-
gorithm rankFutureScenarios looks at the most recent records in each index
table, i.e., those in a given temporal window. As the size of the graphs increases,
the number of records per table falling in such temporal window decreases, thus
keeping the total number of records to examine almost constant. For any give
graph size, when k increases, the processing time increases. However, we can
note that, for smaller graphs, the processing time become stable as k increases,
whereas, for larger graphs, it will continue to increase exponentially. This can be
easily explained considering that, as k increases, it will be less likely for smaller
graph to have partial patterns of length k, so in most cases the algorithm will
end the recursive search earlier than k steps forward.

9 Conclusions

In this paper, we proposed a novel framework to integrate vulnerability and
dependency analysis, and provide security analysts with a better picture of the
cyber situation. Our contribution was threefold. First, we introduced the notion
of generalized dependency graph, which captures how network components, at
different levels of abstraction, depend on each other. Second, we extended the
classical definition of attack graph to incorporate probabilistic knowledge of the
attacker’s behavior. Finally, we introduced the notion of attack scenario graph,

432 M. Albanese et al.

which integrates dependency and attack graphs.We proposed efficient algorithms
for detection and prediction, and showed that our framework can handle very
large attack graphs and large volumes of alerts. Further research will be needed
to fully automate the generation of attack scenario graphs.

References

1. Albanese, M., Chellappa, R., Moscato, V., Picariello, A., Subrahmanian, V.S.,
Turaga, P., Udrea, O.: A constrained probabilistic petri net framework for human
activity detection in video. IEEE Transactions on Multimedia 10(8), 1429–1443
(2008)

2. Bahl, P., Chandra, R., Greenberg, A., Kandula, S., Maltz, D.A., Zhang, M.: To-
wards highly reliable enterprise network services via inference of multi-level depen-
dencies. ACM SIGCOMM Computer Communication Review 37, 13–24 (2007)

3. Bahl, P.V., Barham, P., Black, R., Chandra, R., Goldszmidt, M., Isaacs, R., Kan-
dula, S., Li, L., MacCormick, J., Maltz, D., Mortier, R., Wawrzoniak, M., Zhang,
M.: Discovering Dependencies for Network Management. In: Proceedings of the
5th ACM Workshop on Hot Topics in Networking (HotNets) (November 2006)

4. Chen, X., Zhang, M., Mao, Z.M., Bahl, P.: Automating network application de-
pendency discovery: experiences, limitations, and new solutions. In: Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation,
OSDI 2008, pp. 117–130. USENIX Association, Berkeley (2008)

5. Dain, O., Cunningham, R.K.: Fusing a heterogeneous alert stream into scenarios.
In: Proceedings of the 2001 ACM Workshop on Data Mining for Security Applica-
tions, pp. 1–13 (2001)

6. Duong, T., Bui, H., Phung, D., Venkatesh, S.: Activity Recognition and Abnormal-
ity Detection with the Switching Hidden Semi-Markov Model. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2005),
vol. 1, pp. 838–845 (2005)

7. Golab, L., Özsu, M.T.: Issues in data stream management. SIGMOD Record 32,
5–14 (2003)

8. Habra, N., Charlier, B., Mounji, A., Mathieu, I.: Asax: Software architecture and
rule-based language for universal audit trail analysis. In: Deswarte, Y., Eizenberg,
G., Quisquater, J.-J. (eds.) ESORICS 1992. LNCS, vol. 648, pp. 435–450. Springer,
Heidelberg (1992)

9. Hamid, R., Huang, Y., Essa, I.: ARGMode Activity Recognition Using Graphical
Models. In: Proceedings of the IEEE Computer Society International Conference
on Computer Vision and Pattern Recognition (CVPR 2003), vol. 3, pp. 38–43
(2003)

10. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for
network defense. In: Proceedings of 22nd Annual Computer Security Applications
Conference (ACSAC 2006), pp. 121–130. IEEE Computer Society, Los Alamitos
(2006)

11. Jajodia, S., Noel, S.: Topological Vulnerability Analysis. In: Cyber Situational
Awareness: Issues and Research. Advances in Information Security, vol. 46, pp.
139–154. Springer, Heidelberg (2009)

12. Kandula, S., Chandra, R., Katabi, D.: What’s going on?: learning communication
rules in edge networks. ACM SIGCOMM Computer Communication Review 38,
87–98 (2008)

Scalable Analysis of Attack Scenarios 433

13. Kheir, N., Cuppens-Boulahia, N., Cuppens, F., Debar, H.: A service dependency
model for cost-sensitive intrusion response. In: Gritzalis, D., Preneel, B., Theohari-
dou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 626–642. Springer, Heidelberg
(2010)

14. Lamport, L.: Distributed system (May 1987), http://research.microsoft.com/
enus/um/people/lamport/pubs/distributed-system.txt

15. Leversage, D.J., Byres, E.J.: Estimating a system’s mean time-to-compromise.
IEEE Security and Privacy 6, 52–60 (2008)

16. Mörchen, F.: Unsupervised pattern mining from symbolic temporal data. SIGKDD
Explorations Newsletter 9(1), 41–55 (2007)

17. Ning, P., Xu, D.: Learning attack strategies from intrusion alerts. In: Proceedings
of the 10th ACM Conference on Computer and Communications Security (CCS
2003), pp. 200–209 (2003)

18. Ning, P., Xu, D., Healey, C.G., Amant, R.S.: Building attack scenarios through
integration of complementary alert correlation methods. In: Proceedings of the
11th Annual Network and Distributed System Symposium (NDSS 2004), pp. 97–
111 (2004)

19. Noel, S., Robertson, E., Jajodia, S.: Correlating intrusion events and building at-
tack scenarios through attack graph distances. In: Proceedings of the 20th Annual
Computer Security Applications Conference (ACSAC 2004), pp. 350–359 (2004)

20. Qin, X., Lee, W.: Statistical causality analysis of INFOSEC alert data. In: Vigna,
G., Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 73–93. Springer,
Heidelberg (2003)

21. Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Lee, W., Mé, L., Wespi,
A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 54–68. Springer, Heidelberg (2001)

22. Wang, L., Liu, A., Jajodia, S.: Using attack graphs for correlating, hypothesiz-
ing, and predicting intrusion alerts. Computer Communications 29(15), 2917–2933
(2006)

 http://research.microsoft.com/enus/um/people/lamport/pubs/distributed-system.txt
 http://research.microsoft.com/enus/um/people/lamport/pubs/distributed-system.txt

Usability of Display-Equipped RFID Tags
for Security Purposes

Alfred Kobsa1, Rishab Nithyanand2, Gene Tsudik1, and Ersin Uzun3

1 University of California, Irvine, CA, USA
{kobsa,gtsudik}@uci.edu

2 Stony Brook University, NY, USA
rnithyanand@cs.stonybrook.edu

3 Palo Alto Research Center, CA, USA
ersin.uzun@parc.com

Abstract. The recent emergence of RFID tags capable of performing public key
operations has enabled a number of new applications in commerce (e.g., RFID-
enabled credit cards) and security (e.g., ePassports and access-control badges).
While the use of public key cryptography in RFID tags mitigates many diffi-
cult security issues, certain important usability-related issues remain, particularly
when RFID tags are used for financial transactions or for bearer identification.

In this paper, we focus exclusively on techniques with user involvement for
secure user-to-tag authentication, transaction verification, reader expiration and
revocation checking, as well as association of RFID tags with other personal de-
vices. Our approach is based on two factors: (1) recent advances in hardware
and manufacturing have made it possible to mass-produce inexpensive passive
display-equipped RFID tags, and (2) high-end RFID tags used in financial trans-
actions or identification are usually attended by a human user (namely the owner).
Our techniques rely on user involvement coupled with on-tag displays to achieve
better security and privacy. Since user acceptance is a crucial factor in this con-
text, we thoroughly evaluate the usability of all considered methods through com-
prehensive user studies and report on our findings.

1 Introduction

Radio Frequency Identification (RFID) technology was initially envisaged as a replace-
ment for barcodes in supply chain and inventory management. A small device with no
power source of its own (called RFID tag) could be read from some distance away by
a special device (called RFID reader), without line-of-sight alignment as is needed for
barcodes. However, its many advantages have greatly broadened the scope of possi-
ble applications today. Current and emerging applications range from visible and per-
sonal tags (e.g., toll transponders, passports, credit cards, access badges, livestock/pet
tracking devices) to stealthy tags in merchandize (e.g., clothes, pharmaceuticals and
books/periodicals). The costs and capabilities of RFID tags vary widely depending on
the target application. At the high end of the spectrum are the tags used in e-Passports,
electronic ID (e-ID) Cards, e-Licenses, and contactless payment instruments. Such ap-
plications involve relatively sophisticated tags that only cost a few dollars (usually<10).

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 434–451, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Usability of Display-Equipped RFID Tags for Security Purposes 435

Even though they are powerful enough to perform sophisticated public key crypto-
graphic operations, security and privacy issues remain when these tags are used as a
means of payment or for owner/bearer identification. In this paper, we address four
such issues:

User-to-Tag Authentication: In many applications of RFID in electronic payment and
in identification documents, authentication of the user to the tag before disclosing
any information is necessary to prevent leaks of valuable or private information.
Current systems require trust in readers for the purpose of authentication. For ex-
ample, users must enter PINs into ATMs or Point-of-Sale (POS) terminals to au-
thenticate themselves to the RFID tag embedded into their ATM or credit card.
However, this leaves users vulnerable to attacks, since secret PINs are being dis-
closed to third party readers that are easy to hack and modify.

Transaction Verification: RFID tags are commonly used as payment and transaction
instruments (e.g., in credit, debit, ATM and voting cards). In such settings, a ma-
licious reader can easily mislead the tag into signing or authorizing a transaction
different from the one that is communicated to, or intended by, the user. This is pos-
sible because there is no direct channel from a tag to its user on regular RFID tags
(i.e., no secure user interface), and the only information a user gets (e.g., a receipt,
or an amount displayed on the cash register) is under the control of a potentially
malicious reader. Thus, it seems impossible for a user to verify (in real time) trans-
action details, e.g., the amount or the currency. This problem becomes especially
important with current electronic credit cards.

Reader Revocation and Expiration: Any certificate-based Public Key Infrastructure
(PKI) needs an effective expiration and revocation mechanism. In RFID systems, it
intuitively concerns two entities, namely RFID tags and RFID readers. The former
only becomes relevant if each tag has a “public key identity,” and we claim that
revocation of RFID tags is a non-issue since, once a tag identifies itself to a reader,
the reader can use any current method for revocation status verification. In contrast,
expiration and revocation of reader certificates constitutes a challenging problem
in any public key-enabled RFID system. This is because RFID tags, being power-
less passive devices, cannot maintain a clock. In other words, an RFID tag (on its
own) has no means to verify whether a given certificate has expired or whether any
revocation information is recent.

Secure Pairing of RFID Tags: Current high-end RFID tags cannot establish a secure
ad-hoc communication channel to another device, unless the latter is part of the
same RFID infrastructure (i.e., an authorized reader). Establishing such a channel
seems important as it would give tag owners the ability to manage their tags. Previ-
ously proposed secure device pairing solutions require an auxiliary communication
channel to authenticate devices and establish a secure communication channel [21],
[20]. Until recently, however, RFID tags lacked user interfaces and thus could not
be paired with other devices. Novel display-equipped RFID tags open a new chapter
in RFID security and give users more control over their tags. Using an NFC-capable
personal device (such as a smart-phone), for instance, a user can change settings on
a personal RFID tag.

436 A. Kobsa et al.

Fig. 1. NXP Display-Equipped RFID Tag (DERT) with two buttons

The gist of our approach is to take advantage of recently developed technology that al-
lows high-end RFID tags to be equipped with a small passive display (see Figure 1 for a
tag manufactured by NXP Semiconductors). We refer to such tags as Display-Equipped
RFID Tags or DERTs. The only other publicly known application of DERTs are eID
cards in Germany since November 2010 [3]. As we will show in the remainder of this
paper, carefully designed user interaction with personal DERTs can yield solutions to
the aforementioned problems. We present several simple techniques that require little or
no change to already well-established RFID back-end infrastructures (e.g., the back-end
processing systems of ePassports, payment instruments, etc.). Thereafter we conduct a
thorough study to assess the usability of these techniques.

One of the key motivating factors for our work is the fact that DERTs are already
being produced and are available on the market. Moreover, they cost only a few dollars
(or euros) more than their display-less counterparts. We note that our work and usability
studies are also to a small degree relevant to cards with displays and buttons that require
physical contact with readers.

The rest of this paper is organized as follows: we summarize related work in Sec-
tion 2, describe our technical approach in Section 3, present a comprehensive usability
evaluation of the proposed techniques in Section 4, and conclude with a summary in
Section 5.

2 Related Work

2.1 Secure User-to-Tag Authentication

User authentication is a fundamental problem that has received a great deal of attention
in the security community, for several decades. Solutions range from simple modifica-
tions of the standard PIN/password entry techniques [33,14] to schemes that pose more
complicated cognitive tasks to users [31,15].

The authentication of users to passive devices (such as RFID tags) is a very recent
issue. In the first proposed solution by Czeckis et al. [13], users authenticate to an
accelerometer-equipped RFID tag by moving or shaking it (or the wallet containing
it) in a certain pattern. However, this method assumes that RFID tags are equipped
with an accelerometer, and it requires users to memorize movement patterns. Also,
it is prone to passive observer attacks. A similar technique called “PIN-Vibra” was
suggested by Saxena et al. [30] for authenticating to an accelerometer-equipped RFID

Usability of Display-Equipped RFID Tags for Security Purposes 437

tag using a mobile phone. In it, a vibrating mobile phone is used to lock or unlock RFID
tags. While the usability of PIN-Vibra seems promising, it has a some drawbacks: (1)
high error rates – accelerometers on tags can not perfectly decode PINs encoded in
phone vibrations, (2) the user’s phone must be present and functional (e.g., not out of
battery) whenever the tag has to be used, and (3) accelerometer-equipped RFID tags are
relatively expensive and do not lend themselves well to other applications that would
help amortize their cost.

The secure user-to-tag authentication solution described and tested in this paper is
most similar to Abadi et al.’s [7] proposal for authentication on smartcards, where a
displayed random number is modified by a user to match a PIN.

2.2 Transaction Verification

Current systems that address transaction verification and amount fraud utilize data
mining (e.g., [12]), machine learning techniques (e.g., [8]), and out-of-band commu-
nication. Most banks verify transactions via alternate communication mediums such
as email or telephone. A complete survey of modern fraud detection techniques for
Card Present (a.k.a, off-line) and Card not Present (a.k.a, on-line) transactions is given
by Kou et al. in [22]. In this paper, we present a simple solution that permits user-
aided verification using DERTs and fully mitigates amount and currency fraud for Card
Present transactions. To the best of our knowledge, this is the first work that offers a
real solution and provides a comprehensive analysis of its usability.

2.3 Reader Revocation Checking

Three popular methods to verify the status of a public key certificate (PKC) are: Cer-
tificate Revocation Lists (CRLs) [18], Online Certificate Status Protocol (OCSP) [26]
and Certificate Revocation System (CRS) [25,24]. CRLs are signed lists of revoked cer-
tificates periodically published by certification or revocation authorities (CAs or RAs).
The usage of CRLs is problematic in RFID systems since they require the tag to have
a clock in order to determine whether a given CRL is sufficiently recent, and since the
communication overhead can be quite high if the number of revoked entities is large.
OCSP is an online revocation checking method that reduces storage requirements for all
parties involved, while providing timely revocation status information. Although well
suited for large connected networks, it is a poor fit for RFID systems as it requires con-
stant connectivity between readers and OCSP responders. Furthermore, the need for a
two-round challenge-response protocol with OCSP responders may make it suscepti-
ble to network congestion and slow turnaround times. CRS offers implicit, efficient and
compact proofs of certificate revocation. However, it is unworkable in the RFID context
as it also requires verifiers (RFID tags) to have a clock.

Despite much prior work in RFID security and certificate revocation, coupled with
the fact that the problem had been spotted by researchers [17,19,16], little has been
done to address reader PKC revocation and expiration checking problems. Only very
recently, Nithyanand et al. [28] proposed a method that entails user involvement and
DERTs to determine PKC validity. We adopt and experiment with this solution. Al-
though [28] includes a preliminary usability study using a mocked-up implementation
on mobile phones, this paper presents a comprehensive analysis of the usability of the
method tested using actual DERTs and realistic user tasks.

438 A. Kobsa et al.

2.4 Secure Device Pairing

A number of device association/pairing methods have been proposed over the past few
years. They use various out-of-band (OOB) channels in the process of establishing a
secure connection, and as a result, exhibit different usability characteristics. Recent
work in [21,20] and [23] surveys many pairing methods and reports on their usability.
However, because of the nature of (very) basic displays that can be integrated into RFID
tags, only visual text-based methods are appropriate for DERTs.

In this paper, we adopt the “Copy” method that was introduced by Uzun et al. [32],
and evaluate its usability in the DERT setting. In the copy pairing technique, one device
displays a randomly generated passkey, which the user types into the second device.
The devices automatically run a password based authenticated key agreement protocol
(e.g., [10]), which succeeds or fails depending on the user’s ability to copy the passkey
correctly between the devices and the presence of an active attack on the communication
channel (e.g., man-in-the-middle or denial of service attacks).

3 Proposed Techniques

3.1 General Assumptions

All methods described below share the following general assumptions:

1. Tags are owned and operated by individuals (users/owners) who understand their
roles in each context (users only need to know the actions they are required to
perform, but not the reasons for performing them).

2. Tags are powerful enough to perform public key operations (at least signature veri-
fication). This is true for all our target applications.

3. Tags are equipped with an one-line alpha-numeric display (OLED or ePaper) ca-
pable of showing at least 8 characters. This is made possible by current DERT
technology.

4. Tags can maintain simple counters or timers while powered by a reader.
5. Each tag has a programmable button.1

3.2 User-to-Tag Authentication

The authentication method described in Figure 2 is designed for DERTs but can be used
on any wireless, interface-constrained device.

We make three additional assumptions:

1. Tags are capable of generating short random numbers (i.e., 4-6 decimal digits).
2. Users have access to a possibly untrusted keypad (or keyboard) with cursor keys.

The keypad can be part of the reader, or be connected to it.
3. Tags always clear and reset their displays after authentication. Note that this is pos-

sible even in the case of malicious readers due to the presence of residual charges
in a DERT.

1 We used NXP tags with two buttons in our usability tests. One of the button actions can always
be substituted with a timeout though.

Usability of Display-Equipped RFID Tags for Security Purposes 439

1. Generate
random number.2. Use reader keypad/cursor to

transform random number to PIN.

3. Send each key press in a unique
message format to tag. 4. Refresh display after each key

press is received.

5. On reception of “confirm”
message, run internal matching
algorithm.

i. If correct, unlock tag to
open communication to receive
all message formats.

Fig. 2. Secure user-to-DERT authentication

The Protocol. In order to unlock a tag for a transaction (e.g., a credit card at a store,
a cash card at an ATM, or an e-passport at a hotel), the user needs to be authenticated
by proving knowledge of a secret, such as a PIN. The following method, which is a
variant of the method proposed in [7] for battery powered smart-cards, allows user-to-
tag authentication without requiring any buttons/keys on the tag. Moreover, the PIN is
protected from potentially malicious (and certainly untrusted) readers.

1. Powered by the reader, DERT generates a one-time random number of the same
length as the PIN. DERT proceeds to display this random number. Note that this
nonce is not known by the reader that powers the DERT.

2. User operates the cursor keys (↑, ↓,←,→) on the reader keypad to basically adjust
this random number on the DERT to his/her PIN. This is done digit by digit. For
example, if the random number displayed by DERT is “5723” and the user’s PIN is
“296”, the necessary sequence of key presses is: 1) 4 times ↓, →, 2) 5 times ↑, →,
3) 3 times ↓, →, 4) 3 times ↑, followed by Confirm. For each user key-press, the
reader sends a corresponding message to the tag detailing the key-press, thereby
prompting the tag to update its display.

3. Upon receipt of the Confirm message, DERT unlocks itself for a transaction if the
PIN was entered correctly.

Since the reader is unaware of the nonce initially generated by the DERT, it is impos-
sible (even with knowledge of the sequence of keys pressed by the user) to reconstruct
the PIN used to unlock the DERT. Note that this method’s security is based on several
factors. The first is our assumption about the DERT’s ability to generate cryptograph-
ically secure random numbers. The second security requirement is that the user must

440 A. Kobsa et al.

alternate ↑ and ↓ movements between digits. In other words, if only the ↓ key is used
for small PIN digits (i.e., < 5) instead of sometimes going past “9” to reach it, or vice
versa for large digits, then such a pattern may leak information about the PIN if the
protocol is executed repeatedly with the same reader. If there is a concern about such
leaks, they can be easily prevented by allowing only one of the ↑ or ↓ keys to be used
when modifying the digits.

Shoulder-Surfing Resistant Variant: In a shoulder-surfing attack, an adversary some-
how observes the user’s actions to obtain critical information (e.g., the PIN entered into
an ATM). Such attacks range from simply looking over the victim’s shoulder to using
a camera to observe him or her. They are simple to launch and effective in public areas
where large crowds or long queues are likely to occur. By masking all digits except the
one being modified, it is easy to make the above protocol shoulder-surfing resistant (It
does not become shoulder-surfing proof, however).

We tested both flavors of this protocol and used ‘\’ as the masking character. Al-
though ‘∗’ is more commonly used for this purpose, the prototype firmware on our test
tags was not yet capable of displaying it.

3.3 Transaction Verification

Our approach to transaction amount verification is designed to work with any RFID-
enabled payment instrument. Its primary goal is to provide simple, secure and usable
transaction verification at a Point-of-Sale (PoS). The following additional assumption
is necessary:

– The user has access to either a printed or a digital (e.g., displayed on the cash
register) receipt for the transactions to be verified.

The Protocol (also see Figure 3)

1. DERT receives transaction details from the reader (seller/merchant).
2. DERT verifies that the details (e.g., issuing bank, account number, etc.) match their

counterparts in the reader PKC. Protocol is aborted in case of a mismatch.
3. DERT extracts and displays user-verifiable data, i.e, the amount and optionally the

currency code. It then enters a countdown stage that lasts for a predetermined period
of time (e.g., 10 seconds).

4. User observes transaction information and, if the transaction amount and other de-
tails are deemed correct, presses the Confirm button on DERT before the timer runs
out. At this point, DERT signs the time-stamped transaction statement and sends
it to the reader. This signed statement is then sent to the payment gateway and
eventually to the financial institution that issued the payment DERT.

However, if the user decides that transaction details are incorrect, the timer
runs out (or the user presses the reject button, if one is available) and DERT
automatically aborts the protocol.

Usability of Display-Equipped RFID Tags for Security Purposes 441

RFID Payment Device with Display

RFID Reader

Tag Owner

Transaction Data

View amount
displayed on tag

Press “reject”
button (or) wait
for timeout

Press “approve”
button

Signed Transaction Data
2

3

1

6

$136

Reject Approve

Fig. 3. DERT-enabled transaction verification

3.4 Reader Revocation Status Checking

Our approach for reader certificate expiration and revocation checking [28] is aimed at
personal RFID tags – such as ePassports, e-licences or credit/debit cards – when used
in places where trust is not implicit. For example, trust in readers might be implicit in
international airports (immigration halls) or at official border crossings. Whereas, it is
not implicit in many other locations, such as car rental agencies, hotels, flea markets or
duty-free stores.

This approach entails the following additional assumptions:

– Tags are aware of the identity and public key of the system-wide trusted Certificate
Authority (CA). In other words, all tags and readers are subsumed by a system-wide
Public Key Infrastructure (PKI). An example of such a CA is the ICAO CVCA [2].

– The CA is assumed to be infallible: anything signed by the CA is guaranteed to be
genuine and error-free.

– The CA periodically (at fixed intervals) issues an updated revocation structure, such
as a CRL.

– All tags are aware of the periodicity of issuance of the revocation information and
thus can determine expiration time of the revocation structure by simply consulting
its issuance time-stamp.

– A tag can retain (in local non-volatile storage) the last valid time-stamp it has en-
countered.

Note that our usage of the term “time-stamp” is not restricted to time, i.e., hours and
minutes. It is meant to express (at appropriate granularity) issuance and expiration of
both certificates (PKCs) and revocation information.

442 A. Kobsa et al.

Fig. 4. Reader certificate expiration/revocation checking

The Protocol. Before providing any information to the reader, a tag has to validate
the reader’s certificate (PKC). The verification process is as follows (also illustrated in
Figure 4):

1. Freshly powered-up DERT receives the Certificate Revocation List (CRL) and the
reader’s Public Key Certificate (PKC). Let CRLiss, CRLexp, PKCiss and
PKCexp denote issuance and expiration times of CRL and PKC, respectively. The
last encountered valid time-stamp kept by DERT is denoted as TagCurr.

2. If either CRLexp or PKCexp is smaller than Tagcurr, or CRLiss ≥ PKCexp,
DERT aborts.

3. DERT checks whether CRL includes the serial number of the reader certificate. If
so, it aborts.

4. DERT checks the CA signatures of PKC and CRL. If either check fails, DERT
aborts.

5. If CRLiss or PKCiss is more recent than the currently stored date, DERT updates
it to the more recent of the two.

6. DERT displays the lesser of: CRLexp and PKCexp. It then enters a countdown
stage of fixed duration (e.g., 10 seconds).

7. The user decides whether the displayed time-stamp is in the future. If so, the user
presses the DERT button before the timer runs out, and communication with the
reader continues. Otherwise, the user does nothing: the timer runs out and DERT
automatically aborts the protocol.

NOTE: we use the term CRL above to denote a generic revocation structure.

Usability of Display-Equipped RFID Tags for Security Purposes 443

3.5 Secure Device Pairing

Our protocol for bootstrapping a secure communication channel between DERTs and
more powerful computing devices such as laptops or cell-phones (i.e., pairing) is based
on the “Copy” pairing technique introduced in [32] and described in Section 2.

Additional Assumptions. This technique entails the following additional assumption:

– DERT can generate short random passcodes for the purpose of device pairing and
can run secret based key agreement protocols, such as [10].

The protocol. The method operates as follows.

1. DERT generates and displays a sufficiently long decimal passcode (e.g., 6-9 digits).
2. The software interface on the other device prompts the user to enter this passcode.
3. Using the (presumably common) passcode, DERT and the second device run an

authenticated key agreement protocol to establish a (stronger) common key and
confirm its possession by both parties.

4 Usability Analysis

Since all proposed methods require varying degrees of user involvement, it is very im-
portant to assess their usability in order to gauge their eventual user acceptance in real-
world deployment. To this end, we conducted a comprehensive usability study with
prototype implementations. The goal of the study was to provide answers to the follow-
ing concrete questions:

1. How do users rate the usability of proposed methods in each problem context?
2. Are users able to perform the required tasks with sufficiently low error rates?
3. Are users willing to perform these tasks on a regular basis?

4.1 Apparatus, Implementation and Setup

Our study was conducted using display-equipped RFID tags (DERTs) from NXP Semi-
conductors and an HID Omnikey 5321 desktop reader [4]. DERTs were equipped with
an integrated 10-position alpha-numeric (ePaper) display unit and two buttons. All code
was written in Java 2 Platform Standard Edition with the Java Smart Card I/O API [5].

All tests were conducted in a designated conference room at a university campus.
Participants were introduced to the concept of personal RFID tags, with RFID-enabled
credit cards and ePassports serving as our main motivating examples. A short presen-
tation using the same set of slides (to ensure consistency) was made to each subject,
explaining each usage scenario and subjects’ task as potential users in each protocol.
These tasks were re-explained before each protocol was tested. Participants were in-
formed of the importance of maintaining natural behavior during the study and were
requested not to ask questions during the testing process. However, they were allowed
to talk to the test administrator before and after each protocol was tested. Participants
were then presented with the DERTs used in the tests in order to familiarize them with

444 A. Kobsa et al.

the “hardware”. After completing a background questionnaire to collect demographic
data, tests were conducted for each protocol described in Section 4.3, and task perfor-
mance times and error rates were measured.

After testing each protocol, every participant completed a post-test survey. It in-
cluded the System Usability Scale (SUS) questionnaire [11], a widely used and highly
reliable 10-item 5-point Likert scale, and several other questions framed to gain insights
into the potential acceptance of the proposed methods.

On average, each person took about 30 minutes to finish the entire series of tests. Ev-
eryone was allowed to take part in the study only once. Each participant was rewarded
with either an open movie coupon or a $10 Starbucks gift card.

4.2 Subject Background

Our study was conducted over a period of 25 days, in two phases. It involved a total of
35 participants who were chosen on a first-come first-serve basis from the respondents
to recruitment emails and flyers. The first 5 respondents were assigned to the pilot test
(phase 1) subject pool. Data obtained from this pilot phase was used to make important
decisions regarding the need for additional test cases in each protocol. Phase 1 was
also important to verify the stability and the limits of our RFID hardware setup. Due
to several changes made after the pilot tests in phase 1, data obtained in this phase was
not comparable to the data gathered from the remaining 30 participants. Consequently,
phase 1 data is not reflected in the results discussed in this paper.

Of the 30 subjects who took part in phase 2, 30% (9 subjects) were aged 18 to 24,
36.67% (11 subjects) 25 to 30, and 33.33% (10 subjects) 30 and over. Gender dis-
tribution was nearly even with 53.33% (16 subjects) males and 46.67% (14 subjects)
females. The subject pool was extremely well-educated, with 86.67% (26 subjects) hav-
ing a bachelors degree or higher. We attribute this to the specifics of the study venue,
a university campus. 6.67% (2 subjects) reported a disability that impaired their visual
perception.

4.3 Test Procedures and Results

User Authentication Variants. In tests of user-tag authentication, each subject was
presented with an Automated Teller Machine (ATM) simulator and was asked to au-
thenticate as the tag owner. While our protocol can be used to lock and unlock tags for
any purpose, the ATM environment was used to aid the understanding of potential use
cases.

After being informed about his/her role in the protocol, each subject was presented
with a Logitech N305 wireless number pad [6] that had four highlighted cursor keys
to aid in digit manipulation. Next, a subject was asked to complete four test cases (two
for each variant). For all test cases, the same four digit PIN was used for the same
subject. Furthermore, the initial random number generated by the tag always required a
minimum of 13 key presses total for successful authentication. This was done in order to
compare completion times between subjects more accurately. In this section, we present
our results and attempt to provide insight into which protocol is better suited for the real
world.

Usability of Display-Equipped RFID Tags for Security Purposes 445

– Completion Time and Error Rates: Each variant had 60 test cases, and the av-
erage time to completion for both variants was well under a minute. The study
yielded an average completion time of 38.469 seconds for the regular authentica-
tion protocol (UA), and 39.684 seconds for the shoulder-surfing resistant variant
(UA-SSR). A paired t-test showed that this difference is not statistically significant.
Unfortunately, looking at error rates does not give us better insight either: the study
yielded low error rates of 6.67% and 3.33% for the UA and UA-SSR protocols,
respectively.

– SUS Scores and Usability Analysis: The UA protocol was rated at 68.58 out of
100 on the SUS scale, while the UA-SSR protocol received a higher score of 72.58.
The possible reasons for this are noted in the following discussion section.

When asked if they would like to see the protocols implemented in the real world
for the purpose of user authentication, 50% (15 subjects) indicated that they would
like to see an implementation of UA, while 36.67% (11 subjects) were neutral).
When asked the same question about UA-SSR, 60% (18 subjects) agreed that they
would like to see it implemented, while 23.33% (7 subjects) were neutral. Finally,
when asked if they preferred using UA-SSR over UA, 50% (15 subjects) picked
UA-SSR while 20% (6 subjects) did not have a preference. The question received
a score of 2.89 on the five point Likert scale.

– Discussion: An analysis of the completion times and error rates does not yield a
clear winner between the UA and UA-SSR protocols. However, the SUS scores
and user opinions indicate that UA-SSR is the preferred protocol for users. Post-
test subject interviews lead us to believe that the UA-SSR was preferred because of
the presence of the ‘cursor’ that indicated which digit was currently being manip-
ulated (recall, all digits which were not being manipulated were replaced by a ‘\’).
This, however, was not present in the UA protocol, and as a result, subjects often
lost track of which digit they were manipulating, causing some of them to become
frustrated during the authentication process.

Several subjects indicated concern with the usability of our protocols for visu-
ally challenged individuals. Current authentication and PIN-entry techniques allow
individuals with visual impairments to perform their roles with reasonable ease
through the use of Braille. In contrast, our protocols do not seem to be easily ac-
cessible for this user group, and may require special hardware such as personal
radio frequency headphones. This is an important concern that we hope to address
in future work.

We point out that while other solutions to the user-to-tag authentication problem
such as [30] take significantly less time to complete (mean: 7.122 seconds), the
error rates are prohibitively high at 78.75%.

Transaction Verification. While the transaction verification method can be used with
any RFID payment/transaction instrument, we focused on the common case of RFID-
enabled credit cards in a Point-of-Sale (PoS) environment. This was done not only to
help subjects understand use cases more clearly, but also because we envision this case
as the primary application domain for this protocol.

446 A. Kobsa et al.

– Test procedure: After an explanation of their tasks and roles, each subject was pre-
sented with a vending machine simulator (with structure and products similar to the
Best Buy airport vending machines [1]). Then, each subject was asked to make two
separate sets of purchases (each set was a test case). On pressing the checkout but-
ton on the machine, a digital receipt appeared on the display monitor of the vending
machine. Next, the total amount the machine intended to charge was displayed by
the tag. Each subject was asked to check whether the two amounts matched. If
they matched, the vending machine was deemed “honest”. Otherwise, an amount
mismatch indicated a malicious vendor attempting to overcharge the user. For each
participant, one of the (randomly selected) test cases involved a malicious vending
machine that attempted to over-charge by $1, $10 or $100 (the amount was selected
at random).

– Completion Time and Error Rates: For the 60 (= 30 ∗ 2) test cases, the study
yielded an average completion time of 6.6 seconds, with a standard deviation of
3.0 seconds. Furthermore, all 30 subjects completed their tasks successfully and no
errors were recorded in the process.

– SUS Scores and User Opinion: Subjects rated usability at 86 out of 100 on the
System Usability Scale (SUS) [11]. This is far above the “industry average” of 70.1
reported in [9], and indicates excellent usability and acceptability. Also, a stagger-
ing 96.67% (29 subjects) stated that they would like to see the system implemented
on their own personal tags. Only 1 subject opposed this idea. The average score on
a 5-point Likert scale was 4.57, with a standard deviation of 0.64.

– Discussion: As the results indicate, our method is unlikely to cause errors. How-
ever, we note that this is possibly a consequence of our specific implementation. We
anticipate that user errors are likely to arise quite often in real-world deployments if
malicious vendors manipulate the placement of decimal points on the DERT (e.g.,
displaying $344.1 instead of $34.41). We were unable to test this attack in our study
since the specific NXP prototype tags that we used are incapable of displaying dec-
imal points. This fact in return prompts us to recommend an implementation such
as ours when applicable, since it does not display the fractional part of a number
(i.e., cents), thereby making it resistant to such attacks. Such an implementation
would not be suitable though if micro-payments (less than a dollar) or attacks at the
level of decimal fractions are expected.

Reader Revocation Status Checking. To help subjects understand the concept of per-
sonal RFID tags and the reader certificate expiration/revocation problem, the ePassport
example was used throughout this test. Care was taken to prevent subjects from check-
ing clocks, watches or cell phones for the current date, in order to upper-bound the error
rate. After being informed of their role in the protocol, each subject was presented with
our implementation and asked to execute the protocol eight times. Finally, opinions
were solicited via the post-test questionnaire.

– Test procedure: Each subject was presented with eight test cases in a random order.
These corresponded to DERT-displayed dates of: +/-1 day, +/-3 days, +7 days, -29
days, -364 days and -729 days from the actual test date (“+” and “-” indicate future
and past dates, respectively). The choices of -29 days, -364 days and -729 days

Usability of Display-Equipped RFID Tags for Security Purposes 447

CASE
Time to Completion Error Rates
Mean
[sec]

Standard
Deviation

Mean
[%]

+ 1 DAY 6.190 1.663 6.67
+3 DAYS 6.452 2.803 6.67
+7 DAYS 7.160 2.830 0
-1 DAY 5.475 1.858 10.00

-3 DAYS 7.109 2.638 0
-29 DAYS 6.821 2.264 16.67

-364 DAYS 6.372 2.509 30.00
-729 DAYS 5.508 1.867 30.00
OVERALL 6.386 2.388 12.50

Fig. 5. Completion times and error rates for various test cases

were deliberate so as to make their “staleness” more obscure to the subjects. After
a date was displayed on the DERT, each subject was asked to decide to: (1) accept
the date by pressing the OK button, or (2) reject it by pressing the CANCEL button.
A safe default timeout of 10 seconds was selected. If no subject input was provided
within this time, the date was automatically rejected.

– Completion Time and Error Rates: For the 240 (=8*30) test cases, the study
yielded an average completion time of 6.386 seconds with a standard deviation
of 2.388 seconds (see Figure 4.3). This shows that subjects made quick decisions
regarding the timeliness of displayed dates. Among the 240 test cases, the false neg-
ative rate (reject dates that are not stale) was quite low, at 4.44%. No one rejected
a date that was seven days in future, and only 6.67% (2 subjects) of the sample
rejected dates that were one and three days in the future.

The false positive rate (stale date accepted) was considerably higher, namely
17.33% on average. When subjects were shown dates that were 1 and 3 days earlier,
the error rates were only 10% and 0%, respectively. Surprisingly though, when
subjects were shown dates that were 29, 364 and 729 days earlier, the error rates
shot up to 16.67%, 30% and 30%. We will elaborate on possible reasons for this
spike in the discussion below.

– SUS Scores and User Opinion: Subjects that tested our implementation rated its
usability at 76 on the System Usability Scale (SUS) [11]. We note that this is al-
most identical to the score of 77 obtained in [28], where subjects rated it based on
a mock-up implementation on a Nokia N95 cell phone. The overall SUS score ob-
tained is appreciably above the “industry average” of 70.1 [9], and indicates good
usability and acceptability characteristics.

Furthermore, 70% (21 subjects) stated that they would like this system on their
own personal tags, while 23.33% (7 subjects) were neutral to the idea. The average
score on a 5-point Likert scale was 3.78 with a standard deviation of 0.77.

– Discussion: As the results show, our method very rarely yields false negatives:
users are capable of not mistaking valid (future) dates for past dates. Regarding
false positives, however, the results are mixed. Stale days are, for the most part,

448 A. Kobsa et al.

easily recognized as such. However, with stale years, error rates are quite high,
at 30%. While we do not claim to know the exact reason(s) for this fact, some
conjectures can be made. When confronted with a date, e.g., current dates on doc-
uments or expiration dates on perishable products, most people are used to first
check day and month. They may not tend to pay as much attention to more blatant
errors such as wrong year, perhaps because they consider it to be an unlikely event.
We anticipate though that year mismatches will be quite rare in practice, since (as
we mentioned earlier in the paper) tags can record the most recent valid date they
encounter. Therefore, dates with stale year values will be mostly automatically de-
tected and rejected by tags without the need for any user interaction. However, high
user error rates in wrong year values can still pose a threat if a tag is not used for a
year or longer.

Secure Device Pairing. We chose the “Copy” method described earlier for the de-
vice pairing tests. There were two primary reasons for this choice: our previous studies
[32,27] had indicated low error rates, and the method is device-controlled and therefore
resistant to rushed user behavior [29].

– Test procedure: First, each subject was briefed on the purpose of pairing personal
RFID tags with personal devices (in this case, a laptop). Next, the subject’s role
in the protocol was described. Subjects were then asked to enter a random 5-digit
number generated by the tag into the laptop. Upon correct number entry, they were
notified of successful pairing via the tag and laptop displays, and a mock user in-
terface depicting possible applications of the pairing was displayed on the laptop.
Only a single test case was performed for each user.

– Completion Time and Error Rates: A total of 30 test cases were performed,
yielding an average completion time of 23.904 seconds with a standard deviation of
8.272 seconds. Only 3.33% of the sample (1 subject) entered an incorrect number
into the laptop that resulted in an error.

– SUS Scores and Usability Analysis: Before rating the pairing protocol on the
System Usability Scale, subjects were clearly informed of the distinction between
rating the pairing protocol and rating its applications. The SUS scale was only used
to understand the usability of the former, and resulted in a score of 81.83%. This
indicates very good usability and acceptability.

Furthermore, 86.67% (26 subjects) indicated that they found the “Copy” method
easy to use and that they wanted to use it more often for pairing. 83.33% (25 sub-
jects) indicated that they were likely or very likely to use the applications that were
now available as a result of the ability to pair their personal tags with other devices.

– Discussion: High SUS scores, low error rates and positive user feedback point to
the usability of the “Copy” device pairing approach, and potential applications of
tags paired with more sophisticated devices. An effective and usable pairing method
should demonstrate high scores on all three measures. To better understand the
correlations among four selected measures, we computed their cross correlations.
Fig. 6 shows the Pearson correlation coefficients. Interestingly, there exist three
medium to high correlations. These are between perceived ease of use of the pairing
method and time to completion (medium: -.407), likelihood of using applications of

Usability of Display-Equipped RFID Tags for Security Purposes 449

Time
Taken

SUS
Score

Application
Use

SUS Score -.148 - -

Application
Use -.188 .475 -

Pairing Use -.407 .323 .618

Fig. 6. Pearson correlation coefficient matrix for tag-to-PC pairing

pairing and SUS score (medium: .475), and perceived ease of use of pairing method
and likelihood of using applications of pairing (high: .618).

5 Conclusions

Recent advances in display technology and hardware integration have resulted in rela-
tively inexpensive display-equipped RFID tags (DERTs). Their low cost coupled with
achievable security properties make DERTs desirable and ready for real world applica-
tions.

In this paper, we made the case for using DERTs in several security-related contexts.
In particular, we presented simple, intuitive solutions to several security problems with
personal RFID tags. Our methods take advantage of the newly available user interface
(display) for RFID tags and the presence of human owners. Preliminary usability studies
suggest that target users find all our methods usable, and they are capable of performing
their roles with reasonably low error rates. As more applications for DERTs are found,
we believe that they will soon be in mass production and methods proposed in this paper
will become applicable to a wide range of personal RFID tags.

Acknowledgements. The authors are grateful to NXP Semiconductors, especially to
Thomas Suwald and Arne Reuter, for providing us with the display-equipped tags used
in our studies. This work is supported in part by NSF Cybertrust grant #0831526.

References

1. Bestbuy To Put Gizmo Vending Machines In Airports, http://www.pcworld.
com/article/149684/best_buy_to_put_gizmo_vending_machines_in_
airports.html

2. BSI: Country Verifying Certificate Authority. https://www.bsi.bund.de/cln_
174/DE/Themen/ElektronischeAusweise/CVCAePass/CVCAePass_node.
html.

3. BSI: The New ID-Card, https://www.bsi.bund.de/cln_174/ContentBSI/
Themen/Elekausweise/Personalausweis/ePA_Start.html.

http://www.pcworld.com/article/149684/best_buy_to_put_gizmo_vending_machines_in_airports.html
http://www.pcworld.com/article/149684/best_buy_to_put_gizmo_vending_machines_in_airports.html
http://www.pcworld.com/article/149684/best_buy_to_put_gizmo_vending_machines_in_airports.html
https://www.bsi.bund.de/cln_174/DE/Themen/ElektronischeAusweise/CVCAePass/CVCAePass_node.html
https://www.bsi.bund.de/cln_174/DE/Themen/ElektronischeAusweise/CVCAePass/CVCAePass_node.html
https://www.bsi.bund.de/cln_174/DE/Themen/ElektronischeAusweise/CVCAePass/CVCAePass_node.html
https://www.bsi.bund.de/cln_174/ContentBSI/Themen/Elekausweise/Personalausweis/ePA_Start.html
https://www.bsi.bund.de/cln_174/ContentBSI/Themen/Elekausweise/Personalausweis/ePA_Start.html

450 A. Kobsa et al.

4. Hid Omnikey 5321 Cl Usb Reader, http://www.hidglobal.com/documents/
OK5321_cl_ds_en.pdf

5. Java Smart Card I/O, http://java.sun.com/javase/6/docs/jre/api/
security/smartcardio/spec/

6. Logitech Wireless N305, http://www.logitech.com/en-us/keyboards/
keyboard/devices/6355

7. Abadi, M., Burrows, C., Kaufman, C., Lampson, B.: Authentication and delegation with
smart-cards. Science of Computer Programming 21(2), 93–113 (1993)

8. Aleskerov, E., Freisleben, B., Rao, B.: Cardwatch: A Neural Network Based Database Min-
ing System For Credit Card Fraud Detection. In: Proceedings of the IEEE/IAFE 1997 Com-
putational Intelligence for Financial Engineering (CIFEr), March 23-25, pp. 220–226 (1997)

9. Bangor, A., Kortum, P., Miller, J.: An Empirical Evaluation Of The System Usability Scale.
Int. J. Hum. Comput. Interaction 24(6), 574–594 (2008)

10. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key exchange
using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–
171. Springer, Heidelberg (2000)

11. Brooke, J.: SUS: A “Quick And Dirty” Usability Scale. In: Jordan, P.W., Thomas, B., Weerd-
meester, B.A., McClelland, A.L. (eds.) Usability Evaluation in Industry. Taylor and Francis,
London (1996)

12. Chan, P.K., Fan, W., Prodromidis, A.L., Stolfo, S.J.: Distributed Data Mining In Credit Card
Fraud Detection. IEEE Intelligent Systems 14(6), 67–74 (1999)

13. Czeskis, A., Koscher, K., Smith, J.R., Kohno, T.: RFIDs And Secret Handshakes: Defend-
ing Against Ghost-And-Leech Attacks And Unauthorized Reads With Context-Aware Com-
munications. In: CCS 2008: Proceedings of the 15th ACM Conference on Computer and
Communications Security, pp. 479–490. ACM, New York (2008)

14. Evans Jr., A., Kantrowitz, W., Weiss, E.: A User Authentication Scheme Not Requiring Se-
crecy In The Computer. Commun. ACM 17(8), 437–442 (1974)

15. Forget, A., Chiasson, S., Biddle, R.: Shoulder-Surfing Resistance With Eye-Gaze Entry In
Cued-Recall Graphical Passwords. In: CHI 2010: Proceedings of the 28th International Con-
ference on Human Factors in Computing Systems, pp. 1107–1110. ACM, New York (2010)

16. Heydt-Benjamin, T.S., Bailey, D.V., Fu, K., Juels, A., O’Hare, T.: Vulnerabilities in first-
generation RFID-enabled credit cards. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and
USEC 2007. LNCS, vol. 4886, pp. 2–14. Springer, Heidelberg (2007)

17. Hoepman, J.-H., Hubbers, E., Jacobs, B., Oostdijk, M., Schreur, R.W.: Crossing borders:
Security and privacy issues of the european e-passport. In: Yoshiura, H., Sakurai, K., Ran-
nenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp.
152–167. Springer, Heidelberg (2006)

18. Housley, R., Ford, W., Polk, W., Solo, D.: Rfc 5280: Internet X.509 Public Key Infrastructure
Certificate and CRL profile (May 2008)

19. Juels, A., Molnar, D., Wagner, D.: Security And Privacy Issues In E-Passports. In: Inter-
national Conference on Security and Privacy for Emerging Areas in Communications Net-
works, pp. 74–88 (2005)

20. Kainda, R., Flechais, I., Roscoe, A.W.: Usability And Security Of Out-Of-Band Channels In
Secure Device Pairing Protocols. In: SOUPS: Symposium on Usable Privacy and Security
(2009)

21. Kobsa, A., Sonawalla, R., Tsudik, G., Uzun, E., Wang, Y.: Serial Hook-Ups: A Compara-
tive Usability Study Of Secure Device Pairing Methods. In: SOUPS: Symposium on Usable
Privacy and Security (2009)

22. Kou, Y., Lu, C.-T., Sirwongwattana, S., Huang, Y.-P.: Survey Of Fraud Detection Techniques.
In: 2004 IEEE International Conference on Networking, Sensing and Control, vol. 2, pp.
749–754 (2004)

http://www.hidglobal.com/documents/OK5321_cl_ds_en.pdf
http://www.hidglobal.com/documents/OK5321_cl_ds_en.pdf
http://java.sun.com/javase/6/docs/jre/api/security/smartcardio/spec/
http://java.sun.com/javase/6/docs/jre/api/security/smartcardio/spec/
http://www.logitech.com/en-us/keyboards/keyboard/devices/6355
http://www.logitech.com/en-us/keyboards/keyboard/devices/6355

Usability of Display-Equipped RFID Tags for Security Purposes 451

23. Kumar, A., Saxena, N., Tsudik, G., Uzun, E.: Caveat Emptor: A Comparative Study of Secure
Device Pairing Methods. In: IEEE International Conference on Pervasive Computing and
Communications, PerCom (2009)

24. Micali, S.: Efficient Certificate Revocation. Technical Memo MIT/LCS/TM-542b, Mas-
sachusetts Institute of Technology (1996)

25. Micali, S.: Certificate Revocation System. United States Patent 5,666,416 (September 1997)
26. Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: Internet Public Key Infrastruc-

ture Online Certificate Status Protocol- Ocsp. RFC 2560 (1999), http://tools.ietf.
org/html/rfc2560

27. Nithyanand, R., Saxena, N., Tsudik, G., Uzun, E.: Groupthink: Usability Of Secure Group
Association For Wireless Devices. In: 12th ACM International Conference on Ubiquitous
Computing, Ubicomp 2010 (2010)

28. Nithyanand, R., Tsudik, G., Uzun, E.: Readers Behaving Badly. In: Gritzalis, D., Preneel, B.,
Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 19–36. Springer, Heidelberg
(2010)

29. Saxena, N., Uddin, M. B.: Secure pairing of “Interface-constrained” devices resistant against
rushing user behavior. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 34–52. Springer, Heidelberg (2009)

30. Saxena, N., Uddin, M.B., Voris, J.: Treat ’em Like Other Devices: User Authentication of
Multiple Personal RFID Tags. In: SOUPS 2009: Proceedings of the 5th Symposium on Us-
able Privacy and Security, p. 1. ACM, New (2009)

31. Perković, T., Čagalj, M., Saxena, N.: Shoulder-Surfing Safe Login in a Partially Observ-
able Attacker Model. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 351–358. Springer,
Heidelberg (2010)

32. Uzun, E., Karvonen, K., Asokan, N.: Usability analysis of secure pairing methods. In: Di-
etrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS, vol. 4886, pp. 307–324.
Springer, Heidelberg (2007)

33. Wilkes, M.V.: Time Sharing Computer Systems. Elsevier Science Inc., New York (1975)

http://tools.ietf.org/html/rfc2560
http://tools.ietf.org/html/rfc2560

Forcing Johnny to Login Safely

Long-Term User Study of Forcing and Training Login
Mechanisms

Amir Herzberg and Ronen Margulies

Dept. of Computer Science, Bar Ilan University
{herzbea,margolr}@cs.biu.ac.il

Abstract. We present the results of the first long-term user study of
site-based login mechanisms which force and train users to login safely.
We found that interactive site-identifying images received 70% detec-
tion rates, which is significantly better than passive indicators’ results
[15, 8, 12]. We also found that login bookmarks, when used together with
‘non-working’ links, doubled the prevention rates of reaching spoofed lo-
gin pages in the first place. Combining these mechanism provides effective
prevention and detection of phishing attacks, and when several images
are displayed in the login page, the best detection rates (82%) and overall
resistance rates (93%) are achieved. We also introduce the notion of neg-
ative training functions, which train users not to take dangerous actions
by experiencing failure when taking them.

1 Introduction

Phishing, i.e., password theft via fake websites, is an extremely worrying, wide
spread and worldwide phenomenon. With billions of dollars lost and dozens of
percents increase in the amount of attacks over the years [1, 19, 20], it appears
that there is still a need to improve the defenses against phishing.

Psychology can provide important insights that can help improve anti-phishing
defenses, by understanding what makes users so susceptible to phishing. In [11],
Karlof et al. described how humans tend to develop automatic responses to sit-
uations repeating themselves. In familiar situations, the human brain makes us
respond mindlessly with the action that is usually most appropriate; for such re-
sponses, the psychologist Robert Cialdini coined the term click whirr responses
[4]. Cialdini says that these responses are like pre-recorded tapes in our heads,
and when we encounter a familiar situation we automatically “click the play
button” (which makes a whirr sound, hence click whirr). Karlof et al. explained
that users developed a click whirr response to login forms, and will automatically
submit their credentials to a login form residing on an interface they have seen
before. Our main focus is on influencing users’ responses to spoofed emails and
web pages, and their decision-making process.

In addition, as was clearly seen on our user study (section 5), two other click
whirr responses are shared by most users. The first is to follow email links from

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 452–471, 2011.
� Springer-Verlag Berlin Heidelberg 2011

Forcing Johnny to Login Safely 453

a familiar sender, as clicking a link is a natural thing to do when meeting one (as
was also noticed by Karlof et al.). The second is to put trust in a site’s home page
that looks familiar (even if not protected by SSL), and move to the site’s login
page when wanting to login (by clicking an “Enter Your Account” button/link).
The three mentioned click whirr responses make the Internet a fertile ground for
phishing attacks.

1.1 Current Mechanisms: Passive Indicators

Early web browsers include three main indicators to help users identify the
websites they visit: the address bar (indicating the site’s URL), the https prefix
and the padlock/key image (both indicating SSL usage). Several experiments
[5, 9] showed that users often enter their passwords without validating them. This
is not surprising: the indicators are not very visible, and there is no mechanism
forcing or training users to inspect them, so it is easier to just skip those checks.

Several proposals and implementations for enhanced indicators, most involv-
ing change to the browser, and few that require only support by the website, were
introduced. Those indicators display warnings [21], a user-custom image/text to
help the user identify the site [9, 17, 3], SSL Certificate information [9, 16], and
emphasis of the domain name and protocol in the URL bar.

Both the ‘classical’ and ‘enhanced’ indicators are passive, i.e., they are only
displayed to the user and require no action in a regular login. Several experiments
measuring users’ ability to detect fake sites using different (enhanced) indicators,
resulted in mostly disappointing results [8, 15, 12].

1.2 Interactive Custom Indicators

We found that the use of interactive custom indicators can significantly improve
the ability of users to avoid phishing. Interactive custom indicators force the
user to interact with her customized (personal) indicator (image/text) in order
to login. An example is Passpet [18] – a firefox extension which acts both as a
password manager and an interactive custom indicator.

One important advantage of interactive custom indicators is that they can be
implemented by changes to only the website, without requiring any change on
the client side; this is significant as changes in the client side are often complex
for users, requiring expensive support, and require support of multiple machines
and browsers. With a site-based interactive custom indicator, the login page can
hide the password text field until the user clicks her custom indicator.

The interactive nature of these indicators, which conditions users to find and
click their custom image/text, makes users more alert to the indicator’s ab-
sence on a spoofed login page. There was almost no study of the effectiveness of
interactive indicators in detecting spoofed login pages 1.

1 An exception are the encouraging results of the preliminary phase of this research
(see in Dvorkin’s thesis [6]): ∼20% – ∼40% detection rates for passive indicators,
∼85% for interactive.

454 A. Herzberg and R. Margulies

1.3 Secure Login Using a Bookmark

The initial stage of a phishing attack is to get the user to enter a spoofed login
page. A common scenario for the initial stage is to send a spoofed email contain-
ing a link to a spoofed login page. Users might follow email links, which could be
risky since emails are easily spoofed. In addition, most sites’ home pages are not
protected by SSL and can be spoofed by a MITM; users might put their trust
in a spoofed page looking similar to their target site’s home page, and follow
its “Enter Your Account” button which leads to the (spoofed) site’s login page.
Search engine results are also not protected by SSL and can be spoofed by a
MITM, thus leading the user to a spoofed site.

A good habit for accessing high-value sites is to create a browser bookmark
(‘favorite’) for a sensitive site’s (https) login page, and always surf to the site’s
login page via that bookmark. Adida has presented BeamAuth [2], a two-factor
authentication mechanism based on a login bookmark. In this mechanism, users
receive a special login-bookmark from the website, containing a secret token,
which identifies them to the site. To ensure that users will always login via their
bookmark, the login page looks for the secret token and prohibits the login if
a valid token is not supplied (an error message is displayed on the login page,
which trains the user not to enter the login page in any way but the bookmark).
A login bookmark ensures reaching the correct URL, and by containing an https
prefix, ensures a secure channel is established.

Apart from initial and non-reliable results of this research [6], there was no
study of the effectiveness of login bookmarks in preventing users from reaching
spoofed sites. There was also no study of other mechanisms that aim to prevent
users from following email links or entering the site’s login page via its (non SSL
protected) home page.

1.4 Challenges and Requirements for User Studies

User studies should try to emulate users’ real-life activities. Most previous studies
in the field [15, 8, 12] were short term (few hours) lab studies. Such studies
experience problems in making participants act as in real life: if they know the
true intention of the study, they will be more cautious than in real-life, and if a
false intention is introduced they will be less cautious; even if a sense of risk is
added (for . using their own bank accounts), the study’s environment, which is
not in the users’ regular environment, might influence their behavior [14].

It is important to complement short-term lab studies with long-term real-life
studies, where participants use an online system, with a different purpose than
security, regularly for several months, and login from anywhere they want. This
kind of study is closer to real-life, and even if the study’s purpose is introduced,
users’ motivation to detect attacks is not expected to be higher than usual due
to the constant usage and other purposes of the system. To the best of our
knowledge, no long-term user study which examined users’ response to emails
and the detection rates of spoofed pages was previously conducted.

Forcing Johnny to Login Safely 455

Table 1. Detection rates and overall resistance rates for a classic phishing attack.
Cells are merged when results were combined for higher confidence or when it does not
make sense to split (e.g. ‘non-working’ links don’t affect the detection rates, only the
prevention rates).

mechanisms detection rate resistance rate

none 19.61±4.95 40.22±10.24

bookmark only
42.56±5.61

49.84±14.77
bookmark+‘non working’ links 81.08±12.88

image only 59.84±6.24 76.12±8.44

bookmark+image
72.71±6.31

bookmark+‘non working’ links+image 80±10.03
bookmark+4 images

81.94±5.17
93.24±7.8

bookmark+‘non working’ links+4 images

1.5 Our Contributions

We have conducted an extensive long-term user study of real-life web and email
activities, which included different kinds of simulated phishing attacks. We ex-
amined the effectiveness of different phishing defense mechanisms, including a
login bookmark, interactive custom images and their combination.

We also tested mechanism sites can use to prevent users from reaching spoofed
login pages – intentionally including ‘non-working’ links/buttons in the site’s
home page and email announcements. From the results we concluded that users
need to experience failure in order to avoid dangerous actions, and introduced
the notion of negative training functions.

We found significant differences between the mechanisms’ detection rates and
overall resistance rates (see table 1). From all the results of our study we derived
a set of conclusions and guidelines that (high-value) sites can use. We present
an important conclusion derived from table 1 in advance:

Conclusion 1. By combining a login bookmark with ‘non-working’ email links
and an interactive custom image, and displaying multiple images in the login
page, the detection rates and overall resistance rates are higher than any other
mechanism previously tested in a real-life experiment (82% and 93% respec-
tively).

Detailed discussion of the table and the study’s results and conclusion is given
in section 5. In our study we also measured the effectiveness of browsers’ SSL
certificate warnings and conducted a usability survey.

Another contribution is WAPP (Web Application Phishing-Protection), a
site-based anti-phishing solution we designed and implemented, which
combines a login bookmark with multiple interactive images to constitute a
conditioned-safe login ceremony (see section 2.1).

456 A. Herzberg and R. Margulies

1.6 Paper Organization

Section 2 describes the principles for effective anti-phishing mechanisms, which
was used as a basis for WAPP (section 2.4) and for our user study (section
3). In section 4 we present a comprehensive threat analysis and users’ expected
behavior for simulated attacks, and section 5 presents the results and conclusions
from our user study. Finally, section 6 presents the results of our usability survey.

2 Principles for Effective Anti-Phishing Mechanisms

2.1 Conditioned-Safe Ceremonies

Karlof et al. [11] introduced the notion of a conditioned-safe ceremony, which
is a ceremony that “deliberately conditions users to reflexively act in ways that
protect them from attacks”, i.e., forces users to take actions that are safe.

Forcing functions, which were also mentioned by Karlof et al., are behavior-
shaping constraints, used in the human reliability field aiming to prevent human
errors. Forcing functions usually work by preventing a user from progressing in
her task until she performs a specific action whose omission results in failure.
Because users must take this action during every instance of the task, the forcing
function trains them to always perform this action, and after a short experience
will become a click whirr response.

To defeat conditioned-safe ceremonies, attackers will try to make users per-
form a dangerous action instead of the forcing function, thus bypassing its pro-
tection. For example, convincing users to follow a link to a spoofed login page
instead of clicking the login bookmark which leads to the correct login page. Since
such actions are indeed possible (as our study’s results show), we introduce the
notion of negative training functions.

Unlike forcing functions, negative training functions are not a part of the
ceremony, and train users to never perform dangerous actions by making them
experience failure when performing those actions. Negative training functions
can come together with forcing functions to better train users of what should
and what should not be done.

2.2 Design Goals for a Conditioned-Safe Login Ceremony

Since humans tend to make routine actions mindlessly, and in particular skip
any voluntary action during a login ceremony, we should not fight this tendency.
A conditioned-safe login ceremony should consist of several forcing and negative
training functions – at least one function against each click whirr response that
puts users in danger. In particular, there should be forcing and training functions
against:

1. Automatic following of links.
2. Automatic submission of credentials.
3. Automatic entrance to a site’s login page by clicking an “Enter Your

Account” button in its home page (which could be spoofed).

Forcing Johnny to Login Safely 457

2.3 Mechanisms of Interest

On our user study we focused on mechanisms which are either forcing or negative
training functions, since we believed they will be the most effective mechanisms
against phishing. In addition, such mechanisms were never tested before, apart
from initial encouraging results by Dvorin [6]. The forcing functions mechanisms
we used were:

1. A login bookmark, which forces users to login via their bookmark only, since
a login attempt not via the bookmark results in failure.

2. An interactive custom image, which forces users to find and click their custom
image in order to submit their password and login.

Since the bookmark and image clicks are necessary for each login, they provide
constant training; the more a user is trained, lower are the chances for her to omit
the forcing functions. The interactive custom image defends against automatic
submission of credentials and the login bookmark defends against reaching a
spoofed login page (for example by following email links or entering a site’s
login page via a non-SSL protected home page). The combination of the two
mechanisms provides both prevention and detection of spoofed login pages, thus
achieves defense-in-depth and guarantees that omitting only one of them will
not suffice. Therefore, a combined method is also worth testing.

To login to a site implementing the combined method, the user has to first click
her bookmark which leads her to the login page and sends the secret token to
the site for initial identification. The site then recognizes the user and sends her
custom image to be displayed in the login page. After the user clicks her custom
image she will be able to submit her password. If her username, password and
secret token match, the site allows her to login.

The login ceremony of the combined method is simpler and faster than typical
login ceremonies, as it requires only two mouse clicks (for the bookmark and
interactive image), and saves the need for typing the site’s URL (or looking for
it on a search engine) and moving from the site’s home page to its login page.
In addition it saves the need for typing the username, as it can be automatically
filled-in (see [2]). The ceremony is even faster with browser auto-completion.

A variation of interactive custom images is to choose (and click) the custom
image from a small set of random images on the login page. This variation
makes the user even more aware of her custom image (as seen on our study),
and improves the detection rates. With only one image displayed, the user’s click
whirr response could cause her to immediately click on any image displayed to
her, especially if she forgot her image. Making her choose the correct image,
reduces the chance for an immediate mindless click. In addition, with several
images being used the site can notice when a user has forgotten her image (after
several mistaken clicks), and can refresh her memory. Another idea is to present
animated images which attracts the human eye more than static images and
could increase memorability.

In addition to the login bookmark, we also tested two negative training
functions aiming to prevent users from reaching spoofed login pages:

458 A. Herzberg and R. Margulies

Fig. 1. The login page requires the user to click her correct custom image

1. Intentionally including “non working” links to the login page in the site’s
email announcements; when clicked, the user reaches the login page which
displays an error telling her to login only via her bookmark. This experience
trains the user to never follow links.

2. Intentionally including a “non working” account-entrance button in the site’s
home page. When clicked, the user reaches the login page and displayed with
a similar error page. This experience trains the user to never enter the site’s
home page in the first place when wanting to login.

2.4 WAPP

We designed and implemented WAPP (Web Application Phishing Protection),
a server side solution which implements all the above mentioned mechanisms.
We refer to a site implementing those mechanisms as a WAPP-protected site. A
demo of WAPP is available at http://submit2.cs.biu.ac.il/WAPP/.

3 Long-Term User Study

3.1 Study’s Framework System

For our long-term study we used an online exercise submission system called
‘submit’ (submit.cs.biu.ac.il), which is used by most courses at the computer
science department of Bar-Ilan University. With the submit system, students
submit their exercises and receive emails announcing new grades. Due to its wide
usage, most users logged-in to the system dozens and even hundreds of times
throughout the study. We have used the system for two years (four semesters),
among a population of ∼400 students, and present the results of the first three
semesters (initial analysis of the results of the fourth semester correlate with
the earlier results). In addition to its primary usage as an exercise submission
system, we simulated several phishing attacks, and collected the attacks’ results.

3.2 Introducing the Experiment

When users experience a sense of risk or are aware of the security purpose of
the system, they become more concerned about security. Yet, its long-term usage

http://submit2.cs.biu.ac.il/WAPP/
submit.cs.biu.ac.il

Forcing Johnny to Login Safely 459

and the fact that its primary usage isn’t security, but rather exercise submission,
should not cause more concern than user’s real life concern for high-value sites.
We had two variations of our experiment:

First Experiment – Weak Motivation. In the beginning of the study we an-
nounced an up to 5 points bonus in one of Herzberg’s courses of their choice for
correctly detecting attacks to provide the users with an incentive to cooperate.
After analyzing the results of the first two semesters and users’ answers to an
online survey we applied at the end of the second semester, we found that 26%
of the students did not cooperate with our experiment and did not try to detect
attacks. We removed the results of those users (see appendix B) and concluded
that further motivation for cooperation and a higher sense of risk are needed.

Second Experiment – Extra Motivation. In the third semester we introduced our
study in a more informative way: on the first login, each user, including users
from previous semesters, was introduced with an instructions page which shortly
described: a) what phishing is and the extent of phishing attacks; b) who we are
and what are our goals; and c) the experiment details. We asked the students to
cooperate and promised our gratitude. We also announced the 5 point bonus and
told users they will lose bonus points upon classification mistakes. Users that
used the system in the previous year knew that the bonus points were indeed
granted, and that they depend on the correct classification rates.

3.3 Users’ Login Methods

Upon registration, each user was randomly assigned a login method from the
following five methods:

image only an interactive custom image only
bookmark only a login bookmark only
bookmark+image a login bookmark combined with an interactive custom

image
bookmark+4 images like the latter, where the login page displays 4 images
none no site-based indicator assigned, used as a control group

Users could only login using the method assigned to them upon registration.
In normal usage of the system, non-bookmark users (none and image only)
have reached the login page, which was running over https, via the system’s
home page, which was running over http, by providing their username. Bookmark
users (bookmark only, bookmark+image and bookmark+4 images) that entered
the login page the same way received an error message (except when they were
attacked) telling them to login via their bookmark, and could not login. This
simulated our second negative training function.

3.4 Users’ Email Methods

Each user was also assigned an email method, which determined how she will
get her new grade announcement emails from the system. We used three types of

460 A. Herzberg and R. Margulies

emails – 1) emails that contain a link to the system’s login page telling the users
they have to login to view their grade and submission details; 2) emails that
contain the grade and submission details within the mail body and contain no
link; 3) emails like the latter containing no link and also containing a warning
at the end of the email body, saying that the system never includes links in
its emails since clicking links in emails is dangerous. We refer to these email
methods as link, no link, and warning respectively.

Users always got the same type of email except when the system had sent a
spoofed email. Bookmark users from the link group received ‘non-working’ links
regularly (except when they were attacked), as the links directed them to the
system’s login page where they were shown an error message. This simulated
our first negative training function.

3.5 Attacks

When users tried to enter the system’s login page via its home page or via their
bookmark, there was a low probability for them to be randomly directed to one
of the system’s spoofed login pages. We uses low attack probabilities to prevent
increased awareness due to frequent attacks. Spoofed emails were also sent to
users with rather low probabilities; these emails contained similar content to the
system’s genuine emails sent to link users, apart from the fact that the links
contained the URL of a spoofed page. See the full version of our paper [10] for
a detailed description of the attacks and logging of the results.

4 Threat Analysis

In this section we attempt to analyze all realistic phishing attacks against a site
implementing the mentioned forcing and negative training functions mechanisms
(which we refer to as a WAPP-protected site). We hypothesize users’ expected
behavior in the different attack scenarios, and describe how we simulated those
attacks in our user study.

Classic Phishing Attack. In a classic phishing attack a spoofed email con-
taining a link to a spoofed login page is sent to the user. WAPP defends
against this attack by training the user not to follow the link and always
login via her bookmark. If the user makes an error of omission and follows
the link, her interactive custom image won’t be displayed and the user will
most likely understand she reached a spoofed page and resist the attack.
We executed this kind of attack in our user study and measured whether
bookmark users and in particular users with ‘non-working’ links, are less
likely to follow links, and if they did, whether the interactive custom image
is effective in detecting the spoofed page.

Malicious Bookmark Replacement. An attacker might trick the user into
replacing her WAPP bookmark, using for example, a spoofed email that
mimics the site’s registration email, or overriding the bookmark by creating
a bookmark with the same name when the user visits the attacker’s site.

Forcing Johnny to Login Safely 461

Even if the bookmark has been replaced, the secret token is not revealed
and the user will most likely identify she reached a spoofed site since her
custom image does not appear, thus not provide her password. This way she
could suspect the new installed bookmark, delete it, and replace it with the
original bookmark she received from the site. We simulated the second part
of the attack by redirecting bookmark users to a spoofed login page after
clicking their bookmark, as if it was previously replaced, and measured the
detection rates.

Pharming Attack. A MITM attacker who hijacks a DNS entry will direct the
user’s traffic for the legitimate website towards the attacker’s machine. Since
the bookmark link start with https, the user’s browser will try to establish an
SSL connection with the attacker’s machine and notice an invalid certificate.
When encounter an invalid certificate, modern browsers don’t display the
site’s content, and display active certificate warning pages, with alarming
text and colors, instead. Users are required to manually add an exception or
approve in order to forward to the site.

Egelman et al. [7] found high percentage (79%) of users resisting phishing
attacks with active browser warnings, which makes sense as it is an interac-
tive forcing function which prevents users from progressing with the login.
For a user entering the spoofed site despite the warnings, the attacker can
gain the user’s secret token and custom image, and will most likely gain the
user’s password as well. In our user study we simulated a pharming attack by
using a spoofed login page in the same domain as the submit system, which
used an invalid certificate. We measured the percent of users entering the
spoofed page despite the browser warnings. For a user that did enter, though
a MITM could present the user with her real custom image, we did not do
that in our study, as no added value could be achieved from such an attack.
Instead, we did not display the image and measured the detection rates as
in the other spoofed pages. We wanted to find out if the detection rates are
better when a preventive forcing function is combined with a detective one.

Spoofing the Home Page. Since most sites don’t apply SSL at their home
page (mostly for performance reasons), the site’s home page could be spoofed.
A MITM can change the site’s home page or the results returned by a search
engine in case the user looked for the site’s URL. Another scenario is that an
attacker sends a spoofed email with a link to a spoofed home page instead of
a spoofed login page. After reaching the spoofed home page, the user might
put trust in the site and forward to the (spoofed) login page by clicking an
“Enter Your Account” button/link.

WAPP users would most likely not enter the site’s home page in the
first place, since by previously doing so they have experienced a login failure
due to the ‘non-working’ account entrance button. Even if the user performs
an error of omission, enters the spoofed home page and forwards to the
spoofed login page, she won’t see her custom image and will most likely
notice the attack. We have simulated this attack for non-bookmark users
(which always logged-in from the home page) by directing them to spoofed
pages. Bookmark users trying to enter the login page via the system’s home

462 A. Herzberg and R. Margulies

page mostly reached the genuine login page and received an error message,
but some of their attempts also led them to a spoofed login page.

An attacker can try additional attack scenarios (which are discussed in appendix
A) as a preliminary phase to a phishing attack, in order to get a hold of the user’s
secret token. We did not execute these attacks due to previous studies’ results,
complication, and ethical reasons. Our study’s results empirically proved that
WAPP is well protected against all kinds of realistic phishing attacks. Only
two-phased attacks that try to gain the user’s secret token prior to a phishing
attack could effectively defeat WAPP. These complicated attacks require more
effort and resources from phishers, and are likely to significantly reduce phishers’
motivation to attack users of WAPP-protected sites in the first place.

5 Study Results and Conclusions

We already presented table 1, which described the detection rates and overall
resistance rates of the different mechanisms against a classic phishing attack,
in the introduction of this paper. We found that by combining all mechanisms
the best detection and prevention rates (and hence overall resistance rates) are
achieved. In this section we deal with detection and prevention rates and with
the different attacks individually, and present the conclusions from the study’s
results.

5.1 Detection Rates Summary

In this subsection we focus on the detection rates of spoofed pages that have
been entered, i.e not including invalid certificate pages which users were trans-
ferred to but not entered nor emails with spoofed links which were not clicked.
Figure 2 shows a summary of the detection rates for the different defense mech-
anisms. Results are divided to the two variations of our study – ‘weak’ stands
for students’ weak cooperation and sense of risk in the first experiment and
‘strong’ stands for students’ stronger cooperation and sense of risk in the second
experiment. ‘Combined’ stands for a wighted average of the results of all three
semesters, where we gave the ‘strong’ variation a weight of 0.7, since we believe
it better suits real-life and had shorter evaluation time. The results show that:

Conclusion 2. There is a significant gap between the detection rates of the
different methods ranging from 20% for none users (in the combined results), up
to 42% for bookmark only, 60% for image only, 72% for bookmark+image and
82% for bookmark+4 images. In the strong variation of our study, this method
achieved even better and outstanding detection rates of 87%.

Inparticular,imageusers (imageonly,bookmark+imageandbookmark+4images)
detectedmore than twice the percent of attacks detected by non-imageusers (none
and bookmark). Therefore:

Conclusion 3. The interactive custom image is a highly effective forcing
function against automatic submission of credentials.

Forcing Johnny to Login Safely 463

Fig. 2. Detection rates found for the different defense mechanisms

Another observation is that bookmark only users received better detection rates
than none users, and bookmark+image(s) users received better detection rates
than bookmark only users. We can conclude that:

Conclusion 4. The login bookmark increases the detection rates, and its advan-
tage is not limited to prevention.

Finally, we noticed that the more effective a mechanism is, larger the gap in
detection rates for that mechanism between the two versions of the study. In ad-
dition, the strong version of our study shows larger significance in the detection
rates between the different mechanisms than in the weak version (see appendix
C for further details). This implies that whether users of non-effective detection
mechanisms (bookmark only and none) were cooperative did not affect their de-
tection rates. On the contrary, when users of effective detection mechanisms were
cooperative, their detection rates significantly increased. Therefore, we conclude
that the strong version of our study shows the true potential of the mechanisms
and better suits user’s real-life behavior for sensitive sites.

5.2 Users’ Response to Emails

In this subsection we deal with users’ response to emails sent, both spoofed and
non-spoofed. Table 2 shows the spoofed links following rates for bookmark and
non-bookmark users, w.r.t. the different email methods. First we can see that
there is no significant difference between no link and warning users, i.e:

Conclusion 5. Warnings against following links in legitimate emails don’t con-
tribute in preventing users from following links in spoofed emails.

Our results for email warnings correlate with the results achieved by Karlof et
al.’s study [11]. Now, let’s focus on non-bookmark users. The legitimate emails
of non-bookmark users which normally receive no links (and receive their grades
within the email body) look entirely different than the spoofed emails (not con-
taining the grade and asking them to follow a link to watch it). Despite the dif-
ference, the percent of links followed by those users is as high as non-bookmark
link users, which their legitimate and spoofed emails are similar (both contain
working links). From this we conclude that:

464 A. Herzberg and R. Margulies

Table 2. Links following rates for bookmark and non-bookmark users

method email method followed sent following rate

non-bookmark no link 50 69 72.46 ± 8.84

non-bookmark warning 68 100 68 ± 7.67

non-bookmark ‘working’ link 95 139 68.34 ± 6.49

bookmark no link 53 81 65.43 ± 8.69

bookmark warning 74 97 76.29 ± 7.1

bookmark ‘non-working’ link 36 116 31.03 ± 7.06

Conclusion 6. Users don’t distinguish between spoofed and non-spoofed emails,
even if the email’s structure is non-familiar.

This can be explained by the fact that clicking a link is a click whirr response and
the natural thing to do, and users follow email links regularly. Users might also
put too much trust in the emails’ ‘From’ header, which can be spoofed easily,
and/or think that the system has changed its email announcements’ structure.

Finally, and most important, the results show that bookmark users that nor-
mally receive no links follow a similar percent of spoofed links as non-bookmark
users. Only bookmark users that normally receive (‘non-working’) links follow
less than half the percent of spoofed links followed by non-bookmark users. We
found similar significant difference for non-spoofed emails. Therefore:

Conclusion 7. The login bookmark is only effective against automatic following
of links when users receive “non working” links in genuine emails and experience
failure in reaching the login page by following a link.

From this conclusion we derive that:

Conclusion 8. Sites should intentionally include “non working” links in their
email announcements to (constantly) train their users not to follow email links2.

5.3 Spoofed Home Page Attacks Summary

In this subsection we focus on the spoofed home page attack (which lead the
users to a spoofed login page). For all methods, we noticed that:

Conclusion 9. Detection rates are lower when users enter spoofed login pages
from the system’s home page, in comparison to reaching them via email links or
bookmark clicks3.

A possible explanation is that:

2 Even if the site does not send email announcements at all, it is advised to send
announcements from time to time just for the training’s sake.

3 17% vs. 26% for none users, 18% vs. 46% for bookmark only, 58% vs. 63% for image
only, 57% vs. 74% for image+bookmark and 74% vs. 83% for bookmark+4 images.

Forcing Johnny to Login Safely 465

Table 3. Entrance rates (amount entered from amount transferred) and detection
rates (amount noticed from amount entered) for invalid certificate spoofed pages

method entered transferred entrance rate noticed detection rate

none 14 31 45.16 ± 14.71 1 7.14 ± 11.32

bookmark only 7 46 15.22 ± 8.71 4 57.14 ± 30.77

image only 7 23 30.43 ± 15.78 5 71.43 ± 28.08

bookmark+image 4 33 12.12 ± 9.34 4 100

bookmark+4 images 15 34 44.12 ± 14 13 86.67 ± 14.44

total 47 167 28.14 ± 5.72 27 57.45 ± 11.86

Conjecture 1. Users put high trust in the home page of a familiar-looking site,
even if it does not provide an SSL certificate.

With reduced detection rates in this attack, prevention gets higher importance.
The vast majority of all bookmark users tried to enter the site’s login page via
its home page, despite their bookmark. To prevent users from doing so, the site
can choose not to include an account-entrance button in its home page at all, or
to include a ‘non-working’ button which leads the user to an error page.

We only tested the second option, and a closer look at the attacks log showed
that in spite the rather high attack probability, only two bookmark users were
attacked more than once. Therefore:

Conclusion 10. Combining the login bookmark with a “non working” account-
entrance button in the site’s home page achieves effective prevention.

Both options experience the user with failure when wanting to enter the login
page via the home page, and train the user not to enter the home page in the first
place when wanting to login. Yet, when a user is triggered to enter a spoofed
page looking similar to her target site’s home page (for example by following
a link), which includes an account-entrance button, she might be tempted to
click it, as she did not experience failure in this specific action. Since the vast
majority of bookmark users did click the account-entrance button on our study,
it is important to experience failure with the button click itself. Therefore:

Conclusion 11. Sites should intentionally include a “non working” account-
entrance button/link in their home page.

5.4 Effectiveness of Active Browser Warnings

In this subsection we examine how well modern browsers’ active warnings prevent
users from entering spoofed pages with invalid certificates, and for the users that
did enter those pages, what are the detection rates. Table 3 shows the percent
of users from each method entering the spoofed site, and the detection rates for
those who entered.

466 A. Herzberg and R. Margulies

From the table it seems that the active browser warnings prevented 72% of the
users from entering the spoofed page, which correlate with the results achieved
by Egelman et al.’s study [7]. Therefore:

Conclusion 12. Active browser warnings are an effective forcing function
against spoofed sites with invalid certificates (and in particular pharming
attacks).

It Is also noticeable that image users have better detection rates when entered
the invalid certificate page. In addition, as seen before, bookmark+image and
bookmark+4 images users had better detection rates than image only users.
Therefore, we assume the following generalization:

Conjecture 2. Combining a preventing forcing function with a detecting forcing
function increases the detection rates.

5.5 False Negatives

We’ve seen that throughout the study only one eighth of all users have falsely
reported a spoofed page, mostly once or twice within a few minutes. Since a
reasonable amount of false negatives is accepted and better than false positives
(better safe than sorry), we conclude that:

Conclusion 13. All the tested mechanisms does not confuse users to falsely
classify the legitimate site as spoofed.

6 Usability Survey

Since users are forced to set the bookmark (or an authentication cookie as al-
ternative) on each computer or browser they use, this process should be secure
and usable. If the bookmark setup involves manually surfing to the website and
providing some identifying information, users are susceptible to phishing at-
tacks each time they set the bookmark. To avoid this, bookmark setup has to
be via a secondary channel. Many of today’s websites send a registration email
containing a verification link which the user has to click on to complete her regis-
tration. This process can also be used to create the bookmark, and we used it on
our study.

Keeping the registration email around enables a bookmark setup on other
computers. If the user loses the registration email, she can request it to be sent
again (to the same email address). A second email address and an SMS can
also be used for fallback bookmark recovery. On emergencies where the user has
no option to recover her bookmark link, social authentication techniques [13],
which were originally suggested for password recovery, can be used for bookmark
recovery.

Though bookmark setup is not as immediate as the login ceremony, we be-
lieve most users usually access high-value sites only from few computers. We
have tested this assumption and the overall usability of the mechanisms in our

Forcing Johnny to Login Safely 467

usability survey, which included the results of 136 bookmark and/or image(s)
users.

The results confirmed our assumption, as users enter high-value sites from
only 1.75 computers in average; medium-values sites such as social networks or
webmail are entered from 3.26 computers on average.
In the survey’s introduction we mentioned the high prevention and detection
rates achieved by the login bookmarks and interactive custom images and asked
users to say if the would want to login with those mechanisms4 to medium-value
and high-value sites. The results showed that most users (72% ± 7.42) want to
use a login bookmark to access high-value sites, and half of them (51% ± 8.31)
also want to use it on medium-value sites. In addition, only 36% of the users
who did not want to use the bookmark picked the bookmark setup as the reason
why they wouln’t want to use this method. We can conclude that:

Conclusion 14. When considering their security benefits, users are willing to
use login bookmarks and other mechanisms that require registration of the com-
puter via a secondary channel.

We also found that 64% of the users are willing to use interactive custom images
on high-value sites and 41% of them also want to use them for medium-value
sites. The results are encouraging, and we expect them to be much higher due
to two main reasons that biased users’ answers in the survey and are described
in appenidx D.

7 Conclusions

We have conducted a realistic long-term user study which tested the effectiveness
of different defense mechanisms that use forcing and negative training functions,
against different phishing attacks. The study’s results showed that forcing and
negative training functions are very effective in both prevention and detection
due to their constant trainings. A combined method, which uses a login book-
mark with interactive custom images, displays several images in the login page,
and intentionally includes “non working” links in the site’s email announcements
and a “non working” account-entrance button in its home page, received out-
standing prevention and detection rates.

Acknowledgments. The authors would like to thank Ben Adida for his feed-
back and helpful suggestions and Alex Dvorkin for the initial results of this study.
This work was supported by Israeli Science Foundation grant ISF1014/07.

References

[1] Aaron, G., Rasmussen, R.: Global Phishing Survey: Trends and Domain
Name Use in 2H2009. Anti-Phishing Working Group (May 2010), http://www.
antiphishing.org/reports/APWG_GlobalPhishingSurvey_2H2009.pdf

4 Bookmark only and image only users were only asked a yes/no question about
their method and bookmark+image(s) users were given four options – bookmark
only, image only, both or none.

http://www.antiphishing.org/reports/APWG_GlobalPhishingSurvey_2H2009.pdf
http://www.antiphishing.org/reports/APWG_GlobalPhishingSurvey_2H2009.pdf

468 A. Herzberg and R. Margulies

[2] Adida, B.: Beamauth: two-factor web authentication with a bookmark. In: CCS
2007: Proceedings of the 14th ACM Conference on Computer and Communica-
tions Security, pp. 48–57. ACM, New York (2007)

[3] Sitekey Bank of America, http://www.bankofamerica.com/privacy/index.cfm?
template=sitekey

[4] Cialdini, R.: Influence: Science and Practice, 5th edn. Allyn and Bacon, Boston
(2008)

[5] Dhamija, R., Tygar, J.D.: Why phishing works. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 581–590. ACM Press,
New York (2006)

[6] Dvorkin, A.: Evaluation of the Tools for User Protection against Web Site and
Electronic Mail Based Attacks. Master’s thesis, Bar-Ilan University (December
2008)

[7] Egelman, S., Cranor, L.F., Hong, J.: You’ve been warned: an empirical study of
the effectiveness of web browser phishing warnings. In: CHI 2008: Proceeding of
the Twenty-sixth Annual SIGCHI Conference on Human Factors in Computing
Systems, pp. 1065–1074. ACM, New York (2008)

[8] Herzberg, A.: Why Johnny can’t surf (safely)? Attacks and defenses for web users.
Computers & Security (2008)

[9] Herzberg, A., Jbara, A.: Security and identification indicators for browsers against
spoofing and phishing attacks. ACM Trans. Internet Techn. 8(4) (2008)

[10] Herzberg, A., Margulies, R.: Long-term user study of forcing and training lo-
gin mechanisms against phishing. Tech. rep., Bar Ilan University (March 2011),
http://submit2.cs.biu.ac.il/WAPP/WAPP_primary.pdf

[11] Karlof, C., Tygar, J.D., Wagner, D.: Conditioned-safe ceremonies and a user study
of an application to web authentication. In: SOUPS 2009: Proceedings of the 5th
Symposium on Usable Privacy and Security (2009)

[12] Schechter, S., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new security
indicators. In: SP 2007: Proceedings of the 2007 IEEE Symposium on Security
and Privacy, pp. 51–65. IEEE Computer Society, Washington, DC, USA (2007)

[13] Schechter, S., Egelman, S., Reeder, R.W.: It’s not what you know, but who you
know: a social approach to last-resort authentication. In: CHI 2009: Proceedings
of the 27th International Conference on Human Factors in Computing Systems,
pp. 1983–1992. ACM, New York (2009)

[14] Sotirakopoulos, A., Hawkey, K., Beznosov, K.: “i did it because i trusted you”:
Challenges with the study environment biasing participant behaviours. In: SOUPS
User Workshop (2010)

[15] Wu, M., Miller, R.C., Garfinkel, S.L.: Do security toolbars actually prevent phish-
ing attacks? In: CHI 2006: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 601–610. ACM, New York (2006)

[16] Better website identification and extended validation certificates in ie7 and other
browsers (November 2005), published in Microsoft Developer Network’s IEBlog
http://blogs.msdn.com/b/ie/archive/2005/11/21/495507.aspx

[17] Yahoo: What is a sign-in seal?, http://security.yahoo.com/article.html?

aid=2006102507

[18] Yee, K.-P., Sitaker, K.: Passpet: convenient password management and phishing
protection. In: SOUPS 2006: Proceedings of the Second Symposium on Usable
Privacy and Security, pp. 32–43. ACM, New York (2006)

[19] Gartner survey shows phishing attacks escalated in 2007 more than �3 billion lost
to these attacks (2007), http://www.gartner.com/it/page.jsp?id=565125

http://www.bankofamerica.com/privacy/index.cfm?template=sitekey
http://www.bankofamerica.com/privacy/index.cfm?template=sitekey
http://submit2.cs.biu.ac.il/WAPP/WAPP_primary.pdf
http://blogs.msdn.com/b/ie/archive/2005/11/21/495507.aspx
http://security.yahoo.com/article.html?aid=2006102507
http://security.yahoo.com/article.html?aid=2006102507
http://www.gartner.com/it/page.jsp?id=565125

Forcing Johnny to Login Safely 469

[20] Gartner says number of phishing attacks on u.s. consumers increased 40 percent
in 2008 (2008), http://www.gartner.com/it/page.jsp?id=565125

[21] Mcafee siteadvisor (2009), http://www.siteadvisor.com/

A Additional Attack Scenarios

1. Tricking the User to Give Away the Secret Token. An attacker could
send a spoofed email on behalf of the target site’s admin announcing some
sort of technical problem and asking the user to copy&send the bookmark
URL to the attacker, or to forward the registration email/SMS to the at-
tacker. Even if this attack works, and the attacker finds the user’s custom
image, a second stage of the attack is still necessary. The attacker has to
succeed in a phishing attack convincing the user to follow a link in another
spoofed email. For this phase, the custom image won’t help, but the constant
trainings of the bookmark and non-working links should assist in preventing
the user from following the spoofed link.

Karlof et al. [11] included a similar attack in their long-term, real-life
study. Each time a user had to register a new computer (to receive a cookie),
the website sent her an email with a URL containing a single-use secret to-
ken. After the link click, the user reached a page which set a persistent
authentication cookie, and deleted the token from its data base, to pre-
vent further usage. Karlof et al. executed two kinds of attacks – asking
the users to copy&paste the link to a spoofed site or forward the registra-
tion email to the attacker. In both attacks users got a message announcing
“technical problems”. The researchers stated that email-based registration
is a conditioned-safe ceremony, which makes users click on the link they see
rather than making one of the actions they have been asked to do by the
attacker, which are of course more complicated to perform than a link click.
Results have shown ∼40% success for those attacks.

2. Attacking the Email Account. If a registration email is used and the
attacker breaks into a user’s email account, the WAPP token is compromised,
and the attacker will gain the user’s custom image. Like the previous attack,
the attacker needs to perform a phishing attack hoping the user will make
an error of omission and follow a spoofed link sent to her.

3. Temporarily Using the User’s Computer. An attacker might temporar-
ily gain access to the user’s computer and immediately gain the user’s secret
token and custom image. Fortunately, the attacker will not be able to im-
mediately login as the user, as he still needs her password. This reduces to
the last two attacks, requiring the attacker to phish the user hoping she will
make an error of omission and follow a spoofed link.

4. Malware on the user’s computer. An attacker who injects untrusted
code into the user’s computer can completely control the system, read the
browser’s bookmark content, and keylog the user’s password. WAPP is com-
pletely vulnerable to this kind of attack. On the other hand, WAPP can
assist in protection against malware, since attackers might phish downloads

http://www.gartner.com/it/page.jsp?id=565125
http://www.siteadvisor.com/

470 A. Herzberg and R. Margulies

sites in purpose of convincing users to download and install malware. Even
though downloads sites usually don’t maintain users’ information and does
not require a login, they could also integrate WAPP to prevent phishing
attacks and allow only users who clicked the bookmark and their custom
image to reach the downloads page.

B Removing Outliers

Prior to analyzing the results, we had to remove the results of users that did not
cooperate with our experiment. Our methodology in finding outliers was to find
the amount of attacks and amount of detections for each user. Then, for each
method, we looked at the average amount of attacks and detections for all users
from that method. By filtering users that had fewer detections than the average
of their method and more attacks, than non-cooperating users were easy to find.
For instance, if bookmark+4 images users had 4.48 detections of 6.77 attacks in
average, than we filtered users with 4 hits or less which were attacked 7 times
or more. For all methods, our filtering technique had left only users that were
noticeably non-cooperating, for example having 0 detected attacks of 7 attacks or
1 of 23 and so on, without any 4 of 7 or other values which are just a bit lower
than the average.

With the mentioned filtering technique we found 108/411 (26.27%)
non-cooperative users in the first two semesters, and 75/402 (18.65%) in the
third semester, 39 of whom (52%) were also non-cooperative in the previous
semesters. In addition, several more non-cooperative users were hand-picked and
removed. Theses included also users with many hits from many attacks. For in-
stance, one user had 47 hits of 47 attacks; by closely looking at his attack-log
entries, we saw that he have reached a spoofed page and did not enter his pass-
word. The same page was visited over and over, with exactly one hour between
each visit, suggesting that the user had left his browser open and the browser is
being refreshed constantly every hour.

To support our assumptions that the filtered users were indeed non coopera-
tive, we have sent them an email asking them if they did not try to find spoofed
pages (telling them that it is OK if they did not). 68% non-cooperating users
of all three semesters had confirmed by email, none rejected, and the others did
not respond.

C Different Versions of Our Study – Conclusions

Let’s examine the difference between the two versions of our study: weak vs.
strong cooperation and sense of risk. Assuming that users of all methods felt
similar will to cooperate and similar sense of risk in each version of the study, one
would expect to find a similar increase in detection rates for each method between
the two versions, and similar gaps in detection rates between the methods in each
version (for instance, a 5% increase in detection rates for all methods, keeping
the gaps between different methods the same for the weak and strong versions).

Forcing Johnny to Login Safely 471

Table 4. Increase in detection rates between the two version of the study

method weak strong increase

none 27.88 15 -46.21

bookmark only 40.5 43.65 7.8

image only 56.54 61.9 9.48

bookmark+image 67.6 76.07 12.53

bookmark+4 images 70.7 87.07 23.16

Yet, the results turned out to be different than expected; it is noticed (see
table 4) that the more effective a method is, larger the gap in detection rates
for that method between the two versions of the study and in the strong version
of our study there was a larger gap in the detection rates between the different
methods. In particular, there was only a minor increase in detection rates for
bookmark only users and a noticeable decrease for none users, suggesting that
whether these users cooperated and felt a sense of risk or not had no affect on
the results. On the other hand, for bookmark+4 images users the increase is
the largest (23%), suggesting that lack of cooperation and sense of risk highly
affected their results. From this we conclude that lack of cooperation and sense of
risk inserts noise to the statistical data, and the true potential of each method’s
effectiveness is evidenced in the strong version of the study.

D Interactive Images Usability

There were two reasons that biased the survey answers of image users. First, we
performed an additional experiment before the survey, where users were asked to
remember few custom images instead of just one, and one of the custom images
was randomly chosen and displayed on the login page on each login, along three
non-custom images. This caused approximately half of the users that did not
wish to use the interactive custom image to complain about the method, due to
mistaken clicks which increased the authentication times. Most mentioned that
a single custom image would be better. Due to the bias caused by the multiple-
images experiment, we believe many of the users would want to use a single
custom image.

Second, most of the other users that did not wish to use the interactive custom
image stated that they don’t need its protection, or because they did not under-
stand its purpose (many thought of it as a user-to-site identification instead of
the opposite). Those users did not say it was a bother to use the image, so we
believe most of them won’t be unhappy if it was applied on a site they use.

Towards a Mechanism for Incentivating Privacy

Piero A. Bonatti, Marco Faella, Clemente Galdi, and Luigi Sauro

Università di Napoli “Federico II”

Abstract. The economic value of rich user profiles is an incentive for providers
to collect more personal (and sensitive) information than the minimum amount
needed for deploying services e�ectively and securely. With a game-theoretic
approach, we show that provider competition can reduce such information re-
quests. The key is a suitable mechanism, roughly reminiscent of a Vickrey auc-
tion subject to integrity constraints. We show that our mechanism induces rational
providers to ask exactly for the user information strictly necessary to deliver their
service e�ectively and securely. In this framework, maximal attribute disclosures
become more diÆcult to achieve.

1 Introduction

Web sites frequently ask their users for personal, sensitive information before granting
access to their full functionalities. For example, some of the most popular web sites and
services for e-commerce and social networking collect user name, birth date, gender,
detailed address, credit card information, and—in some cases—even sex preferences,
and political and religious views. Some of these fields can be easily aggregated to form
quasi identifiers [7,19,16], that is, combinations of attributes such that the probability
of their matching a single person is high. (i.e., the values of such attributes uniquely
identify an individual with high probability). Releasing fake data is generally not an
appropriate or suÆcient privacy-preserving measure, as the correctness of some fields
may be essential for correct functionality (e.g. credit card information for a purchase
and home address for parcel delivery). The ongoing deployment of digital IDs and other
cryptographically verifiable documents will further exacerbate this problem.

The above information requests are not parsimonious, in general. Rich user pro-
files have a significant economic value that constitutes an incentive for increasing the
amount of user information collected (and for its disclosure to third parties). Therefore,
providers are encouraged to ask for more information than the minimum required to
deploy a given service e�ectively and securely.

Competition may contrast this trend. Indeed, a significant number of users have ex-
pressed concern over privacy during online interactions (e.g. user complaints have al-
ready influenced Facebook’s privacy policy and services), and analysts say that privacy
may become a factor of competition [5,17,9].

In this paper we take these analyses seriously and move the first steps towards mech-
anisms that may increase privacy by exploiting competition between providers. More
precisely, such mechanisms should encourage providers to be truthful, that is, to ask
nothing more than the minimum information sets necessary for correct and secure

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 472–488, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

Towards a Mechanism for Incentivating Privacy 473

service deployment. Moreover, such approaches should supply users with all of the al-
ternative ways of fulfilling the provider’s policy, so that users can choose the alternative
that they prefer from a privacy viewpoint.

Setting up a widely applicable mechanism of this kind is, of course, a very complex
task. Open questions include at least the following: How should users and providers
interact? (E.g. direct interaction vs. mediation by trusted third parties; single interac-
tions vs. prolonged negotiations.) What is the interplay of information disclosure and
nonfunctional service properties such as cost and quality of service? In particular, can
providers compensate for more invasive information requests with such nonfunctional
properties? Can the truthful mechanisms developed by economists be adapted to the
scenarios described so far?

A complete answer to all of these questions lies beyond the scope of this paper (and
any single paper of standard size). As a first step, here we focus on the last of the above
questions, which concerns an essential prerequisite for the mechanisms of our interest
and, more generally, for all the transactions where “payments” consist in user informa-
tion disclosures. In these application scenarios, the payment means is naturally discrete
and partially ordered, either in quantitative terms (e.g., according to set inclusion), or
in qualitative terms (e.g., based on sensitivity). On the contrary, all standard mecha-
nisms developed in microeconomics are based on totally ordered payment domains,
e.g., money. Therefore, reconstructing such mechanisms in order to fulfill the require-
ments of our scenarios is a problem of general interest—and requires nontrivial changes
in the underlying mathematics, as discussed below.

The mechanism studied in this paper is analogous to an auction: The user is the
auctioneer; the providers “buy” the user’s preference and “pay” for it by reducing the
amount of (economically valuable) user information requested. The auction mechanism
should be truthful, that is, information requested by rational selfish providers should
match what is actually needed to deploy the service correctly and securely.

Perhaps, the most famous truthful auction mechanism is the second-price auction
introduced by Vickrey [20]. It is a “one-shot” mechanism (bidders submit their o�ers
in parallel, then the auctioneer evaluates them); the best o�er “wins”, and the price
payed is the second best o�er. As we anticipated, some of the main technical di�erences
between Vickrey’s mechanism and ours concern the range of bids and utility functions,
that here is discrete and partially ordered rather than continuous and totally ordered. Of
course, in a partial ordering it is not immediately clear how to generalize the notion of
second price.

Even if a user may use a same service multiple times, a one-shot mechanism without
memory of previous decisions may be appropriate in many cases. In particular, consider
any transaction with no monetary costs, that is, where the only “cost” for the user consist
of the personal information released. Usually, after such information has been disclosed
and the user’s profile created, subsequent service usage requires no further disclosures,
so (from a privacy perspective) after the first information release the service can be used
for free. Consequently, there is no need for further auctions until services change.

The paper is organized as follows: Section 2 introduces the formal framework and de-
scribes its formal properties. Related work is discussed in Section 3. Section 4

474 P.A. Bonatti et al.

concludes the paper with a final discussion of the results and some interesting direc-
tions for further work. Proofs can be found in the appendix.

2 Formal Framework

The formal framework is relative to an arbitrary but fixed (implicit) service of interest to
the user. The set of agents A is identified with an initial segment of the natural numbers:
A � �0� 1� 2� � � � � N�. The user is represented by 0 and the providers by 1 � i � N. We
assume that the services deployed by the providers are all equivalent from the user’s
perspective. The set of information items that can be requested and released before ser-
vice access is C � �c1� � � � � cz�. By analogy with trust negotiation frameworks [2,21,22],
information items will be sometimes called credentials. The powerset of C is denoted
by P(C) .

Credential sets may have di�erent sensitivity. The sensitivity order is modelled with
a strict partial order�. When a credential set r2 is more sensitive than a credential set r1,
we write r1 � r2. Let r1 � r2 i� either r1 � r2 or r1 � r2. We assume that r1 � r2 implies
r1 � r2 (intuitively, by enlarging information sets, their sensitivity can only increase).

Several concepts, including policies, will be based on thresholds over P(C), that is,
sets of sets of credentials � � P(C) such that � � � and for all distinct r� r� � �, r � r�.
� denotes the set of all thresholds over P(C).

The user’s policy is a threshold pol0 � �. Intuitively, pol0 represents the maximal sets
of information items that the user is willing to disclose to access the service. Formally,
a request r � C is admissible i� 	r� � pol0 : r � r�; we denote with adm(pol0) the set
of admissible requests.

Example 1. Suppose pol0 � ��login� passw�� �card num� exp date�� � This policy means
that the user is willing to disclose either her login-password pair or her credit card num-
ber and expiration date. A request for the credit card number alone is admissible, too, as
�card num� is a subset of the second element of pol0 and hence �card num� � adm(pol0).
On the contrary, �login� card num� is not admissible, because it is not contained in any
element of pol0.
�

Symmetrically, each provider i has a policy poli � � that encodes the minimal (alter-
native) sets of information items that suÆce to deliver the service securely and e�ec-
tively. Formally, a credential set r � C fulfills poli (and grants access to the service) i�
	r� � poli : r � r�; in the following ful(poli) is the set of all r � C that fulfill poli. The
policy profile is the vector pol � pol0� � � � � polN�.

A provider i may decide to ask users for more information than what is prescribed
by poli; the actual information request is called a strategy and corresponds to what is
traditionally called policy in standard access control frameworks (because it determines
which conditions must be fulfilled to access the service). Formally, a strategy profile for
pol is any vector req � req1� � � � � reqN� such that (i) reqi � �, and (ii) reqi � ful(poli) .

Each strategy reqi is the information request that provider i submits to the user. Each
credential set r � reqi is an alternative way of fulfilling i’s request, that is, the user must
release a set of credentials r� � ful(reqi) in order to access the service deployed by i.
The requests of provider i are required (by the second condition above) to fulfill the

Towards a Mechanism for Incentivating Privacy 475

minimal requirements imposed by poli. Therefore the user’s response r� is guaranteed
to satisfy poli, too. Note that reqi might omit some ways of accessing the service. That
is, for some r � poli there may be no r� � reqi such that r� � r. In this way, a provider
may force the user to disclose credentials that are of greater interest for the provider.

Example 2. With reference to Example 1, a provider that can technically support
both account-based and pay-per-use access would have the policy: pol1
� ��login� passw�� �card num� exp date�� � The two members of pol1 represent the two
minimal information sets that need to be collected in order to grant the service.
The request of provider 1 may in general be di�erent. For instance, if req1 �

��card num� exp date� birth date��, the provider is trying to (i) force the user to dis-
close her credit card information rather than her account information, and (ii) obtain
the user’s birth date, which is not strictly necessary to service delivery. Note that the
only element of req1 is a superset of the second element of pol1, therefore the re-
quest fulfills pol1. However, it is not admissible w.r.t. pol0. Now suppose that req1 �

��login� passw�� �card num� exp date� birth date�� � In this case, due to the additional al-
ternative �login� passw�, req1 is admissible for pol0 and fulfills pol1. The user can release
the set �login� passw� and access the service.
�

A strategy reqi is truthful i� reqi � poli, that is, the provider’s requests match the actual
minimal requirements for secure and e�ective service delivery.

Finally, each agent i is associated to a preference relation �i. We assume that �0 is
� (that is, the user’s goal is minimizing the sensitivity of disclosed information), while
for all providers i, �i can be either � or �. In the former case, i’s goal is maximizing
the sensitivity of the information acquired from users,1 while in the latter case i’s goal

is maximizing the amount of such information. Let
�

� be the vector �0� � � � ��N�.

Now a (full) profile is a triple � � pol� req�
�

�� where pol is a policy profile and req
a strategy profile for pol. The set of all full profiles will be denoted by � .

2.1 Selection and Response Mechanism

We need preliminary definitions. The set of optimal admissible requests in a profile �

is:

opt(�) � min �

��������
N�

j�1

req j � adm(pol0)

�������� �
where min�(X) denotes the set of minimal elements of X according to �, that is,
min�(X) � �r � X � �r� � X� r� � r�.

The user prefers those providers that make minimal information requests. Formally,
let the provider i be a candidate winner in � i� opt(�) � reqi � � � The set of candidate
winners is denoted by cw(�).

1The rationale is that information value is often correlated with sensitivity. For simplicity, in
this first paper we assume a shared (objective) measure of sensitivity – e.g. based on statistics
about the identification power of attribute aggregates, cf. quasi-identifiers [7] – so that � may
be regarded as common knowledge. Generalizations are discussed in Sec. 4.

476 P.A. Bonatti et al.

Each candidate winner i is associated to a set of possible responses, res(�� i). Possible
responses are credential sets that must satisfy both the user’s policy and the provider’s
request, that is, for all r � res(�� i), r � adm(pol0) � ful(reqi) . Di�erent specific def-
initions of res(�� i) yield di�erent properties in terms of robustness (i.e., lack of un-
necessary transaction failures) and amount of information released. Before discussing
the alternatives, let us fix the decision making process (provider selection and response
selection), consisting of two steps:

1. choose a provider i � cw(�)
2. choose a response r � res(�� i).

If res(�� i) � �, then the transaction fails. To simplify the discussion, let us assume that
the above choices are made at random with uniform probability (di�erent distributions
can be adopted, though).

So far, the framework is similar to an auction with some extra constraints posed
by policies. In Vickrey’s auctions, truthfulness is achieved by setting the price to the
second best o�er. In this framework, a direct counterpart of this idea consists in defining
res(�� i) as the set of best requests made by all the providers j � i. In order to formalize
this idea we need a few more auxiliary definitions. First, let opt

�i(�) denote the best
admissible requests of the providers j � i:

opt
�i(�) � min �

� j�i�
1� j�N

req j � adm(pol0)

	
�

Then, let res0(�� i) be the set of all the best admissible requests of the providers j � i
that satisfy i’s request, that is: res0(�� i) � opt

�i(�) � ful(reqi) �
By setting res(�� i) � res0(�� i) one obtains a mechanism that easily leads to failures,

because the requests of the winners might not fulfill each other.

Example 3. Suppose that the user’s policy permits the simultaneous disclosure
of her credit card number (card num), its security code (sec code), user
name (name), and birth date (birth date), i.e., pol0 � ��card num� sec code�
name� birth date��. Let the requests of providers 1 and 2 be req1 � ��card num� name�
sec code�� and req2 � ��card num� name� birth date��, respectively. If req1 and req2 are
not comparable with respect to �, then both requests are �-minimal and admissible, so
the set of candidate winners is cw(�) � �1� 2�. However, the request of provider 1 does
not fulfill the request of provider 2 and viceversa. Then res0(�� 1) � res0(�� 2) � � and
the transaction fails no matter which of the two providers is chosen.
�

This problem can be mitigated by adding to the pool of replies the largest admissible
requests, that is, the members of pol0. Let

res1(�� i) � min �(opt
�i(�) � pol0) � ful(reqi) �

res2(�� i) � (opt
�i(�) � pol0) � ful(reqi) �

The first definition (res1) still leads to a failures; for instance, in Example 3, it is equiva-
lent to res0 because min�(opt

�i(�)�pol0) � opt
�i(�), for i � 1� 2. The second definition

Towards a Mechanism for Incentivating Privacy 477

(res2) does not lead to any failure in Example 3; however, the user has to disclose
all releasable credentials (card num, sec code, name, birth date). In general, res2(�� i)
contains (at least) all the elements of pol0 that cover some request of i, therefore some
maximal disclosable set of credentials can always be released with probability greater
than 0. Then we move over to a more parsimonious definition (in terms of maximal
disclosures). The idea consists in “interpolating” intermediate requests between the op-
timal requests of all j � i. Such interpolation constitutes a “vault” above reqi, from
which possible responses can be selected. Formally, let

vault(�� i) � max �

r � C � r � adm(pol0) � �r� � opt

�i(�)� r� � r
�
�

In Example 3, assuming for simplicity that � equals � , the vaults are

vault(�� 1) � vault(�� 2) �

�card num� name� sec code�� �sec code� name� birth date��

�card num� sec code� birth date�� �card num� name� birth date�
�
�

They contain the providers’ requests, as well as elements that do not fulfill them. There-
fore responses should consist of the vault elements that cover some optimal request
of i:

res(�� i) � vault(�� i) � ful(opt(�) � reqi) �

Compare this definition with the standard second price approach: There, the winner
pays the minimum price that is not worse (i.e., smaller) than any other o�er; analo-
gously, in our framework, the winner gets a maximal response that is not worse (i.e.,
more sensitive) than any other o�er, and satisfies both the user’s policy and the winner’s
request.

We are going to study in depth the framework based on this definition. Before starting
its formal analysis, note that in the case of Example 3, res(�� i) � reqi (i � 1� 2), that
is, the selected provider receives nothing more than what it asked for (as opposed to
what happens with res2). In general, however, the user may have to release more than
what the winning provider asks for. In general, this is the price to pay for truthfulness.
At the end of this section we will characterize a wide class of scenarios in which no
unnecessary information is disclosed.

The first formal property of the definition based on vaults concerns its robustness:
Unlike res0 and res1, it introduces no unnecessary failures. In other words, whenever
some request is admissible (equivalently, cw(�) � �), all candidate winners can be given
a response:

Theorem 1. If there exist a provider j and a request r � req j such that r � adm(pol0),
then for all i � cw(�), res(�� i) � �.

It is easy to verify that a similar property holds for res2. So the second formal property
of interest concerns a comparison of the two robust strategies res and res2 with respect
to the amount of credentials potentially released. It can be shown that res is generally
more parsimonious than res2:

Theorem 2. For all r � res(�� i) there exists r� � res2(�� i) such that r � r�.

478 P.A. Bonatti et al.

Next we investigate the e�ectiveness of the provider selection mechanism in reducing
the amount of information disclosed in the worst case. A first question related to this
issue is: Under which circumstances can a maximal releasable set of credentials (i.e., a
member of pol0) be disclosed?

Theorem 3. Let r � pol0, r � res(�� i) if and only if there exists x � (opt(�)� reqi) such
that x � r and for all the other providers j � i and for all r� � req j, it holds r� � r.

Note that if r� � r, then r� � r implies r� � r. Then Theorem 3 says that r can be released
to i if either there is no competition within the option r (i.e., the other providers’ requests
are not compatible with r), or the competitors ask exactly for r. Consequently, it appears
that competition makes maximal disclosures more diÆcult to achieve systematically, at
least in the absence of detailed information about the user’s policy.

Another interesting, related problem is characterizing the circumstances under which
the user may have to release all disclosable credentials at once (as it may happen in the
formal trust negotiation frameworks studied in the literature).

Corollary 1. Assume that i makes an admissible request (reqi � adm(pol0) � �). Then�
r�pol0

r can be disclosed to provider i i� the following conditions hold: (i) pol0 � �r�,
and (ii) r � req j for all providers j � i such that req j � adm(pol0) � �.

According to the first condition in the above corollary, if �pol0� � 1, then it is impossible
to release

�
r�pol0

r. The reason is clear: whenever �pol0� � 1, the user’s policy encodes
some integrity constraints that forbid the disclosure of arbitrary unions of disclosable
credentials. For example, if pol0 � ��birthday�� �address�� then both birth date and
address can be separately disclosed, but their union is considered too sensitive to be
released. Now suppose that �pol0� � 1. Condition 2 says that either i has no competitors
(no other provider j makes any admissible request), or i’s competitors all ask for r
(which is unlikely in practice unless pol0 is public). This shows how competition helps
in reducing complete credential disclosures.

Example 4. Suppose that a user is willing to execute payments either by using her
credit card or by bank transfer. In the first case she permits the simultaneous dis-
closure of her credit card number (card num) and its security code (sec code). For
the latter payment form, she is willing to provide the unique ID (id) associated to
the bank transfer and her own bank account information (acc info). Formally pol0 �

��card num� sec code�� �id� acc info��. The user can select among three providers for
executing a given payment whose requests are, respectively: req1 � ��card num��,
req2 � ��card num�� �id��, req3 � ��card num� sec code��. In such context, there is
clear competition among all servers since everyone allows credit card payments. Server
1 and 2 only require card num while server 3 requires both card num and sec code.
So, in a parsimonious selection, the user would prefer server 1 or 2. For the second
payment method there is no competition at all. Indeed only server 2 allows bank trans-
fers and requires the unique transaction identifier in order to accept the payment. Let
� be a profile describing such a scenario. The set of optimal admissible requests is
opt(�) � min �

�N
j�1 req j � adm(pol0)

�
� ��card num�� �id��. Then the set of candi-

date winners is cw(�) � �1� 2�. Let us focus on server 1. The set of optimal admissible
requests made by all providers except 1 is opt

�1(�) � ��card num�� �id��. Then the

Towards a Mechanism for Incentivating Privacy 479

vault for provider 1—i.e., the maximal subsets of credentials that are admissible for
the client and do not cover optimal requests made by other servers—is vault(�� 1) �
��card num�� �sec code�� �id�� �acc info��. Note that the vault contains no elements of
pol0, because provider 1 competes with provider 2 (whose request �card num� ex-
punges �card num� sec code� from the vault). Finally, the set of possible responses for
server 1 are the members of vault(�� 1) that satisfy the server’s requests, i.e., res(�� 1) �
��card num��. Similarly, for provider 2 we have opt

�2(�) � ��card num��, vault(�� 2) �
��card num�� �sec code�� �id� acc info��, and res(�� 2) � ��card num�� �id� acc info��.

Thus, when di�erent servers compete within a specific element of pol0, (here,
�card num� sec code�), such element is not entirely disclosed to any server. On the other
hand, if exactly one server makes a request compatible with some element in r � pol0,
i.e., if there is no competition within r (r � �id� acc info� in the example), then r is fully
disclosed with nonzero probability.
�

2.2 Rational Strategies

We are left to characterize the strategies adopted by ideally rational providers. We con-
sider two kinds of providers: Providers of the first kind are mainly interested in at-
tracting new customers, i.e. their primary goal is maximizing the probability of being
selected (or probability of winning) pw(�� i), where pw(�� i) � 1��cw(�)� if i � cw(�),
and pw(�� i) � 0 otherwise. As a secondary goal, these providers prefer those strate-
gies that better meet their preference �i. Providers of the second kind invert the above
priorities. A new player in a given application domain is likely to be a player of the
first kind. Similarly, providers whose main income is based on advertisement are likely
to be providers of the first kind. On the contrary, when the utility of service usage is
dominated by the value of user profiles, providers should be expected to be agents of
the second kind.

In order to formalize the perfect strategies for these providers we need some auxiliary
notions. First, one needs to compare di�erent responses w.r.t. provider preferences. For
this purpose, �i should be extended from credential sets to sets of credential sets (i.e.,
the range of res).

Definition 1. For all 	� 	� � P(C), let 	 ��i 	
� i�

1. for all r � 	, there exists r� � 	� such that r �i r�, and
2. for all r� � 	� and r � 	, r� �i r.

In other words 	� is preferable to 	 if for all possible responses in 	 there exists an
equally preferred or better response in 	� (according to i’s preferences) and none of the
responses in 	� is less preferable than any response in 	.

Next, we need a handy way of replacing the strategy of an agent: For all strategy
profiles req and all providers 1 � i � N, let

req[i � req�] � req1� � � � � reqi�1� req�� reqi�1� � � � � reqN� �

and for all profiles � � � , let

�[i � req�] � pol� req[i � req�]�
�

�� �

480 P.A. Bonatti et al.

Finally, let pol � � be an arbitrary but fixed policy. The set of profiles where poli � pol
is denoted by� i

pol. A strategy for pol is any req � � such that for all r � req, r � ful(pol).
Now the optimal strategies for the two kinds of agents can be formalized.

Definition 2. A strategy req for pol is a dominant attraction strategy for i with respect
to pol i� for all � � � i

pol,

1. pw(�� i) � pw(�[i � req]� i), and
2. if pw(�� i) � pw(�[i � req]� i) then res(�� i) ��i res(�[i � req]� i) .

Definition 3. A strategy req for pol is a dominant investigation strategy for i with re-
spect to pol i� for all � � � i

pol,

1. res(�� i) ��i res(�[i � req]� i), and
2. if res(�[i � req]� i) � res(�� i) then pw(�� i) � pw(�[i � req]� i) .

A few explanations are in order here. The universal quantification over� i
pol, whose only

invariant is poli � pol, means that strategy req is optimal w.r.t. all the other possible
strategies reqi that might be adopted by i, and this holds in all possible contexts (i.e., no
matter what the policies and strategies of the other agents are). Our mechanism yields
the desired result: the truthful strategy req � pol is the best strategy a provider can
adopt, under both priorities.

Theorem 4. For all pol � � and all providers i, the unique dominant attraction strategy
for i w.r.t. pol is pol itself.

Theorem 5. For all pol � � and all providers i, the unique dominant investigation
strategy for i w.r.t. pol is pol itself.

In game-theoretic terms, the previous two theorems prove that being truthful is a domi-
nant strategy equilibrium (DSE) [13], i.e., no matter what the other agents’ policies and
strategies are, being truthful is always the best response. Every DSE is in particular a
Nash equilibrium.

One may wonder whether gaining information on the behavior of the other agents
could allow a provider to increase either its winning probability or the amount of
credentials received from the client. The answer is negative, regardless of the extra
information available to the provider. Indeed, any gained information corresponds to
restricting the set of possible profiles � i

pol in the definition of dominant attraction (resp.,
investigation) strategy (Definition 2 and 3, respectively). Clearly, by applying any such
restriction, the set of dominant attraction (resp., investigation) strategies may only in-
crease. However, since any pair of dominant strategies dominate each other, it is straight-
forward to see from Definition 2 and 3 that all dominant strategies give rise to the same
probability of winning and the same response from the client.

The presence of rational (and hence truthful) providers may induce minimal disclo-
sures in a framework that, in general, releases to providers more information than what
they ask for. For simplicity, we analyze this issue in scenarios where all providers have
the same policy. In practice, this assumption is naturally satisfied when provider poli-
cies are determined by the same technological constraints—for example, all providers
supporting VISA credit card payments must provide VISA’s servers with the same
information for credit card validation (as in Example 6 below).

Towards a Mechanism for Incentivating Privacy 481

Theorem 6. If all providers have the same policy and there are two truthful providers
i and j, then res(�� i) � res(�� j) � reqi � adm(pol0) � poli.

In informal terms, the above theorem ensures that under the uniform policy hypothe-
sis, rational servers are given only elements of their policy, that is, some of the minimal
possible credential sets that grant access to the service. Consider the following scenario,
for example. It is inspired by real flight reservation portals. Kayak and Momondo ask
for no information; tickets are purchased directly from airline companies. On the con-
trary, eDreams asks for a rich user profile that is then used to make a request to airline
companies. Note that eDream user profiles comprise attributes that are not mandatory
for airline companies. The following is a formalization of this scenario:

Example 5. Assume that pol1 � pol2 � pol3 � ���, req1 � req2 � ���, and req3 �

��name� address� phone num� email��. Note that providers 1 and 2 are truthful and
provider 3 is not. Clearly, only providers 1 and 2 are candidate winners. The response is
���, that is, the user releases no information. Note that the same result is obtained when
pol3 � ��� (e.g., pol3 � req3); thus, in future work, it may be interesting to relax the
hypothesis of Theorem 6.
�

Moreover, if all policies are the same and there is at least one rational (truthful) server,
then the other servers cannot receive more information than what the policy requires.

Theorem 7. If all providers have the same policy and provider i is truthful, then for all
j � i, res(�� j) � pol j.

Example 6. Consider an e-commerce application with the same credentials as in Ex-
ample 3. Assume that all vendors use the same underlying financial institution that
requests the credit card number and either the owner’s name or the credit card security
code, so the providers all share the same policy poli � ��card num� name�� �card num�

sec code��. Suppose that server i is truthful, while j has strategy req j � ��card num�

name� birth date�� �card num� sec code��, i.e., in addition to the credit card number
and owner’s name, j requests also her birth date. The policy of the client is pol0 �

��card num� name� sec code� birth date��, i.e., all credentials are simultaneously
releasable. Now j is a candidate winner (as it makes the request �card num� sec code�).
However, even if j is selected to deliver the service, in accordance with Theorem 7 it
will not receive the user’s birth date, even if it is releasable by the client. Indeed, we
have opt

� j(�) � ��card num� name�� �card num� sec code��. This means that vault(�� j)
consists of �card num� name, �card num� sec code�, �card num� birth date� and �name�
sec code� birth date�. Finally, we have that res(�� j) � ��card num� sec code��.
�

3 Related Work

To the best of our knowledge, the approach introduced in the above sections has no
analogue in the literature. Standard access control frameworks place no constraints on
policies and set up no mechanisms for reducing the extension and sensitivity of user
profiles. In the trust negotiation area, privacy is mainly pursued by having

482 P.A. Bonatti et al.

disclosed information match as precisely as possible the provider’s request, see for
example [18,14,10]. Another work aims at preventing providers from inferring which
types of credentials are owned by the user when a transaction fails [21]. A major dif-
ference between our approach and theirs is that those works do not attempt to influence
the providers’ requests. There, providers’ policies do not represent minimal functional
and security requirements (unlike our polis); they should rather be considered as part
of the specification of reqi. Not only can trust negotiation policies ask for unnecessary
information; some interoperable negotiation strategies may further inflate requests by
forcing the user agent to disclose all releasable credentials in the attempt to keep the
negotiation alive [22,2]. Therefore, the issue of minimizing the di�erence between reqi

and poli is not tackled (and there is no precise counterpart of poli).
In [8], privacy is tackled in the context of auctions (including second-price auctions).

Their purpose is the opposite of ours, namely, minimizing the amount of information
that bidders have to disclose in order to let the auctioneer compute the optimal out-
comes. Payments are fully traditional: continuous and totally ordered. Similarly, another
economically inspired model [11] proposes both an estimate of the value of private in-
formation and a fair compensation for such information release that may induce users
to release richer and correct information about their personal preferences.

Concerning the many auction models introduced in the past, the main technical dif-
ference is that utility functions and bids always range over a totally ordered domain such
as the set of real numbers. Then truthfulness can be obtained with a straightforward im-
plementation of the second-price idea, without resorting to more complex notions such
as vaults.

4 Discussion and Perspectives

4.1 Current Achievements

We provided a first formal evidence that the potential competition between equivalent
applications may enhance privacy and reduce the amount of personal information re-
quested and collected by application providers. As a starting point, we focussed on
scenarios where the competing services are equivalent with respect to functionalities
and quality, and the only cost for the user consists of the personal information re-
leased. Flight reservation applications provide concrete examples of such scenarios,
cf. Example 5 and the preceding paragraph. We argued that one-shot mechanisms (like
second-price auctions) are appropriate for such scenarios; indeed, after using the service
a first time, subsequent usage is “free” from the point of view of information disclosure;
therefore, re-using the same service is always an optimal choice for the user until either
demand or o�er change.

We proved that a suitable one-shot mechanism regulating provider selection and in-
formation disclosure induces truthful behavior in selfish rational providers, resulting in
minimal information requests and in a wider range of choices for the user. It is im-
portant to note that essentially these results still hold even if agents know each other’s
policies and strategies.

Towards a Mechanism for Incentivating Privacy 483

When functional and security requirements are the same for all providers (e.g., be-
cause such requirements are determined by exogenous technological constraints), two
rational (and hence truthful) providers suÆce to minimize the amount of user informa-
tion disclosed to any provider—and interestingly, if only one provider is rational, then
it is the only provider that may receive a non-minimal response. In some cases, the hy-
pothesis that all policies are the same can be relaxed, as shown in Example 5. Another
set of results shows that extracting all releasable credentials (or any maximal disclos-
able set of credentials) from a user is a diÆcult task, whose systematic achievement, in
practice, requires some knowledge of the user’s policy.

Competition may be exploited to address a weakness of automated disclosure tech-
niques, such as OpenID profile sharing and automated trust negotiation. These ap-
proaches require a policy to decide when a user profile can be automatically transferred
to a new web service, or when an information request is reasonable in a given context.
Formalizing a policy that decides on behalf of the user whether a provider is collecting
a reasonable set of user attributes is a very diÆcult task. A mechanism inducing a spon-
taneous moderation of provider requests may turn out to be less expensive and�or more
reliable.

Concerning trust negotiation, it is known that interoperable negotiation strategies are
vulnerable to attacks that force a peer to release progressively all disclosable informa-
tion (cf. [22,2]). It seems that the current one-shot mechanism can address this problem:
First, the user agent negotiates with all the providers’ agents using a method that does
not actually disclose credentials until the end of the negotiation (as in the protocol
introduced in [21]). At the end of the negotiations, before really sending credentials,
the user can choose among the successful negotiations those with minimal information
disclosure, and compute the response with our mechanism, thereby inducing rational
providers to reduce information requests.

4.2 Possible Variations to the Current Framework

Several aspects of the framework can be modified without a�ecting our results. For ex-
ample, it is not hard to see that di�erent probability distribution can be used in choosing
winner and response. As an example of possible applications, skewed distributions over
candidate winners may address additional user preferences over providers. Similarly,
the preference relations ��i employed to compare responses and define dominant strate-
gies can be modified in various ways, in order to model providers with di�erent risk
attitudes. For instance, an optimistic (resp. pessimistic) provider may consider only the
�i-maximal (resp. �i-minimal) elements of res(�� i) (the current definition considers all
of res(�� i)). Our results hold for all such agents.

4.3 Generalizing Preferences

The current theoretical framework should be extended and complemented along several
directions. In general, providers compete also on properties such as cost and quality
of service. They can easily be modelled by extending credential sets to richer sets,
including items that represent the additional quantities of interest. This a�ects some of
the assumptions we adopt in this paper.

484 P.A. Bonatti et al.

For example, in the extended framework, preference relations rank aggregates of
credentials, money, and quality of service, thereby reflecting a tradeo� between privacy-
related costs and other costs and benefits; consequently, user preferences have a more
“personal” nature and it would not be reasonable to make the simplifying assumption
that � is based on an objective, shared sensitivity measure. As a consequence, provider
preferences could not be restricted to � and �, and the e�ects of this generalization
should be formally analyzed. In this context, users may publish their preference relation
to get personalized o�ers; it should be verified whether a rational user should be truthful,
and whether preference disclosure may constitute a privacy violation in itself.

As preference specifications become more sophisticated, the need may arise for
usability-enhancing techniques. For instance, a coarse-grained preference relation in
a pure information disclosure scenario (where service re-use has no additional “costs”)
may induce the user to always select the same provider (lock-in e�ect). The articulated
approach to monitoring, refining, and learning preferences introduced in [15] for access
control policies can perhaps be adapted to our framework.

4.4 Repeated Auctions

Another consequence of modelling features such as money and quality is that each call
to a same service may have additional costs; then it makes sense to repeat the service
selection process and abandon the one-shot approach. We conjecture that, in general,
a sequence of independent selections may lead to globally suboptimal disclosures (as
any greedy strategy). A formal analysis of iterative selections is an important step in
our agenda, that may start from the literature on repeated (or sequential) procurement
auctions, e.g. [12,1]. It is also interesting to evaluate “globalized” selections over bun-
dles of services as an attempt to optimize information disclosure for a set of commonly
used services. It is known that this optimization problem is tractable in some cases [4].

4.5 Deployment

Last but not least, the need is felt for an articulated analysis of deployment solutions;
for example, providers may want to make sure that the service selection mechanism is
carried out correctly, i.e. users are not cheating and actually disclose an element of the
vault. Some application contexts may admit trusted intermediary services. Portals simi-
lar to Kayak, Momondo etc. are interesting candidates to fill in this role, that may create
new business opportunities and models. In the absence of trusted third parties (i.e., the
user is the auctioneer), auctions can be implemented using Secure Multiparty Compu-
tation. The instantiation of general MPC constructions can be ineÆcient; it is, however,
possible to design less complex specialized MPC protocols implementing the described
variation of second price auctions, cf. [3]. Alternatively, one can resort to ad hoc pro-
tocols where credential requests are eventually revealed to all providers (commitments
and blind signature [6] may be employed for this purpose).

Acknowledgments. The authors would like to thank Alessandro Bonatti for helpful
preliminary discussions, and Adam J. Lee and the anonymous referees for their detailed
and stimulating feedback.

Towards a Mechanism for Incentivating Privacy 485

References

1. Bae, J., Beigman, E., Berry, R.A., Honig, M.L., Vohra, R.V.: Sequential bandwidth and power
auctions for distributed spectrum sharing. IEEE Journal on Selected Areas in Communica-
tions 26(7), 1193–1203 (2008)

2. Baselice, S., Bonatti, P., Faella, M.: On interoperable trust negotiation strategies. In: IEEE
POLICY 2007, pp. 39–50. IEEE Computer Society, Los Alamitos (2007)

3. Bogetoft, P., Damgård, I., Jakobsen, T.P., Nielsen, K., Pagter, J., Toft, T.: A practical imple-
mentation of secure auctions based on multiparty integer computation. In: Di Crescenzo, G.,
Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer, Heidelberg (2006)

4. Bonatti, P.A., Festa, P.: On optimal service selection. In: Ellis, A., Hagino, T. (eds.) Proc. of
the 14th Int. Conf. on World Wide Web, WWW 2005, pp. 530–538. ACM, New York (2005)

5. Broache, A.: Competition is good for search privacy, report says. CNET News (August
8, 2007), ����������	
����
���������������	����������	��������������

��������	��	����������������� �!
��"

6. Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology - Crypto
1982, pp. 199–203. Springer, Heidelberg (1983)

7. Dalenius, T.: Finding a needle in a haystack - or identifying anonymous census records.
Journal of OÆcial Statistics 2(3), 329–336 (1986)

8. Feigenbaum, J., Jaggard, A.D., Schapira, M.: Approximate privacy: foundations and quan-
tification (extended abstract). In: Parkes, D.C., Dellarocas, C., Tennenholtz, M. (eds.) ACM
Conference on Electronic Commerce, pp. 167–178. ACM, New York (2010)

9. Gray, E.: FTC to boost competition in privacy protection. Global Competition Review
(September 23, 2010)

10. He, Y., Zhu, M., Zheng, C.: An eÆcient and minimum sensitivity cost negotiation strategy
in automated trust negotiation. In: Int. Conf. Comp. Sci. and Soft. Eng.,, vol. 3, pp. 182–185
(2008)

11. Kleinberg, J., Papadimitriou, C.H., Raghavan, P.: On the value of private information. In:
TARK 2001: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and
Knowledge, pp. 249–257. Morgan Kaufmann, San Francisco (2001)

12. Luton, R., McAfee, P.R.: Sequential procurement auctions. Journal of Public Eco-
nomics 31(2), 181–195 (1986)

13. Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)
14. Paci, F., Bauer, D., Bertino, E., Blough, D.M., Squicciarini, A.C.: Minimal credential disclo-

sure in trust negotiations. In: Bertino, E., Takahashi, K. (eds.) Digital Identity Management,
pp. 89–96. ACM, New York (2008)

15. Sadeh, N.M., Hong, J.I., Cranor, L.F., Fette, I., Kelley, P.G., Prabaker, M.K., Rao, J.: Under-
standing and capturing people’s privacy policies in a mobile social networking application.
Personal and Ubiquitous Computing 13(6), 401–412 (2009)

16. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Transactions on
Knowledge and Data Engineering 13(6), 1010–1027 (2001)

17. Schwartz, A., Cooper, A.: Search privacy practices: A work in progress. Center for Democ-
racy and Technology report (August 2007)

18. Squicciarini, A.C., Bertino, E., Ferrari, E., Paci, F., Thuraisingham, B.M.: PP-trust-X: A
system for privacy preserving trust negotiations. ACM Trans. Inf. Syst. Secur. 10(3) (2007)

19. Sweeney, L.: Guaranteeing anonymity when sharing medical data, the Datafly system. Jour-
nal of the American Medical Informatics Association (1997)

20. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. Journal of
Finance 16, 8–37 (1961)

http://news.cnet.com/Competition-is-good-for-search-privacy,-report-says/2100-1029_3-6201468.html
http://news.cnet.com/Competition-is-good-for-search-privacy,-report-says/2100-1029_3-6201468.html

486 P.A. Bonatti et al.

21. Winsborough, W.H., Li, N.: Protecting sensitive attributes in automated trust negotiation. In:
WPES, pp. 41–51. ACM, New York (2002)

22. Yu, T., Winslett, M., Seamons, K.E.: Supporting structured credentials and sensitive poli-
cies through interoperable strategies for automated trust negotiation. ACM Trans. Inf. Syst.
Secur. 6(1), 1–42 (2003)

Proofs

Theorem 2. For all r � res(�� i) there exists r� � res2(�� i) such that r � r�.

Proof. Assume r � res(�� i). By definition r � vault(�� i) and r � ful(opt(�) � reqi);
therefore, r � adm(pol0) and r � ful(reqi). From r � adm(pol0), it follows that there
exists r� � pol0 such that r � r�. Then from r � ful(reqi), derive r� � ful(reqi), and
hence r� � pol0 � ful(reqi). The theorem follows immediately from the definition of
res2(�� i).
�

Theorem 3. Let r � pol0, r � res(�� i) if and only if there exists x � (opt(�) � reqi) such
that x � r and for all the other providers j � i and for all r� � req j, it holds r� � r.

Proof. (If) Note that since for all r� � req j, with j � i, r� � r, a fortiori for all r� �
opt

�i(�), r� � r. Then, the thesis follows by applying the definition of vault(�� i) and
res(�� i).

(Only if) By definition, if r � res(�� i), then r � vault(�� i) and there exists a request
x such that x � r and x � (opt(�) � reqi). Assume now that for some provider j � i
and some request r� � req j, r� � r. On one hand, there exists in opt

�i(�) a request r��

such that r�� � r� and hence r�� � r. On the other hand, since r � vault(�� i), for all
r� � opt

�i(�), r� � r (absurdum).
�

Corollary 1. Assume that i makes an admissible request (reqi � adm(pol0) � �). Then�
r�pol0

r can be disclosed to provider i i� the following conditions hold: (i) pol0 � �r�,
and (ii) r � req j for all providers j � i such that req j � adm(pol0) � �.

Proof. Since the client releases exactly one element in pol0, the only way in which the
client could release

�
r�pol0

r is that pol0 contains exactly one set r. Then, the proof
follows easily from Theorem 3.
�

In the following results, we need two auxiliary relations: for all �� �� � � let ���� i�
�r� � �� 	r � � : r � r�. Note that for all providers i, it holds poli�reqi. Similarly, let
���� i� �r� � �� 	r � � : r � r�.

Lemma 1. For all r � reqi � opt(�) there exists r� � r such that r� � poli � opt(�[i �
poli]).

Proof. Let r � reqi � opt(�). Since poli�reqi, there exists r� � poli s.t. r� � r; moreover
r � opt(�) implies r � adm(pol0) and then r� � adm(pol0). Assume per adsurdum
that there exists r�� � opt(�[i � poli]) s.t. r�� � r�. Clearly, r�� cannot belong to poli
because poli is by definition a threshold; therefore there exists a provider j � i such that
r�� � req j � adm(pol0), but in this case, as req j is the same in both � and �[i � poli],
we would have r�� � r and hence r � opt(�) against the hypothesis. Therefore, r� �
opt(�[i � poli]).
�

Towards a Mechanism for Incentivating Privacy 487

Corollary 2. For all � � � and providers i, we have opt(�[i � poli])�opt(�).

Corollary 3. For all � � � , if i � cw(�) then i � cw(�[i � poli]).

Lemma 2. For all � � � , if i � cw(�) then cw(�[i � poli]) � cw(�).

Proof. It suÆces to show that for all servers j � i, j � cw(�[i � poli]) implies j �
cw(�). Let r be in req j � opt(�[i � poli]). By definition, r � adm(pol0). Furthermore,
because of opt minimality, for all r� � opt(�[i � poli]), we have r� � r. Since opt(�[i �
poli])�opt(�) (Corollary 2), for all r�� � opt(�), r�� � r. Therefore, r � req j�opt(�).
�

Lemma 3. For all � � � and providers i, it holds that res(�� i) � res(�[i � poli]� i).

Proof. r � res(�� i) implies that r � vault(�� i) and there exists r� � opt(�) � reqi s.t.
r� � r. Note that vault(�� i) does not depend on the request of i, therefore vault(�� i) �
vault(�[i � poli]� i). Moreover, due to Lemma 1, there exists r�� s.t. r�� � r� and r�� �
opt(�[i � poli])�poli. Therefore, r � vault(�[i � poli]� i)� ful(opt(�[i � poli])�poli),
i.e. r � res(�[i � poli]� i).
�

Lemma 4. For all � � � and providers i it holds that res(�� i) �i res(�[i � poli]� i).

Proof. If res(�� i) � res(�[i � poli]� i), we need to show that both conditions in Def-
inition 1 are met. By Lemma 3, res(�� i) � res(�[i � poli]� i). Condition 1 follows by
reflexivity of relation �i� �����. Indeed, for every r � res(�� i), there exists r� � r �

res(�[i � poli]� i) such that r �i r�.
As for condition 2, we observe that res(�[i � poli]� i) is a set of maximal elements

w.r.t. �. This means that every pair of elements in res(�[i � poli]� i) are incomparable
w.r.t. �, and hence w.r.t. �. In particular, for every r� � res(�[i � poli]� i) and r �

res(�� i) � res(�[i � poli]� i), it holds that r� � r and hence r� � r.
�

Lemma 5. If opt(�) � reqi � �, then res(�� i) � �.

Proof. Let V � �r � C � r � adm(pol0) � �r� � opt
�i(�)� r� � r�, so that vault(�� i) �

max� V . Let r � opt(�) � reqi, we prove that V � �. Since r � opt(�), we have r �

adm(pol0). Let r� � opt
�i(�); if by contradiction r� � r, we would have r � opt(�).

Hence, r � V and vault(�� i) � �.
�

Theorem 4. For all pol � � and all providers i, the unique dominant attraction strategy
for i w.r.t. pol is pol itself.

Proof. First we prove that poli � pol is a dominant attraction strategy (membership),
then that for all strategies reqi � poli there exists a full profile � � � i

pol such that
pw(�[i � reqi]� i)
 pw(�� i), therefore reqi is not a dominant attraction strategy (unique-
ness).

(Membership). Let � be a full profile. By the (contrapositive of) Corollary 3 and
Lemma 2, it is straighforward to see that pw(�� i) � pw(�[i � poli]� i). From Lemma
4, res(�� i) �i res(�[i � poli]� i) always holds, therefore in particular when pw(�� i) �
pw(�[i � poli]� i).

488 P.A. Bonatti et al.

(Uniqueness). Consider reqi � poli, for some r � reqi and r� � poli, r� � r. Choose
� � � i

pol such that (i) pol0 � �r��; (ii) for two providers i � j, the requests of i and j in
� are �r��; (iii) for all the other providers k � i� j, it holds r� � reqk. Clearly, as r� � r,
r � adm(pol0) and since reqi is a threshold, for the other r��(� r) � reqi, r�� � adm(pol0).
This implies that opt(�[i � reqi]) � reqi � � and hence pw(�[i � reqi]� i) � 0. On the
contrary, due to (iii), �r�� � opt(�) and hence pw(�� i) � 0.
�

Theorem 5. For all pol � � and all providers i, the unique dominant investigation
strategy for i w.r.t. pol is pol itself.

Proof. (Membership) By analogy with Theorem 4, membership is a straightforward
consequence of Corollary 3 and Lemma 4 and 3.

(Uniqueness). Assume a request reqi for the server i such that reqi � poli and choose
a full profile � as in Theorem 4. Since opt(�[i � reqi]) � reqi � �, then res(�[i �
reqi]� i) � �, whereas from i � cw(�) and Lemma 5, res(�� i) � �. Therefore, res(�[i �
reqi]� i) �i res(�� i).
�

Lemma 6. For all � � � and providers i, we have opt
�i(�) � vault(�� i).

Proof. Let V � �r � C � r � adm(pol0) � �r� � opt
�i(�)� r� � r�. It holds vault(�� i) �

max� V . Let r � opt
�i(�). By definition of opt

�i(�), we have r � adm(pol0) and r� � r
for all r� � opt

�i(�). Hence, r � V .

It remains to prove that r is a maximal element of V . By contradiction, assume that
r� � V is such that r � r�, which implies r � r�. Since r � opt

�i(�), this leads to the
contradiction that r� � V , and we obtain the thesis.
�

Theorem 6. If all providers have the same policy and there are two truthful providers i
and j, then res(�� i) � res(�� j) � reqi � adm(pol0) � poli.

Proof. First, notice that opt(�) � opt
�i(�) � req j�adm(pol0) � reqi�adm(pol0). Then,

res(�� i) � vault(�� i) � ful(opt(�) � reqi)

� vault(�� i) � ful(reqi � adm(pol0))

� vault(�� i) � ful(opt
�i(�))�

Now, if an element r of vault(�� i) is included in an element r� of opt
�i(�), it must be

r � r�, because r� � vault(�� i) (by Lemma 6) and vault(�� i) is a threshold. Therefore,
we have vault(�� i) � ful(opt

�i(�)) � opt
�i(�)� and the thesis.
�

Theorem 7. If all providers have the same policy and provider i is truthful, then for all
j � i it holds res(�� j) � pol j.

Proof. Let j � i. Since server i is truthful, it holds opt
� j(�) � opt(�) � poli�adm(pol0).

By definition, for all r � res(�� j) there exists r� � req j�opt(�) such that r� � r. We prove
that in this case it also holds r� � r. Assume by contradiction that r� is strictly contained
in r. We have that r � vault(�� j) and hence r� � vault(�� j), because vault(�� i) is a
threshold. By Lemma 6, from r� � opt(�) � opt

� j(�) it follows r� � vault(�� j), which
is a contradiction. Hence, r � opt(�) � poli � pol j, and the thesis.
�

Investigating the OpenPGP Web of Trust

Alexander Ulrich1, Ralph Holz2, Peter Hauck1, and Georg Carle2

1 Diskrete Mathematik
Wilhelm-Schickard-Institut für Informatik

Universität Tübingen
{ulricha,hauck}@informatik.uni-tuebingen.de

2 Network Architectures and Services
Fakultät für Informatik

Technische Universität München
{holz,carle}@net.in.tum.de

Abstract. We present results of a thorough analysis of the OpenPGP
Web of Trust. We conducted our analysis on a recent data set with a
focus on determining properties like usefulness and robustness. To this
end, we analyzed graph topology, identified the strongly connected com-
ponents and derived properties like verifiability of keys, signature chain
lengths and redundant signature paths for nodes. Contrary to earlier
works, our analysis revealed the Web of Trust to be only similar to a
scale-free network, with different properties regarding the hub structure
and its influence on overall connectivity. We also analyzed the commu-
nity structure of the Web of Trust and mapped it to social relationships.
Finally, we present statistics which cryptographic algorithms are in use
and give recommendations.

Keywords: Web of Trust, OpenPGP, GnuPG, PGP, Community
Structure.

1 Introduction

Pretty Good Privacy (PGP) and the GNU Privacy Guard (GnuPG) are imple-
mentations of OpenPGP (RFC 4880 [1]). Instead of a hierarchical trust architec-
ture with Certification Authorities as in X.509, OpenPGP employs a certification
model where any entity can certify another entity. This results in a so-called Web
of Trust (WoT).

In this paper, we describe the results of a thorough investigation of the Web
of Trust as established by OpenPGP users. We employed graph analysis to find
answers to security-related issues in the WoT. Our contributions are the follow-
ing. First, we analyzed the OpenPGP WoT’s graph components and identified
its macro structures. We will see that this is a prerequisite for more detailed
analyses as there is a single most important component. Second, we analyzed
the ‘usefulness’ of the WoT for its users. We investigated properties like the
length of certification chains, redundant paths, the Small World effect in the
WoT and mutual signatures. Third, we determined how robust the WoT is to

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 489–507, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

490 A. Ulrich et al.

changes like the random or targeted removal of keys, which can be the result of
key expiration, revocation or even attack. Fourth, as the WoT shows properties
of a social network, we used State-of-the-Art algorithms to detect community
structures and map them to social relations. Finally, we analyzed which crypto-
graphic algorithms are in use and whether this is problematic or not.

The remainder of this work is organized as follows. The following section pro-
vides background to OpenPGP. Section 3 describes our methodology. Section 4
presents our results concerning the WoT’s usefulness and robustness. The results
of our analysis of the community structure are presented in Section 5. Section 6
presents statistics about key properties. Section 7 puts this work into the context
of previous, related publications and highlights the differences from our work.

2 Background

Essentially, the WoT is a user-centric and self-organized form of PKI. A user
in OpenPGP is identified by a user ID, a data structure that contains a user
name and e-mail address. Every user ID is associated with a public/private key
pair (either DSA/ElGamal or RSA). Users ‘issue certificates’ to each other by
signing another key (i. e. user ID and public key) with their private keys. The
exact mechanism of creation of the WoT is not fully known, but it is commonly
agreed that personally established contact between users plays a major role, par-
ticularly organized events like Keysigning Parties at conferences and meetings.
OpenPGP keys are frequently uploaded to a network of key servers. These use
the Synchronizing Keyservers (SKS) protocol for synchronization. A snapshot
contains a complete history of the network: keys cannot be deleted from an SKS
server and timestamps of key creation, signature creation, expiration dates and
revocation dates are stored.

The advantages and disadvantages of different PKI structures and trust mod-
els have been discussed, among others, by Perlman [2] and Maurer [3]. In contrast
to the hierarchical X.509, which is said to suffer from insufficient Certification
Authority (CA) practices and insufficient control over intermediate CAs [4], the
situation is different in OpenPGP. Firstly, certificates are not verified by follow-
ing a certification chain from some Root CA (with the chain already known in
advance1), but by finding a certification path from the own key to the key that
is to be verified as belonging to some entity. Secondly, OpenPGP uses a trust
metric to allow users to assess the trust in a key-entity binding. There are two
notions of ‘trust’: ‘Introducer trustworthiness’ refers to how much another user
is trusted to apply care when verifying an identity. This value is determined
and stored locally for every locally known user ID. ‘Public-key trustworthiness’
is the degree to which a user claims to be sure of a key-entity binding. This
value is stored as part of a signature. Before using someone else’s public key,
users must determine the key-entity binding and assess whether it’s likely to be
correct. Different trust metrics can be applied here. GnuPG, for example, uses
1 E. g., most HTTPs servers are configured to send the full chain in the SSL/TLS

handshake.

Investigating the OpenPGP Web of Trust 491

a default setting that focuses on introducer trustworthiness: this must either be
‘full’ for all keys on the certification path, or there must at least be three redun-
dant certification paths to the key in question. Also, a certification path must
not be longer than 5 keys. Trust in OpenPGP thus relies on social relations for
identify verification; ideally a WoT should model real-world relationships. CAs
are not forbidden in OpenPGP – they are merely a special kind of user. While
very flexible, this trust model is very demanding on the user. OpenPGP’s model
can thus be viewed to be more focused on the local ‘environment’ of a user – it
is infeasible for a user to determine introducer trust for everyone in the WoT. A
user can only make reasonable assessments about keys to which paths are short,
and lead over social contacts. This also helps with the ‘Which John Smith?’
problem: looking for the key of a certain ‘John Smith’ is much easier if it is
known that John Smith should share some of one’s own contacts.

The open nature of the WoT could lead one to speculate whether large-scale
attacks on the WoT are possible, where a malicious entity certifies a large number
of keys to trick others. However, this attack is much more difficult than it seems.
Assume Alice wants to verify a fake key for the identity Bob, which has only been
signed by a number of false identities signed by Mallory. Alice must establish a
certification path to the ‘fake Bob key’ using the faked signed keys. These faked
keys would only be used in a path search if Alice has manually and explicitly
set a trust value for Mallory and the false identities. As setting introducer trust
is a manual operation, it is unlikely that Alice would assign the needed trust to
unknown and ‘strange’ entities. For this reason, we view it as an unlikely attack.

Also note that multiple keys per user is not uncommon and not evidence of
such an attack: one might for example wish to use different keys for business and
private matters, or for different levels of security. Multiple (non-revoked, non-
expired) keys for one person/entity occur quite commonly in the key database
without any evidence for malicious behavior.

From these considerations, we can thus derive several important properties
a ‘good’ WoT must exhibit. It must allow to find certification paths between
many keys, otherwise it is not useful. The length of paths is essential: short
paths reduce the number of entities on the path that a user has to trust and thus
increase a user’s chances of accurate assessment of key authenticity. Giving and
receiving many signatures is important, too: it increases the chances of several
redundant paths between nodes, which is beneficial for GnuPG’s trust metrics. It
also means that removal of a key has little impact on reachability, which increases
the WoT’s robustness. Finally, a good WoT should model social relations and
social clustering well: where ‘communities’ of users exist, chances of being able to
accurately assess trustworthiness of users within the same community increase.

3 Methodology

In this section, we describe how we extracted the graph topology and summarize
the metrics we used in the graph analysis.

492 A. Ulrich et al.

Table 1. Our data set

Total number of keys 2,725,504

Total number of signatures 1,145,337

Number of expired keys 417,163

Number of revoked keys 100,071

Number of valid keys with incoming or outgo-
ing signatures

325,410

Number of valid signatures for the latter set
of keys

816,785

3.1 Graph Extraction and Analysis

We modified the SKS software to download a snapshot of the key database as
of December 2009.

Table 1 shows properties of our data set after our extraction. The data set con-
tains about 2.7 million keys and 1.1 million signatures. Of these, about 400,000
keys were expired, another 100,000 revoked. About a further 52,000 keys were
found to be in a defective binary format. The actual WoT, which consists only of
valid keys that have actually been used for signing or have been signed, is made
up of 325,410 keys with 816,785 valid signatures between them. Consequently,
the majority of keys in the data set is not verifiable (no signature chains lead
to them) and does not belong to the WoT. Note that the data set contains only
keys from key servers. We cannot know the number of unpublished keys.

When representing the WoT as a graph, we represented keys as nodes and
signatures as directed edges. This was a deliberate choice. An alternative would
have been to map keys to individual persons. However, such a mapping is not
easy to define due to changes of e-mail addresses, spelling of names and the use
of pseudonyms. Ultimately, it is keys that sign other keys, and we thus chose to
analyze a key-based graph.

3.2 Terms and Graph Metrics

We briefly describe terms and metrics that we use in our analysis of the WoT.
For precise definitions, we refer the reader to the Appendix.

Strongly Connected Components (SCCs). A strongly connected compo-
nent is a maximally connected sub-graph of a directed graph where there is at
least one directed path between every node pair u, v. Note that the paths from
u to v and v to u may incorporate different nodes.

Distances, Eccentricity, Radius and Diameter. The distance between two
nodes is the length of the shortest path between them. The characteristic dis-
tance of the graph is the average over all distances in the graph. Eccentricity is
a node property that indicates the distance to the node farthest away from this
node in the graph. Graph radius is defined as the minimum over all eccentricities
and the diameter is defined as the maximum over all eccentricities.

Investigating the OpenPGP Web of Trust 493

Neighborhoods. A node v’s neighborhood is the set of all nodes for which the
distance from v is at most a certain value.

Clustering Coefficient. The clustering coefficient is a measure of transitiv-
ity in a graph. It indicates the probability that two neighbors of a node are
themselves neighbors, i.e. have an edge between them.

Correlation of Node Degrees. Pastor-Satorras et al. [5] defined a measure for
the correlation of node degrees in a function knn. It determines whether nodes
with similar degrees have edges between them. The assortativity coefficient [6] is
a similar measure. It measures how many nodes with high degree are connected
mainly to other nodes with high degree.

4 Results

We present the results of our analysis.

4.1 Macro Structure: Strongly Connected Components (SCCs)

Within SCCs, there is at least one signature chain between every key pair. SCCs
are thus important for participants of the WoT: mutual verification of key au-
thenticity is only possible for participants within the same SCC. An optimally
meshed WoT should be one giant SCC.

We computed the SCCs of the graph, and found 240,283 SCCs in the WoT.
However, more than 100,000 of these consisted of a single node and about 10,000
SCCs consist of node pairs. The largest SCC (LSCC) consists of about 45,000
nodes. The remaining SCCs mostly have a size between 10 and 100 nodes.
Figure 1 (a) shows the distribution. The SCCs can be arranged in a star forma-
tion around the LSCC in the middle (Figure 1 (b)).

Many SCCs have uni-directional edges to the LSCC, but extremely few have
edges between each other. Out of all smaller SCCs, about 18,000 nodes show a
uni-directional edge into the LSCC, making it (in principle) possible for such a
key to verify keys from the LSCC. In the other direction, 92,000 keys outside the
LSCC are reachable from a key within the LSCC. We found three interesting
hubs in the LSCC and one regional particularity. The German publisher Heise,
CACert and, until recently, German DFN-Verein operate or have operated CAs
to sign keys. Together, they have signed about 4,200 keys in the LSCC. The
Heise CA alone has, in total, signed 23,813 keys – yet of these only 2,578 are in
the LSCC.

This SCC structure gravely impacts the usability of the WoT. First of all,
the large number of smaller SCCs means that even among those users who have
made the effort to upload their keys to a key server, most do not participate
actively in the WoT. Otherwise, their SCCs would already have merged with
the LSCC (one mutual signature is enough). This is also emphasized by the
following comparison. The ratio of edges:nodes in the LSCC is 9.85; the same
ratio for the total WoT is 2.51. Signature activity in the LSCC must thus be

494 A. Ulrich et al.

1e
+0
0

1e
+0
1

1e
+0
2

1e
+0
3

1e
+0
4

1e
+0
5

component size

qu
an
tit
y

1 2 4 8 16 40 117 44952

(a)

10

459

413

47

8

5

287

233

147

318

153
120237

151149
324

236

301

173

167

360

392

430

12

16

195

21

19

268

14
261

210

160

431

33

130

135
190

141 144

133

138

23
434

297

91

90

191

230

312

293
295

437

117

415

111

401
102

381

150

87

96

484

154

152

36

423

88

441

366

336

179

300

338
364

429

362

148

139

146

110

203

143

136

433

246

290

258

317

248

410

276

370

358

397
69

483

473

399

368

488
334

123

330

255

332

170

479

418

451

223
469

427

254

493

240

242

159

64

244

81

292

238

414

353

486

487

186

496

299

467

333

331

6462
337

178
335

386

95 245

243

239
241

247
263

369

137

77

367

340

365

411

400

82

18

402

53

398

371

417
234

461

294

221

373

249

291

346

447

29873

296 24 155
382396

482

472

428

426
351

322

40

166
452

314

464

438

416 443

262

468

132

129 361

205

134

379

377

7

9

28

3

4
284

1

2

446

444

432

408

394

61

260

100

498

13

458
229

11445

306

315

17

470

22

15

20

494

(b)

Fig. 1. (a) Size distribution of SCCs. (b) Plot of SCCs down to a size of 8.

much higher than in the rest of the WoT. However, strong user activity is very
desirable to achieve a better meshing in the WoT.

Second, a high percentage of participants in one of the smaller SCCs are unable
to verify most keys in the WoT. The LSCC is really a structure of paramount
importance: the keys in the LSCC constitute only 14% of the keys in the WoT,
but only the owners of these keys can really profit in a significant way from the
WoT. They can build signature chains to all keys in the LSCC plus to twice as
many keys outside of the LSCC. Thus, a recommendation for new participants
would be to obtain a signature from a member of the LSCC as early as possible
to make their key verifiable. A good choice is also to get a (mutual) signature
of one of the CAs in the LSCC. With such a signature, paths can be built to
all keys in the LSCC, plus to a large number of keys outside the LSCC that are
only reachable via the CA. This emphasizes that a WoT can benefit from CAs.

The remainder of our analysis focuses on the LSCC as the most relevant
component for participants.

4.2 Usefulness in the LSCC

‘Usefulness’ is a term that is difficult to express formally. It can be defined in
several dimensions. An obvious one is how many keys are verifiable from a given
key, and how many paths to other keys can be found from the given key. The
higher these numbers are, the more useful the WoT is from the perspective of
this key. Recall that introducer trustworthiness is not stored in the signatures:
the following discussion thus relates to upper bounds.

Investigating the OpenPGP Web of Trust 495

(a)

1
10

10
0

10
00

10
00
0

indegree

qu
an
tit
y

1 2 4 7 12 22 41 75 149 332 884

(b)

Fig. 2. Distribution of (a) average distances, (b) indegree in LSCC

Distances. We first analyzed distances between keys in the graph. The average
distances between nodes in the LSCC (see Figure 2(a)) range between 4–7, which
is at best just below GnuPG’s limit (path length 5), but exceeds it at worst. The
eccentricity in the LSCC is much higher: it is almost exclusively between 26–31.
To determine the implications of this for usefulness, we identified how many keys
are reachable from a given key within a certain distance.

We computed the set of verifiable keys as the nodes in a h-neighborhood for
h = 1, .., 5 (see Definition 5 in the Appendix). Figure 3 shows the CDF of h-
neighborhoods. For the 2-neighborhood, we see a steep incline, from which we
can conclude that this neighborhood must be relatively small for all nodes. The
size of the neighborhoods grows considerably for increasing h. For h = 3, the
third quartile is about 3,300. For h = 4 and h = 5, it becomes 16,300 and 30,500,
respectively.

Our findings indicate that signature chains within GnuPG’s restrictions are
sufficient to make a very large fraction of the keys in the LSCC verifiable. This
is a good result for usefulness and shows that the LSCC is quite well meshed.
However, for h = 5, the maximum number of reachable keys we found was 40,100.
This means that, on average for all keys, there will be almost 5,000 keys (a tenth
of the LSCC) to which no path at all can be found within GnuPG’s restrictions.

Small World Effect and Social Links. The size of 5-neighborhoods shows
that paths are frequently very short. A possible explanation for this is a Small
World effect, which – following [7] – can be informally understood to be the
phenomenon that the average path length between any two nodes is significantly
shorter than could be expected by judging from graph radius and diameter. A
high clustering coefficient is often viewed as indicative. We investigated this in
the LSCC. As there does not seem to be a universally accepted definition of the
clustering coefficient for directed graphs, we reduced the directed graph to an
undirected one (omitting the direction of edges and merging duplicates). The

496 A. Ulrich et al.

0 5000 10000 15000 20000 25000 30000 35000 40000

0.
0

0.
3

0.
6

0.
9

number of nodes in h-neighbourhood

Fn
(x
)

h=2 h=3 h=4 h=5

Fig. 3. CDF of reachable nodes due to h-neighbourhoods

clustering coefficient we computed is C = 0.46. This indicates that, on average,
roughly half of all neighbors of a node have edges between them. The value is
of the same order as described in [7] for social networks with strong clustering.
The characteristic distance in the LSCC is 6.07, while the diameter of the graph
is 36 and the radius 16. Our finding is that the LSCC does indeed show a Small
World effect. This indicates social clustering. Together with the short paths, this
would make trust assessments easier for users. We explore the social nature of
the WoT further in Section 5.

Node Degrees. Recall that GnuPG’s trust metrics view redundant and distinct
signature chains as beneficial for a key’s trustworthiness. A high node indegree
thus means that the corresponding key is more likely to be verifiable by other
keys. A high outdegree increases the likeliness to find redundant signature chains
to other keys. We computed the average indegree (and outdegree) in the LSCC
as 9.29. However, as can be seen in Figure 2(b), the distribution of indegrees in
the LSCC is skewed. The vast majority of nodes have a low indegree (i. e., 1 or
2). The result for the outdegrees is very similar: as can be seen in Figure 4(a),
there is a positive correlation between indegree and outdegree of a node. The
plot for outdegrees is indeed so similar to the one for indegrees that we omitted
it here. About a third of nodes in the LSCC have an outdegree of < 3. Together,
these results mean that the WoT’s usefulness has an important restriction: many
nodes need to rely on single certification paths with ‘full’ introducer trust and
cannot make use of redundant paths.

Mutual Signatures (Reciprocity of Edges). If many WoT participants
cross-signed each other, this would be a great improvement in overall verifiability
of keys. We computed the reciprocity of edges, i. e. the fraction of uni-directional
edges to which there exists a uni-directional edge in the other direction. The
LSCC has a reciprocity value of 0.51. This shows that there is room for improve-
ment: the LSCC would profit much if more mutual signatures were given, which
would of course also strengthen indegree and outdegree and shorten distances.

Investigating the OpenPGP Web of Trust 497

1e-03 1e-01 1e+01

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ratio indegree/outdegree

Fn
(x
)

(a)

1 5 10 50 500

50
10
0

20
0

outdegree
kn
n

(b)

Fig. 4. (a) CDF of ratio indegree:outdegree in LSCC. (b) Correlation of node degrees
according to Definition 8 (see Appendix): average outdegree (knn) of neighbors of
nodes with degree k

4.3 Robustness of the LSCC

The robustness of the LSCC is also an interesting topic: how is the LSCC con-
nected internally, and hence how sensitive is it to removal of keys? In the context
of OpenPGP, the random removal of a node can be the result of an event like
key expiration or revocation, which invalidates paths leading over the key in
question. These events can and do occur in practice. Targeted removal of a key,
however, is very hard to accomplish as SKS never deletes keys and stays syn-
chronized. An attacker would need an unlikely high amount of control over the
SKS network to make a key disappear.

Scale-Free Property. Scale-freeness in a graph means that the node degrees
follow a Power Law. Connectivity-wise, scale-free graphs are said to be robust
against random removal of nodes, and vulnerable against the targeted removal
of hubs (which leads to partitioning). This is usually explained by the hubs being
the nodes that are primarily responsible for maintaining overall connectivity [8].
We thus first investigated to which extent the WoT shows this property.

The double-log scale in Figure 2(a) could lead one to the conclusion that
the distribution of node degrees follows a Power Law. However, Clauset et al.
argued in [9] that this is not indicative and methods like linear regression can
easily be inaccurate in determining a Power Law distribution. We followed the
authors’ suggestion instead and used the Maximum Likelihood method to derive
Power Law coefficients and verified the quality of our fitting with a Kolmogorov-
Smirnov test. [9] gives a threshold of 0.1 to safely conclude a Power Law distribu-
tion. Our values for indegrees and outdegrees were 0.012 and 0.011, respectively.
As this is off by a factor of 10, our conclusion is that a Power Law distribution

498 A. Ulrich et al.

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

0
10
00
0

20
00
0

30
00
0

40
00
0

number of removed nodes

si
ze

 L
S

C
C

random
targetted

Fig. 5. Removing nodes at random and in a targeted fashion and recomputing the size
of the LSCC

is not plausible. Consequently, the graph cannot be scale-free in the strict sense
of the definition. This finding is contradictory to earlier works by Boguna et al.
[10] and Capkun et al. [11].

The question is yet whether the graph is still similar to a scale-free one.
Apart from high variability of node degrees, a set of high-degree nodes that
act as inter-connected hubs are characteristic for scale-free graphs [8,12]. The
positive correlation between the degree of nodes and the average degree of their
neighbors (Figure 4(b)) suggests that nodes with high outdegrees do indeed
connect to other such nodes with high probability. To bolster our finding, we
computed the assortativity coefficient (see Appendix A.4) and obtained a value
of 0.113. This is similar to what has been computed for other social networks
with a hub structure [7]. Our conclusion is thus that the graph is similar to a
scale-free one and exhibits a hub structure, but is not scale-free in the strict
sense.

Random Removal of Nodes. Based on this finding, we investigated how the
LSCC reacts to random removal of nodes. We removed nodes and recomputed
the size of the remaining LSCC as an indication of loss in overall connectivity.
For random removal, we picked the nodes from a uniform distribution. Figure
5 shows our results. The graph is very robust against the random removal of
nodes: we must remove 14,000 nodes to cut the LSCC’s size by half. To reduce
it to a quarter, we must remove more than half the nodes (25,000).

The conclusion here is that events like key expiration or revocation do not
greatly influence the robustness, and consequently the usability, of the WoT.

Targeted Removal of Nodes and CAs. For targeted removal, we chose nodes
with highest degrees first. The graph was more robust than expected. When we
removed all nodes with a degree of more than 160 (240 nodes), the size of the
LSCC was still 40,000. Only when we proceeded to remove all nodes with a

Investigating the OpenPGP Web of Trust 499

degree of more than 18 (∼ 5,000 nodes), the LSCC was half its size. Removing
2,500 more nodes, we finally cut the LSCC down to about 1/9 of its original
size. This means that nodes with lower degrees (< 18) play a significant role in
overall connectivity (although the decay of the LSCC is quite pronounced after
they are also removed). The rather slow decay stands in contrast to the rapid
decay upon removal of the best-connected nodes that is commonly observed in
scale-free networks. Targeted removal of keys does not affect the WoT greatly,
and is not an efficient attack. The hub structure is not the single reason for
highly meshed connectivity in the WoT.

We decided to strengthen the attack by removing the keys of the three CAs.
Our finding was similar: the LSCC split into one LSCC of size 42,455 and 1,058
very small SCCs. This means that the CAs, although beneficial in making keys
verifiable, are not responsible for holding the LSCC together. The characteristic
distance of the new LSCC remained almost unchanged (6.25); radius, diameter
and eccentricity remained the same. This means that path properties did not
change, either. Our conclusion here is that attempting to selectively remove
keys from keyservers, even shutting down CAs, would not change the WoT’s
properties significantly. It is very robust in this respect.

5 Community Structure of the Web of Trust

We know from Section 4 that the WoT shows the small-world property, which
hints at social clustering. Newman and Park also noted that a high degree of
clustering is typical for social networks [13]. Fortunato [14] calls such subsets of
nodes ‘communities’ if the nodes have high intra-connectivity in their subset,
but the subset as such shows a much lower connectivity to nodes outside. Social
clustering can make the WoT more powerful: it is more likely that members of
a cluster know each other at least to some extent and can thus better assess the
trustworthiness of particular keys.

Community Detection. We analyzed the WoT with State-of-the-Art algo-
rithms for community detection to determine whether a pronounced community
structure exists and can be mapped to ‘real-world’ relationships. Also, we at-
tempted to find whether signing events like Key Signing Parties can be identified
in the graph. Unfortunately, algorithms for community detection are often de-
fined for undirected graphs. Also, signatures store little information that helps
with identifying social links and events in time. We decided to use DNS domains
in user IDs and timestamps of signature creation as a basis. As an algorithm for
a directed graph, we chose the one by Rosval et al. [15]. For undirected graphs,
we chose the algorithms by Blondel et al. [16] and COPRA [17], based on sugges-
tions in [18]. COPRA allows overlapping communities, but is non-deterministic.
We ran it 10 times and computed differences. As a measure for the quality of
a dissection, we used Modularity [19], which relates the amount of intra-cluster
edges of a graph with communities to the expected value for a graph without
communities. Note that the definition for overlapping communities is different,
so the values for COPRA and BL cannot be compared directly.

500 A. Ulrich et al.

Table 2. Dissection of the LSCC into communities: algorithms BL and COPRA

Method Modularity Communities found (size > 3)

BL (l = 2) 0.70 936
BL (l = 5) 0.71 186

COPRA (v = 1) (0.78) 1,421
COPRA (v = 3) (0.79) 1,354

Only the algorithms by Blondel et al. and COPRA yielded useful results.
The algorithm by Rosval et al. computed a dissection into 2,869 communities,
almost all of them without any intra-cluster edges. We considered these results
unreliable and ignored them in our subsequent evaluation.

Blondel et al. and COPRA. Table 2 shows the results of dissections with
Blondel et al. (BL) and COPRA for communities of size > 3. Both BL and
COPRA are configurable: BL can be repeated in iterative phases and COPRA
requires a (user-chosen) parameter v to reflect the degree of overlapping. For
BL, phase 2 yielded the best results (plausible number of communities, high
modularity). For COPRA, values of v up to 3 were found best. We know from
[20] that modularity values > 0.3 indicate a significant community structure.
Depending on the algorithm and chosen parameters, between 94% (COPRA)
and 99% (BL) of nodes in the LSCC belonged to such a community.

BL and COPRA agree on the same orders of magnitude with respect to the
number of communities and nodes therein. The high modularity values and the
general shape of community distributions by size (see Figure 6) are also similar.
Most communities are very small, but a significant number of large or very large
communities exist. Similarities, however, end here. COPRA indicates one ex-
tremely large community of 19,000-21,000 members. BL finds more communities
of medium size (100-500) and mid-large size (500-5,000). To further investigate
this, we analyzed how communities are connected. COPRA found that most
small communities are clustered around the largest community and mostly only
link to this community. BL found several large communities to which the smaller
communities connect.

Mapping to Domain Names and Keysigning Parties. We analyzed how
the community dissections mapped to top-level and second-level domains (TLDs
and SLDs) in the user IDs. We say a community is dominated by a domain if
at least 80% of its nodes belong to that domain. We say a community can be
assigned to a domain if at least 40% of its nodes belong to it.

Table 3 shows the results. For both BL and COPRA, we found that a large
percentage of communities are dominated by a top-level domain: between 47%
and 58%. Only if a community was not dominated, we checked if it could at
least be assigned. A further 38%–47% could be said to be assignable to a TLD.

Investigating the OpenPGP Web of Trust 501

5 50 500 5000

1
5

50
50
0

50
00

community size

qu
an
tit
y

COPRA v=3

(a)

5 50 500 5000

1
5

50
50
0

50
00

community size

qu
an
tit
y

BL l=2

(b)

Fig. 6. Distribution of communities by size

This result did not change much when we disregarded generic TLDs (.com etc.):
with COPRA, 38% of communities were dominated by a country’s TLD and a
further 23% were still assignable. Results for BL were similar. Together, assigned
and dominated communities make up by far the largest part of communities
found (98% for BL-2 and COPRA, v = 1). However, the picture changes for
second-level domains. With COPRA, only about 13% of communities are dom-
inated by an SLD and only a further 30% of communities can be assigned to an
SLD.

Keysigning Parties are events where one can expect signatures to be uploaded
to key servers within a short time frame. Table 3 shows the percentage of nodes
in the communities where signatures were created within a month. We find poor
results for BL, but much better ones for COPRA. In about 40% of communities,
the signatures were created within 30 days of each other.

Conclusion with Respect to Community Detection. Concerning commu-
nity detection, it is difficult to reach compelling conclusions. We provide ours
as a basis of discussion. Both algorithms agreed that a large number of smaller
communities exist. Given the huge number of TLDs and SLDs and given that the
WoT graph spans more than a decade, the results seem statistically significant
enough to conclude that the community structure does indeed capture some ‘so-
cial’ properties of the WoT. However, grouping by TLD is a blunt measure, and
the mappings to SLDs were by far not as compelling. Our tentative conclusion is
that the signing process in the WoT is indeed supported, to a traceable extent,
by real-world social links. The social nature of the WoT is not a myth. At least
where certification paths are short, the community structure should make it eas-
ier for users to assess the trustworthiness of a key. Beyond this result, however,
community detection is yet too imprecise to offer more succinct conclusions.

502 A. Ulrich et al.

Table 3. Community structure with respect to membership in top-level domains (TLD)
and second-level domains (SLD)

Method dominated
by TLD

assignable
to TLD

dominated
by SLD

assignable
to SLD

signatures
within 30d

BL (l = 2) 499 (53%) 417 (45%) 41 (4%) 254 (27%) 115 (12%)
BL (l = 5) 85 (47%) 85 (47%) 15 (8%) 38 (21%) 26 (14%)

COPRA-1 824 (58%) 564 (40%) 178 (13%) 429 (30%) 572 (40%)
COPRA-3 792 (58%) 525 (38%) 187 (14%) 425 (31%) 555 (41%)

6 Cryptographic Algorithms

Table 4 presents results on the use of hash and public key algorithms in the WoT.
Several algorithms encountered raise security concerns: MD5 can probably be
said to be an unwise choice today [21]. SHA-1, although much safer, is also
scheduled for phase-out [22]. RSA keys of 768 bits have been factored [23] and
a length of more than 1,024 bits is recommended since 2010 [24].

Table 4. Occurrences of (a) hash algorithms, (b) public key algorithms

(a)

Algorithm Occurrences

SHA1 398,849
MD5 41,700
SHA256 5,031
SHA512 2,472
SHA224 532
RIPE-MD/160 122

Signatures total 446,325

(b)

Algorithm Occurrences

DSA-1024 36,555
RSA-1024 3,903
RSA-2048 2,408
RSA-4096 1,198
RSA-768 257
RSA-512 203
RSA-3072 96

Keys total 44,952

Especially the comparatively high number of RSA keys with a key length of
≤ 1,024 bits is somewhat problematic. We investigated these keys and found
that a substantial number of them appears well-connected, based on their in-
and outdegrees. It seems reasonable to assume that quite a few users trust these
keys as introducers, thus enabling their use in certificate chains. Although not
a threat yet and possibly also not for the next few years, it opens up attack
opportunities if factorization of 1,024 bits keys should become feasible [23].

7 Related Work

The OpenPGP WoT has been the subject of investigation before, albeit at other
stages of its development and with a focus that was less on security-relevant
properties. Capkun et al. [11] analyzed several structural aspects of the WoT of

Investigating the OpenPGP Web of Trust 503

2001. They did not investigate aspects like communities but presented a model
to create similar graphs. They found a small characteristic distance and a high
clustering coefficient. The authors claimed to have found a Power Law distri-
bution for node degrees. Our own findings are that a Power Law distribution is
not plausible. However, the graph is similar to a scale-free one, although its hub
structure is not solely responsible for robustness. Note however that the rigid
methods in [9] were generally not as widely in use then, and the graph from
2001 contained 4 times fewer nodes. Boguna et al. [10] also analyzed a PGP
graph from 2001. They converted the graph to an undirected one and analyzed
node degrees and clustering coefficient. They also claimed a Power Law for node
degrees and determined a clustering coefficient on the same order as the one we
found. The authors also applied an (older) algorithm for community detection.
They claimed the community distribution follows a Power Law, too. All of the
above have in common that they used significantly older data sets, and the focus
was less on security issues like usefulness and robustness. Furthermore, our com-
munity dissection was conducted with more recent algorithms, with the aim of
mapping communities to real-world groups. The OpenPGP community has also
contributed some effort in analyzing the WoT’s structure. The wotsap project
[25] creates snapshots of the signatures in the WoT. However, it only considers
the LSCC and does not store other key properties. We also found the data set to
be incomplete (10% of keys missing) due to a bug. Penning [26] used the wotsap
data set to determine aspects like distances, node distribution and robustness
based on node removal.

8 Discussion and Conclusion

We have presented several results relating to security aspects of the OpenPGP
Web of Trust. We found that only keys in the Largest SCC (LSCC) can really
profit from the WoT. This severely limits the reach of the WoT to a fraction
of its users: only about 45,000 keys out of 2 million can use the WoT without
restrictions. A large fraction of keys in the smaller SCCs can make very little
use of the WoT or none at all. However, for users with keys in the LSCC, the
situation is much better. We found their certification chains to be relatively
short. There is also a pronounced Small World effect. We followed this up with
an investigation of the community structure of the WoT. While algorithms for
community detection can capture the social groups of the WoT on a very coarse
level only, the graph does exhibit a very strong community structure. Another
positive aspect is that about 40,000 of 45,000 keys are reachable within GnuPG’s
restrictions (5 hops), and several thousand even via 3 hops or less. This is positive
for the WoT as it can aid users in making better trust assessments regarding
other keys that are close and in the optimal case also in the same community.
The CAs we found help greatly in making keys verifiable. This is a viable option
for users. Random removal of keys (e. g., due to expiration or revocation) is not
a problem for the robustness of the WoT. The WoT is also very robust against
targeted attacks; CAs are not fundamentally relevant for robustness.

504 A. Ulrich et al.

However, we found that low indegrees and outdegrees are far too common.
This reduces the number of redundant paths between keys, which means that
many users would need to have ‘full’ introducer trust in known entities. Mutually
cross-signing more often would help here.

In essence, our conclusion is that the WoT is likely to be quite an effective
PKI structure within smaller node neighborhoods, and particularly for those users
that frequently sign other keys and are active in the WoT. The cryptographic
algorithms that are in use can be generally considered to be still secure. However,
keys that have issued MD5-based signatures should be replaced and signatures
renewed. Also, a stronger move towards key lengths of more than 1,024 bits is
desirable.

Acknowledgements. We would like to thank both our anonymous reviewers
and Radia Perlman for their valuable input.

References

1. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: OpenPGP Message
Format. RFC 4880 (November 2007)

2. Perlman, R.: An overview of PKI trust models. IEEE Network 13(6), 38–43 (1999)
3. Maurer, U.: Modelling a public-key infrastructure. In: Martella, G., Kurth, H.,

Montolivo, E., Hwang, J. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 325–350.
Springer, Heidelberg (1996)

4. Eckersley, P., Burns, J.: An observatory for the SSLiverse. Talk at Defcon 18 (July
2010), https://www.eff.org/files/DefconSSLiverse.pdf (online; last retrieved
in February 2011)

5. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation prop-
erties of the Internet. Phys. Rev. Lett. 87(25), 258701 (2001)

6. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701
(2002)

7. Newman, M.E.J.: The structure and function of complex networks. SIAM Re-
view 45(2), 167–256 (2003)

8. Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex net-
works. Nature 406(6794), 378–382 (2000)

9. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. SIAM Review 51(4), 661–703 (2009)

10. Boguñá, M., Pastor-Satorras, R., Dı́az-Guilera, A., Arenas, A.: Models of social
networks based on social distance attachment. Phys. Rev. E 70(5), 056122 (2004)

11. Capkun, S., Buttyán, L., Hubaux, J.P.: Small Worlds in security systems: an anal-
ysis of the PGP certificate graph. In: NSPW 2002: Proc. 2002 Workshop on New
Security Paradigms, pp. 28–35. ACM, New York (2002)

12. Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free
graphs: Definition, properties, and implications. Internet Mathematics 2(4), 431–
523 (2005)

13. Newman, M.E.J., Park, J.: Why social networks are different from other types of
networks. Phys. Rev. E 68(3), 036122 (2003)

14. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174
(2010)

https://www.eff.org/files/DefconSSLiverse.pdf

Investigating the OpenPGP Web of Trust 505

15. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks re-
veal community structure. Proc. National Academy of Sciences 105(4), 1118–1123
(2008)

16. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment 2008(10), 10008 (2008)

17. Gregory, S.: Finding overlapping communities in networks by label propagation.
New Journal of Physics 12(10), 103018 (2010)

18. Lancichinetti, A., Fortunato, S.: Community detection algorithms: A comparative
analysis. Phys. Rev. E 80(5), 056117 (2009)

19. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

20. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70(6), 066111 (2004)

21. Sotirov, A., Stevens, M., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A.,
de Weger, B.: MD5 considered harmful today (2008),
http://dl.packetstormsecurity.net/papers/attack/

md5-considered-harmful.pdf (online; last retrieved in May 2011)

22. NIST: Approved Algorithms (2006),
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html (online; last
retrieved in May 2011)

23. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A., Thom, E., Bos, J., Gaudry, P.,
Kruppa, A., Montgomery, P., Osvik, D., te Riele, H., Timofeev, A., Zimmermann,
P.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)

24. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: NIST special publication
800-57 part 1, recommendation for key management - part 1: General (revised)
(2007), http://csrc.nist.gov/groups/ST/toolkit/key_management.html

25. Cederlöf, J.: Web of Trust statistics and pathfinder,
http://www.lysator.liu.se/~jc/wotsap/ (online; last retrieved in February
2011)

26. Penning, H.P.: Analysis of the strong set in the PGP web of trust,
http://pgp.cs.uu.nl/plot/ (online; last retrieved in February 2011)

27. Brinkmeier, M., Schank, T.: Network statistics. Network Analysis, 293–317 (2004)

A Common Terms and Graph Metrics

Based on the common notions of graph theory, we define some terms, follow-
ing [27] herein. In the following, let V be the set of nodes of the graph G, with
|V | = n. u and v indicate nodes.

A.1 Distances

Distances Between Nodes. The distance d between two nodes is defined as
the length of the shortest path between these two nodes.

http://dl.packetstormsecurity.net/papers/attack/md5-considered-harmful.pdf
http://dl.packetstormsecurity.net/papers/attack/md5-considered-harmful.pdf
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html
http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://www.lysator.liu.se/~jc/wotsap/
http://pgp.cs.uu.nl/plot/

506 A. Ulrich et al.

Distances in the Graph. The average distance of the graph, d̄, is the average
over all distances in the graph:

d̄ =
1

n2 − n

∑
u�=v∈V

d(u, v) (1)

Eccentricity. The eccentricity of a node u, ε(u), is defined as the maximum
distance to another node, i.e.

ε(u) = max{d(u, v)|v ∈ V } (2)

Graph Radius and Diameter. The diameter of a graph is defined as the
maximum over all eccentricities:

dia(G) = max{e(u)|u ∈ G} (3)

The radius is defined as the minimum over all eccentricities:

rad(G) = min{e(u)|u ∈ G} (4)

A.2 Node Neighborhoods

We define the h-neighborhood of a node v as the set of all nodes from which the
distance to v is at most h:

Nh(v) = {u ∈ V |d(v, u) ≤ h} (5)

A.3 Clustering Coefficient

The clustering coeffcient indicates the probability that two neighbors of a node
have an edge between them.

Let G = (V, E) be the undirected graph. A triangle � = {V�, E�} is a
complete sub-graph of G with | � | = 3. The number of triangles of a node v is
given by λ(v) = |{� : v ∈ V�}|. A triplet of a node v is a sub-graph of G that
consists of v, 2 edges, plus 2 more nodes such that both edges contain v. The
number of triplets of a node v can be given as τ(v) =

(
d(v)

2

)
. The local clustering

coefficient of v is defined as

c(v) =
λ(v)
τ(v)

(6)

c(v) indicates how many triplets of v are triangles. The global clustering coeffi-
cient of G can then be defined as:

C(G) =
1
|V ′|

∑
v∈V ′

c(v) (7)

with V ′ = {v ∈ V : d(v) ≥ 2} to disallow non-defined values for τ(v).

Investigating the OpenPGP Web of Trust 507

A.4 Correlation of Node Degrees

Function knn as defined by Pastor-Satorras et al. Following Pastor-
Satorras et al. [5], we define a measure for the correlation of node degrees:

< knn >=
∑
k′

k′Pc(k′|k) (8)

gives the average node degree of neighbors of nodes with degree k. Pc(k′|k)
indicates the probability that an edge that starts at a node with degree k ends
at a node with degree k′.

Assortativity Coefficient. The assortativity coefficient [6] is a measure whose
purpose is similar to the function defined in Definition 8. It measures the degree
of assortative mixing in a graph: nodes with high degree that are connected
mainly to other nodes with high degree. The assortativity coefficient takes values
between -1 and 1. Positive values indicate assortative mixing, negative ones do
not. According to Newman [6], assortative mixing is a property that distinguishes
social networks from other real-world networks (e.g. technical or biological ones).
It can thus be used to sub-differentiate between similar graphs that show a Small
World effect.

A Practical Complexity-Theoretic Analysis of Mix
Systems

Dang Vinh Pham1, Joss Wright2, and Dogan Kesdogan1

1 Siegen University, Siegen, Germany
2 Oxford Internet Institute, University of Oxford, Oxford, United Kingdom

Abstract. The Minimal-Hitting-Set attack (HS-attack) [10] is a well-known pas-
sive intersection attack against Mix-based anonymity systems, applicable in cases
where communication behaviour is non-uniform and unknown. The attack allows
an observer to identify uniquely the fixed set of communication partners of a par-
ticular user by observing the messages of all senders and receivers using a Mix.
Whilst the attack makes use of a provably minimal number of observations, it also
requires solving an NP-complete problem. No prior research, to our knowledge,
analyses the average complexity of this attack as opposed to its worst case.

We choose to explore the HS-attack, as opposed to statistical attacks, to
provide a baseline metric and a practical attack for unambiguously identifying
anonymous users. We show that the average complexity of the HS-attack can
vary between a worst-case exponential complexity and a linear-time complexity
according to the Mix parameters. We provide a closed formula for this relation-
ship, giving a precise measure of the resistance of Mixes against the HS-attack in
practice, and allowing adjustment of their parameters to reach a desired level of
strength.

1 Introduction

Modern research into network-level anonymity is widely regarded to have begun in
1981 with the introduction of the Mix by Chaum [3]. The Mix hides the linkage between
senders and recipients of messages by ensuring that all senders and recipients are a
member of some anonymity set.

The concepts underlying the Mix remain the basis for a wide variety of practical and
theoretical anonymity systems. Chaum’s model of the Mix, in its pure theoretical form,
provides an upper limit to what is achievable by these approaches and thus remains an
important subject for analysis. The work presented here provides insight into the limits
of the Mix model in practical use, and thus aims to guide choices involved in building
real-world implementations of Mix variants.

Although a Mix provides unlinkability between input and output messages with re-
spect to a global passive attacker, it cannot protect the links between senders and recip-
ients against long term traffic analysis attacks when the sender group is open [2, 9].

The anonymity property can be modelled with standard security techniques: a global
passive attacker model, which provides a strong but realistic adversary, and with the
creation of anonymity sets as a basis for the anonymity property that we seek to enforce.
We consider in this paper an abstract model called the Pure Mix [9] that can be used

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 508–527, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Practical Complexity-Theoretic Analysis of Mix Systems 509

to model more complex practical Mixes [14, 15]. Analysis of this model is believed to
be applicable to other Mix models, with appropriate modifications, but these are not
addressed here.

Berthold et al. [2] introduced a class of long term traffic analysis attacks on the Pure
Mix, called intersection attacks, proving that Mixes with open sender groups cannot
provide long term unlinkability if each sender repeatedly communicates with a fixed
recipient. In practical usage, however, a sender may have several communication part-
ners and a less restrictive model is therefore needed. Kesdogan et al. introduced the
Disclosure [1] and Minimal-Hitting-Set (HS-) attacks [9, 10] for repeated communica-
tion with an arbitrary fixed set of recipients.

These attacks exploit the fact that a global passive attacker can selectively observe
only recipient anonymity sets in which a particular sender, referred to as Alice, con-
tributes a message. Given sufficiently many observations, Alice’s recipient set is the
smallest unique set intersecting each of the observations: the unique minimal hitting set.
Unfortunately, computing this minimal set is known to be an NP-complete problem [8].
Many popular current attacks against Mixes analyse statistical properties [4, 5, 6, 11, 16]
to deduce the most likely senders of given messages. These attacks, whilst allowing a
level of innaccuracy in results, have the advantage of being much more efficiently com-
putable.

We choose to focus on the Minimal-Hitting-Set attack for a number of reasons:
firstly, as the HS-attack uses a provably minimal number of observations [9], it pro-
vides an important theoretical baseline for exact identification of a sender’s recipients,
resulting a metric for Mix anonymisation. Secondly, as we show, it remains a genuinely
practical attack in many cases. As the attack is applicable to any distribution of user
communications, even when this distribution is unknown to the attacker [10], it applies
in many situations with unknown communication behaviour.

Finally, the underlying algorithmic structures related to the HS-attack, based on an
NP-complete problem, are themselves an important topic. The research presented here
sheds light on analysing the average case complexity of NP-complete problems, and
thus those cases in which such problems are computationally tractable.

Contribution. This paper contributes, to our knowledge, the first robust and detailed
security analysis of the Mix system based on the average computation required to unam-
biguously identify users with a provably minimal number of observations. It derives, for
a given set of Mix parameters, a direct relationship between the number of observations
required for identification and the average-case runtime complexity of the attack.

Our analysis is applicable to non-uniform user communication, and allows us to
identify Mix parameters for which unambiguous identification of recipients is intract-
able in the average case. We also identify instances in which recipients of a sender can
be efficiently identified by the HS-attack, providing a provably correct alternative to the
more popular statistical approaches.

We show that the NP-completeness of the algorithm deployed by the HS-attack rep-
resents only a worst-case attack complexity, which provides a poor characterisation
when considering systems where the average time to failure is of greater relevance.

510 D.V. Pham, J. Wright, and D. Kesdogan

In this work, therefore, we explore the complexity structure of an exact attack in
order to determine the average-case complexity, and provide closed formulas that show
the relation between the parameters of the Mix and the average-case complexity re-
quired to compromise its anonymity.

The Mix model we employ has been used to model practical Mix implementations
such as Mixminion and Mixmaster [7, 15], as well as in other analyses [2, 1, 4, 9, 5,
16, 13].

Related Work. A security metric makes a quantitative statement concerning the re-
sistance of a system to an attacker. Our attack model consists of a passively observing
attacker against a given anonymity system. The attack that we consider relies solely on
observations of this anonymity system. The success of the attack is therefore dependent
on the attacker’s knowledge, and knowledge gain, and on its computational capabili-
ties. This form of attack is well known as passive traffic analysis attack in the literature.
These attacks are hard to thwart, as they exploit the information leakage inherent in all
anonymity systems.

Statistical long-term traffic analysis attacks are closest to our approach. These ad-
dress cases in which Alice’s communication behaviour reveals statistical patterns that
allow identification of her likely recipients. By relaxing the requirement for absolute
correctness, these attacks gain significant computational efficiency.

Greedy variants of the HS-attack, the SHS- and HS*-attacks, were suggested in [10].
These compute hitting sets guided by the frequency with which a peer was contacted
while under observation. The result of the SHS-attack is a hitting set that is consistent
with the observations made by the attacker, but which can miss Alice’s real recipients
(exclusion-error) or contain recipients not contacted by Alice (inclusion-error). In con-
trast to the SHS-attack, the HS*-attack accepts the greedily computed hitting set only if
it is a unique smallest minimal hitting set. This attack can identify Alice’s recipient set,
but risks producing no result.

The Statistical-Disclosure attack (SDA) [4, 11, 6, 5] introduces the class of statistical
attacks that focus on the likelihood that a single recipient is in Alice’s recipient set.
These attacks typically assume some knowledge of the distribution of communications
amongst untargeted users, which must remain static during the attack. This approach
introduces the possibility of both inclusion and exclusion errors, but results in much
more efficient attacks. While both approaches provide advantages, a comparison of their
relative effectiveness is beyond the scope of this work, and we will not discuss these
attacks further.

One attack of note is the Perfect-Matching-Disclosure-attack (PMDA) [16], which
applies statistical attacks to successively weight links between all senders and receivers
in a Mix network. This more sophisticated statistical attack builds user communication-
pattern profiles to inform its inferences, and allows for tradeoffs between accuracy and
speed in disclosing communication links. Again, however, the nature and effectiveness
of this attack is largely out of the scope of the current work, which focuses exclusively
on provably correct attacks in order to provide a baseline metric for anonymity in Mixes.

A Practical Complexity-Theoretic Analysis of Mix Systems 511

Structure. Section 2 presents the Mix and attacker model used in this paper. The attack
that we present is based on the ExactHS algorithm [12, 13] that computes all minimal
hitting sets, in this case for sets of a user’s possible communication partners. The results
in this paper enable us to determine the average-case complexity of this algorithm, and
thus the average complexity of unambiguously identifying a user’s set of communica-
tion partners.

Proving the identity of a user’s communication partner set is equivalent to proving
that all other possible sets of recipients cannot be the user’s partner set: a disproof of
these sets. Section 3 presents our theoretical model that describes the number of peers in
a possible set of recipients that must be considered in order to disprove it. The average
worst case of this number of peers is derived in Sect. 4.

Section 5 applies our analyses to the ExactHS algorithm in order to obtain formulas
for the average worst case complexity of identifying peers, and shows how this relates
to the required number of observations. To support our theoretical results, we compare
our analysis to simulations in Sect. 6. We provide conclusions and ideas for future work
in Sect. 7.

2 Mix and Attacker Model

2.1 The Pure Mix Model

We consider the Pure Mix technique, as justified in [9], as a generalised and simplified
model of practical real-world Mixes.

Sender
set

S

S′ R′ R
ecipientset

R

s6
s3 s1

s8
s5

s4

r2

r5r9

r1

r3

Mix

Fig. 1. Mix model

Our attacker model is that of a global
passive attacker that observes all commu-
nication, but cannot inject, delay or alter
messages. From this basis, we will use the
following formal model of a pure Mix and
information leakage for our analysis.

Formal Model of the Pure Mix Technique.

– A communication system consists of a set of senders, S, a set of recipients, R, and
a Mix node1 as shown in Fig. 1. If a sender s ∈ S communicates with a recipient
r ∈ R, then we say that r is a peer partner of s, or simply r is a peer of s.

– In each communication round2 a subset S′ ⊆ S of all senders each send precisely
one message to their peer partners. Let R′ ⊆ R be the set of intended recipients.
The act of sending or receiving a message is not hidden to the attacker, therefore
(S′, R′) represents the information leakage available to an attacker in each round.3

1 S and R represent all users with the ability to send or receive messages in the system.
2 A communication round consists of the Mix node collecting messages from a fixed number of

distinct senders and, after applying the “Mix” protocol, forwarding the collected messages in
random order to their intended recipients.

3 Note that a sender can send to multiple recipients in distinct rounds, but cannot send multiple
messages in a single round.

512 D.V. Pham, J. Wright, and D. Kesdogan

– We call S′ the sender anonymity set, which is the set of all senders that may have
sent a given message. The recipient anonymity set R′ is the set of all recipients that
may have received a message.

– We label the size of the sender anonymity set, |S′|, as b.
– The size of the recipient anonymity set, |R′|, is less than or equal to b, as each

sender sends exactly one message per round but several senders may communicate
with the same recipient. The size of the set of all recipients is |R| = N .

Attacker Model. The goal of the attacker is to compute, from a set of observations of
traffic, all possible sets of peer partners of a target sender Alice ∈ S. These possibilities
form hypotheses for the true set of Alice’s peer partners, HA, which is assumed to be a
fixed set of size m = |HA|. We call a peer r ∈ HA an Alice’s peer; a peer that does not
communicate with Alice, r ∈ R \ HA, is called a non-peer and r is simply called peer
if no distinction is required.

The attacker focuses on revealing Alice’s peers by observing only those pairs
(S′, R′), where Alice participates as a sender. Under this condition we refer to the corre-
sponding recipient set R′ as an observation,O. The set of all observations collected dur-
ing t communication rounds is referred to as the observation set OS = {O1, . . . ,Ot}.

Alice’s peer set can be revealed by the Minimal-Hitting-Set attack (HS-attack) [10],
which computes all hypotheses from the set of observations. These hypotheses corre-
spond to all sets of size m that are hitting sets inOS . A hitting set is a set that intersects
with all observations in OS . A hitting set is minimal if no proper subset of it is a hitting
set. The HS-attack succeeds if OS is consistent with only a single hypothesis. In this
case Alice’s peer set is unambiguously identified, and is thus the smallest unique mini-
mal hitting set of size m. This attack has been proven to require a minimal number of
observations to identify HA[9].

In applying the HS-attack, we assume that the size of Alice’s peer set, m, is known,
since learning m does not change the complexity class of the attack.

Learning m. The intuition behind our attack is that at least one of Alice’s peers must
appear in each observation4, while this does not hold for any other set H, where HA �⊆
H. Therefore, after a large number of observations, t, Alice’s peer set HA remains the
unique smallest minimal hitting set.

Assume the existence of a set in which H �= HA, where |H| < m happens to be a
unique minimal hitting set. If p is the probability that any peer inH appears in a random
observation, the probability that H remains a hitting set after t observations decreases
according to an exponential function pt. The probability of learning the wrong set of
Alice’s peers and the wrong value of m by the HS-attack is therefore negligible even
for moderate t.

We can learn m in time
∑m

m′=1 O(bm′
m′tb) = O(bmmtb) by running the HS-attack

for m′ = 1, . . . , m with respect to the same t observations according to equation (2).
If m′ < m, then there will be no hitting sets of size m′ and HS-attack thus detects
incorrect m′.

Multiple Sending per Round. We assume that each sender sends only one message
in each round to simplify the Mix model and our analysis. The HS-attack remains

4 Recall that an “observation” refers to a round in which Alice participates.

A Practical Complexity-Theoretic Analysis of Mix Systems 513

applicable, however, if a sender can send multiple messages per round. This altered
model does require slight modifications to the algorithm deployed by HS-attack, and
thus a minor modification to the analysis. Due to space limitations, we omit this ex-
tended model here. Therefore, investigating the relation between the results from the
simple model and from the extended model will be left for future work.

2.2 ExactHS Algorithm

ExactHS [12, 13], described in Alg. 1 determines the hypotheses in the Minimal-
Hitting-Set attack. Unlike the original HS algorithm proposed in [10], which analyses
all
(
N
m

)
hitting sets, ExactHS considers only minimal hitting sets and thus drastically

reduces computation [12, 13].
The method used by ExactHS to determine hitting sets corresponds to the theoretical

model in Sect. 3, allowing us to apply the analyses of Sect. 4 to determine the average
case complexity for unambiguously identifying Alice’s peer set.

ExactHS recursively computes all minimal hitting sets with respect to the attacker’s
observation set OS . We use the following notation:

C: Set of at most m suspected5 peers representing a subset of a possible hitting set. It
is initially empty.

OS[r]: Set of observations containing peer r, that is {O ∈ OS | r ∈ O}. |OS[r]| is
called the frequency of r. |OS[r]| is 0, if r is not in any observations of OS .

OS[{r1, . . . , rk}]: Set of observations containing any r1, . . . , rk, that is
⋃k

i=1OS[ri].

We now describe in detail the steps taken by ExactHS on a line-by-line basis, as shown
in Alg. 1.

Algorithm 1 ExactHS
1: procedure EXACTHS(OS ′ , m′, C)
2: if OS′ = {} then
3: return C � C is a hitting set
4: else if m′ ≥ 1 then � add a peer to C, if C contains less than m peers
5: choose O ∈ OS′

6: while ({} �∈ OS′) ∧ (max
r1,...,r

m′
{
∑m′

l=1 |OS′[rl]|} ≥ |OS′|) do

7: choose r ∈ O � r will become element of C
8: EXACTHS(OS′ \ OS′[r], m′ − 1, C ∪ {r}) � select remaining (m′ − 1) peers of C
9: OS′ ←

⋃
Ol∈OS′{Ol \ {r}} � remove r in all observ. of OS′

10: O ← O \ {r} � do not choose r in this recursion level again

The computation of the minimal hitting sets is initially invoked by calling the algo-
rithm ExactHS (OS, m, C). For ease of reference we denote sets computed in the i-th
level of recursion with the subscript i. Thus Ci,OS ′

i represents the sets calculated by
ExactHS at the i-th recursive call of the algorithm. At each level of recursion in the
algorithm, recursing to the next level extends the current set of peers Ci by exactly one
peer, r, at Line 7 of Alg. 1. This peer is chosen from a designated observationO ∈ OS′

i

determined by the algorithm in Line 5. Thus: Ci+1 = Ci ∪ {r}.

5 During execution, C either becomes a minimal hitting set, or it will be proved not to be a subset
of any minimal hitting sets.

514 D.V. Pham, J. Wright, and D. Kesdogan

OS ′
i+1, defined at Line 8, results from removing all observations intersecting with r

in OS ′
i; we need only focus on those observations that have not already been evaluated

by Ci ∪ {r} in earlier recursive calls.
If, at Line 2, the algorithm detects that all remaining observations inOS′

i+1 intersect
with Ci+1, Ci+1 is proven to be a hitting set, and ExactHS will not compute any set
containing this Ci+1 in the future. Line 6 will also detect if Ci+1 is not a subset of
any hitting set; this also causes any set containing it to be ignored in future levels of
recursion. We refer to sets excluded by the algorithm as finalised sets.

After a selection of r in recursion level i, ExactHS removes, at Line 9, r from all
observations ofOS ′

i and, at Line 10, from the designated observationO. The algorithm
thus extends Ci with a new peer r′.

ExactHS stops choosing new peers if it detects, at Line 6, that the cumulative fre-
quency of all remaining m′ peers is lower than the number of remaining observations;

that is, if maxr1,...,rm′{
∑m′

l=1 |OS
′[rl]|} �≥ |OS′|. Further explanations are in Sect. 5.

Complexity. ExactHS creates a finalised set C by starting with an empty set C = {}
and adding the i-th peer to C in the choice phase of the i-th level of recursion, starting
at line 6 of the algorithm. The number of recursive invocations of the choice phase is
bounded from above by m.

In each choice phase there are at most b possible choices of a peer ri, as only peers
r1, . . . , rb of a fixed observationO can be selected. Due to the bound m for the number
of recursive invocations of the choice phase, and the bound b for the number of choices
in each phase, the algorithm computes at most bm minimal hitting sets. This bound
is tight, and determines the worst case runtime complexity O(bmmtb) of ExactHS, as
proved in [12, 13]. t = |OS| is the number of observations collected by the attacker
and mtb is the effort required to construct one finalised set.

Let us consider a concrete example with the parameters m = 2, b = 2, the Alice’s
peer set HA = {1, 2} and the observations {1, 3}, {2, 4}. Here, ExactHS would com-
pute bm = 4 minimal hitting sets, namely: {1, 2}, {1, 4}, {3, 2}, {3, 4} .

In general, however, if ExactHS were to prove at level x ≤ m that a set is, or is not,
a hitting set, then the number of finalised sets computed by ExactHS is bounded from
above by (1) and the runtime is bounded by (2). The space complexity of ExactHS, as
proved in [12], is O((x + 1)tb), which is linear.

Maximal number of sets: bx (1) Runtime: O(bxmtb) (2)

Hitting Set Structure. In order to make a more detailed analysis of the ExactHS al-
gorithm, we partition the set of minimal hitting sets of size m. Let H be a minimal
hitting set where |H| = m. We therefore assign it to one of the m + 1 disjoint classes
H0, . . . Hm with the following structure:

H0 = {HA} and Hj ⊆ (R \ HA)j ×Hm−j
A , for j ≤ m . (3)

A minimal hitting set H belongs to the class Hj (H ∈ Hj), if and only if it contains
exactly (m − j) distinct Alice’s peers and j distinct non-peers. The class H0 contains
exactly one set, Alice’s peer set HA, and Hm represents minimal hitting sets consisting
of only non-peers of Alice.

A Practical Complexity-Theoretic Analysis of Mix Systems 515

3 Estimation of the Number of Covered Observations

This section focuses on the complexity theoretic security of the Mix. We therefore as-
sume that the observations in OS collected by the attacker provide sufficient informa-
tion for the unambiguous identification of Alice’s peer set HA. The main question we
wish to answer is:

1. What is the average time complexity required to prove thatHA is a unique minimal
hitting set?

Proving uniqueness of HA in OS is hard as there are exponentially many possible
hitting sets H = {r1, . . . , rm} �= HA that need to be disproved with respect to OS. To
mitigate this problem we avoid disproving all individual setsH answering the following
question:

2. How many peers in H must be chosen to prove that H is not a hitting set?

We choose peers r1, . . . , rx ∈ H by determining all observations including C
= {r1, . . . , rx}, which we denoteOS[C]. Given these chosen peers we know the obser-
vationsOS \OS[C] that have not yet been considered. We refer to the remaining peers
in H as non-chosen. Whilst a peer is non-chosen, we do not known which observations
contain that peer.

Assume, without loss of generality, that after choosing these x peers in C ⊆ H we
know that H cannot be a hitting set, because the cumulative frequency of the (m − x)
most frequent peers in OS \OS[C] is less than |OS \OS[C]|. In this case we prove not
only thatH is not a hitting set, but also that any supersetH′ of C cannot be a hitting set,
where |H′| = m.

In general, if we know that every set can be disproved after choosing on average x
peers, then using (2) the average runtime complexity of ExactHS is approximated by
O(bxmtb), which answers our first question. A more detailed justification and discus-
sion of this complexity is provided in Sect. 5.

The rest of this section provides the theoretical model for answering the question of
how many peers in H must be chosen to prove that H is not a hitting set. The answer
will be derived in Sect. 4.

3.1 Potential

In this section we introduce the definition of the potential: our estimation of the number
of distinct observations covered by a set H in a given observation set OS. This value
allows us to estimate the number of peer choices required to disprove a set, and thus
to understand the complexity of ExactHS. Note that this ”estimation” is part of our
analysis of the complexity, and does not affect the exactness of the attack itself.

We assume without loss of generality that all considered sets are of the structure
H = {r1, . . . , rx, rx+1, . . . , rm}. Each ri represents a distinct peer, and the number of
peers is |H| = m. The first 0 ≤ x ≤ m peers r1, . . . , rx are always chosen, while the
remaining (m− x) peers are non-chosen. The potential of H is denoted by Po(H).

Po(H) = |OS[{r1, . . . , rx}]|+ |OS[rx+1] \ OS[{r1, . . . , rx}]|+ . . .

+ |OS[rm] \ OS[{r1, . . . , rx}]| (4)

516 D.V. Pham, J. Wright, and D. Kesdogan

OS[r1] OS[r2]

OS[r3]

1 2 1

3

2 2

1

OS[r2]\
OS[r1]

OS[r3] \ OS[r1]

OS[r1]

1 1

2

1

Fig. 2. Left: Overestimation by Po({r1, r2, r3}), where
all peers r1, r2, r3 are non-chosen. Right: Overestima-
tion by Po({r1, r2, r3}), where r1 is chosen.

There are two extreme cases. If
all peers are chosen, then the po-
tential is the number of observa-
tions covered by H. If all peers
are non-chosen, then the potential
is the cumulative frequency of the
peers ofH in OS . The more peers
chosen in H, the more accurately
the potential represents the num-
ber of distinct observations inter-
secting with H. Po(H) thus never
underestimates the number of ob-
servations intersecting with H.

Overestimations are observations that are covered by more than one non-chosen peers
inH as illustrated by the leftmost diagram in Fig. 2. We will analyse the overestimation
of the potential, since it enables us to conclude how many peers in H �= HA need to be
chosen to disprove it.

Potential: All Peers Non-Chosen. The set of observations covered by ri is represented
by a circle aroundOS[ri] for i = 1, 2, 3 in the left-hand picture in Fig. 2. The grey area
represents those observations that are covered by at least two peers ri, rj for i �= j. The
number in the area shows the number of times observations in that area are counted in
the potential. In this example H = {r1, r2, r3} and we can see on the left picture how
Po(H) overestimates |OS[H]|, which is the number of observations covered byH. The
overestimation is caused by those observations that are covered by more than one of the
peers r1, r2, r3. The exact number of observations covered by H in the left picture in
Fig. 2 can be computed by the inclusion exclusion formula.

|OS[H]| = |OS[r1]|+ |OS[r2]|+ |OS[r3]| − |OS[r1] ∩OS[r2]|−
|OS[r1] ∩ OS[r3]| − |OS[r2] ∩ OS[r3]|+ |OS[r1] ∩OS[r2] ∩ OS[r3]|

As all peers in H are non-chosen, Po(H) = |OS[r1]| + |OS[r2]| + |OS[r3]|. For the
sake of simplicity we derive the following estimation from the equation above.

Po(H) ≤ |OS[H]|+ |OS[r1] ∩OS[r2]|+ |OS[r1] ∩ OS[r3]|+ |OS[r2] ∩ OS[r3]|

Potential: General Case. The case when one peer r1 is chosen while the other peers in
H are non-chosen is illustrated by the right-hand picture of Fig. 2. By the definition of
Po({r1, r2, r3}) in (4), choosing r1 causes all observations containing it, represented
by the dark circle, to be removed in the frequency consideration of the non-chosen
peers. In this case Po(H) overestimates |OS[H]| by double-counting the grey area that
represents observations that are covered by r2 and r3 but not by r1. For simplicity we
use the following estimation of Po(H):

Po(H) ≤ |OS[H]|+ |OS[r2] ∩ OS[r3]| .

A Practical Complexity-Theoretic Analysis of Mix Systems 517

In general, if 0 ≤ x ≤ m peers {r1, . . . , rx} of H = {r1, . . . , rm} are chosen, then the
overestimation of the number of covered observations result from the non-chosen peers
rk, rl for x < k, l ≤ m. The overestimation is bounded by the size of the

(
m−x

2

)
pair-

wise intersectionsOS[rk] ∩OS[rl]. This results in the following simplified estimation
of the potential for the general case:

Po(H) ≤ |OS[H]|+
∑

x<k,l≤m; k �=l

|OS[rk] ∩ OS[rl]| . (5)

Overestimation by Potential. In order to distinguish the effect of Alice’s peers and
non-peers to Po(H), each peer r ∈ H is relabelled n for non-peers, and a for Alice’s
peer. Without loss of generality, every H ∈ Hj , where |H| = m from now on has the
following structure:

H = {n1, . . . , nx1 , a1, . . . , ax2︸ ︷︷ ︸
x chosen peers

, nx1+1, . . . , nj , ax2+1, . . . , am−j︸ ︷︷ ︸
(m−x) non-chosen peers

} .

The number of chosen peers is x = x1 + x2, where x1 ≤ j and x2 ≤ m − j. The
variable j denotes the number of non-peers in hitting sets of the structure Hj . We still
use the notation ri to address the i-th peer inH if distinction is not important. As before,
the first x peers r1, . . . , rx ∈ H are chosen, while the remaining (m−x) peers are non-
chosen. We define H+A = H ∩ HA as the subset containing only Alice’s peers and
H−A = H \HA as the subset consisting of only non-peers.

The following estimations for |OS[H]| and |OS| will be used next in inequality (9):

|OS[H]| ≤ |OS[H+A]|+
∑

n∈H−A

|OS[n] \ OS[H+A]| (6)

|OS| ≥ |OS[H+A]|+
∑

a∈(HA\H+A)

| OS[a] \ OS[HA \ {a}]︸ ︷︷ ︸
observ. containing a exclusively

| . (7)

An observation contains Alice’s peer a ∈ HA exclusively [9], if it does not contain any
other peers of Alice.

We now mathematically formulate our earlier question; that is: how many peers must
be chosen in order to prove that H �= HA is not a hitting set in OS? This is simple
using the potential, as it estimates the number of observations covered by H in OS . If
Po(H) < |OS| thenH is clearly not a hitting set. On the other hand, if Po(H) ≥ |OS|
then we must choose more peers in H for the disproof. The latter is formulated below.
Inequality (9) then results from applying (5) and (6) on Po(H) and (7) on |OS|.

0 ≤ Po(H)− |OS| (8)

≤
∑

x2<k,l≤m−j; k �=l

|OS[ak] ∩ OS[al]|+
∑

x2<k≤m−j; x1<l≤j

|OS[ak] ∩ OS[nl]|

+
∑

x1<k,l≤j; k �=l

|OS[nk] ∩ OS[nl]|+
∑

n∈H−A

|OS[n] \ OS[H+A]|

−
∑

a∈(HA\H+A)

|OS[a] \ OS[HA \ {a}]| (9)

518 D.V. Pham, J. Wright, and D. Kesdogan

For simplicity we restrict our analysis to those cases where the probability that a partic-
ular peer r ∈ H is contacted by a sender other than Alice, within a given observationO,
is significantly lower than the probability that Alice’s peer is contacted by Alice. This
allows us to ignore the possibility that some pair of peers rk, rl ∈ H is contacted by
senders other than Alice in the same O. This allows us to ignore counting the observa-
tions described below in (9):

{O ∈ OS[rk] ∩ OS[rl] | rk, rl ∈ H chosen by non-Alice senders in O} . (10)

We call the resulting simplified estimation of (9) the difference function D(x, x1, x2, j):∑
x2<k,l≤m−j; k �=l

|OS[ak] ∩ OS[al]|+
∑

x2<k≤m−j; x1<l≤j

|OS[ak] ∩ OS[nl]| +

∑
n∈H−A

|OS[n] \ OS[H+A]| −
∑

a∈(HA\H+A)

|OS[a] \ OS[HA \ {a}]| . (11)

4 Number of Peer Choices for a Disproof

4.1 Expectation of the Difference

In this section we compute the expectation of the difference function for a simplified
communication model of Alice and the other senders, which we call uniform communi-
cation.

In this model the cumulative communication of all other senders leads to a uniform
background distribution of communication with the peers such that, without Alice’s
communication, each peer r ∈ R appears with the same cumulative probability of PnA

in an observation. Therefore each sender can select its peer according to an arbitrary
distribution provided that ∀r ∈ R : P (r ∈ OS) = PnA, where P (r ∈ OS) denotes the
probability that r appears in the observations OS of the attacker without considering
Alice’s communication.

To simplify our analysis we assume that, in every round, each of the (b − 1) non-
Alice senders choose their peers uniformly from the set R of N recipients with prob-
ability 1

N . Thus, for every peer r ∈ R its cumulative probability of appearing in an
observation is PnA = 1 − (N−1

N)b−1. We further assume that Alice contacts one

E1(x, x1, x2, j) = t

(
m− j − x2

2

)
2
m

PnA

E2(x, x1, x2, j) = t(j − x1)(m− j − x2)
1
m

PnA

E3(x, x1, x2, j) = tj
j

m
PnA

E4(x, x1, x2, j) = tjm−1
(
1− (m− 1)N−1

)b−1

of her m peers a ∈ HA in
each round, chosen according
to the uniform distribution with
the probability of PA = 1

m .
The difference described by

equation (11) is generic and can
be analysed with respect to ar-
bitrary communication models.
It is sufficient, however, to con-
sider uniform communications, and Sect. 5.1 will show a mapping from non-uniform
to uniform communications that provide analytical bounds valid for both instances. For

A Practical Complexity-Theoretic Analysis of Mix Systems 519

the sake of simplicity, all remaining analysis in this paper will refer to uniform commu-
nication unless otherwise stated.

The equations above represent the expectation of the four terms of equation (11),
where the number of observations collected by the attacker is t = |OS|.

The terms following t in E1, E2, E3, E4 are significant, and we discuss these here.

E1: For Alice’s peers ak, al ∈ H+A, where ak �= al, the probability that Alice contacts
ak and one of the other (b−1) senders contact al in an observation is 1

mPnA. Due to
symmetry, the probability that ak and al appear in an observation is 2

mPnA. This is
multiplied by the number of possible pairs of non-chosen Alice’s peers

(
m−j−x2

2

)
.

E2: For peers ak ∈ H+A and nl ∈ H−A, the probability that Alice contacts ak and one
of the other (b − 1) senders contacts nl is 1

mPnA. The factor (m − j − x2) shows
the number of non-chosen Alice’s peers ak while the factor (j − x1) represents the
number of non-chosen non-peers nl.

E3: Let a1, . . . , aj ∈ (HA \H) be the j Alice’s peers that are not inH. The probability
that a given non-peer nk ∈ H−A appears in an observation where Alice contacts
one of a1, . . . , aj is j

mPnA. The final factor j accounts for the fact that there are j
non-peer nk in H−A.

E4: Alice’s peer a ∈ (HA \ H) is exclusive in an observation if Alice contacts a and
none of the other (b − 1) senders contact any of the peers a′ ∈ (HA \ {a}). The

probability that a is exclusive is therefore 1
m

(
1− m−1

N

)b−1
. The factor j accounts

for this exclusivity probability for the j Alice’s peers a1, . . . , aj ∈ (HA \ H) not
appearing in H.

Combining these expectations results in an expectation, ED(x, x1, x2, j), for the differ-
ence function D(x, x1, x2, j) of:

t

m

[
((m− x− 1)(m− j − x2) + j2)PnA − j

(
1− m− 1

N

)b−1]
. (12)

4.2 Average Number of Peer Choices

We obtain the average number of peer choices to disprove a set H by determining the
value of x such that the expectation of the difference is 0. By detailed analysis of the
property of ED (in Appendix A) , we gain simple descriptions of assertions about the
limits of the number of peer choices. These limits are summarised here.

Upper Bound of Average Worst Case Number of Peer Choices. If N
b−1 ≥ 3m − 1

and N, b, m is fixed, then the upper bound of the average worst case number of peer
choices is xuw . This value provides an estimate of the average maximal number of peer
choices for a disproof, approaching the bound from above. This can be reformulated to
determine the parameters N, b, m, such that a particular bound xuw is obtained by (14).

xuw = m− 1
2
−
√

N

b− 1
−m +

1
4

, where xuw ≤ m (13)

b =
N

m2 − 2mxuw + x2
uw + xuw

+ 1 (14)

For full proofs of these results, see Appendix A.1.

520 D.V. Pham, J. Wright, and D. Kesdogan

5 Runtime Complexity

We have now determined how many peers must be chosen in order to disprove a hy-
pothesis set, and so can answer our original question: what is the average complexity to
identify unambiguously Alice’s peer set HA?

The ExactHS algorithm reduces the space of sets that must be disproved to identify
HA by two strategies. Firstly, ExactHS reduces the search space to consider only min-
imal hitting sets, which is sufficient to identify HA in [12, 13]. Secondly, it deploys
the estimation of the number of covered observations based on the potential and imple-
ments the difference function (Alg. 1 Lines 6, 8). In Alg. 1 the set C represents (m−m′)
chosen peers and {r1, . . . , rm′} represents hypothetical non-chosen peers. The algo-

rithm constructs |OS ′| = |OS \ OS[C]| = |OS| − |OS[C]| and
∑m′

l=1 |OS
′[rl]| =

Po(C ∪ {r1, . . . , rm′})− |OS[C]|, where OS is the initial set of observations of the at-
tacker, which is equivalent to Equation (8). This allows direct application of the bounds
derived in the last section to ExactHS.

The worst case number of peer choices, x, to disprove a set in the last section there-
fore corresponds to the worst case number of recursion levels x invoked in ExactHS.

To avoid significantly overestimating the strength of the system, we assume that the
variance of the average number of peer choices x is negligible. (1) therefore results in
an average number of finalised sets computed by ExactHS to identify HA of: bx .

To obtain the corresponding runtime complexity, the last term must be multiplied by
tbm, resulting in O(bxtbm), and reaches a worst case complexity of O(bmtbm) when
x = m. The following analysis consequently refers only to the number of finalised sets
computed by ExactHS.

5.1 Upper Bound of Average Worst Case

The upper bound of the average worst-case complexity results from the upper bound
of the average worst-case number of peer choices xuw determined by (13). Applying
that to bx we derive the upper bound for the average maximal number of finalised sets
computed by ExactHS for the unambiguous identification of HA:

b
m− 1

2−
√

N
b−1−m+ 1

4 ≈ b
m− 1

2−
√

1
PnA

−m+ 1
4 . (15)

From the relations PnA = 1− (1− 1
N)b−1 ≈ b−1

N and PA = 1
m we conclude that:

– If every peer not contacted by Alice is at least as likely to appear in an observation
as peers contacted by Alice, the average worst case complexity roughly equals the
worst case complexity O(bmtbm). That is if PnA = 1

m− 1
4

.

– The average worst case complexity becomes linear O(tbm) if every peer not con-
tacted by Alice appears in observations with a probability close to 1

m2 .

Non-uniform Communication. The analyses above apply to non-uniform background
distribution by setting PnA = maxr∈R′{P (r ∈ OS)} in (15). This maps an instance

A Practical Complexity-Theoretic Analysis of Mix Systems 521

with non-uniform background communication and parameters N ′ = |R′|, b, m to an
instance of uniform communication with parameters N = |R| = b−1

PnA
, b, m, where R′

and R is the recipient set of the first and second instances respectively. The average case
complexity of the latter is at least as high as the former, as in uniform communication
each of the N = |R| peers appears with a probability of PnA in an observation, while a
smaller number of most likely peers of R′ appears with that probability in non uniform
communication.

Note that the cumulative background probability of the peers can be estimated in the
global passive attacker model by considering observations in which Alice does not par-
ticipate, enabling attackers, Mix providers and users to determine a priori the average
worst case complexity of ExactHS for a distinct number of Alice’s peer partners m.

We assume Alice’s communication to be uniform when deriving the average case
complexity not only for simplicity, but also because simulation reveals that it is the
worst case for the average run time complexity. Informally, in a non-uniform communi-
cation some Alice’s peers are even more statistic signification than the non-peers. Thus,
making ExactHS focus on the most frequent peers reduces the hypothesis space and
average time complexity. A formal proof of this is forthcoming.

Relation to Least Number of Observations by ExactHS. To determine efficiently the
number of observations required by the ExactHS-attack, we can apply the algorithm to
compute the lower bound of the HS-attack based on the 2x-exclusivity criteria [9, 12]
or use the mathematical analysis provided by [13].

We use here the formula for the least number of observations t to identify HA by
the minimal hitting set attack [13]. It provides, in contrast to the 2x-exclusivity formula
in [9], a closed formula that directly represents the effect of Mix parameters.

t ≈ m
(
ln (b− 1)− ln (21/m − 1)

)(
1−mN−1

)1−b
(16)

This formula shows that ExactHS can reveal Alice’s peer set after a number of obser-
vations t that is sub-exponential with respect to N, b, m. The number of observations
for the identification of Alice’s peers is thus an insufficient metric for the strength of
the Mix, and we need to consider the average case complexity of ExactHS. Section 6
compares the theoretical results of this paper with attacks on simulated data.

Countermeasure against Attack. To prevent the ExactHS attack in practice, Mix
providers can adjust the average case complexity O(bxtbm) to be close to the worst case
complexity, such that x = m − ε for fixed security parameters m and ε chosen by the
provider. To obtain this, the batch size b can be determined with respect to N, m, x ac-
cording to equation (14). By doing so, applying our attack against users who uniformly
contact m′ ≥ m peer partners requires a time complexity bounded by O(bm′−εtbm′).
Users with m′ < m peer partners, however, or non-uniform communication should be
aware that revealing their peer partners will be faster than O(bm′−εtbm′).

We have derived a formula for the lower bound of the average case complexity of
ExactHS, which could be used to adjust the least average time required for an attack on
a Mix, however we omit this due to space limitations.

522 D.V. Pham, J. Wright, and D. Kesdogan

Note that ExactHS and statistical attacks are based on very different principles.
Therefore, Mix configurations that are susceptible to ExactHS are not necessarily sus-
ceptible to the statistical attacks and vice versa. While it is outside of the scope of this
paper, a comparison of the effectiveness of both classes of attacks with respect to dif-
ferent Mix configurations and countermeasures would be an interesting topic for future
research.

6 Simulation

To support our mathematical analysis, we now show the ExactHS algorithm applied to
randomly generated observations. These observations are generated under the uniform
communication model of Sect. 4.1, which is chosen to allow direct comparison between
the simulation and our theoretical results.

An attack is successful if ExactHS can unambiguously identify Alice’s peer set HA;
the simulation generates new observations until this occurs. The average number of ob-
servations required by an attack is therefore the mean of the number of observations of
all successful attacks. To ensure that our results are statistically significant, experiments
were repeated until 95% of the results fall within 5% of the empirically observed mean.

 0
 100
 200
 300
 400
 500
 600

 10 15 20 25 30 35 40

ob

se
rv

at
io

ns
 [t

]

Alice’s peer size [m]

x
uw

=2, N w.r.t. varying m, b=50

HS
HS2

 0

 5

 10

 15

 20

 10 15 20 25 30 35 40

m
ax

 le
ve

l [
x
]

Alice’s peer size [m]

x
uw

=2, N w.r.t. varying m, b=50

HS
HS2

Fig. 3. Parameters N, b, m, where xuw = 2. Left: Number of observations when ExactHS suc-
ceeds. Right: Empirical recursion level for disproof by ExactHS.

Average Worst Case. To demonstrate that our analysis closely predicts the empirical
average worst case complexity of ExactHS, we apply attacks on observations of a Mix
with parameters N, b, m that are chosen according to (14), where xuw = 2. It is there-
fore expected that ExactHS succeeds on those configurations within a polynomial run
time of O(b2tbm), while its average worst case recursion level is bounded by 2.

Figure 3 shows the result of our simulation for fixed b = 50. The value of N is
determined by (14) given fixed xuw = 2; m values are shown on the x-axis. The value
of N ranges from 3200 for m = 10 to 70000 for m = 40.

As the attack requires very few observations to succeed, the empirical probability dis-
tribution of the peers of the non-Alice senders at the termination of the attack strongly
diverge from the function PnA ≈ b−1

N from which they are drawn6.

6 Assume for example that PnA = 1/400, but the attack succeeds after |OS| = 100 observa-
tions, then the probability of each peer included by an observation in OS exceeds PnA by at
least a factor of four.

A Practical Complexity-Theoretic Analysis of Mix Systems 523

Due to the law of large numbers, this side effect diminishes for large number of
observations. We therefore consider the application of ExactHS where the number of
observations is twice that required by (16). This is shown in the graphs by the line
labelled (HS2). This doubling is simply to aid demonstration of our results by reducing
the side effects due to the small number of observations.

The left plot shows on the y-axis the average number of observations to identify
Alice’s peer set unambiguously. The line (HS) represents the mean of the least possible
number of observations required by ExactHS in an information theoretic sense. The line
(HS2) shows the number of observations which corresponds to twice the value of (16).

The right plot shows on the y-axis the average worst case level required to disprove a
set by ExactHS under the conditions represented by the lines (HS) and (HS2). The line
(HS) shows that the level is significantly higher than xuw if ExactHS identifiesHA with
the information theoretic minimal number of observations. This is due to the probabili-
ties of many non-peers exceeding PnA due to a low number of observations. With more
observations, as in (HS2), we can see that the average worst case number of required
peer choices is about xuw for all selected N, b, m as predicted by (14). Collecting even
more additional observations when applying ExactHS does not noticeably change the
worst case number of peer choices.

7 Conclusion

Previous non-statistical analyses of Mixes have been based almost exclusively on the
least number of observations for an attack, and on the fact that the unambiguous identi-
fication of Alice’s peer set requires the solution of an NP-complete problem.

This paper is the first presentation, to our knowledge, of a detailed complexity-
theoretic analysis of the problem of identifying a user’s peer set beyond the worst case
complexity determined by the NP-completeness of the underlying problem. We achieve
this by contributing closed formulas that determine the average case complexity with
respect to the Mix parameters. These theoretical results are further supported by simu-
lations.

It is clear from our results that the identification of Alice’s peers in a Mix network,
whilst being intractable in the worst case, contains a broad range of realistic Mix con-
figurations that are polynomially solvable. These configurations are serious threats for
anonymity that can now be identified by our results (13), (15). Our analyses enable
further to identify those configurations that are solvable only in exponential time by
ExactHS, allowing for an increase in the anonymity of these systems.

In order to gain the average case complexity of the system, we employ the most
efficient known algorithm that provides an exact result. Whilst the possibility exists
that a more efficient algorithm could be discovered7, our results are the first to provide
an analysis of this form.

In the future, we intend to extend the analysis in this work to more complex and
real-world Mix models. It is hoped that this will allow us to understand the effect that
different mixing strategies have on anonymity. In a wider context, our analyses are
concerned with the identification of average polynomial-time-solvable instances of an

7 As is possible with, for example, the prime factorisation algorithms employed in cryptanalysis.

524 D.V. Pham, J. Wright, and D. Kesdogan

NP-complete problem. The results presented here may therefore be of use in identifying
average polynomial-time instances of other interesting NP-complete problems, which
would have wider applications beyond the restricted scope of security and privacy.

References

[1] Agrawal, D., Kesdogan, D., Penz, S.: Probabilistic Treatment of MIXes to Hamper Traffic
Analysis. In: IEEE Symposium on Security and Privacy, pp. 16–27 (2003)

[2] Berthold, O., Langos, H.: Dummy traffic against long term intersection attacks. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 110–128. Springer,
Heidelberg (2003)

[3] Chaum, D.L.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Communications of the ACM 24(2), 84–88 (1981)

[4] Danezis, G.: Statistical Disclosure Attacks: Traffic Confirmation in Open Environments.
In: Proceedings of Security and Privacy in the Age of Uncertainty, pp. 421–426 (2003)

[5] Danezis, G., Diaz, C., Troncoso, C.: Two-sided statistical disclosure attack. In: Borisov, N.,
Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 30–44. Springer, Heidelberg (2007)

[6] Danezis, G., Serjantov, A.: Statistical Disclosure or Intersection Attacks on Anonymity
Systems. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 293–308. Springer, Heidelberg
(2004)

[7] Danezis, G., Troncoso, C.: Vida: How to use bayesian inference to de-anonymize persistent
communications. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp.
56–72. Springer, Heidelberg (2009)

[8] Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York (1990)

[9] Kesdogan, D., Agrawal, D., Pham, V., Rauterbach, D.: Fundamental Limits on the
Anonymity Provided by the Mix Technique. In: IEEE Symposium on Security and Privacy
(2006)

[10] Kesdogan, D., Pimenidis, L.: The Hitting Set Attack on Anonymity Protocols. In: Fridrich,
J. (ed.) IH 2004. LNCS, vol. 3200, pp. 326–339. Springer, Heidelberg (2004)

[11] Mathewson, N., Dingledine, R.: Practical Traffic Analysis: Extending and Resisting Sta-
tistical Disclosure. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp.
17–34. Springer, Heidelberg (2005)

[12] Pham, V.: Analysis of the Anonymity Set of Chaumian Mixes. In: 13th Nordic Workshop
on Secure IT-Systems (2008)

[13] Pham, D.V., Kesdogan, D.: A Combinatorial Approach for an Anonymity Metric. In: Boyd,
C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 26–43. Springer, Heidel-
berg (2009)

[14] Serjantov, A., Danezis, G.: Towards an Information Theoretic Metric for Anonymity. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 259–263. Springer,
Heidelberg (2003)

[15] Troncoso, C., Danezis, G.: The bayesian traffic analysis of mix networks. In: ACM Con-
ference on Computer and Communications Security, CCS 2009, pp. 369–379 (2009)

[16] Troncoso, C., Gierlichs, B., Preneel, B., Verbauwhede, I.: Perfect matching disclosure at-
tacks. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134, pp. 2–23. Springer,
Heidelberg (2008)

A Practical Complexity-Theoretic Analysis of Mix Systems 525

A Analysis of Expectation Function for Number of Peer Choices

Relation to Number of Chosen Peers

Claim 1. The expectation ED(x, x1, x2, j) is a monotonically decreasing function with
respect to the number of chosen peers x, where 1 ≤ x ≤ m− 1

2 .

The proof consists of two parts. We will show that ED(x, x1, x2, j) is monotonically
decreasing given that x1 is fixed and then for the case that x2 is fixed.

Proof (Monotonicity of ED(x, x1, x2, j) given fixed x1). This analysis refers to the case
that the number of chosen non-peers x1 is fixed in the chosen peers x. By definition
x2 = (x− x1), therefore we replace all x2 in (12) by (x− x1). The following function
determines the gradient of the resulting function by computing its partial derivative with
respect to x: ∂ED(x,x1,x−x1,j)

∂x = tPnA

m (2x− 2m− x1 + j + 1) .
This equation is less-than or equal 0, if:

x ≤ m + 0.5(x1 − j)− 0.5 . (17)

We consider the inequality (17) for different cases of (x1 − j). By definition x1 ≤ j,
therefore only the following cases exist:

x1 = j: In this case ED is a decreasing function if x ≤ m− 1
2 .

x1 < j: In this case ED is always a decreasing function. The proof derives from the
definition x = (x1 + x2), where x2 ≤ (m− j). Replacing x2 in the first equation
by the latter inequality, we obtain:

x ≤ m + (x1 − j) ⇒ x ≤ m + 0.5(x1 − j)− 0.5, since x1 − j ≤ −1 .

Therefore (17) is always fulfilled in this case.

This proves that ED(x, x1, x2, j) is a monotonically decreasing function with respect
to the number of chosen peers x, where 1 ≤ x ≤ m− 1

2 , given that x1 is fixed. �

Proof (Monotonicity of ED(x, x1, x2, j) given fixed x2). We now consider the case that
the number of Alice’s peers is fixed in the number of chosen peers x. The gradient of
ED(x, x1, x2, j) with respect to x is now: ∂ED(x,x−x2,x2,j)

∂x = tPnA

m (−m + x2 + j) .
The relation (x2 + j) ≤ m is given by definition, therefore the gradient is always

less-than or equal to 0. This proves that ED(x, x1, x2, j) is a monotonically decreasing
function, given that x2 is fixed. �

We conclude from these two proofs that ED(x, x1, x2, j) is a monotonically decreasing
function with respect to the number of chosen peers x, where 1 ≤ x ≤ m − 1

2 . This
completes the proof of Claim 1. All analyses in the rest of the paper implicitly assume
x ∈ [1, . . . , m− 1].

Relation to Order of Peer Choice. This section will show that, in general, if one
prefers to chose non-peers in H ∈ Hj first and then the remaining peers of Alice, then
the number of choices required to disproveH is maximised.

526 D.V. Pham, J. Wright, and D. Kesdogan

Claim 2. Let x be a fixed number of chosen peers and x1 be the number of chosen
non-peers, where x1 ≤ j ≤ x. The expectation ED(x, x1, x2, j) with respect to x1 is a
monotonically increasing function.

Proof. To analyse how ED is related to the number of non-peer choices x1, we compute
the partial derivative of ED(x, x1, x − x1, j) with respect to x1 ≤ j ≤ x, where x is
fixed. This is: ∂ED(x,x1,x−x1,j)

∂x1
= tPnA

m (m− x− 1) .
This equation is clearly greater than 0 (since x ≤ m − 1 is assumed), therefore

ED(x, x1, x − x1, j) is a monotonically increasing function for x1 in the complete
interval [0, . . . , j]. �

Note that ED(x, x1, x − x1, j) for x1 > j is, by definition of x1, not defined. Given
that H has x ≥ j chosen peers, Po(H) is maximal if x1 = j of the chosen peers
are non-peers. DisprovingH therefore requires the maximal number of chosen peers if
the non-peers are chosen first. To simplify the notation, and because of the importance
of the number of non-peers, we will replace the notation ED(x, x1, x − x1, j) by the
shorter notation ED(x, x1, j) in the sequel.

A.1 Average Worst Case Number of Peer Choices

In this section we assume a worst case algorithm that chooses the peers of a set H ∈ Hj

such that the number of peer choices x to disprove H �= HA is maximal. According to
the previous section this is the case if the non-peers are always chosen first in H.

Claim 3. Let N
b−1 ≥ 2(m − 1). The maximal number of peer choices x, such that

ED(x, x1, j) = 0 with respect to N, b, m, j, is:

xw = m− 0.5−
√

jN(b− 1)−1 − j2 + j −mj + 0.25 . (18)

We call xw the average worst case number of peer choices.

Proof. In order to ensure that all non-peers are chosen first, we set x1 = j. Given this,
the maximal number of peer choices is the value x, such that ED(x, x1, j) in (12) is 0.

0 = ED(x, j, j)

≤ t

m

[
((m− x− 1)(m− x) + j2)(1 − (1− b− 1

N
))− j(1− (b− 1)

m− 1
N

)
]

.

We obtain (18) by computing the positive root of the last right hand side function for
the variable x. Equation (18) is valid if the term within the square root is at least 0. That
is, if:

0 ≤ jN(b− 1)−1 − j2 + j −mj + 0.25 .

Since j ≤ m the above equation holds if: N(b− 1)−1 ≥ 2(m− 1) .
Note that it is sufficient to assume x1 = j and x ≥ j for the proof. There is no need

to consider the case x < j for the average worst case number of peer choices, where
x1 < j separately.

A Practical Complexity-Theoretic Analysis of Mix Systems 527

For an intuitive explanation, we assume a setH ∈ Hj for a maximal value j, such that
x1 = j = x is the maximal number of non-peer choices to disproveH. LetH′ ∈ Hj′ be
another set, where j′ > j. Since we assume that each Alice’s peer are more frequently
observed by the attacker than any non-peer, the relation Po(H′) < Po(H) holds in
most of the cases. We can particularly follow that ED(x, x1, j

′) < ED(x, x1, j) im-
plying that the maximal number of peer choices to disprove H, as well as H′ is x.
Analysing the case x1 = j and x ≥ j is thus sufficient. A formal proof of this follows
from a generalised form of (19), but is omitted here for brevity. �

Gradient of Worst Case Function xw. We now analyse the case where (18) is a
monotonically decreasing function with respect to Hj to simplify succeeding analyses.
The next equation is the partial derivative of (18) with respect to j.

∂xw

∂j
= −1

2

(
N(b − 1)−1 − 2j + 1−m

)
(jN(b− 1)−1 − j2 + j −mj + 0.25)

1
2

(19)

xw is thus monotonically decreasing if the numerator in the above is at least 0.

0 ≤ N(b− 1)−1 − 2j + 1−m ⇒ j ≤ 0.5
(
N(b− 1)−1 −m + 1

)
Thus, if the maximal number of non-peer choices in a disproof is not larger than
1
2 (

N
b−1 − m + 1), (18) is a monotonically decreasing function. If N

b−1 ≥ 3m − 1,
then this case is necessarily fulfilled and we assume this condition for the remaining
analyses.

Upper Bound of Average Number of Peer Choices. This section determines the up-
per bound of the average worst case number of peer choices xw.

Claim 4. Let N
b−1 ≥ 3m−1 and xw be the average worst case number of peer choices.

The maximal value of xw for fixed N, b, m is:

xuw = m− 1
2
−
√

N

b− 1
−m +

1
4

, where 0 ≤ xuw ≤ m . (13)

We call xuw the upper bound of the average worst case number of peer choices.

Proof. Let N
b−1 ≥ 3m − 1, then xw is monotonic decreasing with respect to j. It is

therefore maximal if we set j = 1 in (18) and thus obtain (13). �

In case of N
b−1 < 3m − 1, the right hand side of equation (13) might not provide a

maximal value for xuw . Therefore we can conclude in this case that if N
b−1 = m − 1

4 ,

then xuw ≥ m− 1
2 and that xuw increases if the value of N

b−1 decreases. This justifies
the conclusions of Sect. 5.1.

From this analysis we can obtain an approximation of the ”lower bound of the av-
erage case complexity” of ExactHS. The derivation of these are omitted due to space
limitation.

A Light-Weight Solution to Preservation of Access
Pattern Privacy in Un-trusted Clouds

Ka Yang, Jinsheng Zhang, Wensheng Zhang, and Daji Qiao

Iowa State University, Ames, Iowa 50010, USA
{yangka,alexzjs,wzhang,daji}@iastate.edu

Abstract. Cloud computing is a new computing paradigm that is gaining in-
creased popularity. More and more sensitive user data are stored in the cloud.
The privacy of users’ access pattern to the data should be protected to prevent
un-trusted cloud servers from inferring users’ private information or launching
stealthy attacks. Meanwhile, the privacy protection schemes should be efficient
as cloud users often use thin client devices to access the cloud. In this paper,
we propose a lightweight scheme to protect the privacy of data access pattern.
Comparing with existing state-of-the-art solutions, our scheme incurs less com-
munication and computational overhead, requires significantly less storage space
at the cloud user, while consuming similar storage space at the cloud server. Rig-
orous proofs and extensive evaluations have been conducted to demonstrate that
the proposed scheme can hide the data access pattern effectively in the long run
after a reasonable number of accesses have been made.

1 Introduction

Cloud computing [1, 12] enables enterprise and individual users to enjoy flexible, on-
demand and high-quality services such as huge-volume data storage and processing,
without the need to invest on expensive infrastructure, platform or maintenance. As
more and more sensitive user data (e.g., financial records, health information, etc.) have
been centralized into the cloud, cloud computing is facing great privacy and security
challenges that may impede its fast growth and increased adoption if not well addressed.
Rising to the challenges, researchers have proposed many schemes [7,18,23] to protect
confidentiality and integrity of cloud data. Unfortunately, limited research has been
conducted on the protection of users’ privacy during their access to the cloud, such as
the access frequency to each data item and the linkage between accesses of data items.
Leakage of such access pattern information may enable potential privacy attacks such as
focused attacks against selected data items. Cloud server may also infer a cloud user’s
activity pattern or private interest by tracking the user’s access to a particular data item.

To strictly protect the privacy of data access pattern, the intention of every data ac-
cess operation should be hidden so that observers of the operations cannot gain any
meaningful information. Conforming to this strict requirement of access pattern pri-
vacy, Chor et al. [4], Ostrovsky et al. [14] and Itkis [10] introduced the notions of the
private information retrieval (PIR) in an information theoretical setting and the compu-
tational PIR by restricting the database to perform only polynomial-time computations.
Fully implementing the PIR notion is, however, expensive. As shown by Sion et al. [15],

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 528–547, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Light-Weight Solution to Preservation of Access Pattern Privacy 529

deployment of any single-server PIR protocol is not necessarily more efficient than a
simple transfer of the entire database. Another approach to the strict preservation of data
access pattern privacy is based on the notion of oblivious RAM (ORAM) [9]. In a latest
ORAM implementation [20], about logn data items of the database should be scram-
bled every time after a single data item has been requested, where n is the total number
of data items in the database. Let τ denote the size of a data item in bits. This ORAM
scheme incurs a communication and computational complexity of O(log n·log logn·τ)
and requires O(

√
n · τ) temporary user storage. The cost of this scheme is still rather

expensive especially when the data are accessed frequently.
Although strict protection of data access pattern privacy is attractive, less strict pro-

tection, such as protecting the privacy of long-term access pattern, is also very useful in
practice. For example, a malicious cloud server may use the statistical data access pat-
tern of a user to infer the user’s private information or conduct stealthy attacks. More-
over, being lightweight is also highly desired by users in cloud computing, as many
of them often access the cloud with thin client devices such as smartphones. Based on
these considerations, we propose a lightweight scheme to preserve the privacy of long-
term data access pattern in this paper. The outline of the proposed scheme is as follows.
Every time when a data item is needed by a user, (i) the user retrieves the desired data
item together with additional dummy data items to hide the actual retrieval target; and
(ii) the retrieved data items are re-encrypted and re-positioned before being stored back
to the server to perturb the connections between data items and their storage locations
at the server. The scheme records the storage locations of data items in index files,
which are stored in a pyramid-like hierarchical structure at the cloud server to reduce
communication, computational and storage overheads. Similar to data items, the access
pattern to index files is also protected with additional dummies and re-positioning of the
files after access. A set of delicately designed rules are used in the selection of dummy
data items and index files as well as the repositioning of the files, which ensures that
the connections between data items and their storage locations are reshuffled gradually,
become more and more difficult to trace as the number of accesses increases, and even-
tually become fully un-trackable. Rigorous proofs and extensive evaluations have been
conducted to demonstrate that the proposed scheme can hide the data access pattern in
the long run, and the number of accesses required to preserve the access pattern privacy
is reasonable in many situations.

The rest of the paper is organized as follows. Section 2 describes the system models.
The proposed scheme is elaborated in Section 3, and Section 4 analyzes its security and
overhead performances. Section 5 reports the evaluation results and Section 6 discusses
the related work. Finally, Section 7 concludes the paper.

2 Models and Assumptions

2.1 System Model

We consider a basic cloud system with a cloud server and a single cloud user. The
cloud user stores its sensitive data on the cloud server, which in turn provides an online
interface for the cloud user to access the outsourced data. Later on, when the need for
a data item arises, the cloud user requests it from the cloud server, updates the data

530 K. Yang et al.

item after usage, and then uploads the updated data item back to the server. Similar
to [20,9], we assume that all the data items stored at the cloud server have the same size
so the server cannot identify a data item from its size. In practice, this can be achieved
conveniently by appending padding bits to short data items or dividing large data items
into smaller ones.

2.2 Security Model

We assume that a cloud server is curious about the user’s private information and may
launch malicious attacks. Specifically, it may be interested in obtaining the user’s data
access pattern over the long term, which primarily includes the following information:
which data items that have been requested by the user and the number of times that a
particular data item has been requested by the user.

If the access pattern information is obtained, the cloud server may be able to launch
various attacks. For example, the cloud server may attempt to infer the user’s activity
pattern or private interest via tracking the user’s access to some particular data items.
The cloud server may also launch focused attacks towards user’s data that are accessed
with very high frequency, or stealthily delete data that are never accessed to save its
storage and maintenance costs without being noticed by the user.

As for the cloud user, we assume that it has a primitive encryption function that
generates different cipher-texts over different input, and the cloud server does not have
non-negligible advantage over the cloud user at determining whether a pair of encrypted
items of the same length represent the same data item. We assume that data confidential-
ity and integrity are protected using existing techniques and the communication chan-
nel between the cloud user and the cloud server is secured using mechanisms such as
SSL/IPSec. We do not consider denial of service attacks or timing attacks as they can
be addressed independently from this work.

2.3 Design Goal

Our main design goal is to develop a lightweight solution to prevent the cloud server
from knowing the cloud user’s long-term access pattern to the data stored at the cloud
server, while allowing the user to access the outsourced data with low communication
and computational overhead. Specifically, we preserve the access pattern privacy by
breaking the connections between the data items and their storage locations gradually.

3 The Proposed Scheme

3.1 System Setup

Before describing our proposed scheme in detail, we first explain the system setup.

Hierarchical Storage Structure at the Cloud Server. We study a system where a
cloud user stores n distinct data items (denoted by di, i = 1, · · · , n) at a cloud server.
All data items are encrypted with the user’s secret key before uploading. In addition to
data items, the cloud server stores a hierarchy of index files with the following features:

A Light-Weight Solution to Preservation of Access Pattern Privacy 531

ds

68

56

7

5

0

Location

Data

Location

File

Location

File

Location

File 1
TI

Level t

Level 1

...

Level T

Level 0

Location

File
Level T-1

1 ... m
... 1

(, 1)
T -
f s T -I

...

...

8Location

File

Level t-1

1 n/mt

...
13
tI 2

tI

...

...

...

,()
t
f s tI

...

1
1

30
t-I ...

...

1
7
T -I 1

3
T -I Location

...

...
,

1
[()-1] +1
t -
f s t mI × ,

1
[()-1] +2
t -
f s t mI × ,

1
(-1)
t -
f s tI ...

...
,

1
()
t -
f s t mI ×

,
1

[()-1] +2
t -
f s t mI × ,

1
(-1)
t -
f s tI 1

()
t -
f s,t mI × ,

1
[()-1] +1
t -
f s t mI ×

n/mt-1

1
1
49I ,

1
(1)f sI

n/m...

...

...

...

1

d8

n

1
26
t-I

1
74I

2
1
5I

n/m-1
1
3I

2

d91

...

... d54

n-1

d104

...

...

6 24 106

106 6 247

Cloud Server

Cloud User: to access ds, user retrieves , , ... , , and ds iteratively in T+1 queries
Q

ue
ry

R
etrieve

1
TI 1

(s, 1)
T -
f T -I 1

(s,1)fI

Content of :

...

...

...

...

...

...

,()
t
f s tI

File

Fig. 1. System setup. Data items and index files form a pyramid-like hierarchical storage structure
at the cloud server. Each index file records the storage locations of m index files at its next lower
level. For example, the content of It

f(s,t) is shown in the callout box, and the m level-(t − 1)

index files associated with It
f(s,t) are shown as bold boxes in the figure. Here, f(s, t) =

⌈
s

mt

⌉
.

To obatin data item ds, the cloud user performs a sequence of queries iteratively in a top-down
manner, to obtain T index files (marked as gray boxes), one at each level of the hierarchy.

– As shown in Fig. 1, there is a total of T = "logm n# 	 1 levels of index files, where
m > 1 is a design parameter. In Section 4.2, we analyze the relation between m and
the communication, computational and storage overheads incurred by our solution.
To simplify the presentation, we assume that logm n is an integer in the rest of the
paper.

– At level t (t = 1, · · · , T), there are n
mt index files (denoted by It

j , j = 1, · · · , n
mt).

So the total number of index files in the hierarchy is
T∑

t=1

n
mt = n−1

m−1 .

– Each index file records the storage locations of m index files at its next lower level.
Specifically, It

j at level t contains the storage location information of the following
index files at level (t − 1): It−1

(j−1)m+1, I
t−1
(j−1)m+2, · · · , It−1

jm , as illustrated in the
callout box in Fig. 1.

– There is only a single index file at the top level (i.e., level T): IT
1 .

– Data items form the bottom level (i.e., level 0) of the hierarchy.
– We assume that the files at different levels of the hierarchy are stored at non-

overlapping storage spaces.

Note that, as shown in Fig. 1, there is no fixed order-correspondence between an index
file (or a data item) and its storage location. This is due to the design nature of our
proposed scheme, whose key idea is to randomize the storage locations of index files
and data items after each access. Details of the scheme will be discussed in Section 3.2.

532 K. Yang et al.

Iterative Query Process by the Cloud User. With such a pyramid-like hierarchical
storage structure, we have the following observation about the relation between a data
item and its index files: the storage location of the data item ds is recorded in the level-1
index file I1

f(s,1), whose storage location information is in turn recorded in the level-

2 index file I2
f(s,2), so on and so forth, till the top-level index file IT

1 ; here, f(s, t) is

defined as f(s, t) =
⌈

s
mt

⌉
. This relation is illustrated in Fig. 1 as a linked chain of gray

boxes from top level T to bottom level 0.
Based on the above observation, we know that the user can obtain the desired data

item ds by performing a sequence of queries to obtain these T index files in the chain:
IT
1 , IT−1

f(s,T−1), · · · , I1
f(s,1), in a top-down manner through the hierarchy; once I1

f(s,1)

is obtained, the user gets to know the storage location of ds and can then issue the
final query to obtain the data item. After the access, the data items and index files are
updated, re-encrypted and uploaded back to the server.

We assume that the user requests the data items in rounds. To simplify the presenta-
tion, we assume that the user requests a single data item in each round. The proposed
scheme may be extended to support requests of multiple data items in each round with-
out much difficulty. In the following section, we explain our proposed scheme in detail.
Table 1 lists the notations to be used in the rest of the paper.

Table 1. Notations Used in the Paper

Notation Description

n the total number of data items
D the set of all data item IDs
m the number of storage locations recorded in an index file
It

j the j-th index file at level t of the hierarchy
ξ(j, t) the set of IDs of files whose storage locations are recorded in the level-t index file of ID j

Lt the set of storage locations of level-t files
f(i, t) the ID of the index file that corresponds to data item di at level t

Qt
pre(t � 1) the set of IDs and locations of level-t index files accessed in the previous round

Qt
cur(t � 1) the set of IDs and locations of level-t index files to be accessed in the current round

Q0
pre the set of IDs and locations of data items accessed in the previous round

Q0
cur the set of IDs and locations of data items to be accessed in the current round

3.2 Scheme Description

Scheme Overview. Our proposed scheme is executed every time when the cloud user
needs to request a data item. The key ideas of the scheme include: (i) extra dummy
data items and index files (called dummies for short) are requested to hide the actual
files of the user’s interest; (ii) multiple dummies are selected so that the user’s request
at each round has the same format, which is a necessity to hide the access pattern [9]
and (iii) the retrieved files are re-encrypted and re-positioned before being stored back
to the server so as to break the connections between files and their storage locations
at the server. Generally, these rules ensure that the connections between files and their
storage locations are reshuffled gradually, become more and more difficult to trace as
the number of accesses increases, and eventually become fully un-trackable. Detailed
explanations and analysis will be presented in the following sections.

A Light-Weight Solution to Preservation of Access Pattern Privacy 533

– Assumption: The following assumption is made on the initial condition when our
scheme starts: for any t = 1, · · · , T − 1, the mappings between level-t and level-
(t− 1) files are unknown to the cloud server. In other words, for any particular data
item, the server has no knowledge about the corresponding index files; similarly,
for any particular index file, the server has no knowledge about the corresponding
index files at the upper layers.

– Data Structures Recording Access History: Our scheme makes use of past file
access history when selecting dummies. To facilitate such mechanism, the historical
information about the previous round of file access at layer t is recorded in a data
structure denoted as Qt

pre, which consists of six fields: DR, DS and DS recording
the file IDs, and LR, LS and LS recording their storage locations, respectively. The
data structures are stored in cipher-text in a designated storage space at the server,
and we denote the storage location of Qt

pre as Hist[t].
– Structure of the Algorithm: The pseudo-code of our scheme is presented in Algo-

rithm 1 in Appendix 1. The scheme starts by selecting dummy data items. Then, it
works iteratively to select, download, process and upload the index files, from the
top level to the bottom level of the index hierarchy. In each iteration, it performs
similar operations including Selection & Downloading, Random Reshuffling, and
Re-encryption & Uploading of index files. Finally, the desired data item and the
selected dummy data items are downloaded, randomly reshuffled, re-encrypted and
uploaded. Detailed explanations of the operations are presented next, with a simple
example given in Fig. 2.

Selection of Dummy Data Items. When the cloud user intents to retrieve a data item
(denote its ID by Q0

cur.DR), it also requests the following dummy data items to conceal
its intention:

– the first dummy (whose ID is denoted as Q0
cur.DS): the dummy that may swap its

storage location with Q0
cur.DR after access with a probability of 1/2;

– the second dummy (whose ID is denoted as Q0
cur.DN): the dummy that will not

swap its storage location with others.

Q0
cur.DS and Q0

cur.DN are selected to make sure that the user’s request at each round
has the same format: the user always requests three data locations, out of which two and
only two of them are from the ones accessed in the previous round. Note that requiring
user’s request at each round to have the same format is necessary to hide the true access
pattern [9]. Specifically, it hides the information about whether user’s requests at two
rounds are intended for the same data item. Also note that the second dummy is needed
in order to guarantee that each access can keep the same format. Detailed explanations
are presented in Appendix 2. To maintain the same format in each access, the data
structure Q0

pre is downloaded from the server, which records the information about the
data items (namely, the data IDs and their corresponding locations) accessed in the
previous round. Then, the dummies for the current round are selected according to the
following rules:

– For the first dummy (i.e., Q0
cur.DS): (i) If the intended data item is the same as the

intended data item or the first dummy in the previous round, then the first dummy

534 K. Yang et al.

2. Download and decrypt :
0 . 10;pre RD = Q

// Data Selection

// Query & Download (on Index Level 1)

Cloud ServerCloud User

3dData

Loc 5
…
…

…
…

1d

4
…
…

10d

7
…
…

Data Storage

File

Loc 21
1
1I

3
1
3I1

4I

Level-1 Index File
File

Loc 0
2

1I

Level-2 Index File
1. Desires d3 :

0
preQ

0 . 7;pre RL =Q

3. Randomly select d1 from {d1 , d10}=>

0 . 3cur RD =Q

0 . 1cur SD =Q

Download and decrypt :

2 2. . 1cur R cur SD D= =Q Q

5. Download and decrypt :
1 . 3;pre RD =Q

1
preQ

1 . 2;pre RL =Q

0
preQ

1
2I

4 Hist(1)
1
preQ

Hist(0)
0
preQ

2
1I

6. Compute: 1 . 1,cur RD = Q

7. Randomly reselect from 1
3I 1 1 1

2 3 4{ , , }I I I => 1 . 3cur SD =Q

9. Select location 4 on level 2 => 2 . 4cur NL =Q

Hist(0)

location 0

10. Decrypt

level 1 locations 2, 3, 4

Index

Loc 2 1

1
1I

3

1
3I 1

4I1
2I

4

2
1I

8. From obtains:2
1I

1 . 3,cur RL =Q

1 1 1
3 1 2, ,I I I

Index

Loc 21
1
1I

3
1
3I1

4I

Level-1 Index File

1
2I

4 Hist(1)
1
preQ1 1 1

1 2 3, ,I I I

// Reshuffle (on Index Level 1)

11. Swap 1 1. and .cur R cur SD D Q Q

12. Update 2
1I Index

Loc 3 1

1
1I

2

1
3I 1

4I1
2I

4

13. 2
1I

re-encrypt 2
1() 'I

// Re-encryption and Upload

1
curQ 1() 'curQre-encrypt

store at location 0

store at Hist(1) Index

Loc 0
2
1()'I

Level 2

Index

Loc 21
1
1I

3
1
3I1

4I

Level 1

1
2I

4 Hist(1)
1()'preQ

// Query & Download (on Data Level)

Data

Loc 5 1
1d

4
3d 4d2d

12

1
1I

8 13
5d

9
7d 8d6d

16

1
2I

2 15
9d

11
11d 12d10d

7

1
3I

15. Randomly reselect location 7 on data
level from {7 , 11} => 0 . 7cur NL =Q

16. Decrypt d1 , d3 , d10

data locations 4, 5, 7

14. From obtains:1
1I

0 . 5,cur RL = Q

// Reshuffle (on Data Level)

17. Swap 0 0. and .cur R cur SD D Q Q

18. Update 1
1I Data

Loc

19. 1 1 1
1 2 3, ,I I I re-encrypt

// Re-encryption and Upload

0
curQ 0() 'curQre-encrypt

at level-1 locations 2, 3, 4

store at Hist(0)

3dData

Loc 5
…
…

…
…

1d

4
…
…

10d

7
…
…

Data Storage
Hist(0)

0
preQd1 , d3 , d10

4 1
1d

5
3d 4d2d

12

1 1 1
1 2 3() ', () ', () 'I I I

store

3()'dData

Loc 4

1()'d

5

10()'d

7
…
…

Data Storage
Hist(0)

20. 1 3 10, ,d d d re-encrypt
at data locations 4, 5, 7
store

4.

3 1 10() ', () ', () 'd d d

Index

Loc 21 3
1
4I

Level 1
4 Hist(1)

1()'preQ1
2()'I

0()'preQ

2
1() 'I

1() 'curQ

0() 'curQ

1 1 1
1 2 3() ', () ', () 'I I I

3 1 10() ', () ', () 'd d d

1
3()'I1

1()'I

…
…

…
…

…
…

0 .pre SD =1;Q 0 . 9;pre ND =Q
0 . 4pre SL = ;Q 0 . 11.pre NL =Q

1 . 1pre SD = ;Q 1 . 4;pre ND =Q
1 . 1.pre NL =Q1 . 3pre SL = ;Q

1 . 1cur SD =Q

1 . 2pre SL =Q

0 . 4pre SL =Q

Fig. 2. An example of the access procedure of a cloud user. There is a total of n = 16 data items
and T = 2 levels of index files stored at the cloud server. We use d′

i to represent that data item di

appears differently after re-encryption. In this example, data items d1, d9, d10 were accessed in
the previous round. It shows how the user operates when it is interested in obtaining data item d3

in the current round.

A Light-Weight Solution to Preservation of Access Pattern Privacy 535

will be selected uniformly at random from the set of all data items excluding the
intended data item of the current round. (ii) Otherwise, the first dummy will be
randomly selected from the intended data item or the first dummy in the previous
round with equal probability. (Refer to lines 3 to 7 in Step 1 of Algorithm 1.)

– For the second dummy (i.e.,Q0
cur.DN), its selection depends on the selection results

of the first dummy: (i) If both the intended data item and the first dummy have
appeared in the previous round, the second dummy will be selected uniformly at
random from the set of all data storage locations excluding the locations accessed
in the previous round. (ii) Otherwise, the second dummy will be selected uniformly
at random from the locations accessed in the previous round excluding locations of
the already-selected files. (Refer to lines 12 to 20 in Step 2 of Algorithm 1 when
t = 0.)

In the example given in Fig. 2, in the previous round, data #10 was intended by the user
and data #1 was selected as the first dummy. Since data #3 is needed in the current
round (i.e., case (ii) in the first dummy selection rules), the user randomly selects the
first dummy, which is data #1 in this example, from data #10 and data #1 (as shown
by step 3). As the selected data items did not both appear in the previous round (i.e.,
case (ii) in the second dummy selection rules), the second dummy’s location, which
is 7 in this example (as shown by step 15), is selected from data #10 and data #9’s
locations (i.e., data locations #7 and #11).

Selection, Downloading, Processing and Uploading of Index Files. First, the single
top-level index file is downloaded and decrypted, and its ID is recorded in QT

cur.DR,
QT

cur.DS , and QT
cur.DN , i.e., QT

cur.DR = QT
cur.DS = QT

cur.DN = 1 (as shown by step 4
in the example of Fig. 2). Then, three index files for each level t, where (T−1) 	 t 	 1,
are selected, downloaded, processed and uploaded, in an iterative and top-down manner.
Without loss of generality, the following describes the operations for iteration t.

Selection & Downloading of Level-t Index Files. The files that contain the level-t in-
dices of the intended data item (Q0

cur.DR) and the first dummy (Q0
cur.DS) are first se-

lected to access. The IDs of these files are denoted as Qt
cur.DR and Qt

cur.DS respec-
tively. Note that, these file IDs can be found out by using the afore-defined f(·, ·) func-
tion, i.e., Qt

cur.DR = f(Q0
cur.DR, t) and Qt

cur.DS = f(Q0
cur.DS , t). Then, similar to

the selection of dummy data items, additional dummy index files are selected to make
sure that, in each round, three level-t index files are accessed and exactly two of them
appeared in the previous round. The following rules are applied in the selection:

– For the first dummy index file (i.e.,Qt
cur.DS): If the intended data item and the first

dummy share the same level-t index file, the first dummy index file is re-selected
uniformly at random from the index files whose storage locations are stored in files
Qt+1

cur .DR orQt+1
cur .DS, i.e., the level-(t+1) intended index file and the first dummy

index file downloaded in the previous iteration of this algorithm. (Refer to lines 8
to 10 in Step 2 of Algorithm 1.)

– For the second dummy index file (i.e., Qt
cur.DN): (i) If the intended index file and

the first dummy index file have both appeared in the previous round, the second

536 K. Yang et al.

dummy index file will be selected uniformly at random from all level-t index file
locations excluding the locations that appeared in the previous round. (ii) Other-
wise, the second dummy index file will be selected uniformly at random from the
locations that appeared in the previous round excluding locations of the already-
selected files. (Refer to lines 12 to 20 in Step 2 of Algorithm 1 when t �= 0.)

After the level-t index files have been selected, the locations of files Qt
cur.DR and

Qt
cur.DS can be found by searching their indices in the downloaded level-(t+ 1) index

files, i.e., files Qt+1
cur .DR and Qt+1

cur .DS . Then the locations of the three level-t index
files are provided to the server and the files can be downloaded. Note that, the locations
are presented to the server in an arbitrary order, so that the server cannot distinguish be-
tween desired index files and dummies. The downloaded files are then decrypted with
the user’s key.

In the example given in Fig. 2, since the intended data item and the first dummy share
the same level-1 index file I1

1 , the user randomly selects a new first dummy index file,
which is I1

3 in this example, from level-1 index files {I1
2 , I1

3 , I1
4} (as shown by steps 6

and 7). Then the user looks up I2
1 to find out the storage locationsQ1

cur.LR andQ1
cur.LS

(as shown by step 8). Since both I1
1 and I1

3 were accessed in the previous round, the user
selects the second dummy index file with location #4 (as shown by step 9). Hence, the
user retrieves the files from level-1 storage locations #2, #3 and #4.

Random Reshuffling of Selected Level-t Index Files. The intended index file (Qt
cur.DR)

and the first dummy index file (Qt
cur.DS) may swap their storage locations with a prob-

ability of 1/2. If the swap happens, the index information of these files should be up-
dated in their index files Qt+1

cur .DR and Qt+1
cur .DS , respectively. In the example given in

Fig. 2, since files Q1
cur.DR and Q1

cur.DS are swapped, the user updates I2
1 accordingly

(as shown by steps 11 and 12).

Re-encryption & Uploading of Index Files. Now, we have completed the processing of
level-(t+ 1) index files Qt+1

cur .DR, Qt+1
cur .DS and Qt+1

cur .DN . To hide content and/or lo-
cation changes made to them, these files should be re-encrypted before being uploaded
back to the server. In our scheme, re-encryption is performed by applying the Cipher
Block Chaining (CBC) encryption techniques [13] on the file content, where the first
block of the file is a non-reappearing nonce. The user’s key is used in the re-encryption.
This way, the same secret key can be reused for encrypting all files, which simplifies
the key management at the cloud user. Such re-encryption process ensures that a com-
putationally bounded adversary does not have non-negligible advantage at determining
whether a pair of encrypted data items (before and after re-encryption, respectively)
carry the same data content.

After re-encryption, files Qt+1
cur .DR, Qt+1

cur .DS and Qt+1
cur .DN are uploaded to their

locations, respectively, but in an arbitrary order to make it difficult for the cloud server
to track these files. At the end of iteration t, data structure Qt

pre should be replaced by
Qt

cur, then re-encrypted and uploaded to location Hist[t]. This way, next time whenQt
pre

is downloaded, it will reflect the mostly recent access history.
In the example given in Fig. 2, I2

1 and Q1
cur are re-encrypted and uploaded to the

server at the storage locations #0 and Hist[1], respectively (as shown by step 13).

A Light-Weight Solution to Preservation of Access Pattern Privacy 537

Downloading, Processing and Uploading of Data Items. After the above steps, the
level-1 index files have been downloaded and decrypted. Based on the index informa-
tion in these files, the desired data item and two additional dummy data items can be
downloaded from the cloud server and decrypted with the user’s key. Upon the user’s
access to the desired data item has been completed, the intended data item and the first
dummy may swap their storage locations with a probability of 1/2, and if the swap hap-
pens, changes will be made to the level-1 index files Q1

cur.DR and/or Q1
cur.DS , respec-

tively. Finally, the three level-1 index files and the three data items are re-encrypted and
uploaded to the cloud server. Also, data structure Q0

pre is updated to Q0
cur, re-encrypted

and uploaded to the server. The re-encryption and uploading operations are performed
in the similar manner as described above.

In the example given in Fig. 2, the user looks up I1
1 to find the storage locations

Q0
cur.LR = 5 andQ0

cur.LS = 4. As afore-explained, the user selects the second dummy’s
storage locationQ0

cur.LR = 7 (as shown by steps 14 and 15). Since data itemsQ0
cur.DR

and Q0
cur.DS are swapped, the content of I1

1 is updated (as shown by steps 17 and 18).
Finally, the re-encrypted level-1 index files, Q0

cur and data items are uploaded to the
server respectively.

4 Security and Overhead Analysis

In this section, we first show that the proposed scheme can preserve the privacy of user
data access pattern in the long run. That is, after a sufficiently large number of accesses,
the frequency with which each data item has been accessed cannot be figured out by
the cloud server. Then we discuss the practical implications of this security property
through analyzing how our scheme can deal with some typical attacks that are based on
the knowledge of data access pattern. Finally we analyze the overhead of the proposed
scheme.

4.1 Security Analysis

We first show that the access pattern of index file locations, which can be observed
by the cloud server, does not reveal extra information about the data access pattern. In
the proposed scheme, index files are used to facilitate user query and data access. The
content of an index file is protected by being re-encrypted after each access, based on
the user’s secret key and a random non-repeating nonce. Hence, it is impossible for the
server to gain information about the data access pattern from the content of index files.
The following theorem states that observing the access pattern of index file storage
locations does not reveal more information about data access pattern than observing
only the access pattern of data storage locations.

Theorem 1. The cloud server cannot gain any advantage in inferring user’s data access
pattern through observing the access pattern of index file storage locations.

Proof. Refer to [21].

538 K. Yang et al.

As the observed access pattern of index file locations does not help in inferring data ac-
cess pattern, we next study what can be inferred from observing only the access pattern
of data storage locations. The following theorem formally states the property that, if
the cloud server can only observe the access pattern of data storage locations, the data
access pattern, namely, the data item requested by a cloud user and the frequency with
which each data item has been accessed by a cloud user, can be preserved in the long
run.

Theorem 2. If a cloud user has accessed the data items, despite the user access se-
quence, for a sufficiently large number of times, each storage location at the cloud
server is accessed uniformly at random.

Proof. Refer to Appendix 3 for a sketch of the proof and [21] for the detailed proof.

Note that the proof of Theorem 2 also implies that, after a sufficiently large number of
accesses, the server does not have non-negligible advantage at determining whether a
specific data storage location corresponds to a particular data item.

Discussion. To further understand the practical implications of the above security prop-
erty, we now discuss a few typical attacks that are based on the knowledge of data access
pattern, and analyze how our scheme can deal with the attacks.

Security Against Tracking Data Items. Suppose the cloud server has identified a par-
ticular user data item via other means, e.g., physical spying. It may want to keep track
of this data item thereafter. Using our proposed scheme, due to the property described
in Theorem 2, after a sufficiently large number of accesses, the server does not have
non-negligible advantage at determining which location the target data item is at. For
example, after the first round that the target item has been accessed, from the server’s
perspective, the target item may be stored at any of the three accessed locations with
an equal probability of 1/3. Then if any of these three locations is accessed in the
next round, the probability will be divided further among the newly accessed locations.
Therefore, by solely observing the storage locations accessed by the user, the server
could lose track of the target data item quickly.

Security Against Focused Attacks on Selected Data Items. Some of the cloud user’s data
items may be requested with very high frequency. These files are often important to the
user. If a malicious cloud server knows which data items are frequently accessed, it may
launch intensive attacks on the data, attempting to find out the content or contextual
information of the data. Note this, such attacks are sometimes feasible in practice, for
example, when the adopted data encryption algorithm or the key chosen by the user is
not sophisticated enough, or some side information about the data can be obtained in
other means. Using our proposed scheme, due to the property described in Theorem 2,
all data storage locations will be equally accessed in the long run. Hence, the server
cannot identify which data items are frequently requested by the user. Similarly, some
of the cloud user’s data items may be requested with very low frequency, e.g., backup
data. A malicious cloud server may want to stealthily delete these rarely-accessed user

A Light-Weight Solution to Preservation of Access Pattern Privacy 539

data items to save storage and maintenance cost for itself without being noticed by the
user. Such attack can also be stopped as our proposed scheme prevents the server from
identifying rarely requested data items.

4.2 Overhead Analysis

Communication and Computational Overhead. With our proposed scheme, to ac-
cess a single data item, the cloud user needs to obtain the following information from
the cloud server:

– Three index files at each level of the storage hierarchy; each index file records the
storage locations of m index files at its next lower level and it takes logn bits to
represent a storage location.

– One access history file at each level of the storage hierarchy; each access history
file records the IDs and storage locations of three index files (at this level) that
were accessed in the previous round; hence, it contains six fields and each field is
logn-bit long.

– The desired data item and two additional dummy data items; let τ denote the size
of each data item in bits.

Recall that there is a total of logm n levels in our proposed hierarchical storage struc-
ture. Therefore, the overall communication and computational overhead for accessing
a single data item can be calculated as:

OHc&c = m logn · 3 logm n + 6 logn · logm n + 3τ. (1)

It is easy to verify that:{
minOHc&c = OHc&c|m=4 = 9(logn)2 + 3τ ;
maxOHc&c = OHc&c|m=n = (3n + 6) logn + 3τ. (2)

Storage Overhead. As explained in Section 3.1, the total number of index files in our
proposed scheme is n−1

m−1 . Each index file records the storage locations of m index files
at its next lower level and it takes logn bits to represent a storage location. Therefore,
the overall storage overhead at the cloud server can be calculated as:

OHs server = m logn · n− 1
m− 1

+ nτ. (3)

It is easy to verify that:{
minOHs server = OHs server|m=n = n logn + nτ ;
maxOHs server = OHs server|m=2 = 2(n− 1) logn + nτ.

(4)

At the user side, to operate our proposed scheme, the cloud user needs to store one
access history file, three index files, and three more index files or data items at any
given time. Therefore, the required storage at the user side is:

OHs user = 6 logn + 3m logn +max{3m logn, 3τ}. (5)

540 K. Yang et al.

Overhead Comparison. Based on the above overhead analysis, we set m = 4 in our
scheme. In Table 2, we compare our scheme with one of the state-of-the-art access
pattern preservation schemes for single-cloud-server systems [20].

Table 2. Overhead Comparison

Comm./Comp. Storage (server side) Storage (user side)

Our Scheme (m = 4) O((log n)2 + τ) O(n max{log n, τ}) O(max{log n, τ})
Scheme in [20] O(log n · log log n · τ) O(n · τ) O(

√
n · τ)

It is interesting to see that, as long as the size of a data item (τ , in bits) is larger than
logn where n is the total number of data items, which usually holds true in practical
cloud storage applications, our scheme is more efficient. Specifically, our scheme (i)
consumes similar storage space at the cloud server; (ii) usually incurs significantly less
communication and computational overhead; and (iii) requires significantly less storage
space at the cloud user, which facilitates the employment of our proposed scheme on
thin user devices such as mobile phones. Note that the better efficiency performance of
our scheme is achieved under a less stringent privacy requirement than [20]; instead of
requiring strict privacy protection to the data access pattern, our scheme aims to protect
the privacy of the data access pattern in the long run.

5 Performance Evaluation

5.1 Evaluation Setup

To evaluate the performance of the proposed scheme, we have collected two user access
traces from two popular cloud service providers: Youtube [22] and Baidu [2]. As shown
in Figs. 3(i) and (ii), both the Youtube user and the Baidu user have 256 files stored
at the server. Different files have been accessed with different frequencies over time.
Moreover, we have created an additional user who always requests the same file from
the server, called the SFA (Single File Access) user, as shown in Fig. 3(iii). We use the
SFA user to emulate an extreme access pattern. The total number of files stored at the
server for the SFA user is also 256.

5.2 Preservation of Access Frequency Privacy

To study how well our proposed scheme preserves a cloud user’s access frequency pri-
vacy, we propose to use entropy to measure the distribution of the user’s access fre-
quencies to different files. Specifically, let Ci denote the number of accesses to the file
stored at storage location i. Then, the access frequency to location i is Fi = Ci∑

i Ci
, and

the entropy of access frequency is HF = −
∑

i Fi log(Fi). For example, HF of the
Youtube and Baidu traces is around 7.6 and 6.5, respectively, which can be calculated
by counting the number of accesses to each file in Figs. 3(i) and (ii). Clearly, for a given
set of files stored at the server, the maximum entropy is achieved when all file locations

A Light-Weight Solution to Preservation of Access Pattern Privacy 541

 0 128 256
0

2

4

6

nu
m

be
r

of
 a

cc
es

se
s(

x1
04)

data ID
 0 128 256
0

1

2

3

4

5

nu
m

be
r

of
 a

cc
es

se
s(

x1
03)

data ID
 1 64 256
0

1

ac
ce

ss
 p

ro
ba

bi
lit

y

data ID

(i) Youtube (ii) Baidu (iii) SFA

Fig. 3. Data access traces and distribution used in the performance evaluation

have been accessed with an equal probability. This means that, the maximum entropy
for accessing 256 files is Hmax

F (256) = −256× 1
256 log(

1
256) = 8.

We evaluate how the entropy of access frequency changes as the number of access
rounds increases. Fig. 4 plots the results (averaged over 100 simulation runs) for differ-
ent access scenarios. It can be seen clearly from the figures that, with our scheme, the
entropy of access frequency improves over the original trace, and converges gradually
to the maximum entropy in all simulated scenarios. This confirms our analytical study
in Section 4 and Theorem 2 that the access frequency distribution converges towards
the uniform distribution in the long run.

0 2 4 6 8
2

7.6
8

number of rounds (x1000)

H
F

w/ scheme
w/o scheme
max entropy
trace entropy

0 2 4 6 8

6.5

8

number of rounds (x1000)

H
F

w/ scheme
w/o scheme
max entropy
trace entropy

0 2 4 6 8
2

8

number of rounds (x1000)

H
F

w/ scheme
max entropy

(i) Youtube (ii) Baidu (iii) SFA

Fig. 4. The entropy of access frequency vs. the number of access rounds for a particular simulation
run under different access scenarios. In (iii), because the SFA user always requests the same data
item at each round, the entropy of access frequency without using our proposed scheme is always
zero, which is not shown in the figure.

5.3 Preservation of Access Order Privacy

In this section, we demonstrate the effectiveness of the proposed scheme in preserving
the access order privacy. We do so by evaluating the correlation between the output
access sequences (i.e., the sequence of the requested data items’ storage locations) for
the same input access sequence (i.e., the sequence of actual data items requested by
the user). Specifically, in each simulation run, we simulate the access procedure using
the same input access sequence twice and calculate the correlation coefficient (denoted
as Φ) between the two output sequences. A smaller Φ indicates that the two output

542 K. Yang et al.

sequences are less correlated, and thus the access order privacy is better preserved.
Note that, using our scheme, the server observes accesses to three storage locations at
each round. Therefore, it won’t be able to get the exact sequence of the requested data
items’ storage locations, which also helps to preserve the access order privacy.

Figs. 5(i) plot the Φ values (averaged over 100 simulation runs) as the number of ac-
cess rounds increases for different access scenarios. We can see that Φ decreases as the
number of access rounds increases, thus the correlation between the output sequences
becomes looser. Notice that Φ never reaches zero (i.e., perfect access order privacy) in
the simulation, which is due to the randomness and finite length of the output sequence.
As a result, Φ remains at small values (e.g., < 0.1) after a number of accesses.

0 1000 2000 3000
0

0.1

0.5

1

number of rounds

Φ

Youtube
Baidu
SFA

0 1000 2000 3000
0

2

4

6

8

number of rounds

H
L

Youtube
Baidu
SFA

0 5000 10000
0

2

4

6

8

number of rounds

E
C

D
F

Youtube
Baidu
SFA

(i) (ii) (iii)

Fig. 5. (i) Average correlation coefficient (Φ) between output sequences for the same input se-
quences with our proposed scheme. (ii) Average entropy of location distribution vs. the number
of access rounds for the most frequently requested data item. (iii) Average entropy of location
distribution vs. the number of access rounds for the least frequently requested data item.

5.4 Preservation of Data Item’s Location Privacy

As discussed in Section 4.1, when the user employs our proposed scheme, the cloud
server loses track of a certain data item gradually over time. In other words, from the
server’s perspective, the uncertainty of a data item’s storage storage location increases
gradually over time. Similar to the evaluation of access frequency privacy, we also use
entropy to measure the uncertainty of a particular data item’s storage location from the
server’s perspective. It is defined as HL = −

∑
i pi log(pi), where pi is the probability

that the data item is at storage location i from the server’s perspective. We evaluate how
the entropy of the data item’s location distribution grows as the number of access rounds
increases. For each access scenario, we collect the statistics of the most accessed data
item and the least accessed data item, and results (averaged over 100 simulation runs)
are plotted in Figs. 5(ii) and (iii), respectively. From the figures, we can see that a data
item’s location distribution entropy reaches the maximum regardless of their real access
frequency. Note that, without our proposed scheme, a data item’s location distribution
entropy is zero because its location is fixed and known to the server.

6 Related Work

Although many schemes [19,18,23] have been proposed to protect data confidentiality
and data integrity for the cloud computing paradigm, little effort has been made to

A Light-Weight Solution to Preservation of Access Pattern Privacy 543

protect users’ access pattern privacy. Private Information Retrieval (PIR) [5, 15, 11],
Oblivious RAM [9,20] and Steganographic File Systems (SFS) [24,16,6]are the works
most related to our solution.

Private Information Retrieval: PIR schemes aim to allow clients to retrieve informa-
tion from a database while maintaining the privacy of the queries to the database. Fully
implementing the PIR notion is, however, expensive. As shown by Sion et al. [15],
deployment of any single-server PIR protocol is not necessarily more efficient than a
simple transfer of the entire database due to computational costs. On the other hand,
PIR schemes typically do not address data confidentiality, which makes PIR schemes
unsuitable to be applied in the un-trusted cloud environments.

Oblivious RAM: In order to prevent the users’ access pattern from being revealed,
Oblivious RAM (ORAM) [20, 8] has been proposed. In a latest version of ORAM,
Williams et al. [20] proposed to user encrypted Bloom Filter [3] to reshuffle and scram-
ble data in the database. In Section 4.2, we have shown that our scheme is much more ef-
ficient in terms communication, computational and storage overheads in practical cloud
storage applications under a less stringent privacy requirement.

Steganographic File Systems: Research efforts on steganographic file systems [24,
16, 6] are also related to our proposed design. The major differences lie in that, the
research on SFS targets at protecting the information about existence and/or locations
of sensitive files through hiding both short-term and long-term access patterns, while
our proposal mainly targets at protecting long-term access pattern at low cost.

Recently, there is a concurrent effort [17] that addresses a similar problem as the
one in our work. Their solution and ours share similar high-level ideas such as usage of
dummies, hierarchical storage structure and file reshuffling. However, there are several
key differences between the two solutions. For example, our solution yields provable
security and overhead performances and does not require user-side LRU cache or an
empirical statistical access model.

7 Conclusions and Future Work

In this paper, we present a lightweight solution to the preservation of a cloud users’
data access pattern privacy in un-trusted clouds. Rigorous proofs have been provided to
show that the proposed scheme can provide full protection to data access pattern pri-
vacy in the long run. Extensive evaluations have also been conducted to show that the
scheme can protect the data access pattern privacy effectively after a reasonable number
of accesses have been made. In the future work, we plan to enhance the scheme such
that it can support private and efficient data updates, including data changes, data inser-
tions and data deletions.

Acknowledgments. We would like to thank the shepherd and the reviewers for their
valuable suggestions for strengthening the paper. The research reported in this paper
was supported in part by the Information Infrastructure Institute (iCube) of Iowa State
University, the Security and Software Engineering Research Center (S2ERC), the Na-
tional Science Foundation under Grants CNS 0831874 and CNS 0716744, and the office
of Naval Research under Grant N000140910748.

544 K. Yang et al.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Pat-
terson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley view of cloud
computing. Tech. Rep. UCB-EECS (2009)

2. Baidu, http://passport.baidu.com/?business&aid=6&
un=chenfoxlord#7

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM 13 (1970)

4. Chor, B., Gilboa, N.: Computationally private information retrieval. In: Proc. STOC 1997
(1997)

5. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proc.
FOCS 1998 (1998)

6. Diaz, C., Troncoso, C., Preneel, B.: A framework for the analysis of mix-based stegano-
graphic file systems. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp.
428–445. Springer, Heidelberg (2008)

7. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A virtual machine-based
platform for trusted computing. In: Proc. SOSP 2003 (2003)

8. Goldreich, O.: Towards a theory of software protection and simulation by oblivious rams. In:
Proc. STOC 1987 (1987)

9. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious ram. In: JACM
1996 (1996)

10. Itkis, G.: Personal communication, via oded goldreich (1996)
11. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-

private information retrieval. In: Proc. IEEE Symposium on Foundations of Computer Sci-
ence (1997)

12. Mell, P., Grance, T.: Draft: Nist working definition of cloud computing (2010)
13. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.

CRC Press, Boca Raton (1996)
14. Ostrovsky, R., Shoup, V.: Private information storage. In: Proc. STOC 1997 (1997)
15. Sion, R., Carbunar, B.: On the computational practicality of private information retrieval. In:

Proc. NDSS 2007 (2007)
16. Troncoso, C., Diaz, C., Dunkelman, O., Preneel, B.: Traffic analysis attacks on a

continuously-observable steganographic file system. In: Furon, T., Cayre, F., Doërr, G., Bas,
P. (eds.) IH 2007. LNCS, vol. 4567, pp. 220–236. Springer, Heidelberg (2008)

17. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Efficient
and private access to outsourced data. In: Proc. ICDCS 2011 (2011)

18. Wang, C., Wang, Q., Ren, K., Lou, W.: Ensuring data storage security in cloud computing.
In: Proc. IWQoS 2009 (2009)

19. Wang, C., Wang, Q., Ren, K., Lou, W.: Secure ranked keyword search over encrypted cloud
data. In: Proc. ICDCS 2010 (2010)

20. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access pattern
privacy and correctness on untrusted storage. In: Proc. CCS 2008 (2008)

21. Yang, K., Zhang, J., Zhang, W., Qiao, D.: A light-weight solution to preservation of access
pattern privacy in un-trusted clouds. Technical Report (2011), http://www.public.
iastate.edu/˜yangka/PatternFull.pdf

22. Youtube, http://www.youtube.com/user/supercwm
23. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained access

control in cloud computing. In: Proc. INFOCOM 2010 (2010)
24. Zhou, X., Pang, H., Tan, K.L.: Hiding data accesses in steganographic file system. In: Proc.

ICDE 2004 (2004)

http://passport.baidu.com/?business&aid=6&un=chenfoxlord#7
http://passport.baidu.com/?business&aid=6&un=chenfoxlord#7
http://www.public.iastate.edu/~yangka/PatternFull.pdf
http://www.public.iastate.edu/~yangka/PatternFull.pdf
http://www.youtube.com/user/supercwm

A Light-Weight Solution to Preservation of Access Pattern Privacy 545

Appendix 1

What follows is the algorithm for the proposed access procedure of a cloud user. The
details of the algorithm are described and explained in Section 3.2.

Algorithm 1. Proposed Access Procedure of a Cloud User
Step 1: Selection of Data Items (of IDs Q0

cur.DR and Q0
cur.DS) to Access

1: Q0
cur.DR ← UserRequest(); k ← UserKey(); // input user’s desired data and secret key

2: Download&Decryptk(Q0
pre, Hist[0]);

// get access history of data items from location Hist[0] & decrypt it
3: if Q0

cur.DR ∈ {Q0
pre.DR,Q0

pre.DS} then

4: Q0
cur.DS ← RandomSelectOne(D \ {Q0

cur.DR});
5: else
6: Q0

cur.DS ← RandomSelectOne({Q0
pre.DR,Q0

pre.DS});

7: end if
Step 2: Query for Index Files and Data Items
1: Download&Decryptk(IT

1 , 0); // download top-level index file from location 0 & decrypt it
2: QT

cur.DR ← 1; QT
cur.DS ← 1; QT

cur.DN ← 1;
3: for (t ← (T − 1); t � 0; t − −) do
4: // Step 2.1: Selection of Level-t Index Files and Q0

cur.LN

5: if t > 0 then
6: Download&Decryptk(Qt

pre, Hist[t]); // get access history of level-t index files

7: Qt
cur.DR ← f(Q0

cur.DR, t); Qt
cur.DS ← f(Q0

cur.DS , t);
// find out files storing level-t indices of data items Q0

cur.DR and Q0
cur.Ds

8: if Qt
cur.DR = Qt

cur.DS then
9: Qt

cur.DS ← RandomSelectOne(ξ(Qt+1
cur .DR, t + 1) ∪ ξ(Qt+1

cur .DS, t + 1) \ {Qt
cur.DR});

10: end if
11: end if
12: if {Qt

cur.DR,Qt
cur.DS} ⊆ Qt

pre then

13: Qt
cur.LN ← RandomSelectOne(Lt \ {Qt

pre.LR, Qt
pre.LS,Qt

pre.LN});

14: else
15: if Qt

cur.DR ∈ Qt
pre then

16: Qt
cur.LN ← RandomSelectOne({Qt

pre.LR,Qt
pre.LS,Qt

pre.LN} \ {Qt
cur.LR});

17: else
18: Qt

cur.LN ← RandomSelectOne({Qt
pre.LR,Qt

pre.LS,Qt
pre.LN} \ {Qt

cur.LS});

19: end if
20: end if
21: Download&Decryptk(Qt

cur.{DR, DS , DN},Qt
cur.{LR, LS, LN});

/* download files of IDs Qt
cur.{DR, DS , DN} from locations specified by Qt

cur.{LR, LS, LN}
respectively but in an arbitrary order & decrypt them */

// Step 2.2: Random Reshuffling
22: if RandomSelectOne({0, 1}) = 1 then
23: Swap(Qt

cur.DR,Qt
cur.DS);

24: Update Qt
cur.{LR, LS} in level-(t + 1) index files of IDs Qt+1

cur .{DR, DS};
25: end if

// Step 2.3: Reencryption/Uploading of Level-(t + 1) Files and Level-t Access History
26: Reencryptk&Upload(Qt+1

cur .{DR, DS , DN},Qt+1
cur .{LR, LS, LN});

/* reencrypt & upload files of IDs Qt+1
cur .{DR, DS , DN} to locations specified by

Qt+1
cur .{LR, LS, LN} respectively but in an arbitrary order */

27: Reencryptk&Upload(Qt
cur, Hist[t]);

28: end for
Step 3: Reencryption and Uploading of Accessed Data Items
1: Reencryptk&Upload(Q0

cur.{DR, DS , DN},Q0
cur.{LR, LS, LN});

546 K. Yang et al.

Appendix 2

We now explain why our proposed scheme requires the user to download two dummy
data items together with the intended data item in each access.

Suppose the scheme only downloads one dummy data item (whose ID is denoted as
Q0

cur.DR) together with the intended data item (whose ID is denoted as Q0
cur.DS). We

let the dummy data item be selected to make sure that the user’s request at each round
has the same format: the user always requests two data locations, out of which one and
only one of them is from the ones accessed in the previous round. The rules for selecting
the dummy data item are: (i) if the intended data item has been accessed in the previous
round, the dummy is selected uniformly at random from the data items that have not
been accessed in the previous round; (ii) otherwise, the dummy is selected from the two
accessed data items with equal probability.

Similarly, we would like to have the same format at each round of index file access:
at each index level, the user always requests two index file locations, out of which one
and only one of them is from the ones accessed in the previous round. Unfortunately,
this may not always be possible with a single dummy index file. An example is given
in Fig. 6 to illustrate the problem.

Index

Loc 2 1

1
1I

3

1
3I 1

4I1
2I

4

2
1I

Data

Loc 5 1
1d

4
3d 4d2d

12

1
1I

8 13
5d

9
7d 8d6d

16

1
2I ...

Level-2 Index File

Level-1 Index File

Fig. 6. In this example, there are n = 16 data items and T = 2 levels of index files stored at the
cloud server. The contents of index files I2

1 , I1
1 and I1

2 are shown in the figure.

In Fig. 6, suppose in the first round, the user needs data item d1 and data item d2 is
randomly selected to be the dummy. Since d1 and d2 share the same level-1 index file
I1
1 , the user needs to randomly select a new dummy index file. Suppose the user selects

I1
2 as the dummy index file. Then in the second round, suppose the user needs data item

d5. According to the selection rules, the user randomly selects a dummy from d1 and
d2. However, no matter whether d1 or d2 is selected as the dummy, the user needs to
retrieve I1

1 and I1
2 in order to get the storage locations of d5 and the selected dummy.

Note that both I1
1 and I1

2 have been accessed in the previous round; this violates the
desired access format.

A quick remedy to the problem may be as following: when selecting the dummy, the
user randomly selects the dummy from data items that do not share the same index files
(except for the top level) with the intended data item. It is easy to see that this selection
rule can avoid the afore-described problem. However, such remedial action may leak
information about user’s access pattern in some situations. For example, in Fig. 6, if the
user accesses d1 consecutively, data locations where d2, d3 and d4 are stored will never
be accessed, which may leak information about the data item of user’s interest.

A Light-Weight Solution to Preservation of Access Pattern Privacy 547

There may exist more sophisticated rules that can preserve the user’s long-run access
pattern using a single dummy, which we are not aware of at the moment. So instead, in
this work, we adopt an efficient two-dummy solution to guarantee that user’s access at
each around has the same format.

Appendix 3

In this section, we sketch the proof for Theorem 2. Please refer to [21] for the detailed
proof. In the proposed scheme, at each round of access, the user accesses three data
items, where two of them (DR and DS) randomly swap their locations after the access
and the other DN does not. Therefore, the selection of DN does not affect the location
distribution of the data items. As a result, in the proof, we only need to consider the
behavior of DR and DS .

()2 1;j n id d d d d1 id d ...1

2

n

i

j

d
d

d

d
d

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟
⎜ ⎟

 ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

i

j

d

d

()1 2;j n id d d d d2 id d ()1 2 ;j n id d d d di nd d

()2 1;j n id d d d di 1d d ...()1 2;j n id d d d di 2d d ()1 2 ;j n id d d d dn id d

()2 1;i n jd d d d d1 jd d ...()1 2 2;i n jd d d d djd d ()1 2 ;i n jd d d d dj nd d

()2 1;i n jd d d d dj 1d d ...()1 2;i n jd d d d dj 2d d ()1 2 ;i n jd d d d dn jd d

1(,)if d d 2(,)if d d (,)i nf d d

1(,)jf d d 2(,)jf d d (,)j nf d d

1(,)if d d 2(,)if d d (,)i nf d d

1(,)jf d d 2(,)jf d d (,)j nf d d

;

Fig. 7. One-step transition from an arbitrary state (d1 d2 · · · di · · · dj · · · dn; di dj) to other
reachable states in MC-1. f(·, ·) is the transition probability function.

Let di (i = 1, · · · , n) denote the data items and Pi denote the probability with which
di is actually requested by the user in each round of access. We model the data access
process with a homogeneous Markov chain denoted as MC-1, as shown in Fig. 7. Each
state of MC-1 is (σ; di dj). Here, σ is a permutation of (d1, · · · , dn), which stands
for one distribution of the n data items to n storage locations. i and j are two distinct
numbers from {1, · · · , n}, and di and dj is DR and DS respectively. Hence, there is

a total of n!
(

n

2

)
distinct states in MC-1.

In the proof, we show that MC-1 converges to a steady state. In the steady state,
all permutations of data items are equally likely to happen. Consequently, every data
item is uniformly randomly distributed to all storage locations in the steady state. This
implies that each storage location will be accessed uniformly at random in the long run.

Optimizing Mixing in Pervasive Networks:

A Graph-Theoretic Perspective

Murtuza Jadliwala, Igor Bilogrevic, and Jean-Pierre Hubaux

LCA1, EPFL, Lausanne, Switzerland
firstname.lastname@epfl.ch

Abstract. One major concern in pervasive wireless applications is
location privacy, where malicious eavesdroppers, based on static device
identifiers, can continuously track users. As a commonly adopted coun-
termeasure to prevent such identifier-based tracking, devices regularly
and simultaneously change their identifiers in special areas called mix-
zones. Although mix-zones provide spatio-temporal de-correlations be-
tween old and new identifiers, pseudonym changes, depending on the
position of the mix-zone, can incur a substantial cost on the network due
to lost communications and additional resources such as energy. In this
paper, we address this trade-off by studying the problem of determining
an optimal set of mix-zones such that the degree of mixing in the network
is maximized, whereas the overall network-wide mixing cost is minimized.
We follow a graph-theoretic approach and model the optimal mixing
problem as a novel generalization of the vertex cover problem, called the
Mix Cover (MC) problem. We propose three bounded-ratio approxima-
tion algorithms for the MC problem and validate them by an empirical
evaluation of their performance on real data. The combinatorics-based
approach followed here enables us to study the feasibility of determining
optimal mix-zones regularly and under dynamic network conditions.

1 Introduction

Recent advances in wireless and mobile computing technology have resulted in
rapid proliferation and use of this technology for a variety of pervasive comput-
ing and data-sharing applications. Popular instances of this networking technol-
ogy include vehicular and pervasive social networking systems and applications
such as vehicular safety messaging [48,37], pervasive or local-area social net-
working [41,4,10], dating [1,2,33], personal safety [39] and micro-blogging [21].
Communication devices such as mobile phones (in personal networks) or wire-
less on-board computers (in vehicular networks) communicate with each other
directly in a peer-to-peer fashion or with third-party service providers through
an infrastructure such as a base station or road-side unit.

Users in such pervasive systems continuously face privacy risks, especially
in terms of location privacy, from malicious eavesdroppers and curious service
providers. Users’ location information revealed as a result of this threat can
be used by malicious parties to track their movements and preferences [20] or

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 548–567, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective 549

to identify users and their availabilities by inferring their home/work locations
[25], which can be later used for accomplishing malicious goals [3]. Third-party
service providers, however, are generally trusted and claim to utilize the collected
personal and location information to further enhance context-aware services but
can inadvertently harm users’ privacy if the collected data is improperly shared
with commercial partners or leaked in an unauthorized fashion.

One widely adopted strategy to overcome the location privacy concerns in such
pervasive systems, which is inspired by Chaum’s seminal work on mix networks
[13,14], is to regularly mix [35] or change [29,12] device identifiers including
application, IP and device MAC addresses. Recently, non-IP networks such as
cellular networks adopt a similar approach; they identify a subscriber’s device
with a Temporary Mobile Subscriber Identity or TMSI that changes every time
the subscriber moves to a new geographical area.

In order to maximize anonymity, mixing or changing of user identifiers should
occur in a spatiotemporal region, called mix-zones [8,9], where a group of nodes
do not transmit any information (or identifiers); on leaving the mix-zone the
communication resumes with a new identifier or pseudonym for each user or
device. Mix-zones serve to mix or provide de-correlation between pseudonyms
and device associations, which makes it difficult for an adversary to continuously
track users by linking the device and its pseudonym. Let us focus on pervasive
and mobile networking scenarios where users or devices generally move on a
fixed (pre-defined) network of roads, for example, vehicular or pedestrian hand-
held networking scenarios. Earlier research has shown that mix-zones in such
networks are most effective (in protecting privacy) when they are defined at
points with higher input and output ports such as road intersections [11].

Although effective in improving the privacy of users, the pseudonym-change
(or mix) operation is not free and induces a cost on the network (and its users),
which is determined by factors such as the significance of the intersection to users
and the network, traffic intensity at the intersection (both entering and leaving)
and intersection context, for example, time-of-day. This cost is primarily due
to the loss in communication due to routing disruptions [43] or silent periods
[29] and the loss of computation resources such as energy due to the pseudonym
change operation itself and its related side-effects.

This results in an interesting trade-off between the number of mix-zones that
can be deployed on the road network for privacy enhancement and the resulting
cost due to such a deployment. An ideal situation from the privacy perspec-
tive, although infeasible from the cost point-of-view, is to deploy a mix-zone
at each and every intersection of the road network under consideration. Such a
deployment of mix-zones is trivial in theory, but difficult to realize and sustain
in practice due to the resulting costs. A more realistic and feasible goal would
be to maximize the coverage (of roads) of the deployed mix-zones, and hence
the privacy provided by them, and to minimize the associated costs due to such
a deployment. Moreover, the goal is not only to determine such an optimal and
cost-efficient placement of mix-zones but also to study if there are algorithms
that can find such a solution efficiently (in computation time and space). This

550 M. Jadliwala, I. Bilogrevic, and J.-P. Hubaux

is because, as pseudonym change costs at intersections are highly dynamic and
depend on factors such as intersection context and traffic intensity that contin-
uously change over time, there is a need to regularly determine the optimal and
most cost-efficient set of mix-zones. In order to design efficient algorithms for
the above optimization problem, a thorough theoretical analysis of the problem
from a combinatorial perspective is first required.

In this paper, we model the problem of optimal mix-zone placement as a
graph-based optimization problem where roads are represented by graph edges
and intersections by vertices. Vertices are weighted based on the cost (per de-
vice) of mix-zone placement at each vertex and edges are weighted based on
the demand or traffic intensity of the corresponding road in each direction. The
problem of optimal mix-zone placement - we refer to as the Mix Cover prob-
lem (MC) - is then to determine a set of intersections (or vertices) for mix-zone
placement, such that all the roads in the network are associated with at least
one mix-zone and the overall cost of the mix-zone placement is minimized. The
mix cover problem nicely models the mix-zone placement problem in pervasive
networks and is a generalization of the well-known Vertex Cover (VC) problem
[32], and a special case of the Facility Terminal Cover (FTC) problem [47]. To
the best of our knowledge, this generalization, and specifically in the setting
of pervasive networks, has not been addressed in the literature. We show that
the mix cover problem is a combinatorially hard problem and propose three
bounded-ratio approximation algorithms for the same. The first algorithm is
based on a linear programming relaxation of an Integer Program (IP) formula-
tion of the problem, whereas the remaining two algorithms take advantage of
the “divide and conquer” strategy of [47] which was used to solve the FTC prob-
lem. We analytically study the solution quality and running-time guarantees of
the algorithms by deriving their worst-case approximation ratio and running-
time, respectively. Finally, we perform an extensive comparative analysis of the
proposed algorithms by evaluating them on real US road-traffic data.

2 Background and Related Work

In the following section, we provide a short overview of concepts in complexity
theory and combinatorial optimization used throughout the paper and outline
other research efforts on the mix-zone placement problem.

2.1 Preliminaries: Combinatorial Hardness and Approximations

A decision problem S ⊆ {0, 1}∗ is said to have an efficiently verifiable proof sys-
tem if there exists a polynomial p and a polynomial-time verification algorithm
V such that the following two conditions hold:

– Completeness: For every x ∈ S, there exists y of length at most p(|x|) such
that V (x, y) = 1.

– Soundness: For every x /∈ S and every y, it holds that V (x, y) = 0.

Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective 551

The class NP is the class of decision problems that have an efficiently verifi-
able proof system. A polynomial-time computable function f is called a Karp-
reduction of S to S′ (in other words, S is Karp reducible to S′) if, for every x,
it holds that x ∈ S if and only if f(x) ∈ S′. A set S is NP -complete if it is in
NP and every set in NP is Karp-reducible to it. A set S is NP -hard if every
set in NP is Karp-reducible to it, but its membership within NP is not known.
It is not known whether every problem in NP can be efficiently (in polynomial
time) solved. But, if any single problem in the set of NP -hard problems can be
solved efficiently, then every problem in NP can also be solved efficiently. Thus,
NP -hard problems are considered “harder” than NP problems in general, and
are believed to have no polynomial-time exact solutions. Algorithms for such
hard problems, also called optimization problems, that run in polynomial time
and produce a near-exact or sub-optimal solution are called approximation algo-
rithms. Approximation algorithms that can guarantee that the solution output
by them can be no more (if minimization problem) or less (if maximization
problem) than a factor σ times the optimal solution is called a σ-approximation
algorithm for that problem. More details on these topics can be found in [22,24].

2.2 Mix-Zone Placement Problem

The concept of using mix-zones in road networks, as a means to improve the lo-
cation privacy of the mobile devices, has been proposed in [29,11,18]. Freudiger
et al. [19] were the first to study and formulate the problem of optimal mix-zone
placement in road networks. Here, the authors measure the effectiveness of mix-
ing by measuring the probability of error of an adversary in correctly assigning
exiting flows to their corresponding entering flows at a mix-zone. By using lin-
ear programming, they determine an optimal set of mix-zones that maximize the
overall mixing effectiveness. In contrast, our model and solution is more general
where we study the trade-off between maximizing the coverage of mix-zones and
minimizing their deployment cost.

In another related effort, Alpcan and Buchegger [5] use game theory to model
the attack and optimal defense strategies of the adversary and users in vehicular
networks. Humbert et al. [31] also study the problem of optimal mix-zone place-
ment from a game-theoretic perspective. They model the problem of mix-zone
placement as a game between mobile users who want to protect their privacy
and a local adversary who wants to track them by strategically placing eaves-
dropping stations. Here, the authors focus on deriving mix-zone deployment
strategies locally at each intersection, whereas in our work, we study the prob-
lem of achieving a globally optimal deployment strategy. Palanisamy et al. [38]
propose a framework and a suite of algorithms for mix-zone construction, which
considers the inherent characteristics of road networks. Similar to earlier results,
these mix-zone deployment strategies protect against specific adversarial attacks
and only consider local intersection parameters for mix-zone deployment.

We extend the state of the art in optimal mix-zone deployment as follows.
First, we study the problem of optimal mix-zone deployment from a global
(network-wide) perspective. Moreover, our model and assumptions are generic

552 M. Jadliwala, I. Bilogrevic, and J.-P. Hubaux

enough to include other privacy metrics [44,45], in addition to the basic mix-zone
coverage guarantee. Second, the analytical results obtained in this paper shed
light on the feasibility of optimally deploying mix-zones in dynamic real-time
road-network settings autonomously by mobile devices. Finally, the results out-
lined in this paper are also significant from the combinatorics viewpoint, as the
generalization of the VC problem studied here has not been discussed before in
the literature.

3 Problem Statement

3.1 System Model

Consider a wireless and pervasive mobile networking system where users (or ve-
hicles) carry wireless communication devices that can either communicate with
each other in a peer-to-peer fashion or through infrastructure-based base sta-
tion(s). Examples of such networking systems include, but are not limited to,
wireless peer-to-peer mobile-phone based pervasive social networking platforms
such as Nokia Instant Community (NIC) [41] and vehicle-based wireless commu-
nication systems or VANETs [23]. Each mobile device in the network includes
some identifying information or pseudonym in its communication, such as a MAC
address or an application-level identifier, which is used for identifying the device
and for routing communications within the network [40].

In order to prevent trivial tracking by an eavesdropping adversary, wireless
devices regularly change their identifiers or pseudonyms. Various techniques for
privacy protection, which use multiple pseudonyms or identifiers, have been stud-
ied in the literature [9,35,11,12]. In order to prevent trivial linkability of old and
new pseudonyms, devices must coordinate their pseudonym changes, in space and
time, with other devices, in order to achieve spatial and temporal de-correlation.
Such regions for achieving spatial and temporal de-correlation of devices and (old
and new) pseudonyms are also referred to as mix-zones [9]. In a mix-zone, spa-
tial de-correlation is achieved by mobile device(s) changing their pseudonyms
in a coordinated fashion whereas temporal de-correlation is achieved by either
remaining silent for a short period of time [29], by encrypting communications
after pseudonym change [18], or by means of a mobile proxy [42]. Mix-zones can
be passive or active, depending on the actions taken by the devices immediately
after the pseudonym change operation [31]. We assume that an off-line Certi-
fication Authority (CA), run by an independent trusted third-party, loads the
mobile devices with a set of pseudonyms prior to deployment.

Road intersections are considered to be good spots for mix-zone deployment
(and coordinated pseudonym change operations) as they provide optimal spatio-
temporal de-correlation, as also observed in [19,31]. It is clear that mix-zones
incur a communication overhead [43] and thus must be carefully placed (with
appropriate parameters [30]) in order to reduce the cost induced on the end-users
and to provide high location privacy (or high user-identifier de-correlation). The
cost of deploying a mix-zone at any intersection can be a weighted sum of various
factors, including the extra resource requirements of devices for mixing and the

Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective 553

resulting communication disruption due to mixing at that intersection. We do
not quantify these parameters in this work, but we can use existing results in
the literature for representing these costs [43,31].

We assume that all the intersections, over the area under consideration, are
connected with each other by a network of roads. Each road can be used to
reach either one of the intersection that it connects, i.e., there is a two-way
movement of users (or devices, vehicles, etc.) on the road. The demand for an
intersection on a road is the average number of users using the road to reach
that particular intersection. Thus, each road has two demands, one for each
intersection connected by the road. Accordingly, unidirectional roads have just
one demand, i.e., the one in the direction of the intersection; the other demand
is zero. For simplicity, we assume that any two intersections are connected only
by a single road; multiple roads between any two intersection can be combined
into a single road by simply adding their respective demands.

3.2 Privacy Requirement

Given the system model discussed above, we want to investigate the problem of
determining the most effective and cost-efficient mixing strategy in large perva-
sive networking scenarios. In other words, we address the problem of determining
an optimal selection of intersections for mix-zone deployment such that all the
roads in the network are covered and the overall cost due to mixing is mini-
mized. We say that a road is fully-covered if and only if both the end points
(intersections) of the road have mix-zones deployed on it, i.e., there is mixing at
both intersections of the road. A network is said to be fully-covered (or has a
full cover) if and only if all the roads in the network are fully-covered.

It is easy to see that in the system model discussed above, a full covering of the
network can only be achieved if and only if all the intersections in the network
are selected for mixing or mix-zone deployment. Such a mixing or full covering
strategy is not only trivial but also ideal from the privacy viewpoint. But from a
cost perspective, such a covering may be difficult to achieve in practice due to the
network size or infeasible due to the overall cost of mixing at the intersections.

Let us now define a more general version of the full cover described above,
called mix cover. A network is said to be mix covered if and only if each of the
roads in the network have at least one of its intersections where a mix-zone is
deployed. A fully-covered network is also mix covered and some of the roads
in a mix covered network may be fully-covered, i.e., both the intersections of a
road may have mix-zones deployed. From the privacy perspective, a mix covered
network can guarantee that any user (or device) traversing the road network can
traverse at most two roads (or at most one intersection) without encountering
a mix-zone. From the practical standpoint, a mix cover is a reasonable mixing
strategy for most deployment scenarios and adversarial models. We focus on the
problem of determining a cost-efficient mix cover by modeling it as a graph-based
optimization problem, as discussed next.

554 M. Jadliwala, I. Bilogrevic, and J.-P. Hubaux

3.3 Graph-Theoretic Framework and the Mix Cover (MC) Problem

Let us represent the road network described above by an undirected graph G ≡
(V, E, w, d). There exists a vertex v ∈ V corresponding to each intersection in
the road network and |V | = n is the total number of intersections (vertices1) in
the area of the road network under consideration. Each road connecting any two
intersections u and v is represented by an edge e ≡ (u, v) ∈ E, where E is the set
of all edges (or roads) and |E| = m is the total number of roads (edges). There
exists only a single edge (u, v) between any two pair of vertices u and v in G.
Given the undirected graph G, let w : V → R+ be the cost function that assigns
a positive cost to each vertex. The cost at each vertex represents the average
cost (per user) of mix-zone deployment (or mixing) at that intersection; the
higher the cost, the higher the amount of communication and device resources
spent by each user for mixing at that intersection is. We represent by wu the
cost of a vertex u ∈ V . Let d : E → (R+, R+) be the demand function that
assigns a pair of positive demands to each edge where each demand value in the
pair represents the demand for a particular vertex connected by the edge. This
demand pair could signify, in the case of vehicular (or pedestrian) networks, the
average traffic (or pedestrian) intensity on the road in each direction. For any
edge e(u, v) ∈ E, we represent the demand as de = (du

e , dv
e), where du

e , dv
e is the

demand on edge e for intersections u and v, respectively. The value of du
e = 0 if

u is not one of the end points of the edge e.
Given the above graph representation of the road network, we are interested in

the problem of efficiently determining the optimal mix cover of the network. Each
vertex chosen in the mix cover should be able to handle the demands from all the
edges it covers. In other words, each intersection should be able to accommodate
even the largest demand made at it; we refer to this ability of each intersection
as the capacity of the mix-zone at that intersection. The capacity at a vertex is
zero if there is no mix-zone at that vertex. The optimality criteria is based on
an assignment of capacities to vertices or intersections such that the demands
of all edges are met and the overall cost minimized. Formally, we can represent
the problem of determining the optimal mix cover, referred by us as the Mix
Cover (MC) problem, in the graph G ≡ (V, E, w, d) as a generalization of the
Vertex Cover (VC) problem. VC is a fundamental problem in graph theory and
a vertex cover of an undirected graph G ≡ (V, E) is a subset of vertices VC ⊆ V
which contains at least one vertex of all the edges in E and the VC problem is
to determine a vertex cover VC of the smallest cardinality. The VC problem is
NP − hard and the decision version of the same is known to be NP − complete
[32]. The Mix Cover (MC) problem can be formally defined as:

Problem 1. Given an undirected graph G ≡ (V, E, w, d), where w is the cost
function associated with the set of vertices and d is the demand function associ-
ated with the set of edges, as discussed above, determine a subset VMC ⊆ V and

1 Readers should note that from this point on we will use “vertex” and “intersections”
(similarly, “road” and “edge”) interchangeably and the intended meaning will be
implicit from the context.

Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective 555

a capacity c(v) for each vertex v ∈ VMC such that for each edge e ≡ (u, v) ∈ E at
least one of the vertices u and v is in VMC and associated with a capacity c(u) ≥
du

e and c(v) ≥ dv
e respectively, and the total weighted cost,

∑
x∈VMC

c(x)wx, of
all vertices in VMC is minimized.

Thus, given graph G ≡ (V, E, w, d) of the road network, the MC problem deter-
mines a mix cover of the network such that the overall (network-wide) weighted
cost of the mix cover is minimized. The total intersection cost at each intersection
v is the intersection mixing cost wv times the capacity c(v) at v. The capacity at
any intersection v is at least the maximum demand at that intersection from all
roads covered by it. The overall (network-wide) weighted cost of the mix cover is
the sum of all the total intersection costs at each intersection in the mix cover.
Figure 1 shows one such feasible solution.

w16

w15w13w12

w11w9

w6w5

w2 w3

w14

w8 w10

w7

w1 w4

w16

w15w14w13w12

w11w10w9w8

w7w6w5

w1 w2 w3 w4
2

c(5)= 7

c(2)=6 c(3)=8

w10

3
5

4

3

8

4

7

6

3
4

4

9

10

3

2
1

5
6

5
4

8
3

6

4

5 3

7

3

4
2

5

6

6

5

98
3

c(6)=3

c(9)=8 c(11)=10

c(12) = 4

c(15)=9

c(16)=3

c(13)=6

Fig. 1. Mix Cover example on downtown Miami (FL). On the left, the dark circles in-
dicate all intersections where mix-zone placement is possible. The graph representation
is shown in the middle and a feasible mix cover is shown on the right, where the dark
circles are included in the solution and the shaded circles are not.

The MC problem is very similar to another generalization of the VC problem
called the Facility Terminal Cover (FTC) problem [47,28], but there is an im-
portant difference between the two problems. Given a graph G ≡ (V, E, w, d),
where w : V → R+ and d : E → R+ (denoted as wv and de for vertex v and edge
e, respectively), the FTC problem is to find a set VFTC ⊆ V and a capacity c(v)
for each vertex v ∈ VFTC such that for each edge e ≡ (u, v) ∈ E at least one of
the vertices u and v is in VFTC and associated with a capacity c(u) ≥ de, and the
total weighted capacity

∑
x∈VF T C

c(x)wx is minimized. As we can see from the
FTC problem definition, the assumed graph model assigns only a single demand
value to an edge and so the selected capacity for covering any edge depends only
on the demand value for this same edge. This is different from the MC problem
where each edge has two demand values and the selected capacity for covering
any edge depends on the (demand value associated with the) vertex that is used

556 M. Jadliwala, I. Bilogrevic, and J.-P. Hubaux

to cover that same edge. The FTC problem can be considered as a special case of
the MC problem, i.e., the MC problem reduces to the FTC problem when both
the demand values are equal for all the edges in the graph. The formulation and
algorithms of the FTC problem cannot be directly used to solve the much more
general MC problem; although we will use one of the solution strategy [47] of
the FTC problem for solving the MC problem.

There is another generalization of the VC problem called the minimum Gen-
eralized Vertex Cover (GVC) problem [27]. In GVC, contrary to VC, an edge
incurs a cost (or demand, as in our case) depending on the number of its ver-
tices that belong to the solution. Once again, such a generalization of the VC
is different from the one that we are interested in, because in our case the de-
mand incurred by the edge does not depend on the number of its vertices in the
solution rather on which vertex is included in the solution. To the best of our
knowledge, this is the first paper to model and study the problem of optimal
mixing or mix-zone placement in pervasive networks as a unique generalization
of the VC problem, which we believe has not been studied before.

4 Algorithms and Combinatorial Results

Let us first analyze the combinatorial hardness of the MC problem. We state
the following theorem for the hardness of the MC problem.

Theorem 1. The MC problem is NP-hard.

Theorem 1 is straightforward, as we can easily reduce any instance of the weighted
vertex cover problem to an instance of the MC problem in polynomial time. This
can be done by defining a simple demand function for the graph instance of the
weighted vertex cover problem as de ≡ (du

e = 1, dv
e = 1), ∀e, where e ≡ (u, v) is

an edge of the graph instance. Thus, as the weighted vertex cover is NP-hard, we
can claim that the MC problem is also NP-hard. The MC problem also seems
difficult to approximate and we do not believe it has a Polynomial-Time Ap-
proximation Scheme (PTAS). This is because the VC problem itself, which is
considered to be much simpler than the MC problem, is not believed to have
an approximation ratio within 1.3606 unless P = NP [16]. In the following sec-
tions, we outline two approximation strategies for the MC problem. The first is
based on a linear programming formulation of the problem, whereas the other
two algorithms employ a “divide and conquer” strategy by utilizing the round
and group approach for solving the FTC problem [47].

4.1 Linear Programming Algorithm

We first formulate the MC problem as an Integer Program (IP), more specifically
a 0-1 Program. Let zv

e be a binary decision variable for each edge e and its
corresponding vertex v which indicates whether the vertex v is included in the
mix cover (solution) to cover edge e or not, i.e., zv

e = 1 if edge e is covered by
vertex v and zv

e = 0 if not. Let xv be the decision variable indicating the capacity

Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective 557

and wv indicate the cost of each vertex v ∈ V . Then, the IP formulation of the
MC problem can be obtained as follows:

min
∑
v∈V

wvxv

subject to zu
e + zv

e ≥ 1, ∀e ≡ (u, v) ∈ E

xv ≥ zv
edv

e , ∀v ∈ V, e ∈ E

zv
e ∈ {0, 1}, ∀v ∈ V, e ∈ E

Now, solving an Integer Program is a well-known hard problem [32]. Fortunately,
efficient (polynomial time) techniques [6] exist for solving a Linear Program (LP)
relaxation of the Integer program. If the LP relaxation has an integral solution
then that can also be the solution to the above IP. In general, solving the LP
relaxation of the problem can give a fractional feasible solution, from which a
feasible (and possibly non-optimal) solution to the above IP can be obtained.
The LP relaxation of the problem is as shown below:

min
∑
v∈V

wvxv

subject to dv
exu + du

e xv ≥ du
e dv

e , ∀e ≡ (u, v) ∈ E

xv ≥ 0, ∀v ∈ V

Let (x̄, {z̄e|∀e ∈ E}) be an optimal solution to the above LP formulation, where
ze,i = xi

di
e
is the entry of the vector z̄e representing the value of the decision

variable corresponding to vertex i (to cover edge e), and xj is the jth entry of x̄
and represents the capacity value at the vertex j. The value of ze,i = 0 if i is not
a vertex in edge e. We can see that any optimal solution (x̄, {z̄e}) produced by
solving the above LP is a feasible fractional solution to the MC problem. It is
also clear that an optimal solution OPT to the MC problem is always a feasible
solution to the above LP formulation. Thus, the above LP relaxation for the
MC problem is correct. Based on this, we can prove the following bound on the
approximation quality for the MC problem.

Theorem 2. There exists a polynomial time 2-approximation for MC.

For conciseness, the proof of this theorem has been moved to the Appendix.
Theorem 2 shows that a constant ratio approximation is possible for the MC
problem. Algorithms for linear programming, such as the simplex algorithms
[15], are efficient in practice with a polynomial (in number of constraints) num-
ber of iterations, excluding the number of arithmetic operations [36]. But, Klee
and Minty [34] showed that the number of iterations performed by some vari-
ants of the simplex can be exponential. Moreover, there is always a possibility,
depending on the demand values, of the method producing an unbounded or an
infinite number of solutions. To overcome these problems, we take advantage of
a deterministic linear-time (in number of edges) approach for FTC proposed by
Xu et al. [47], as discussed next.

558 M. Jadliwala, I. Bilogrevic, and J.-P. Hubaux

4.2 “Divide and Conquer” Algorithms

In their algorithm, Xu et al. divide the input graph instance into multiple sub-
graphs by first rounding the edge demands and then grouping them based on
the rounded edge values. They then apply the Weighted Vertex Cover (WVC)
algorithm on each subgraph to obtain the solution to the FTC problem on the
input graph. They show that their algorithm produces a 8-approximation when
a 2-approximation algorithm [7,26] is used for WVC.

One of the main differences between FTC and MC is that in FTC the input
graph instance has all edges with a single demand value, whereas in the MC
problem, each edge has two demands, depending on the vertex chosen to cover
the edge. Moreover, the MC problem is not directly reducible to the FTC prob-
lem unless the two demand values for each edge are equal. Below we outline
two algorithms for solving the MC problem; they utilize the round and group
strategy of [47]. In order to take advantage of their approach to solve the MC
problem, we first need to transform the input graph instance so that all edges
have equal demand values. Based on how this transformation is done, we will
later see that the overall solution quality is accordingly influenced.

Largest Demand First (LDF) Algorithm. In our first, and more straight-
forward approach, we transform an input instance of the MC problem from
G ≡ (V, E, w, d) to G′ ≡ (V, E, w, d′) such that, for each edge, both the new de-
mands of the edge are equal and with value equal to the larger of the two original
demand values. The intuition behind such a transformation is that if a vertex
is able to cover the larger demand, then it will definitely be able to cover any
demand smaller or equal to the larger demand. Then, the final demand values
of the edges in the new graph instance G′ are rounded off to the closest power
of 2 of the larger demand value chosen in the previous step. Lemma 1 shows
that any solution of the MC problem on such a transformed version (G′) of the
original graph is also a feasible solution for the MC problem on original graph
(G). After obtaining G′, it is first divided into subgraphs (Gk) based on the
rounded edge demands (2k), with each subgraph containing only edges of the
same demand value. A known minimum WVC algorithm (such as [7,26]) is then
used to obtain the minimum weighted vertex cover for each subgraph Gk. The
mix cover is finally obtained by combining solutions from each of the individual
subgraphs in the previous step. The LDF algorithm is outlined in Algorithm 1.

Lemma 1. Any solution to the MC problem on the transformed graph instance
G′ ≡ (V, E, w, d′) is also a feasible solution to the MC problem on the origi-
nal graph instance G ≡ (V, E, w, d). Moreover, OPT (G′) ≤ 2αOPT (G), where
OPT (.) is the optimal solution and α = max{|du

e − dv
e | | ∀e ≡ (u, v) ∈ G}, i.e.,

the maximum difference, over all edges, between the two edge demand values.

We have the following result for the solution quality and running time of LDF.

Theorem 3. The LDF algorithm is a linear time (in terms of the number of
edges and vertices), 4αβ-approximation algorithm for the MC problem, where

Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective 559

Algorithm 1: Largest Demand First (LDF) Algorithm

input : A graph G ≡ (V, E, w, d).
output: A mix cover SMC ≡ (v, c(v)) of G, where v ∈ V and c(v) is the capacity assigned

to v.
for all e ≡ (u, v) ∈ E do

d′
e ≡ (d′u

e = max{du
e , dv

e}, d′v
e = max{du

e , dv
e});

if 2k−1 ≤ d′u
e = d′v

e ≤ 2k then

d′
e ≡ (d′u

e = 2k, d′v
e = 2k);

end

end

Let G′ ≡ (V, E, w, d′);

Let Gk ≡ (Vk, Ek, w) be a subgraph of G′ induced by edges Ek = {e ∈ E|d′
e = 2k};

for all Gk do
if Vk �= φ then

SGk
= WVC-2Approx(Gk ≡ (Vk, Ek, w));

else
SGk

= φ;

end

end
SMC = φ;
for all SGk

such that SGk
�= φ do

c(v) ← max{2k|∀k s.t. v ∈ SGk
};

SMC ← (v, c(v));
end

β > 1 is the approximation ratio of the minimum WVC algorithm used and α is
as defined in Lemma 1.
The proof of Lemma 1 and Theorem 3 can be found in the Appendix. Now, let
us present a second solution strategy based on a transformation that chooses the
smaller of the two demand values.

Smallest Demand First (SDF) Algorithm. In the LDF algorithm, we trans-
form the input graph instance into an instance where the smaller edge demand
is replaced by the larger one. This guarantees that each edge has the same (and
a single) demand value and that the mix cover of such a transformed instance
is also a feasible mix cover of the original instance. In practice, it is clear that
such a strategy will produce a highly sub-optimal solution because there may
be vertices in the final solution that may cover edges with much lower actual
demand values. In order to overcome this issue, we propose another strategy for
solving the MC problem, called the Smallest Demand First (SDF) algorithm.

This SDF algorithm, as outlined in Algorithm 2, consists of three phases. In
the first phase, in contrast to the LDF algorithm, we transform the input graph
instance G ≡ (V, E, w, d) of the MC problem into an instance G′′ ≡ (V, E, w, d′′)
where the larger edge demand is now replaced by the smaller one. In this phase,
an additional task during edge demands transformation is to remember the
largest demand (dv

max) to be covered at each vertex. In the second phase, simi-
lar to the LDF algorithm, we use the round and group strategy to obtain a mix
cover for the transformed instance. In the final phase, we assign capacities to
the vertices based on the output of the previous phase and the largest demand
dv

max determined in the first phase. Lemma 2 gives the relationship between the
MC problem on the transformed version G′′ and the original graph G.

560 M. Jadliwala, I. Bilogrevic, and J.-P. Hubaux

Algorithm 2: Smallest Demand First (SDF) Algorithm

input : Graph G ≡ (V, E, w, d).
output: Mix cover SMC ≡ (v, c(v)) of G, where v ∈ V and c(v) is the capacity assigned to v.
for all v ∈ V do

dv
max = 0;

end
for all e ≡ (u, v) ∈ E do

if du
e > du

max then
du

max = du
e ;

end
if dv

e > dv
max then

dv
max = dv

e ;
end

d′′
e ≡ (d′′u

e = min{du
e , dv

e}, d′′v
e = min{du

e , dv
e});

if 2k−1 ≤ d′′u
e = d′′v

e ≤ 2k then

d′′
e ≡ (d′′u

e = 2k, d′′v
e = 2k);

end

end

Let G′′ ≡ (V, E, w, d′′);

Let Gk ≡ (Vk, Ek, w) be a subgraph of G′′ induced by edges Ek = {e ∈ E|d′′
e = 2k};

for all Gk do
if Vk �= φ then

SGk
= WVC-2Approx(Gk ≡ (Vk, Ek, w));

else
SGk

= φ;

end

end
SMC = φ;
for all SGk

such that SGk
�= φ do

c(v) ← max{max{2k|∀k s.t. v ∈ SGk
}, dv

max};
SMC ← (v, c(v));

end

Lemma 2. OPT (G′′) ≤ 2
αOPT (G), where G′′ ≡ (V, E, w, d′′) is the shortest

demand first transformation of the original graph instance G ≡ (V, E, w, d),
OPT (.) is the optimal solution of the MC problem on the input graph insance
and α = max{|du

e − dv
e | | ∀e ≡ (u, v) ∈ G}, i.e., the maximum difference, over

all edges, between the two edge demand values in the original graph instance.

It is easy to see that a feasible solution for the MC problem on G′′ may not nec-
essarily be a feasible solution to the MC problem on the original graph instance
G. Moreover, in the worst case, OPT (G′′) may include only those vertices that
correspond to larger demand values in the original graph. This observation and
an argument similar to Lemma 1 can be used to prove Lemma 2. For conciseness,
we omit the details. We have the following result for the approximation ratio.

Theorem 4. The Smallest DemandFirst or SDFalgorithm is a 4β-approximation
algorithm for the MC problem, where β > 1 is the approximation ratio of the min-
imum WVC algorithm. Moreover, the algorithm runs in O(mn) time, where n is
the number of vertices and m is the number of edges in the graph.
The proof for Theorem 4 can be found in the Appendix. It is clear from The-
orem 4 that the SDF algorithm guarantees the same approximation ratio as
the deterministic algorithm of Xu et al. [47] but runs slower. We now evaluate
the practical efficiency of the proposed approaches by executing them on real
vehicular road-network data.

Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective 561

5 Empirical Evaluation

In this section, we evaluate the performance of the proposed algorithms by imple-
menting them in Matlab and executing them on a multi-core desktop computer.
For our experiments, we construct the input graph instance using real road-traffic
data (intersections, roads and bi-directional AADT traffic intensities) from the
official transportation databases for Florida [17] and Virginia [46]. The results
are outlined in Table 1.

Table 1. Performance of the proposed Mix Cover algorithms on real road traffic data

SMALL SIZE GRAPH MEDIUM SIZE GRAPH FULL SIZE GRAPH
25% of municipalities 65-85% of municipalities Entire State

Florida
Virginia

Constant Uniform Gaussian Constant Uniform Gaussian Constant Uniform Gaussian
A 1 - Florida 1243 1267 1238 2891 2990 2909 3481 3600 3545
A 2 - Florida 1217 1244 1216 2863 2949 2877 3452 3502 3452

A 1 - Virginia 1346 1373 1350 3328 3404 3345 3523 3592 3532
A 2 - Virginia 1376 1386 1364 3376 3426 3374 3550 3607 3551
A 1 - Florida 0.51 0.40 0.48 0.49 0.38 0.46 0.49 0.38 0.46
A 2 - Florida 0.45 0.35 0.42 0.43 0.34 0.40 0.43 0.34 0.40

A 1 - Virginia 0.82 0.79 0.81 0.82 0.79 0.81 0.82 0.79 0.81
A 2 - Virginia 0.79 0.76 0.78 0.79 0.77 0.79 0.80 0.77 0.79
A 1 - Florida 13.08 15.84 16 54.56 58.52 65.48 68.43 71.84 83.73
A 2 - Florida 14.89 18.26 18.37 59.59 62.16 71.1 77.34 77.94 93.36

A 1 - Virginia 12.78 15.08 15.58 43.02 51.22 54.98 42.47 49.13 50.7
A 2 - Virginia 13.45 16.05 16.53 46.68 54.47 57.58 46.17 51 54

7557 / 8310
2408 / 2514 5726 / 6728 5881 / 6952

Duration of
the MC

simulation
[sec]

Ratio MC
solution obj.
fct. / naïve

obj. fct.

of v in the
MC solution

Tot. # of v / e
2557 / 2640 6326 / 6960

For each state, we considered three different sizes of the respective road net-
work graphs: a small graph that corresponds to 25% of the total number of mu-
nicipalities, a medium (65-85%) and a full state graph. For each such graph, we
evaluated the performance of the proposed algorithms for three vertex weight
distributions, namely, constant, uniform and positive Gaussian. The constant
distribution assigns the same weight (=1) to all vertices, the uniform draws the
weights uniformly at random from the interval [1,100], whereas the Gaussian has
an expected value of 50 and a standard deviation of 10. Based on these param-
eters and the traffic intensities (or vertex demands) for each state, we measured
the ratio between the MC solution objective function and the worst-case (näıve)
solution (which includes all vertices of the graph in the vertex cover), the number
of vertices in the MC solution, the individual vertex capacities and the duration
of the simulation. The values in Table 1 are averaged over 100 runs.

The results confirm that, as predicted by the analytical evaluation, SDF (A2)
performs consistently better than LDF (A1) for all graph sizes. Compared to the
näıve solution, the proposed algorithms achieve a lower mix-zone cost, as low as
34% of the trivial solution cost. For all combinations of parameters, the uniform
distribution achieves the best (lowest) objective function ratio, followed by the
Gaussian and the constant distributions. The uniform distribution, which assigns
(on average) the same weight to an equal number of vertices, makes it easier to
determine feasible capacities to vertices that have a lower weight, while still

562 M. Jadliwala, I. Bilogrevic, and J.-P. Hubaux

covering all edges of the graph. In the Gaussian scenario, most of the weights
will be close to the mean, and thus the search for the vertices that minimize
the weighted cost will be more complex, leading to a worse solution and more
demanding in terms of computation time. In the case where all vertices have the
same weights, there are no chances of finding a feasible solution consisting of
vertices with a lower weight than others. Hence, the ratio of the MC solution to
that of the näıve solution is the worst in this scenario.

Depending on size of the graph and the respective demands, the number of
mix-zones to be deployed is between 46% (Florida) and 58% (Virginia) of the
total number of vertices. In Florida, SDF performs slightly better than LDF as
it requires a smaller number of mix-zones. Although the differences amount to
2-3% (up to 102 fewer mix-zones), such result is consistent across all graph sizes.
In Virginia, on the contrary, LDF performs slightly better than SDF (up to 30
fewer mix-zones). This indicates that, although relatively small, the performance
of the two algorithms are influenced by the road network topology, and further
investigations are required in order to determine the effects of the road topology
on the performance of the proposed algorithms.

Intuitively, as the traffic patterns evolve during the day in each region, such
algorithms would be executed multiple times per day in order to adapt the solu-
tions to the traffic intensities throughout the day. Regarding the execution effi-
ciency, the experimental results show that a feasible solution to the MC problem
can be determined in 13 sec (small graph) and 94 sec (full State graph), which
is a reasonable requirement in case such computations are done in a dynamic
fashion multiple times per day.

In order to avoid unbounded solutions in the LP formulation, we had to
reduce the graph size (and thus the number of constraints) of the road network.
Considering a reduced (Florida) graph with 515 vertices, we obtained a ratio of
0.24 between the objective function of the MC solution with respect to the näıve
one, which is a better result than LDF and SDF, but the fraction of intersections
with mix-zones to the total number of intersections increased to 97%. For such
a small graph, the LP required between 29 seconds (constant distribution) and
66 seconds (Gaussian distribution), which corresponds to two and four times the
requirement of LDF and SDF, respectively, with the same weight distributions.
Similar relative differences were obtained when increasing the number of vertices
from 515 to 1024, except that the durations grew by a factor of 20 as compared
to LDF and SDF. The results suggest that the LP formulation yields on average
better (lower) costs for the mix-zone deployment, at the expense of a significant
increase in computation time and number of mix-zones. Hence, the LP approach
appears to be better suited for smaller graphs with a lower intersection/road
density, such as peripheral and rural areas.

6 Conclusion

We addressed the problem of optimizing mix-zone placement in pervasive net-
working applications by formulating it as a graph-based optimization problem,
referred to as the Mix Cover or MC problem. We proposed three algorithms

Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective 563

to solve the MC problem: the first algorithm is based on a LP relaxation of
the problem and the remaining two approaches take advantage of a “divide and
conquer” strategy proposed by Xu et al. [47]. We proved important analytical re-
sults, such as the solution quality and running-time guarantees, for the proposed
approaches. In order to shed light on their feasibility in a realistic pervasive net-
work setting, we performed extensive experimental evaluation of the proposed
approaches with real road network and traffic data. Experimental results con-
firmed the analytical results and also showed that these approaches can compute
an approximate mix cover, even for fairly large road networks, in a reasonable
amount of time using standard computing resources.

References

1. http://en.wikipedia.org/wiki/Lovegetty

2. http://en.wikipedia.org/wiki/Bluedating

3. http://pleaserobme.com/

4. Ahtiainen, A., Kalliojarvi, K., Kasslin, M., Leppanen, K., Richter, A., Ruuska, P.,
Wijting, C.: Awareness networking in wireless environments: Means of exchanging
information. In: IEEE Vehicular Technology Magazine (September 2009)

5. Alpcan, T., Buchegger, S.: Security games for vehicular networks. IEEE Transac-
tions on Mobile Computing (2011)

6. Aspvall, B., Stone, R.: Khachiyan’s linear programming algorithm. Journal of Al-
gorithms 1(1), 1–13 (1980)

7. Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for the weighted
vertex cover algorithm. Journal of Algorithms (1981)

8. Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Per-
vasive Computing 2(1), 46–55 (2003)

9. Beresford, A.R., Stajano, F.: Mix zones: User privacy in location-aware services.
In: PerCom Workshop (2004)

10. Buchegger, S., Schiöberg, D., Vu, L.-H., Datta, A.: Peerson: P2P social networking:
early experiences and insights. In: EuroSys SNS Workshop, pp. 46–52 (2009)

11. Buttyán, L., Holczer, T., Vajda, I.: On the effectiveness of changing pseudonyms to
provide locationprivacy invANETs.In:Stajano,F.,Meadows,C.,Capkun,S.,Moore,
T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 129–141. Springer, Heidelberg (2007)

12. Buttyán, L., Holczer, T., Weimerskirch, A., Whyte, W.: Slow: A practical
pseudonym changing scheme for location privacy in vanets. In: IEEE VNC (2009)

13. Chaum, D.: Untraceable electronic mail, return addresses and digital pseudonyms.
Comm. ACM 24(2), 84–88 (1981)

14. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. J. Cryptology 1(1), 66–75 (1988)

15. Dantzig, G.B.: Linear Programming and Extensions. Princeton Press, Princeton
(1963)

16. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex-cover. An-
nals of Mathematics (2005)

17. Florida State traffic data, http://www.dot.state.fl.us/planning/statistics/
gis/trafficdata.shtm

18. Freudiger, J., Raya, M., Felegyhazi, M., Papadimitratos, P., Hubaux, J.-P.: Mix
zones for location privacy in vehicular networks. In: Win-ITS (2007)

http://en.wikipedia.org/wiki/Lovegetty
http://en.wikipedia.org/wiki/Bluedating
http://pleaserobme.com/
 http://www.dot.state.fl.us/planning/statistics/gis/trafficdata.shtm
 http://www.dot.state.fl.us/planning/statistics/gis/trafficdata.shtm

564 M. Jadliwala, I. Bilogrevic, and J.-P. Hubaux

19. Freudiger, J., Shokri, R., Hubaux, J.-P.: On the optimal placement of mix zones.
In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 216–234.
Springer, Heidelberg (2009)

20. Freudiger, J., Shokri, R., Hubaux, J.-P.: Evaluating the privacy risk of location-
based services. In: Financial Cryptography (2011)

21. Gaonkar, S., Li, J., Choudhury, R.R., Cox, L.P., Schmidt, A.: Micro-blog: sharing
and querying content through mobile phones and social participation. In: MobiSys,
pp. 174–186 (2008)

22. Garay, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

23. Giordano, E., Tomatis, A., Ghosh, A., Pau, G., Gerla, M.: C-VeT: An Open Re-
search Platform for Vanets: Evaluation of Peer to Peer Applications in Vehicular
Networks. In: IEEE VTC (2008)

24. Goldreich, O.: Computational Complexity: A Conceptual Perspective (2008)
25. Golle, P., Partridge, K.: On the anonymity of home/Work location pairs. In:

Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive 2009.
LNCS, vol. 5538, pp. 390–397. Springer, Heidelberg (2009)

26. Gonzalez, T.F.: A simple LP-free approximation algorithm for the minimum weight
vertex cover problem. Information Processing Letters 54(3), 129–131 (1995)

27. Hassin, R., Levin, A.: The minimum generalized vertex cover problem. ACM Trans.
Algorithms 2 (January 2006)

28. Hochbaum, D., Levin, A.: The Multi-integer Set Cover and the Facility Terminal
Cover Problem. Networks 53, 63–66 (2009)

29. Huang, L., Matsuura, K., Yamane, H., Sezaki, K.: Enhancing wireless location
privacy using silent period. In: IEEE WCNC (2005)

30. Huang, L., Yamane, H., Matsuura, K., Sezaki, K.: Towards modeling wireless lo-
cation privacy. In: PETS (2006)

31. Humbert, M., Manshaei, M.H., Freudiger, J., Hubaux, J.-P.: Tracking games in
mobile networks. In: Alpcan, T., Buttyán, L., Baras, J.S. (eds.) GameSec 2010.
LNCS, vol. 6442, pp. 38–57. Springer, Heidelberg (2010)

32. Karp, R.M.: Complexity of Computer Computations. Plenum Press, New York
(1972)

33. Khiabani, M.: Metro-sexual (2009), http://bit.ly/theranMetroSexual
34. Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Shisha, O. (ed.)

Inequalities, vol. III, pp. 159–175. Academic Press, London (1972)
35. Li, M., Sampigethaya, K., Huang, L., Poovendran, R.: Swing & swap: user-centric

approaches towards maximizing location privacy. In: WPES (2006)
36. Megiddo, N.: On the complexity of linear programming. In: Advances in Eco-

nomic Theory, Fifth World Congress, pp. 225–268. Cambridge University Press,
Cambridge (1987)

37. Merlin, C.J., Heinzelman, W.B.: A study of safety applications in vehicular net-
works. In: MASS 2005 (2005)

38. Palanisamy, B., Liu, L.: Mobimix: Protecting location privacy with mix zones over
road networks. In: ICDE 2011 (2011)

39. Paulos, E., Goodman, E.: The familiar stranger: anxiety, comfort, and play in
public places. In: CHI, pp. 223–230 (2004)

40. Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudeonymity -
a proposal for terminology. In: International Workshop on Designing Privacy En-
hancing Technologies: Design Issues in Anonymity and Unobservability (2001)

41. Rhiain.: Nokia instant community gets you social, http://conversations.nokia.
com/2010/05/25/nokia-instant-community-gets-you-social/

 http://bit.ly/theranMetroSexual
 http://conversations.nokia.com/2010/05/25/nokia-instant-community-gets-you-social/
 http://conversations.nokia.com/2010/05/25/nokia-instant-community-gets-you-social/

Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective 565

42. Sampigethaya, K., Huang, L., Li, M., Poovendran, R., Matsuura, K., Sezaki, K.:
CARAVAN: Providing location privacy for VANET. In: ESCAR (2005)

43. Schoch, E., Kargl, F., Leinmüller, T., Schlott, S., Papadimitratos, P.: Impact of
pseudonym changes on geographic routing in vANETs. In: Buttyán, L., Gligor,
V.D., Westhoff, D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 43–57. Springer, Hei-
delberg (2006)

44. Shokri, R., Freudiger, J., Jadliwala, M., Hubaux, J.-P.: A distortion-based metric
for location privacy. In: ACM WPES (2009)

45. Shokri, R., Theodorakopoulos, G., Le Boudec, J.-Y., Hubaux, J.-P.: Quantifying
location privacy. In: IEEE S&P (2011)

46. Virginia State traffic data, http://www.virginiadot.org/info/2009_traffic_

data.asp

47. Xu, G., Yang, Y., Xu, J.: Linear Time Algorithms for Approximating the Facility
Terminal Cover Problem. Networks 50, 118–126 (2007)

48. Xu, Q., Mak, T., Ko, J., Sengupta, R.: Vehicle-to-vehicle safety messaging in dsrc.
In: VANET (2004)

Appendices

Proof (Proof for Lemma 1). The first part of the lemma is straightforward. As
the vertex and edge sets of both G and G′ are the same, a cover for G′ (that
covers all edges of G′) is also a cover for G. Moreover, as the edge demands
are rounded off to the largest and then to the closest power of 2, the selected
capacity of the vertices for a solution (or mix cover) in G′ will always be greater
than the demands of the corresponding edges in G. Thus, a mix cover for G′ is
also a feasible mix cover for G.

Now, let us prove the second part. Let VOPT (G) be the set of vertices of the
optimal solution OPT (G) for the MC problem on the graph instance G and
let COPT (G) = {c(vi)|vi ∈ VOPT (G)} be the capacities assigned to each vertex
in the optimal solution. Consider a solution S such that it has the same set of
vertices as VOPT (G) and with capacities CS = {2(c(vi)+α)|vi ∈ S}, where α is as
defined above. We can see that (S, CS) is always a feasible solution to G′. This is
because, firstly, we always select the larger demand value for each edge e. Thus,
even in the worst case, where all vertices vi ∈ VOPT (G) in the optimal solution
OPT (G) are such that dvi

e < d
vj
e , ∀e ≡ (vi, vj) ∈ E, capacities selected in CS

will always overcome the difference in demands. Secondly, the rounded demands
of each edge e is only at most twice that of the original (larger) demand. Thus,

OPT (G′) ≤
∑
vi∈S

2(c(vi) + α)

≤
∑
vi∈S

2αc(vi) ≤ 2αOPT (G) �

Proof (Proof for Theorem 2). For the sake of convenience, let us denote the IP
formulation of the MC problem as IP-MC and its LP relaxation as LP-MC. It is
easy to see that any optimal solution OPT to IP-MC is also a feasible solution
to the LP-MC and has the same objective function value. Moreover, LP-MC is

 http://www.virginiadot.org/info/2009_traffic_data.asp
 http://www.virginiadot.org/info/2009_traffic_data.asp

566 M. Jadliwala, I. Bilogrevic, and J.-P. Hubaux

indeed a relaxation of IP-MC and an optimal solution (x̄, {z̄e}) to LP-MC is
a feasible fractional solution to IP-MC. Thus, we can see that the value of the
objective function (as the objective functions for both the formulations are the
same) of an optimal solution (x̄, {z̄e}) to LP-MC is at most that of the optimal
solution OPT to IP-MC. Now, given the optimal solution (x̄, {z̄e}) to LP-MC,
we know that for any e ≡ (u, v) ∈ E, as zu

e +zv
e ≥ 1, at least one of the following

zu
e ≥ 1

2 or zv
e ≥ 1

2 is true. Let us apply the following transformation δ to (x̄, {z̄e}):
If ze,i ≥ 1

2 , for any e and i, then δ(ze,i) = 1 and if ze,i < 1
2 then put δ(ze,i) = 0.

Also, δ(xi) = 2xi if for any i ∈ V there is δ(ze,i) = 1.
It is easy to see that δ(x̄, {z̄e}) is a feasible solution to the IP-MC problem.

Moreover, the linearity of the objective function guarantees that the objective
function value (or the total weighted cost) of δ(x̄, {z̄e}) is at most twice the
objective function value of (x̄, {z̄e}). As the cost of (x̄, {z̄e}) is at most OPT , the
cost of δ(x̄, {z̄e}) is at most two times the cost of OPT , i.e., δ(x̄, {z̄e}) ≤ 2·OPT .
Thus, δ(x̄, {z̄e}) is a 2-approximation of the MC problem. Moreover, as LP-MC
can be solved in polynomial time [6], the proof follows. �

Proof (Proof for Theorem 3). Let WV C−2Approx(Gk) denote the output (over-
all minimum weight) of applying a β-approximation minimum WVC algorithm
to the subgraph Gk of G′. If OPT (Gk) is the corresponding optimal solution,
then we have the following inequality:

WVC-2Approx(Gk) ≤ βOPT (Gk)

OPT (Gk) ≥
1
β
WVC-2Approx(Gk) (1)

From Lemma 2 of [47] we know that,

OPT (G′) ≥ 1
2

K∑
k=0

2kOPT (Gk) (2)

where K is max. value of the exponent after the rounding. From Lemma 1,

OPT (G′) ≤ 2αOPT (G) (3)

From (1) and (2), we have

OPT (G′) ≥ 1
2

K∑
k=0

2k

β
WVC-2Approx(Gk)

≥ 1
2β

K∑
k=0

2kWVC-2Approx(Gk)

Combining the above inequality with Eqn. 3 we have,

2αOPT (G) ≥ 1
2β

K∑
k=0

2kWVC-2Approx(Gk)

K∑
k=0

2kWVC-2Approx(Gk) ≤ 4αβOPT (G) (4)

Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective 567

The left-hand side of the inequality in (4) clearly denotes the objective function
computed from the output of the LDF algorithm. From this inequality, it is clear
that the LDF algorithm is a 4αβ-approximation of the MC problem.

Now, let us observe the time complexity of the LDF algorithm. Tasks such
as determining the larger demand per edge, rounding the demand value and
assigning capacities can be completed in linear time, in the worst-case. Moreover,
Bar-Yehuda and Even [7] showed that a 2-approximation can be obtained for a
WVC problem in linear time. Thus, the LDF algorithm runs in linear time. �

Proof (Proof for Theorem 4). We use a similar argument that we use to prove
Theorem 3. From Eqn. 1 in the proof of Theorem 3 we know that:

OPT (Gk) ≥
1
β
WVC-2Approx(Gk)

where, β is the approximation ration of the weighted vertex cover algorithm
WVC-2Approx and Gk is the induced subgraph of G′′ with edge demands 2k.
Now, let K ′′ be the maximum value of the exponent (of 2) after the round-
ing the shortest demands on each edge. From Lemma 2 of [47] we know that,
OPT (G′′) ≥ 1

2

∑K
k=0 2

kOPT (Gk). From Lemma 2 we have, OPT (G′′) ≤
2
αOPT (G)

From the above we have,

2
α

OPT (G) ≥ 1
2

K∑
k=0

2kOPT (Gk)

4OPT (G) ≥ α

K∑
k=0

2kOPT (Gk)

4βOPT (G) ≥ α
K∑

k=0

2kWVC-2Approx(Gk)

4βOPT (G) ≥
K∑

k=0

(2k + α)WVC-2Approx(Gk) (5)

The right-hand side of (5) clearly denotes an upper bound on the objective
function computed by the SDF algorithm. From this inequality, it is clear that
the SDF algorithm is a 4β-approximation algorithm for the MC problem.

Now, let us observe the time complexity of the SDF algorithm. The SDF
algorithm has an additional step, as compared to the LDF algorithm, which is
the largest demand determination on each vertex. It is easy to see that this step,
in the worst case, takes O(n2) additional steps and thus one order of time more
than the LDF algorithm. �

A New RFID Privacy Model�

Jens Hermans��, Andreas Pashalidis, Frederik Vercauteren���,
and Bart Preneel

Department of Electrical Engineering - COSIC,
Katholieke Universiteit Leuven and IBBT,

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
firstname.lastname@esat.kuleuven.be

Abstract. This paper critically examines some recently proposed RFID
privacy models. It shows that some models suffer from weaknesses such
as insufficient generality and unrealistic assumptions regarding the ad-
versary’s ability to corrupt tags. We propose a new RFID privacy model
that is based on the notion of indistinguishability and that does not suf-
fer from the identified drawbacks. We demonstrate the easy applicability
of our model by applying it to multiple existing RFID protocols.

Keywords: RFID, authentication, identification, privacy model.

1 Introduction

As Radio Frequency Identification (RFID) systems are becoming more common
(for example in access control [10,30], product tracking [10], e-ticketing [27,30],
electronic passports [18]), managing the associated privacy and security concerns
becomes more important [34]. Since RFID tags are primarily used for authen-
tication purposes, ‘security’ in this context means that it should be infeasible
to ‘fake’ a legitimate tag. ‘Privacy’, on the other hand, means that adversaries
should not be able to identify, trace, or link tag appearances.

Several models for privacy and security in the context of RFID systems have
been proposed in the literature. In this paper, we critically examine some of these
models. In particular, we focus on general models1. For some of these models
we show that, despite their intended generality, it remains unclear how to apply

� This work was supported in part by (a) the Research Council K.U.Leuven: GOA
TENSE (GOA/11/007), (b) the IAP Programme P6/26 BCRYPT of the Belgian
State (Belgian Science Policy), (c) the ‘Trusted Architecture for Securely Shared
Services’ (TAS3) project, supported by the 7th European Framework Programme
with contract number 216287, and (d) the European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II.

�� Research assistant, sponsored by the Fund for Scientific Research - Flanders
(FWO).

��� Postdoctoral Fellow of the Fund for Scientific Research - Flanders (FWO).
1 We do not discuss some of the early proposals that were made in the context of one

specific protocol.

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 568–587, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A New RFID Privacy Model 569

them to protocols other than the protocol in the context of which they were
proposed. Other existing models do not support adversaries that can tamper
with tags. However, considering such adversaries is important because, as low-
cost devices, tags are hardly protected against physical tampering. In particular,
it has been shown that side-channel attacks may enable an adversary to extract
secrets from the tag [17, 21, 22, 26], and so-called ‘reset’ attacks force the tag
to re-use old randomness [3, 9, 15]. The adversary can mount reset attacks by
inducing power drops or by otherwise influencing the physical environment of
the tag. Adversaries that can tamper with tags are therefore realistic.

Subsequently we propose a new model that borrows concepts from previous
models, including virtual tag references, the corruption model that Vaudenay [32]
introduced and the notion of ‘narrow’ and ‘wide’ adversaries to construct a new
model. We believe that the new model is easier to apply. Also note that, although
presented as a model for RFID privacy, it is not limited to the RFID setting;
the model may also apply to other setups, in which the participants should not
be identifiable or linkable.

Structure of the paper. Section 2 introduces the basic definitions for RFID sys-
tems and some notation. Section 3 discusses a selection of existing models, their
underlying assumptions, their usability, and some further technicalities. Sec-
tion 4 presents our model for RFID privacy which is then applied to some of the
stronger existing RFID protocols in Section 5. In the appendices, our model is
extended to a multi-indistinguishability setup, which allows multi-bit challenges.
Mutual authentication is also discussed there.

2 Definitions

Throughout this paper we use a common model for RFID systems, similar to
the definitions introduced in [8,32]. An RFID system consists of a set of tags T ,
and a reader R. Each tag is identified by an identifier ID. The memory of the
tags contains a state S, which may change during the lifetime of the tag. The
tag’s ID may or may not be stored in S. Each tag is a transponder with limited
memory and computation capability.

Tags can also be corrupted: the adversary has the capability to extract secrets
and other parts of the internal state from the tags it chooses. The reader R
consists of one or more transceivers and a central database. The reader’s task
is to identify legitimate tags (i.e. to recover their IDs), and to reject all other
incoming communication. The reader has a database that contains for every tag,
its ID and a matching secret K.

Definition 1 (RFID Framework [32]). An RFID scheme consists of the fol-
lowing algorithms:

– SetupReader(1k): setup the reader by generating the necessary keys, depend-
ing on the security parameter k. The function returns the public and private
keys of the reader. Public keys are assumed to be publicly released by the
algorithm, private keys are stored in the reader.

570 J. Hermans et al.

– SetupTag(ID): return the tag specific secret K and the initial state S of the
tag. The pair (ID, K) will be stored in the reader, the state S in the tag.
Note that K is not necessarily stored in the tag, but the definition of the
protocol might include K in the state S.

– Protocol: a polynomial-time interactive protocol between a reader and a tag.
The reader ends with a tape output.

All the models discussed below fit the above general RFID system definition.
A function f : N → R is called ‘polynomial’ in the security parameter k ∈ N

if f(k) = O(kn), with n ∈ N. It is called ‘negligible’ if, for every c ∈ N there
exists an integer kc such that f(k) ≤ k−c for all k > kc. We denote a negligible
function by ε.

If T is a set, t ∈R T means that t is chosen uniformly at random from T . |T |
denotes the cardinality of the set. If A is an algorithm, then AO denotes the fact
that A has access to the oracle O.

3 Existing Privacy Models

This section discusses certain existing RFID privacy models. Most models fea-
ture a correctness (no false negatives), security (no false positives) and privacy
definition.

Note that covering all existing models would exceed the scope of this paper
by far. Many models, including the ones introduced in [2, 7, 11, 14, 16, 20, 31] do
not allow corrupted tags to be traced. We have selected two such models [14,20]
for further discussion, in addition to the stronger models of Vaudenay [32] and
Canard et al. [8].

3.1 Vaudenay

Several concepts from the privacy model introduced by Vaudenay [32] are used
in our model. We therefore present this in detail.

Adversarial model. The adversary of the Vaudenay model has the ability to
influence all communication between a tag and the reader and can therefore
perform man-in-the-middle attacks on any tag that is within its range. It may
also obtain the result of the authentication of a tag, i.e. whether the reader
accepts or rejects the tag. The adversary may also ‘draw’ (at random) tags and
then ‘free’ them again, moving them inside and outside its range. During these
interactions the adversary has to use a virtual identifier (not the tag’s real ID)
in order to refer to the tags that are inside its range. Finally the adversary may
corrupt tags, thereby learning their entire internal state.

The above interactions take place over eight oracles that the adversary may
invoke: CreateTag(ID), DrawTag(distr) → (vtag) , Free(vtag), Launch →
π, SendReader(m, π) → m′, SendTag(m, vtag) → m′, Result(π) → x and
Corrupt(vtag). vtag denotes a virtual tag reference, π a protocol instance, distr

A New RFID Privacy Model 571

a polynomially bounded sampling algorithm, m and m′ messages and ID a tag
ID. For a complete definition of the oracles the reader is referred to [32].

The Vaudenay model divides adversaries into different classes, depending on
restrictions regarding their use of the above the oracles. In particular, a strong
adversary may use all eight oracles without any restrictions. A destructive ad-
versary is not allowed to use a tag after it has been corrupted. This models
situations where corrupting a tag leads to the destruction of the tag. A forward
adversary can only do other corruptions after the first corruption. That is, no
protocol interactions are allowed after the first corrupt. A weak adversary does
not have the ability to corrupt tags. Orthogonal to these four attacker classes
there is the notion of wide and narrow adversary. A wide adversary has access
to the result of the verification by the server while a narrow adversary does not.

Due to their generality, the above restrictions can be used perfectly in other
privacy models. Throughout the paper we will frequently refer to strong, de-
structive, forward, weak and wide/narrow adversaries.

The equations below show the most important relations between the above
privacy notions:

Wide Strong ⇒ Wide Destructive ⇒ Wide Forward ⇒ Wide Weak
⇓ ⇓ ⇓ ⇓

Narrow Strong⇒ Narrow Destructive⇒ Narrow Forward ⇒ Narrow Weak

In this case A ⇒ B means that if the protocol is A-private it implies that
the protocol is B-private. A protocol that is Wide Strong private, for exam-
ple, obviously also belongs to all other privacy classes, that only allow weaker
adversaries.

Privacy, security and correctness. In general, an RFID protocol should
satisfy (a) correctness (a ‘real’ tag is always accepted), (b) security (fake tags are
rejected) and (c) privacy (tags cannot be identified or traced). Privacy is defined
by means of the notion of a ‘trivial’ adversary. Intuitively, a trivial adversary
does not ‘use’ the communication captured during the protocol run to determine
its output.

Definition 2 (Blinder, trivial adversary - Simplified version of Defi-
nition 7 from [32]). A Blinder B for an adversary A is a polynomial-time
algorithm which sees the messages that A sends and receives, and simulates the
Launch, SendReader, SendTag and Result oracles to A. The blinder does not
have access to the reader tapes. A blinded adversary AB is an adversary who
does not use the Launch, SendReader, SendTag and Result oracles.

An adversary A is trivial if there exists a blinder B such that |Pr(Awins) −
Pr(AB wins)| is negligible.

Intuitively, an adversary is called trivial if, even when blinded, it still produces
the same output. Such an adversary does not ‘use’ the communication captured
during the protocol run in order to determine its output. Note that a blinded
adversary is not the same as a simulator typically found in security proofs: the

572 J. Hermans et al.

blinder is separate from the adversary and has no access to the adversary’s tape.
The blinder just receives incoming queries from the adversary and has to respond
either by itself or by forwarding the queries to the system.

We are now ready to present the privacy definition.

Definition 3 (Privacy - Simplified version of Definition 6 from [32]).
The privacy game between the challenger and the adversary consists of two
phases:

1. Attack phase: the adversary issues oracle queries according to applicable re-
strictions

2. Analysis phase: the adversary receives the table that maps every vtag to a
real tag ID. Then it outputs true or false.

The adversary wins if it outputs true. A protocol is called P-private, where
P is an adversary class (strong, destructive, . . .), if and only if all winning
adversaries that belong to the class P are trivial.

Besides privacy the protocol should also offer authentication of the tag. We refer
to this property as the security of the protocol.

Definition 4 (Security - Simplified version of Definition 4 from [32]).
We consider any adversary in the class strong. The adversary wins if the reader
identifies an uncorrupted legitimate tag, but the tag and the reader did not have
a matching conversation. The RFID scheme is called secure if the success prob-
ability of any such adversary is negligible.

Definition 5 (Correctness - Definition 1 from [32]). An RFID scheme is
correct if its output is correct except with negligible probability for any polynomial-
time experiment which can be described as follows:

1. set up the reader
2. create a number of tags including a subject one named ID
3. execute a complete protocol between reader and tag ID

The output is correct if and only if Output =⊥ and tag ID is not legitimate or
Output = ID and tag ID is legitimate.

In a follow-up paper [25] to the Vaudenay paper, the concept of mutual authenti-
cation for RFID is defined. The tag simply outputs a boolean, indicating whether
or not the reader was accepted. The authors extend the security definition by
adding a criterion for reader authentication.

Discussion. The paper of Vaudenay inspired many authors to formulate derived
RFID privacy models or to evaluate the (Paise-)Vaudenay model [6,8,12,13,23,
24, 25, 28, 29]. Although Vaudenay’s privacy model is perhaps the strongest and
most complete, it contains some flaws with respect to strong privacy.

Vaudenay’s proof of the statement that ‘strong privacy is impossible’ uncov-
ers some of these flaws. This proof assumes a destructive private protocol. By

A New RFID Privacy Model 573

definition, for every destructive adversary, there exists a blinder. This includes
the adversary that (a) creates one real tag, (b) corrupts this tag right away, (c)
starts a protocol using either the state from the corrupted tag or from another
fake tag. In the end, the blinder has to answer the Result oracle. Obviously,
the adversary knows which tag was selected and knows which result to expect.
However, since the blinder has no access to this random coin of the adversary, it
must be able to distinguish a real and a fake tag just by looking at the protocol
run from the side of the reader. The proof then uses this blinder to construct
a strong adversary. Since all strong adversaries are also destructive, this proves
the impossibility of strong privacy.

Obviously, this proof only works because the blinder is separated from the
adversary. In later work [33], Vaudenay corrects the inconsistency in the model
and shows that strong privacy is indeed possible. In this new approach, the
blinder is given access to the random coin flips of the adversary. The issue with a
separate blinder is exploited multiple times by Armknecht et al. in [1]. Using this
property the authors show the impossibility of reader authentication combined
with respectively narrow forward privacy (if Corrupt reveals the temporary state
of tags) and narrow strong privacy (if Corrupt only reveals the permanent state
of tags).

Independent from this correction, Ng et al. [23] also identified the problems
with strong privacy. They propose a solution, based on the concept of a ‘wise’
adversary that does not make any ‘irrelevant’ queries to the oracles i.e. queries
to which it already knows the answer. The authors claim that, if the protocol
does not generate false negatives, then a wise adversary never calls the Result
oracle. Given the vague definition of wise adversaries it is hard to verify these
claims. The existence of attacks which exploit false positives [4] however, suggests
that the general claim that Result is not used by a wise adversary is incorrect.
Based on this questionable general claim, the authors further identify an IND-
CPA-based protocol as being strong private, without giving a formal proof.2

3.2 Canard et al.

Model. The model of Canard et al. [8] builds on the work of Vaudenay, so the
definition of oracles is quite similar. For the privacy definition the model requires
the adversary to produce a non-obvious link between virtual tags.

Definition 6. (vtagi, vtagj) is a non-obvious link if vtagi and vtagj refer to the
same ID and if a ‘dummy’ adversary, who only has access to CreateTag, Draw,
Free, Corrupt, is not able to output this link with a probability better than 1/2.3

2 Note that the original security proof (i.e. no false positives) by Vaudenay requires
IND-CCA2 encryption, so using only IND-CPA encryption would require a new
security proof. The Result may therefore serve as a decryption oracle.

3 It is unclear why the authors use the probability threshold 1/2, since one would
expect some dependency on the total number of non-obvious links. One slightly
different interpretation is that a ‘dummy’ adversary cannot determine if a given
non-obvious candidate link vtagi, vtagj is a link in reality or not.

574 J. Hermans et al.

One major difference with respect to Vaudenay’s model is that a ‘dummy’ ad-
versary is used instead of a blinded adversary. This avoids some of the issues
surrounding the use of a blinder, because a ‘dummy’ adversary can also access
its own random tape, while a blinder cannot access the adversary’s random tape.

The definition requires the adversary to output a non-obvious link. A protocol
is said to be untraceable if, for every adversary A, it is possible to construct a
‘dummy’ adversary Ad such that |SuccUnt

A (1k)− SuccUnt
Ad

(1k)| ≤ ε(k).

Discussion. While the work certainly has its merit in formalizing and fixing the
Vaudenay model (by using a dummy adversary instead of a blinder), the model
of Canard et al. lacks generality because it focuses on non-trivial links. Other
relevant properties, which do not imply the leakage of a non-trivial link, are not
considered a privacy breach. For example, the cardinality of the set of active tags
can be leaked without leaking a non-trivial link. Because of the limited scope of
untraceability, we are not using this model.

3.3 Deng, Li, Yung and Zhao

Model. Deng et al. presented their RFID Privacy Framework in [14].
The correctness (‘adaptive completeness’) definition used by Deng et al. is

more elaborate than Vaudenay’s definition. In particular, it allows the adversary
to execute multiple complete protocol runs. This captures ‘desynchronization’
attacks where the adversary communicates a number of times with a tag (without
involvement of the reader), in order to desynchronize the tag’s state such that
it will no longer be recognised by the reader.

The security definition considers both tag-to-reader and reader-to-tag authen-
tication. The definition is similar to Vaudenay’s since it requires matching ses-
sions at reader and tag side. In Deng et al.’s model the last message is always
sent by the reader, so an adversary could just prevent the tag from finishing the
protocol by dropping this last message. Deng et al. therefore define the notion of
‘matching sessions’ such that last message attacks do not breach security. Vau-
denay omits an exact definition of ‘matching sessions’, and therefore issues like
the last message attack are not captured.

While the correctness and security definitions of Vaudenay and Deng et al.
appear to be, to a large extent, equivalent, there is a significant discrepancy
in the privacy definitions. Firstly, there is no notion of virtual tags in Deng et
al.’s model; instead the adversary can refer to all tags using their real identifiers.
Secondly, the adversary cannot create new tags. Thirdly, Deng et al. apply a zero-
knowledge proof instead of Vaudenay’s blinder construction. Informally stated,
in the zero-knowledge experiment, the adversary (in the real world) consists of
these phases:

1. Standard interaction using the oracles.
2. Select one tag at random (the ‘challenge’ tag) from the set of clean (non-

corrupted and non-active) tags.

A New RFID Privacy Model 575

3. Interaction using the oracles, except that the adversary can only interact
with the non-clean tags and the challenge tag. Moreover, the challenge tag
cannot be corrupted.

4. Output a view from the previous step and the index of the challenge tag.

The simulated world is the same, except that, in the third phase, the adversary
cannot access the challenge tag. If all PPT adversaries can be simulated such
that the output of the adversary and simulator are computationally/statistically
indistinguishable, then the protocol is considered zk-private. This implies that
for all adversaries the output can actually be derived without interacting with
the challenge tag (as the simulator does).

Discussion. Because of the very specific restrictions imposed in the third phase,
this model is significantly weaker than Vaudenay’s. Firstly, the model focuses on
deriving information about a specific challenge tag (selected by the adversary),
while in Vaudenay’s model any statement that reveals information on the un-
derlying identity of any of the tags is considered a privacy breach. Secondly, the
adversary’s ability to corrupt tags is limited. In Vaudenay’s (corrected) strong
privacy model one could prove that a protocol satisfies the privacy definition
even if the ‘challenge’ tag is corrupted. The restriction that the challenge tag
must be clean is, according to the authors, introduced to ensure that the tag
is not stuck halfway a protocol run. Otherwise one can trivially distinguish the
challenge tag by checking whether or not it responds to the remainder of the
protocol run. Since a protocol run takes only a short timespan, obviously linking
two protocol messages from the same run to the same tag should not be consid-
ered a privacy breach. However, we believe that, for the purposes of excluding
this as a privacy breach, the concept of virtual tags is more suitable than overly
limiting the adversary’s corruption abilities in this manner.

The zero-knowledge private protocol proposed in [14] uses a counter as the tag
state. The value of this counter is incremented after each protocol run completed
by the tag. Obviously, this protocol does not satisfy the privacy definition if the
adversary can corrupt the targeted tag, because the adversary learns the value
of the counter (and the key) and, by decrementing the value of the counter,
it can identify previous protocol runs of the targeted tag. The model in [14]
has however been specifically tuned to disallow corruption of the challenge tag,
which is a rather unrealistic assumption and thus undermines the significance of
the claims that follow from its application.

The security and correctness definitions are more rigorous than Vaudenay’s,
so they can be a valuable alternative to them.

3.4 Juels-Weis

Model. The Juels-Weis model [20] is based on the notion of indistinguishability.
The model does not feature a DrawTag query and the Corrupt query is replaced
by a SetKey query, which returns the current secret of the tag and allows the
adversary to set a new secret. Figure 3.4 shows a simplified version of the privacy

576 J. Hermans et al.

Experiment Exppriv
A,S :

1. Setup:
– Generate n random keys keyi.
– Initialize the reader with the random keyi.
– Create n tags, each with a keyi.

2. Phase (1): Learning
– A can interact with a polynomial number of calls to the system, but can only

issue SetKey on n − 2 tags, leaving at least 2 uncorrupted tags
3. Phase (2): Challenge

– A selects two uncorrupted tags T0 and T1. Both are removed from the set of
tags.

– One of these tags (Tb, the challenge tag) will be selected at random by the
challenger.

– A can make a polynomial number of calls to the system, but cannot corrupt the
challenge tag Tb.

– A outputs a guess bit g ∈ {0, 1}.

Fig. 1. Privacy experiment from [20]

game. The protocol is considered private if ∀A,Pr
[
Exppriv

A,S guesses b correctly
]
≤

1
2 + ε

Discussion. The Juels-Weis model is one of the few models that are based on
a simple indistinguishability game instead of the notion of simulatability. The
model is limited by the fact that the challenge tags cannot be corrupted. In terms
of the model in [32] it would be a Weak adversary with regard to the challenge
tags. For example, attacks in which the adversary links together executions of a
tag that have taken place prior to its corruption are not possible in the Juels-Weis
model because of this.

The model from [16] is very similar, with the difference that the privacy is
defined as distinguishing the reply from a real tag from a random reply.

3.5 Bohli-Pashalidis

Model. Unlike the previous models, the Bohli-Pashalidis model [5] is not an
RFID-specific model. Unfortunately, it captures only privacy properties; prop-
erties like security and correctness are not covered. The model considers a set of
users (with unique identifiers) U , whose size is at least polynomial in a security
parameter. There is no formal difference between different types of player, like
there is with tag and reader in most RFID models. The system S can be invoked
with input batches (u1, α1), (u2, α2), . . . , (uc, αc) ∈ (U , A)c, consisting of pairs of
user identifiers and ‘parameters’ and will output a batch ((e1, . . . ec), β), with
the outputs ei from each system invocation and a general output β, applying to
the batch as a whole. Users can also be corrupted, revealing their internal state
to the adversary.

The authors investigate the properties of the function f ∈ F , where F = {f :
{1, 2, . . . , n} → U} is the space of functions that map the serial number of each
output element to the user it corresponds to. In the Strong Anonymity (SA)
setting, no information should be revealed to the adversary about the function

A New RFID Privacy Model 577

f , guaranteeing the highest level of privacy. Several weaker notions (which re-
veal some information on f) are defined and the relations among notions are
examined.

In the RFID setting the batch properties are currently not considered, al-
though this would be an interesting extension, since some localization protocols
are based on batch invocations of a large set of RFID tags. For simplicity we
restrict ourselves to the Bohli-Pashalidis model for online systems. For these
systems, where all batches have size one (i.e. the system never waits for multiple
inputs until it produces some output), the only two applicable distinct notions
are Strong Anonymity (SA) and Pseudonymity (PS).

The adversarial model is based on indistinguishability. The adversary can
cause different users to invoke the system using different parameters (e.g. mes-
sages) in both a left and right world with the Input((u0, α0), (u1, α1)) oracle.
Based on a bit b, selected by the challenger, the system will be invoked with
the user-data pair (ub, αb). That is, the adversary itself defines the functions
f0, f1 ∈ F , for respectively the left and right world. The adversary can also
corrupt users. At the end of the game the adversary has to output a guess bit
g. The adversary wins the game if g = b. By imposing restrictions on f0 and f1,
the authors investigate different levels of privacy.

Definition 7. A privacy protecting system S is said to unconditionally provide
privacy notion X, if and only if the adversary A is restricted to invocations
(u0, α0) and (u1, α1) such that f0 and f1 are X-indistinguishable for all invoca-
tions and for all such adversaries A, it holds that AdvX

S,A(k) = 0.

Similar definitions for computational (A is polytime in k and AdvX
S,A(k) ≤ ε(k))

and statistical privacy are available.

Discussion. Due to its generality, and due to the fact that it is not meant to
cover security properties, the Bohli-Pashalidis model needs non-trivial adapta-
tions in order to apply to RFID setting. In its current form, the model does
not support multi-pass protocols, where linking two messages from the same
protocol run is not a privacy breach. Moreover there is no distinction between
tags that need to be protected, and the reader for which privacy is not an issue.
An interesting question is whether the strictly binary distinguishing game (only
one bit of randomness in the challenge) provides enough flexibility compared to
other models, like Vaudenay’s, where there are multiple bits of randomness that
are to be guessed.

4 Our Model

4.1 Adversarial Model and Privacy

We use the setup from Definition 1. We assume a central reader R and a set of
tags T = {T1, T2, . . . , Ti}. T is initially empty, and tags are added dynamically

578 J. Hermans et al.

by the adversary. The reader maintains a database of tuples (IDi, Ki), one for
every tag Ti ∈ T . Moreover, every tag Ti stores an internal state Si.

Let A denote the adversary, which can adaptively control the system S. A
interacts with S through a set of oracles. The experiment that the challenger
sets up for A (after the security parameter k is fixed) proceeds as follows:

Expb
S,A(k):

1. b ∈R {0, 1}
2. SetupReader(1k)
3. g ← ACreateTag,Launch,DrawTag,Free,SendTag,SendReader,Result,Corrupt()
4. Return g == b.

At the beginning of the experiment, the challenger picks a random bit b. The
adversaryA subsequently interacts with the challenger by means of the following
oracles:

– CreateTag(ID) → Ti: on input a tag identifier ID, this oracle calls
SetupTag(ID) and registers the new tag with the server. A reference Ti

to the new tag is returned. Note that this does not reject duplicate IDs.
– Launch() → π, m: this oracle launches a new protocol run, according to

the protocol specification. It returns a session identifier π, generated by the
reader, together with the first message m that the reader sends. Note that
this implies that our model does not support tag-initiated protocols.

– DrawTag(Ti,Tj) → vtag: on input a pair of tag references, this oracle gen-
erates a virtual tag reference, as a monotonic counter, vtag and stores the
triple (vtag, Ti, Tj) in a table D. Depending on the value of b, vtag either
refers to Ti or Tj . If one of the two tags Ti or Tj is already referenced in
the table (i.e. is already passed to a DrawTag without being released with
a Free), then this oracle returns ⊥. Otherwise, it returns vtag.

– Free(vtag)b: on input vtag, this oracle retrieves the triple (vtag, Ti, Tj)
from the table D. If b = 0, it resets the tag Ti. Otherwise, it resets the tag
Tj . Then it removes the entry (vtag, Ti, Tj) from D. When a tag is reset,
its volatile memory is erased. The non-volatile memory, which contains the
state S, is preserved.

– SendTag(vtag,m)b → m′: on input vtag, this oracle retrieves the triple
(vtag, Ti, Tj) from the table D and sends the message m to either Ti (if
b = 0) or Tj (if b = 1). It returns the reply from the tag (m′). If the above
triple is not found in D, it returns ⊥.

– SendReader(π, m) → m′: on input π, m this oracle sends the message m
to the reader in session π and returns the reply m′ from the reader (if any)
is returned by the oracle.4

– Result(π): on input π, this oracle returns a bit indicating whether or not
the reader accepted session π as a protocol run that resulted in successful
authentication of a tag. If the session with identifier π is not finished yet, or
there exists no session with identifier π, ⊥ is returned.

4 If no active session π exists, the reader is likely to return ⊥.

A New RFID Privacy Model 579

– Corrupt(Ti): on input a tag reference Ti, this oracle returns the complete
internal state of Ti.5 Note that the adversary is not given control over Ti.

According to the above experiment description, the challenger presents to the
adversary the system where either the ‘left’ tags Ti (if b = 0) or the ‘right’ tags Tj

(if b = 1) are selected when returning a virtual tag reference in DrawTag. The
function f0 ∈ F (where F = {f : {1, 2, . . . , n} → T }, see Section 3.5) maps the
DrawTag invocations (referenced by an index k) to the tag Ti, which was passed
as first argument to DrawTag. Similarly, f1 maps invocation serial numbers to
the second argument to DrawTag. f0 and f1 therefore describe the ‘left’ and the
‘right’ world, respectively.
A queries the oracles a number of times and, subsequently, outputs a guess

bit g. We say that A wins the privacy game if and only if g = b, i.e. if it correctly
identifies which of the worlds was active. The advantage of the adversary is
defined as

AdvS,A(k) =
∣∣Pr

[
Exp0

S,A(k) = 1
]
+ Pr

[
Exp1

S,A(k) = 1
]
− 1
∣∣ (1)

4.2 Security, Correctness, Privacy

Since our model focuses on privacy, the correctness and security property are
not discusses further. Both the Vaudenay and Deng et al. security and correct-
ness definition can be used combined with the new privacy definition, without
compatibility issues (also see Section 3.1 and Section 3.3).

The adversary restrictions, as defined in Section 3.1, also apply to our pri-
vacy definition. Depending on the acceptable usage of the Corrupt oracle, an
adversary in our model is either Strong, Destructive (Corrupt destroys a tag),
Forward (after the first Corrupt only further corruptions are allowed), or Weak
(no Corrupt oracle) adversaries. Depending on the allowed usage of the Result
oracle, there exist Narrow (no Result oracle) and Wide adversaries. X is used
to denote one of these privacy notions.

Definition 8 (Privacy). An RFID system S, is said to unconditionally pro-
vide privacy notion X, if and only if for all adversaries A of type X, it holds
that AdvX

S,A(k) = 0. Similarly, we speak of computational privacy if for all
polynomial time adversaries, AdvX

S,A(k) ≤ ε(k)

We also define X+ privacy notion variants, where X refers to the basic privacy
notion and + to the notion that arises when the corruption abilities of the
adversary are further restricted (see [5]). Formally, an RFID system is said to
be X+ private if it is X private and if, for all adversaries, f0 ≈T̂ f1. Here, f0 ≈T̂

f1 means that ∀i such that f0(i) ∈ T̂ or f1(i) ∈ T̂ , it holds that f0(i) = f1(i),

5 Both the volatile and non-volatile state is returned. For multi-pass protocols it might
be necessary to relax this to only the non-volatile state; to force the adversary to
only corrupt tags Ti that are currently not drawn; or to use the concept of X+

privacy, as discussed in Section 4.3.

580 J. Hermans et al.

where T̂ denotes the set of corrupted tags. This implies that, whenever a tag
is corrupted at some point during the privacy game, it always has to be drawn
simultaniously in both the left and the right world using a DrawTag(Ti, Ti) query
with identical arguments.

4.3 Motivation and Comparison

Our proposed model is based on the well-studied notion of (left-or-right) indis-
tinguishability. This avoids the issues with less well-studied concepts such as
blinders that the Vaudenay model suffers from (see Section 3.1). Moreover, since
several cryptographic schemes have proven security properties based on indis-
tinguishability games (e.g. IND-CPA, IND-CCA, IND-CCA2...), this is likely to
simplify the proofs using our model when using these schemes as building blocks.

Note that the Juels-Weis model from Section 3.4 also uses a traditional indis-
tinguishability setup. However, the model requires the adversary to distinguish
one out of two selected tags in the final phase. The disadvantage of this approach
is that it does not take into account other properties that might leak privacy (e.g.
cardinality) and that it limits the use of tag corruption. The Vaudenay model
did introduce some crucial tools like virtual tag references and the corruption
types that are still required.

Modelling details. There are certain notable differences of our model when com-
pared to the Bohli-Pashalidis model [5] and the other models discussed in Sect. 3:

– The introduction of CreateTag(·): since the set of tags is not predefined we
allow the adversary to dynamically create new tags.

– DrawTag(·, ·) and Free(·) are used to introduce the concept of virtual tags.
This concept is needed since otherwise SendTag(·, ·) would have to accept
two tag/message pairs (and select one of them based on the value of b). In
this case it would be trivial to determine the bit b for multi-pass protocols,
simply by using different tags for each pass of the protocol if b = 0 and the
same tag if b = 1. The protocol would only succeed if b = 1, thus allowing
detection of b. Hence, it is crucial that the same tag is always used within a
certain protocol run, which can be ensured by using virtual tag identifiers.

– Free(·) clears the volatile memory of tag, in order to avoid attacks that
depend on leaving a tag hanging in a temporary state. Such an attack is
described in [25].

– A separate communication oracle for tags and reader is used, since the reader
is not considered as an entity whose privacy can be compromised.

– Corrupt(·): corruption is done with respect to a tag, not a virtual tag. If
Corrupt(·) would accept a vtag, then determining the bit b becomes trivial
by performing the following attack:
• vtaga ← DrawTag(T1,T2)

• Ca ← Corrupt(vtaga)

• Free(vtaga)

• vtagb ← DrawTag(T1,T3)

• Cb ← Corrupt(vtagb)

A New RFID Privacy Model 581

If Ca = Cb then b = 0, otherwise b = 1.
We believe that it is realistic to assume that one has the tag identifier Ti

when corrupting a tag, since corruption implies having physical access to a
tag.
Note that stateful protocols (which update their state after a protocol run)
do not satisfy our privacy definition. By issuing a Corrupt(Ti) query before
and after a protocol run, one can always identify whether or not the tag has
been active. For such protocols, one could use the significantly weaker X+

privacy notions.
– In the current setup Corrupt(Ti) reveals the full internal state of the tag,

i.e. both its volatile and non-volatile parts. This follows [1] where it is shown
that, if corruptions reveal the volatile state, then the resulting privacy no-
tions are stronger. Single-pass protocols (e.g. challenge-response) do not suf-
fer from any issues, since the volatile memory is typically erased after sending
the reply, and hence all computations are confined to the invocation of the
SendTag oracle. Multi-pass protocols on the contrary, typically require stor-
age of data in between SendTag invocations. Because corruption yields the
entire internal state, one could make additional assumptions on the corrup-
tion abilities of the adversary by restricting corruption to the non-volatile
state. An even stronger restriction would be to allow only corruption of tags
that are not drawn in either the left or right world; or use the X+ privacy
notions.

5 Evaluating Existing Protocols

This section evaluates several protocols (or classes of protocols) using our privacy
model. For security and correctness results we refer to the original papers.

Several protocol ‘prototypes’ based on symmetric cryptography are evaluated
by Ng et al. in [24] with respect to Vaudenay’s privacy model. Since none of
these protocols attain wide-forward privacy, we expect them to behave the same
in our model. For this reason, these protocols are not discussed further.

5.1 Vaudenay’s Public Key Protocol

Figure 2 shows the public key protocol presented by Vaudenay. The reader sends
out a random number a and the tag encrypts this challenge, combined with the
shared secret K and tag ID under the public key KP of the reader. The reader can
decrypt the tag’s reply and verify the shared secret K in its database. The proto-
col relies on the encryption being IND-CPA to achieve narrow-strong Vaudenay-
privacy and IND-CCA2 to achieve security and forward privacy. However, this
protocol is wide-strong private under our model, if the underlying encryption is
IND-CCA2.

Theorem 1. If the encryption used in the protocol from Figure 2 is IND-CPA,
then the protocol is strong private for narrow adversaries (i.e. adversaries that
do not use the Result query).

582 J. Hermans et al.

State: KP , ID, K

Tag T

Secret keys: KS , KM

Reader R

a ∈R {0, 1}α

a

c = EncKP
(ID||K||a)

c

Parse DecKS
(c) =

ID||K||a′

Check a = a′.
Check K = FKM

(ID).
Output ID or fail.

Fig. 2. Public key RFID protocol from [32]

State: S

Tag T

Db:. . . , (ID, K = S), . . .

Reader R

a ∈R {0, 1}α

a

c = F (S, a)
S ← G(S)

c

Find (ID, K) and i

s.t. c = F (Gi(K), a)
and i < t.
Replace K by Gi(K)
Output ID or fail.

Fig. 3. RO protocol from [32]

Proof. Given an adversary A that wins the privacy game with non-negligible
advantage, we show how to create an adversary A′ that wins the IND-CPA
game with non-negligible advantage.

The adversary A′ runs the adversary A and answers all oracle queries from
A by simply simulating the system S, with the following exceptions:

– The public key KP of the reader is the public key of the IND-CPA game.
– SendTag: retrieve the tag references Ti and Tj from the table using the

virtual tag identity vtag. For these two tags, it generates the messages m0 =
IDi||Ki||a and m1 = IDj ||Kj ||a. The two messages m0, m1 are forwarded
to the IND-CPA oracle, which returns the encryption under KP of one of
the messages.

At the end of the game A′ outputs whatever guess A outputs. The privacy game
is perfectly simulated for the inner adversary A.

Assume that A breaks privacy, i.e. it can distinguish the left and right world,
then A′ wins the IND-CPA game. Since IND-CPA with only one call to the
encryption oracle is equivalent to IND-CPA with multiple calls to the encryption
oracle, this proves the (narrow) privacy of the protocol. �

The results from Lemma 8 in [32] still hold, provided the security and correctness
definitions from Vaudenay are used. So, based on these results, the protocol above
is also wide forward private.

Theorem 2. If the encryption used in the protocol from Figure 2 is IND-CCA2,
then the protocol is strong private for wide adversaries.

A New RFID Privacy Model 583

Proof. The proof is similar to the proof for Theorem 1 above. When receiving a
Result query, the adversary proceeds as follows. It first compares the ciphertext
c to a list of outputs generated by the encryption oracle from the IND-CPA
game (which are used in the SendTag oracle). If it matches one of these, true is
returned. Otherwise, the result oracle forwards the ciphertext to the IND-CCA
decryption oracle and receives the matching plaintext m. The plaintext is then
parsed and verified, just as the reader would do. This game gives the same result
as the IND-CPA game described in Theorem 1. �

5.2 RO-Based Protocol

Another (weaker) protocol from [32], shown in Figure 3, makes use of two random
oracles F and G. The protocol uses an updating state S, which is shared by both
tag and reader. The reader sends out a random number a and the tag computes
a reply by applying F on the state S and a. The state is afterwards updated
using G. Obviously, such a protocol cannot be (narrow) strong private, since the
tag can trivially be traced after being corrupted.

Theorem 3. The protocol shown in Figure 3 is narrow-destructive private.

Proof. Assume that the challenge bit b = 0. We simulate the SendTag oracle by
returning a random value c. There will never be a SendTag query to a corrupted
tag, since tags are destroyed after corruption. This way we obtain a ‘random’
world that is indistinguishable from the ‘left’ world obtained when b = 0, pro-
vided the adversary makes no calls to F and G identical to the queries inside the
SendTag oracle when b = 0. The probability of this happening is however negli-
gible. By applying the same argument to the adversary execution when b = 1,
we show that the adversary cannot distinguish between the two worlds. �

6 Conclusion

Several RFID privacy models were critically examined with respect to their as-
sumptions, practical usability and other issues that arise when applying their
privacy definition to concrete protocols. We have shown that, while some mod-
els are based on unrealistic assumptions, others are impractical to apply. We
presented a new RFID privacy model, that, based on the classic notion of in-
distinguishability, combines the benefits of existing models while avoiding their
identified drawbacks. By proving it for a concrete protocol, we show that the
notion of (wide) strong privacy can be achieved under our model. Since the pri-
vacy model is based on an indistinguishability game, we can fall back on a wide
range of existing proof techniques, making the model quite straightforward to
use in practice.

Acknowledgements. The authors would like to thank Elena Andreeva, Jun-
feng Fan, Sebastian Faust, and Roel Peeters for the frequent meetings and dis-
cussions; and the anonymous reviewers for their comments and suggestions.

584 J. Hermans et al.

References

1. Armknecht, F., Sadeghi, A.-R., Scafuro, A., Visconti, I., Wachsmann, C.: Impos-
sibility Results for RFID Privacy Notions. Transactions on Computational Sci-
ence 11, 39–63 (2010)

2. Avoine, G., Dysli, E., Oechslin, P.: Reducing Time Complexity in RFID Sys-
tems. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 291–306.
Springer, Heidelberg (2006)

3. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification Protocols Se-
cure against Reset Attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 495–511. Springer, Heidelberg (2001)

4. Bleichenbacher, D.: Chosen Ciphertext Attacks against Protocols Based on the
RSA Encryption Standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

5. Bohli, J.-M., Pashalidis, A.: Relations Among Privacy Notions. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 362–380. Springer, Heidelberg (2009)

6. Bringer, J., Chabanne, H., Icart, T.: Efficient zero-knowledge identification schemes
which respect privacy. In: Li, W., Susilo, W., Tupakula, U.K., Safavi-Naini, R.,
Varadharajan, V. (eds.) ASIACCS, pp. 195–205. ACM, New York (2009)

7. Burmester, M., Le, T., Medeiros, B.: Provably secure ubiquitous systems: Uni-
versally composable RFID authentication protocols. In: Proceedings of the 2nd
IEEE/CreateNet International Conference on Security and Privacy in Communi-
cation Networks (SECURECOMM). IEEE Press, Los Alamitos (2006)

8. Canard, S., Coisel, I., Etrog, J., Girault, M.: Privacy-preserving rfid systems:
Model and constructions. Cryptology ePrint Archive, Report 2010/405 (2010),
http://eprint.iacr.org/

9. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC, pp. 235–244 (2000)

10. Atmel Corporation. Innovative Silicon IDIC solutions (2007),
http://www.atmel.com/dyn/resources/prod_documents/doc4602.pdf

11. Damg̊ard, I., Østergaard, M.: RFID Security: Tradeoffs between Secu-
rity and Efficiency. Cryptology ePrint Archive, Report 2006/234 (2006),
http://eprint.iacr.org/

12. D’Arco, P., Scafuro, A., Visconti, I.: Revisiting DoS Attacks and Privacy in RFID-
Enabled Networks. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp.
76–87. Springer, Heidelberg (2009)

13. D’Arco, P., Scafuro, A., Visconti, I.: Semi-Destructive Privacy in DoS-Enabled
RFID systems. In: RFIDSec (2009)

14. Deng, R.H., Li, Y., Yung, M., Zhao, Y.: A New Framework for RFID Privacy. In:
Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345,
pp. 1–18. Springer, Heidelberg (2010)

15. Goyal, V., Sahai, A.: Resettably Secure Computation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 54–71. Springer, Heidelberg (2009)

16. Ha, J., Moon, S.-J., Zhou, J., Ha, J.: A New Formal Proof Model for RFID Location
Privacy. In: Jajodia, S., López, J. (eds.) [19], pp. 267–281

17. Hutter, M., Schmidt, J.-M., Plos, T.: RFID and Its Vulnerability to Faults. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 363–379. Springer,
Heidelberg (2008)

18. I.C.A. Organization. Machine Readable Travel Documents, Doc 9303, Part 1 Ma-
chine Readable Passports, 5th edn. (2003)

http://eprint.iacr.org/
http://www.atmel.com/dyn/resources/prod_documents/doc4602.pdf
http://eprint.iacr.org/

A New RFID Privacy Model 585

19. Nali, D., van Oorschot, P.C.: CROO: A Universal Infrastructure and Protocol to
Detect Identity Fraud. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 130–145. Springer, Heidelberg (2008)

20. Juels, A., Weis, S.A.: Defining Strong Privacy for RFID. In: PerCom Workshops,
pp. 342–347. IEEE Computer Society, Los Alamitos (2007)

21. Kasper, T., Oswald, D., Paar, C.: New Methods for Cost-Effective Side-Channel
Attacks on Cryptographic RFIDs. In: RFIDSec (2009)

22. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer, Heidelberg (2007)

23. Ng, C.Y., Susilo, W., Mu, Y., Safavi-Naini, R.: RFID Privacy Models Revisited.
In: Jajodia, S., López, J. (eds.) [19], pp. 251–266

24. Ng, C.Y., Susilo, W., Mu, Y., Safavi-Naini, R.: New Privacy Results on Synchro-
nized RFID Authentication Protocols against Tag Tracing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 321–336. Springer, Heidelberg (2009)

25. Paise, R.-I., Vaudenay, S.: Mutual Authentication in RFID: Security and Privacy.
In: ASIACCS 2008, pp. 292–299. ACM Press, New York (2008)

26. Plos, T.: Evaluation of the Detached Power Supply as Side-Channel Analysis Coun-
termeasure for Passive UHF RFID Tags. In: Fischlin, M. (ed.) CT-RSA 2009.
LNCS, vol. 5473, pp. 444–458. Springer, Heidelberg (2009)

27. Sadeghi, A.-R., Visconti, I., Wachsmann, C.: User Privacy in Transport Systems
Based on RFID E-Tickets. In: Bettini, C., Jajodia, S., Samarati, P., Wang, X.S.
(eds.) PiLBA. CEUR Workshop Proceedings, vol. 397 (2008), CEUR-WS.org

28. Sadeghi, A.-R., Visconti, I., Wachsmann, C.: Anonymizer-Enabled Security and
Privacy for RFID. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 134–153. Springer, Heidelberg (2009)

29. Sadeghi, A.-R., Visconti, I., Wachsmann, C.: Efficient RFID security and privacy
with anonymizers. In: RFIDSec (2009)

30. NXP Semiconductors. MIFARE, http://www.mifare.net/
31. Van Le, T., Burmester, M., de Medeiros, B.: Universally composable and forward-

secure RFID authentication and authenticated key exchange. In: Proceedings of the
2nd ACM Symposium on Information, Computer and Communications Security,
ASIACCS 2007, pp. 242–252. ACM Press, New York (2007)

32. Vaudenay, S.: On Privacy Models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

33. Vaudenay, S.: Invited talk at RFIDSec 2010 (2010)
34. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and Privacy As-

pects of Low-Cost Radio Frequency Identification Systems. In: Hutter, D., Müller,
G., Stephan, W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS,
vol. 2802, pp. 201–212. Springer, Heidelberg (2004)

A Extending the Model

In a typical indistinguishability-based security/privacy definition, a challenger
picks a random bit b and then offers a set of well-defined interfaces over which an
adversary A can interact with the challenger. In ‘left-or-right’ security/privacy
definitions, in particular, the interface specification requires that A provides a
pair of identically formatted inputs to the challenger. The value of b can be
interpreted as indicating in which of two possible configurations the challenger

CEUR-WS.org
http://www.mifare.net/

586 J. Hermans et al.

operates, namely the ‘left’ or the ‘right’ configuration, andA’s job is to determine
this configuration.

It is possible to generalise left-or-right indistinguishability such that, the chal-
lenger picks one out of 2n possible configurations, giving us an n- indistinguish-
ability game, with adversary An. Suppose there is a system S that, if invoked
with some parameter α (taken from a system-specific parameter space A), pro-
duces an output S(α). The challenger chooses a positive number n, such that n

is polynomial in k and generates an n-bit vector b̂ = (b̂1, . . . , b̂n) uniformly at
random. Finally, it offers an interface over which An may query the challenger
with triplets of the form (i, α0, α1) ∈ {1, . . . , n}×A×A. On input such a triple,
the challenger outputs S(αb̂i

).
At the end of the game, An outputs a guess ĝ for b̂, and we say that it wins

the game if ĝ = b̂. If there exists some An such that Pr(Anwins) > 1/2n + ε,
where ε is any function that is non-negligible in k, then we say that An has
‘non-negligible advantage’ and that S is not secure.

In general, it is unclear whether or not n-indistinguishability implies
1-indistinguishability. In principle, a system could be secure if the adversary
has to identify a string from a space that is exponentially large in k, but may
fail security if the adversary just needs to identify a single hidden bit.

Lemma 1 (1-indistinguishability implies n-indistinguishability). If a sys-
tem S satisfies 1-indistinguishability then S also satisfies n-indistinguishability.

Proof. We construct an 1-indistinguishability adversary A that uses an n- in-
distinguishability adversary An as a black box. A proceeds as follows. First, it
uniformly at random chooses two n-bit vector κ and λ such that κ �= λ. Then
it offers the interface (i, α0, α1) to An. For each (i, α0, α1) received from An, A
forwards the query (ακi , αλi) to the challenger, and returns the challenger’s out-
put. By forwarding the queries this way, A simulates b̂ = κ if b = 0, and b̂ = λ if
b = 1 for An. In the rest of the proof b̂ will denote the κ if b = 0 and λ if b = 1,
¯̂
b will denote the κ if b = 1 and λ if b = 0. Accordingly, and given An’s guess
ĝ, A outputs the guess b = 0 if ĝ = κ, b = 1 if ĝ = λ, or simply a uniformly at
random selected bit otherwise.

Consider the 2n×2n matrix P with elements pi,j = Pr(An outputs j | b̂ = i).
That is, P contains the probabilities that An outputs any possible value ĝ,
conditional on the value of b̂; the element at row number i and column number j
is the probability that An outputs ĝ = j (encoded as a bit vector), given the
challenge bit vector has the value b̂ = i (encoded as a bit vector). Note that, for
all 0 ≤ i ≤ 2n,

∑
j pi,j = 1.

For any given choice of a pair (κ, λ), the probability that An wins (i.e. that it
outputs ĝ = b̂) is 1/2(pκ,κ + pλ,λ). Similarly, the probability that it ouputs ĝ = ¯̂

b
is 1/2(pκ,λ + pλ,κ). Averaging over all possible choices of (κ, λ) we obtain

Pr(An wins) =
1

2n(2n − 1)

∑
κ,λ∈{0,1}n

κ �=λ

1
2
(pκ,κ + pλ,λ) =

D
2n

(2)

A New RFID Privacy Model 587

Pr(err) =
1

2n(2n − 1)

∑
κ,λ∈{0,1}n

κ �=λ

1
2
(pκ,λ + pλ,κ) =

2n −D
2n(2n − 1)

, (3)

where D =
∑2n

i=1 pi,i is the trace of P . By construction of our A, we have

Pr(A wins) = Pr(An wins) + 1/2(1 − Pr(An wins)− Pr(err)) (4)

and substituting Equations 2 and 3 into Equation 4, we obtain

Pr(A wins) =
1
2
+

2n(D − 1)
2n+1(2n − 1)

. (5)

By assumption we have that Pr(An wins) > 1/2n + ε for all functions ε that are
negligible in k. Hence, Pr(An wins) = 1/2n + δ for some non-negligible positive
δ ≤ 1 − 1/2n. In terms of the elements in P , we have D = 1 + 2nδ and when
substituting this into Equation 5 we obtain Pr(A wins) = 1

2 +
2nδ

2(2n−1) > 1/2+δ/2.

Hence, A’s advantage is non-negligible. �

Unlike standard hybrid arguments, the advantage δ is at most divided by 2,
when going from an n-bit distinguisher to a 1-bit distinguisher.

B Mutual Authentication

Since our model is not based anymore on the blinder construction of Paise-
Vaudenay [25], none of the impossibility results of [1] apply. It is straightforward
to modify the proof from Section 5.1 to the mutual authentication protocol based
on IND-CCA encryption from Section 6.3 in [25].

Quantitative Information Flow, with a View�

Michele Boreale1, Francesca Pampaloni2, and Michela Paolini2

1 Università di Firenze, Italy
2 imt - Institute for Advanced Studies, Lucca, Italy

Abstract. We put forward a general model intended for assessment of system
security against passive eavesdroppers, both quantitatively (how much informa-
tion is leaked) and qualitatively (what properties are leaked). To this purpose, we
extend information hiding systems (ihs), a model where the secret-observable re-
lation is represented as a noisy channel, with views: basically, partitions of the
state-space. Given a view W and n independent observations of the system, one is
interested in the probability that a Bayesian adversary wrongly predicts the class
of W the underlying secret belongs to. We offer results that allow one to easily
characterise the behaviour of this error probability as a function of the number of
observations, in terms of the channel matrices defining the ihs and the view W.
In particular, we provide expressions for the limit value as n→ ∞, show by tight
bounds that convergence is exponential, and also characterise the rate of conver-
gence to predefined error thresholds. We then show a few instances of statistical
attacks that can be assessed by a direct application of our model: attacks against
modular exponentiation that exploit timing leaks, against anonymity in mix-nets
and against privacy in sparse datasets.

Keywords: quantitative information flow, statistical attacks, anonymity, privacy,
information theory.

1 Introduction

Statistical attacks against secrecy, anonymity, privacy and other confidentiality proper-
ties in systems that handle sensitive data abound in the literature. In these attacks, the
adversary gets to know a sample of observations of a target system – such as timing or
power consumption traces of a smart-card [14], attribute values in a dataset [19], etc.
– and, exploiting some form of correlation existing between the secret and the observ-
ables, tries to infer the secret – the private key, the identity of an individual, etc. Many of
these attacks seem to exploit very specific features of the target system. This fact makes
assessing the security of a system against this form of threat a difficult task in general.
A major motivation of the present paper is to put forward a general Bayesian model
where this kind of assessment can be conducted rigorously. One of our objectives is to
characterise the information leakage of a system, both quantitatively and qualitatively,
as the number of observations of the attacker increases.
� Work partially supported by the eu funded project Ascens. Corresponding author: Michele

Boreale, Università di Firenze, Dipartimento di Sistemi e Informatica, Viale Morgagni 65,
I-50134 Firenze, Italy. E-mail: boreale@dsi.unifi.it

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 588–606, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

boreale@dsi.unifi.it

Quantitative Information Flow, with a View 589

It has been recently argued [8] that, for the purpose of quantifying the amount of sen-
sitive information that is leaked by a system, it is useful to model the system itself as a
channel in the sense of Information Theory: inputs to the channel represent the secret
information, outputs represent the observable information, and the two sets are related
by a conditional probability matrix. We collectively designate systems amenable to this
kind of analysis as information hiding systems (ihs). Initial works on ihs’s concentrated
on Shannon entropy and capacity as measures of information leakage [8,9]. More re-
cently, it has been argued [21] that min-entropy based metrics, taking into account the
success probability of an optimal attacker, provide a more operational and sensible for-
malization of leakage. Analysis of ihs’s in the case of min-entropy and repeated inde-
pendent observations, which encompasses several forms of statistical attacks, has been
carried out in our previous paper [5].

A drawback of the ihs approach so far is that it focuses exclusively on the quantita-
tive aspect of the analysis (how much is leaked), while ignoring the qualitative aspect
(what is leaked) at all. In [5] it is shown that, when a uniform distribution on the se-
crets is assumed, the asymptotic information leakage of a system corresponds to the
log of the number of indistinguishability classes in the system – where two states are
indistinguishable if they induce the same probability distribution on the observables.
For instance, an anonymity protocol in which users are grouped into a small number of
classes is considered as globally secure. However, it might well be the case that, while
the vast majority of users belong indeed to large classes, few individual users belong
to a singleton classes, hence being totally exposed to eavesdropping. To make another,
extreme example, consider the two small imperative procedures P1 and P2 below. Both
of them receive as an argument a confidential variable h that can take on a value in the
set S = {0, ..., 15}, possibly corresponding to user identifiers or other sensitive informa-
tion. Part of the information about h is disclosed by the procedures through the public
variable l.

P1(h): l=-1; if (h==0) then l=0; P2(h): l=h mod 4;

In the case of P1, there are two possible observables, -1 and 0, hence S is partitioned
into two indistinguishability classes: thus, assuming h is uniformly distributed, P1 leaks
1 bit of information about h. In the case of P2 there are four classes, hence P2 leaks two
bits. From a global point of view, P1 is therefore more secure than P2. Needless to say,
though, from the point of view of user 0, P2 is preferable over P1. One would like to
conduct the analysis both at a quantitative and at a qualitative level, revealing not only
how much is leaked, but also what. This is particularly relevant in relation to the privacy
of individuals or groups.

In this paper, we propose a framework to deal with this issue by extending the ihs’s
considered in [5] and elsewhere with views. A view is, in short, a partition of the states,
representing perhaps a subdivision in "buckets" of a large population (in fact, we are
more general and also admit probabilistic partitions). In the example above, the view of
interest to user 0 is the partition of S into ({0},S\{0}). Given a view W, one is interested
in the adversary’s probability of wrongly predicting the class of W the secret belongs
to, after observing n independent executions of the system, throughout which the secret
state is kept fixed: call this quantity PW

e (n). In the example above, the involved systems
are deterministic, hence a single observation is all the attacker needs. One easily finds

590 M. Boreale, F. Pampaloni, and M. Paolini

that PW
e (1) equals 0 in the case of P1, and 1

16 in the case of P2. In the general case
of probabilistic systems, computation of the limit value of PW

e (n) is not as obvious.
Nevertheless, we offer results that allow one to easily characterise the behaviour of
PW

e (n) from the channel matrices defining the ihs and the view W. In particular, we
show how to determine the limit value of PW

e (n) and its rate. In fact, the security of
a system (w.r.t. W) depends not only on the limit in question, but also on the shape
of PW

e (n) as a function of n. We show that the convergence is exponential, and provide
bounds for the rate of convergence. More generally, we give bounds on the rate at which
a chosen probability threshold can be reached1.

We then give a few examples of statistical attacks that can be assessed as a direct
application of our results: timing attacks against exponentiation with blinding [14,17],
attacks against anonymity in mix-nets [13] and attacks against privacy in sparse datasets
[19]. In the last case, we show that the condition of (ε, δ)-sparsity directly translates into
a rate − log ε for the threshold δ in our framework. In all cases, we highlight the role
played by views.

In summary, we offer a unifying model for assessing a variety of statistical attacks,
both at the global level and at the level of specific partitions of the secrets. We believe
that this model can gain us a qualitative insight about the security of ihs’s. Whenever
the system is found to be insecure, an attack can be explicitly described, usually with
little effort, as an instantiation of the Bayesian attacker underlying our framework. We
are not claiming, of course, that our bounds always match the performance of existing
attacks, tailored against specific, real-world systems.

The rest of the paper is organized as follows. In Section 2 some terminology and
notation are introduced. Section 3 introduces the formal set up. Section 4 discusses the
main results on asymptotic error probability. Section 5 presents an application to mix-
nets, while Section 6 discusses sparse datasets. Some concluding remarks and discus-
sion of related work are found in Section 7. Some technical material has been confined
to a separate Appendix.

2 Notations and Preliminary Notions

LetA be a finite nonempty set. A probability distribution on aA is a function p : A →
[0, 1] such that

∑
a∈A p(a) = 1. We let supp(p) denote {a ∈ A : p(a) > 0}. For any

A ⊆ A we let p(A) denote
∑

a∈A p(a). Given n ≥ 0, we let pn : An → [0, 1] be the
n-th extension of p, defined as pn(a1, . . . , an)

�
= Πn

i=1 p(ai); this is in turn a probability
distribution onAn. For n = 0, we set p0(ε) = 1, where ε denotes here the empty string.
Given A ⊆ An, we will often write pn(A) as just p(A), if n is clear from the context.

Given two distributions p and q on A, the Kullback-Leibler (KL) divergence of p
and q is defined as (all the log’s are taken with base 2)

D(p||q)
�
=

∑

a∈A
p(a) · log

p(a)
q(a)

1 Indeed, it may well be the case that, even if the asymptotic rate of convergence to the limit
value is extremely slow, convergence to the chosen threshold is very fast, leading to consider
the system insecure.

Quantitative Information Flow, with a View 591

with the proviso that 0 · log 0
q(a) = 0 and that p(a) · log p(a)

0 = +∞ if p(a) > 0. It can
be shown that D(p||q) ≥ 0, with equality if and only if p = q (Gibbs inequality). KL-
divergence can be thought of as a sort of distance between p and q, although strictly
speaking it is not – it is not symmetric, nor satisfies the triangle inequality.

Pr(·) will generally denote a probability measure. Given a random variable X taking
values in A, we write X ∼ p if X is distributed according to p, that is for each a ∈ A,
Pr(X = a) = p(a).

3 Formal Set Up

3.1 Basic Definitions

We recall from [5] that an information hiding system (ihs for short) is a quadruple
H = (S,O, p(·), p(·|·)), composed by a finite set of states S = {s1, ..., sm} representing
the secret information, a finite set of observables O = {o1, ..., ol}, an a priori probability
distribution on S, p(·), and a conditional probability matrix, p(·|·) ∈ [0, 1]S×O, where
each row sums up to 1. The entry of row s and column o of this matrix will be written
as p(o|s), and represents the probability of observing o given that s is the (secret) input
of the system. For each s, the s-th row of the matrix is identified with the probability
distribution o
→ p(o|s) on O, denoted by p(·|s).

Definition 1 (views). Let H = (S,O, p(·), p(·|·)) be a ihs. A view of H is a pair
(W, q(·|·)), where W is a finite alphabet and q(·|·) ∈ [0, 1]S×W is a matrix where all
rows sum to 1.

Informally, q(w|s) is the probability that the property w holds when in state s. The prob-
ability distribution p on S and the conditional probability matrices p(o|s) and q(w|s) in-
duce a probability distribution r onW×S×O, defined as r(w, s, o)

�
= p(s)·p(o|s)·q(w|s).

This distribution induce a triple of discrete random variables (W, S ,O) ∼ r, taking val-
ues inW×S × O. We shall denote the marginal probability distributions of this triple
for S , W and O by pS , pW and pO, respectively. Of course, pS (·) coincides with the
prior p(·) given in the ihs, while the marginal distributions pW and pO can be computed
from the given data, p(·), p(·|·) and q(·|·).

Let us now discuss the observation scenario. Given any n ≥ 0, we assume the ad-
versary is a passive eavesdropper that gets to know the observations corresponding to
n independent executions of the system, on = (o1, ..., on) ∈ On, throughout which both
the secret state s and the corresponding view w are kept fixed. Formally, the adversary
knows a random vector of observations On = (O1, ...,On) such that, for each i = 1, ..., n,
Oi is distributed like O. Moreover, the individual Oi and the view W are condition-
ally independent given S . This means that the following equality holds true for each
on ∈ On, w ∈ W and s ∈ S s.t. p(s) > 0

Pr
(
On = (o1, . . . , on), W = w | S = s

)
= Πn

i=1Pr(Oi = oi|S = s) Pr(W = w|S = s) .

Note that the right-hand side of the above equality can be equivalently written as
Πn

i=1 p(oi|s)q(w|s). Concerning the goals of the attacker, there are two cases, which we
examine in the following subsections.

Notation: We shall drop the subscripts from the above defined (conditional) proba-
bility distributions when no ambiguity can arise. We will often abbreviate Πn

i=1 p(oi|s)

592 M. Boreale, F. Pampaloni, and M. Paolini

as p(on|s). Moreover, by slightly abusing notation, we will freely identify a view
(W, q(·|·)) ofH with the induced random variable W.

3.2 Attacker Targets S

We first discuss the case when the attacker targets the states, like in [5]. In this case,
his strategy, for any fixed length n of observations, is modeled by a guessing function
g : On → S, which represents the single guess the attacker is allowed to make about
the secret state s, after observing on. In this case, one is interested in the probability of
error after n observations (relative to g), given by

P(g)
e (n)

�
= Pr(g(On) � S) .

It is well-known (see e.g. [12]) that the optimal strategy for the adversary, that is the
one that minimizes the error probability, is the Maximum A Posteriori (map) rule. A
function g : On → S satisfies the Maximum A Posteriori (map) criterion2 if for each
on ∈ On and s ∈ S

g(on) = s implies p(on|s)p(s) ≥ p(on|s′)p(s′) for each s′ ∈ S .
In the above definition, for the case n = 0 it is convenient to stipulate that p(ε|s) = 1:
that is, with no observations at all, it is selected some s maximizing the prior distribu-
tion. With this choice, P(g)

e (0) denotes 1 −maxs p(s). Once n and p(s) are fixed, P(g)
e (n)

does not depend on the specific map function g that is chosen. Unless otherwise stated,
throughout the paper we assume the underlying guessing function is map and shall nor-
mally omit the superscript (g).

In [5], it is proven that Pe(n) converges exponentially fast to a quantity that depends
on an indistinguishability relation on states. This relation is defined as follows: s ≡ s′
if p(·|s) = p(·|s′). Concretely, two states are indistinguishable if the corresponding rows
in the conditional probability matrix p(·|·) are equal. This intuitively says that there is
no way for the adversary to tell s and s′ apart, no matter how many observations he
performs. Let us stress that this definition does not depend on the prior distribution on
states, nor on the number n of observations. Assume ≡ partitions S into K equivalence
classes C1, ...,CK . For each i, let s∗i ∈ Ci be a state that pS (s∗i) = maxs∈Ci pS (s). Let

πi
�
= pS (s∗i) and pi(·) �= p(·|s∗i) . (1)

We can assume w.l.o.g. that πi > 0 for each i. In [5], it is shown that as n → ∞, then
exponentially fast

Pe(n)→ 1 −
K∑

i=1

πi . (2)

Note that the case |S| = 2 with a nontrivial indistinguishability corresponds to the
Bayesian version of the classical binary Hypothesis Testing; in this case, the Chernoff
information is known to be the optimal exponent (see [12, Ch.11] and Section 4).

2 Another widely used criterion for guessing functions is Maximum Likelihood (ml), which re-
quires no knowledge of the prior distribution. Our main results can be extended to the ml rule,
although we will not discuss this issue in the present paper. See [5, Remark 2].

Quantitative Information Flow, with a View 593

3.3 Attacker Targets W

We discuss now the case when the attacker targets a property of states represented
by a view W. Similarly to the previous case, the attacker’s strategy corresponds to a
guessing function, which this time is of the form g : On →W. The corresponding error
probability (after n observations, relative to g) is

Pg,W
e (n)

�
= Pr

(
g(On) � W

)
. (3)

A function g minimizes this quantity if it is W-map, that is if satisfies the following
condition. For each on ∈ On and w ∈ W

g(on) = w implies p(on|w)p(w) ≥ p(on|w′)p(w′), for each w′ ∈ W.

Unless otherwise stated, given a view of H , we shall assume an underlying guessing
function that is W-map. Consequently, we shall normally omit the indication of g from
Pg,W

e (n).
In many systems, the practically important views are those that partition the state-

space into equivalence classes. A view W is called a partition ofH if W is a function of
S , that is W = f (S) for some function f : S →W. Equivalently, the matrix q(·|·) has a
single entry ’1’ for each row. LetW = {w1, ...,wL}, and let Ei

�
= f −1(wi) for 1 ≤ i ≤ L.

Of course E1, ..., EL forms a partition of S, in the set-theoretic sense.

3.4 Information Leakage

Information leakage aims at measuring, typically in bits, the information leaked by a
system, by comparing the prior to the posterior (to the observations) adversary’s success
probability. Below, we follow Smith [21] and define information leakage as the differ-
ence between the min-entropies of the prior and posterior probability distributions. In

what follows, we pose Psucc(n)
�
= 1−Pe(n); similarly for PW

succ. The intuition underlying
this definition is that gaining 1 bit of information corresponds to doubling the success
probability.

Definition 2 (Information leakage [21]). The information leakage ofH after n obser-
vations is defined as

L(n)
�
= log

(Psucc(n)
maxs pS (s)

)
.

Similarly, information leakage after n observations relative to a view W is defined as

LW (n)
�
= log

(PW
succ(n)

maxw pW (w)

)
.

4 Asymptotic Error Probability

Throughout the sectionH denotes a generic ihs (S,O, p(·), p(·|·)). We begin with a few
preliminary definitions concerning the rate of convergence. Then prove a result giving
strong bounds for Pe(n) and its rate of convergence, Theorem 1. This result greatly
improves on the bounds in [5] and is the key to the results for PW

e (n).

594 M. Boreale, F. Pampaloni, and M. Paolini

Definition 3 (rate). Let f : N → R+ be a nonnegative, monotonically non-increasing
function. Let γ = limn→∞ f (n). The rate of f is defined as the nonnegative quantity

ρ(f)
�
= − lim

n→∞
1
n

log(f (n) − γ) . (4)

We further say that f reaches δ at rate ε if there is a nonnegative, monotonically non-
increasing function h s.t. limn→∞ h(n) ≤ δ, ρ(h) ≥ ε and f (n) ≤ h(n) for each n large
enough.

Note that we admit rates of 0, as well as of +∞.

Example 1. Consider f (n) = α + β2−nλ1 + γ2−nλ2 ,
for some nonnegative α, β and γ, and 0 < λ1 < λ2.
Then f (n)→ α and ρ(f) = λ1. On the other hand,
since f (n) ≤ h(n) = α + β + γ2−nλ2 , one has that
f reaches α + β at a rate of λ2. The picture on
the right displays a plot of three functions, charac-
terised by identical values of α = 0.1, γ = 0.01,
λ1 = 0.01, and λ2 = 2, and by three different val-
ues of β: β = 0.1 (top curve), 0.01 (middle curve)
and 0.001 (bottom curve).

0 100 200 300 400 500 600 700

0.1

0.12

0.14

0.16

0.18

0.2

n

f(
n
)

β=0.1

β=0.01

β=0.001

One can see that although the convergence to the limit value, 0.1 for all of them, is
extremely slow, convergence to the value 0.11, which is only slightly higher, in the third
case is very fast. A system with an error probability function of this shape would not be
considered as secure.

Recall from [12] that given two probability distributions p and q on O, the Chernoff
Information between p and q is the nonnegative quantity

C(p, q)
�
= − min

0≤λ≤1
log

∑

o∈supp(p)∩supp(q)

pλ(o)q1−λ(o) (5)

with the convention that C(p, q) = +∞ if supp(p) ∩ supp(q) = ∅. Recall that, in our
notation, p1(·), ..., pK(·) are the representative probability distributions ofH , defined in
(1). By adapting the proof for the case |S| = 2 that is given in [12] (see also [18]), it is
not difficult to prove the following result, which gives the exact rate of convergence for
Pe(n), in the case where the distributions p1(·), ..., pK(·) all have the same support3.

Proposition 1. Suppose that supp(p1) = · · · = supp(pK). Then ρ(Pe) =

mini� j C(pi, p j).

The next result provides tight bounds on the error probability Pe(n) and its rate in the
general case, although in general not the exact rate. More generally, the result below
provides a means to tradeoff bounds on error probability with bounds on the rate of
convergence. We make use of the following notations. For all i, j = 1, ...,K, define

ci j
�
= C(pi, p j) .

3 In the case where the distributions have different supports, the argument of [12] does not apply.
The ultimate reason is that that D(p||q) is not continuous in the first argument if q has not full
support; see also [2] for a discussion on this issue.

Quantitative Information Flow, with a View 595

We also stipulate that 2−∞ = 0. The next theorem has the following interpretation. The
attacker focuses on a subset of the representative states, {s∗i |i ∈ I}, and tries to identify
one of them as S . This strategy can fail for two reasons: either S is not in the target
subset (first term in the error expression), or it is, but the attacker mistakes one state
in the subset for another (second term in the error expression). The latter probability
decreases exponentially fast with n, at a rate that is at least as big as the minimum
"distance" ρI between the distributions pi(·), for i ∈ I. The proof can be found in the
Appendix.

Theorem 1. Let I be a nonempty subset of {1, ...,K}. Let ρI
�
= mini, j∈I,i� j ci j. Let πmax =

maxi∈I πi. Then, for all n ≥ 1

Pe(n) ≤ (1 −
∑

i∈I
πi) +

|I|2
2
πmax2−nρI . (6)

As a consequence, Pe(n) reaches (1 − ∑
i∈I πi) at a rate of ρI . In particular, by taking

I = {1, ...,K}, we obtain that ρ(Pe) ≥ ρI .

Remark 1. (a) In the practically important case where the prior pS on S is uniform, the
term |I|2

2 πmax2−nρI is bounded above by K
2 2−nρI .

(b) Computation of the Chernoff Information (5) is an optimization problem that
may be difficult to solve exactly. In practice, setting λ = 1

2 in the argument of the min
often yields a good lower bound of C(p, q), known as Bhattacharyya distance. Another
lower bound that we will find useful in the case of distributions with sparse support (see
Section 6), is obtained by taking the min limited to the cases λ = 0 and λ = 1. Letting
σ = supp(p) ∩ supp(q), this quantity amounts to −min{log p(σ) , log q(σ)}.
We analyse now the case of PW

e , where W is a generic view of an ihsH . We follow the
notation and terminology established in the previous section. It would be tempting to
proceed as follows: build a new ihs, say HW , where the states areW and the channel
matrix is pO|W . The error probability function forHW would then coincide with PW

e (n).
It would then be enough to apply Theorem 1 toHW . This approach however is doomed
to failure. In fact, the assumption that the observations Oi are conditionally independent
given W is in general false:

p(o1 · · · on|w) � p(o1|w) · · · p(on|w) .

As a consequence, the ihsHW is meaningless for what concerns our purposes. However,
conditional independence of the Oi’s given W is guaranteed, and the approach outlined
above does work, in the special case where W is a partition finer than ≡. This intuition
leads us to develop to the method illustrated below for PW

e in the general case.
Some more notation first. For notational simplicity, assume W is a set of integers

{1, ..., |W|}. Let q(·|·) be the matrix defining the view W. We denote by ∼W the equiva-
lence relation on S induced by q(·|·), that is

s ∼W s′ iff for each o ∈ O : q(o|s) = q(o|s′) . (7)

In other words, two states are ∼W -equivalent if the corresponding rows of q(·|·) are
equal. LetS/∼W be {E1, ..., EL}, the equivalence classes of∼W . The intersection≡ ∩ ∼W

596 M. Boreale, F. Pampaloni, and M. Paolini

is still an equivalence relation on S, that is finer than both ≡ and ∼W . Recall that S/≡ is
{C1, ...,CK}. For 1 ≤ i ≤ K and 1 ≤ j ≤ L, we let the equivalence classes of ≡ ∩ ∼W be
denoted as

Fi j
�
= Ci ∩ E j (8)

and furthermore

F∗i
�
= max

j
pS (Fi j) and q∗j

�
= max

w
q(w|s), for an arbitrary s ∈ E j . (9)

The next theorem has the following interpretation. The attacker focuses on a subset
of the representative states, {s∗i |i ∈ I}. He tries to identify first the class Ci of S , then
guesses the class Fi j – this is given by the j that maximizes pS (Fi j). Finally he guesses
the view w that is most likely in E j. This strategy can fail for two reasons: either w is
wrong (first term in the expression), or Fi j is wrong (second + third term). We report a
proof of this result in the Appendix.

Theorem 2. Let I and ρI be chosen as in Theorem 1. Let W be a view ofH . Let Πmax =

maxi∈I F∗i . Then

PW
e (n) ≤

L∑

j=1

(1 − q∗j) + (1 −
∑

i∈I
F∗i) +

|I|2
2
Πmax2−nρI . (10)

Note that the determination of the upper-bound in (10) is computationally practical: the
partitions induced by ≡ ∩ ∼W can be directly computed by inspection of the matrices
p(·|·) and q(·|·). Their intersection (8), and the probability mass of the corresponding
classes pS (Fi j), are then straightforward to compute. Theorem 2 only provides an (ex-
ponential) upper bound to PW

e (n). The following theorem provides the exact limit of
PW

e (n) in the special, but important case when W is a partition.
We introduce quickly a few concepts of the method of types from Information Theory

[12, Ch11] that will be used in the proof. Fix n ≥ 1. Given a sequence on ∈ On and
o ∈ O, denote by n(o, on) the number of occurrences of o inside on. The empirical
distribution or type of on is the distribution on O defined as ton (o)

�
= n(o, on)/n, for each

o ∈ O. The "balls" of center pi(·) and radius ε > 0 in On are defined as Un
i (ε)

�
= {on :

D(ton ||pi) ≤ ε}. It is a result from the method of types that, as n→ +∞, pi(Un
i (ε))→ 1,

while, for any p � pi there is ε > 0 small enough s.t. p(Un
i (ε)) → 0. Moreover, the

convergence is exponential in both cases.

Theorem 3. Let W be a partition of H . Then PW
e (n) converges exponentially fast to

1 − ∑K
i=1 F∗i . More precisely, with the same notation of Theorem 2, for each n ≥ 1,

1 −∑K
i=1 F∗i ≤ PW

e (n) ≤ (1 −∑K
i=1 F∗i) + K2

2 Πmax2−nρI , where I = {1, ...,K}.
Proof. (Outline) First, note that for W a partition, the first term in (10) vanishes, as each
q∗j equals 1. The upper bound is then a consequence of Theorem 2 with I = {1, ...,K}.
We now seek for a lower bound of PW

e (n). We equivalently focus on an upper bound
of PW

succ(n). Assume without loss of generality thatW = {1, ..., L}. For any n ≥ 1, let

Quantitative Information Flow, with a View 597

g : On → {1, ..., L} be a W-map guessing function, and let A j = g−1(j), for j ∈ {1, ..., L},
be the acceptance region in On for j. It is a routine task to check that

PW
succ(n) =

K∑

i=1

L∑

j=1

pi(A j)pS (Fi j) . (11)

Now, fix any i ∈ {1, ...,K}, and let ji = argmax j=1,...,LpS (Fi j), that is pS (Fi ji) = F∗i . We
claim that pi(A ji) → 1 as n → +∞. In fact, fixed ε > 0 small enough, for any n large
enough A ji contains the "ball" Un

i (ε) of center pi(·) and radius ε in On. To see that this
is true, note that a sufficient condition for on ∈ A ji is that for each j � ji

pOn |W(on| ji)pW(ji) =
K∑

l=1

pl(on)pS (Fl ji) >
K∑

l=1

pl(on)pS (Fl j) = pOn |W(on| j)pW(j) .

(12)
Now from results of the method of types it follows that, for on ∈ Un

i (ε), we have that
all the pl(on) with l � i go exponentially fast to 0 as n grows. Thus the condition (12)
reduces, for n large enough, to F∗i = pS (Fi ji) > pS (Fi j): this is satisfied by definition
of ji4. Now A ji ⊇ Un

i (ε) implies that pi(A ji) goes to 1 exponentially fast as n grows; for
the same reason, pi(A j) goes to 0 for each j � ji as n grows (recall that the A j’s form a
partition of On). This way, and taking (11) into account, we have proved that

lim
n→∞ PW

succ(n) =
K∑

i=1

F∗i .

Since PW
succ(n) is monotonically non-decreasing, we have proved that PW

succ(n) ≤
∑K

i=1 F∗i holds true for each n ≥ 1. This implies in turn the wanted statement.

Example 2 (modular exponentiation). We consider timing attacks against implementa-
tions of the modular exponentiation algorithm with blinding, used in public-key cryp-
tography – see e.g. [14,16,17,5] and references therein. A typical implementation of
modular exponentiation works as follows. The bits of the secret exponent are scanned
from right to left, or vice-versa. When the ith bit is considered (0 ≤ i < N), either one
or two modular multiplications are performed, depending on whether the i-th bit is 0
or 1. In timing attacks, the attacker tries to reconstruct the secret key by sampling the
duration of several independent executions of the algorithm. To an implementation as
described above there corresponds an ihswhere:S = {0, 1}N is the set of secret keys, i.e.
the possible exponents of the algorithm, over which we assume a uniform distribution
can be assumed; O = {t1, t2, ...} is the finite set of possible execution times; p(t|s) is the
probability that, depending on the deciphered message, the execution of the algorithm
takes times t given that the secret key is k. As argued in [5], it is sensible to assume that
any two keys having the same Hamming weights are indistinguishable inH . Therefore,

4 If there is more than one index j maximizing pi(Fi j), then the choice of ji gets more involved:
among those j’s that maximize pS (Fi j), one chooses the one that maximizes pS (Fi′ j), where
pi′ (·) is the distribution closest to pi(·) in terms of KL-distance, if this j is unique; otherwise
one must look at the second closest distribution pi′′ (·), and so on. We omit the details here.

598 M. Boreale, F. Pampaloni, and M. Paolini

we have N + 1 indistinguishability classes. From each of them we choose a representa-
tive s∗i of probability πi =

1
2N . Applying Theorem 1, we find Pe(n) → 1 − N+1

2N , which
for realistic values of N, is very close to 1. E.g., for N = 1024, the attacker gets on the
limit log(1025) ≈ 10.01 bits of information leakage out of 1024.

One would then like to prove that this small leakage is not concentrated in few in-
dividual bits of the exponent, which would make them potentially vulnerable. For in-
stance, let us examine the error probability of guessing the least two significant bits of
the exponent. Let W be the partition of S s.t. s ∼W s′ iff s mod 4 = s′ mod 4. We apply
Theorem 3 to PW

e . We have four ∼W -classes E0, ..., E3, that intersect with the N + 1
classes Ci to form 4(N + 1) classes Fi j. Assume N even. For all i = 0, ..., N−2

2 , the class
Fi j that has more elements, hence determines the probability F∗i , is Fi0; by symmetry,
for i = N−2

2 + 1, ...,N the class with more elements is Fi3. For i = N
2 , instead, we can

choose between Fi1 and Fi2. According to Theorem 3 then

PW
succ →

N∑

i=0

F∗i ≈
1

2N

(
N−2∑

i=0

(
N − 2

i

)
)
=

1
4
.

Thus, asymptotically the observations do not increase the prior probability of success,
which is already 1

4 . In terms of information leakage, one gets LW (n) →≈ 0. One can
generalize this reasoning to the case where W represent the least m significant bits, and
arrive at similar conclusions.

5 Example 1: Unlinkability in Threshold Mix-Nets

Statistical attacks against anonymity protocols may take advantage of sender-receiver
relationships that remain fixed through repeated rounds of the protocol. In this section,
we consider the case of a mix network, a concept due to Chaum [10]. In a mix-network,
messages are relayed through a sequence of trusted intermediary nodes, called mixes, in
order to hide sender-receiver relationships (unlinkability). In the scenario we consider, a
single mix is used by a number of senders and receivers. The threshold of the mix is b+
1: at each round, the mix waits for b+ 1 messages from the senders and then distributes
the messages to the corresponding receivers. We consider the situation where one of the
senders is always Alice, with her receiver being always a node Bob, initially unknown
to the attacker. The recipients of the remaining b messages are assumed be chosen at
random in a set of nodes R1, ...,RN . A similar scenario is at the basis of the statistical
disclosure attack by Danezis [13]. We analyse the situation of a local eavesdropper
that observes one fixed receiver, say R j, and after each round is able to tell whether at
least one message has reached R j. More sophisticated forms of eavesdropping could
be easily accommodated (e.g. attacker observing all the nodes), but would not change
significantly the outcome of the analysis. The task of the attacker is to discover which
node is Bob; or at least, to tell if Bob is or not the observed node, R j.

We can model the scenario described above by an ihs H where: the set of states
is given by all possible nodes (potential receivers of Alice’s messages), that is S =
{R1, . . . ,RN }, with pS (Ri) = 1

N for each i = 1, ...,N; the set of observations is O = {0, 1},
where o = 1 iff R j has received at least one message at the end of the round.

Quantitative Information Flow, with a View 599

The conditional probability matrix p(·|·) is then given by the following equalities:

p(0|R j) = 0 p(1|R j) = 1

p(0|Ri) = (1 − 1
N)

b
p(1|Ri) = 1 − (1 − 1

N)
b

for all i � j.

Here, the first row means that, if Bob=R j, then the attacker will observe at least one
message with certainty. The second row means that, in case Bob is any node differ-
ent from R j, then the attacker will observe 0 messages only if all the b messages –
other than the one sent to Bob – are not sent to R j (Alice surely does not send to
R j). In other words, except for a permutation of the rows, we have the matrix below.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − 1
N)

b
1 − (1 − 1

N)
b

...
...

(1 − 1
N)

b
1 − (1 − 1

N)
b

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here the last row refers to R j. This means that there are
only two classes of indistinguishability: S/≡ is {C1,C2},
with C1 = {R j} and C2 = S \ {R j}.

We first apply apply Theorem 1 to H , which will tell
us what is the error probability in case the attacker wishes
to know exactly who is Bob. We can set I = {i, j}, for any
i � j, and get the following bound:

Pe(n) ≤
(

1 − 2
N

)

+
2
N

⎛
⎜⎜⎜⎜⎜⎝1 −

(

1 − 1
N

)b
⎞
⎟⎟⎟⎟⎟⎠

n

.

As expected, the limit value 1 − 2
N is > 0, and the security of the system increases as N

increases. The corresponding asymptotic information leakage is log(N · 2
N) = 1, that is,

the attacker gains 1 bit of min-entropy on the limit about the identity of Bob.
To see qualitatively what the single bit gained by the attacker corresponds to, we

analyse the error probability with respect to the view W ∈ {0, 1} given by:

W = 1 iff S = R j .

That is, W yields 1 iff Bob is R j. The partition induced on S by W coincides with ≡,
hence its classes are C1,C2. Concerning the sets Fi j, we note that: F11 = {R j}, F12 =

F21 = ∅ and F22 = S \ {R j}. Since the distribution on the states is uniform, we have:
F∗1 =

1
N and F∗2 = 1 − 1

N . Take I = {i, j} as defined as above. According to Theorem 2,
the limit of PW

e (n) vanishes, moreover

PW
e (n) ≤ 2

N

⎛
⎜⎜⎜⎜⎜⎝1 −

(

1 − 1
N

)b
⎞
⎟⎟⎟⎟⎟⎠

n

.

The attacker’s success probability of guessing whether R j =Bob or not approaches very

fast 1. It is also interesting to study the behaviour of the rate ρI = − log
(

1 − (1 − 1
N)

b
)

depending on b and N. It is easy to see that as b increases, ρI decreases; on the contrary,
as N increases and b is kept fixed, ρI increases. The shape of PW

e (n) is illustrated quali-
tatively by the plots in the figures below: very few rounds of the protocols (n < 10) are
sufficient to achieve PW

e ≈ 0.

600 M. Boreale, F. Pampaloni, and M. Paolini

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 5 10 15 20

P
e
w

(n
)

n

N=100, b=20
N=100, b=60
N=100, b=90

(a) Plots of PW
e (n) depending on parameter

b

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 5 10 15 20

P
e
w

(n
)

n

N=100, b=90
N=150, b=90
N=200, b=90

(b) Plots of PW
e (n) depending on parameter

N

As mentioned above, it is easy to repeat this kind of analysis with more sophisticated
observations on the part of the attacker: we do not do so here for lack of space. On
the other hand, note that just repeating this simple attacks for each of the potential
Alice’s receivers (that is, setting R j = R1,R2, ...,RN−1 in turn), would lead the attacker
to uncover the identity of Bob after a low number of rounds. This is sufficient to show
that the single threshold mix system is totally insecure.

6 Example 2: Privacy in Sparse Datasets

We consider datasets collecting micro-data – preferences, recommendations, transac-
tion records, health histories and so on – about a large number of individuals. Datasets
of this kind are sometimes published for commercial or research purposes. Making
micro-data public poses serious threats to the privacy of individuals, even when the
data are released in anonymized form – that is with personal identifiers, such as ssn’s,
removed. The risk is that an attacker, using a little of background information about
a given individual and cross-correlation of attributes, might re-identify the individual
within the dataset, leading to the disclosure of the whole set of her/his attributes. An
example of this technique is the spectacular de-anonymization attack of Narayanan and
Shmatikov against the Netflix Prize dataset [19]5.

In this section, we show that (sparse) datasets naturally arise as instances of ihs, and
that assessment of statistical attacks against dataset privacy is easily accomplished using
the general results of Section 4.

We view a dataset as a tableD, with rows and columns corresponding to individuals
(or more generally, records) and attributes, respectively. Formally, D ∈ VR×A, where
V, R and A are finite nonempty sets of values, records and attributes, respectively. One
can view any datasetD as an ihsHD, as follows. Records are equiprobable states, that
is we set S = R and let pS (·) be the uniform distribution on R. Concerning observables,
there is a variety of sensible choices, depending on the observation power one wishes

to grant the attacker with. For instance, a sensible choice is O �= A×V. Another choice,

5 The Netflix Prize dataset collects anonymous movie ratings of 500,000 subscribers. Using
background information publicly available from the Internet Movie Database, Narayanan and
Shmatikov successfully re-identified known users within the Netflix dataset.

Quantitative Information Flow, with a View 601

if V is a totally ordered, is to observe attributes and ranges of values. The last choice
is more robust than the former in case the dataset is published in a perturbed form. In

fact, even setting O �= A is sensible, as just knowledge of non-null attributes of a record
provides a great deal of information6. In any case, the technical development presented
below does not depend on the specific choice of O. Finally, the conditional probability
matrix models the process of acquiring background information about the individuals
in the dataset. Depending on its exact nature, this information might come from various
sources, e.g. personal blogs, Google searches, or even a water-cooler conversation with
a colleague (see [19]). For example, if O = A, then it is sensible to assume that the
background knowledge consists of randomly chosen attributes and set, for each record
r and attribute a

p(a|r)
�
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
nr

if a is a non-null attribute of r

0 otherwise

where nr is the number of non-null attributes in the row of the dataset corresponding to
r. Of course, non-uniform distributions can be equally accommodated, e.g. if it is felt
that certain attributes are more likely to be publicly released than others.

Having shown how to model a dataset as a ihs, we have to point out that, in the formal
development below, there is no need to restrict to ihs’s of the formHD. To work in full
generality, we will just assume a dataset is simply an ihs.

In a sparse dataset, most of the entries in the table are null. Specifically, we consider
a dataset sparse if, except possibly for a small fraction of records, for no record there
is another "similar" record in the dataset. To make the notion of sparsity precise, we
have first to make precise the notion of similarity between records. We will work with
a similarity function Sim : S × S → [0, 1]. The intuition underlying the following
definition, which is different from that proposed in [19], is that the similarity of s′ to
s is related to the fraction of non-null attributes they share. More precisely, it is the
fraction of non-null attributes that can be inferred on any of the two by looking at the
other.

Definition 4 (similarity). Given an ihs H , for any s, s′ ∈ S, let σss′ = supp(p(·|s)) ∩
supp(p(·|s′)). We set

Sim(s, s′) �= min
{

p(σss′ | s) , p(σss′ | s′) } .
Note that Sim(s, s′) = 1 iff supp(p(·|s)) = supp(p(·|s′)). The following notion of sparsity
is not related to - not weaker nor stronger than - the one considered in [19]. It seems to
be satisfied by typical sparse datasets, like the Neflix Prize [19,20]. In fact, our results
extend, although in a different form, to the notion of sparsity of [19], but we shall not
give any detail here for lack of space.

Definition 5 (sparsity). Let H be a ihs with pS (·) the uniform distribution. Let ε > 0
and δ > 0. We sayH is (ε, δ)-sparse if

Pr
(

max
s:s�S

Sim(S , s) ≥ ε) < δ . (13)

6 See [19] for further considerations on the structure of sparse datasets.

602 M. Boreale, F. Pampaloni, and M. Paolini

Our results apply to a situation where the attacker gets to know an entire copy of the
dataset.We begin with a result on error probability.

Theorem 4. LetH be (ε, δ)-sparse, with |S| = N. Then Pe(n) reaches δ at a rate− log ε.
More precisely, Pe(n) ≤ δ + 1

2 [(1 − δ)2N + 2(1 − δ) + 1
N]εn.

Proof. By definition of sparsity, it is possible to find a subset of the records, say R =
{s∗i |i ∈ I}, s.t. for each s ∈ R, there is no other record in S which is ε-similar to s, and
such that pS (R) ≥ 1 − δ. Moreover, by uniform distribution of the probability mass
on records, we can choose the size of I satisfying |I|−1

N < (1 − δ) ≤ |I|
N , which means

(1 − δ)N ≤ |I| < (1 − δ)N + 1. Next note that, with the notation introduced in Section
4 and by virtue of Remark 1(b), for any i, j ∈ I with i � j, the Chernoff information ci j

satisfies: ci j ≥ − log Sim(s∗i , s
∗
j) ≥ − log ε. Applying Theorem 1 we get the thesis.

In some cases, all the adversary needs to determine about a record its "similarity class".
In fact, knowledge of this class already provides him with almost all the information
about the record. If this class is disclosed then a privacy breach has occurred. The next
definition formalizes this intuition. Recall from (7) that ∼W is the equivalence relation
induced on S by W.

Definition 6 ((ε, δ, ρ)-breach). Let H be a ihs. Consider a partition W of H such that
whenever s ∼W s′ then Sim(s, s′) ≥ ε. We say W is an (ε, δ, ρ)-breach if PW

e (n) reaches
δ at rate ρ.

The following result establishes strong upper bounds on the resistance to privacy
breaches in sparse datasets (the proof is reported in the Appendix).

Theorem 5. Any (ε, δ)-sparse ihs has an (ε, δ,− log ε)-breach W. In particular, to
PW

e (n) the same bound applies as given for Pe(n) in Theorem 4.

Example 3. Real-world datasets tend to be extremely sparse. For instance, (0.15, 0.2)-
sparsity in a dataset containing N = 5 × 105 records should not be considered as
exceptional (cf. [19, Fig.1], referring to the Netflix Prize dataset). Applying the bound
of Theorem 4 to these figures, we see that already after coming across n = 10 ran-
domly chosen attribute values of a target individual, the probability of uncorrect re-
identification in the dataset is < 0.201. This may still seem quite high in absolute terms.
Consider, however, that the success probability prior to the observations was 1

5×105 . In
terms of information leakage, this means that the attacker has obtained L(10) ≈ 18.6
bits of min-entropy, out of log N ≈ 18.9. The privacy breach is therefore absolutely
relevant. Note that attacks against real-world datasets can exploit specific features of
the target and get more impressive success probabilities [19].

7 Conclusion

We have put forward a model to analyse a variety of statistical attacks in a uniform
fashion. This permits the assessment of systems security against passive eavesdroppers
both at the global level and at the level of specific partitions of the secrets. In particular,

Quantitative Information Flow, with a View 603

we give precise bounds for the probability of misclassification on the part of the attacker,
characterising both the limit value and the rate of convergence of the error probability
as a function of the number independent observations.

The last few years have seen a flourishing of research on quantitative models of
information leakage. In the context of language-based security, Clark et al. [11] first
motivated the use of mutual information to quantify information leakage in a setting of
imperative programs. Boreale [4] extended this study to the setting of process calculi,
and introduced a notion of rate of leakage, albeit with a different technical meaning than
that considered in the present paper. Chatzikokolakis, Palamidessi and their collabora-
tors have studied ihs’s from the point of view of both capacity and error probability, but
mainly confining to the case of a single observation [8,9,6,7]. The min-entropy based
information leakage has been proposed by Smith [21], originally in the case of a single
observation.

Backes and Köpf in [1] too consider a scenario of repeated independent observa-
tions, but from the point of view of Shannon entropy, rather than of error probability.
An application of their setting to the modular exponentiation algorithm is the subject
of [16], where the effect of bucketing on security of rsa is examined. This study has
recently been extended to the case of min-entropy by Köpf and Smith in [17]. Earlier,
Köpf and Basin had considered a scenario of adaptive chosen-message attacks [15].
Our previous paper [5] studies the asymptotic behaviour of information leakage. The
bounds obtained there for the asymptotic rates are much looser than those we obtain
here, though. Moreover, considerations on views are absent.

Our work is also related, at least conceptually, to the notion of probabilistic opacity
as studied by Bérard, Mullins and Sassolas [3]. Indeed, although their setting is different
– they work with finite-state machines – our partitions could be viewed as a generaliza-
tion of the binary predicates they consider. Note however that [3] is based on Shannon
entropy, and considers observations consisting of a single run of the system, rather
than repeated observations, hence not statistical attacks. The Bayesian traffic analysis
framework of Troncoso and Danezis [22] is tailored to the analysis of mix-networks,
but mostly focuses on simulation rather than on formal models and analytical results.

As for future work, it would be natural to generalize the present scenario to the
case where the attacker is given k tries for guessing the secret, with k ≥ 2, rather than
just one. Finally, the application to sparse datasets prompts a connection to databases
privacy issues that deserves further attention.

Acknowledgments. The first author wishes to thank V. Shmatikov for a stimulating
discussion on the notion of sparsity in datasets. Three anonymous esorics 2011 referees
provided valuable comments.

References

1. Backes, M., Köpf, B.: Formally Bounding the Side-Channel Leakage in Unknown-Message
Attacks. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 517–532.
Springer, Heidelberg (2008)

2. Baignères, T., Vaudenay, S.: The Complexity of Distinguishing Distributions (Invited Talk).
In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 210–222. Springer, Heidelberg
(2008)

604 M. Boreale, F. Pampaloni, and M. Paolini

3. Bérard, B., Mullins, J., Sassolas, M.: Quantifying Opacity. In: Proc. of QEST 2010, pp. 263–
272. IEEE Society, Los Alamitos (2010)

4. Boreale, M.: Quantifying information leakage in process calculi. Information and Computa-
tion 207(6), 699–725 (2009)

5. Boreale, M., Pampaloni, F., Paolini, M.: Asymptotic information leakage under one-try at-
tacks. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 396–410. Springer,
Heidelberg (2011)

6. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Compositional Methods for Information-
Hiding. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 443–457. Springer,
Heidelberg (2008)

7. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative Notions of Leakage for One-
try Attacks. In: Proc. of MFPS 2009. Electr. Notes Theor. Comput. Sci, vol. 249, pp. 75–91
(2009)

8. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy chan-
nels. Information and Computation 206(2-4), 378–401 (2008)

9. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the Bayes risk in information-
hiding protocols. Journal of Computer Security 16(5), 531–571 (2008)

10. Chaum, D.: Untraceable electronic mail, return address, and digital pseudonyms. Communi-
cations of the ACM 24(2) (1981)

11. Clark, D., Hunt, S., Malacaria, P.: Quantitative Analysis of the Leakage of Confidential Data.
Electr. Notes Theor. Comput. Sci. 59(3) (2001)

12. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2/e edn. John Wiley & Sons,
Chichester (2006)

13. Danezis, G.: Statistical Disclosure Attacks. In: SEC 2003. IFIP Conference Proceedings,
vol. 250, pp. 421–426 (2003)

14. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer,
Heidelberg (1996)

15. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel attacks. In:
ACM Conference on Computer and Communications Security, pp. 286–296 (2007)

16. Köpf, B., Dürmuth, M.: A Provably Secure and Efficient Countermeasure against Timing
Attacks. In: CSF 2009, pp. 324–335 (2009)

17. Köpf, B., Smith, G.: Vulnerability Bounds and Leakage Resilience of Blinded Cryptography
under Timing Attacks. In: CSF 2010, pp. 44–56 (2010)

18. Leang, C.C., Johnson, D.H.: On the asymptotics of M-hypothesis Bayesian detection. IEEE
Transactions on Information Theory 43, 280–282 (1997)

19. Narayanan, A., Shmatikov, V.: Robust De-anonymization of Large Sparse Datasets. In: IEEE
Symposium on Security and Privacy 2008, pp. 111–125. IEEE Computer Society, Los Alami-
tos (2008)

20. Shmatikov, V.: Personal communication (2011)
21. Smith, G.: On the Foundations of Quantitative Information Flow. In: de Alfaro, L. (ed.)

FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)
22. Troncoso, C., Danezis, G.: The bayesian traffic analysis of mix networks. In: ACM Confer-

ence on Computer and Communications Security, pp. 369–379 (2009)

Quantitative Information Flow, with a View 605

A Appendix

Unless otherwise stated, we use the notation and conventions introduced in Section 4.

Theorem 6 (Theorem 1). Let I be a nonempty subset of {1, ...,K}. Let ρI
�
=

mini, j∈I,i� j ci j. Let πmax = maxi∈I πi. Then, for all n ≥ 1

Pe(n) ≤ (1 −
∑

i∈I
πi) +

|I|2
2
πmax2−nρI . (14)

As a consequence, Pe(n) reaches (1 − ∑
i∈I πi) at a rate of ρI . In particular, by taking

I = {1, ...,K}, we obtain that ρ(Pe) ≥ ρI .

Proof. Fix n ≥ 1. Let R = {s∗i |i ∈ I} and g : On → R be a function satisfying: g(on) = s∗i
implies p(on|s∗i)πi ≥ p(on|s∗j)π j for each j ∈ I. Note that g need not be map for H , and

that g−1(s) = ∅ for s � R. For each i ∈ I, let Ai = g−1(s∗i) be the acceptance region for
s∗i . Then we have (the sums below run over s’s s.t. pS (s) > 0)

Pg
e(n) =

∑

s∈S
Pr(g(On) � s|S = s)pS (s)

=
∑

s�R
Pr(g(On) � s|S = s)pS (s) +

∑

i∈I
Pr(g(On) � s∗i |S = s∗i)πi

= (1 −
∑

i∈I
πi) +

∑

i∈I
pi(A

c
i)πi

≤ (1 −
∑

i∈I
πi) +

∑

i∈I

∑

j∈I, j�i

pi(A j)πi

= (1 −
∑

i∈I
πi) +

∑

i∈I

∑

j∈I, j>i

pi(A j)πi + p j(Ai)π j (15)

where the inequality follows from Ac
i = ∪ j∈I\{i}A j and a simple union bound, while

the last equality is simply a rearrangement of summands. Now, we evaluate pi(A j)πi +

p j(Ai)π j for each i, j ∈ I and i � j.
Essentially by the same derivation given in [12, eqn.(11.239)–(11.251)], one finds

that pi(A j)πi + p j(Ai)π j ≤ πλi π1−λ
j 2−nci j , for a suitable λ ∈ [0, 1]. Since πλi π

1−λ
j ≤

πλmaxπ
1−λ
max = πmax and ci j ≥ ρI , we obtain

pi(A j)πi + p j(Ai)π j ≤ πmax2−nρI (16)

Now, if we plug the bound (16) in (15), and then factor out πmax2−nρI and reorder the
summands, we get

Pg
e(n) ≤ (1 −

∑

i∈I
πi) +

(∑

i∈I

∑

j∈I, j>i

1
)
πmax2−nρI .

Now, use the fact that
(∑

i∈I
∑

j∈I, j>i 1
)
=
|I|(|I|−1)

2 ≤ |I|2
2 , which shows that the wanted

inequality holds for Pg
e(n). But, from optimality of map, Pe(n) ≤ Pg

e(n), which completes
the proof.

606 M. Boreale, F. Pampaloni, and M. Paolini

Theorem 7 (Theorem 2). Let I and ρI be chosen as in Theorem 1. Let W be a view of
H . Let Πmax = maxi∈I F∗i . Then

PW
e (n) ≤

L∑

j=1

(1 − q∗j) + (1 −
∑

i∈I
F∗i) +

|I|2
2
Πmax2−nρI . (17)

Proof. Denote a pair of indices (i, j) ∈ {1, ...,K} × {1, ..., L} as i j. For each s ∈ S, define
ind(s) = i j iff s ∈ Fi j. Fix n ≥ 1 and any function g′ : On → {1, ...,K} × {1, ..., L}, and
let S ucc′ be the event (g′(On) = ind(S)). That is, S ucc′ is the event that g′ correctly
classifies the index (of the equivalence class Fi j) of S . Now define a guessing function

for H , g : On →W, as g(on)
�
= w, where g′(on) = i j and w = argmaxwq(w|s) for any

s ∈ E j (note that the information about i provided by g′ is ignored by g). Let Err be the
event (g(On) � W). We have

PW
e (n) = Pr(Err, S ucc′) + Pr(Err|¬S ucc′) Pr(¬S ucc′) (18)

≤ Pr(Err, S ucc′) + Pr(¬S ucc′) . (19)

Let us estimate Pr(Err, S ucc′) and Pr(¬S ucc′) separately. It is an easy matter to prove
that

Pr(Err, S ucc′) =
L∑

j=1

(1 − q∗j) Pr(S ∈ E j, S ucc′)

≤
L∑

j=1

(1 − q∗j) . (20)

We now estimate Pr(¬S ucc′). Consider the new ihs H′ �
= ({1, ...,K} ×

{1, ..., L},O, p′(·), p′(·|·)), where p′(i j)
�
= pS (Fi j) and p′(o|i j)

�
= pi(o). Note that i j ≡ i′ j′

iff i = i′. Hence we have K distinct classes in this system, whose representatives are el-
ements s′1 = 1 j1, ..., s′K = K jK such that ji = argmax j pS (Fi j), hence p′(s′i) = F∗i , for
i = 1, ...,K. The corresponding representative distributions (rows of the matrix p′(·|·))
are p′1(·) = p1(·), ..., p′K(·) = pK(·).

Now take the function g′ above to be a map guessing function for H′. Call P′e(n)
the error probability of H′: clearly, Pr(¬S ucc′) = P′e(n). Take I ⊆ {1, ...,K} and apply
Theorem 1 toH′ and I to get

Pr(¬S ucc′) ≤ 1 −
∑

i∈I
F∗i +

|I|2
2
Πmax2−nρI . (21)

When we plug the bounds (20) and (21) into (19), we get the wanted result.

Theorem 8 (Theorem 5). Any (ε, δ)-sparse ihs has an (ε, δ,− log ε)-breach W. In par-
ticular, to PW

e the same bound applies as given for Pe in Theorem 4.

Proof. The proof is similar to that of Theorem 4. Consider the set R = {s∗i | i ∈ I}. Build
the partition W as follows: take as blocks the singletons {s∗i }, for i ∈ I, plus the blocks
obtained by breaking S \ R in such a way that any two records in the same block are
ε-similar. Then apply Theorem 2 with W and I, taking into account the bounds for |I|
given in the proof of Theorem 4.

To Release or Not to Release: Evaluating Information
Leaks in Aggregate Human-Genome Data

Xiaoyong Zhou, Bo Peng, Yong Fuga Li, Yangyi Chen, Haixu Tang,
and XiaoFeng Wang

Indiana University, Bloomington

Abstract. The rapid progress of human genome studies leads to a strong demand
of aggregate human DNA data (e.g, allele frequencies, test statistics, etc.), whose
public dissemination, however, has been impeded by privacy concerns. Prior re-
search shows that it is possible to identify the presence of some participants in a
study from such data, and in some cases, even fully recover their DNA sequences.
A critical issue, therefore, becomes how to evaluate such a risk on individual
data-sets and determine when they are safe to release. In this paper, we report our
research that makes the first attempt to address this issue. We first identified the
space of the aggregate-data-release problem, through examining common types
of aggregate data and the typical threats they are facing. Then, we performed an
in-depth study on different scenarios of attacks on different types of data, which
sheds light on several fundamental questions in this problem domain. Particularly,
we found that attacks on aggregate data are difficult in general, as the adversary
often does not have enough information and needs to solve NP-complete or NP-
hard problems. On the other hand, we acknowledge that the attacks can succeed
under some circumstances, particularly, when the solution space of the problem
is small. Based upon such an understanding, we propose a risk-scale system and
a methodology to determine when to release an aggregate data-set and when not
to. We also used real human-genome data to verify our findings.

1 Introduction

With rapid advancement in genome sequencing technologies, human genomic data has
been extensively collected and disseminated to facilitate human genome studies (HGS).
A prominent example is genome-wide association study (GWAS) [4], a research tech-
nique that has been demonstrated to be highly valuable for identifying the genetic fac-
tors underlying common diseases. In a GWAS study, a group of participants with a
disease/phenotype of interest (cases) are genotyped to compare the statistical features
of their single-nucleotide polymorphisms (SNPs)1 to those of the individuals without
the disease/phenotype (controls). It is highly desired that the DNA data gathered dur-
ing this process can be conveniently accessed by other researchers, which will greatly
benefit the HGS community. Such data dissemination, however, needs to be balanced
with the protection of participants’ privacy, which is of paramount importance to this
kind of research: for example, revealing the identity of a case individual in a GWAS
relates her to the disease under the study, which can have serious consequences such
as denial of access to health/life insurance, education, and employment. Prior research

1 Common terminologies of genomics are summarized in Appendix A.

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 607–627, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

608 X. Zhou et al.

shows that raw DNA data (genotypes) is often too risky to publish even after removal of
explicit identifiers (such as name, social security number, etc.), as de-anonymization of
a participant’s identity can happen through examining the genetic markers related to her
observable features (a.k.a. phenotypes) [8]2. What has been thought to be of low risk
is aggregate genome data, such as allele frequencies, i.e., the frequencies of different
SNP values, because such data covers an individual’s information with that of others.
As an example, the NHGRI/NIH used to make allele frequencies publicly available.

Aggregate Data Releases. A recent development in inference technologies, however,
has completely changed the risk perception associated with the aggregate data. Particu-
larly, Homer et al [39] discovered that the presence of an individual in a case group can
be reliably determined from allele frequencies using the victim’s DNA profile, which
can be acquired, for example, from a single hair or a drop of blood. In response to
this finding, the NIH swiftly removed all aggregate genome data from the public do-
main to protect the participants of HGS and avoid legal troubles [2]. Today, those who
want to access the data have to file an application and sign an agreement, a complicated
procedure that is time consuming. This becomes a hurdle to the dissemination of the
data critical to HGS, and as a result, provokes intensive debates [10]: some researchers
pointed out that the NIH may have overreacted, as the attack power achievable over at
least some data-sets can be very limited [51, 21]. On the other hand, such agreement-
based protection has been found to be insufficient, as confidential user information can
still be derived from other public sources: a recent study [52] shows that even the test
statistics (e.g., p-values, r-squares) calculated from allele frequencies and published in
HGS papers give away a significant amount of information, in some cases enough for
identifying participants or even recovering portions of their DNA sequences. To make
things worse, HGS researchers typically receive little guidance on what they are not
supposed to share. Oftentimes, fine-grained allele frequencies/test statistics can be di-
rectly acquired from the authors of HGS papers.

Our Work. The current way aggregate human DNA data is handled indicates a dis-
turbing lack of understanding of its privacy implication: such data have been both over-
protected, which unnecessarily restricts their availability to the HGS researchers, and
underprotected, which exposes the HGS participants to privacy threats. Crucial to the
progress of the human genome research, therefore, becomes an in-depth study on how
to evaluate the information leaks in the aggregate data and determine when they are
safe to release, which also poses a challenge to the privacy researchers. This paper re-
ports our research that makes a first step toward this end. We consider two types of
common aggregate data, the allele frequencies for both individual SNPs and SNP pairs,
and the test statistics derived from the frequencies. Such data is studied under two typ-
ical threats, identification attack that uses an individual’s DNA profile to determine her
relation with an aggregate data-set [39, 52, 46], and recovery attack that re-constructs
individuals’ SNP sequences from such data. Our paper investigated the feasibility of
these attacks on different data based on information-theoretic and computational anal-
yses. We further explored the potential to build a risk scale system.

2 The NIH’s guideline for sharing GWAS data [8] explicitly states “the NIH takes the posi-
tion that technologies available within the public domain today, and technological advances
expected over the next few years, make the identification of specific individuals from raw
genotype-phenotype data feasible and increasingly straightforward”.

Evaluating Information Leaks in Aggregate Human-Genome Data 609

Contributions. We summarize the contributions of this paper as follows:
•Fundamental studies on information leaks in aggregate data. We performed both
information-theoretic and complexity analyses on the common threats to different types
of aggregate data. Our research sheds light on the fundamental questions on whether an
attack on a specific data-set is feasible and how difficult it can be. Of particular impor-
tance here is our consideration of the special features of human genomes, which, as we
show in the paper, can have significant impacts on the answers to these questions.
•Preliminary research on a risk-scale system. We propose a risk-scale system to classify
aggregate data and guide the release of such data. Our research, though preliminary,
is the first attempt to evaluate the risk of information leaks in a broad spectrum of
aggregate data, including both single and pair-wise allele frequencies and different test
statistics.

Roadmap. The rest of the paper has been organized as follows: Section 2 introduces
background knowledge; Section 3 and 4 elaborate our research on the data release prob-
lems; Section 5 surveys the related research and Section 6 concludes the paper and
discusses the future research.

2 Backgrounds and Assumptions

2.1 Aggregate Human-Genome Data

Our research has been conducted on two types of aggregate genomic data, allele fre-
quencies and test statistics. Both are among the most valuable data to human genome
research and are also most widely disseminated: for example, the former has been pub-
lished by the NIH [7] and the latter are elaborated in every GWAS paper [53,47,44,25].

Each SNP has two alleles, encoded as 0 (major) or 1 (minor). Using this encoding
scheme, the DNA profiles (containing the nucleotide sequences of the participants) of
N individuals L SNPs, could be simply represented as a N × L matrix. Figure 1 gives
an extremely small sample of encoded SNP profiles of 5 participants and 8 SNPs. The
single-allele frequencies fp

i of a SNP site are the frequencies of the site’s ’alleles, and
the pair-wise allele frequencies fpq

ij of a SNP pair represent the frequencies of site i and
j of the four allele combinations: pq ∈ {00, 01, 10, 11}. Note that allele frequencies
can be simply calculated from allele counts by dividing N (e.g. fpq

ij = Cpq
ij /N).

From the allele frequencies, test statistics are often computed in different human-
genome studies. Particularly, GWAS researchers utilize association tests to detect the
SNPs related to the disease under the study. These tests compare the single-allele fre-
quencies of the case population with those of the control population, in the hope of

L

N

0 0 0 0 0 1 0 0
0 1 1 0 1 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1

Fig. 1. A 0-1 encoded SNP
profiles of N = 5 individu-
als and L = 8 SNPs

Data Name Sample
Ci single allele count for SNP i (major) C1 = 3, C3 = 4
Cpq

ij pair wise allele counts for SNP i and j C10
12 = 2, C00

13 = 2

Cp∗
ij single allele count for SNP i C1∗

12 = 2

r2
ij r-square, measures association and LD

(C00
ij C11

ij −C01
ij C10

ij)2

C0∗
ij

C1∗
ij

C∗0
ij

C∗1
ij

Fig. 2. Routinely published data (single al-
lele counts without superscript means major
counts, e.g. Ci = C0

i)

610 X. Zhou et al.

identifying the genetic marker of the disease. The significance of each SNP (i.e., the
strength of its tie to the disease) is measured by a p-value. Typically, those with p-
values below 10−7 are selected as putative markers. Such marker-disease associations
can also be quantified using other test statistics such as odds ratios.

In addition to analyzing individual SNPs, a GWAS also examines the putative
marker’s associations with other SNPs in the same genetic locus, called linkage dis-
equilibrium (LD) [45], which could also have a connection with the disease. LD of a
locus is typically measured by the test statistics such as D’ and r-square, which are cal-
culated from pairwise allele frequencies of the locus. Sometimes, researchers further
analyzed the allele combinations involving multiple correlated SNPs, i.e., haplotypes,
which are inferred from genotypes through a class of phasing algorithms [1, 50, 49].

Figure 2 shows how to calculate these test statistics and some sample values for
Figure 1, which are routinely published in HGS papers [28, 48, 47, 53]. Oftentimes,
these papers include the p-values of hundreds of SNPs and figures that illustrate their
LDs. More detailed information can also be acquired from the authors. In our research,
we focused on p-values and r-squares, the two most-commonly reported test statistics.

2.2 Threats

The threats studied in our research include identification attack and recovery attack,
two major privacy concerns in human genome research. The first identification attack
on aggregate data has been proposed by Homer, et al [39], which requires availability
of a SNP profile from the victim. The objective here is to determine the presence of an
individual in the case group, so as to relate her to a disease. To this end, the attacker
runs a statistic test that evaluates whether the victim’s SNP profile is independent from
the single-allele frequencies of the case population. Let Yj ∈ {0, 1} be the allele of
SNP j in the profile, and f̂0

j and f0
i be the major allele frequencies of that SNP in the

case population and a reference population, respectively. Homer’s attack measures the
following distance:

D(Yj) = |Yj − f0
j | − |Yj − f̂0

j | (1)

Under the assumption that the distributions of individual allele frequencies are identical
in the case and the reference, the sum of D(Yj) across a large number of SNPs follows
a normal distribution with a zero mean if the victim is not present in the case group.
Otherwise, the sum becomes positive and significantly deviates from the mean. In their
paper, the authors report identification of a case individual with a extremely low false
positive rate, given 25,000 SNPs of the victim. This line of research has been followed
by multiple research groups [46, 21, 51, 40, 52]. Particularly, Sankararaman, et al [46]
utilized the likelihood ratio test to estimate the upper-bound of the identification power
achievable on single-allele frequencies. They also built a tool called SecureGenome [11]
to evaluate such a threat on different data sets.

Besides single-allele frequencies, pair-wise allele frequencies and test statistics were
also found to leak out a substantial amount of information. In prior research [52] , it was
found that the identification attack can happen to even the test statistics published in
GWAS papers, through a statistical test based upon signed r values. Given N sequences
of L neighboring SNPs in the genome, the signed rij between two SNPs i and j (1 ≤
i < j ≤ L) is defined as rij = C11C00−C01C10

√
C1∗C0∗C∗1C∗0 , where Cpq is the pair-wise allele

Evaluating Information Leaks in Aggregate Human-Genome Data 611

counts, i.e. the number of the sequences with allele p (p ∈ {0, 1}) at SNP i and allele q
(q ∈ {0, 1}) at SNP j, and Cp∗ and C∗q are single allele counts. rij can be computed
from r2

ij (Figure 2) except its sign. Like Homer’s approach, the attack needs a reference
population whose r values are denoted by rR, in addition to the case population (rC),
and a SNP profile from the victim in which Y pq

ij ∈ {0, 1} indicates whether her SNP
pair ij has a pair-wise allele pq. A test statistic Tr is thus constructed as follows:

Tr =
∑

1≤i<j≤N (rC
ij − rR

ij) · (Y 00
ij + Y 11

ij − Y 01
ij − Y 10

ij) (2)

Tr is much more powerful than the statistical attacks on single allele frequencies [52],
as it makes use of the relations among SNPs, the linkage disequilibrium, which contain
much more information than individual SNPs. A problem here, however, is the need
to know the signs, which is not typically released. They are determined in the prior
work [52] by taking advantage of integer constraints, base upon the assumption that the
published r-squares are calculated from allele counts (integers) and are not perturbed
by noise.

The recovery attack aims at re-constructing the SNP sequences (i.e., haplotypes)
used in an HGS: prior research [52] reports a successful restoration of 100 sequences
involving 174 SNPs on a locus from their single and pair-wise allele frequencies. Note
that these frequencies can be estimated through reverse engineering the test statistics
published in GWAS papers [52]. Compared with the identification attack, such an at-
tack can be more difficult to succeed and consume much more computing resources.
However, it does not rely on the DNA profile from the victim.

An ideal privacy goal here is differential privacy [29], which ensures that two aggre-
gated datasets differing from each other by one individual’s data have indistinguishable
statistical features. An example when this happens is that the data from a very large
number of participants is aggregated so that the contribution of an individual becomes
negligible. This privacy goal, once achieved, can defeat inference attacks using all kinds
of background knowledge. However, this condition is known to be hard to satisfy in a
practical system. For genomic data, the knowledge about the victim’s DNA profile and
a good reference population is deemed as a strong assumption in the adversary’s fa-
vor [51, 21]. Based on such an assumption, we thoroughly studied the feasibility and
complexity of these two types of attacks on the two types of datasets, and the method-
ology to determine whether a specific set of data is safe to release. Due to the space
limit, this paper focuses on two most interesting scenarios where allele frequencies face
the recovery attacks and test statistics are under the identification threat. The other two
cases, i.e., the identification threat to allele frequencies and the recovery threat to test
statistics, are much simpler: for example, the former has already been preliminarily ex-
plored by the prior research [11]. Our new findings on these cases can be found in a
longer version of the paper [55].

2.3 Adversary Model

We consider a probabilistic polynomial time adversary who can not accomplish the task
that needs exponential computing power, for instance, sampling an exponential space
to determine a probability distribution over this space. Other than that, we assume the
adversary has sufficient resources and perfect information at her disposal for individ-
ual attacks. Specifically, for the identification attack, we consider that the adversary

612 X. Zhou et al.

has access to the victim’s DNA profile and a good reference population with an allele
distribution identical to that of the case population. This is the best resource such an
attack can expect [52, 39]. For the attack involving test statistics, we assume that high-
precision data is available, which affects the outcome of such an attack, as indicated in
the prior research [52].

3 Recovery Threats to Allele Frequencies

Given a set of pairwise allele frequencies, a recovery attack aims at partially recovering
the haplotype sequences of HGS participants, which is completely realistic according to
prior research [52]. These sequences, once restored, can be used to re-identify these par-
ticipants, a threat well recognized by the NIH (see Footnote 1 and [8]). This section re-
ports a new methodology for determining the susceptibility of different allele-frequency
data to such an attack.

3.1 The Problem

Figure 3 illustrates the recovery attack, in which the adversary attempts to recover a
matrix, with each of its row vectors being a haplotype sequence, from the constraints
of pairwise allele frequencies3. This problem can be formulated as a haplotype matrix
recovery problem below:

Haplotype Matrix Recovery Problem. Consider an N × L haplotype matrix M that
represents N haplotype sequences over L SNP sites. The set of pairwise allele frequen-
cies of M is denoted by d = {fpq

ij }, where p and q are the allele types at SNP sites i

and j, respectively. Note that there are in total
(
L
2

)
such pairs among L SNPs. Let S be

the space of M (the matrix), and D be the space of d (the pairwise allele frequency).
Given d and N , the adversary intends to recover the haplotype matrix, that is, to find an
M ′ in S, which is equivalent to M ignoring the order of their row vectors.

It is conceivable that in some cases (some pairwise allele frequency d) the problem
has unique solution: that is, there exists a unique matrix M , disregarding the ordering
of its rows, that satisfies the constraints imposed by d, whereas in some other cases,
the problem has no solution (i.e. the pairwise allele frequencies are not satisfiable),
and in the remaining cases, the problem has multiple solutions. Figure 4 illustrates an
example that multiple solutions exists for a given d. If there are multiple solutions and
the intersection of all the solutions is small, when an attacker gets one solution, she has
low confidence if any of the sequence in his solution is indeed in the original haplotype
matrix.

Challenges in Risk Classification. To determine the risk scale of a given frequency set
d, we first find out whether it has multiple solutions. If this is true and the overlap among
these solutions is sufficiently small, we can comfortably put the set in the Green zone.
Unfortunately, this decision turns out to be extremely difficult to make, because several
problems on the haplotype matrix recovery are computationally hard. Specifically, we
found that:

Theorem 1. Determining if there is a haplotype matrix for a given pairwise allele
frequency set is NP-complete.

3 Note that the pairwise allele frequencies contain all the information of single allele frequencies.

Evaluating Information Leaks in Aggregate Human-Genome Data 613

1 0 1 …
0 1 1 …

1 0 0 …

f pq23
f pq13

f pq12

L

N

...

Fig. 3. Recovering a matrix from pairwise
allele frequencies. Given a pairwise allele
frequency set d = {fpq

ij }, the attacker tries
to recover the matrix satisfying d.

0 0 0 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 1

Fig. 4. The left matrix and the right matrix
have exactly the same single allele frequen-
cies and pairwise allele frequencies, but do
not share any single haplotype sequence

Corollary 1. Determining the number of haplotype matrices for a given pairwise allele
frequency set is NP-hard.

Conjecture 1. Determining if a solution is unique for a given pairwise frequency set is
Co-NP-complete.

Corollary 2. Recovering one haplotype matrix for a given pairwise allele frequency
set is NP-hard.

Corollary 3. Determining if there exists a solution for a given pairwise allele frequency
set that does not contain a given row vector is NP-complete.

Corollary 4. Recovering one haplotype matrix for a given pairwise allele frequency
set that does not contain a given row vector is NP-hard.

Proofs are provided in Appendix B. Theorem 1 to Corollary 4 show that determining
the existence of unique or multiple solutions for a given allele frequency set and recov-
ering even single one of them are all hard problems. Note that proving average-case
complexity is well known to be difficult [34]. Nevertheless, our empirical study using
IBM Cplex [5] with parallel enabled suggests that at least the decision problems here
do not seem to be easy in the average time. We randomly sampled 10 matrices of size
100× 80 and put them on a workstation with 4 Quad-Core Xeon 2.93GHz processors,
none of them could be solved within one week.

Determination of Risk Scales. In spite of the difficulty in finding the number of so-
lutions, it is still plausible to estimate whether a given frequency set is likely to have
multiple haplotype matrix solutions, by considering solely the size of the recovery prob-
lem as determined by two parameters, i.e., the number of SNP sites L and the number
of haplotype sequences N . We compare the solution space ‖S‖ and the frequency set
space ‖D‖. When ‖D‖ ≈ ‖S‖, the corresponding frequency set is likely to have a
unique haplotype matrix solution. Conversely, when ‖S‖ � ‖D‖, a data-set d becomes
very likely to have multiple solutions. Intuitively, the distribution of the solutions over
the different d tends to have a very small deviation: that is, it is unlikely that only a
few have many solutions while the others have unique ones. Furthermore, because the
distribution is over a large number of variables (i.e. the elements in the haplotype ma-
trix) and it is very complicated, the adversary cannot estimate the distribution without
using exponential computing power. The adversary, who is unsure about the uniqueness
of the solution, but, on the other hand, is aware of the strong indications that multiple

614 X. Zhou et al.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

mean−σ−2σest

number of solutions

co
un

t

Fig. 5. Solution Distribution. (N = 40, L
= 7, sample size = 1000, space ratio (esti-
mated number of solutions) = 7.861, average
= 116.855)

Not to
ReleaseToRelease UnknownRisk

Known
Attack

||S||:||D||>>1

Fig. 6. Risk spectrum. When ‖S‖ :
‖D‖ � 1, data is placed in the Green zone.
If there is a known attack, data must be
placed in the Red zone. Otherwise further
investigation is needed for the data (Yellow
Zone).

solutions exist, will end up with little faith in any solution she is able to find. What is
more, she may not even know how close to the real haplotype sequences her solution is,
if ‖S‖ becomes sufficiently large to ensure that many data-sets have multiple solutions.

Although it is difficult to rigorously define the distribution of solutions over d, we
conducted an empirical study to verify our hypothesis that the solutions distribute near
randomly. We randomly sampled 1000 haplotype matrices of size N = 40 and L = 7,
and calculated their pairwise allele frequencies4. Using each set of these pairwise allele
frequencies d as constraints, we computed for each instance all solutions that can be
found by Cplex, a state-of-the-art NP solver [5] 5. As expected, the distribution of the
number of solutions is close to a normal distribution with a small standard deviation
(Figure 5). The standard deviation (19) is on the same scale as the square root of the
mean (116), indicating that it is unlikely that only a few d have many solutions while
others have only a few or single solutions.

The above analysis indicates that we can have a shade-of-grey risk spectrum, as
illustrated in Figure 6, which is approaching the Green end with the increase of the
ratio ‖S‖ : ‖D‖. Intuitively, this suggests that the larger the ratio, the less the adversary
knows about the distance between her solution and the real one6. Upon the spectrum, we
can use a distance threshold to determine when a frequency data-set can be designated
to the Green zone. This research is elaborated in Section 3.2 and 3.3.

Towards the Red end of the spectrum, we proved that restoring a solution matrix
from allele frequencies is NP-hard, even if the solution is known to be unique. How-
ever, we also acknowledge that the special features of human-genome data, particularly
the LD relations among them, could make the problem tractable, as indicated in prior
research [52]. Therefore, a conservative approach is to label a data-set “Red” only when

4 We chose this problem scale because L and N met condition 3 which we will discuss shortly
and the problem is small enough to be solved by Cplex in reasonable time.

5 We did not enumerate all putative solutions. Instead, we set the populate limit of Cplex as 200
to save memory and time. Hence, the number of solutions shown here may be smaller than the
actual number of solutions.

6 An exception here is some special cases, for example, when the frequencies of the pairwise
allele type 00 become 1 for all SNP pairs. Such cases, however, can be identified before the
data being released.

Evaluating Information Leaks in Aggregate Human-Genome Data 615

it is found to be vulnerable to a known attack. Otherwise, the data-set is put in the Yel-
low zone, awaiting further investigation, if it is also not qualified for the Green zone.
The details of this analysis are presented in Section 3.4.

3.2 When to Release
As discussed above, when the solution space becomes sufficiently larger than the space
of allele-frequency sets, the threat of recovery attack can be mitigated, as the adversary
cannot determine whether a given frequency data-set describes a unique set of SNP
sequences. Here, we present an analysis on how large the solution space needs to be.

Solution-Space Analysis. Let us first consider the solution space S. For L SNPs, there
are 2L possible SNP sequences. The number of different solutions, each of which is an

N by L haplotype matrix, is at least
(
2L

N

)
, i.e., selecting N distinctive sequences from

the 2L sequences.
Then, we estimate the space of pairwise allele frequency sets D. Given N and a

frequency set d = {fpq
ij }, we can have a set of pairwise allele counts {Cpq

ij }, which
directly determine the set of single allele counts {Ci}. Since for any SNP pair, the
frequencies of one pairwise allele and one single allele are sufficient for inferring the
frequencies of other alleles, pairwise or single, for the same SNP pair (see Inequality 3
in [52]), the set d is uniquely determined by {Ci} and the set of pairwise major allele
counts, which we denote by {Cij} for simplicity.

From the fact that Cij and Ci can take any value in [0, N] and there are (L2) SNP
pairs and L single SNPs, we know that the number of different frequency sets d will not
exceed (N +1)(

L
2) ·(N +1)L = (N +1)(

L
2)+L. Comparing ‖S‖with ‖D‖, we can get a

necessary condition for the existence of multiple solutions: (2
L

N) > (N + 1)(
L
2)+L. But

it is too complex to use. Using Stirling’s approximation, we get 2NL
L(L−1)+2L(1−

log N
e

L −
log 2πN

2NL) > log(N + 1)7. This gives us 2N
L+1(1 −

log N
e

L − log 2πN
2NL) > log(N + 1). For

L > 200, 1 − log N
e

L − log 2πN
2NL ≈ 1. Ignoring other constants, we get the following

condition:

2N
log(N + 1)

> L (3)

Partial Recovery of Haplotype Matrix. The above analysis did not take into consid-
eration the possibility that multiple solutions, although they exist, are close enough to
each other for a given set of pairwise allele frequencies, e.g., there are a significant
number of sequences shared between them. If this occurs and the attacker somehow
recovered all the solutions (even though it is NP-hard, Corollary 1), and makes an in-
tersection over these solutions, she knows the resulting common sequences must be in
the case group. To defend against such attacks, we need stronger condition to assure
the security of the pairwise allele frequency data to be released: for a specific haplotype
sequence, there should exist another haplotype matrix solution that does not contain
this sequence. When this happens, even if an attacker manages to obtain a solution (i.e.
a set of haplotype sequences), she is not confident that any sequence in her solution is
present in the actual haplotype matrix, because for any such sequence, there is always

7 Unless otherwise specified, log means log2 in this paper.

616 X. Zhou et al.

another haplotype matrix that is equally likely to be the actual matrix and also does not
contain this sequence (although to find this matrix is NP-hard according to Corollary 4).
Similarly, even if the attacker obtained multiple solutions, the intersection of these so-
lutions will not give her any confidence that the sequence in the intersection must be
present in the actual matrix.

To get this stronger condition, we consider the solution space for a given instance
d with N rows (sequences) and L columns (SNP sites), but one haplotype sequence
in the original matrix is not in these solutions. This is equivalent to the entire matrix
space, i.e., 2N×L

N ! , subtracted by the matrix space with one fewer row (set as the given

haplotype sequence), i.e., 2(N−1)×L

(N−1)! . By using the same analysis from above, we get the
following condition:

2(N − 1)
log(N + 1)

> L (4)

Once the size of a haplotype matrix (N and L) meets this condition, its solution space
will become sufficiently large that the intersection of all of its solutions is unlikely
to contain even one haplotype sequence. This condition is also very close to that of
Condition 3.

Empirical Study. To verify whether the above privacy assurance is sufficient in prac-
tice, we conducted an empirical study on a number of small-scale problems. We ran-
domly sampled 30 haplotype matrices that satisfy the condition (with N = 40 and
L = 8), and for each haplotype sequence in the original matrix, we attempted to re-
cover another haplotype matrix that did not contain this sequence but still has the same
pairwise allele frequencies as those of the original matrix. Again, we used Cplex to
search for all matrix solutions (with a populate limit of 200). In the end, for each of the
haplotype sequences in the 30 matrices we sampled, at least 74 solutions were found
that did not contain that sequence, indicating that given any haplotype sequence in a
matrix, there likely exists an alternative solution (another haplotype matrix) associated
with the pairwise frequency set of the original matrix, which does not include that se-
quence. This study shows that condition 4 can be used to estimate when a pairwise
frequency set is unlikely to be vulnerable to an intersection attack.

3.3 The Impact of Human Genetic Structure

A critical pitfall in the analysis above is that it does not take into consideration the
prominent features of human genome sequences. Instead of being random binary se-
quences (0 for major and 1 for minor allele) as assumed in our model, human genome
sequences contain complex structures that are well studied in human genetics and can
be inferred from publicly accessible human genome data [13, 6]. Thus, the adversary
could simply examine a solution she finds to determine whether it looks like a human
genome sequence. This leads to the further reduction of the solution space ‖S‖. In this
section, we present another analysis based upon a human genetic model.

Human Genetic Model. We model haplotype sequences with a Markov chain (MC),
a standard approach extensively used in human genetic research for the modeling of
the LD structure (single and pairwise allele frequencies) in a specific genetic locus
[35, 42, 43]. Given L SNP sites, the model can be represented as a heterogeneous

Evaluating Information Leaks in Aggregate Human-Genome Data 617

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

cut index = 729

bins

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

of
 p

cdf

(a) cdf

0 5000 10000
0

20

40

60

80

100

cut index = 729

bins

se
qu

en
ce

 c
ou

nt
s

(lo
g 2)

cumulative counts

(b) counts

Fig. 7. The Markov Chain model for estimating the effective solution space. (a) Cumulative dis-
tributions of the probabilities of haplotype sequences, sorted in descending order of probabilities.
Cutoff probability θ = 0.99999. (b) Total number of most probable sequences vs. their cumula-
tive probabilities. Vertical red lines represent the cutoff.

Markov chain with a sequence of L states (X1X2...XL), where Xi ∈ 0, 1, repre-
senting the major (0) or minor (1) allele, and an initial probability distribution (de-
noted by P 0(X1)) as well as L − 1 different transition probability matrices (denoted
by P i(Xi+1|Xi)) are used to model the transition probabilities from the i-th state to
the (i+1)-th state, which are estimated from the single and pairwise allele frequencies
using standard methods [35, 42, 43]. As a result, each of the 2L haplotype sequences
corresponds to a state sequence and the probability of observing it under the MC model
can be computed by P (X1X2...XL) = P 0(X1) ·

∏L−1
i=1 P i(Xi+1|Xi). Once built from

a group of haplotype sequences from human individuals (e.g. the case group or a ref-
erence group), the MC model can be used to evaluate the effective space of haplotype
matrices that are likely sampled from real human individuals. Among totally 2L pos-
sible haplotype sequences, the probabilities of observing some sequences are so low
that they are deemed unlikely to appear in human genomes, owing to the strong as-
sociations among neighboring SNPs. These sequences should not be considered when
estimating the solution space of haplotype matrices. Assume the probabilities of 2L se-
quences and a threshold θ (close to 1, e.g. 0.99999) are given, the effective space of
haplotype sequences can be estimated by the number of most probable sequences that
have a cumulative probability greater than θ. This was achieved in our research through
an approximation algorithm which is given in our technique report [55].

Evaluation. To estimate the solution space under a human genetic model, we phased
3008 sequences from WTCCC ch7 of 100 SNPs by using PHASE [3]. We chose 2T =
8192 bins to estimate distribution of haplotype sequences under the MC model. As
shown In Figure 7(a), with cutoff probability θ = 0.99999, only 729 bins of ≈ 252

most probable sequences are obtained, as compared to the entire space of 2100 hap-
lotype sequences, which indicates that the incorporation of the human genetic model
significantly reduces the effective space of haplotype sequences. Figure 8 shows the
space comparison between ‖S‖ and ‖D‖. We could see that in the original analysis,
we need about 5L sequences to ensure multiple solutions for the given pairwise allele
frequencies. Defending against the intersection attack requires pretty much the same
number of sequences as shown in the figure. To incorporate the human genetic model
(the MC model), we need roughly 12L sequences.

618 X. Zhou et al.

0 5 10 15 20
−5

0

5

10

15x 10
4

sample size x*L
so

lu
tio

ns
 (

lo
g2

)

MC
MC Fix
REAL
REAL Fix

Fig. 8. Comparison between matrix space ‖S‖ and constrain space ‖D‖ for data fromWTCCC1
of SNP 100

3.4 When Not to Release

For the frequency set that cannot be put in the Green zone, its solution is likely to be
unique. The adversary who finds the solution has reason to believe that it is the correct
one. Here, we elaborate how to classify such a data-set.

Red-Zone Data. Although recovering SNPs sequences is NP-hard in general, the spe-
cial features of human genome can enable the attack to succeed on at least some fre-
quency sets. Prior research reports a successful attack on a data-set related to 100 SNP
sequences and 174 SNPs from the FGFR2 locus [52]. The approach leverages the LD
relations among these SNPs to break the matrix into small blocks in a way that preserves
the strong inter-SNP relations within individual blocks. Such relations allow the adver-
sary to first restore individual blocks and then use the aggregated relations between
blocks to connect them together.

To avoid releasing the data vulnerable to the recovery attack as well as overprotecting
those that can actually be disclosed, we suggest to test a frequency set with known
attacks and assign it to the Red zone when it is exploited. If the attacks fail, we can
label the data-set as “Yellow” to leave the decision on its release to the future research.

4 Identification Threat to Test Statistics

Besides allele frequencies, also widely disseminated by HGS are the test statistics com-
puted from these frequencies. Particularly, HGS papers routinely report p-values and r-
squares (r2) over tens or even hundreds of SNP sites. Prior research [52] shows the key
to an identification attack on such data is knowledge of the values of r or equivalently,
their signs (given r2). Once such information is given, we can use Tr [52] to decide
whether a set of r-squares can be released, in the same way as SecureGenome [11] does
to single and pairwise allele frequencies. Specifically, we can release such a data-set
if given all correct signs, the achievable statistical power on it, as reported by Tr, is
still below a threshold. However, when the power turns out to be high, a decision to
keep the data off limit can be premature: after all, there we assume that all the signs
are recovered, which is by no means easy in practice, as discussed later in this section.
Therefore, a question becomes how to seek a “tighter bound”, allowing the statistics to
be released when it is too difficult to recover a dangerous amount of information from
them. This issue is addressed in this section.

Evaluating Information Leaks in Aggregate Human-Genome Data 619

The rest of the section presents our understanding of the problem: how sign recovery
improves the chance of successful identifications and how difficult this can be done.
Then, we come up with the yardsticks for releasing test statistics and describe a new
potent attack that helps decide when data should be held from publication.

4.1 The Problem
An important question we are asking is how many correct signs a successful attack
needs. The answer sheds light on the conditions under which the attack becomes in-
effective. To find out the answer, we can analyze the relations between the rate of the
correct signs used in an optimal test and the statistical power it can achieve on a par-
ticular data-set. Specifically, given a rate of correct signs α, we can randomly assign
correct signs to the r of a fraction α of SNP pairs, and then run Tr under the assignment
to determine its power, i.e., the rate of successful identifications. This test needs to be
conducted repeatedly for each rate of correct signs, to get the maximum power under
different sign assignments. In this way, we can obtain an estimated power-sign relation,
and then use a threshold to determine the maximum rate of correct signs that will not
pose a serious identification threat.

Complexity of Releasing Statistics. Given a threshold α (α ∈ [0, 1]) of the correct sign
rate, a set of test statistics (r-squares) can be placed in the Green zone if the adversary
cannot correctly recover as many as α of all

(
L
2

)
signs. This can be ensured if the

set of r-squares is mapped to multiple sets of valid signed r values, and the overlap
among these sets is below the threshold α. When this happens, the adversary, even if
she can recover all these sets of signed r values, cannot identify enough signs with any
confidence for a successful attack. Obviously, given

(
L
2

)
r-squares over L SNP sites,

there are totally 2(
L
2) possible sign assignments, with each of them corresponding to a

different set of signed r values. However, not all of such assignments are valid: many
of them do not correspond to any haplotype matrix, as those assignments lead to the r
values inconsistent with each other.

We studied a sign recovery problem: given a set of r-square values r2
ij over L SNP

sites, a set of single allele frequencies fi (i = 1, 2, ..., L), which could be recovered
from p-values [52], and the total number of sequences in the case group (N), find a set of
signed r values r̂ij so that (1) r2

ij = r̂2
ij ; and (2) r̂ij are valid, i.e. there exists a haplotype

matrix whose pairwise allele counts Cpq
ij (p, q ∈ 0, 1) satisfy N · fi =

∑
q∈{0,1} C0q

ij

for all i and j, and rij =
C00

ij C11
ij −C01

ij C10
ij

C0
i C1

i C0
j C1

j
. Similar to the haplotype matrix recovery

problem, several key problems related to the sign recovery problem are computation-
ally hard if we assume the haplotype matrix has more than just a few rows (haplotype
sequences). This can be satisfied by all real HGS studies, which typically contains hun-
dreds of individuals. Specifically, under this condition, we show that:

Theorem 2. Determining if there exists a set of sign assignments of r for a given set of
r-squares and single allele frequencies is NP-complete.

Corollary 5. Recovering a valid sign assignment for a given set of r-squares and single
allele frequencies is NP-hard.

Corollary 6. Finding the number of valid sign assignment for a given set of r-squares
and single allele frequencies is NP-hard.

620 X. Zhou et al.

The proofs are provided in technique report [55]. We note that these results have strong
implications on classifying an r-square set into Green or Red zones. Briefly, an adver-
sary faces the following computational difficulty: assume that she manages to recover
some sets of signs from r-squares, which itself is NP-hard; she still has no clue whether
there are any other valid sign assignment and how many correct signs have been dis-
covered in her solution. In other words, she will not have any reasonable confidence in
the identification she makes from the r-square data-set. There is an exception, though:
if the solution space of valid sign assignments (or equivalently their corresponding hap-
lotype matrices) is sufficiently small, for example, as small as the space of r-squares,
then the adversary has a good reason to believe that every set of r-squares has a unique
valid sign assignment. Here the situation is analogous with that in Case 2 (Section 3).
Similarly, we need a solution-space analysis to ensure that the adversary cannot get any
useful information from a data-set to be released.

4.2 When to Release

Before placing a data-set to the Green zone, we need to ensure that the adversary cannot
recover enough signs from it to achieve any significant identification power. Consider
that a polynomial-time adversary learns from the ratio between the space of r-squares
‖R2‖ and the space of matrices ‖S‖ that an r-square set can have κ solutions. Given a
specific set of r-squares, she has no reason to believe that the set has fewer solutions,
because she can neither determine the exact number of solutions nor sample the expo-
nential space S (when N and L are large) to estimate the distribution of matrices over
r-square sets. Also, recovering all these matrices is NP-hard and therefore the adversary
has no clue how many different sets of valid signs exist, except that the number will not
exceed κ. When κ is sufficiently large, the adversary, even after she manages to get a
set of signs, does not know whether the overlap among all sets (which can be as many
as κ) goes above 1− α of all (L2) signs.

Solution-Space Analysis. Therefore, the condition for the release of an r-square set
is that ‖S‖ : ‖R2‖ should be sufficiently large to ensure that the adversary does not
know whether she recovers enough correct signs. As described in Section 3, ‖S‖ ≈
2LN(N

e)
−N (2πN)−1/2. Since the space size of the r values is approximately (N +

1)(
L
2)+L, from r to r-squares, the space shrinks to ‖R2‖ ≈ (N+1)(

L
2)+L

2(L2)
. To ensure mul-

tiple solutions, we need ‖S‖ > ‖R2‖, which gives:

2N
log(N + 1)− 1

> L (5)

For example, for a locus involving 100 SNPs, at least 225 individuals (450 haplotype
sequences) should be in the case group to ensure the existence of multiple solutions.
Not surprisingly, this is less stringent than the condition of placing a set of pairwise
allele frequency in the Green zone (where one needs to have at least 500 sequences
for a 100-SNP locus), because r-squares contain less information than the pairwise al-
lele frequencies. To further prevent the adversary from identifying more than 1 − α of
the correct signs, we need to make it possible to have an element in R2 be mapped by

Evaluating Information Leaks in Aggregate Human-Genome Data 621

0 5 10 15
−5

0

5

10 x 10
4

1 0.6

sample size x*L

so
lu

tio
ns

 (l
og

2)

MC
MC0.6
REAL
REAL0.6

Fig. 9. Comparison between matrix space ‖S‖ and ‖R2‖ for data from WTCCC1 of L = 100
SNP. Vertical line shows the required sample size estimated from formula 5 and 6 and then added
by a buffer of 0.5L.

at least 2(1−α)(L
2) elements8 in S. To ensure this, we must have that ‖S‖ is at least

2(1−α)(L
2) times as large as ‖R2‖. This ultimately gives us the following condition:

2N
log(N + 1)− 1 + α

> L (6)

Considering Human Models. Again, when the special properties of human genomes
are being considered, we need to re-assess the matrix space ‖S‖ based upon a human
genetic model, as described in Section 3.3. In our research, we ran the approximation
algorithm (Section 3.3) to identify L and N that satisfy the above conditions (multiple
sets of signs with a large distance), using the WTCCC1 data.

Figure 9 shows the result of the experiment involving 100 SNPs. As we can observe
from the figure, in absence of a human model, a population with more than 250 indi-
viduals (500 sequences) are required to make sure that no more than 60% of signs can
be identified. If we consider the human features, we need a population of at least 600
individuals (N > 1200).

4.3 When Not to Release
When the space of matrices S comes close to that of the r-squares, the adversary knows
that once she acquires a set of valid r values, they are likely to be correct. Although
we have shown that recovering signed r values from r-squares is NP-hard (Corollary
5), some instances of the sign recovery problem may be easy to solve, in particular
when a human genetics model is employed to help solve the problem. Here we present
a new attack technique that helps determine when this situation occurs, and thus a data-
set should not be released. The new attack leverage on the LD structure of human
genome and using haplotype recombination to efficiently recover the sign. For more
detail, please read our technique report [55].

Evaluations. We ported the LD function, which is used in many GWAS papers for cal-
culating MLE r2, from the snp.plotter [12] package of R [9] to Matlab and implemented

8 Note that the adversary has to consider the situation that all these elements (matrices) are as-
sociated with different r sets, as she has no computing power to estimate the relations between
r and matrices.

622 X. Zhou et al.

the recombination attack using a stochastic hill climbing algorithm with multiple start-
ing points. Then, we evaluated the attack on the data extracted from WTCCC1. We
extracted 180 SNPs from chromosome 7. A case group and a reference group of 100
each were randomly sampled from the data-set. After that, the MLE-estimated r2, to-
gether with single allele frequencies, was used as the optimization target for both inner
block and inter block recombinations. On average, the sign agreement rate between
the initial haplotype matrix (reference) and the target matrix (case) was 58.7%, which
had very small power (identification rate 3.0% under a false positive rate 1%). After
learning, the sign rate agreement was improved to 67.2% on average and the identifica-
tion rate became 8.1%: that is, our approach enabled an adversary to identify about 8
participants from the aggregate data with a poor quality.

5 Related Work

The problem of releasing aggregate data while preserving their privacy has been ex-
tensively studied in privacy preserving data analysis [29, 33], statistical disclosure con-
trol [18, 19, 32], inference control [24] and privacy-preserving data mining [14, 15].
However, the properties of human genome data make the problem special in this do-
main, which has not been well investigated. Especially, human individuals share about
99.9% genomic sequences, which makes it easy to find a reference group from public
sources such as HapMap [6]. This enables both Homer’s attack and the statistical attack
proposed in [52], as elaborated in Section 2.2. Also remotely related to our research is
the work on privacy preserving genome computing [16,41,22], which however does not
focus on protecting the outcomes of a computation from being inferred.

The recent progress in human genome research [31,36] has made a great demand on
convenient access to sensitive human genome data for research purpose. The problem
of balancing privacy protection and data sharing in this domain, however, has not been
seriously studied until Homer, et al. published their findings [39] a couple years ago.
After that, several research groups, including us, have started working on this important
issue [52, 46, 40, 51, 21]. As a prominent example, Sankararaman, et al [46] recently
propose a technique (SecureGenome) for measuring the maximum statistical powers
achievable on a set of single-allele frequencies. Most of these studies focus on single
allele frequencies, which has been found in prior research to be insufficient [52], as
sensitive information can also be inferred from other sources like test statistics. The
research presented in this paper is the first attempt to understand and assess the risk in
releasing different types of aggregate data, under typical inference threats.

Recovering SNP sequences is related to the research on contingency table release [20,
38,23,54,27], and discrete tomography [37], which tries to reconstruct a matrix from a
small number of projections. However, the specific problem of restoring a matrix from
pair-wise allele counts is new, up to our knowledge, and the related complexity prob-
lems have not been studied before.

The Red-zone data identified by our techniques are not supposed to be released di-
rectly. However, they could still be published after proper sanitization and obfuscation.
Such techniques have been studied in data-based privacy [17, 30, 19]. Particularly, the
privacy policy based upon Differential privacy [29], once enforced, can make an iden-
tification impossible. Therefore, an important research direction is to develop effective
techniques to achieve such a privacy objective on aggregate human genome data.

Evaluating Information Leaks in Aggregate Human-Genome Data 623

6 Conclusion

Availability of aggregate human DNA data is of great importance to human genome
studies. Recent research shows that such data are vulnerable to different types of pri-
vacy threats, which could lead to identification of the participants of these studies and
disclosure of their sensitive genetic markers. Therefore, a critical question becomes how
to evaluate such a risk and determine when the data are safe to release. In our research,
we make the first attempt to answer this question. We identified the problem space of
aggregate data release, considering both different types of data available in the public
domains (allele frequencies and test statistics) and common threats to such data (identi-
fication attack and recovery attack). Through a systematic exploration of the space, we
gained an important new understanding of the problem. Specifically, we found that in-
ferring useful information from such data is difficult in general: the adversary often does
not have enough information and needs to solve NP-complete or NP-hard problems. On
the other hand, we also show that an attack can still happen under some circumstances,
particularly when the solution space of the problem is small. Based upon such an under-
standing, we propose a new risk-scale system that determines when data can be safely
released, through analyzing their solution spaces.

Given the scale and the depth of this data-release problem, many open issues remain
in the problem space. Particularly, a critical issue here is how to narrow the range of
the Yellow zone, to get tighter bounds for releasing or not releasing an aggregate data-
set. Also important is the study on new anonymization techniques that obfuscate the
Red-zone data to achieve differential privacy without substantially compromising their
scientific value.

References

1. Haplotype Estimation and Association (2005), http://slack.ser.man.ac.uk/
theory/association_hap.html

2. NIH Background Fact Sheet on GWAS Policy Update (2008), http://grants.nih.
gov/grants/gwas/background_fact_sheet_20080828.pdf

3. fastPHASE (2010), http://stephenslab.uchicago.edu/software.html
4. Genome-Wide Association Studies (2010), http://grants.nih.gov/grants/

gwas/
5. Ibm ilog cplex optimizer (2010), http://www-01.ibm.com/software/

integration/optimization/cplex-optimizer/
6. International HapMap Project (2010), http://www.hapmap.org/
7. National Institutes of Health (2010), http://www.nih.gov/
8. Policy for sharing of data obtained in nih supported or conducted genome-wide

association studies (gwas) (2010), http://grants.nih.gov/grants/guide/
notice-files/not-od-07-088.html

9. The R project for statistical computing (2010), http://www.r-project.org/
10. Re-identification and its discontents (2010), http://www.

genomicslawreport.com/index.php/2009/10/13/
re-identification-and-its-discontents/

11. SecureGenome (2010), http://securegenome.icsi.berkeley.edu/
securegenome/

12. SNP.plotter (2010), http://cbdb.nimh.nih.gov/˜kristin/snp.plotter.
html

http://slack.ser.man.ac.uk/theory/association_hap.html
http://slack.ser.man.ac.uk/theory/association_hap.html
http://grants.nih.gov/grants/gwas/background_fact_sheet_20080828.pdf
http://grants.nih.gov/grants/gwas/background_fact_sheet_20080828.pdf
http://stephenslab.uchicago.edu/software.html
http://grants.nih.gov/grants/gwas/
http://grants.nih.gov/grants/gwas/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.hapmap.org/
http://www.nih.gov/
http://grants.nih.gov/grants/guide/notice-files/not-od-07-088.html
http://grants.nih.gov/grants/guide/notice-files/not-od-07-088.html
http://www.r-project.org/
http://www.genomicslawreport.com/index.php/2009/10/13/re-identification-and-its-discontents/
http://www.genomicslawreport.com/index.php/2009/10/13/re-identification-and-its-discontents/
http://www.genomicslawreport.com/index.php/2009/10/13/re-identification-and-its-discontents/
http://securegenome.icsi.berkeley.edu/securegenome/
http://securegenome.icsi.berkeley.edu/securegenome/
http://cbdb.nimh.nih.gov/~kristin/snp.plotter.html
http://cbdb.nimh.nih.gov/~kristin/snp.plotter.html

624 X. Zhou et al.

13. Wellcome Trust Case Control Consortium (WTCCC1) (2010), https://www.wtccc.
org.uk/ccc1/

14. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data
mining algorithms. In: PODS 2001: Proceedings of the twentieth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp. 247–255. ACM, New York
(2001)

15. Agrawal, R., Srikant, R.: Privacy-preserving data mining. SIGMOD Rec. 29(2), 439–450
(2000)

16. Atallah, M.J., Kerschbaum, F., Du, W.: Secure and private sequence comparisons. In: WPES
20: Proceedings of the 2003 ACM Workshop on Privacy in the Electronic Society, pp. 39–
44. ACM, New York (2003)

17. Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, accuracy,
and consistency too: a holistic solution to contingency table release. In: PODS 2007: Pro-
ceedings of the Twenty-sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pp. 273–282. ACM, New York (2007)

18. Beck, L.L.: A security machanism for statistical database. ACM Trans. Database Syst. 5(3),
316–3338 (1980)

19. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the sulq framework. In:
PODS 2005: Proceedings of the Twenty-fourth ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, pp. 128–138. ACM, New York (2005)

20. Bonferroni, C.E.: Teoria statistica delle classi e calcolo delle probability. Pubblicazioni del
R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8(1), 3–62 (1936)

21. Braun, R., Rowe, W., Schaefer, C., Zhang, J., Buetow, K.: Needles in the haystack: Identi-
fying individuals present in pooled genomic data. PLoS Genet 5(10), e1000668 (2009)

22. Bruekers, F., Katzenbeisser, S., Kursawe, K., Tuyls, P.: Privacy-preserving matching of dna
profiles. Technical Report Report 2008/203, ACR Cryptology ePrint Archive (2008)

23. Chen, Y., Diaconis, P., Holmes, S.P., Liu, J.S.: Sequential monte carlo methods for statistical
analysis of tables. Journal of the American Statistical Association 100, 109–120 (2003)

24. Chin, F.Y., Ozsoyoglu, G.: Auditing and inference control in statistical databases. IEEE
Trans. Softw. Eng. 8(6), 574–582 (1982)

25. Chiò, A., Schymick, J.C., et al.: A two-stage genome-wide association study of sporadic
amyotrophic lateral sclerosis. Hum. Mol. Genet. 18(8), 1524–1532 (2009)

26. Chvatal, V.: Recognizing intersection patterns. In: Combinatorics 79, Part I, pp. 249–251.
North-Holland Publishing Company, Amsterdam (1980)

27. Dobra, A., Fienberg, S.E.: Bounds for cell entries in contingency tables induced by fixed
marginal totals. Statistical Journal of the United Nations ECE 18, 363–371 (2001)

28. Duerr, R.H.H., et al.: A genome-wide association study identifies il23r as an inflammatory
bowel disease gene. Science (October 2006)

29. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

30. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private
data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284.
Springer, Heidelberg (2006)

31. Edwards, A.O., Ritter, R., et al.: Complement factor H polymorphism and age-related mac-
ular degeneration. Science 308(5720), 421–424 (2005)

32. Fienberg, S.E.: Datamining and disclosure limitation for categorical statistical databases. In:
Proceedings of Workshop on Privacy and Security Aspects of Data Mining, Fourth IEEE In-
ternational Conference on Data Mining (ICDM 2004), pp. 1–12. Nova Science Publishing,
Bombay (2004)

33. Gehrke, J.: Models and methods for privacy-preserving data analysis and publishing. In:
ICDE 2006: Proceedings of the 22nd International Conference on Data Engineering, p.
105. IEEE Computer Society, Washington, DC, USA (2006)

https://www.wtccc.org.uk/ccc1/
https://www.wtccc.org.uk/ccc1/

Evaluating Information Leaks in Aggregate Human-Genome Data 625

34. Goldreich, O., Vadhan, S.: Special issue on worst-case versus average-case complexity ed-
itors’ foreword. Comput. Complex. 16, 325–330 (2007)

35. Greenspan, G., Geiger, D.: Modeling haplotype block variation using markov chains. Ge-
netics 172(4), 2583–2599 (2006)

36. Haines, J.L., et al.: Complement factor H variant increases the risk of age-related macular
degeneration. Science 308(5720), 419–421 (2005)

37. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications (Applied
and Numerical Harmonic Analysis). Birkhauser, Basel (2007)

38. Hoeffding, W.: Scale-invariant correlation theory. Masstabinvariante Korrelationstheorie,
Schriften des Matematischen Instituts und des Instituts fr Angewandte Mathematik der Uni-
versity 5, 179–233 (1940)

39. Homer, N., et al.: Resolving individuals contributing trace amounts of dna to highly
complex mixtures using high-density snp genotyping microarrays. PLoS Genet. 4(8),
e1000167+ (2008)

40. Jacobs, K.B., et al.: A new statistic and its power to infer membership in a genome-wide
association study using genotype frequencies. Nature Genetics 41(11), 1253–1257 (2009)

41. Jha, S., Kruger, L., Shmatikov, V.: Towards practical privacy for genomic computation. In:
2008 IEEE Symposium on Security and Privacy (2008)

42. Kim, Y., Feng, S., Zeng, Z.B.: Measuring and partitioning the high-order linkage disequi-
librium by multiple order markov chains. Genet. Epidemiol. 32(4), 301–312 (2008)

43. Morris, A.P., Whittaker, J.C., Balding, D.J.: Little loss of information due to unknown phase
for fine-scale linkage-disequilibrium mapping with single-nucleotide-polymorphism geno-
type data. Am. J. Hum. Genet. 74(5), 945–953 (2004)

44. Renström, F., et al.: Replication and extension of genome-wide association study results for
obesity in 4,923 adults from northern sweden. Hum. Mol. Genet. (January 2009)

45. Robbins, R.: Some applications of mathematics to breeding problems iii. Genetics 3(4),
375–389 (1918)

46. Sankararaman, S., Obozinski, G., Jordan, M.I., Halperin, E.: Genomic privacy and limits of
individual detection in a pool. Nat. Genet. 41(9), 965–967 (2009)

47. Scott, L., et al.: A genome-wide association study of type 2 diabetes in finns detects multiple
susceptibility variants. Science (April 2007)

48. Sladek, R., et al.: A genome-wide association study identifies novel risk loci for type 2
diabetes. Nature (February 2007)

49. Stephens, M., Donnelly, P.: A comparison of bayesian methods for haplotype reconstruction
from population genotype data. American Journal of Human Genetics 73(5), 1162–1169
(2003)

50. Stephens, M., Smith, N., Donnelly, P.: A new statistical method for haplotype reconstruction
from population data. The American Journal of Human Genetics 68(4), 978–989 (2001)

51. Visscher, P.M., Hill, W.G.: The limits of individual identification from sample allele fre-
quencies: Theory and statistical analysis. PLoS Genet. 5(10), e1000628 (2009)

52. Wang, R., Li, Y.F., Wang, X., Tang, H., Zhou, X.: Learning your identity and disease from
research papers: Information leaks in genome wide association study. In: CCS 2009: Pro-
ceedings of the 15th ACM Conference on Computer and Communications Security, pp.
534–544. ACM, New York (2009)

53. Yeager, M., et al.: Genome-wide association study of prostate cancer identifies a second
risk locus at 8q24. Nature Genetics 39(5), 645–649 (2007)

54. Yuguo Chen, I.H.D., Sullivant, S.: Sequential importance sampling for multiway tables. The
Annals of Statistics 34(1), 523–545 (2006)

55. Zhou, X., Peng, B., Li, Y.F., Chen, Y., Tang, H., Wang, X.: Technical re-
port tr696: To release or not to release: Evaluating information leaks in aggre-
gate human-genome data (2011), https://www.cs.indiana.edu/cgi-bin/
techreports/TRNNN.cgi?trnum=TR696

https://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR696
https://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR696

626 X. Zhou et al.

A Terminologies

Table 1. HGS Terminologies used in this paper

Terminologies Description
Polymorphism The occurrence of two or more genetic forms (e.g. alleles of SNPs) among

individuals in the population of a species.
Single Nucleotide
Polymorphism
(SNP)

The smallest possible polymorphism, which involves two types of nu-
cleotides out of four (A, T, C, G) at a single nucleotide site in the genome.

Allele One of the two sets of DNAs in a human individual’s genome. Most SNP
sites have two common alleles in the human population: the major allele
(denoted by 0), the one with higher frequency, and the minor allele (denoted
by 1), the one with lower frequency.

Genotype The combination of two set of alleles in a human individual. For a SNP site
with two common alleles, there are three possible genotypes: two homozy-
gotes, 00 and 11, and one heterozygote 01.

Locus(plural loci) The surrounding regions of a SNP site in the genome .
Haplotype Haplotype, also referred to as SNP sequence, is the specific combination

of alleles across multiple neighboring SNP sites in a locus. Each individual
has two haplotypes, each inherited from one parent. Some haplotypes are
more common than others in the population.

Linkage disequilib-
rium(LD)

Non-random association of alleles among multiple neighboring SNP sites.

B Proofs of Theorem 1, Corollary 1, Corollary 2 and Corollary 4
Conjecture 1, Theorem 2, Corollary 5, Corollary 6

Proof of Theorem 1. This problem can be formalized as an existence problem EP(Ci, Cij)
which is to determine whether an N × L binary matrix M exists that satisfies the con-
straints of the sets of single allele counts {Ci∈[1,L]} (e.g. the number of 0s in column
i) and pairwise major allele counts {Cij∈[1,L]} (e.g. the number of 00 pairs of column
i and column j). NOTE that these two sets are equivalent to the set of pairwise allele
frequencies and may be used interchangeably in this paper. e.g. Ci = 3, termed as 3-
EP(Ci, Cij). Consider a special case of EP(Ci, Cij), denoted as 3-EP, where all given
single allele counts are 3 (Ci = 3). We prove 3-EP is NP-complete by reducing the
3-Recognizing Intersection Patterns Problem(3-RIPP(A)), a known NP-complete prob-
lem [26] to it. 3-RIPP(A) is described as: given A = [aij]L×L in which aii = 3, is
there an integer set collection H = {H1, H2, · · · , HL} such that aij = |Hi ∩Hj | for
1 ≤ i, j ≤ L. Obviously, 3-EP ∈ NP. Given an arbitrary instance of 3-RIPP(A), we
construct an instance of 3-EP(Ci, Cij) by setting Cij = aij for 1 ≤ i �= j ≤ L and
setting Ci = aii for 1 ≤ i ≤ L. Suppose MN×L is a solution of EP. We can convert
each column of MN×L into a set, where the row indices of 1s in the i-th column form
the elements in the set Hi. Therefore, We get |Hi ∩ Hj | = aij = Cij for 1 ≤ i, j ≤
L, i �= j and |Hi ∩Hi| = aii = Ci = 3. So {Hi} represent a solution of 3-RIPP(A).
Conversely, suppose H = {H1, H2, · · · , HL} is a solution of 3-RIPP(A). We can

Evaluating Information Leaks in Aggregate Human-Genome Data 627

construct a solution M of 3-EP by converting each set Hi into a column of length
L where for each element k ∈ Hi, fill in the k-th position by 1 in the i-th column
of MN×L, and all the other positions by 0. Clearly the resulting matrix MN×L is
consistent with (Ci, Cij), and thus is a solution of 3-EP . Because the conversions
described above can be done in polynomial time, 3-EP(Ci, Cij) is NP-complete. There-
fore, EP(Ci, Cij) is also NP-complete since its special case 3-EP(Ci, Cij) is
NP-complete.

The rest of the proof is given in our technique report [55].

Don’t Reveal My Intension: Protecting User

Privacy Using Declarative Preferences during
Distributed Query Processing

Nicholas L. Farnan1, Adam J. Lee1, Panos K. Chrysanthis1, and Ting Yu2

1 Department of Computer Science, University of Pittsburgh
2 Department of Computer Science, North Carolina State University

Abstract. In a centralized setting, the declarative nature of SQL is a
major strength: a user can simply describe what she wants to retrieve,
and need not worry about how the resulting query plan is actually gener-
ated and executed. However, in a decentralized setting, two query plans
that produce the same result might actually reveal vastly different infor-
mation about the intensional description of a user’s query to the servers
participating its evaluation. In cases where a user considers portions of
her query to be sensitive, this is clearly problematic. In this paper, we
address the specification and enforcement of querier privacy constraints
on the execution of distributed database queries. We formalize a notion
of intensional query privacy called (I, A)-privacy, and extend the syn-
tax of SQL to allow users to enforce strict (I,A)-privacy constraints or
partially ordered privacy/performance preferences over the execution of
their queries.

1 Introduction

Applications are increasingly becoming more decentralized, relying on data ex-
change between autonomous and distributed data stores. This reliance is in some
cases a design decision motivated by the need for scalability; for example, when
user demand for a service exceeds what a system at a single site would be able to
provide and replication becomes a necessity. In other instances, it is a fact of life
that must be dealt with. Such is the case when multiple partnering corporate en-
tities wish to share data with one another, or when developers create “mashups”
leveraging data gathered from multiple sources as a value-added service.

To date, the declarative nature of SQL has been one of its major strengths:
a user can simply describe what her queries should retrieve and she need not
worry about how they are converted into query execution plans and material-
ized. This has given rise to a rich literature concerning query optimization tech-
niques that allow the system to explore relationally-equivalent representations of
a user’s query with the end goal of finding the best possible query execution plan
(e.g., [14,10]). Traditionally, the term best has been defined in reference to min-
imizing some combination of overall query execution time or data transmission
requirements [14]. Unfortunately, optimizing purely for query performance can

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 628–647, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Don’t Reveal My Intension: Protecting User Privacy 629

Fig. 1. Our example DB system. Three servers (Facilities, Inventory, and
Pollution Watch), each store a single table (Plants, Supplies, and Polluted Waters).

violate end-user privacy in a decentralized setting. Specifically, two query plans
that produce the same result might actually reveal vastly different information
about the intensional description of a user’s query to the distributed servers
participating in its evaluation.

Example 1. Consider Alice, a low ranking corporate executive, who wishes to
investigate possible illegal pollution by her employer ManuCo. She could po-
tentially do so by joining information stored in her employer’s databases (e.g.,
records describing hazardous chemicals that are stored in the Supplies table on
ManuCo’s Inventory database server, and the locations of manufacturing plants
stored in the Plants table on ManuCo’s Facilities server, as in Fig. 1) with
relevant information maintained by an environmental watchdog group (e.g., a
database of polluted waterways). In issuing such a query, Alice would not want
either party to become aware of the portion of her query that was issued to the
other, or even that some part of her query was being evaluated by the other. Such
a revelation could easily cost her her job, either because her employer felt that
she “knew too much,” or because the watchdog group applied external pressure
to the company after learning of the intension of her query.

This type of scenario clearly points to the need to protect end-user privacy during
distributed query evaluation. In this paper, we strive to protect the privacy of a
user querying a set of distributed databases. This is in contrast to most existing
work on user privacy in database systems, which has focused on the privacy of
users whose data is contained in a database [5, 16, 17, 22].

We believe that protecting the intension of user queries can be accomplished
by modifying distributed query optimizers to optimize for query privacy in ad-
dition to query performance. We posit that through careful site selection and
the use of a wide variety of query evaluation techniques (such as private in-
formation retrieval (PIR) [3, 15, 20]), query optimizers can be made to produce
plans that effectively balance users’ need for privacy with their desire for perfor-
mance. In this paper, we work towards this goal by developing a formal frame-
work for representing user preferences for privacy and performance on top of
which such query optimizers can be built. As end-user privacy is an inherently
personal and context-dependent notion that undoubtedly varies from user to
user and query to query, our proposed approach allows users to express hard
privacy constraints, establish preference relations between collections of possibly-
competing privacy constraints, and explicitly balance the often competing inter-
ests of privacy-preservation and query efficiency. It is our hypothesis that such
a declarative model for preferences is a natural extension to declarative query

630 N.L. Farnan et al.

languages such as SQL, and that a well defined semantics for balancing privacy
and execution cost can be achieved using partially-ordered preference structures.
By investigating this hypothesis, this paper makes the following contributions:

– We develop a formal definition of intension-based user privacy called (I, A)-
privacy, which allows users to specify that some subset of the intension of
their query I (which we will refer to as an “intensional region”) is kept hidden
from some set of adversarial principals A. (Sect. 3)

– We propose a syntax for augmenting SQL with the capability of express-
ing partially-ordered (I, A)-privacy constraints, which future privacy-aware
distributed query optmizers can utilize to optimize for both privacy and per-
formance. We further demonstrate that (I, A)-privacy is flexible enough to
express PIR privacy constraints. (Sects. 4 and 5)

– We develop a preference algebra capable of prioritizing and balancing com-
peting (I, A)-privacy constraints, thereby allowing users to build complex
privacy profiles that can be applied to their future queries. This preference
algebra also allows users to explicitly balance the often competing goals of
efficient query processing and intensional privacy. (Sect. 5)

It should be noted that the specific notion of (I, A)-privacy explored in this
paper is syntactic, in that we define (I, A)-privacy to be violated only if some
sensitive piece of query intension is directly revealed to another principal. How-
ever, the definition of (I, A)-privacy presented is sufficiently general to support
more semantic notions of end user privacy. Such a semantic definition for the
underpinnings of (I, A)-privacy is the subject of future work.

In the next section, we describe our system and threat model. In Sects. 3-6,
we present our contributions. We overview related work in Sect. 6, and finally,
discuss future work in Sect. 7.

2 Background and Assumptions

Here we will give a brief overview of query processing and relational algebra,
and then present the assumptions we make for this work.

Query Processing and Relational Algebra. The basic processing of a user-input
query involves the following steps: parsing, reorganization, optimization, code
generation, and plan execution. The user query is first parsed based on whatever
input query language was used (in this work we deal exclusively with SQL)
and transformed to a representation that the query processor can operate on
directly. In most query processing systems (and further what we will consider
for the purposes of this work), this representation is a tree of relational algebra
operators leafed by read operations on the source database relations for the
query.

Although databases must deal with bags of tuples, relational algebra formally
operates on sets of tuples. Relational algebra can be defined in terms of six prim-
itive operators: selection, which returns only tuples from the input relation that

Don’t Reveal My Intension: Protecting User Privacy 631

match some given selection criteria; projection, which reduces the arity of the tu-
ples it processes by eliminating unwanted attributes; Cartesian product, which
returns all possible combinations of tuples from two input relations; rename,
which changes the labels of the components of the tuples it processes; set union;
and set difference. One notable operator that can be defined in terms these
primitives operators is join. Join combines two input relations using selection
criteria, as opposed to Cartesian product which does so exhaustively.

Once the query processor has converted the user query to an internal represen-
tation, the query is reorganized and optimized according to available meta-data
to ensure its efficient evaluation by the database engine(s). After being suffi-
ciently optimized, the query is transformed yet again to a representation that
can be evaluated by the database engine through code generation. Finally, the
result of the query is realized through plan execution. For a more in-depth review
of query processing and relational algebra, we refer the reader to [6].

System Model. We tackle the problem of protecting the privacy of users who issue
queries against a distributed system of autonomous relational database servers.
In this paper, we assume the distributed system to be comprised of a countable
set P of principals (i.e., servers and users) cooperating to process distributed
queries. Each principal participating in the system as a server may host its own
data tables locally, as well as export views defined in terms of queries over its
own data tables, or tables/views hosted at other servers. When a server exports
a view, it is not required to also export the definition of this view, which it may
consider to be private [11]. Further, data tables may be replicated across multiple
servers. Hence, in addition to exchanging meta-data (e.g., exported schemas and
statistics) for query planning and optimization, servers inter-operate to maintain
consistency across any replicated data tables.

Users are the subset of principals that issue queries within the system. A user
is not assumed to have complete trust in every server that may see some part
of her query, but is assumed to have (at least) one trusted server responsible
for planning and executing queries on her behalf. Trivially, this trusted server—
which we refer to as a querier—might be operated by the user herself on her
local machine. Upon receiving an SQL query from a user, the querier uses its
locally-available meta-data to generate an execution query plan derived from the
user’s query. It then schedules the execution of the query plan by decomposing
it into sets of sub-plans by projecting on the servers selected to execute each
operation in the query plan, while also making explicit the communication flow
of tuples between sub-plans materialized by different servers. Finally, the querier
dispatches the sub-plans to their corresponding servers, materializes its part
of the query, and prepares the final result to return to the user. Note that a
participating server may further expand and optimize their sub-plans, e.g., due
to the expansion of remote views. As such, query evaluation is a recursive process
that may traverse many servers.

Threat Model. We assume that each server controls access to the data stored
within its tables and views using Role-Based Access Controls [9] defined at the
table or view level, as implemented by most commercial database systems [24].

632 N.L. Farnan et al.

We further assume that any pair of principals p1, p2 ∈ P have the ability to
set up a private and authenticated channel (e.g., a TLS tunnel [4]) to protect
against eavesdropping and message modification, reordering, and replay attacks.
We assume that all servers in the system (aside from the querier) to be honest-
but-curious passive adversaries. Specifically, each server will correctly execute
the query evaluation protocol, but may try to infer information regarding the
user’s original query from the sub-plan that it received. Furthermore, a set of col-
luding servers may work together to make inferences based upon their combined
collection of sub-plans.

The honest-but-curious adversarymodel makes sense within the context of our
work, given that we focus on preserving user privacy and not on ensuring the
correctness of query results. Finally, although we assume a colluding adversary
model, we do not consider the notion of a global passive adversary. That is,
all information used by colluding servers to uncover querier intension must be
gathered exclusively from the execution of distributed queries.

3 Querier Privacy

The vast majority of research in database privacy deals with preventing the
disclosure or inference of sensitive tuples stored in database systems. By contrast,
our focus lies in the protection of end-user privacy during the optimization and
execution of distributed queries. In this section, we develop the notion of (I, A)-
privacy, in which intensional regions of a user’s query that the user considers to
be sensitive are protected from disclosure to a set of colluding adversaries. While
query intension is generally represented using a declarative language like SQL
(and, indeed, knowledge of SQL is all that users would require in order to author
protections over the privacy of such intension through the use of our model), we
focus in this paper on how this knowledge is encoded in the actual query plan
used during the distributed query evaluation process, as this is the information
that would actually gleaned by adversaries according to our threat model.

Definition 1 (Query Plan). A query plan Q = 〈N, E〉 is a directed, acyclic,
and fully-connected graph with a single root where N ⊆ N and E ⊆ N × N .
An element n of the node set N is a ternary n = 〈op, params , p〉 that describes
a relational operator (op), the parameters to this operator (params), and the
principal at which this operator is scheduled to be executed (p). The edge set E
describes the producer/consumer relation between relational operators.

Definition 2 (Well-Formed Query Plan). A query plan Q is well-formed iff
(i) Q corresponds to a valid relational algebra expression and (ii) for each node
n = 〈op, params , p〉 ∈ Q, the principal p is capable of both executing the operation
described by n and transmitting the result of that operation to the principal(s)
annotated to execute the parent node(s) of n in the query plan Q.

Assuming that S denotes the set of all SQL queries, we can then formally rep-
resent a query planner as a function plan : S → Q that generates query plan

Don’t Reveal My Intension: Protecting User Privacy 633

〈join, {(pullutant, =, name), (AND), (location, =, location)}, localhost〉

〈scan, {(Polluted Waters)}, PollutionWatch〉 〈join, {(id,=, plant id)}, localhost〉

〈scan, {(Plants)}, Facilities〉 〈select, {(type, =, “solvent”)}, Inventory〉

〈scan, {(Supplies)}, Inventory〉

�� ��

�������

Fig. 2. Query plan for Alice’s query. The text in each node is a comma-seperated list
of the operation type of that node, the arguments to that operation, and the execution
location of that node.

Q ∈ Q from an SQL query q ∈ S. Fig. 2 is a graphical representation of a well-
formed query plan corresponding to Alice’s query from our motivating example
in Sect. 1. We now look at two specific types of query plans:

Definition 3 (Locally-Expanded Query Plan). A well-formed query plan Q
is said to be locally-expanded with respect to a principal p ∈ P if every leaf node
� of Q represents either (i) an operation annotated for execution at some remote
principal p′ �= p, or (ii) the scan of a table managed locally by the principal p.
We denote the set of all locally-expanded query plans for a query q ∈ S as L (q).

Note that the term scan is used to denote the retrieval of tuples from a database
relation without specifying a specific access method (e.g., the use of a particular
index). Given a query q ∈ S, the output of a query planner plan at a specific
principal p is a locally-expanded query plan Q ∈ L (q) with respect to the
principal p. The annotated leaves of the resulting query plan may be further
expanded by other nodes in the network during query processing (e.g., during
the expansion of a remote view). This leads to the following definition:

Definition 4 (Globally-Expanded Query Plan). A well-formed query plan
Q is said to be globally-expanded if every leaf node � of Q represents the scan
of a relational table managed by some principal p ∈ P. We denote the set of all
globally-expanded query plans for a query q ∈ S as G (q).

Note that a globally-expanded query plan is trivially a locally-expanded query
plan relative to every principal p ∈ P . That is, no principal can further expand
a globally-expanded query plan. Furthermore, given some initial query, a cor-
responding globally-expanded query plan may not ever be learned by any one
principal in the system: each principal generates a locally-expanded query plan,
but may perhaps be unaware of how its plan is further expanded by others.

In general, a user may only consider certain parts of her query to be sensitive.
In our example query, Alice may not mind if people know that she is interested
in data from the Facilities server’s Supplies table, but she would certainly
want the fact that it will be combined with data from Pollution Watch to be
kept private. To formalize this notion, we introduce the following term:

Definition 5 (Intensional Region). An intensional region is a countable
subset I of the node set N .

634 N.L. Farnan et al.

Example 2. To illustrate this concept, we can refer back to Alice’s query plan
from Fig. 2. Consider the case in which Alice wants to keep the selection criteria
(i.e., solvents) used over the Supplies table private from all principals involved
in the processing of her query. An intensional region which contains the single
select node in her query plan could then be defined to represent the specific
portion of the intension of Alice’s query that she wishes to protect. Similarly,
if Alice wanted all parts of her query in which data from different relations is
joined to be kept private, an intensional region containing all join nodes could
be defined.

The above definition of intensional region is also flexible enough to identify
broader descriptions of intension considered to be sensitive like “all selection
operations that may be executed at the human resources server.” Given such
intensional regions, we can informally say that a query plan Q maintains a user’s
privacy if no adversarial principal can learn the intensional regions identified by
the user as sensitive. To continue to reason about this notion of user privacy,
however, we must first define how query intension is revealed to principals in the
system during the evaluation of a user’s query.

Definition 6 (Intensional Knowledge). Given a globally-expanded query plan
Q = 〈N, E〉, we denote by κp(Q) ⊆ N ∪E the intensional knowledge that princi-
pal p ∈ P has of the query encoded by the plan Q. At a minimum, κp(Q) contains
the set of all locally-expanded query plans for each node n ∈ N annotated for
execution by the principal p, and further all edges leaving or entering such nodes.

Given a colluding set of principals P = {p1, . . . , pk}, we can define the com-
bined intensional knowledge of the colluding principals P in the natural way,
i.e., κP (Q) =

⋃
pi∈P κpi(Q). For example, the intensional knowledge of the three

other principals participating in the evaluation of the query in Fig. 2 can be
broken down as follows:

κPollutionWatch(Q) 〈scan, {(Polluted Waters)}, Pollution Watch〉
κFacilities(Q) 〈scan, {(Plants)}, Facilities〉
κInventory(Q) 〈select, {(type, =, “solvent”)}, Inventory〉

and 〈scan, {(Supplies)}, Inventory〉
The above definitions enable us to precisely define the notion of privacy that we
will explore in the remainder of this paper as follows:

Definition 7 ((I, A)-privacy). Given an intensional region I and a set of col-
luding adversaries A ⊆ P, a globally-expanded query plan Q is said to be (I, A)-
private iff κA(Q) �|= I, where |= denotes an inference procedure for extracting
intensional knowledge from a collection of query plans.

In the above definition, there are many possible candidates for the |= relation.
For the purposes of this paper, we will focus our attention on the syntactic
condition of the containment relation ' defined below. This relation denotes
whether an intensional region explicitly overlaps some collection of adversarial
knowledge. We will be exploring a semantic relation for |= as a subject of future
work.

Don’t Reveal My Intension: Protecting User Privacy 635

Definition 8 ('). Let Q be a globally-expanded query plan, I be an intensional
region, A be a set of colluding adversaries, and κA(Q) = (N, E) be the inten-
sional knowledge that the adversary set A has about the query plan Q. Then
(N, E) ' I iff N ∩ I �= ∅.
We feel that using the ' relation as our inference procedure |= is a natural first
step for exploring end-user privacy as it is expressive enough to encode private
information retrieval (PIR) constraints. This claim will be explored in Sect. 4.2,
and a formal proof of it is presented in [7].

In the next section, we will present extensions to SQL that allow users to
concisely identify the intensional regions considered sensitive within queries that
they may issue. Sect. 5 then shows how privacy requirements over these re-
gions can be combined using partially-ordered preference structures to develop
a flexible formal foundation for providing (I, A)-privacy in distributed database
systems.

4 Matching Query Plan Nodes

In this section, we will first illustrate how users can use the node matching in
order to specify constraints on the evaluation of a query. We then formalize our
method for identifying intensional regions through the use of descriptors of nodes
in N , and a matching operator, �.

4.1 Matching Syntax

In order for users to be able to express their notions of privacy to a query
planner when issuing a query, we propose a REQUIRING clause (REQUIRING ...
HOLDS OVER ...) as an extension to SQL. We are proposing this clause for use
in two locations, first as an addition to the SQL SELECT statement, and also as
an addition to SQL’s set operators (UNION, INTERSECT, and MINUS). In the case
that it is used in conjunction with a set operator, the requirements expressed by
this clause will apply to both the operator itself, and the two SELECT statements
that it combines. If it is used at the end of a SELECT statement, its requirements
apply only to that SELECT statement. The full syntax for the REQUIRING clause
is defined in Appendix A.

This clause allows a user to identify one or many intensional regions that
match against node descriptors in a match statement, and further specify con-
straints over how nodes in those intensional regions are treated over the course
of executing a query. Node descriptors can be considered similar to regular ex-
pressions in that they specify a pattern to be matched against nodes. They are
made up of descriptors of the same three attributes present in query plan nodes
in N : op, params , and p. They are differentiated from query plan nodes in that
the values of these attributes do not have to be grounded, they could instead be
expressed as a wildcard (*) or free variable (which we prefix with a “$”). Con-
straints can then be expressed as statements over the values of the free variables
present in corresponding node descriptors. These constraints can be used to ex-
press (I, A)-privacy constraints by defining an intensional region with a node

636 N.L. Farnan et al.

descriptor, and constraining all nodes matching that description such that they
can not be executed by principals in A. Constraints can be tests for any of the
following: equality (=), inequality (�=, <, >,≤,≥), or set membership (∈).

Example 3. Given the ability to express clauses of the form shown in Ap-
pendix A as a part of her SQL queries, Alice could have written her query shown
in Fig. 2 to ensure that any operation that she considers private is executed by
her trusted server. The adversarial set in this example would hence consist of all
principals in the system aside from the querier, denoted as localhost.

SELECT * FROM Plants, Supplies, Polluted_Waters
WHERE Supplies.type = "solvent",

AND Supplies.name = Polluted_Waters.pollutant,
AND Polluted_Waters.location = Plants.location,
AND Plant.id = Supplies.plant_id

REQUIRING $p = localhost HOLDS OVER <*, {("solvent")}, $p>;

Such a query would uphold (I, A)-privacy by keeping an intensional region
consisting of all nodes operating on the constant “solvent” from being disclosed
to any remote database servers, as any nodes in that intensional region would
be constrained to be executed at localhost. Note that the query plan shown
in Fig. 2 does not adhere to this requirement, and would not be an acceptable
query plan for this new query.

Examples of the expressive power of the REQUIRING clause are given in Ap-
pendix B by showing how it can be used to express common policy idioms.

4.2 Matching Operator

While we have presented the practical applications of node descriptors, we now
formally define node descriptors:

Definition 9 (Node Descriptor). A node descriptor d ∈ D, is a triple d =
〈op, params , p〉 describing the relational operator (op), a set of parameters to
the given operator (params), and the principal at which this operator shall be
executed (p). A node descriptor is well formed if all of the following hold true:

– op is either a valid relational algebra operation, free variable, or ∗
– params is either a set of sets (any of which may have a free variable) or ∗
– p is either the location of some principal in the system, a free variable or ∗

We will consider V to be the set of all free variables that can be declared. To
determine whether some node n matches a given descriptor, we define a matching
operator (�) as follows:

Definition 10 (Matching). Given a node descriptor d ∈ D, and a node n ∈ N ,
d � n if and only if

(d.op = n.op ∨ d.op ∈ V ∨ d.op = ∗) ∧ (d.p = n.p ∨ d.p ∈ V ∨ d.p = ∗) ∧

[∀a ∈ d.params : (a ∈ V ∨ (a ∈ n.params ∨ ∃a
′ ∈ n.params : a ⊆ a

′
)) ∨ d.params = ∗]

Don’t Reveal My Intension: Protecting User Privacy 637

Hence, an intensional region I can be defined in terms of a node descriptor d as
a subset of N as: I = {n | n ∈ N ∧ d � n}.

While matching on op or p is rather intuitive, matching on params requires a
bit of explanation. params is a set of sets in both nodes and node descriptors that
represents the arguments to a relational algebra operator. To allow for easy and
concise expression of node descriptors, we state that a node descriptor matches
a node based on params if every ordered set in the descriptor’s params is either
contained directly in the node’s params or is a subset of an ordered set in the
node’s params .

Example 4. Our definition of � allows nodes with complex params attributes,
such as 〈 select, { (at1, =, 42), (AND), (at2, <, 10) }, example principal 〉, to
be easily matched. Any of the following node descriptors will match this node
based on our definition of �: 〈 *, { (at1) }, * 〉; 〈 *, { (at1, =, 42) }, * 〉; 〈 *,
{ (at1, 42) }, * 〉; 〈 *, { (AND) }, * 〉; 〈 *, { (at1, 42), (AND) }, * 〉; 〈 *, { (at1),
(AND), (at2) }, * 〉

As has been previously stated, privacy is an inherently personal property, and
hence, we must ensure that our method of specifying node descriptors and match-
ing nodes against them to define intensional regions is sufficiently general to allow
users to define regions based on any part of the intension of their query.

Theorem 1. For any SQL query q ∈ S, it is possible to specify a node descriptor
d ∈ D that identifies any clause of q and/or its components (i.e., table or view
names, constraints, constraint operators, attributes, or constants). Then, for any
query plan Q = 〈N, E〉 that materializes q, the set of nodes
C = {n | n ∈ N∧d � n} contains exactly those nodes corresponding the specified
clause and/or components of q.

The proof of this theorem is a case-by-case analysis showing that for any valid
SQL operator with any valid set of arguments, there exists a node descriptor that
matches the corresponding node in a query plan. This proof is presented in [7].
Furthermore, given that any single node within a query plan can be matched by
some node descriptor, we immediately have the following:

Corollary 2. Any intensional region I ⊆ N can be specified using a collection
D ⊆ D of node descriptors, and detected within any query plan Q ∈ Q using the
� operator.

Since it is possible to specify a set of node descriptors D ⊆ D such that the
matching construct � identifies the corresponding intensional regions contained
within a query q, and constraints can be placed on the location field of any node
matching a set of node descriptors D, we trivially have the following:

Corollary 3. The matching operator � is sufficiently expressive to encode any
(I, A)-privacy constraint.

638 N.L. Farnan et al.

As should now be apparent, (I, A)-privacy is capable of expressing a wide variety
of user privacy constraints. One set of such constraints that we would like to
highlight (as alluded to in Sect. 3) is that offered by private information retrieval
(PIR). The problem addressed by PIR is formulated as follows: given some k
servers that store replicated copies of a database that is viewed as a length n
binary string x = x1 . . . xn, the goal of PIR is to allow a user to learn the value
of some desired bit xi without allowing any server to gain information about
the value of i [3]. Initially, k was specified to be k ≥ 2, however [15] details a
technique for achieving PIR from a single computationally-bounded server.

In essence, PIR is a technique for retrieving some information from a data-
base without revealing to the server(s) hosting that database the criteria for
selecting items from that database (the indices of the bits that the querier is in-
terested in). By constructing node descriptors that define an intensional region
as all nodes which contain some part of the selection criteria of a query, users
can constrain this intensional region to ensure that no database servers gain
intensional knowledge of the selection criteria of their queries, and hence use
(I, A)-privacy to express PIR privacy constraints on their queries. This notion
is precisely stated in the following theorem, and a formal proof appears in [7].

Theorem 4. Let the inference procedure |= be defined using the containment
relation '. In this case, (I, A)-privacy can be used to express any private infor-
mation retrieval (PIR) constraint.

4.3 Constraining Multiple Node Descriptors

We allow free variables to be included in the specification of a node descriptor
so that constraints can be placed on the values of those variables. Node descrip-
tors have a dual-purpose in that they not only serve to identify nodes (through
their grounded attributes), but also establish which attributes of the nodes in
the intensional region that they identify can be constrained. In the case that a
constraint is written over the free variables in a single node descriptor, ensuring
that such a condition holds over a given query tree is relatively simple. For each
node in the query tree that matches the node descriptor, ensure that the condi-
tion holds for the values of that node which correspond to the free variables in
the node descriptor.

When a condition is specified over multiple node descriptors, however, we
allow for two possibilities. Either all node descriptors use the same free vari-
able, or different variables are used in different descriptors. In the case that the
same variable is used, it must be ensured that the constraint holds for any node
matching any of the descriptors. This is essentially a shortcut for writing multi-
ple identical conditions for different node descriptors. In the case that different
variables are used, however, ensuring that a condition holds over a query plan
is slightly more complicated, as it must be ensured that for all combinations of
nodes that match the independent descriptors, the condition holds. Examples
such node descriptor/condition pairs are shown in Appendix B.

Don’t Reveal My Intension: Protecting User Privacy 639

5 Preference Algebra

The syntactic and logical constructs defined in Sect. 4 are sufficient for upholding
strict (I, A)-privacy requirements that users may define for their queries. How-
ever, users may need to consider the enforcement of many potentially-competing
privacy constraints, or explicitly balance the desire for private query evalua-
tion with the real-life performance implications of private query evaluation tech-
niques. In this section, we develop a formal preference algebra that allows users
to establish complex preference structures over the privacy preservation and
performance characteristics of query plans generated from their SQL queries.

5.1 Background

In [13, 12], the authors develop a formalism for expressing preferences over the
tuples returned by a relational database query. Rather than requiring that an
SQL selection specify an exact match criteria, the preference SQL described
in [13,12] allows the user to specify a partially-ordered preference structure over
the tuples returned. This is particularly helpful when exact match criteria cannot
be found. Formally, the authors of [12] define a preference as follows:

Definition 11 (Preference P = (R, <P)). Given a set R of relational at-
tribute names, a preference P is a strict partial order P = (R, <P), where
<P ⊆ domain(R)× domain(R).

Given this definition, “x <P y” is interpreted as “I like y better than x.” For
example, a user querying a database for the cheapest car could express her
preference for tuples with the lowest value for the price attribute as: LOW-
EST(price), where LOWEST is a base preference defined such that x <P y iff
x.price > y.price and y.price is as low as possible. Using this base preference
constructor, tuple t will be preferred to tuple t′ iff t represents a lower cost car
than tuple t′. We refer the reader to [12] for descriptions of a range of other
numeric and non-numeric base preference constructors.

Similarly, [12] defines complex preferences through the use of complex prefer-
ence constructors. For example, two preferences that are equally preferred can
be combined through the use of a Pareto preference constructor. Given two pref-
erences P1 and P2 over attributes A1 and A2, respectively, such a preference is
defined for two items x and y containing attributes from both A1 and A2 as:

x <P1⊗P2 y iff (x1 <P1 y1 ∧ (x2 <P2 y2 ∨ x2 = y2)) ∨
(x2 <P2 y2 ∧ (x1 <P1 y1 ∨ x1 = y1))

Complex preferences in which one preference is strictly more important than the
other can be defined using the prioritized preference operator &. The definitions
of other complex preference constructors can be found in [12].

5.2 Preferences for Query Plan Execution

We now extend the above preference formalism to enable the expression of pref-
erences over the (I, A)-privacy properties and performance characteristics of a

640 N.L. Farnan et al.

query plan. To establish preferences over query plans—rather than relational
tuples—we must redefine the notion of preferences to operate over a set of query
plan evaluation functions F . Functions within this set might, for instance, check
a query plan’s compliance with an (I, A)-privacy condition, evaluate the pre-
dicted runtime of a query plan, or estimate the amount of data that will need
to be transmitted during the evaluation of a query plan. To allow preferences
to be specified over (I, A)-privacy conditions, F contains at least the function
check : Q × 2D × C → B, where 2D is the power set of all node descriptors D.
We define check as follows:

Definition 12 (check). Let Q = 〈N, E〉 be a query plan, D be a set of node
descriptors, c be a constraint over the free variables describing node locations in
D, A be the set of principals not permitted to be assigned to a free variable in a
node descriptor in D by the constraint c, and I = {n | n ∈ N ∧ ∃d ∈ D : d � n}
be the intensional region of Q matched by the set D of node descriptors. Now,
check(Q, D, c)↔ κA(Q) �|= I.

That is, check examines whether a given query plan upholds (I, A)-privacy as
defined by a particular node descriptor, constraint, and inference operator |=.

Example 5. Consider the query plan shown in Fig. 2. If we refer to this query
plan as Q, then check(Q, {〈 *, {(“solvent”)}, $p〉}, $p = localhost) evaluates
to false (when using) for |=), as the SELECT statement is executed at the
Inventory Server, not Alice’s trusted server. Similarly, check(Q, {〈 join, *, $p〉},
$p = localhost) evaluates to true, since all joins happen on Alice’s server.

In order to allow users to balance (I, A)-privacy preferences with the estimated
performance of query, we can augment F with additional functions that estimate
the performance characteristics of a query plan. For instance, we could include a
function runtime : Q → R that associates a query plan with its estimated runtime
(e.g., in seconds). Given such a set F of query plan evaluation functions, we can
formally define a query plan preference as follows:

Definition 13 (Preference P = (F , <P)). Let F be a set of query plan eval-
uation functions, and let V = {range(f) | f ∈ F}. A query plan preference P is
a strict partial ordering P = (F , <P) where <P ⊆ V × V .

Preferences over quantitative evaluations of the performance of a query plan can
be easily defined through the use of the base numerical preference constructors
presented in [12] (e.g., LOWEST). However, the expression of preferences over
(I, A)-privacy constraints requires a new base preference constructor, which we
will call HOLD to mirror the HOLDS OVER keywords presented in Sect. 4.1.

Definition 14 (HOLD(Q, D, c)). Given a query plan Q, a set of node descrip-
tors D, and a constraint c over free variables declared node descriptors in D, it
is preferable for check(Q, D, c) to evaluate to true as opposed to false.

Complex preferences over both privacy and performance can now be constructed
using base numerical preference constructors and the above defined HOLD
constructor in addition to the complex preference constructors presented in [12].

Don’t Reveal My Intension: Protecting User Privacy 641

Example 6. Alice considers it of paramount importance for her query to run
in the least amount of time, but also prefers that all join operations and any
operations involving the constant “solvent” be executed by her trusted query
processing software, which runs on localhost. She considers the latter two pref-
erence to be equally desirable, but less desirable than her runtime preference.
This complex preference can be represented as follows:

LOWEST(runtime) & (HOLD(q, 〈∗, {(“solvent”)}, $p〉, $p = localhost)

⊗ HOLD(q, 〈join, ∗, $p〉, $p = localhost))

Since query plan preferences are defined over the range of every function in
F , complex preference can be expressed over base preference operators with
differing types. This allows preferences to be established between multiple (I, A)-
privacy constraints, between multiple performance constraints, or between a mix
of (I, A)-privacy and performance constraints (as in the above example).

5.3 Preference Syntax

In order to enable users to make use of the query plan preference constructs
defined in Sect. 5.2, we now describe another extension to SQL, the PREFERRING
clause —modeled after the extensions proposed in [13]— that similarly applies
to both SELECT statements and set operators. We maintain the same notation
for preferences over the results of functions with numeric ranges in that such
preferences are stated explicitly through the base preference constructor that is
to be used and the name of the function that a preference is to be expressed
over. We further maintain the use of the keyword AND to represent the complex
preference constructor ⊗ and CASCADE to represent the complex preference con-
structor &. In the case of expressing privacy preferences over intensional regions,
however, this clause will take a similar form to the REQUIRING clause presented in
Sect. 4.1. The full syntax of the PREFERRING clause is presented in Appendix A.
To demonstrate the use of this syntax for including query plan preferences within
a query, we now consider the following example the combines strict requirements
on a query plan with more flexible preferences:

Example 7. Assume that Alice requires that any nodes whose operations make
use of the constant “solvent” must be annotated for execution at localhost.
Further, she prefers to execute joins on localhost as well, given that they do
not increase the execution time of her query. Alice could express this combination
of preferences using both the REQUIRING and PREFERRING clauses:

SELECT * FROM Plants, Supplies, Polluted_Waters
WHERE Supplies.type = "solvent",

AND Supplies.name = Polluted_Waters.pollutant,
AND Polluted_Waters.location = Plants.location,
AND Plant.id = Supplies.plant_id

REQUIRING $p = localhost HOLDS OVER <*, {("solvent")}, $p>
PREFERRING LOWEST{runtime}

CASCADE $p = localhost HOLDS OVER <join, *, $p>;

The notion of query plan preferences can be used to express a wide range of pri-
vacy and performance constraints over the execution of user queries. We present
examples of common policy idioms encoded using this approach in Appendix B.

642 N.L. Farnan et al.

5.4 Implementation Considerations

A practical method implementing an (I, A)-privacy aware query optimization
would be the direct inclusion of our model in an existing query optimizer. While
this work is not focused on the implementation of the model which we describe,
here we briefly discuss how the changes that would have to be made to a query
optimizer would affect its performance.

Such an implementation could be accomplished with little modification to
existing dynamic programming based query optimizers by maintaining separate
lists of plan costs for each set of plans that is equally preferred throughout the
course of optimization. While this may result in an increase in query optimization
time, it should be noted that such lists need only be maintained for query exe-
cution restrictions in PREFERRING clauses. Restrictions from REQUIRING clauses,
on the other hand, could be utilized to speed up query optimization by pruning
query plans from the search space that do not uphold them. Hence, users making
use of only REQUIRING clause constraints can only lessen the time that is required
to optimize their queries in the average case. Optimization time penalties are
only incurred by users wishing to express complex controls over the intension of
their queries. Given the expressive power that our model affords users, however,
we feel it is quite reasonable to assume that in these cases they will be willing
to accept this increased optimization time.

6 Related Work

We now discuss areas of closely related work: private information retrieval and
distributed query processing.

Private Information Retrieval. The problem that PIR techniques work to solve
was described in Sect. 4.2. PIR was originally proposed in [3] through an ap-
proach that required multiple non-colluding servers to host replicas of the data-
base that a user wished to access. This approach has come to be known as
information-theoretic PIR. PIR using only a single server was established us-
ing computational techniques in [15]. Though the practical feasibility of com-
putational PIR has been called into question [23], such issues can be assuaged
through the use of either secure co-processors [26], or general purpose computing
on graphics processing units (GPGPU) [18]. Further, a method for performing
information-theoretic PIR over widely implemented database access methods
(hash indices and B+ tree indices) was recently demonstrated [20].

Systems implementing (I, A)-privacy support would be able to utilize any of
these techniques in the special case that (i) the user specifies privacy constraints
on the execution of her query that can be achieved through the use of PIR and
(ii)the database servers providing the required data support a practical tech-
nique for PIR. This requirement in and of itself also highlights an advantage of
our work: it allows users to protect their privacy when interacting with database
severs only rudimentary query processing capabilities (specifically those outlined
in Sect. 2), while still providing the capability for users to take advantage of more
advanced techniques such as PIR, when they are available and applicable.

Don’t Reveal My Intension: Protecting User Privacy 643

Distributed Query Processing. Distributed query processing is typically per-
formed by either shipping the data required for the query back to the site that
issued the query for processing (data shipping), or shipping pieces of the query
out to the sites holding the data for parallel processing, returning only the result
to the issuing site (query shipping) [14]. These techniques can further be com-
bined as a form of hybrid shipping [10]. Mutant query plans [21] can also provide
a form of combined shipping that allows asynchronous query evaluation. In the
same manner that our model proposed here is able to glean the advantages of
PIR when possible, it can also utilize all of the these query processing techniques
to construct query plans that sufficiently balance user privacy preferences with
query performance, realizing the proposed hybrid query processor from [8].

7 Conclusions and Future Work

In this paper, we have formally defined a notion of intension-based query privacy
called (I, A)-privacy. This type of privacy is designed to allow the user querying
a database to express constraints on the portions of her intensional query that
should not be leaked to the servers involved in executing her query. We have
further shown that private information retrieval is a special case of (I, A)-privacy
and can thus be used as a building block for systems seeking to preserve certain
types of (I, A)-privacy. We have presented a framework for representing complex
user preferences balancing query privacy and performance. Further, we developed
a syntax for extending SQL to express such preferences.

Future work will first and foremost include the implementation of our frame-
work within a distributed query optimizer. Future work will also investigate the
expression of preferences not only over the dissemination of query plan meta-
data, but also the flow of extensional query results over the course of query
execution. We will explore other possible relations for the |= operator that could
take into account both extensional flows of query results and a more powerful
adversarial model, and further include semantic notions of end user privacy.

Acknowledgments. This research was supported in part by the National
Science Foundation under awards CCF–0916015, CNS–0964295, CNS–1017229,
CNS–0914946, CNS–0747247, and CDI OIA–1028162; and by the K. C. Wong
Education Foundation.

References

1. Bell, D.E., Lapadula, L.J.: Secure computer system: unified exposition and multics
interpretation (March 1976)

2. Botha, R.A., Eloff, J.H.P.: Separation of duties for access control enforcement in
workflow environments. IBM Syst. J. 40, 666–682 (2001)

3. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: FOCS (1995)

4. Dierks, T., Rescorla, E.: Rfc 5246: The transport layer security (tls) protocol ver-
sion 1.2 (August 2008)

644 N.L. Farnan et al.

5. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006)

6. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems. Addison-Wesley,
Reading (2007)

7. Farnan, N.L., Lee, A.J., Chrysanthis, P.K., Yu, T.: Dont reveal my intension: Pro-
tecting user privacy using declarative preferences during distributed query pro-
cessing. Technical Report TR-11-179, University of Pittsburgh, Dept. of Computer
Science (2011)

8. Farnan, N.L., Lee, A.J., Yu, T.: Investigating privacy-aware distributed query eval-
uation. In: WPES (2010)

9. Ferraiolo, D., Kuhn, R.: Role-based access control. In: NIST-NCSC (1992)
10. Franklin, M.J., Jónsson, B.T., Kossmann, D.: Performance tradeoffs for client-

server query processing. SIGMOD Rec. 25, 149–160 (1996)
11. Information technology - database language sql (1992)
12. Kießling, W.: Foundations of preferences in database systems. In: VLDB (2002)
13. Kießling, W., Köstler, G.: Preference sql: design, implementation, experiences. In:

VLDB (2002)
14. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.

Surv. 32(4), 422–469 (2000)
15. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,

computationally-private information retrieval. In: FOCS (1997)
16. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity

and l-diversity. In: ICDE (2007)
17. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:

Privacy beyond k-anonymity. ACM TKDD 1(1), 3 (2007)
18. Melchor, C.A., Crespin, B., Gaborit, P., Jolivet, V., Rousseau, P.: High-speed pri-

vate information retrieval computation on gpu. In: SECURWARE (2008)
19. National Computer Security Center (NCSC). Glossary of Computer Secu-

rity Terms (ncsc-tg-04) (October 1988), http://csrc.nist.gov/publications/

secpubs/rainbow/tg004.txt

20. Olumofin, F.G., Goldberg, I.: Privacy-preserving queries over relational databases.
In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 75–92.
Springer, Heidelberg (2010)

21. Papadimos, V., Maier, D., Tufte, K.: Distributed query processing and catalogs for
peer-to-peer systems. In: CIDR (2003)

22. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE
TKDE 13, 1010–1027 (2001)

23. Sion, R., Carbunar, B.: On the practicality of private information retrieval. In:
NDSS (2007)

24. Tran, S., Mohan, M.: Security information management challenges and solutions
(July 2006), http://www.ibm.com/developerworks/data/library/techarticle/
dm-0607tran/index.html

25. Wang, L., Wijesekera, D., Jajodia, S.: A logic-based framework for attribute based
access control. In: FMSE (2004)

26. Williams, P., Sion, R.: Usable PIR. In: NDSS (2008)

http://csrc.nist.gov/publications/secpubs/rainbow/tg004.txt
http://csrc.nist.gov/publications/secpubs/rainbow/tg004.txt
http://www.ibm.com/developerworks/data/library/techarticle/dm-0607tran/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0607tran/index.html

Don’t Reveal My Intension: Protecting User Privacy 645

A SQL Extension Syntax

It should be noted that in the following syntax we leave <literal> ungrounded.
We use <literal> as a placeholder for strings of characters which could represent
either names of free variables, constants (e.g., “solvent”), relation names, rela-
tional attribute names, or principals in the system (e.g., Facilities, localhost).

<rclause> ::= “REQUIRING” <holds>

<holds> ::= <hold> [“, AND” <holds>]

<hold> ::= <cons> “HOLDS OVER” <dlist>

<pclause> ::= “PREFERRING” <prefs> [<cascade>]

<cascade> ::= “CASCADE” <prefs> [<cascade>]

<prefs> ::= <pref> | <hold> [“AND” <prefs>]

<pref> ::= <num>“(”<f>“)”

<cons> ::= <operand> <cop> <operand>

<operand> ::= <fvar> | <literal> | <set>

<fvar> ::= “$”<literal>

<cop> ::= “=” | “<>” | “IN” | “NOT IN”

<set> ::= “{” <items> “}”
<items> ::= <literal> | <items>

<dlist> ::= <dnode> [“,” <dlist>]

<dnode> ::= “〈” <op> “,” <param> “,” <p> “〉”
<op> ::= <fvar> | “scan” | “select” | “project”

| “join” | “product” | “rename” | “aggregate”

| “sort” | “deduplicate” | “union” | “intersection”

| “difference” | “*”

<param> ::= “{” <pset> “}” | “*”

<pset> ::= “(” <pitems> “)”

<pitems> ::= <pitem> | <pitems>

<pitem> ::= <pop> | <literal> | <set> | <agg>

| <fvar> | “ASC” | “DESC”

<agg> ::= “MIN” | “MAX” | “AVG” | “SUM” | “COUNT”

<pop> ::= “=” | “<>” | “<” | “>” | “<=” | “>=”

| “IN” | “NOT IN” | “BETWEEN” | “LIKE”

| “IS NULL” | “IS NOT NULL” | “AND” | “OR”

<p> ::= <literal> | <set> | <fvar> | “*”

Fig. 3. Syntax for the REQUIRING and PREFERRING clauses

B Expressive Capabilities

The examples that we have presented in the body of this work have served mostly
explanatory purposes, illustrating the mechanics of (I, A)-privacy and further
motivating the need for the protections that it offers. However, the preferences

646 N.L. Farnan et al.

model described in this work is capable of expressing much more powerful con-
trols over the execution of user queries than have so far been demonstrated. This
section will demonstrate a range of common policy idioms that can be expressed
within the privacy and execution preference framework developed in this paper.

Discretionary Access Control (DAC). In the access control literature, DAC poli-
cies allow users to explicitly list the identities of the other users permitted to
access their files [19]. The notion of DAC policies has natural applications to
user privacy in distributed query execution, as users might wish to white- or
black-list individual servers from learning about their queries. In fact, all of the
examples presented in previous sections of the paper have encoded very specific
DAC policies restricting access to intensional regions to just the querier. A user
could just as easily have required that certain intensional regions be executed
by some remote server:

REQUIRING $p = Inventory HOLDS OVER <*, {("solvent")}, $p>

The above requires that any nodes matching the specified node descriptor be
executed by the Inventory server. It is also possible to allow any remote server
explicitly identified as belonging to some set of trusted servers to handle a par-
ticular intensional region:

REQUIRING $p IN {P, Q, R} HOLDS OVER <*, {("solvent")}, $p>

This REQUIRING block would force all matching query nodes be evaluated by
some server in the set {P, Q, R} of trusted servers.

Mandatory Access Control (MAC). In contrast to DAC systems, MAC systems
rely on a centrally-defined security policy that cannot be overridden. For in-
stance, the Bell-LaPadula model [1] is a MAC system that enforces access con-
trols based on centrally-managed security clearances: e.g., users can read any
file with a security level lower than their security clearance, but cannot read
documents with a higher security level. To enforce MAC constraints, the client
software from which queries are issued could automatically apply REQUIRING
clauses to all outgoing queries. For ease of use in such cases, we allow the user of
macros to define collections of principals (denoted here by the prefix “#”) which
could be parsed and replaced with a static list of principals by the trusted query
processor as a first step in parsing.

To illustrate this point, consider an intelligence analyst using a top-secret
clearance workstation looking over field agent reports concerning a certain date
(say, 01-01-10). To ensure proper compartmentalization of the data from those
reports, the query issuing client software on that workstation could ensure that
all queries sent out are sent only to servers cleared to handle top-secret data
with the following REQUIRING clause:

REQUIRING $p IN #top-secret-clearance HOLDS OVER <*,{("01-01-10")},$p>

Note that the preference framework articulated in this paper can allow MAC
and DAC constraints to co-exist, as is often the case in environments using of
MAC constraints [1].

Don’t Reveal My Intension: Protecting User Privacy 647

Attribute-based Access Control (ABAC). ABAC policies allow access decisions to
be made based upon the attributes of principals in the system, rather than their
identities [25]. The macro mechanism described to support MAC policies could
be leveraged by users—rather than the query issuing client—to enforce ABAC
policies. For instance, Alice could require that any operation on the Salary table
only be visible by servers run by the finance group:

REQUIRING $p IN #finance-group-servers HOLDS OVER <*,{("Salary")},$p>

In addition to supporting static, user-defined macros to encode server attributes,
an interesting avenue of future work would be enabling support for dynamic
macros to be built based upon unforgeable digital attribute credentials stored in
a server’s meta-data catalog. This would allow for more flexible ABAC support
in which users can rely on the attestations of trusted certifiers to make attribute-
based judgments regarding a server’s characteristics.

Separation of Duty. Separation of duty (SoD) policies are used to require that
multiple principals cooperate to carry out a particular action [2]. In the context
of distributed database systems, one could use SoD to explicitly limit information
flow when querying multiple tables replicated across a collection of servers by
forcing each table scan to be performed by a different server. This is easily
expressed by our model through the use of a single constraint over multiple
node descriptors:

REQUIRING $p1 != $p2 HOLDS OVER
<scan,{("Salary")},$p1>, <scan,{("EmploymentHistory")},$p2>

The above example would force the scans of the Salary and
EmploymentHistory tables to occur at different sites.

Data Source Preference. In addition to privacy-related constraints, the prefer-
ence model developed in this paper can also be used to enforce other execution
preferences during query evaluation. For instance, users can specify preferences
over the sources used to obtain replicated data:

PREFERRING $p = P HOLDS OVER <scan,{(A)},$p>
CASCADE $p != R HOLDS OVER <scan,{(A)},$p>

This preference says that a user would prefer to get table A from the server P.
If this fails, the table could be retrieved from any replica other than R. Such
preferences would clearly benefit users who, even though a table is available
from multiple sources, wish it to be acquired from a given source. This type
of preference could arise, e.g., due to differing consistency guarantees offered
by various sources. For instance, in the above, we could imagine P being the
primary copy of a relational table, and R being an eventually consistent—and
thus potentially out of date—replica.

Supporting Concurrency in

Private Data Outsourcing

Sabrina De Capitani di Vimercati1, Sara Foresti1, Stefano Paraboschi2,
Gerardo Pelosi3, and Pierangela Samarati1

1 Università degli Studi di Milano, 26013 Crema, Italy
firstname.lastname@unimi.it

2 Università degli Studi di Bergamo, 24044 Dalmine, Italy
parabosc@unibg.it

3 Politecnico di Milano, 20133 Milano, Italy
pelosi@elet.polimi.it

Abstract. With outsourcing emerging as a successful paradigm for del-
egating data and service management to third parties, the problem of
guaranteeing proper privacy protection against the external server is be-
coming more and more important. Recent promising solutions for en-
suring privacy in such scenarios rely on the use of encryption and on
the dynamic allocation of encrypted data to memory blocks for destroy-
ing the otherwise static relationship between data and blocks in which
they are stored. However, dynamic data allocation implies the need to
re-write blocks at every read access, thus requesting exclusive locks that
can affect concurrency.

In this paper we present an approach that provides support for con-
current accesses to dynamically allocated encrypted data. Our solution
relies on the use of multiple differential versions of the data index that
are periodically reconciled and applied to the main data structure. We
show how the use of such differential versions guarantees privacy while
effectively supporting concurrent accesses thus considerably increasing
the performance of the system.

1 Introduction

The evolution of information and communication technology is leading to infor-
mation system architectures that rely more and more on the outsourcing to other
parties of IT functions that were typically managed within an organization. A
major motivation for such trend, is economical: with outsourcing an organization
can simplify its structure and benefit from the large scale economies of ad-hoc IT
services, with low costs and high availability. However, a significant obstacle to
a greater adoption of outsourcing is today represented by possible concerns over
improper exposure of confidential or sensitive information. As a matter of fact,
while the external service provider can be relied upon for guaranteeing security
of data and services managed, it is of utmost importance to protect possible
sensitive information from the eyes of the service provider itself.

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 648–664, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Supporting Concurrency in Private Data Outsourcing 649

The research and development communities have devoted significant atten-
tion to the problem of protecting data confidentiality in outsourcing scenarios,
producing several solutions addressing different aspects of the problem. All pro-
posals apply encryption to make data not intelligible to the server, providing
support for query execution either by associating additional indexes with the
encrypted data [1,3,8,14,15,20,21] or extending tree-based indexing structures
typically adopted in DBMSs [8,17]. Tree-based approaches, unlike additional in-
dexes, are not vulnerable to privacy breaches exploiting the possible correlation
between frequencies of the index values and of the actual data behind them [3].
However, even tree-based data structures remain vulnerable to attacks based on
the observation of sequences of accesses and on the analysis of the frequency
distribution of access requests (i.e., by observing that certain physical blocks are
often accessed). Such vulnerability can be counteracted by adopting approaches
that change the location of the encrypted data at every access, so to break the
otherwise static relationship between data and their physical location [10,17,22].
Dynamically allocated data structures represent the best defense against fre-
quency attacks by the server. Among them, the shuffle index [10] extends the
classical B+-tree structure used in databases with encryption, cover searches
(to cover the actual target search with additional fake searches to “hide” it in
a set and provide uncertainty over the block actually aimed by the access), and
shuffling to enforce dynamic allocation. Although the shuffle index enjoys lim-
ited overhead with respect to the protection guarantees it offers [10], like other
dynamically allocated data structures, it can potentially affect performance in
scenarios where accesses need to operate concurrently. In fact, reallocating data
at the server side requires write (hence exclusive) locks on the blocks involved
in an access even in the execution of read-only operations.

In this paper, we extend the shuffle index to support a scenario where the data
owner – who outsources data to the external server – wants to be able to execute
several concurrent read-only transactions that need to access the remote data.
Our solution to provide concurrent accesses to the shuffle index (Sect. 2) stored
at the external server consists in having transactions operating on dynamically
created portions of the index, which we call delta versions (Sect. 3). Delta ver-
sions are maintained in the server main memory, are managed – and shuffled at
each access – independently one from the other (Sect. 4), and are periodically
reconciled and applied to the main data structure on disk (Sect. 5). The use of
periodically reconciled and merged delta versions offers protection against fre-
quency attacks similar or better than the use of a single main index (Sect. 6)
while producing an up to fourfold increase in system throughput (Sect. 7), thus
offering a convincing argument for its adoption.

2 Preliminary Concepts

Before introducing our approach, we illustrate the shuffle index with which out-
sourced data are organized [10]. We assume data to be indexed over a candidate
key and organized as an abstract unchained B+-tree, with actual data stored in

650 S. De Capitani di Vimercati et al.

Abstract index r

a b c d

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3
(a)

Logical index
r [101,104,102,103]
001

d2
201

c1
202

c2
203

b3
204

a1
205

b1
206

c3
207

d1
208

a3
209

b2
210

d3
211

a2
212

101
a [205,212,209]

103
d [208,201,211]

104
b [206,210,204]

102
c [202,203,207]

r [10, 410141024103]
001

d,
201

c1
202

c2
20,

b,
203

b1
20a

d1
205

c,
206

71
208

72
209

d2
210

7,
211

b2
212

101
d [20542104201]

10,
b [20a42124203]

103
7 [20842094211]

102
c [202420, 4206]

(b) (c)

Physical index
α

001

β
101

γ
102

δ
103

ε
104

ζ
201

η
202

θ
203

ι
204

κ
205

λ
206

μ
207

ν
208

ξ
209

ο
210

π
211

ρ
212

ς
001

σ
101

γ
102

τ
103

υ
104

φ
201

η
202

θ
203

χ
204

κ
205

λ
206

μ
207

ν
208

ψ
209

ο
210

π
211

ρ
212

(d) (e)

Fig. 1. An example of abstract (a), logical (b)-(c), and physical (d)-(e) index before
(b)-(d) and after (c)-(e) the execution of a search operation

the leaves of the tree in association with their index values. The fact that the tree
is unchained means that there are no links connecting the leaves. The fan-out F
of the tree regulates the number of index values stored in the nodes. Each node
stores a list v [1, . . . , q] of q values, with "F

2 # − 1 ≤ q ≤ F − 1 (the lower-bound
does not apply to the root) ordered from the smallest to the greatest, and has
q + 1 children. The i-th children of a node is the root of the subtree containing
the values val with v [i− 1] ≤ val < v [i], i = 2, . . . , q; the first child is the root
of the subtree with all values val < v [1], while the last child is the root of the
subtree with all values val ≥ v [q]. Figure 1(a) illustrates a graphical representa-
tion of our abstract data structure. For simplicity, in our examples we refer to
nodes with a label (not explicitly reporting values in them). At the logical level,
nodes are allocated to logical addresses that work as logical identifiers.

Pointers between nodes of the abstract data structure correspond, at the log-
ical level, to node identifiers, which can then be easily translated at the physical
level into physical addresses at the storing server. In the following, we assume
that the physical address corresponds to the logical identifier of the node stored
in it. Note that the possible order between identifiers does not necessarily cor-
respond to the order in which nodes appear in the value-ordered abstract rep-
resentation. Figure 1(b) illustrates a possible representation at the logical level
of the abstract data structure in Fig. 1(a). In the figure, nodes appear ordered

Supporting Concurrency in Private Data Outsourcing 651

(left to right) according to their identifiers, which are reported on the top of
each node. Pointers to children are represented by reporting in the node the
ordered list of the identifiers of its children. For simplicity and easy reference, in
our example, the first digit of the node identifier denotes the level of the node
in the tree. For external outsourcing, node’s content is prefixed with a random
salt and then encrypted in CBC mode with a symmetric encryption function
producing an encrypted block. Figure 1(d) illustrates the physical representa-
tion of the logic data structure in Fig. 1(b) (Greek letters represent the result of
encryption). Since the block content is encrypted, the server does not have any
information on the content or on the parent-child relationship between nodes
stored in blocks. Retrieval of the leaf block containing the tuple corresponding
to an index value requires an iterative process. Starting from the root of the tree
and ending at a leaf, the read block is decrypted retrieving the address of the
child block to be read at the next step. To avoid leaking to the server i) the fact
that some blocks represent a path in the tree and ii) different accesses aim at
the same content, the shuffle index extends the search operation by:

– performing, in addition to the target search, other fake cover searches , guar-
anteeing indistinguishability of target and cover searches and operating on
disjoint paths of the tree (retrieving at every level of the tree num cover+1
blocks at the same time);

– maintaining a set of blocks in a local cache;
– mixing (shuffling) the content of all retrieved blocks as well as those main-

tained in cache and rewriting them accordingly on the server.

Intuitively, cover searches introduce uncertainty over the leaf block actually be-
longing to the target search and do not allow the server to establish the parent-
child relationship between blocks (since multiple blocks are retrieved at every
level). The cache is used to make searches repeated within a short time interval
not recognizable as being the same search (if the nodes in the target path are
already in cache, an additional cover search will be executed instead). Shuffling
moves content among blocks, thus breaking the correspondence between nodes
(contents) and blocks (addresses). Note that shuffling requires to re-encrypt the
involved nodes with a different random salt, so to produce a different encrypted
text, and changing the pointers to them in their parents (which will have to point
to the new blocks at which nodes have been allocated). Changing the allocation
of nodes to blocks provides confidentiality: i) subsequent searches looking for the
same content would aim at different blocks, and ii) subsequent searches hitting
the same block would involve a different content.

As an example, consider a search for value b3 over the abstract index in
Fig. 1(a) that adopts a3 as cover, and assume that the local cache contains the
path to d2 (i.e., (001,103,201)). The nodes involved in the search operation are
denoted in gray in the figure. Figure 1(b) illustrates the logical representation of
the abstract index before the execution of the search operation and how accessed
blocks are shuffled, level by level, to obtain the structure in Fig. 1(c). Note
that although the server knows which blocks have been accessed (gray blocks in

652 S. De Capitani di Vimercati et al.

Figs. 1(d)-(e)) it cannot detect which of those is the actual search target and
how the content of blocks has been shuffled, since blocks are encrypted using a
different salt at each encryption.

3 Main Index and Delta Versions

Before introducing the concept of delta version, we need to formalize the different
components of the shuffle index data structure and of the shuffling (which were
only procedurally managed in the original proposal). Data can be seen at the
abstract, logical, and physical levels, which we formally capture as follows.

– Abstract (T a): set {na
1 , . . . , n

a
m} of abstract nodes forming an unchained B+-

tree. Each internal node in T a is a pair na = 〈values , children 〉 with values
a list of index values and children a list of q + 1 child nodes. Leaf nodes
have tuples , representing the tuples with index value in values , instead of
children .

– Logical (T): triple (T a, ID, φ), where T a is an abstract data structure, ID
is a set of logical identifiers, and φ : T a → ID is a bijective function as-
sociating each abstract node na in T a with a logical identifier id in ID.
Triple (T a, ID, φ) determines how the abstract nodes in T a are allocated to
logical identifiers in ID. Each internal node na=〈values , children 〉 ∈ T a is
then represented by a (logical) node of the form 〈id , v , p〉, where id=φ(na),
v=values , and p [j]=φ(children [j]), j = 1, . . . , q + 1. Leaf nodes are repre-
sented with logical nodes of the form 〈id , v , t 〉 that include tuples t instead
of pointers to children.

– Physical (T e): set of (disk) blocks storing T . Each logical node 〈id , v , p〉 ∈ T
(leaf 〈id , v , t 〉 ∈ T , resp.) is stored in a block that can be seen as a pair of
the form 〈id ,b〉, where b=Ek(salt ||id ||v ||p) (b=Ek(salt ||id ||v ||t), resp.) with
E a symmetric encryption function, k the encryption key, and salt a value
chosen at random during each encryption.

In the following, we use the term node to refer to an abstract content and block
to refer to a specific memory slot in the logical/physical structure. When either
term can be used, we will use node/block interchangeably.

Shuffling executed at every access randomly exchanges the content among
blocks. A shuffling of logical index T = (T a, ID, φ) is equivalent to reallocating
nodes to potentially different blocks (the corresponding abstract index remains
unaltered), as formally defined in the following.

Definition 1 (Shuffling). Let T = (T a, ID, φ) be a logical index and π : ID →
ID be a random permutation of ID. The shuffling of T with respect to π is a
logical index T ′ = (T a, ID, φ′), where ∀na∈T a, φ′(na) = π(φ(na)).

Note that a change in the allocation of nodes to blocks implies that the pointers
to children must be updated to reflect their new allocation, thus preserving the
correct parent-child relationship. In the following, for convenience we assume

Supporting Concurrency in Private Data Outsourcing 653

shuffling to operate within the boundary of the tree level (i.e., permutations are
always performed among nodes of the same level of the tree).

A delta version is essentially a – potentially shuffled – portion of the main
index, as captured by the following definition.

Definition 2 (Delta version). Let T = (T a, ID, φ) be a logical index. A delta
version Δi = (Δa

i , IDi, φi) of T is a shuffling of (Δa
i , IDi, φ), where Δa

i⊆T a

such that ∀na∈Δa
i , the parent of na belongs to Δa

i ; IDi=
⋃

φ(na), na∈Δa
i ; and

φi : T a → ID such that φi(na) = φ(na) if na �∈Δa
i .

Figure 2(c) illustrates an example of delta version of the logical index in Fig. 2(a).
Note that, since a delta version is composed of nodes forming paths that are
traversed when executing search operations, the parent of each node in the delta
version also belongs to the delta version. As a consequence, every delta version
always includes the root of T a.

Merging a delta version with a main index implies enforcing on the main index
the allocation of nodes to blocks prescribed by the delta version, as captured by
the following definition.

Definition 3 (Merge). Let T = (T a, ID, φ) be a logical index and Δi =
(Δa

i , IDi, φi) be a delta version of T . The merge of T and Δi, denoted T ⊕Δi,
is logical index T ′ = (T a, ID, φi).

In terms of actual enforcement, T ′ can be simply obtained by flushing the blocks
of the delta version to the main index (overwriting the corresponding blocks on
disk), while leaving the other blocks unaltered. Such an operation – which can
be performed without any need to download the involved blocks or performing
computation by the client – produces an index that correctly represents the
original data structure and includes the shuffling operated in the delta version.

4 Operating on Delta Versions

The basic idea of our approach is that transactions operate on delta versions
(dynamically created and maintained in main memory at the server) rather than
on the main shuffle index.
Access Execution. Every access operation is executed over a delta version. If
the operation needs to read a block that does not belong to the delta version,
such a block is taken from the main index and included in the delta version.
Access execution works essentially like in the original shuffle index proposal re-
questing at every level at least num cover+1 blocks. Apart from the need to
include new blocks in the delta version, the only notable difference with respect
to the original shuffle index proposal is that we depart from the local cache
originally maintained for hiding the fact that subsequent searches were aiming
at the same node. The reason for departing from the cache is that its main-
tenance would impose a strong synchronization overhead among the different
transactions operating at the client side. To prevent the server from recognizing

654 S. De Capitani di Vimercati et al.

main index
r [105,102,104,101,107,103,108,106]
001

c2
201

h1
202

h2
203

c3
204

d3
205

g4
206

d4
207

e3
208

c1
209

e2
210

f3
211

f2
212

a4
213

b2
214

c4
215

h4
216

e4
217

a1
218

h3
219

a2
220

f1
221

d2
222

b3
223

g2
224

g3
225

a3
226

e1
227

g1
228

d1
229

b4
230

b1
231

f4
232

g [228,224,225,206]
108107

e [227,210,208,217]
106
h [202,203,219,216]

105
a [218,220,226,213]

104
c [209,201,204,215]

103
f [221,212,211,232]

102
b [231,214,223,230] d [229,222,205,207]

101

(a)

target: a1 (001, 105, 218) Δ1

cover: d2 (001, 101, 222)
e3 (001, 107, 208)

repeated: –

read: 001/101,105,107/208,218,222

shuffle: 101→105, 105→107, 107→101
208→218, 218→208, 222→222 a1

208
e3

218
d2

222

r [107,102,104,105,101,103,108,106]
001

e [227,210,218,217]
101

d [229,222,205,207]
105

a [208,220,226,213]
107

(b)

target: b4 (001, 102, 230) Δ1

cover: g3 (001, 108, 225)

repeated: (001, 101, 218)

read: 001/101,102,108/218,225,230

shuffle: 101→102, 102→108, 108→101
218→225, 225→230, 230→218 a1

208
b4

218
d2

222
e3

225
g3

230

r [107,108,104,105,102,103,101,106]
001

g [228,224,230,206]
101

e [227,210,225,217]
102

d [229,222,205,207]
105

a [208,220,226,213]
107

b [231,214,223,218]
108

(c)

Fig. 2. An example of main index (a) and of execution of two subsequent searches
(b)-(c) over it using delta version Δ1

that two subsequent accesses aim at the same block, we take a dual approach
and adopt repeated searches . Intuitively, while the cache ensured consequent
searches never accessed the same block (if a value just retrieved was needed, a
fake value was searched instead, so to ensure no intersection between the two
searches and the same number of blocks is accessed at each level), repeated
searches always ensure intersection between subsequent searches (regardless of
whether the two searches are looking or not for the same value). For enforcing
repeated searches, we store, in conjunction with each delta version, a layered
structure that keeps track of the identifiers of the blocks accessed during the
last search. Execution of an access on a delta version will also request at least
one block per level among those appearing in the last search. Each search then
accesses num cover+2 blocks at every level of the index, since, besides the blocks
of the target and cover searches, an additional block is necessary for the repeated
search (the additional blocks are two if the target or cover searches correspond
to a repeated search). At the beginning, when the delta version is empty, there
is no search to repeat and an additional cover is requested instead. To illustrate,
consider the index in Fig. 2(a) and a request for value a1 that adopts one cover
and operates on empty delta version Δ1. In this case, two covers (e.g., d2 and e3)
are needed. The blocks on the paths to a1, d2, and e3 are all read from the main
index, shuffled, and written back in Δ1 as illustrated Fig. 2(b). Suppose now to
execute another search for value b4 over Δ1, with cover g3, and one repeated

Supporting Concurrency in Private Data Outsourcing 655

access (e.g., 001, 101, 218). Since the nodes along the paths to b4 and g3 (except
the root) do not belong to Δ1 they are read from the main index, and after
shuffling their content with all accessed blocks, are copied in the delta version.
Figure 2(c) illustrates Δ1 after the execution of the second search operation.

Delta Version Assignment. To avoid imposing synchronization constraints
at the client side, we assume the allocation of delta versions to each transac-
tion to be determined by the server. However, we need to provide a means at
the client side to control the proper behavior of the server in the allocation
of the versions. It is important to ensure that the server does not discard the
shuffling requested, creates a new delta version at each access and having then
transactions always operating on the main index (and therefore on a static data
structure), or selectively allocates versions to monitor specific activities. There-
fore, we assume that the client sets the number of delta versions (i.e., amount
of concurrent operations). At the client side, we maintain a table Version(Δid ,
ts , status), reporting for each delta version Δid the time ts of last access and
whether its status is busy or free. We assume synchronization before execution
of each search operation, requesting the transaction at the client side to update
the entry for the version allocated to it setting ts to the current time and status
to busy. We instead account for a lazy process for the transactions in setting
that the version allocated to them has been released (status free). Hence, while
a version appearing free in the table is certainly free, a version appearing busy
could actually have been released (but the transaction be late in reporting the
status change). We request the server to manage delta version allocation ac-
cording to the MRU policy, that is, an access should be enforced on the most
recently used version. The client can then check that the server has performed
proper allocation by checking that the delta version allocated to the request has
ts greater than the greatest ts associated with a free version in the table (the
greater than condition is to accommodate for possible delays at the client side
to set version status free). We also assume the root of every delta version to be
timestamped at each access. This allows checking that the root is actually the
result of the access executed at the time ts recorded in the table for the delta
version and, therefore (since the root points to the other blocks in the tree) the
freshness of the whole version.

5 Reconciling Delta Versions and Main Index

A delta version grows at every access by including new requested blocks that were
not previously contained in the delta version. In the long run, a delta version could
potentially grow to include all the blocks of the main index saturating the server
main memory. Hence, we periodically synchronize the main index with the delta
versions, reporting shuffling operations on the main index and resetting the delta
versions. Note that we cannot simply destroy the delta versions without changing
the main index. In fact, although all operations are read-only (i.e., the abstract
data structure remains unaltered), the principle of the shuffle index is that the al-
location of nodes to blocks is dynamic. It is therefore important to apply the shuffle

656 S. De Capitani di Vimercati et al.

performed on the delta versions to the main index, so to enjoy the protection of
shuffling for subsequent accesses.

If there were a single delta version, applying the performed shuffling on the
main index would be simple. Indeed, it would be sufficient to simply flush to
the main index on disk the blocks included in the delta version. The situation is
however complicated by the existence of several delta versions, which can have
operated independently on the same nodes/blocks. In this case, a reconciliation
is needed to ensure correctness of the index and, in particular, to ensure no
content is lost and pointers to child blocks are properly set. We first note that,
while it is important that shuffling is enforced in the main index, the specific
way in which nodes are shuffled (i.e., which node goes to which block) does
not have any impact, provided it represents a random permutation. As long as
allocation is dynamic, any rearrangement would do. Hence, a straightforward
approach to enforce shuffling on the main index would be to download all the
blocks contained in the delta versions at the client side, retrieve (by decrypting)
the corresponding nodes, allocate them to blocks, and re-uploading them at the
server by rewriting the involved blocks on the main index. Such a naive approach,
requiring to download all the blocks and to re-encrypt all the nodes, is clearly
too expensive and not needed. Our approach aims at minimizing the blocks
to be downloaded and re-uploaded by limiting these blocks to the ones strictly
needed to guarantee correctness or to avoid leakage on the node allocation, while
flushing as many blocks as possible directly to disk.

To determine which blocks need to be downloaded and re-encrypted, we have
to identify the blocks for which the presence of multiple delta versions represents
a problem. In principle, it is sufficient for two delta versions to have a block (and
hence the corresponding node) in common to require checking all the blocks in
them, since the node (which should be reported in only one block to the main
index) may have been re-allocated to any of the blocks within each delta version.
In practice, however, only the block where the node was originally allocated in
the main index and the new block where it has been allocated in each of the
delta versions need to be strictly involved in some re-encryption, since the delta
versions have conflicting node/block allocation.

We then start by characterizing conflicting node/block allocation among a set
of delta versions as follows.

Definition 4 (Conflicting allocations). Let T = (T a, ID, φ) be a logical in-
dex and {Δ1, . . . , Δn} be a set of delta versions of T . The conflicting allocations
of Δi with respect to {Δ1, . . . , Δn} \ {Δi} is a set Ci of pairs 〈na

i ,id i〉, where
na

i∈Δa
i , id i = φi(na

i), and ∃na
j∈Δa

j , Δj∈{Δ1, . . . , Δn} and i �= j, such that
either: 1) na

i =na
j (same node); or 2) φi(na

i) = φj(na
j) (same block).

It is easy to see that, with respect to nodes, the nodes that are in conflict for
a given delta version Δi are all those nodes that are also present in another
version (i.e., belong to Δa

i ∩Δa
j , for some j) or are contained in a block which

is also present in another version (i.e., are allocated to a block in IDi ∩ IDj ,
for some j). Analogously, with respect to blocks, the blocks that are in conflict
for a given delta version Δi are all those blocks that are also present in another

Supporting Concurrency in Private Data Outsourcing 657

main index
r [105,102,104,101,107,103,108,106]
001

c2
201

h1
202

h2
203

c3
204

d3
205

g4
206

d4
207

e3
208

c1
209

e2
210

f3
211

f2
212

a4
213

b2
214

c4
215

h4
216

e4
217

a1
218

h3
219

a2
220

f1
221

d2
222

b3
223

g2
224

g3
225

a3
226

e1
227

g1
228

d1
229

b4
230

b1
231

f4
232

d [229,222,205,207]
101

e [227,210,208,217]
107

g [228,224,225,206]
108

h [202,203,219,216]
106

a [218,220,226,213]
105

c [209,201,204,215]
104

f [221,212,211,232]
103

b [231,214,223,230]
102

conflict

conflict conflict

conf.

(a)

Δ1 Δ2

a1
208

b4
218

d2
222

e3
225

g3
230

r [107,108,104,105,102,103,101,106]
001

g [228,224,230,206]
101

e [227,210,225,217]
102

d [229,222,205,207]
105

a [208,220,226,213]
107

b [231,214,223,218]
108

conflict

conflict conflict conflict conflict downloaded

conf. cover
f2

201
d2

212
e1

215
c4
222

c2
227

r [105,102,103,104,106,101,108,107]
001

f [221,201,211,232]
101

c [209,227,204,222]
103

d [229,212,205,207]
104

e [215,210,208,217]
106

h [202,203,219,216]
107

conflict

conf.

conflict conflict conflict conflictparent

conf.

(b) (c)

reconciled main index

r [105,152,110,1547
534538

6 [15] ,153,111,1587
53c
h [114,112,103,13c7

53]
d [115,135,155,1017

532
g [131,130,15e,15c7

530
9 [13e,118,132,1517

531
f [134,113,11c,1507 a [11e,11] ,13] ,1387

535

d1
135

g5
131

g1
130

90
132

a0
13]

h2
13c

a2
138

f5
134

95
13e

61
153

d0
155

92
151

f2
150

r 1
152

65
15]

g2
15c

62
158

r 2
154

g0
15e

f1
113

d5
115

60
111

r 0
110

h1
112

a1
11]

f0
11c

91
118

h5
114

a5
11e

h0
103

r 5
105

d2
101

b [531,534,530,535,538,53] ,53c,5327
335

uploaded

uploaded uploaded uploaded uploaded uploaded uploaded uploaded uploaded

up. up. up.fl.fl. fl. fl. fl. fl.

(d)

Fig. 3. An example of main index (a), two delta versions Δ1 (b) and Δ2 (c), and the
result of their reconciliation (d)

version (i.e., belong to IDi ∩ IDj , for some j) or that contain a node that
is also present in another version (i.e., belong to Δa

i ∩ Δa
j , for some j). For

completeness, Definition 4 captures both components representing conflicts, in
terms of pairs 〈node,block〉 since the conflict requires to revisit the allocation of
the node contained in block . To illustrate, consider the two delta versions Δ1

and Δ2 in Figs. 3(b)-(c). The nodes/blocks representing a conflicting allocation
in each version are marked with the word conflict below the block.

All blocks involved in a conflict for some delta version are blocks that cannot
be simply written to disk as the resulting index would not be correct (some nodes
would be lost and others would appear replicated). To ensure consistency of the
content, it is important to reconcile the delta versions so that there is agreement
– with respect to common nodes or common blocks – on which node is allocated
to which block. We capture this by formalizing the definition of reconciled delta
version, resulting from a reconciliation of different delta versions, as follows.

Definition 5 (Reconciled delta version). Let T = (T a, ID, φ) be a logical
index, {Δ1, . . . , Δn} be a set of delta versions of T , and Ci be the conflicting
allocations of Δi with respect to {Δ1, . . . , Δn} \ {Δi}, i = 1, . . . , n. A reconciled
delta version of {Δ1, . . . , Δn} is a delta version Δr = (Δa

r , IDr, φr) where Δa
r =

658 S. De Capitani di Vimercati et al.

Δa
1 ∪ . . . ∪ Δa

n, IDr = ID1 ∪ . . . ∪ IDn, and φr(na) = φi(na) if na∈Δa
i and

〈na, φi(na)〉�∈Ci.

The reconciled delta version can then be enforced on the shuffle index as in the
case of a single delta version, by merging T and Δr producing logical index
Tr=T ⊕Δr that represents the same abstract index represented by T .

For producing the reconciled version, in addition to blocks in conflict also
the blocks containing a pointer to a block in conflict (e.g., block 103 in Δ2 in
Fig. 3(c)) need to be re-written, as the pointer should be changed to refer to the
new block where the child node (e.g., c4) has been allocated.

While the blocks in conflict and their parents are the only ones that should be
downloaded by the client and re-uploaded (after shuffling the nodes in conflict) to
produce a correct reconciled version (all other blocks in the delta versions could
simply be flushed to disk directly by the server), we may need to download (and
either include in the shuffling or simply re-write) other blocks. The reason is
to ensure that the server cannot infer node/block allocation by observing that
only few blocks have been involved in a reconciliation. As an example, for Δ1

in Fig. 3(b), the only leaf block to download and re-upload would be conflicting
block 222, therefore the server can infer that it stores the value accessed (as
target or cover) by two searches performed with different delta versions. To avoid
leakages like this, and providing the same uncertainty over the block allocation
enjoyed by the original shuffle index proposal in the access execution, we require
each version, for each level of the index, to: i) perform shuffling of either 0
or at least num cover+1 blocks and ii) flush directly either 0 or not less that
num cover+1 blocks. If for a given level there are less than num cover+1 blocks
to flush, additional cover blocks are also downloaded and re-uploaded after re-
encrypting them with a new salt (to make them not recognizable). Like parents,
these latter nodes are not involved in the shuffling to avoid propagating the need
for changes to higher levels of the index. For instance, with reference to Δ1 in
Fig. 3(b): i) 225 is added as cover to perform shuffling among at least two nodes
at leaf level, and ii) 108 is also downloaded since it would have been the only one
flushed at level one. Figure 3(d) illustrates the merging of the index in Fig. 3(a)
after reconciliation of delta versions Δ1 and Δ2 in Figs. 3(b)-(c). The gray blocks
are those that have been written on disk because flushed from main memory or
re-uploaded by the client.

6 Security Analysis

We analyze the protection offered by our proposal for the new aspects introduced
with respect to the serial version operating only with the main index. Like in
the original proposal, we focus the analysis on leaves of the index (nodes at a
higher level are subject to a greater number of accesses, due to the multiple paths
that pass through them, and are then involved in a larger number of shuffling
operations, which increase their protection). Since our search operations execute
essentially like in the original proposal (with repeated searches instead of cache),
our solution enjoys the protection guarantees given by covers like in [10]. The only

Supporting Concurrency in Private Data Outsourcing 659

potential exposure in our solution is when two different delta versions require
access to a block in the main index for the first time. Since the main index
changes only upon reconciliation, the server can infer that the two requests
actually refer to the same node. However, since every access execution entails
reading at least num cover+1 blocks (in addition to the repeated search) at every
level, and covers are chosen guaranteeing indistinguishability (with respect to
access profiles) between target and covers, the server cannot determine whether
the transactions operating on the two different delta versions are actually aiming
at the same target, or either or both of them are accessing the block as a cover.
The probability that the two transactions aimed at the same target is then

1
(num cover+1)2 ; when m delta versions request access to the same block from the
main index, the probability that all the transactions aimed at the same target
is 1

(num cover+1)m .
The crucial property we are interested in evaluating is the protection against

the inferences the server may make on the data content by exploiting informa-
tion on the frequency of accesses to the blocks. Applying classical concepts of
information theory, we can model the information available to the server on the
association between a node na

i and block id j storing it as probability P(na
i , id j).

A value equal to 1 for this probability means that the server will be able to cor-
rectly identify a node, whereas a value equal to 1

|T a| will correspond to the ab-
sence of any knowledge. If the block is replicated in delta versions, each instance
will be associated with the analogous probability. Let ID ′ be the set of blocks in-
volved in an access in a version (excluding the repeated search). For all na

i ∈ T a,
and all id j∈ID ′, P(na

i , id j) after the shuffling becomes
∑

idj∈ID′
P(na

i ,idj)
num cover+1 , be-

cause the shuffling can associate each node with any of the blocks involved in
the access with equal probability, thus flattening the probability distribution.
After the reconciliation, all the blocks that have been accessed by a single ver-
sion will be transferred to the main index, where they will be associated with
the probabilities computed in the version. Blocks accessed by multiple versions
will be shuffled together, with a further averaging of probabilities among the
blocks. As a consequence, P(na

i , id j) for each node na
i after each access and each

reconciliation will progressively move toward value 1
|T a| .

It is natural to study the evolution of these probabilities using the concept of
entropy, which allows us to identify at an aggregate level the knowledge of the
server and its degradation due to shuffling and merging. In particular, we are in-
terested in the impact of delta versions over the entropy, which we evaluated – as
common in the study of codes and channels when analytical models become un-
manageable – experimentally. We then designed a set of experiments with an ini-
tial configuration corresponding to a worst case assumption where the server has
a precise knowledge about the node-block correspondence, and then the entropy
is equal to zero, and evaluated how the entropy increases with access execution
(for the serial index) and with access execution and merging after reconciliation
(for our proposal). The experiments have considered a variety of configurations,
with different numbers of nodes, number of versions, num cover , and access pro-
files. Access profiles have been simulated by synthetically generating a sequence of

660 S. De Capitani di Vimercati et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (
bi

t)

Number of accesses

Serial - Average uncertainity
Concurrent - Average uncertainity

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (
bi

t)

Number of accesses

Serial - Average uncertainity
Concurrent - Average uncertainity

(b)

Fig. 4. Evolution of the entropy for values of γ equal to 0.5 (a) and 0.25 (b)

accesses that follow a self-similar probability distribution with skewness γ in the
range [0.25, 0.5] (given a domain of cardinality d, a self-similar distribution with
skewness γ provides a probability equal to 1 − γ of choosing one of the first γd
domain values). We then applied the same sequence of accesses to the serial and
concurrent shuffle index and evaluated the growth of the entropy. Figure 4 illus-
trates the experimental results using 4 covers, 4 versions, 1000 nodes, skewness
γ equal to 0.5 and 0.25, and varying the number of accesses. Experiments with
different configurations presented a similar behavior.

As visible from the figure, before the first reconciliation, the entropy is slightly
lower in the concurrent scenario with respect to the serial index. The reason is
that each delta version serves a smaller number of accesses than the index in
the serial version (assuming uniform distribution of load among versions, each
transaction has one fourth of the accesses operating on the main index). How-
ever, already at the first reconciliation, the entropy for the concurrent scenario
becomes higher than that of the serial scenario, and keeps maintaining higher.
While an even higher entropy might sound not intuitive and an unexpected ad-
vantage (more protection with better performances), the explanation for such a
behavior is simply that reconciliation and merging enjoy shuffling over a larger
number of nodes all at one time. In fact, reconciliation makes the concurrent
shuffle index stronger because this phase applies a shuffle over all the nodes in
the conflict set. The size of this set depends on the number of conflicts and our
model forces it to be for each delta version at least as large as the number of
covers used for every shuffle. The size of the conflict set will often be greater
than the number of covers, and the growth of entropy produced by a shuffle
increases more than linearly with the number of blocks involved in the shuffle
(i.e., the execution of two shuffles over two sets of m distinct elements produces
lower entropy than a single shuffle over the set of 2m elements). The cost of such
better protection can be reconducted to the cost of the reconciliation, which
is below 10% of the access cost in the configuration that maximizes the server
throughput (Sect. 7).

Supporting Concurrency in Private Data Outsourcing 661

7 Performance Analysis

We implemented the search and reconciliation algorithms with Java programs.
To assess the system performance, we used a data set of 1TB stored in the leaves
of a shuffle index with 4 levels, built on a numerical candidate key of fixed-length,
with fan-out 512, and representing 232 (over 4 billion) different index values. The
hardware used in the experiments included a server machine with 2 Intel Xeon
Quad 2.0GHz L3-4MB, 12GB RAM, four 1TB disks, 7200RPM, 32MB cache,
and Linux Ubuntu 9.04 x86 64 with the ext4 file system, and a client machine
with an Intel Core 2 Duo CPU T5500 at 1.66GHz, 2GB DRAM, and Linux
Ubuntu 9.04 x86. The client and the server operate in a local area network
(100Mbps Ethernet, with average RTT of 0.48ms). The results reported in this
section have been obtained as the average over 50 runs and, for each run, the
number of accesses is 5000 and the number of covers adopted at each access is 4.
The inverse of the average disk time needed to perform a single search is 52tps
and represents the upper bound for the maximum throughput of the system.

To emulate the workload of an outsourcing service, we designed a generator
scheme, modeling the number of access requests per second as a random variable
following a Poisson distribution with mean arrival rate λ (the time when an ac-
cess request arrives is independent from the time of arrival of previous requests).
In our experiments, we considered λ=16tps and λ=32tps, which correspond to
30% and to 60%, respectively, of the physical maximum throughput (52tps).
These are sensible workloads for a service hosted on a single machine and a ro-
bust test for the deployment of the proposed solution in a real world scenario. In
fact, a workload of 60% of the maximum disk service rate is known to be optimal
with respect to the upper bound of the physical maximum throughput [16].

To evaluate the performance gain obtained with the support of concurrent
searches and the overhead due to reconciliation, we compare the server through-
put in three different scenarios: i) serial shuffle index [10]; ii) concurrent shuffle
index where delta versions are never reconciled; and iii) concurrent shuffle index
where delta versions are periodically reconciled. In the experiments, delta ver-
sions are reconciled every 128 and every 256 access requests, for the configura-
tion with λ=16tps and λ=32tps, respectively. A higher reconciliation frequency
increases overhead because it more often requires write locks on the disk blocks
to be re-written. On the other hand, a lower frequency requires less often such
locks but over a considerably larger number of blocks (conflicts among versions
grow more than linearly with respect to the number of searches). Experiments
(which we do not present here for space reasons) show that the chosen thresh-
old values balance the two aspects offering the maximum server throughput for
the employed operating setup. Figure 5 reports the server throughput, varying
the maximum number of delta versions between 1 and 128 with access request ar-
rival rate equal to λ=16tps and λ=32tps, respectively. Although the performance
overhead of concurrent applications highly depends on the randomdisk access pat-
terns required to execute read and write accesses to blocks, Fig. 5 demonstrates
how the adoption of our concurrency support offers a threefold (fourfold, respec-
tively) increase of the server throughput compared to the serial shuffle index when

662 S. De Capitani di Vimercati et al.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t
(t

p
s
)

Number of delta versions

without reconciliation
with reconciliation

serial

(a)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t
(t

p
s
)

Number of delta versions

without reconciliation
with reconciliation

serial

(b)

Fig. 5. Server throughput varying the number of delta versions between 1 and 128,
with access request arrival rate equal to λ=16tps (a) and λ=32tps (b)

λ=16tps (λ=32tps, respectively). Note that the server throughput is higher than
or equal to the mean arrival rate λ of client requests, meaning that the time neces-
sary to the server to process an access request is lower than the time between two
consecutive accesses. Figure 5 also highlights the limited cost due to reconcilia-
tion, which has a maximum of 25% and is 6% in the configuration that maximizes
the server throughput.

8 Related Work

Previous work is related to the definition of indexing structures for the execution
of queries on encrypted outsourced data (e.g., [1,8,14,15,20,21]). The proposals
in [8,21] specifically adopt the B+-tree and the B-tree data structures to define
an index able to efficiently support search operations on the key attribute. Al-
though these solutions efficiently support accesses to the outsourced data, they
are static and do not offer protection against the attacks based on the frequency
of the accesses. Another line of work related to our is represented by Private
Information Retrieval (PIR) [4,18]. These proposals typically protect the confi-
dentiality of users’ queries while data confidentiality is not considered an issue.

The proposals in [10,17,22] aim to protect data confidentiality and the ac-
cesses realized by the client over the data. The solution in [17] is based on the
definition of a B-tree index and of a technique for accessing the content of a
node in the tree that prevents the server from inferring which node has been
accessed. However, the server can observe repeated accesses to the same physi-
cal block, which correspond to repeated searches for the same values, and apply
a frequency attack to infer information about the values stored by each node
in the B-tree. The proposal in [22] adopts the pyramid-shaped database layout
of Oblivious RAM [13] and an enhanced reordering technique between adjacent
levels of the data structure to protect both data confidentiality and the secrecy of
users’ queries. The performance of a search operation is however highly affected
by the reordering of lower levels of the database, since this reordering can take

Supporting Concurrency in Private Data Outsourcing 663

hours and needs to be periodically performed. This appears a strong obstacle to
the real deployment of such a solution. The architecture proposed in [22] also re-
quires a secure coprocessor trusted by the client on the server. The first proposal
combining shuffling, cover searches, and cache to offer an extensive protection
of confidentiality with a limited overhead in response times is illustrated in [10],
where data are organized according to a novel data structure whose management
does not rely on a trusted component at the server side. However, such proposal
as well as the proposals in [17,22] do not support concurrency, with consequent
performance limits in many real life scenarios.

9 Conclusions

Dynamically allocated data structures have recently emerged as a promising
solution to provide privacy protection of data whose storage and management
are delegated to external servers. However, even solutions guaranteeing limited
performance overheads could be affected in scenarios where several accesses need
to operate concurrently, therefore impacting their application. In this paper,
we have addressed this problem and presented a proposal for accommodating
concurrent executions over a shuffle index whose working (based on multiple
searches and dynamic data allocation) would otherwise require several exclusive
locks which, while causing only a limited overhead in serial environments, could
considerably affect concurrent accesses. Our proposal, based on operating on
multiple differential versions of the index, enjoys a privacy protection against
frequency attacks comparable to or better than the serial solution while offering
up to fourfold throughput, thus providing a convincing argument for its adoption.

Acknowledgments. This work was supported in part by the EC within the
7FP, under grant agreements 216483 (PrimeLife) and 257129 (PoSecCo), by
the Italian Ministry of Research within the PRIN 2008 project “PEPPER”
(2008SY2PH4), and by the Università degli Studi di Milano within the project
“PREVIOUS”.

References

1. Agrawal, R., Kierman, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proc. of ACM SIGMOD 2004, Paris, France (June 2004)

2. Atallah, M., Frikken, K.: Securely outsourcing linear algebra computations. In:
Proc. of ASIACCS 2010, Beijing, China (April 2010)

3. Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Modeling and assessing inference exposure in encrypted databases.
ACM TISSEC 8(1), 119–152 (2005)

4. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
JACM 45(6), 965–981 (1998)

5. Cimato, S., Gamassi, M., Piuri, V., Sassi, R., Scotti, F.: Privacy-aware biomet-
rics: Design and implementation of a multimodal verification system. In: Proc. of
ACSAC 2008, Anaheim, CA, USA (December 2008)

664 S. De Capitani di Vimercati et al.

6. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation design for efficient query execution over sensitive dis-
tributed databases. In: Proc. of ICDCS 2009, Montreal, Canada (June 2009)

7. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Combining fragmentation and encryption to protect privacy in data
storage. ACM TISSEC 13(3), 22:1–22:33 (2010)

8. Damiani, E., De Capitani Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Balancing confidentiality and efficiency in untrusted relational DBMSs. In: Proc.
of CCS 2003, Washington, DC, USA (October 2003)

9. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM TODS 35(2),
12:1–12:46 (2010)

10. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Efficient and private access to outsourced data. In: Proc. of ICDCS 2011, Min-
neapolis, MN, USA (June 2011)

11. Gamassi, M., Lazzaroni, M., Misino, M., Piuri, V., Sana, D., Scotti, F.: Accuracy
and performance of biometric systems. In: Proc. of IMTC 2004, Como, Italy (May
2004)

12. Gamassi, M., Piuri, V., Sana, D., Scotti, F.: Robust fingerprint detection for access
control. In: Proc. of RoboCare Workshop 2005, Rome, Italy (May 2005)

13. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. JACM 43(3), 431–473 (1996)

14. Hacigümüs, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proc.
of ICDE 2002, San Jose, CA, USA (February 2002)

15. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data
in the database-service-provider model. In: Proc. of SIGMOD 2002, Madison, WI,
USA (June 2002)

16. Lazowska, E., Zahorjan, J., Graham, G., Sevcik, K.: Quantitative system perfor-
mance: Computer system analysis using queueing network models. Prentice-Hall,
Inc., Upper Saddle River (1984)

17. Lin, P., Candan, K.: Hiding traversal of tree structured data from untrusted data
stores. In: Proc. of WOSIS 2004, Porto, Portugal (April 2004)

18. Olumofin, F., Goldberg, I.: Privacy-preserving queries over relational databases.
In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 75–92.
Springer, Heidelberg (2010)

19. Sadeghi, A., Schneider, T., Winandy, M.: Token-based cloud computing. In: Ac-
quisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp.
417–429. Springer, Heidelberg (2010)

20. Shmueli, E., Waisenberg, R., Elovici, Y., Gudes, E.: Designing secure indexes for
encrypted databases. In: Proc. of IFIP DBSec 2005, Storrs, CT, USA (August
2005)

21. Wang, H., Lakshmanan, L.: Efficient secure query evaluation over encrypted XML
databases. In: Proc. of VLDB 2006, Seoul, Korea (September 2006)

22. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: Practical ac-
cess pattern privacy and correctness on untrusted storage. In: Proc of CCS 2008,
Alexandria, VA, USA (October 2008)

Privacy-Preserving DNS:
Analysis of Broadcast, Range Queries and

Mix-Based Protection Methods

Hannes Federrath1, Karl-Peter Fuchs1, Dominik Herrmann1,
and Christopher Piosecny2

1 Computer Science Department, University of Hamburg, Germany
2 Dept. of Management Information Systems, University of Regensburg, Germany

Abstract. We propose a dedicated DNS Anonymity Service which pro-
tects users’ privacy. The design consists of two building blocks: a broad-
cast scheme for the distribution of a “top list” of DNS hostnames, and
low-latency Mixes for requesting the remaining hostnames unobservably.
We show that broadcasting the 10,000 most frequently queried hostnames
allows zero-latency lookups for over 80 % of DNS queries at reasonable
cost. We demonstrate that the performance of the previously proposed
Range Queries approach severely suffers from high lookup latencies in a
real-world scenario.

1 Introduction

The Domain Name System (DNS), a globally distributed directory service, is
mainly used to translate domain names (hostnames) to IP addresses. The bulk
of the translation work is offloaded to DNS resolvers, which query the directory
service on behalf of users. Unfortunately, the DNS protocol does not account
for privacy. In fact, each DNS resolver has easy access to the IP addresses of
its users and the domain names they are interested in. The upcoming DNSSEC
protocol does not address in any way the confidentiality of DNS traffic, either.
In fact, this was a “deliberate design choice” [3].

During the last years a “third-party ecosystem” for DNS services has evolved.
Besides the ISPs there are many more providers offering DNS resolvers. The most
popular providers are Google Public DNS and OpenDNS.1 The DNS providers
advertize higher availability, protection from phishing and drive-by-downloads,
content filtering and higher performance. These services are also used to circum-
vent DNS-based censorship. The dissemination of alternative DNS servers has
increased significantly during the last years according to figures published by
OpenDNS: while they received 3 billion requests per day in September 20072,
this number has increased to 30 billion by 20103.

1 Homepages at http://code.google.com/speed/public-dns/ and http://opendns.com/
2 http://www.opendns.com/about/announcements/49/
3 http://blog.opendns.com/2011/01/24/2010-the-numbers-we-saw

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 665–683, 2011.
© Springer-Verlag Berlin Heidelberg 2011

http://code.google.com/speed/public-dns/
http://opendns.com/
http://www.opendns.com/about/announcements/49/
http://blog.opendns.com/2011/01/24/2010-the-numbers-we-saw

666 H. Federrath et al.

The benefits of public DNS servers come at a price: users must give up some
privacy. DNS providers have access to all the DNS queries of their users, which
may disclose their interests, relations and habits. Recent research results on user
session re-identification [21, 29] also suggest that long-term profiling of users
may be feasible solely based on the accessed hosts, enabling a malicious DNS
resolver to monitor users over long periods of time and at different locations.

Previous research on privacy-enhancing DNS has not resulted in readily avail-
able systems so far. In this paper we aim for a practical and usable solution that
allows users to access DNS resolvers privately, i. e., issue DNS queries without
disclosing the desired hostnames to the DNS provider. As shown in [20] and [15]
usability and especially low latency are crucial factors for the acceptance of Pri-
vacy Enhancing Technologies. Our solution addresses this challenge by trading
in a little amount of additional traffic for significantly lower latencies.

Contributions. Firstly, we propose a DNS Anonymity Service that can improve
privacy and performance at the same time through a combination of broadcast
and Mixes. Using real-world DNS traffic dumps we demonstrate the practicabil-
ity of our solution, which offers zero-latency and totally unobservable lookups for
up to 80 % of DNS requests. Secondly, we provide an extensive analysis on the
performance of the previously proposed Range Queries approach for real-world
web traffic, showing that lookup latencies dominate overall performance.

The rest of this paper is structured as follows. In Section 2 we review related
work, and we provide an overview of DNS in Section 3. We outline the archi-
tecture of our DNS Anonymity Service in Section 4. In Section 5 we present
our broadcast scheme for frequently accessed domain names, before we discuss
Mixes and Range Queries in Section 6. In Section 7 we present results from our
trace-driven simulations before we conclude the paper in Section 8.

2 Related Work

Previous research efforts regarding privacy-preserving access to DNS servers have
mainly focused on the concept of “Range Queries”, which achieves privacy by
hiding the queries of a client within a set of dummy queries. Zhao et al. [30]
propose a random-set Range Query approach using a single DNS resolver. We
will provide a detailed description in Section 6.2. Zhao et al. also propose an
improved Range Query scheme [31] inspired by Private Information Retrieval
[12]. Their improved scheme reduces the required bandwidth, but requires two
non-collaborating DNS resolvers running non-standard DNS software. Although
the authors suggest their schemes especially for web surfing applications, they
fail to demonstrate their practicability using empirical results. In contrast, our
study includes a performance evaluation using actual web traffic of a large user
group and a concrete implementation of Range Queries. This allows us to assess
the real-world performance of Zhao’s Range Query proposal.

Castillo-Perez et al. [8, 9] study privacy issues of DNS in a different context,
namely the ENUM protocol and the Object Naming Service (ONS). They pro-
pose a variation of the original Range Query scheme published by Zhao et al. in

Privacy-Preserving DNS 667

[30] using multiple DNS resolvers in parallel. They implemented their proposal
in order to evaluate its performance. Their results are of limited relevance for
our scenario, though, as their evaluation setup does not resemble the effective
DNS topology on the Internet.

Lu and Tsudik propose PPDNS [22], a privacy-preserving DNS system, which
is also based on Range Queries, but uses a next-generation DNS infrastructure
based on distributed hashtables and peer-to-peer technologies. While PPDNS is
a promising approach, we do not expect that it will be widely adopted in the
near future due to the need for a completely different DNS infrastructure and
its high computational complexity, which requires special hardware.

We conclude that there is no readily available, practical solution for web users
to protect their DNS queries, and the performance of the proposed Range Query
schemes in real-world settings is unknown.

3 Overview of DNS and the Dataset

The Domain Name System is a distributed database which essentially maps
domain names to IP adresses. On each client machine there is a stub resolver,
a software component of the operating system, which relays DNS queries to
the local nameserver. Local nameservers, which are also called caching resolvers,
fetch the requested information (Resource Records) from the authoritative name-
servers or – whenever possible – from their cache. Each Resource Record has a
time-to-live (TTL) value, which indicates how long it can be cached by clients
and caching resolvers. The original DNS protocol does not contain any security
measures safeguarding integrity and privacy of messages. While integrity protec-
tion will become available with the adoption of DNSSEC [3], privacy of message
contents and protection of the identity of clients are open problems.

3.1 Characteristics of DNS Traffic

To outline the most relevant characteristics of DNS traffic we summarize the
main findings of two well-known studies from 2004 [6] and 2001 [19] and verify
and complement them with more recent statistics derived from our 2010 dataset.

An important attribute of DNS traffic is its low traffic volume. Brandhorst
et al. showed in their study that DNS packets are responsible for only 0.05 %
of overall traffic [6]. In our logs the daily DNS traffic per user added up to
about 120 KB with 33 KB for requests and 87 KB for replies. The average sizes
of request and reply packets were 36 and 102 bytes respectively. However the
low bandwidth requirement is not only a consequence of small request and reply
sizes. It is also due to the fact that Resource Records can be cached according
to their TTL by resolvers and clients. Jung et al. found that 60 % to 80 % of all
requests could be answered using client-side caches [19].

We also found numerous request bursts in our logs, i. e., clients query for
several hostnames with little or no delay between requests. Further analysis
revealed two causes: (1) some websites embed media files from multiple domains,
and (2) some web browsers pre-resolve all hostnames found in links on a site for

668 H. Federrath et al.

Fig. 1. Overview of the DNS Anonymity Service

performance reasons. Thus, visiting www.wikipedia.org may result in up to 150
DNS queries, as each country has its own domain (e. g., de.wikipedia.org) linked
from the home page.

Another important characteristic of DNS traffic, which is beneficial for the
efficiency of caching, is that the popularity of hostnames follows a power-law
distribution [19]. A small set of popular hostnames is responsible for the vast
majority of all queries, while the “long tail” of remaining hostnames is queried
rarely. In the study of Jung et al. 68 % of requests affected the 10 % most popular
hosts. We found in our traces that the 10 % most popular hostnames account
for 97.7 % of the requests, and the 10,000 most popular hostnames account for
80.2 % of all requests.

3.2 Overview of the Dataset

We cooperated with the computer center of our university to retain a log of all
DNS queries from the student housing subnet in pseudonymized form. The log
file covers 159 days (from February to July 2010). During that time we observed
9,946,138 distinct hostnames from 4159 users in total. On average there were
2126 users active per day The original log file contains only DNS requests, but
lacks information on the replies. Therefore, we issued recursive DNS queries for
all hostnames to Google’s DNS resolver. We recorded the size of the query and
the reply packets as well as the lookup latency. We also obtained the TTL val-
ues for all hostnames by querying the respective authoritative nameservers. For
CNAME Resource Records we followed the trail until an A record was returned
and used the minimum of all observed TTL values to obtain the effective TTL.
NXDOMAIN replies were handled according to [2].

4 DNS Anonymity Service

The DNS Anonymity Service (cf. Fig. 1) consists of four components, namely a
DNS Client, a Mix Cascade, a Broadcast Mechanism and a DNS Resolver (“Re-
mote Resolver”). The DNS Client is installed on the user’s computer and acts
like a regular DNS resolver towards the users’ operating systems. The Remote
Resolver is shared by the clients and looks up DNS entries with the help of the
existing DNS infrastructure. Both, DNS Client and Remote Resolver employ

Privacy-Preserving DNS 669

caching of replies according to the TTL value to avoid redundant queries. Com-
munication between DNS Client and Remote Resolver is protected by a Mix
Cascade (cf. Section 6).

The reason for this design is twofold: On the one hand, we want the whole
process of resolving to be transparent for the user. This enables users to keep
their usual web browser and additional software. On the other hand, we want
to avoid solutions that would require changes to the DNS infrastructure of the
Internet.

Attacker model. As the network infrastructure of the Internet does not offer
reliable broadcast, we assume that the broadcast messages are distributed con-
sistently to all clients, e. g., by employing Byzantine-fault-tolerant protocols such
as [10, 23].

The attacker model for our mix system resembles the attacker models of Tor
[14] and JonDonym (formerly AN.ON [5]), two deployed mix-based anonymiza-
tion systems for low-latency traffic. Specifically, we designed our system to pro-
tect against three types of local attackers, namely adversaries that control a single
(entry or middle) mix or a single communication line (A1) and adversaries that
control an exit mix (A2) or the DNS resolver (A3).

We explicitly do not consider a global passive adversary (GPA) with access
to all communication lines, as – at least in our web traffic scenario – a GPA can
deanonymize users by eavesdropping on HTTP traffic anyway. Initially we set
out to also include protection against adversaries controlling both, entry and exit
mixes (A4). The implementation presented in this paper does not protect against
such distributed adversaries, though (for reasons explained in Section 6.1). We
also do not consider attacks on the integrity of DNS replies by the exit mix or the
DNS resolver. Such attacks can be detected by the client once DNSSEC is widely
deployed. Finally, we assume that the attacker is computationally bounded and
cannot break the cryptographic primitives used.

5 Broadcasting Popular DNS Records

The power-law characteristics of DNS traffic mentioned in Section 3.1 suggest
that broadcasting the Resource Records of a small fraction of all hostnames
might cover the vast majority of all user traffic. As the replies for the affected
queries would be available to users immediately, this solution promises lower
latencies than existing non-anonymity providing DNS resolvers. From a security
point of view broadcasting is favorable as well since the affected queries can be
answered locally with the Resource Records cached in the DNS Client. As a
result, resolving of the affected queries becomes unobservable.

Despite the low traffic volume of the DNS protocol, it would be very ineffi-
cient and impractical to broadcast all records of the distributed DNS database
to all clients due to the large number of registered domains and the long-tailed

670 H. Federrath et al.

distribution of query names.4 Therefore, we suggest a hybrid strategy. Combining
broadcast for popular hosts with Mixes for the remaining hosts allows us to find
a suitable trade-off between latency and bandwidth usage.

For this purpose, we define a complete ordered list H of all hostnames hi,
sorted by the total number of accesses in descending order. The list is split
after θ elements, resulting in two sublists, TopListθ and LongTailθ, i. e., H =
TopListθ ∪ LongTailθ and H = TopListθ ∩ LongTailθ = /O. h ∈ TopListθ if
rank(h) ≤ θ, otherwise h ∈ LongTailθ.

θ allows us to control the trade-off between latency and bandwidth usage, as
it determines the number of hosts to be broadcast. To choose an adequate θ, the
interdependent factors “cache hit ratio” (i. e., the percentage of requests affected
by broadcast) and “bandwidth requirement” (i. e., the cumulative size of all DNS
entries to be broadcast over time) must be considered. While the cache hit ratio
is determined by the power-law distribution, bandwidth requirement is limited
by the anonymity service’s and clients’ capacity. To improve the cache hit ratio,
further DNS entries must be broadcast, what in turn results in increased band-
width requirements. A more precise analysis of the interdependencies between
both factors is given in Section 7.1.

5.1 Obtaining the Most Popular Hosts

As all the queries for hostnames from the TopList are answered from a local
cache in the DNS Client, they are unobservable for the Anonymity Service.
Consequently, it is challenging for the Anonymity Service to obtain and maintain
the TopList. An obvious approach is to use global web statistics publicly available
from companies like Alexa, Com-Score or NetRatings (Strategy 1). They do not
represent the usage behavior of varying regionally dependent user groups due to
their global focus, though.

A more promising approach is to use the statistics of another DNS resolver
located in the same region as the anonymity service (Strategy 2). Opening the
DNS Anonymity Service’s Remote Resolver for public access (i. e., for users not
interested in anonymization) might provide appropriate statistics as well. Alter-
natively, DNS cache probing [25, 1] can be employed to assemble the TopList.

To fit the TopList as closely as possible to the Anonymity Service’s users,
rescinding the unobservability property of the broadcast mechanism (i. e., which
hosts where queried) is another option (Strategy 3). This should be achieved
without revealing which individual user queried which hostnames, of course.
With [26], [27] and [7] several well known protocols based on secure multiparty
computation techniques exist to solve this challenge, but they suffer from high
communicational and computational overhead.

A more pragmatic solution is client-side logging. Users could record the num-
ber of requests they were able to save for individual hosts due to broadcast of the
TopList. If these user statistics were provided to the DNS Anonymity Service
4 Given an estimate of 205.3 million domain names in Q4/2010 [28] and a size of

50 bytes for each Resource Record, a snapshot of the whole distributed DNS database
would amount to more than 9.5 GB.

Privacy-Preserving DNS 671

in regular intervals (e. g., once a week) via an anonymous channel, the TopList
could be kept up to date. While the anonymous channel (e. g., provided by a
Mix Cascade) could hide which statistics belong to which users, communication
contents (i. e., the statistics themselves) would not be protected, rendering this
approach less secure than the protocols mentioned above. As a result, linking
user statistics could be possible by means of probabilistical profiling techniques
such as [29, 21]. Their impact would be limited though, since linking user statis-
tics with statistics derived from the Mix Cascade used to anonymize hostnames
from the long tail is hardly possible, since TopList ∩ LongTail = /O.

5.2 Realization of the Broadcast Mechanism

The broadcast mechanism consists of two parts: first of all, the DNS Anonymity
Service must refresh all entries in the TopList, since DNS records retrieved
from authoritative nameservers expire after a certain time. To this end we use a
database containing an entry for each hostname that supplies the corresponding
DNS record and a timestamp of its next expiration. A worker thread refreshes
the records just before expiration using the Remote Resolver.

Secondly, the TopList must be distributed to the clients. Immediately
after a client has established a connection to the DNS Anonymity Service, it
receives a complete copy of the TopList. As long as the client is connected to
the service, it receives a steady stream of incremental updates of the TopList.
An update for a record is broadcast only, if the respective record has actually
changed since the last update. Since according to [18] DNS records change rarely
in comparison to their TTL values, the data volume of incremental updates is
supposed to cause only little overhead. Additional reduction in bandwidth can
be achieved with compression as pointed out in [18] as well. The broadcast
mechanism in our prototype was implemented using TCP/IP unicast, i. e., the
DNS Anonymity Service delivers the TopList within a dedicated TCP stream to
each connected client. Efficiency could be increased using IP multicast [4].

6 Anonymizing the Long Tail

As outlined in Section 5 we broadcast only a small number of very popular
domains in the TopList. Thus, clients need a means to resolve hostnames from
the long tail without disclosing them to the resolver. In this paper we study the
effectiveness and performance of Mixes and Range Queries for this purpose.

6.1 Mixes

A Mix is a cryptographic technique to enable untraceable communication intro-
duced by David Chaum [11]. The basic idea is to route messages over several
independent communication proxies (called Mixes), which hide the communi-
cation relationship between senders and receivers. Chaum introduced Mixes for
asynchronous applications like electronic voting and e-mail, and he proposed
to employ a hybrid cryptosystem using asymmetric and symmetric keys on a

672 H. Federrath et al.

per-message basis. Pfitzmann et al. [24] and Goldschlag et al. [17] adapted this
concept for real-time protocols that can handle a continuous stream of data with
low latency. A client establishes a “channel” which can be used to send multiple
consecutive messages through the Mixes. To this end the client establishes shared
keys with every Mix using its asymmetric public key. The actual messages are
encrypted using fast symmetric ciphers. As all messages transferred within the
same channel are linkable, channels have to be switched regularly.

Chaum suggested to repeatedly collect messages until a certain threshold m
is reached and only then deliver (flush) all m messages at once in different order
to hide the true sender among all present senders. As DNS messages are quite
small and most of them are quite similar in size, the application of such an output
strategy seems feasible and also promising as it would allow for the construction
of a mix system resisting end-to-end attacks. Accordingly, we chose to implement
an unbiased, generic mix system instead of building on Tor or JonDonym, both
of which are highly optimized for TCP and HTTP traffic and tailored to their
respective network topologies. A new development in quite early stage is ttdnsd5,
the Tor TCP DNS daemon, which relays DNS queries via TCP to DNS resolvers.
Including the official version, without further tuning, in our evaluation would not
have allowed for a comparison on fair grounds, though. The then current version
0.7 caused high traffic overhead (queries and replies took up a full 512 byte cell
each) and offered poor performance whenever the TCP connection had to be
re-established after periods of inactivity.

Security Analysis. The attackers considered in Section 4 may undermine the
protection of Mixes in various ways. A1 may record message sizes of query and
reply packets to infer the queried hostnames, exploiting characteristic patterns
caused by individual websites. We can thwart this attack by padding packets
to a common length. Learning all queried hostnames and being able to link
consecutive queries within a channel, A2 may carry out a user re-identification
attack and link consecutive channels. We can decrease the probability of its
success by using short-lived channels. While A3 has access to queries, too, he
cannot link queries originating from the same channel. A2 and A3 may detect
the presence of a certain user based on unique, immediately identifying queries,
which is out of the scope of our solution, though. A4 may correlate timings of
incoming and outgoing packets in order to totally deanonymize users. Foiling
this attack requires dummy traffic and synchronous batching [24].

Implementation. Our Mix implementation is written in Java using non-block-
ing I/O operations and the Bouncy Castle crypto provider. In extensive exper-
iments (not reported due to space limitations) we implemented and evaluated
several output strategies, e. g., timed and threshold batches with and without
dummy traffic, but – even for very small batch sizes – we could not achieve
satisfying results in terms of latencies and overhead for any configuration. Thus,
we resorted to forward incoming messages immediately, i. e., our mix system
does not offer protection against A4. The implemented channel setup and replay
5 Code repository at https://gitweb.torproject.org/ioerror/ttdnsd.git

https://gitweb.torproject.org/ioerror/ttdnsd.git

Privacy-Preserving DNS 673

detection resemble JonDonym’s mechanisms. Channels are established with an
asymmetric cryptosystem (RSA 2048 bit keys) and switched every 60 seconds
to limit the information available to A2.

Requests and reply messages have fixed sizes to address A1 and are struc-
tured as follows: (MAC [16 bytes], length [2], fragmentID [1], payload including
padding [s]). For each mix a layer of encryption is applied using a symmetric
cipher (AES, 128 bit keys, OFB mode). To find an acceptable trade-off between
“message overhead” and the “number of fragmented packets”, we analyzed the
distribution (weighted by access frequency) of query and reply sizes. We deter-
mined squery = 57 bytes and sreply = 89 bytes fitting best. Once DNSSEC is
widely deployed, we can change s accordingly.

Our implementation includes several straightforward optimizations, e. g., new
channels are established in the background, Mixes use multiple threads to de-
crypt messages in parallel, and connections between Mixes are multiplexed.

6.2 Range Queries

Various Range Query schemes have been proposed for preserving the privacy of
DNS queries (cf. Section 2). Their benefits include a security model that does
not rely on the participation of other users and a simple topology, which does not
depend on relaying packets over multiple hops. In the following we describe the
Range Query scheme evaluated in this paper. It closely resembles the original
scheme introduced by Zhao et al. and improved upon by Castillo-Perez et al.
In contrast to the PPDNS scheme, which only operates on a DHT-based DNS
infrastructure, it is suitable for the DNS infrastructure deployed today.

Each time a client queries a domain name d, it constructs a query set Q(d),
of size n, comprised of d and n−1 dummy domain names. The client queries the
DNS resolver for each of the n names and receives n replies from the server, dis-
carding all but the desired one. Previous work [30, 31, 8] suggests that the client
should draw the dummies randomly and independently from a large database of
domain names. Assuming that the resolver cannot distinguish the dummies from
the desired queries, its chances to correctly guess the desired query are p = 1/n.
In order to counter intersection attacks mentioned in [9], which can be carried
out by an active adversary to uncover the desired hostname, the client uses the
same set of dummies for retransmissions of failed queries.

Castillo-Perez et al. and Lu and Tsudik have evaluated the performance of
prototypical implementations of their Range Query schemes. Their results are
not applicable to our scenario, though, because they assume that all queries can
be answered by the DNS resolver immediately, neglecting delays introduced by
recursive lookups. In contrast to previous work, we do study the influence of
lookup latencies, which may have a significant impact on the overall latencies of
Range Queries.

Security Analysis. The security of range queries depends on the resolver being
unable to tell apart dummies and actual queries. This assumption is challenged
by two traffic analysis attacks that exploit the characteristics of the DNS traffic

674 H. Federrath et al.

generated by web browsers, and which have not been studied previously. They
allow a malicious resolver to reduce the effective size of the range query whenever
consecutive queries are not independent from each other, e. g., for query bursts.
Firstly, the resolver could mount a semantic intersection attack by searching
for hostnames known to belong to the same site in consecutive ranges. Instead
of randomly and independently sampling dummy hostnames, the ranges must
be constructed using plausible sets of hostnames to foil such attacks. Effective
protection against intersection attacks is a complex issue, which is outside of the
scope of this paper, though, and left open for future work. Instead, we focus on
the second traffic analysis attack: the resolver might be able to mount a timing
attack to identify the dummy replies. If a client issues a range query as an imme-
diate consequence of having processed the desired reply of a previous range query
(e. g., when downloading embedded images served from various web servers), the
secondary query may reach the resolver before all the replies belonging to the
primary query have been received from the upstream DNS servers or sent to the
client. Thus, the resolver may deduce that all the pending replies of the previous
query are likely dummies. An active adversary could also maliciously send out
the replies in a trickle to increase the effectiveness of the attack.

Implementation. For the purpose of evaluation we built a DNS Range Query
client in Java. The client bundles up the Range Query into a single package,
which is compressed using the zlib library, and sends it to the server component
over a TCP socket. The server component resolves all queries in parallel using
the Remote Resolver and returns them to the client. We have implemented
two alternative strategies that aim to foil the timing attack mentioned above.
With the StallDesiredReply strategy the client waits until all replies of a range
query have been received and only then returns the desired answer to the caller.
The client can also employ the DelayConsecutiveQuery strategy, i. e., return
the desired reply to the caller immediately once it is available, but hold back
consecutive range queries issued before the still-pending query has been fully
processed. We will evaluate the two strategies in Section 7.3.

7 Evaluation

7.1 Broadcasting the TopList

In this section we evaluate the broadcast mechanism regarding cache hit ratio
and required bandwidth, taking into consideration the interdependencies be-
tween both factors as outlined in Section 5. Our main goal is to quantify the
trade-off between latency and bandwidth usage in order to choose an adequate
θ. For our simulations we selected a 24h-sample from our dataset. As we focus
on DNS queries issued by web browsers in this paper, we selected only type A
queries (2,591,240 requests, i. e., 95.7 % of the sample).

Cache Hit Ratio. In a first experiment we examine the suitability of differ-
ent sources the TopList can be obtained from. We use three different TopLists

Privacy-Preserving DNS 675

matching the scenarios described in Section 5. For evaluating Strategy 1 (the
use of global web statistics) we derived domain names from the Alexa top one
million hostlist. To mitigate the problems in terms of precision with this list, we
retrieved the contained web sites using an automated Firefox script. The occur-
ing DNS requests were recorded and combined to a new list with a cut-off after
θ elements (Global TopList). To analyze the second strategy we use the most
popular hosts obtained from a proxy server used by 50 German schools (Same
Region TopList). For the third strategy we have determined the most popu-
lar hosts from our DNS dataset to simulate a top list matching user behavior
perfectly (Optimal TopList).

In the following we discuss the results obtained through our simulations with
θ = 10000. As expected the highest hit rate (83.94 %) was achieved with the Op-
timal TopList. Quite surprisingly the Same Region TopList provides comparable
results (68.72 %). With only 41.32 % the Global TopList performs worst, as ex-
pected. Surprisingly, hit rates can be further improved using a client-side cache,
which saves 15.72 % of requests. Apparently the caching strategies of user-side
stub resolvers fail to exploit the full potential of caching.

In a second experiment we analyze the influence of θ on the cache hit ratio.
We used the Optimal TopList with varying values for θ between 100 and 100,000.
Hit rates from client-side caches were included in the simulation. With a TopList
of 100 hosts a hit ratio of 40.02 % was achieved. For θ = 1000 and θ = 10000
the TopList can satisfy 63.94 % and 83.94 % of requests, respectively. Raising θ
above 10,000 leads to minor improvements only. At θ = 100000 a hit ratio of
94.54 % was achieved.

Required Bandwidth. We implemented the broadcast mechanism to measure
its bandwidth requirements for varying values of θ using our Optimal TopList.
Therefore, we set up a local instance of the BIND nameserver. We configured
BIND to resemble the behavior of typical third-party resolvers by enabling the
minimal-responses configuration directive. For experimental purposes we dis-
abled BIND’s internal cache and configured it to forward all queries immediately
to the authoritative nameservers.

We analyze the traffic requirements separately from the perspective of the
DNS Anonymity Service, which must continuously refresh its database, and from
the perspective of a client of the service.

Traffic for refreshing the TopList. The traffic volume caused by refreshing the
TopList database amounts to the traffic caused by DNS requests and replies
issued by the DNS Anonymity Service whenever an entry expires. The traffic
volume is independent of the number of clients. The daily traffic and the average
number of queries per second are shown in Fig. 2 for varying values of θ. The
figure indicates that the cost per additional hostname is constant up to θ = 2000
and decreases slightly from there onwards. The daily traffic volume required for
refreshing a TopList with θ = 10000 is approximately 352.37 MB. On average the
DNS Anonymity Service will have to issue 38.89 queries per second to keep all
hostnames up to date. The majority of queries (and therefore traffic) pertains to a

676 H. Federrath et al.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000
 0

 5

 10

 15

 20

 25

 30

 35

 40

T
ra

ff
ic

 V
o
lu

m
e
 [
M

iB
]

Q
u
e
ri
e
s
 p

e
r

S
e
c
o
n
d

Size of TopList θ

Traffic
Queries

Fig. 2. Refreshing the TopList

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2000 4000 6000 8000 10000

T
ra

ff
ic

 f
o
r

in
it
ia

l
d
o
w

n
lo

a
d
 [
K

iB
]

T
ra

ff
ic

 f
o
r

in
c
r.

 u
p
d
a
te

s
 [
K

iB
/h

]

Size of TopList θ

Initial Download
Incremental Updates

Fig. 3. Distribution to Clients

small fraction of hosts with TTL=60 (1,733 of 10,000 hostnames). In future work
we will study optimizations such as enforcing a minimum TTL>60 seconds for all
broadcast hostnames and advanced caching methods for round robin DNS replies
that are used by many popular web sites for load balancing. Advanced schemes,
which make authoritative servers push revocations or update notifications to
resolvers, are also promising.

Traffic for distributing the TopList to the clients. The distribution of the TopList
database to clients consists of two parts. Whenever a client connects to the
DNS Anonymity Service, it receives a full copy of the TopList. After that it
receives a steady stream of incremental updates. Using our measurement setup
we determined the traffic volume for the initial download of the TopList and
for receiving the incremental updates. The results are shown in Fig. 3. The
initial download of the TopList amounts to 850 KB for θ = 10000. On average
the incremental updates cost 2.58 MB per hour and client (62.02 MB per day
and client), which can be streamed with a bandwidth of less than 0.8 KB/s to
each client. For 2000 connected clients, broadcasting the TopList consumes a
bandwidth of 1.44 MB/s.

Further measurements indicate that the amount of traffic can be reduced con-
siderably by compression. Using the zlib library, we reduced the initial download
size on average by almost two thirds (290 KB for θ = 10000), while the volume
of the incremental updates was cut by roughly 40 % (to 1.5 MB/h). This finding
matches the results in [18].

7.2 Trace-Driven Simulations

We evaluate our implementations of Mixes and Range Queries using trace-driven
simulations. This approach allows us to study the effectiveness and performance
under different loads induced by real users in a controlled environment. In each
experiment we replay actual traffic from the log files in real-time to obtain
statistics regarding bandwidth and latency.

Privacy-Preserving DNS 677

In a pretest we found that experimental results stabilize already after a very
short time. Thus, we randomly selected 10 chunks from the log file, each con-
taining the traffic of a continuous two-hour period. For ease of exposition we
will only provide results for one sample. We repeated the experiments with the
remaining samples and validated the results presented in this section. The se-
lected sample contains the DNS queries of 2082 users issued on April 20th, 2010
between 7.00 pm and 9.00 pm. Again, we selected queries of type A only. The
resulting log file contains 465,435 requests for 193,133 distinct hostnames.

To allow for a fine-grained analysis of the latencies introduced by our system,
we decided to start out neglecting network latencies and congestion, as both are
known to dominate overall latencies in practical mix systems. Therefore, the first
set of experiments was carried out in a local 1000 Mbit network (cf. Section 7.3).
We dedicated a second set of experiments to the analysis of network latencies
and congestion to study the expected real-world performance (cf. Section 7.4).

For both sets of experiments, we have implemented a DNS traffic simulator,
which instrumented a number of DNS client processes (one per simulated user)
according to the recorded traffic from the log file. The traffic simulator and the
DNS client processes were running on a single machine. The Remote Resolver
artificially delayed queries according to the lookup latency τl (see below) recorded
in our dataset. For the evaluation of the Mix system we set up three Mix nodes,
a common configuration also used by JonDonym and Tor, on three dedicated
machines with a single DNS resolver on the last machine. Range Queries were
evaluated using a DNS resolver with a thread pool of 1,500 workers running on
a single machine. All machines were equipped with an Intel Core Duo 2.8 GHz
CPU and 4 GB of RAM.

7.3 Performance Comparison of Mixes and Range Queries

In the following we provide the results of the trace-driven simulations for various
configurations (first set of experiments). Client-side caches were enabled.

Reported Latencies. We model the user-perceived latency as τ = τc + τp + τl,
i. e., it consists of the client network latency τc between the user’s machine and
the Anonymity Service, the processing latency τp within the Anonymity Service
and the lookup latency τl for resolving the query at the Remote Resolver. In our
experiments we determine the user-perceived latency by measuring the differ-
ence between the time when the client sends the query and the time it receives the
corresponding reply. The reported latency values refer only to the queries that
are relayed to the server component, i. e., local cache hits and requests for host-
names contained in the TopList are not included for clarity reasons. Including
them would bring down the reported figures to 0 for most experiments. In fact
user-perceived latency is 0 seconds for the majority of queries, if the TopList is
enabled, of course (cf. Section 7.1).

Mixes. The results for four configurations using Mixes are shown in Fig. 4. Each
boxplot shows the minimum latency, the percentile for 25 % the median and

678 H. Federrath et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

Original
all requests

Mixes
all req.

Mixes
LongTail only

Q
u
e
ry

 L
a
te

n
c
y
 [
m

s
e
c
]

Cache disabled
Cache enabled

Fig. 4. Latency for Mixes

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 50 100

Q
u
e
ry

 L
a
te

n
c
y
 [
m

s
e
c
]

Size of Range

Cache enabled
Cache disabled

Fig. 5. Latency for Range Queries

the percentiles for 75 % and 90 %. The baseline configuration (“Original, cache
disabled”) shows the user-perceived latency, i. e., the distribution of τl, without
our techniques. The median is 9.2 ms, and the 90 % percentile is 46.2 ms.

The configuration “Mixes all requests” consists of Mixes only (no TopList
broadcasting, no caching on the Remote Resolver). The median increases slightly
to 10.9 ms, and 90 % of the queries were answered within 52 ms.

Enabling the shared cache on the Remote Resolver (“Cache enabled”) brings
down latencies significantly: 75 % of the queries are answered within 10 ms.
About 60 % of the requests scored cache hits in the Remote Resolver, which
matches the findings in [19]. We found the majority of cache hits to be scored
by hosts contained in the TopList. Therefore, cache effectiveness is expected to
decrease once the TopList is enabled.

The configuration “Mixes LongTail only” shows the latencies observed for the
hostnames contained in the LongTail set, i. e., for the queries remaining if the
client has access to a TopList (θ = 10000). Latencies are higher in this config-
uration as the average latency for hostnames from the TopList is considerably
smaller (35.25 ms) than for all hostnames on overall (79.74 ms). As expected
effectiveness of the cache on the Remote Resolver is limited in this scenario.

The results show that the overhead introduced by the cryptographic opera-
tions carried out by Mixes is small. User-perceived latencies will mainly depend
on network latencies between clients and Mixes as well as on congestion effects.
We study their influence in Section 7.4.

Range Queries. We also measured latency of Range Queries with range sizes
n = 10, 50, 100 in our environment. Again, we neglect network delays for now.

The DNS Client creates ranges by randomly drawing dummies without re-
placement from the set of 193,133 hostnames contained in our dataset. This
limitation is artificially introduced by the nature of our trace-driven simulation:
we need to know τl for every hostname – and also for all possible dummy host-
names. In reality the dummies should be drawn from a much larger set, ideally
from the set of all currently active hostnames on the Internet.

Privacy-Preserving DNS 679

The overhead introduced by our Range Query implementation is negligible
for isolated queries: we observed that τl of the desired query remained virtually
unaffected for range sizes between 10 and 1000. In the following, we focus our
analysis on the performance impact of the two strategies to counter the timing
attack described in Section 6.2. Fig. 5 shows the perceived latency with the
optimal TopList (θ = 10000) and the StallDesiredReply strategy enabled. We
observe that latencies are much higher than τl of the desired replies. Even for
n = 10 50 % of the requests take longer than 206 ms. For n = 50 and n = 100 the
median is well above 500 ms and 1200 ms, respectively. Not a single Range Query
could be fully answered from the cache in our experiments. The performance
impact of this strategy is due to holding back the desired reply until the slowest
(dummy) reply has been received by the client.

Chances of at least one slow query to be included are very high when they are
drawn randomly from the whole population. Given a population of N hostnames
containing αN “slow hostnames” with τl > T , the probability that a randomly
assembled range query of size n does contain at least one slow hostname can be
obtained using the hypergeometric distribution:

Pn
T = P (X > 0) = 1 − P (X = 0) = 1 −

(
αN
0

)(
(1−α)N

n

)(
N
n

) = 1 −
(
(1−α)N

n

)(
N
n

)
For T = 200ms we obtained α = 7 %, i. e., P 10

200ms ≈ 0.516 and P 100
200ms ≈ 0.999,

which explains the poor performance of the StallDesiredReply strategy. We ex-
pected the DelayConsecutiveQuery strategy, which achieves low latencies for
singular queries at the cost of only delaying closely following queries, to achieve
lower latencies on overall. The results indicate otherwise, though: even for small
ranges (n = 10, cache on Remote Resolver disabled) the median is already 407 ms
(90 % percentile: 10.45 s). Further analysis suggests that about 50 % of queries
have to wait for their predecessors. In conclusion we find that, while a basic range
query scheme may be fast, obscuring timing patterns of web browsers comes at
a considerable cost.

7.4 Real World Latencies

In this section we present the results of the second set of experiments that aim
at assessing the real world performance of our system by taking into account
network latencies. We extend the experimental setup of the previous section by
deploying WANem6 delay boxes between network nodes, which are capable of
simulating network latencies and congestion. To parameterize the delay boxes
realistically we have cooperated with the JonDonym project, which kindly pro-
vided us with common network parameters derived from mixes actually deployed
in their cascades across Europe (RTT between mixes: 20 ms; bandwidth of mixes:
100 Mbit). For client delay boxes we used a latency of 40 ms, which reflects the
widespread RTT of about 80 ms for common ADSL connections.

6 http://wanem.sourceforge.net/

680 H. Federrath et al.

Table 1. Effects of network delays and congestion on performance of Mix Cascade.
The results for our trace show user-perceived latency (τc + τp + τl), while the results
for various synthetic loads with the given constant query rate include τc + τp only.

percentile our trace synthetic 100 500 1000 2000 3000 4000 5000
50% 171 139 139 141 245 342 527 1389
90% 274 140 144 168 341 580 1544 7783

The resulting user-perceived latencies (τ) are shown in Table 1 for our trace-
driven simulations with 2082 users (107 queries/s on average): in comparison to
the measurements without delay boxes latencies for the 50 % (171 ms) and 75 %
(274 ms) percentiles increase by 160 ms and 222 ms, respectively. Given that the
sum of simulated network latencies is 120 ms, congestion effects are barely visible
for this load. Total latencies are still low enough for practical usage.

To study the effects of congestion we induced synthetic traffic, i. e., we sent a
constant number of queries per second (qps) to the cascade and measured laten-
cies for different query rates (cf. Table 1). Until 1000 qps, little to no congestion
is visible. Between 1000 qps and 3000 qps latencies start to increase noticeably
with the load, although some users may find them still acceptable for practi-
cal usage. Above 3000 qps, effects of congestion are apparently dominating the
performance of the cascade: latencies become unacceptably high.

A straightforward and scalable solution to prevent congestion in practice
is to deploy multiple redundant mix cascades. As this would lead to splitted
anonymity groups and may have a negative impact on privacy, the adoption
of Free Routes or intermediate solutions like expander graphs [13] or stratified
networks [16] would be worth consideration. As our current implementation is
capable of handling a rather high number of participants already, we leave the
study of further topologies to future work.

7.5 Traffic Overhead

We measure the traffic overhead by comparing the size of the original query and
reply packets in our DNS dataset (“Original”) with the traffic volume for Mixes
and Range Queries. The resulting overhead is shown in Table 2. Due to message
padding and multiple layers of encryption our mix system increases traffic by
99 %. This is considerably less than the overhead for Range Queries.

Interestingly, the overhead for Range Queries is not as high as expected. With-
out compression, traffic increases by only 583 % instead of the expected 900 %
for n = 10 (not shown in table). This can be explained by the fact that dum-
mies are drawn uniformly from the set of all hostnames. While the (by access
frequency) weighted average size of the DNS replies issued by our users is 102
bytes, the average unweighted reply size is only 72 bytes. Even with compression
the overhead is still 314 % for n = 10, though.

The table also indicates the traffic savings gained by the TopList for var-
ious values of θ. The columns labelled with “A” depict the overhead when
traffic needed for refreshing the TopList is neglected, while the “B”-columns

Privacy-Preserving DNS 681

Table 2. Traffic overhead relative to the original traffic volume for the two hour trace
(compression enabled for Range Queries and refreshing the TopList)

Original Mix RQ 10 RQ 50 RQ 100
A B A B A B A B A B

No TopList 1 − 1.99 − 4.14 − 14.05 − 23.53 −
θ = 10000 0.15 105.5 0.32 105.7 0.80 106.1 2.81 108.1 5.08 110.4
θ = 1000 0.36 23.34 0.55 23.53 1.81 24.79 6.67 29.66 12.42 35.40
θ = 100 0.63 4.10 0.83 4.30 3.01 6.48 11.10 14.57 20.66 24.13

incorporate this traffic. It is apparent from the numbers, that the overhead
caused by refreshing the TopList significantly outweighs the remainder. We want
to stress that the absolute traffic volume is still manageable, though: on aver-
age each user transferred 3245 KB (including 3096 KB for refreshing the TopList
with θ = 10000) in the Mix configuration within the two hours of simulation.

8 Conclusion

We proposed a DNS Anonymity Service, which combines broadcast with Mixes
in order to trade in traffic volume for low latencies, which are critical for DNS.
Our proposal exploits the power-law characteristics of DNS traffic to offer im-
provements on both, privacy and performance, at the same time. We found that
broadcasting a small fraction of all hostnames enables unobservability for a large
share of user traffic. Moreover, the broadcasted DNS responses are available to
users immediately, i. e., faster than with common non-anonymous third-party
DNS resolvers. This property of the DNS Anonymity Service may serve as an
effective incentive to foster its adoption. Our broadcast component can also be
used by conventional DNS providers, who want to offer superior performance.

Moreover, we have evaluated the applicability of Range Queries and Mixes
for anonymizing the remaining hostnames with real traffic traces. We found that
Range Queries offer poor performance, if dummy hosts are randomly drawn
from a large set of hostnames and protection against timing attacks is desired,
while Mixes do not introduce considerable delays apart from network latencies.
Regarding privacy, a definitive comparison of the two systems is difficult to
obtain, due to their different topology and techniques. The security of Mixes
and their limitations is well-understood, enabling us to build a practical low-
latency system. In light of attacks that exploit semantic interdependencies of
queries, the security of Range Queries for web traffic seems much more fragile.
It depends on a good source for dummy hostnames as well as a secure range
construction scheme, both of which being fertile areas for future work.

Acknowledgements. We thank the anonymous reviewers, Jaideep Vaidya and
Benedikt Westermann for their critical feedback. This work has been partially
sponsored and supported by the European Regional Development Fund (ERDF).

682 H. Federrath et al.

References

[1] Akcan, H., Suel, T., Brönnimann, H.: Geographic Web Usage Estimation By Mon-
itoring DNS Caches. In: Proceedings of the First International Workshop on Lo-
cation and the Web, LOCWEB 2008, vol. 300, pp. 85–92. ACM, New York (2008)

[2] Andrews, M.: Negative Caching of DNS Queries (DNS NCACHE). RFC 2308
(1998)

[3] Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Intro-
duction and Requirements. RFC 4033 (2005)

[4] Armstrong, S., Freier, A., Marzullo, K.: Multicast Transport Protocol. RFC 1301
(1992)

[5] Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: A System for Anonymous
and Unobservable Internet Access. In: Federrath, H. (ed.) Designing Privacy En-
hancing Technologies. LNCS, vol. 2009, pp. 115–129. Springer, Heidelberg (2001)

[6] Brandhorst, C., Pras, A.: DNS: A Statistical Analysis of Name Server Traffic at
Local Network-to-Internet Connections. In: EUNICE 2005: Networks and Appli-
cations Towards a Ubiquitously Connected World, pp. 255–270 (2006)

[7] Burkhart, M., Dimitropoulos, X.: Fast Privacy–Preserving Top–k Queries using
Secret Sharing. In: Proceedings of 19th International Conference on Computer
Communications and Networks (ICCCN), pp. 1–7. IEEE, Los Alamitos (2010)

[8] Castillo-Perez, S., García-Alfaro, J.: Anonymous Resolution of DNS Queries. In:
Chung, S. (ed.) OTM 2008, Part II. LNCS, vol. 5332, pp. 987–1000. Springer,
Heidelberg (2008)

[9] Castillo-Perez, S., García-Alfaro, J.: Evaluation of Two Privacy–Preserving Pro-
tocols for the DNS. In: Proceedings of the Sixth International Conference on In-
formation Technology: New Generations, pp. 411–416. IEEE Computer Society
Press, Washington, DC, USA (2009)

[10] Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI 1999,
pp. 173–186. USENIX Association, Berkeley (1999)

[11] Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2), 84–90 (1981)

[12] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval.
In: Proceedings of the 36th Annual Symposium on Foundations of Computer Sci-
ence, Milwaukee, Wisconsin, pp. 41–50. IEEE Computer Society, Los Alamitos
(1995)

[13] Danezis, G.: Mix-Networks with Restricted Routes. In: Dingledine, R. (ed.) PET
2003. LNCS, vol. 2760, pp. 1–17. Springer, Heidelberg (2003)

[14] Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The Second–Generation
Onion Router. In: Proceedings of the 13th USENIX Security Symposium, pp.
303–320. USENIX, Berkeley (2004)

[15] Dingledine, R., Serjantov, A., Syverson, P.F.: Blending Different Latency Traffic
with Alpha-mixing. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258,
pp. 245–257. Springer, Heidelberg (2006)

[16] Dingledine, R., Shmatikov, V., Syverson, P.: Synchronous batching: From cascades
to free routes. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424,
pp. 186–206. Springer, Heidelberg (2005)

[17] Goldschlag, D., Reed, M., Syverson, P.: Onion routing. Communications of the
ACM 42(2), 39–41 (1999)

Privacy-Preserving DNS 683

[18] Handley, M., Greenhalgh, A.: The case for pushing DNS. In: ACM Workshop on
Hot Topics in Networking (Hotnets) (2005)

[19] Jung, J., Sit, E., Balakrishnan, H., Morris, R.: DNS Performance and the Effective-
ness of Caching. IEEE/ACM Transactions on Networking (TON) 10(5), 589–603
(2002)

[20] Köpsell, S.: Low Latency Anonymous Communication – How Long Are Users
Willing to Wait? In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 221–
237. Springer, Heidelberg (2006)

[21] Kumpošt, M., Matyáš, V.: User Profiling and Re-identification: Case of University-
Wide Network Analysis. In: Fischer-Hübner, S., Lambrinoudakis, C., Pernul, G.
(eds.) TrustBus 2009. LNCS, vol. 5695, pp. 1–10. Springer, Heidelberg (2009)

[22] Lu, Y., Tsudik, G.: Towards Plugging Privacy Leaks in the Domain Name System.
In: Proceedings of the Tenth International Conference on Peer–to–Peer Computing
(P2P), pp. 1–10. IEEE, Los Alamitos (2010)

[23] Pease, M., Shostak, R., Lamport, L.: Reaching Agreement in the Presence of
Faults. J. ACM 27, 228–234 (1980)

[24] Pfitzmann, A., Pfitzmann, B., Waidner, M.: ISDN-MIXes: Untraceable Communi-
cation with Very Small Bandwidth Overhead. In: Proc. GI/ITG-Conference Kom-
munikation in Verteilten Systemen (Communication in Distributed Systems), pp.
451–463 (1991)

[25] Rajab, M.A., Monrose, F., Provos, N.: Peeking Through the Cloud: Client Density
Estimation via DNS Cache Probing. ACM Trans. Internet Technol. 10, 9:1–9:21
(2010)

[26] Vaidya, J., Clifton, C.: Privacy–Preserving Top–k Queries. In: Proceedings of the
21st International Conference on Data Engineering (ICDE), pp. 545–546. IEEE
Computer Society, Los Alamitos (2005)

[27] Vaidya, J., Clifton, C.: Privacy–Preserving Kth Element Score over Vertically
Partitioned Data. IEEE Trans. Knowl. Data Eng. 21(2), 253–258 (2009)

[28] Verisign Inc.: The Domain Name Industry Brief (February 2011),
http://verisigninc.com/assets/domain-name-report-feb-2011.pdf

[29] Yang, Y.C.: Web user behavioral profiling for user identification. Decision Support
Systems 49, 261–271 (2010)

[30] Zhao, F., Hori, Y., Sakurai, K.: Analysis of Privacy Disclosure in DNS Query. In:
Proceedings of the 2007 International Conference on Multimedia and Ubiquitous
Engineering (MUE 2007), pp. 952–957. IEEE Computer Society, Los Alamitos
(2007)

[31] Zhao, F., Hori, Y., Sakurai, K.: Two–Servers PIR Based DNS Query Scheme with
Privacy–Preserving. In: Proceedings of the The 2007 International Conference
on Intelligent Pervasive Computing, pp. 299–302. IEEE Computer Society, Los
Alamitos (2007)

http://verisigninc.com/assets/domain-name-report-feb-2011.pdf

Author Index

Akhawe, Devdatta 150
Albanese, Massimiliano 416

Barker, Steve 262
Bernhard, David 335
Bilogrevic, Igor 548
Birgisson, Arnar 372
Blanton, Marina 190
Bleikertz, Sören 392
Bonatti, Piero A. 472
Boreale, Michele 588
Brumley, Billy Bob 355
Bursztein, Elie 133

Cao, Zhenfu 278
Capkun, Srdjan 40
Carle, Georg 489
Chen, Yangyi 607
Cheng, Yueqiang 227
Chrysanthis, Panos K. 628
Cortier, Véronique 335
Crampton, Jason 245
Cremers, Cas 315

Danev, Boris 40
De Capitani di Vimercati, Sabrina 648
Deng, Robert H. 227
De Ryck, Philippe 100
Desmet, Lieven 100
Ding, Xuhua 227

Eriksson, Konrad 392
Evans, David 60

Faella, Marco 472
Farnan, Nicholas L. 628
Federrath, Hannes 665
Finifter, Matthew 150
Foresti, Sara 648
Frankl, Phyllis 80
Fuchs, Karl-Peter 665

Galdi, Clemente 472
Gao, Debin 210
Gasti, Paolo 190

Genovese, Valerio 262
Ghaderi, Majid 1
Gourdin, Baptiste 133
Groß, Thomas 392

Hauck, Peter 489
Hermans, Jens 568
Herrmann, Dominik 665
Herzberg, Amir 452
Holz, Ralph 489
Huang, Qiong 278
Hubaux, Jean-Pierre 548

Jadliwala, Murtuza 548
Jajodia, Sushil 416
Jia, Chunfu 210
Joosen, Wouter 100

Kesdogan, Dogan 508
Kobsa, Alfred 434
Kreitz, Gunnar 117

Lee, Adam J. 628
Li, Yong Fuga 607
Liu, Zhen 278

Margulies, Ronen 452
Miller, Barton P. 172
Ming, Jiang 210
Mitchell, John C. 133
Mónica, Diogo 21
Mui, Raymond 80

Nithyanand, Rishab 434

Pampaloni, Francesca 588
Paolini, Michela 588
Paraboschi, Stefano 648
Pashalidis, Andreas 568
Pelosi, Gerardo 648
Peng, Bo 607
Pereira, Olivier 335
Pham, Dang Vinh 508
Piessens, Frank 100
Piosecny, Christopher 665
Pöpper, Christina 40

686 Author Index

Preneel, Bart 568
Pugliese, Andrea 416

Qiao, Daji 528

Ribeiro, Carlos 21
Rosenblum, Nathan 172

Sabelfeld, Andrei 372
Safa, Nashad A. 1
Safavi-Naini, Reihaneh 1
Samarati, Pierangela 648
Sarkar, Saikat 1
Sauro, Luigi 472
Saxena, Prateek 150
Schröder, Dominique 298
Schunter, Matthias 392
Shin, Richard 150
Smyth, Ben 335
Song, Dawn 150
Subrahmanian, V.S. 416

Tang, Haixu 607
Tippenhauer, Nils Ole 40

Tsudik, Gene 434
Tuveri, Nicola 355

Ulrich, Alexander 489
Uzun, Ersin 434

Vercauteren, Frederik 568

Wang, XiaoFeng 607
Wang, Zhi 210
Warinschi, Bogdan 335
Weinberger, Joel 150
Wong, Duncan S. 278
Wright, Joss 508

Yang, Ka 528
Yu, Ting 628
Yuen, Tsz Hon 278

Zhang, Jinsheng 528
Zhang, Wensheng 528
Zhou, Xiaoyong 607
Zhou, Yuchen 60
Zhu, Xiaojin 172

	6879
	Preface
	Organization
	Table of Contents
	Wireless Security
	Secure Localization Using Dynamic Verifiers
	Introduction
	Related Work
	Model and Background
	Time-of-Flight for Positioning
	Model
	Notation

	The Proposed System
	Algorithm Description
	Reliability of Verification Decisions

	Security Analysis
	Security against Collusion Attacks

	Simulation Results
	Conclusion
	References
	Hybrid Approach with Hidden-Base Stations
	Impossibility of a Secure Protocol with Less Honest Users

	WiFiHop - Mitigating the Evil Twin Attack through Multi-hop Detection
	Introduction
	Related Work
	Problem Statement
	Detecting the Evil Twin AP
	Open WiFiHop
	Covert WiFiHop

	Implementation
	Results
	Conclusions
	References

	Investigation of Signal and Message Manipulations on the Wireless Channel
	Introduction
	Related Work and Problem Statement
	Related Work on Signal Manipulations
	Problem Statement

	Classifying Wireless Attacks
	Signal Manipulations and Effects on Messages
	Model of Adversarial Interference
	Classification

	Theoretical Analysis of Symbol Flipping
	Simulation and Experimental Evaluation
	Simulation Setup and Attacker Model
	Simulated Modification of Modulated Signals
	Simulated Modification of Recorded Signals
	Experimental Evaluation of Signal Annihilation
	Summary of Results

	Implications
	Conclusion
	References
	Integration into the SINR Model
	Simulation Setup
	Experimental Setup

	Web Security I
	Protecting Private Web Content from Embedded Scripts
	Introduction
	Protecting Private Data
	Execution Isolation
	DOM Node Access Control

	Implementation
	Script Execution Isolation
	DOM Access Control
	Taint-Tracking
	Dynamic Scripting

	Automatic Policy Generation
	Evaluation
	Security
	Compatibility
	Policy Learning

	Related Work
	Availability
	References
	Automatic Policy Generation Results

	Preventing Web Application Injections with Complementary Character Coding
	Introduction
	Complementary Character Coding
	Complementary ASCII
	Value Comparison and Full Comparison
	Complementary Unicode

	Preventing Injections with Complementary Coding
	Dynamic Tainting with Complementary Coding
	Complement Aware Components
	Architecture, Backwards Compatibility and Migration Strategy
	Limitations

	Example Revisited with CAC
	Implementation
	Evaluation
	Related Work
	Conclusion and Future Work
	References

	Automatic and Precise Client-Side Protection against CSRF Attacks
	Introduction
	Cross-Origin HTTP Requests
	Attack Scenarios
	Non-malicious Cross-Origin Scenarios

	Automatic and Precise Request Stripping
	Formal Modeling and Checking
	Modeling Our Countermeasure
	Using Model Checking for Security and Functionality

	Implementation
	Evaluating the Trusted-Delegation Assumption
	Related Work
	Conclusion
	References

	Web Security II
	Timing Is Everything: The Importance of History Detection
	Introduction
	Attacker and Victim Model
	Our Contribution
	Related Works

	Redirecting the Victim's Tab
	Working around Opera's Navigation Restrictions
	Page Modification by a Network Attacker

	Timing the Attack
	CSS History Detection
	Using History Detection to Learn When the Victim Reaches a Page
	Limitations of CSS History Detection
	Network Based Timing

	Impact and Feasibility of Flow Stealing
	Browser Features
	Experiences with a Proof-of-Concept

	Proposed Counter-Measures
	Closing the CSS History Detection Hole
	Payment Provider Pages
	Limiting Window Manipulation via Window Handles
	Traditional CSRF Defenses Do Not Prevent Flow Stealing

	Conclusion and Future Work
	References

	Reclaiming the Blogosphere, TalkBack: A Secure LinkBack Protocol for Weblogs
	Introduction
	Background
	Threat Analysis
	Overview
	Blog Registration
	Auto-Discovery
	Protocol
	Optimizations
	Performance
	Additional Relevant work
	Conclusion
	References

	A Systematic Analysis of XSS Sanitization in Web Application Frameworks
	Introduction
	A Systematic Browser Model for XSS
	Problem Formulation: XSS Explained
	Subtleties and Challenges in XSS Sanitization
	The Role of Web Frameworks
	Analysis Objectives

	Analysis of Web Frameworks and Applications
	Auto-Sanitization: Features and Pitfalls
	Security of Client-Side Code Evaluation
	Context Expressiveness
	Enabling Reasoning of Sanitizer Correctness

	Related Work
	Conclusions and Future Work
	References
	Transductions in the Browser

	Forensics, Biometrics and Software Protection
	Who Wrote This Code? Identifying the Authors of Program Binaries
	Introduction
	Overview

	Binary Code Representation
	Idioms
	Graphlets
	Supergraphlets
	Call Graphlets
	N-grams and External Interaction

	Author Classification
	Author Clustering
	Evaluation
	Methodology
	Classification
	Clustering

	Discussion
	Related Work
	Conclusion
	References
	Stylistic Feature Examples

	Secure and Efficient Protocols for Iris and Fingerprint Identification
	Introduction
	Description of Computation
	Preliminaries
	Secure Iris Identification
	Base Protocol
	Optimizations
	Implementation and Performance

	Secure Fingerprint Identification
	Conclusions
	References
	Security Analysis of the Iris Protocol

	Linear Obfuscation to Combat Symbolic Execution
	Introduction
	Background and Related Work
	Symbolic Execution and Its Applications
	Limitation of Symbolic Execution in Unrolling Loops
	Binary Obfuscation
	Unsolved Conjectures

	Overview of Our Obfuscator
	Implementation
	Adding a Spurious Variable
	Choosing an Unsolved Conjecture
	Inserting Trigger-Based Malicious Code into the Unsolved Conjecture

	Security Evaluation
	Strategy Used by Program Analyzers
	Probability of Finding the Correct Trigger Condition
	Choice of Initial Input

	Limitations
	Conclusion
	References
	Contineous Scripts of the Program Analyzer When x = 1158 and x = 1034
	Distribution of Initial Inputs for Different Trigger Input t

	DriverGuard: A Fine-Grained Protection on I/O Flows
	Introduction
	Related Work
	Design of DriverGuard
	Trust Model
	Design Rationale
	Overview
	Access Control over Critical Regions
	Cryptographic Components
	PCB Execution Escorting

	Implementation
	Driver Context Initialization
	Checkpoint Deployment
	PCB Execution Escorting
	Region Access Control
	Device Control Protection

	Evaluation
	Usage of PCB
	Performance Evaluation

	Conclusion
	References

	Access Control
	Time-Storage Trade-Offs for Cryptographically-Enforced Access Control
	Introduction
	Graph-Based Authorization Policies
	Derivation-Storage Trade-Offs
	Correctness and Security
	Access Control for Scalable Multimedia Formats
	Temporal Authorization Policies

	Basic Constructions for Dm
	Binary Decomposition
	Linear Decomposition

	Additive Decomposition
	Comparison with Related Work
	Concluding Remarks
	References

	Socially Constructed Trust for Distributed Authorization
	Introduction
	A Community Security Language
	Distributed Architecture for Policy Specification
	Oracle Policy Specification
	Acceptor Policy Specification
	Practical Issues
	Related Work
	Conclusions and Further Work
	References

	Fully Secure Multi-authority Ciphertext-Policy Attribute-Based Encryption without Random Oracles
	Introduction
	Our Results
	System Architecture
	Related Work

	Definition and Security Model
	Definition
	Security Model

	Background
	Access Policy
	Number-Theoretic Assumptions

	Our Multi-authority CP-ABE
	Outline
	Construction

	Extensions
	Large Universe Construction
	Improving Performance and Robustness

	Comparison
	Conclusion
	References
	Security Analysis

	Cryptography and Protocol Analysis
	How to Aggregate the CL Signature Scheme
	Introduction
	Preliminaries
	Bilinear Groups
	Signature Scheme
	The CL Signature Scheme

	Sequential Aggregate Signature
	Definition
	Security Model
	Intuition for the Construction
	The Construction
	Proof of Security

	References

	Key Exchange in IPsec Revisited: Formal Analysis of IKEv1 and IKEv2
	Introduction
	Background on IKE
	IKE Version 1 (IKEv1)
	IKE Version 2 (IKEv2)
	Intended Security Properties
	Previous Analyses of IKE

	Formal Analysis of IKEv1 and IKEv2
	Results
	Automatically Rediscovered Weaknesses
	Previously Unreported Weaknesses

	Discussion
	Conclusions
	References
	Adversary Models
	Multi-protocol Analysis Results

	Adapting Helios for Provable Ballot Privacy
	Introduction
	Ballot Privacy
	Voting Schemes
	Security Model

	A Generic Construction of Voting Schemes with Ballot Privacy
	Voting-Friendly Encryption
	Our Generic Construction

	Constructions for Voting–Friendly Schemes
	Application to the Helios Protocol
	References

	Information Flow, Side Channels, and Vulnerability Analysis
	Remote Timing Attacks Are Still Practical
	Introduction
	Timing Attacks
	Elliptic Curve Cryptography
	Digital Signatures
	Scalar Multiplication

	A Timing Attack
	Overview of the Collection Phase
	Collection Phase in Ideal Conditions
	Collection Phase over TLS
	The Lattice Attack

	Results
	Collection Phase Parameters
	Remote Attack

	Conclusion
	References
	Countermeasure as OpenSSL Source Code Patch

	Multi-run Security
	Introduction
	Security Condition
	Enforcement
	Enforcing 1-Bit Security
	Enforcing General Knowledge Policies

	Related Work
	Conclusions
	References

	Automated Information Flow Analysis of Virtualized Infrastructures
	Introduction
	Contributions
	Applications

	Related Work
	A Model for Isolation Analysis
	Modeling Isolation

	Isolation Analysis of Virtual Infrastructures
	Discovery
	Transformation into a Graph Model
	Coloring through Graph Traversal
	The Traversal Rules
	Detecting Undesired Information Flows

	Security Analysis of the Automated Information Flow Analysis
	Reduction to Correctness of the Traversal Rules
	Correctness of the Given Traversal Rules
	Overall Detection Rate
	Discussion

	Implementation
	Discovery
	Processing

	Case Study
	Conclusions and Future Work
	References
	Information Flow Types
	Flow Types

	Security of Information Flow Analysis
	Reduction to Traversal Rules
	Inspection of Individual Traversal Rules

	Scalable Analysis of Attack Scenarios
	Introduction
	Related Work
	Generalized Dependency Graphs
	Attack Modeling
	Combining Attack and Dependency Graphs
	Real-time Scenario Analysis
	Index Update Algorithm

	Analysis of Future Scenarios
	Experiments
	Conclusions
	References

	Usability, Ttrust, and Economics of Security and Privacy
	Usability of Display-Equipped RFID Tags for Security Purposes
	Introduction
	Related Work
	Secure User-to-Tag Authentication
	Transaction Verification
	Reader Revocation Checking
	Secure Device Pairing

	Proposed Techniques
	General Assumptions
	User-to-Tag Authentication
	Transaction Verification
	Reader Revocation Status Checking
	Secure Device Pairing

	Usability Analysis
	Apparatus, Implementation and Setup
	Subject Background
	Test Procedures and Results

	Conclusions
	References

	Forcing Johnny to Login Safely
	Introduction
	Current Mechanisms: Passive Indicators
	Interactive Custom Indicators
	Secure Login Using a Bookmark
	Challenges and Requirements for User Studies
	Our Contributions
	Paper Organization

	Principles for Effective Anti-Phishing Mechanisms
	Conditioned-Safe Ceremonies
	Design Goals for a Conditioned-Safe Login Ceremony
	Mechanisms of Interest
	WAPP

	Long-Term User Study
	Study's Framework System
	Introducing the Experiment
	Users' Login Methods
	Users' Email Methods
	Attacks

	Threat Analysis
	Study Results and Conclusions
	Detection Rates Summary
	Users' Response to Emails
	Spoofed Home Page Attacks Summary
	Effectiveness of Active Browser Warnings
	False Negatives

	Usability Survey
	Conclusions
	References
	Additional Attack Scenarios
	Removing Outliers
	Different Versions of Our Study – Conclusions
	Interactive Images Usability

	Towards a Mechanism for Incentivating Privacy
	Introduction
	Formal Framework
	Selection and Response Mechanism
	Rational Strategies

	Related Work
	Discussion and Perspectives
	Current Achievements
	Possible Variations to the Current Framework
	Generalizing Preferences
	Repeated Auctions
	Deployment

	References

	Investigating the OpenPGP Web of Trust
	Introduction
	Background
	Methodology
	Graph Extraction and Analysis
	Terms and Graph Metrics

	Results
	Macro Structure: Strongly Connected Components (SCCs)
	Usefulness in the LSCC
	Robustness of the LSCC

	Community Structure of the Web of Trust
	Cryptographic Algorithms
	Related Work
	Discussion and Conclusion
	References
	Common Terms and Graph Metrics
	Distances
	Node Neighborhoods
	Clustering Coefficient
	Correlation of Node Degrees

	Privacy I
	A Practical Complexity-Theoretic Analysis of Mix Systems
	Introduction
	Mix and Attacker Model
	The Pure Mix Model
	ExactHS Algorithm

	Estimation of the Number of Covered Observations
	Potential

	Number of Peer Choices for a Disproof
	Expectation of the Difference
	Average Number of Peer Choices

	Runtime Complexity
	Upper Bound of Average Worst Case

	Simulation
	Conclusion
	References
	Analysis of Expectation Function for Number of Peer Choices
	Average Worst Case Number of Peer Choices

	A Light-Weight Solution to Preservation of Access Pattern Privacy in Un-trusted Clouds
	Introduction
	Models and Assumptions
	System Model
	Security Model
	Design Goal

	The Proposed Scheme
	System Setup
	Scheme Description

	Security and Overhead Analysis
	Security Analysis
	Overhead Analysis

	Performance Evaluation
	Evaluation Setup
	Preservation of Access Frequency Privacy
	Preservation of Access Order Privacy
	Preservation of Data Item's Location Privacy

	Related Work
	Conclusions and Future Work
	References

	Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective
	Introduction
	Background and Related Work
	Preliminaries: Combinatorial Hardness and Approximations
	Mix-Zone Placement Problem

	Problem Statement
	System Model
	Privacy Requirement
	Graph-Theoretic Framework and the Mix Cover (MC) Problem

	Algorithms and Combinatorial Results
	Linear Programming Algorithm
	``Divide and Conquer" Algorithms

	Empirical Evaluation
	Conclusion
	References

	Privacy II
	A New RFID Privacy Model
	Introduction
	Definitions
	Existing Privacy Models
	Vaudenay
	Canard et al.
	Deng, Li, Yung and Zhao
	Juels-Weis
	Bohli-Pashalidis

	Our Model
	Adversarial Model and Privacy
	Security, Correctness, Privacy
	Motivation and Comparison

	Evaluating Existing Protocols
	Vaudenay's Public Key Protocol
	RO-Based Protocol

	Conclusion
	References
	Extending the Model
	Mutual Authentication

	Quantitative Information Flow, with a View
	Introduction
	Notations and Preliminary Notions
	Formal Set Up
	Basic Definitions
	Attacker Targets S
	Attacker Targets W
	Information Leakage

	Asymptotic Error Probability
	Example 1: Unlinkability in Threshold Mix-Nets
	Example 2: Privacy in Sparse Datasets
	Conclusion
	References
	Appendix

	To Release or Not to Release: Evaluating Information Leaks in Aggregate Human-Genome Data
	Introduction
	Backgrounds and Assumptions
	Aggregate Human-Genome Data
	Threats
	Adversary Model

	Recovery Threats to Allele Frequencies
	The Problem
	When to Release
	The Impact of Human Genetic Structure
	When Not to Release

	Identification Threat to Test Statistics
	The Problem
	When to Release
	When Not to Release

	Related Work
	Conclusion
	References
	Terminologies
	Proofs of Theorem 1, Corollary 1, Corollary 2 and Corollary 4ï¼� Conjecture 1, Theorem 2, Corollary 5, Corollary 6

	Privacy III
	Don’t Reveal My Intension: Protecting User Privacy Using Declarative Preferences during Distributed Query Processing
	Introduction
	Background and Assumptions
	Querier Privacy
	Matching Query Plan Nodes
	Matching Syntax
	Matching Operator
	Constraining Multiple Node Descriptors

	Preference Algebra
	Background
	Preferences for Query Plan Execution
	Preference Syntax
	Implementation Considerations

	Related Work
	Conclusions and Future Work
	References
	SQL Extension Syntax
	Expressive Capabilities

	Supporting Concurrency in Private Data Outsourcing
	Introduction
	Preliminary Concepts
	Main Index and Delta Versions
	Operating on Delta Versions
	Reconciling Delta Versions and Main Index
	Security Analysis
	Performance Analysis
	Related Work
	Conclusions

	Privacy-Preserving DNS: Analysis of Broadcast, Range Queries and Mix-Based Protection Methods
	Introduction
	Related Work
	Overview of DNS and the Dataset
	Characteristics of DNS Traffic
	Overview of the Dataset

	DNS Anonymity Service
	Broadcasting Popular DNS Records
	Obtaining the Most Popular Hosts
	Realization of the Broadcast Mechanism

	Anonymizing the Long Tail
	Mixes
	Range Queries

	Evaluation
	Broadcasting the TopList
	Trace-Driven Simulations
	Performance Comparison of Mixes and Range Queries
	Real World Latencies
	Traffic Overhead

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

