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Welcome to ECML PKDD 2011

Welcome to the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2011) held in
Athens, Greece, during September 5–9, 2011. ECML PKDD is an annual confer-
ence that provides an international forum for the discussion of the latest high-
quality research results in all areas related to machine learning and knowledge
discovery in databases as well as other innovative application domains. Over
the years it has evolved as one of the largest and most selective international
conferences in machine learning and data mining, the only one that provides a
common forum for these two closely related fields.

ECML PKDD 2011 included all the scientific events and activities of big con-
ferences. The scientific program consisted of technical presentations of accepted
papers, plenary talks by distinguished keynote speakers, workshops and tutorials,
a discovery challenge track, as well as demo and industrial tracks. Moreover, two
co-located workshops were organized on related research topics. We expect that
all those scientific activities provide opportunities for knowledge dissemination,
fruitful discussions and exchange of ideas among people both from academia and
industry. Moreover, we hope that this conference will continue to offer a unique
forum that stimulates and encourages close interaction among researchers work-
ing on machine learning and data mining.

We were very happy to have the conference back in Greece after 1995 when
ECML was successfully organized in Heraklion, Crete. However, this was the
first time that the joint ECML PKDD event was organized in Greece and, more
specifically, in Athens, with the conference venue boasting a superb location
under the Acropolis and in front of the Temple of Zeus. Besides the scientific
activities, the conference offered delegates an attractive range of social activities,
such as a welcome reception on the roof garden of the conference venue directly
facing the Acropolis hill, a poster session at “Technopolis” Gazi industrial park,
the conference banquet, and a farewell party at the new Acropolis Museum,
one of the most impressive archaeological museums worldwide, which included
a guided tour of the museum exhibits.

Several people worked hard together as a superb dedicated team to ensure
the successful organization of this conference. First, we would like to express our
thanks and deep gratitude to the PC Chairs Dimitrios Gunopulos, Thomas Hof-
mann, Donato Malerba and Michalis Vazirgiannis. They efficiently carried out
the enormous task of coordinating the rigorous hierarchical double-blind review
process that resulted in a rich, while at the same time, very selective scientific
program. Their contribution was crucial and essential in all phases and aspects of
the conference organization and it was by no means restricted only to the paper
review process. We would also like to thank the Area Chairs and Program Com-
mittee members for the valuable assistance they offered to the PC Chairs in their
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timely completion of the review process under strict deadlines. Special thanks
should also be given to the Workshop Co-chairs, Bart Goethals and Katharina
Morik, the Tutorial Co-chairs, Fosca Giannotti and Maguelonne Teisseire, the
Discovery Challenge Co-chairs, Alexandros Kalousis and Vassilis Plachouras, the
Industrial Session Co-chairs, Alexandros Ntoulas and Michail Vlachos, the Demo
Track Co-chairs, Michelangelo Ceci and Spiros Papadimitriou, and the Best Pa-
per Award Co-chairs, Sunita Sarawagi and Michèle Sebag. We further thank the
keynote speakers, workshop organizers, the tutorial presenters and the organizers
of the discovery challenge.

Furthermore, we are indebted to the Publicity Co-chairs, Annalisa Appice
and Grigorios Tsoumakas, who developed and implemented an effective dissem-
ination plan and supported the Program Chairs in the production of the pro-
ceedings, and also to Margarita Karkali for the development, support and timely
update of the conference website. We further thank the members of the ECML
PKDD Steering Committee for their valuable help and guidance.

The conference was financially supported by the following generous sponsors
who are worthy of special acknowledgment: Google, Pascal2 Network, Xerox, Ya-
hoo Labs, COST-MOVE Action, Rapid-I, FP7-MODAP Project, Athena RIC /
Institute for the Management of Information Systems, Hellenic Artificial Intel-
ligence Society, Marathon Data Systems, and Transinsight. Additional support
was generously provided by Sony, Springer, and the UNESCO Privacy Chair Pro-
gram. This support has given us the opportunity to specify low registration rates,
provide video-recording services and support students through travel grants for
attending the conference. The substantial effort of the Sponsorship Co-chairs,
Ina Lauth and Ioannis Kopanakis, was crucial in order to attract these spon-
sorships, and therefore, they deserve our special thanks. Special thanks should
also be given to the five organizing institutions, namely, University of Bari “Aldo
Moro”, Athens University of Economics and Business, University of Athens, Uni-
versity of Ioannina, and University of Piraeus for supporting in multiple ways
our task.

We would like to especially acknowledge the members of the Local Organiza-
tion team, Maria Halkidi, Despoina Kopanaki and Nikos Pelekis, for making all
necessary local arrangements and Triaena Tours & Congress S.A. for efficiently
handling finance and registrations. The essential contribution of the student vol-
unteers also deserves special acknowledgment.

Finally, we are indebted to all researchers who considered this conference as
a forum for presenting and disseminating their research work, as well as to all
conference participants, hoping that this event will stimulate further expansion
of research and industrial activities in machine learning and data mining.

July 2011 Aristidis Likas
Yannis Theodoridis



Preface

The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD 2011) took place in Athens,
Greece, during September 5–9, 2011. This year we have completed the first
decade since the junction between the European Conference on Machine Learn-
ing and the Principles and Practice of Knowledge Discovery in Data Bases con-
ferences, which as independent conferences date back to 1986 and 1997, respec-
tively. During this decade there has been an increasing integration of the two
fields, as reflected by the rising number of submissions of top-quality research re-
sults. In 2008 a single ECML PKDD Steering Committee was established, which
gathered senior members of both communities.

The ECML PKDD conference is a highly selective conference in both areas,
the leading forum where researchers in machine learning and data mining can
meet, present their work, exchange ideas, gain new knowledge and perspectives,
and motivate the development of new interesting research results. Although tra-
ditionally based in Europe, ECML PKDD is also a truly international conference
with rich and diverse participation.

In 2011, as in previous years, ECML PKDD followed a full week sched-
ule, from Monday to Friday. It featured six plenary invited talks by Rakesh
Agrawal, Albert-László Barabási, Christofer Bishop, Andrei Broder, Marco Gori
and Heikki Mannila. Monday and Friday were devoted to workshops selected
by Katharina Morik and Bart Goethals, and tutorials, organized and selected
by Fosca Giannotti and Maguelonne Teisseire. There was also an interesting in-
dustrial session, managed by Alexandros Ntoulas and Michalis Vlachos, which
welcomed distinguished speakers from the ML and DM industry: Vasilis Agge-
lis, Radu Jurca, Neel Sundaresan and Olivier Verscheure. The 2011 discovery
challenge was organized by Alexandros Kalousis and Vassilis Plachouras.

The main conference program unfolded from Tuesday to Thursday, where
121 papers selected among 599 full-paper submissions were presented in the
technical parallel sessions and in a poster session open to all accepted papers.
The acceptance rate of 20% supports the traditionally high standards of the
joint conference. The selection process was assisted by 35 Area Chairs, each
supervising the reviews and discussions of about 17 papers, and by 270 members
of the Program Committee, with the help of 197 additional reviewers. While the
selection process was made particularly intense due to the very high number of
submissions, we are grateful and heartily thank all Area Chairs, members of the
Program Committee, and additional reviewers for their commitment and hard
work during the tight reviewing period.

The composition of the paper topics covered a wide spectrum of issues. A sig-
nificant portion of the accepted papers dealt with core issues such as supervised
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and unsupervised learning with some innovative contributions in fundamental
issues such as cluster-ability of a dataset.

Other fundamental issues tackled by accepted papers include dimensionality
reduction, distance and similarity learning, model learning and matrix/tensor
analysis. In addition, there was a significant cluster of papers with valuable con-
tributions on graph mining, graphical models, hidden Markov models, kernel
methods, active and ensemble learning, semi-supervised and transductive learn-
ing, mining sparse representations, model learning, inductive logic programming,
and statistical learning.

A significant part of the program covered novel and timely applications of
data mining and machine learning in industrial domains, including: privacy-
preserving and discrimination-aware mining, spatiotemporal data mining, text
mining, topic modeling, learning from environmental and scientific data, Web
mining and Web search, link analysis, bio/medical data, data Streams and sensor
data, ontology-based data, relational data mining, learning from time series data,
time series data.

In the past three editions of the joint conference, the two Springer journals
Machine Learning and Data Mining and Knowledge Discovery published the
top papers in two special issues printed in advance of the conference. These
papers were not included in the conference proceedings, so there was no double
publication of the same work. A novelty introduced this year was the post-
conference publication of the special issues in order to guarantee the expected
high-standard reviews for top-quality journals. Therefore, authors of selected
machine learning and data mining papers were invited to submit a significantly
extended version of their paper to the special issues. The selection was made
by Program Chairs on the basis of their exceptional scientific quality and high
impact on the field, as indicated by conference reviewers.

Following an earlier tradition, the Best Paper Chairs Sunita Sarawagi and
Michèle Sebag contributed to the selection of papers deserving the Best Pa-
per Awards and Best Student Paper Awards in Machine Learning and in Data
Mining, sponsored by Springer. As ECML PKDD completes 10 years of joint
organization, the PC chairs, together with the steering committee, initiated a
10-year Awards series. This award is established for the author(s), whose paper
appeared in the ECML PKDD conference 10 years ago, and had the most im-
pact on the machine learning and data mining research since then. This year’s,
first award, committee consisted of three PC co-chairs (Dimitrios Gunopulos, Do-
nato Malerba and Michalis Vazirgiannis) and three Steering Committee members
(Wray Buntine, Bart Goethals and Michèle Sebag).

The conference also featured a demo track, managed by Michelangelo Ceci
and Spiros Papadimitriou; 11 demos out of 21 submitted were selected by a
Demo Track Program Committee, presenting prototype systems that illustrate
the high impact of machine learning and data mining application in technology.
The demo descriptions are included in the proceedings. We further thank the
members of the Demo Track Program Committee for their efforts in timely
reviewing submitted demos.
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Finally, we would like to thank the General Chairs, Aristidis Likas and Yannis
Theodoridis, for their critical role in the success of the conference, the Tutorial,
Workshop, Demo, Industrial Session, Discovery Challenge, Best Paper, and Local
Chairs, the Area Chairs and all reviewers, for their voluntary, highly dedicated
and exceptional work, and the ECML PKDD Steering Committee for their help
and support. Our last and warmest thanks go to all the invited speakers, the
speakers, all the attendees, and especially to the authors who chose to submit
their work to the ECML PKDD conference and thus enabled us to build up this
memorable scientific event.

July 2011 Dimitrios Gunopulos
Thomas Hofmann

Donato Malerba
Michalis Vazirgiannis
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José Balcázar
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Iordanis Koutsopoulos
Hardy Kremer
Anastasia Krithara
Artus Krohn-Grimberghe
Onur Kucuktunc
Tor Lattimore
Florian Lemmerich
Jun Li
Rong-Hua Li
Yingming Li
Siyi Liu
Stefano Lodi
Claudio Lucchese
Gjorgji Madjarov
M. M. Hassan Mahmud
Fernando Mart́ınez-Plumed
Elio Masciari
Michael Mathioudakis
Ida Mele
Corrado Mencar
Glauber Menezes
Pasquale Minervini
Ieva Mitasiunaite-Besson
Folke Mitzlaff
Anna Monreale
Gianluca Moro
Alessandro Moschitti
Yang Mu
Ricardo Ñanculef
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Athens University of Economics and Business, University of Ioannina, National
and Kapodistrian University of Athens, and the University of Piraeus.



Table of Contents – Part III

Regular Papers

Sparse Kernel-SARSA(λ) with an Eligibility Trace . . . . . . . . . . . . . . . . . . . 1
Matthew Robards, Peter Sunehag, Scott Sanner, and
Bhaskara Marthi

Influence and Passivity in Social Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Daniel M. Romero, Wojciech Galuba, Sitaram Asur, and
Bernardo A. Huberman

Preference Elicitation and Inverse Reinforcement Learning . . . . . . . . . . . . 34
Constantin A. Rothkopf and Christos Dimitrakakis

A Novel Framework for Locating Software Faults Using Latent
Divergences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Shounak Roychowdhury and Sarfraz Khurshid

Transfer Learning with Adaptive Regularizers . . . . . . . . . . . . . . . . . . . . . . . 65
Ulrich Rückert and Marius Kloft

Multimodal Nonlinear Filtering Using Gauss-Hermite Quadrature . . . . . . 81
Hannes P. Saal, Nicolas M.O. Heess, and Sethu Vijayakumar

Active Supervised Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Avishek Saha, Piyush Rai, Hal Daumé III,
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Sašo Džeroski

Learning from Label Proportions by Optimizing Cluster Model
Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Marco Stolpe and Katharina Morik

The Minimum Code Length for Clustering Using the Gray Code . . . . . . . 365
Mahito Sugiyama and Akihiro Yamamoto

Learning to Infer Social Ties in Large Networks . . . . . . . . . . . . . . . . . . . . . . 381
Wenbin Tang, Honglei Zhuang, and Jie Tang

Comparing Apples and Oranges: Measuring Differences between Data
Mining Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Nikolaj Tatti and Jilles Vreeken



Table of Contents – Part III XXI

Learning Monotone Nonlinear Models Using the Choquet Integral . . . . . . 414
Ali Fallah Tehrani, Weiwei Cheng, Krzysztof Dembczyński, and
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Abstract. We introduce the first online kernelized version of SARSA(λ)
to permit sparsification for arbitrary λ for 0 ≤ λ ≤ 1; this is possible via
a novel kernelization of the eligibility trace that is maintained separately
from the kernelized value function. This separation is crucial for pre-
serving the functional structure of the eligibility trace when using sparse
kernel projection techniques that are essential for memory efficiency and
capacity control. The result is a simple and practical Kernel-SARSA(λ)
algorithm for general 0 ≤ λ ≤ 1 that is memory-efficient in comparison
to standard SARSA(λ) (using various basis functions) on a range of do-
mains including a real robotics task running on a Willow Garage PR2
robot.

1 Introduction

In many practical reinforcement learning (RL) problems, the state space S may
be very large or even continuous, leaving function approximation as the only
viable solution. Arguably, the most popular form of RL function approximation
uses a linear representation 〈w, φ(s)〉; although linear representations may seem
quite limited, extensions based on kernel methods [14, 2, 13] provide (explicitly
or implicitly) a rich feature map φ that in some cases permits the approximation
of arbitrarily complex, nonlinear functions.

The simplicity and power of kernel methods for function approximation has
given rise to a number of kernelized RL algorithms in recent years, e.g., [20, 4,
7, 8, 17]. In this paper we focus on online kernel extensions of SARSA(λ) — a
model-free algorithm for learning optimal control policies in RL. However, un-
like the Gaussian Process SARSA (GP-SARSA) approach and other kernelized
extensions of SARSA [20,4], the main contribution of this paper is the first ker-
nelized SARSA algorithm to allow for general 0 ≤ λ ≤ 1 rather than restricting
to just λ ∈ {0, 1}.

While generalizing an online kernelized SARSA algorithm to SARSA(λ) with
0 ≤ λ ≤ 1 might seem as simple as using an eligibility trace [15], this leads
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to theoretical and practical issues when sparsity is introduced. Because online
kernel methods typically require caching all previous data samples, sparsifica-
tion techniques that selectively discard cached samples and reproject the value
representation are necessary [3, 5, 9]. However, in kernelized SARSA(λ), cached
samples are required for both the value and eligibility trace representation, hence
sparsification that focuses on low-error value approximations may inadvertently
destroy structure in the eligibility trace. To address these issues, we separate the
kernelization of the value function from the eligibility function, thus maintaining
independent low-error, sparse representations of each. Despite the mathematical
complications, we derive simple and efficient value and eligbility updates under
this scheme. We point out here that once one wishes to “switch off” the learning
and utilize the learned policy, our algorithm becomes linear in the number of
samples stored and our experimental section shows that our algorithm seems to
be more efficient than regular SARSA (λ).

These novel insights allow us to propose a practical, memory-efficient Kernel-
SARSA(λ) algorithm for general 0 ≤ λ ≤ 1 that scales efficiently in comparison
to standard SARSA(λ) (using both radial basis functions and tile coding) on
a range of domains including a real robotics task running on a Willow Garage
PR2 robot. Crucially we note the use of 0 < λ < 1 often leads to the best
performance in the fewest samples, indicating the importance of the two main
paper contributions:

1. the first generalization of kernelized SARSA(λ) algorithms to permit 0 ≤
λ ≤ 1 with sparsification, and

2. the novel kernelization and projection of separate value and eligibility func-
tions needed for low-error, memory-efficient approximations of kernelized
SARSA(λ) with an eligibility trace.

2 Preliminaries

In this section we briefly review [15] MDPs, the SARSA(λ) algorithm, its exten-
sion for function approximation and some background on Reproducing Kernel
Hilbert Spaces [1].

2.1 Markov Decision Processes

We assume a (finite, countably infinite, or even continuous) Markov decision
process (MDP) [11] given by the tuple 〈S,A, T, R, γ〉. Here, states are given by
s ∈ S, actions are given by a ∈ A, T : S × A × S → [0, 1] is a transition
function with T (s, a, s′) defining the probability of transitioning from state s
to s′ after executing action a. R : S × A × S → R is a reward function where
rt = R(st, at, st+1) is the reward received for time t after observing the transition
from state st to st+1 on action at. Finally, 0 ≤ γ < 1 is a discount factor.

A policy π : S → A specifies the action π(s) to take in each state s. The
value Qπ(s, a) of taking an action a in state s and then following some policy
π thereafter is defined using the infinite horizon, expected discounted reward
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criterion: Qπ(s, a) = Eπ [
∑∞

t=0 γt ·rt|s0 = s, a0 = a]. Our objective is to learn the
optimal Q∗ s.t. ∀s, a, π Q∗(s, a) ≥ Qπ(s, a) in an episodic, online learning setting.
Given Q∗, the optimal control policy π∗ is simply π∗(s) = argmaxa Q∗(s, a).

SARSA(λ) is a temporal difference RL algorithm for learning Q∗ from expe-
rience [15]. We use SARSA(λ) in an on-policy manner where Qt(s, a) represents
Q-value estimates at time t w.r.t. the greedy policy πt(s) := argmaxa Qt(s, a).
Initializing eligibilities e0(s, a) = 0; ∀s, a, SARSA(λ) performs the following on-
line Q-update at time t + 1:

Qt+1(s, a) = Qt(s, a) + ηerrtet(s, a); ∀s, a. (1)

Here η > 0 is the learning rate, errt = Qt(st, at)−Rt is the temporal difference
error between the actual prediction Qt(st, at) and a bootstrapped estimate of
Qt(s, a):

Rt = rt + γQt(st+1, at+1)

and et is the eligibility trace updated each time step as follows:

et+1(s, a) =

{
γλet(s, a) + 1 if s = st and a = at

γλet(s, a) otherwise.
(2)

The eligibility trace indicates the degree to which each state-action pair is up-
dated based on future rewards. The parameter λ (0 ≤ λ ≤ 1) adjusts how far
SARSA(λ) “looks” into the future when updating Q-values; as λ → 0, SARSA(λ)
updates become more myopic and it may take longer for delayed rewards to prop-
agate back to earlier states.

For large or infinite state-action spaces it is necessary to combine SARSA(λ)
with function approximation. Linear value approximation is perhaps the most
popular approach: we let Q̂t(s, a) = 〈wt, φ(s, a)〉 where wt ∈ Rd are d > 0
learned weights and φ : (s, a) 	→ φ(s, a) maps state-action (s, a) to features
φ(s, a) ∈ Φ ⊆ Rd. Because the optimal Qt may not exist within the span of Q̂t,
we minimize the error between Qt and Q̂t in an online empirical risk minimiza-
tion framework; this can be done by gradient descent on the squared error loss
function l[Qt, st, Rt] = 1

2 (Qt(st, at)−Rt)2 w.r.t. each observed datum (st, at, Rt).
For SARSA(λ) with general λ and linear function approximation, Sutton and
Barto [15] provide the following update rule

wt+1 := wt + ηerrtetφ(st, at) (3)

with an eligibility vector updated through et+1 = γλet + φ(st, at).

2.2 Reproducing Kernel Hilbert Spaces (RKHS)

When using Reproducing Kernel Hilbert Spaces [1] for function approximation
(regression, classification) we define a feature map implicitly by defining a sim-
ilarity measure called a kernel [14], [2], [13], e.g. a Gaussian kernel defined by
k(x, y) = e‖x−y‖2/2ρ. Positive definite and symmetric kernels define a Reproduc-
ing Kernel Hilbert Space (RKHS) Hk by completing the span of the functions



4 M. Robards et al.

kx(·) = k(x, ·) w.r.t. the inner product 〈kx, ky〉H = k(x, y). Some kernels such as
the Gaussian kernel are universal kernels, which means that the RKHS is dense
in the space L2 of square integrable functions. Using universal kernels means
that any such (L2) function can be approximated arbitrarily well by elements in
Hk.

If we have a feature map into a space with an inner product we have defined
a kernel through k(x, y) = 〈φ(x), φ(y)〉. However, our intent is to start with a
kernel like the Gaussian kernel and then use the feature map that is implicitly
defined through that choice. This means that φ maps x to the function kx ∈
Hk. Note that φ(x) is not necessarily a finite vector anymore, but a possibly
continuous function k(x, ·).

3 Kernel-SARSA(λ)

We now generalize SARSA(λ) with function approximation to learn with large
or even infinite feature vectors φ(s, a). We will use a reproducing kernel Hilbert
space as our hypothesis space. The “weights” w that we will end up with are
represented in the form w =

∑
i αik((si, ai), ·) and are really functions on S×A.

The corresponding Q function is

Q(s, a) =
∑

i

αik((si, ai), (s, a)).

To define Kernel-SARSA(λ), we extend the SARSA (λ) update rule given
in [15] to a RKHS setting. We slightly extend this update rule to include a
regularizer term1. The update is given by

wt+1 = wt − η

[
(Qt(st, at) − Rt)et − ξwt

]
(4)

where et is the eligibility trace, updated through

et = γλet−1 + φ(st, at), (5)

s.t. φ(st, at) = k((st, at), ·) and et is initialized to 0 at the start of each episode.
ξ denotes the regularizer. Alternatively we may write the eligibility trace as

et =
t∑

i=t0

(γλ)t−iφ(si, ai) (6)

where t0 is the time at which the current episode began. Typically such a repre-
sentation would be undesirable since it requires storing all past samples, however
1 Regularization is important for exact kernel methods that cache all samples since

they have no other means of capacity control. Later when we introduce sparsifica-
tion into the algorithm, the regularization term ξ may be set to zero since sparsity
performs the role of capacity control.
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kernelizing our online algorithm already necessitates storing all previously visited
state-action pairs. Now, by substituting (6) into (4), we get

wt+1 := wt − η

(
errt

t∑
i=t0

(γλ)t−iφ(si, ai) − ξwt

)
(7)

and assuming that w0 = 0 we see that

wt =
t−1∑
i=1

αik((si, ai), ·)

which leads us to an alternative formulation of (7). If errt is the temporal dif-
ference error given by (Q(st, at) − Rt)) then

t∑
i=1

αik((si, ai), ·) :=
t−1∑
i=1

(1 − ηξ)αik((si, ai), ·) − ηerrt

t∑
i=t0

(γλ)t−ik((si, ai), ·).

(8)

Equating the coefficients of the basis functions leads to the update formulae:

αi := (1 − ηξ)αi, i = 1, . . . , t0 − 1 (9)
αt := ηerrt (10)

and otherwise for i = t0, ..., t − 1

αi := (1 − ηξ)αi − ηerrt(γλ)t−i−1 (11)

As a notational observation crucial for the next section, we note that wt is
exactly the same object as Qt. Normally in function approximation one may
think of Qt(·) as 〈wt, φ(·)〉 which is true here, but since φ(s, a)(·) = k((s, a), ·),
we can conclude from the reproducing property that wt(s, a) = 〈wt, φ(s, a)〉. We
will henceforth write Qt instead of wt in our equations.

Although surprisingly simple and elegant, we note that this is the first ker-
nelization of SARSA(λ) for general 0 ≤ λ ≤ 1 that the authors are aware of.
However, it is impractical in general since it requires storing all state-action pairs;
next we provide a memory-efficient variant of this novel kernelized SARSA(λ)
approach needed to make it practically viable.

4 Memory-Efficient Kernel-SARSA (λ) Based on the
Projectron

We now have the foundations for a powerful kernel reinforcement learning algo-
rithm. Problematically, however, the memory required to store the old samples
grows without bound. We will deal with this by extending sparse representation
techniques from [3, 5, 9].
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Following the Projectron approach [9], in order to bound the memory require-
ments of the algorithm, we ask ourselves at each time step, “to what extent can
the new sample be expressed as a linear combination of old samples?”. Consider
the “temporal hypothesis” Q′

t given through equation (7), and its projection
Q′′

t = Pt−1Q
′
t onto Ht−1 which is the span of the set S of previously stored basis

functions. One must be careful when trying to use (7) since our previous update
equations made the vital assumption that we store all points allowing the pro-
gression from (5) to (6). This assumption no longer holds since we plan to only
add those new points which cannot be well represented as a linear combination
of the old ones. This is an obstacle that has to be resolved to be able to use the
Projectron technique in our setting.

4.1 Separately Kernelizing the Eligibility Trace

We note that (6) represents the eligibility trace as a linear combination of pre-
vious basis functions. Hence we can write the eligibility trace (which is now
really an eligibility function) as a function (separate from the value function)
parameterized by β = {βi}i=1,...,t through

et =
t∑

i=1

βik((si, ai), ·). (12)

By substituting this form of the eligibility trace into its update equation (5) we
get

t∑
i=1

βik((si, ai), ·) :=
t−1∑
i=1

γλβik((si, ai), ·) + k((st, at), ·) (13)

and by equating the coefficients of the basis functions we get the parameter
updates βi = γλβi for i = 1, . . . , t − 1 and β = 1.

4.2 Projected Kernel-SARSA(λ) Updates

We begin by plugging the update of the eligibility trace into the Q update, and
call this the temporal hypothesis given by

Q′
t = (1 − ηξ)Qt−1 − ηerrt

[
γλet−1 + k((st, at), ·)

]
(14)

allowing us to write its projection Q′′
t = Pt−1Q

′
t =

(1 − ηξ)Qt−1 − ηerrt

[
γλet−1 + Pt−1k((st, at), ·)

]
. (15)

Our aim is to examine how well the temporal hypothesis Q′
t is approximated

by its projection onto Ht−1 which suitably is the hypothesis in Ht−1 closest to
h. We denote the difference Q′′

t − Q′
t by δt and note that

δt = −ηerrt

[
Pt−1k((st, at), ·) − k((st, at), ·)

]
. (16)
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By letting Kt−1 denote the kernel matrix with elements given by {Kt−1}i,j =
k((si, ai), (sj , aj), kt denote the vector with ith element kti = k((si, ai), (st, at))
and letting d∗ = K−1

t−1kt we can as in [9] derive that

‖δt‖2 = η2err2
t [k((st, at), (st, at)) − kT

t d∗]. (17)

Now if ‖δt‖2 is below some threshold ε, we update the Q function by setting it
to

(1 − ηξ)Qt−1 − ηerrt

[
γλet−1 +

|S|∑
i=1

d∗
i k((si, ai), ·)

]
. (18)

We note that the last part of Eq(18) is the projection of the eligibility trace
given by

Pt−1et = γλet−1 +
|S|∑
i=1

d∗
i k((si, ai), ·) (19)

= γλ

|S|∑
i=1

βik((si, ai), ·) +
|S|∑
i=1

d∗
i k((si, ai), ·) (20)

giving the updates

βi := γλβi + d∗
i , i = 1, ..., |S|. (21)

Finally we write Qt and et in their parameterized form to obtain

|S|∑
i=1

αik((si, ai), ·) =(1 − ηξ)
|S|∑
i=1

αik((si, ai), ·) − ηerrtγλPt−1et

=(1 − ηξ)
|S|∑
i=1

αik((si, ai), ·) − ηerrtγλ

|S|∑
i=1

βik((si, ai), ·)

(22)

and by again equating the coefficients of the basis functions we get the α
update

αi = (1 − ηξ)αi − ηerrtγλβi (23)

for i = 1, . . . , |S| when δt < ε. Otherwise α is updated as in Equations (9)-(10).
To avoid the costly calculation of the inverse kernel matrix we calculate this
incrementally as in [9] when a new sample is added:

K−1
t =

⎛⎜⎜⎜⎝
0

K−1
t−1

...
0

0 . . . 0 0

⎞⎟⎟⎟⎠+ (24)

1
k((st, at), (st, at)) − kT

t d∗

(
d∗

−1

)(
d∗T − 1

)
.
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Algorithm 1. Memory Efficient Kernel-SARSA (λ)

INPUTS:

– π0, ε, η, λ
– S = ∅

1. DO
(a) Select action at (e.g. greedily) in current state st and observe reward rt

(b) d∗ ← K−1
t−1kt

(c) ‖δt‖2 ← η2err2
t [k((st, at), (st, at))− kT

t d∗]
(d) if (‖δt‖2 < ε)

– for i = 1, . . . , |S|
• βi ← γλβi + d∗

i

• αi ← (1− ηξ)αi − ηerrtγλβi

(e) else
– Add k((st, at), ·) to S
– β|S| ← 1
– for i = 1, . . . , |S| − 1
• βi ← γλβi

– for j = 1, . . . , |S|
• αi ← (1− ηξ)αi − ηerrtγλβi

– Update K−1
t−1 through (24).

2. UNTIL policy update required

From here on, references to Kernel-SARSA(λ) imply the memory-efficient
version in Algorithm 1 and not the version in Section 3. This first version from
Section 3 (a) cannot be used directly since it stores every sample, and (b) if
sparsified näıvely via the Projectron, leads to an algorithm that stops learning
long before convergence because most new kernel samples are discarded (since
most lie within the span of previous samples) — unfortunately, the eligibility
trace is defined in terms of these new samples! In this way, the eligibility trace
is not updated and a directly sparsified approach to Section 3 will prematurely
cease to learn, rendering it useless in practice.2

5 Empirical Evaluation

Having now completed the derivation of our memory efficient Kernel-SARSA(λ)
algorithm, we proceed to empirically compare it to two of the most popular
and useful function approximation approaches for SARSA(λ): one version using
kernel (RBF) basis functions (n.b., not the same as Kernel-SARSA(λ) but with

2 As such, this paper contributes much more than a simple combination of Section 3
and the Projectron [9] (which does not work) — it makes the crucial point that
value function and eligibility function must be separately kernelized and projected
as presented in Section 4.
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similar function approximation characteristics) and the other using standard tile
coding [15].

Our experimental objectives are threefold: (1) to show that Kernel-SARSA(λ)
learns better with less memory than the other algorithms, (2) to show that
0 < λ < 1 leads to optimal performance for Kernel-SARSA(λ) on each MDP,
and (3) that Kernel-SARSA(λ) can learn a smooth nonlinear Q-function in a
continuous space with less memory than competing algorithms and which is
nearly optimal in a real-world domain.

5.1 Problems

We ran our algorithm on three MDPs: two standard benchmarks and one real-
world robotics domain.

Pole balancing (cart pole): requires the agent to balance a pole hinged atop a cart
by sliding the cart along a frictionless track. We refer to [15] for a specification of
the transition dynamics; rewards are zero except for -1, which is received upon
failure (if the cart reaches the end of the track, or the pole exceeds an angle of
±12 degrees). At the beginning of each episode we drew the initial pole angle
uniformly from [±3] degrees. Further, we cap episode lengths at 1000 time steps.
We report on a noisy version of this problem where we add ± 50% noise to the
agents actions, that is, when the agent commands a force of 1, the actual force
applied is drawn uniformly from the interval [0.5, 1.5]. Note that, since we report
on time per episode for this task, higher is better.

Mountain car: involves driving an underpowered car up a steep hill. We use
the state/action space, and transition/reward dynamics as defined in [15]. In
order to solve this problem the agent must first swing backwards to gain enough
velocity to pass the hill. The agent receives reward -1 at each step until failure
when reward 1 is received. We capped episodes in the mountain car problem to
1000 time steps. The car was initialized to a standing start (zero velocity) at a
random place on the hill in each episode. Note that, since we report on time per
episode for this task, lower is better.

Robot navigation: requires the agent to successfully drive a (real) robot to a
specified waypoint. The state space S = (d, θ, ẋ, θ̇), where d is the distance to
the goal, θ is the angle between the robot’s forward direction and the line from
the robot to the goal, ẋ is the robot’s forward velocity, and θ̇ is the robot’s angular
velocity. The action space is a ∈ {ẍ, θ̈}, which represents respective linear and
angular accelerations. We restrict the accelerations to 1.0ms−2 and 1.0rads−2

with decisions made at 10Hz. This corresponds to acceleration of 1.0ms−1 per 1
10

seconds for both x and θ. A reward of -1 is received at each time step. Further,
a reward of 10 is received for success, -100 for leaving a 3 metre radius from the
goal, and -10 for taking more than 1000 time steps; these last three events result
in termination of the episode.
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Table 1. The parameter setup we gave each algorithm. Here σ is the RBF tile width
given to each algorithm as a fraction of the state space in each dimension after the
state space was normalized to the unit hyper-sphere.

Domain Algorithm γ λ η ξ ε σ

Kernel-SARSA(λ) 0.9999 0.6 0.5 — 5.0×10−5 0.05
Mountain car RBF coding 0.9999 0.7 0.1 0 — 0.05

Tile coding 0.9999 0.7 0.005 — — 0.1

Kernel-SARSA(λ) 0.9999 0.7 0.1 — 5.0× 10−7 0.05
Cart pole RBF coding 0.9999 0.7 0.01 0.01 — 0.05

Tile coding 0.9999 0.6 0.1 — — 0.066

Kernel-SARSA(λ) 0.9999 0.6 0.1 — 0.5 0.1
Robot navigation RBF coding 0.9999 0.5 0.1 0.0 — 0.1

Tile coding 0.9999 0.6 0.1 — — 0.066

We used a high-fidelity simulator for training a Willow Garage PR2 robot3

and then evaluated the learned Q-value policy on an actual PR2. In the simulator
training phase, the robot’s task is simply to drive directly to the waypoint. For
the in situ robot testing phase, we gave the robot a global plan, from which it
drives towards the nearest waypoint beyond a 1m radius at each time step. This
has the effect of a single waypoint moving away at the same speed as the robot.
At the end of the planned path, the waypoint stops moving, and the robot must
drive to it. This RL problem requires a nonlinear Q-value approximation over a
continuous space, and RL algorithms must deal with a high-noise environment on
account of noisy actuators and an unpredictable surface response. Although the
transition dynamics are noisy, we note that high-precision PR2 sensors render
the state space fully observed for all practical purposes, making this an MDP.

5.2 Results

The above selection of problems demonstrate our performance in both difficult
continuous state spaces requiring nonlinear approximation of Q-values and a
real-world robotics navigation task.

For each MDP, we compare Kernel-SARSA(λ) to SARSA(λ) with tile coding
and SARSA(λ) with RBF coding. The first metric we record for each algo-
rithm and MDP is the memory usage in terms of the number of samples/basis
functions vs. the episode number. Obviously, a small memory footprint while
achieving near-optimal performance is generally desired. The second metric that
we evaluate for each algorithm and MDP is the time/reward per episode, i.e., the
number of steps until episode termination for cart pole and mountain car and the
average reward per time step within an episode for robot navigation, both being
recorded vs. the episode number. For the mountain car MDP, smaller episode
length is better since episodes terminate with success, whereas for the cart pole

3 http://www.ros.org/wiki/pr2 simulator
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MDP, longer is better since episodes terminate with failure. In the navigation
task MDP, larger average rewards per episode are better.

In the following results, each algorithm is configured with the parameter spec-
ifications in Table 1. The parameters were chosen from the following search
space: λ ∈ {0.0, 0.1, . . . , 0.9, 1.0}, η ∈ {1, 5} × 10−k, ξ ∈ {0, 1, 5} × 10−k, ε ∈
{1, 5} × 10−k, σ ∈ 1

n , n ∈ {5, 10, 15, 20}. For each algorithm and domain we
chose the parameters which obtain the best result.

Memory Efficiency and Performance. Figure 1 shows the growth in the
number of stored samples for Kernel-SARSA(λ), compared to the memory re-
quirements of RBF coding and tile coding, for each of the three MDPs. We can
see that Kernel-SARSA(λ) is always the most memory-efficient.

Figure 3 shows the time/reward for all three algorithms on all three domains.
In brief, the results show that Kernel-SARSA(λ) is always among the best in
terms of final episode performance (and is the best for both cart pole and robot
navigation). Kernel-SARSA(λ) also learns fastest in cart pole while performing
mid-range among the other two algorithms on both mountain car and robot
navigation. This is impressive given the small amount of memory used by Kernel-
SARSA(λ) relative to the other algorithms.

We now discuss results by domain in more detail:

Mountain Car: All three methods can solve this domain rather quickly. In
Figure 2 (top) we see that the RBF basis functions provide the steepest decline
in time needed to complete the task. Kernel-SARSA(λ) starts somewhat slower
because it needs to accumulate basis functions to be able to learn the optimal
policy. RBF nets and Kernel-SARSA(λ) reached an optimal policy in approxi-
mately the same number of episodes while tile coding needed many more. RBF
coding showed some instabilities much later on while memory efficient Kernel-
SARSA(λ) remained stable. Kernel-SARSA(λ) stores less than 150 samples, an
order of magnitude smaller than best performing tile coding.

Cart Pole: As can be seen in Figure 2 (middle) Kernel-SARSA(λ) clearly out-
performs both RBF nets and tile coding and learns to indefinitely balance the
pole after a very small number of episodes. Neither of the comparison meth-
ods learn to reliably balance the pole during the 100 episodes. Impressively,
Kernel-SARSA(λ) only stores a total of 60 samples in its representation of a
near-optimal policy.

Robot Navigation: We can see that Kernel-SARSA(λ) performs the best in the
long run from Figure 2 (bottom) and that for this problem, the other algorithms
are far less memory efficient by at least an order of magnitude as shown in
Figure 1 (bottom). While it takes a little while for Kernel-SARSA(λ) to collect
an appropriate set of kernel samples before asymptoting in memory, it appears
able to learn a better performing Q-function by the final episode.

Benefits of General λ. Figure 2 shows the time/reward for Kernel-SARSA(λ)
for varying values of λ on all three MDPs. The basic trend here is quite clear
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Fig. 1. Number of samples/basis functions vs. episode for all algorithms on
mountain car (top), cart pole (middle), and robot navigation (bottom) problems. Note
the vertical axis log scale on the top two plots.

— the best performing λ on all three domains satisfies .4 ≤ λ ≤ .8, which
indicates that both for a fast initial learning rate and good asymptotic learning
performance, the best λ /∈ {0, 1}. Even further we note that λ = 1 leads to poor
performance on all problems and λ = 0 leads to only mid-range performance in
general.
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Fig. 2. Average time per episode for all algorithms and standard error over 10
runs on mountain car (top), cart pole (middle) and moving average reward per
episode evaluated on the robot navigation (bottom)

Evaluation on Robot Navigation. When learning was complete in the sim-
ulator, learned Q-values were transferred to a Willow Garage PR2 robot, which
was given two paths to follow as described previously. These two paths are shown
in Figure 4, both demonstrating how well the agent has learned to navigate.
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Fig. 3. Average time per episode for Kernel-SARSA(λ) with various values
of λ on mountain car (top), cart pole (middle) and moving average reward per
episode evaluated on the robot navigation (bottom)

We note that the more kernel samples that are stored, the more irregu-
lar the function approximation surface may be. However, Kernel-SARSA(λ)’s
Projectron-based RKHS sparsification stored relatively few samples compared
to other algorithms as shown in Figure 5.2, leading to a smooth Q-value approx-
imation as exhibited in the smoothness of the navigation paths in Figure 4.
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Fig. 4. The ideal path (green), and the near-optimal path followed by Kernel-
SARSA(λ) (purple). Here we provided the robot a virtually straight path (top) and
a turn into a corridor (bottom).

6 Related Work

Both model-based and model-free approaches to using kernel methods in rein-
forcement learning have been proposed. In the model-based approaches, kernel-
ized regression is used to find approximate transition and reward models which
are used to obtain value function approximations. In the model-free approaches,
the task of finding an approximation of the value function through regression
is addressed directly as in Kernel-SARSA(λ). Gaussian Process kernel regres-
sion has been used for both approaches: [12, 8] studied the model-based setting
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and [6, 20] studied the model-free setting. [19, 18] took a direct approach to re-
placing the inner product with a kernel in LSTD, similar to our approach in
Kernel-SARSA(λ) but offline. An earlier approach at Kernel-Based Reinforce-
ment Learning [10] that calculated a value approximation offline was modified
by [7] into a model-based online approach. These approaches used kernels for
“local averaging” and can be viewed as a direct approach to kernelization. Equiv-
alence of previous kernel based approaches [20, 12, 18] to reinforcement learning
has been proven by [16] except for the manner of regularization. But crucially,,
all of the sparse, online, model-free approaches have failed to incorporate eligi-
bility traces for 0 < λ < 1 as we provided in the novel contribution of kernelized
SARSA(λ) in this paper — the first online kernelized SARSA(λ) algorithm to
show how kernelization can be extended to the eligibility trace.

7 Conclusion

We contributed the first online kernelized version of SARSA(λ) to permit arbi-
trary λ for 0 ≤ λ ≤ 1 with sparsification; this was made possible via a novel
kernelization of the eligibility trace maintained separately from the kernelized
value function. We showed the resulting algorithm was up to an order of mag-
nitude more memory-efficient than standard function approximation methods,
while learning performance was generally on par or better. We applied Kernel-
SARSA(λ) to a continuous state robotics domain and demonstrated that the
learned Q-values were smoothly and accurately approximated with little mem-
ory, leading to near-optimal navigation paths on a Willow Garage PR2 robot.
Importantly, we showed .4 < λ < .8 was crucial for optimal learning performance
on all test problems, emphasizing the importance of general λ for efficient on-
line kernelized RL in complex, nonlinear domains as contributed by the novel
kernelization and efficient projection of the eligibility trace in Kernel-SARSA(λ)
as introduced in this paper.
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Abstract. The ever-increasing amount of information flowing through
Social Media forces the members of these networks to compete for atten-
tion and influence by relying on other people to spread their message.
A large study of information propagation within Twitter reveals that
the majority of users act as passive information consumers and do not
forward the content to the network. Therefore, in order for individu-
als to become influential they must not only obtain attention and thus
be popular, but also overcome user passivity. We propose an algorithm
that determines the influence and passivity of users based on their infor-
mation forwarding activity. An evaluation performed with a 2.5 million
user dataset shows that our influence measure is a good predictor of URL
clicks, outperforming several other measures that do not explicitly take
user passivity into account. We demonstrate that high popularity does
not necessarily imply high influence and vice-versa.

1 Introduction

The explosive growth of Social Media has provided millions of people the op-
portunity to create and share content on a scale barely imaginable a few years
ago. Massive participation in these social networks is reflected in the countless
number of opinions, news and product reviews that are constantly posted and
discussed in social sites such as Facebook, Digg and Twitter, to name a few.
Given this widespread generation and consumption of content, it is natural to
target one’s messages to highly connected people who will propagate them fur-
ther in the social network. This is particularly the case in Twitter, which is one
of the fastest growing social networks on the Internet, and thus the focus of
advertising companies and celebrities eager to exploit this vast new medium. As
a result, ideas, opinions, and products compete with all other content for the
scarce attention of the user community. In spite of the seemingly chaotic fashion
with which all these interactions take place, certain topics manage to get an
inordinate amount of attention, thus bubbling to the top in terms of popularity
and contributing to new trends and to the public agenda of the community. How
this happens in a world where crowdsourcing dominates is still an unresolved
problem, but there is considerable consensus on the fact that two aspects of
information transmission seem to be important in determining which content
receives attention.

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 18–33, 2011.
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One aspect is the popularity and status of given members of these social
networks, which is measured by the level of attention they receive in the form of
followers who create links to their accounts to automatically receive the content
they generate. The other aspect is the influence that these individuals wield,
which is determined by the actual propagation of their content through the
network. This influence is determined by many factors, such as the novelty and
resonance of their messages with those of their followers and the quality and
frequency of the content they generate. Equally important is the passivity of
members of the network which provides a barrier to propagation that is often
hard to overcome. Thus gaining knowledge of the identity of influential and
least passive people in a network can be extremely useful from the perspectives
of viral marketing, propagating one’s point of view, as well as setting which
topics dominate the public agenda.

In this paper, we analyze the propagation of web links on Twitter over time
to understand how attention to given users and their influence is determined.
We devise a general model for influence using the concept of passivity in a social
network and develop an efficient algorithm similar to the HITS algorithm [14]
to quantify the influence of all the users in the network. Our influence measure
utilizes both the structural properties of the network as well as the diffusion
behavior among users. The influence of a user thus depends not only on the size
of the influenced audience, but also on their passivity. This differentiates our
measure of influence from earlier ones, which were primarily based on individual
statistical properties such as the number of followers or retweets [7].

We have shown through extensive evaluation that this influence model out-
performs other measures of influence such as PageRank, H-index, the number of
followers and the number of retweets. In addition, it has good predictive proper-
ties in that it can forecast in advance the upper bound on the number of clicks
a URL can get. We have also presented case studies showing the top influential
users uncovered by our algorithm. An important conclusion from the results is
that the correlation between popularity and influence is quite weak, with the
most influential users not necessarily being the ones with the highest popularity.
Additionally, when we considered nodes with high passivity, we found the major-
ity of them to be spammers and robot users. This demonstrates the applicability
of our algorithm to automatic user categorization and filtering of online content.

2 Related Work

The study of information and influence propagation in social networks has been
particularly active for a number of years in fields as disparate as sociology, com-
munication, marketing, political science and physics. Earlier work focused on
the effects that scale-free networks and the affinity of their members for certain
topics had on the propagation of information [6]. Others discussed the pres-
ence of key influentials [12,11,8,5] in a social network, defined as those who are
responsible for the overall information dissemination in the network. This re-
search highlighted the value of highly connected individuals as key elements in
the propagation of information through the network.
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Huberman et al. [2] studied the social interactions on Twitter to reveal that
the driving process for usage is a sparse hidden network underlying the friends
and followers, while most of the links represent meaningless interactions. Jansen
et al. [3] have examined Twitter as a mechanism for word-of-mouth advertising.
They considered particular brands and products and examined the structure of
the postings and the change in sentiments. Galuba et al. [4] propose a propa-
gation model that predicts, which users will tweet about which URLs based on
the history of past user activity.

There have also been earlier studies that focused on social influence and prop-
agation. Agarwal et al. [8] have examined the problem of identifying influential
bloggers in the blogosphere. They discovered that the most influential bloggers
were not necessarily the most active. Aral et al [9] have distinguished the effects
of homophily from influence as motivators for propagation. As to the study of
influence within Twitter, Cha et al. [7] have performed a comparison of three
different measures of influence - indegree, retweets and user mentions. They dis-
covered that while retweets and mentions correlated well with each other, the
indegree of users did not correlate well with the other two measures. Based on
this, they hypothesized that the number of followers may not a good measure
of influence. On the other hand, Weng et al [5] have proposed a topic-sensitive
PageRank measure for influence in Twitter. Their measure is based on the fact
that they observed high reciprocity among follower relationships in their dataset,
which they attributed to homophily. However, other work [7] has shown that the
reciprocity is low overall in Twitter and contradicted the assumptions of this
work.

3 Twitter

3.1 Background on Twitter

Twitter is an extremely popular online microblogging service, that has gained a
very large user base, consisting of more than 105 million users (as of April 2010).
The Twitter graph is a directed social network, where each user chooses to follow
certain other users. Each user submits periodic status updates, known as tweets,
that consist of short messages limited in size to 140 characters. These updates
typically consist of personal information about the users, news or links to content
such as images, video and articles. The posts made by a user are automatically
displayed on the user’s profile page, as well as shown to his followers.

A retweet is a post originally made by one user that is forwarded by another
user. Retweets are useful for propagating interesting posts and links through the
Twitter community.

Twitter has attracted lots of attention from corporations for the immense
potential it provides for viral marketing. Due to its huge reach, Twitter is in-
creasingly used by news organizations to disseminate news updates, which are
then filtered and commented on by the Twitter community. A number of busi-
nesses and organizations are using Twitter or similar micro-blogging services to
advertise products and disseminate information to stockholders.
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3.2 Dataset

Twitter provides a Search API for extracting tweets containing particular key-
words. To obtain the dataset for this study, we continuously queried the Twitter
Search API for a period of 300 hours starting on 10 Sep 2009 for all tweets con-
taining the string http. This allowed us to acquire a complete stream of all the
tweets that contain URLs. We estimated the 22 million we accumulated to be
1/15th of the entire Twitter activity at that time. From each of the accumulated
tweets, we extracted the URL mentions. Each of the unique 15 million URLs in
the dataset was then checked for valid formatting and the URLs shortened via
the services such as bit.ly or tinyurl.com were expanded into their original
form by following the HTTP redirects. For each encountered unique user ID,
we queried the Twitter API for metadata about that user and in particular the
user’s followers and followees. The end result was a dataset of timestamped URL
mentions together with the complete social graph for the users concerned.

User graph. The user graph contains those users whose tweets appeared in the
stream, i.e., users that during the 300 hour observation period posted at least
one public tweet containing a URL. The graph does not contain any users who
do not mention any URLs in their tweets or users that have chosen to make their
Twitter stream private.

For each newly encountered user ID, the list of followed users was only fetched
once. Our dataset does not capture the changes occurring in the user graph over
the observation period.

4 The IP Algorithm

Evidence for passivity. The users that receive information from other users
may never see it or choose to ignore it. We have quantified the degree to which
this occurs on Twitter (Fig. 1). An average Twitter user retweets only one in 318
URLs, which is a relatively low value. The retweeting rates vary widely across
the users and the small number of the most active users play an important role
in spreading the information in Twitter. This suggests that the level of user
passivity should be taken into account for the information spread models to be
accurate.

Assumptions. Twitter is used by many people as a tool for spreading their
ideas, knowledge, or opinions to others. An interesting and important question is
whether it is possible to identify those users who are very good at spreading their
content, not only to those who choose to follow them, but to a larger part of the
network. It is often fairly easy to obtain information about the pairwise influence
relationships between users. In Twitter, for example, one can measure how much
influence user A has on user B by counting the number of times B retweeted A.
However, it is not very clear how to use the pairwise influence information to
accurately obtain information about the relative influence each user has on the
whole network. To answer this question, we design an algorithm (IP) that assigns
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Fig. 1. Evidence for the Twitter user passivity. We measure passivity by two
metrics: 1. the user retweeting rate and 2. the audience retweeting rate. The user
retweeting rate is the ratio between the number of URLs that user i decides to retweet
to the total number of URLs user i received from the followed users. The audience
retweeting rate is the ratio between the number of user i’s URLs that were retweeted
by i’s followers to the number of times a follower of i received a URL from i.

a relative influence score and a passivity score to every user. The passivity of
a user is a measure of how difficult it is for other users to influence him. Since
we found evidence that users on Twitter are generally passive, the algorithm
takes into account the passivity of all the people influenced by a user, when
determining the user’s influence. In other words, we assume that the influence
of a user depends on both the quantity and the quality of the audience she
influences. In general, our model makes the following assumptions:

1. A user’s influence score depends on the number of people she influences as
well as their passivity.

2. A user’s influence score depends on how dedicated the people she influences
are. Dedication is measured by the amount of attention a user pays to a
given one as compared to everyone else.

3. A user’s passivity score depends on the influence of those who she’s exposed
to but not influenced by.

4. A user’s passivity score depends on how much she rejects other user’s influ-
ence compared to everyone else.

Operation. The algorithm iteratively computes both the passivity and influence
scores simultaneously in the following way:

Given a weighted directed graph G = (N, E, W ) with nodes N , arcs E, and
arc weights W , where the weights wij on arc e = (i, j) represent the ratio of
influence that i exerts on j to the total influence that i attempted to exert on j,
the IP algorithm outputs a function I : N → [0, 1], which represents the node’s
relative influence on the network, and a function P : N → [0, 1] which represents
the node’s relative passivity.

For everyarc e = (i, j) ∈ E,wedefine theacceptance rate byuij =
wi,j∑

k:(k,j)∈E

wkj

.

This value represents the amount of influence that user j accepted from user i
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Algorithm 1. The Influence-Passivity (IP) algorithm

I0 ← (1, 1, . . . , 1) ∈ R|N|;
P0 ← (1, 1, . . . , 1) ∈ R|N|;
for i = 1 to m do

Update Pi using operation (2) and the values Ii−1;
Update Ii using operation (1) and the values Pi;
for j = 1 to |N | do

Ij =
Ij∑

k∈N

Ik

;

Pj =
Pj∑

k∈N

Pk

;

end

end
Return (Im, Pm);

normalized by the total influence accepted by j from all users in the network.
The acceptance rate can be viewed as the dedication or loyalty user j has to
user i. On the other hand, for every e = (j, i) ∈ E we define the rejection rate

by vji =
1 − wji∑

k:(j,k)∈E

(1 − wjk)
. Since the value 1 − wji is the amount of influence

that user i rejected from j, then the value vji represents the influence that user
i rejected from user j normalized by the total influence rejected from j by all
users in the network.

The algorithm is based on the following operations:

Ii ←
∑

j:(i,j)∈E

uijPj (1)

Pi ←
∑

j:(j,i)∈E

vjiIj (2)

Each term on the right hand side of the above operations corresponds to one of
the listed assumptions. In operation 1, the term Pj corresponds to assumption
1 and the term uij corresponds to assumption 2. In operation 2, the term Ij

corresponds to assumption 3 and the term vji corresponds to assumption 4. The
Influence-Passivity algorithm (Algorithm 1) takes the graph G as the input and
computes the influence and passivity for each node in m iterations.

The IP algorithm is similar to the HITS algorithm for finding authoritative
web pages and hubs that link to them [14]. The passivity score corresponds to
the authority score, and the influence corresponds to hub score. However, IP is
different from HITS in that it operates on a weighted graph and it takes into
account other properties of the network such as those referred to as ”acceptance
rate” and ”rejection rate.”
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Generating the input graph. There are many ways of defining the influence
graph G = (N, E, W ). We construct it by taking into account retweets and the
follower graph in the following way: The nodes are users who tweeted at least 3
URLs. The arc (i, j) exists if user j retweeted a URL posted by user i at least once.
The arc e = (i, j) has weight we = Sij

Qi
where Qi is the number of URLs that i

mentioned and Sij is the number of URLs mentioned by i and retweeted by j.

5 Evaluation

5.1 Computations

Based on the obtained dataset (§3.2) we generate the weighted graph using the
method described in §4. The graph consists of approximately 450k nodes and 1
million arcs with mean weight of 0.07, and we use it to compute the PageRank,
influence and passivity values for each node. The Influence-Passivity algorithm
(Algorithm §1) converges to the final values in tens of iterations (Fig. 2).

PageRank. The PageRank algorithm has been widely used to rank web pages
as well as people based on their authority and influence [13]. In order to compare
it with the results from the IP algorithm, we compute PageRank on the weighted
graph G = (N, E, W ) with a small change. First, since the arcs e = (i, j) ∈ E
indicate that user i exerts some influence on user j then we invert all the arcs
before running PageRank on the graph while leaving the weights intact. In other
words, we generate a new graph G′ = (N ′, E′, W ′) where N ′ = N , E′ = {(i, j) :
(j, i) ∈ E}, and for each (i, j) ∈ E′ we define w′

ij = wji. This generates a new
graph G′ analogous to G but where the influenced users point to their influencers.
Second, since the graph G′ is weighted we assume that when the the random
surfer of the PageRank algorithm is currently at the node i, she chooses to visit

node j next with probability
w′

ij∑
k:(i,k)∈E′

w′
ik

.
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Fig. 2. IP-algorithm convergence. In each iteration we measure the sum of all the
absolute changes of the computed influence and passivity values since the previous
iteration.
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The Hirsch Index. The Hirsch index (or H-index) is used in the scientific
community in order to measure the productivity and impact of a scientist. A
scientist has index h if he has published h articles which have been cited at
least h times each. It has been shown that the H-index is a good indicator of
whether a scientist has had high achievements such as getting the Nobel prize
[16]. Analogously, in Twitter, a user has index h if h of his URL posts have been
retweeted at least h times each.

5.2 Influence as a Correlate of Attention

Any measure of influence is necessarily a subjective one. However, in this case,
a good measure of influence should have a high predictive power on how well
the URLs mentioned by the influential users attract attention and propagate
in the social network. We would expect the URLs that highly influential users
propagate to attract a lot of attention and user clicks. Thus, a viable estimator
of attention is the number of times a URL has been accessed.

Click data. Bit.ly is a URL shortening service that for each shortened URL
keeps track of how many times it has been accessed. There are 3.2M unique
Bit.ly URLs in the tweets from our dataset. We have queried the Bit.ly API for
the number of clicks the service has registered on each URL.

A URL my be shortened by a user who has a Bit.ly account. Each such short-
ening is assigned a unique per-user Bit.ly URL. To account for that we took the
“global clicks” number returned by the API instead of the “user clicks” numbers.
The “global clicks” number sums the clicks across all the Bit.ly shortenings of a
given URL and across all the users.

URL traffic Prediction. Using the URL click data, we take several different
user attributes and test how well they can predict the attention the URLs posted
by the users receive (Fig. 3). It is important to note that none of the influence
measures are capable of predicting the exact number of clicks. The main reason
for this is that the amount of attention a URL gets is not only a function of
the influence of the users mentioning it, but also of many other factors includ-
ing the virality of the URL itself and more importantly, whether the URL was
mentioned anywhere outside of Twitter, which is likely to be the biggest source
of unpredictability in the click data.

The wide range of factors potentially affecting the Bit.ly clicks may prevent
us from predicting their number accurately. However, the upper bound on that
number can to a large degree be predicted. To eliminate the outlier cases, we ex-
amined how the 99.9th percentile of the clicks varied as the measure of influence
increased.

Number of followers. The most readily available and often used by the Twit-
terers measure of influence is the number of followers a user has. As the
Figure 3(a) shows, the number of followers of an average poster of a given URL
is a relatively weak predictor of the maximum number of clicks that the URL
can receive, with an R2 value of 0.59.
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(a) Average number of followers vs. num-
ber of clicks on URLs
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(b) Average number of times users were
retweeted vs. number of clicks on URLs
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(c) Average user PageRank vs. number
of clicks on URLs
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(d) Average user H-index vs. number of
clicks on URLs

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

average IP-influence of the posting users

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

#
 b

it
.l
y
 c

li
c
k
s

R
2
=0.95

10

100

1000

10000

#
u
rl

s

(e) Average user IP-influence vs. num-
ber of clicks on URLs, using the retweet
graph as input
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(f) Average user IP-influence vs. number
of clicks on URLs, using the co-mention
graph as input

Fig. 3. We consider several user attributes: the number of followers, the number of
times a user has been retweeted, the user’s PageRank, H-index and IP-influence. For
each of the 3.2M Bit.ly URLs we compute the average value of a user’s attribute among
all the users that mentioned that URL. This value becomes the x coordinate of the
URL-point; the y coordinate is the number of clicks on the Bit.ly URL. The density
of the URL-points is then plotted for each of the four user attributes. The solid line in
each figure represents the 99.9th percentile of Bit.ly clicks at a given attribute value.
The dotted line is the linear regression fit for the solid line with the fit’s R2 and slope
displayed beside it.
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Number of retweets. When users post URLs, their posts might be retweeted
by other users. Each retweet explicitly credits the original poster of the URL
(or the user from whom the retweeting user heard about the URL). The number
of times a user has been credited in a retweet has been assumed to be a good
measure of influence [7]. However, Figure 3(b) shows that the number of times
a user has been retweeted in the past is an extremely poor predictor of the
maximum number of clicks the URLs posted by that user can get.

The Hirsch Index. Figure 3(d) shows that despite the fact that in the scientific
community the H-index is used as a good predictor of scientific achievements, in
Twitter, it has very low correlation with URL popularity (R2 of 0.05). This may
reflect the fact that attention in the scientific community plays a symmetric role,
since those who pay attention to the work of others also seek it from the same
community. Thus, citations play a strategic role in the successful publishing of
papers, since the expectation of authors is that referees and authors will demand
attention to their work and those of their colleagues. Within Social Media such
symmetry does not exist and thus the decision to forward a message to the
network lacks this particularly strategic value.

PageRank. Figure 3(c) shows that the average PageRank of those who tweet
a certain URL is a much better predictor of the URL’s traffic than the average
number of followers, retweets, or Hirsch index. The reason for the improvement
could be explained by the fact that PageRank takes into account structural
properties of the graph as opposed to individual measures of the users. However,
figure 3(c) also shows that IP influence is a better indicator of URL popular-
ity than PageRank. One of the main differences between the IP algorithm and
PageRank is that the IP algorithm takes into account the passivity of the people
a user influences and PageRank does not. This suggests that influencing users
who are difficult to influence, as opposed to simply influencing many users, has
a positive impact on the eventual popularity of the message that a user tweets.

IP-Influence score. As we can see in Figure 3(e), the average IP-influence
of those who tweeted a certain URL can determine the maximum number of
clicks that a URL will get with good accuracy, achieving an R2 score of 0.95.
Since the URL clicks are never considered by the IP algorithm to compute the
user’s influence, the fact that we find a very clear connection between average
IP-influence and the eventual popularity of the URLs (measured by clicks) serves
as an unbiased evaluation of the algorithm and demonstrates the utility of IP-
influence. For example, as we can see in Figure 3(e), given a group of users
having very large average IP-influence scores who post a URL we can estimate,
with 99.9% certainty, that this URL will not receive more than 100, 000 clicks.
On the other hand, if a group of users with very low average IP-influence score
post the same URL we can estimate, with 99.9% certainty that the URL will
not receive more than 100 clicks.

Furthermore, figure 4 shows that a user’s IP-influence is not well correlated
with the number of followers she has. This reveals interesting implications about
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Fig. 5. The correlation between the IP-influence values computed based on two in-
puts: the co-mention influence graph and the retweet influence graph. The correlation
between the two influence values is 0.06.

the relationship between a person’s popularity and the influence she has on other
people. In particular, it shows that having many followers on Twitter does not
directly imply the power to influence them to click on a URL.

In the above experiments, we have used the average number of followers,
retweets, PageRank, H-Index, and IP-influence of the users who posted a URL to
predict the URL’s traffic. We examined other choices such as using the maximum
number instead of the average, and obtained similar results.

6 IP Algorithm Adaptability

As mentioned earlier (§4) there are many ways of defining a social graph in
which the edges indicate pairwise influence. We have so far been using the graph
based on which user retweeted which user (retweet influence graph). However, the
explicit signals of influence such as retweets are not always available. One way
of overcoming this obstacle is to use other, possibly weaker, signals of influence.
In the case of Twitter, we can define an influence graph based on mentions of
URLs without regard of actual retweeting in the following way.

The co-mention graph. The nodes of the co-mention influence graph are users
who tweeted at least three URLs. The edge (i, j) exists if user j follows user i
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and j mentioned at least one URL that i had previously mentioned. The edge
e = (i, j) has weight we = Sij

Fij+Sij
where Fij is the number of URLs that i

mentioned and j never did and Sij is the number of URLs mentioned by j and
previously mentioned by i.

The resulting graph has the disadvantage that the edges are based on a much
less explicit notion of influence than when based on retweets. Therefore the
graph could have edges between users who do not influence each other. On the
other hand, the retweeting conventions on Twitter are not uniform and therefore
sometimes users who repost a URL do not necessarily credit the correct source
of the URL with a retweet [15]. Hence, the influence graph based on retweets
has potentially missing edges.

Since the IP algorithm has the flexibility of allowing any influence graph as
input, we can compute the influence scores of the users based on the co-mention
influence graph and compare with the results obtained from the retweet influence
graph. As we can see in Figure 3(f), we find that the retweet graph yields influ-
ence scores that are better at predicting the maximum number of clicks a URL
will obtain than the co-mention influence graph. Nevertheless, Figure 3(f) shows
that the influence values obtained from the co-mention influence graph are still
better at predicting URL traffic than other measures such as PageRank, number
of followers, H-index or the total number of times a user has been retweeted.
Furthermore, Figure 5 shows that the influence score based on both graphs do
not correlate well, which suggests that considering explicit vs. implicit signals of
influence can change the outcome of the IP algorithm, while at the same time
maintaining its predictive value. In general, we find that the explicitness of the
signal provided by the retweets yields slightly better results when it comes to
predicting URL traffic, however, the influence scores based on co-mentions may
surface a different set of potentially influential users.

7 Case Studies

As we mentioned earlier, one important application of the IP algorithm is ranking
users by their relative influence. In this section, we present a series of rankings
of Twitter users based on the influence, passivity, and number of followers.

The most influential. Table 1 shows the users with the most IP-influence in
the network. We constrain the number of URLs posted to 10 to obtain this list,
which is dominated by news services from politics, technology, and Social Media.
These users post many links which are forwarded by other users, causing their
influence to be high.

The most passive. Table 2 shows the users with the most IP-passivity in the
network. Passive users are those who follow many people, but retweet a very
small percentage of the information they consume. Interestingly, robot accounts
(which automatically aggregate keywords or specific content from any user on
the network), suspended accounts (which are likely to be spammers), and users
who post extremely often are among the users with the most IP-passivity. Since
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Table 1. Users with the most IP-influence (with at least 10 URLs posted in the period)

mashable Social Media Blogger
jokoanwar Film Director
google Google
aplusk Actor Ashton Kutcher
syfy Science Fiction Channel
smashingmag Online Developer Magazine
michellemalkin Conservative Commentator
theonion News Satire Organization
rww Tech/Social Media Blogger
breakingnews News Aggregator

Table 2. Users with the most IP-passivity

redscarebot Keyword Aggregator
drunk bot Suspended
tea robot Keyword Aggregator
condos Listing Aggregator
wootboot Suspended
raybeckerman Attorney
hashphotography Keyword Aggregator
charlieandsandy Suspended
ms defy Suspended
rpattinsonbot Keyword Aggregator

robots ”attend” to all existing tweets and only retweet certain ones, the percent-
age of information they forward from other users is actually very small. This
explains why the IP-algorithm assigns them such high passivity scores. This
also highlights a new application of the IP-algorithm: automatic identification
of robot users including aggregators and spammers.

The least influential with many followers. We have demonstrated that the
amount of attention a person gets may not be a good indicator of the influence
they have in spreading their message. In order to make this point more explicit,
we show, in Table 3, some examples of users who are followed by many people
but have relatively low influence. These users are very popular and have the
attention of millions of people but are not able to spread their message very far.
In most cases, their messages are consumed by their followers but not considered
important enough to forward to others.

The most influential with few followers. We are also able identify users
with very low number of followers but high influence. Table 4 shows the users
with the most influence who rank less that 100, 000th in number of followers.
We find that during the data collection period some of the users in this category
ran very successful retweeting contests where users who retweeted their URLs
would have the chance of winning a prize. Moreover, there is a group of users
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Table 3. Users with many followers and low relative influence

User name Category Rank by # followers Rank by IP-influence

thatkevinsmith Screen Writer 33 1000
nprpolitics Political News 41 525
eonline TV Channel 42 1008
marthastewart Television Host 43 1169
nba Sports 64 1041
davidgregory Journalist 106 3630
nfl Sports 110 2244
cbsnews News Channel 114 2278
jdickerson Journalist 147 4408
newsweek News Magazine 148 756

Table 4. Users with very few followers but high relative influence

User name Category Rank by # followers Rank by IP-influence

cashcycle Retweet Contest 153286 13
mobiliens Retweet Contest 293455 70
jadermattos Twitdraw 227934 134
jaum Twitdraw 404385 143

robmillerusmc Congressional Candidate 147803 145
sitekulite Twitdraw 423917 149
jesse sublett Musician 385265 151
cyberaurora Tech News Website 446207 163
viveraxo Twitdraw 458279 165
fireflower Political Cartoons 452832 195

who post from twitdraw.com, a website where people can make drawings and
post them on Twitter. Even though these users don’t have many followers, their
drawings are of very high quality and spread throughout Twitter reaching many
people. Other interesting users such as local politicians and political cartoonists
are also found in the list. The IP-influence measure surfaces interesting content
posted by users who would otherwise be buried by popularity rankings such as
number of followers.

8 Discussion

Influence as predictor of attention. As we demonstrated in §5, the IP-
influence of the users is an accurate predictor of the upper bound on the total
number of clicks they can get on the URLs they post. The input to the influence
algorithm is a weighted graph, where the arc weights represent the influence of
one user over another. This graph can be derived from the user activity in many
ways, even in cases where explicit feedback in the form of retweets or “likes” is
not available (§6).
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Topic-based and group-based influence. The Influence-Passivity algorithm
can be run on a subpgraph of the full graph or on the subset of the user activity
data. For example, if only users tweeting about a certain topic are part of the
graph, the IP-influence determines the most influential users in that topic. It is
an open question whether the IP algorithm would be equally accurate at different
graph scales.

Content ranking. The predictive power of IP-influence can be used for content
filtering and ranking in order to reveal content that is most likely to receive
attention based on which users mentioned that content early on. Similarly, as in
the case of users, this can be computed on a per-topic or per-user-group basis.

Content filtering. We have observed from our passivity experiments that
highly passive users tend to be primarily robots or spammers. This leads to
an interesting extension of this work to perform content filtering, limiting the
tweets to influential users and thereby reducing spam in Twitter feeds.

Influence dynamics. We have computed the influence measures over a fixed
300-hour window. However, the Social Media are a rapidly changing, real-time
communication platform. There are several implications of this. First, the IP
algorithm would need to be modified to take into account the tweet timestamps.
Second, the IP-influence itself changes over time, which brings a number of in-
teresting questions about the dynamics of influence and attention. In particular,
whether users with spikes of IP-influence are overall more influential than users
who can sustain their IP-influence over time is an open question.

9 Conclusion

Given the mushrooming popularity of Social Media, vast efforts are devoted by
individuals, governments and enterprises to getting attention to their ideas, poli-
cies, products, and commentary through social networks. But the very large scale
of the networks underlying Social Media makes it hard for any of these topics
to get enough attention in order to rise to the most trending ones. Given this
constraint, there has been a natural shift on the part of the content generators
towards targeting those individuals that are perceived as influential because of
their large number of followers. This study shows that the correlation between
popularity and influence is weaker than it might be expected. This is a reflection
of the fact that for information to propagate in a network, individuals need to
forward it to the other members, thus having to actively engage rather than
passively read it and rarely act on it. Moreover, since our measure of influence is
not specific to Twitter it is applicable to many other social networks. This opens
the possibility of discovering influential individuals within a network which can
on average have a further reach than others in the same medium, regardless of
their popularity.
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Abstract. We state the problem of inverse reinforcement learning in
terms of preference elicitation, resulting in a principled (Bayesian) sta-
tistical formulation. This generalises previous work on Bayesian inverse
reinforcement learning and allows us to obtain a posterior distribution
on the agent’s preferences, policy and optionally, the obtained reward
sequence, from observations. We examine the relation of the resulting
approach to other statistical methods for inverse reinforcement learning
via analysis and experimental results. We show that preferences can be
determined accurately, even if the observed agent’s policy is sub-optimal
with respect to its own preferences. In that case, significantly improved
policies with respect to the agent’s preferences are obtained, compared to
both other methods and to the performance of the demonstrated policy.

Keywords: Inverse reinforcement learning, preference elicitation, deci-
sion theory, Bayesian inference.

1 Introduction

Preference elicitation is a well-known problem in statistical decision theory [10].
The goal is to determine, whether a given decision maker prefers some events to
other events, and if so, by how much. The first main assumption is that there
exists a partial ordering among events, indicating relative preferences. Then
the corresponding problem is to determine which events are preferred to which
others. The second main assumption is the expected utility hypothesis. This
posits that if we can assign a numerical utility to each event, such that events
with larger utilities are preferred, then the decision maker’s preferred choice from
a set of possible gambles will be the gamble with the highest expected utility. The
corresponding problem is to determine the numerical utilities for a given decision
maker.

Preference elicitation is also of relevance to cognitive science and behavioural
psychology, e.g. for determining rewards implicit in behaviour [19] where a proper
elicitation procedure may allow one to reach more robust experimental conclu-
sions. There are also direct practical applications, such as user modelling for
determining customer preferences [3]. Finally, by analysing the apparent prefer-
ences of an expert while performing a particular task, we may be able to discover
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behaviours that match or even surpass the performance of the expert [1] in the
very same task.

This paper uses the formal setting of preference elicitation to determine the
preferences of an agent acting within a discrete-time stochastic environment. We
assume that the agent obtains a sequence of (hidden to us) rewards from the en-
vironment and that its preferences have a functional form related to the rewards.
We also suppose that the agent is acting nearly optimally (in a manner to be
made more rigorous later) with respect to its preferences. Armed with this infor-
mation, and observations from the agent’s interaction with the environment, we
can determine the agent’s preferences and policy in a Bayesian framework. This
allows us to generalise previous Bayesian approaches to inverse reinforcement
learning.

In order to do so, we define a structured prior on reward functions and policies.
We then derive two different Markov chain procedures for preference elicitation.
The result of the inference is used to obtain policies that are significantly im-
proved with respect to the true preferences of the observed agent. We show that
this can be achieved even with fairly generic sampling approaches.

Numerous other inverse reinforcement learning approaches exist [1, 18, 20, 21].
Our main contribution is to provide a clear Bayesian formulation of inverse rein-
forcement learning as preference elicitation, with a structured prior on the agent’s
utilities and policies. This generalises the approach of Ramachandran and Amir
[18] and paves the way to principled procedures for determining distributions on
reward functions, policies and reward sequences. Performance-wise, we show that
the policies obtained through our methodology easily surpass the agent’s actual
policy with respect to its own utility. Furthermore, we obtain policies that are
significantly better than those obtained with other inverse reinforcement learning
methods that we compare against.

Finally, the relation to experimental design for preference elicitation (see [3]
for example) must be pointed out. Although this is a very interesting planning
problem, in this paper we do not deal with active preference elicitation. We
focus on the sub-problem of estimating preferences given a particular observed
behaviour in a given environment and use decision theoretic formalisms to derive
efficient procedures for inverse reinforcement learning.

This paper is organised as follows. The next section formalises the prefer-
ence elicitation setting and relates it to inverse reinforcement learning. Section 3
presents the abstract statistical model used for estimating the agent’s prefer-
ences. Section 4 describes a model and inference procedure for joint estimation
of the agent’s preferences and its policy. Section 5 discusses related work in more
detail. Section 6 presents comparative experiments, which quantitatively exam-
ine the quality of the solutions in terms of both preference elicitation and the
estimation of improved policies, concluding with a view to further extensions.

2 Formalisation of the Problem

We separate the agent’s preferences (which are unknown to us) from the environ-
ment’s dynamics (which we consider known). More specifically, the environment
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is a controlled Markov process ν = (S,A, T ), with state space S, action space
A, and transition kernel T = { τ(· | s, a) : s ∈ S, a ∈ A}, indexed in S ×A such
that τ(· | s, a) is a probability measure1 on S. The dynamics of the environment
are Markovian: If at time t the environment is in state st ∈ S and the agent
performs action at ∈ A, then the next state st+1 is drawn with a probability
independent of previous states and actions:

Pν(st+1 ∈ S | st, at) = τ(S | st, at), S ⊂ S, (2.1)

where we use the convention st ≡ s1, . . . , st and at ≡ a1, . . . , at to represent
sequences of variables.

In our setting, we have observed the agent acting in the environment and
obtain a sequence of actions and a sequence of states:

D � (aT , sT ), aT ≡ a1, . . . , aT , sT ≡ s1, . . . , sT .

The agent has an unknown utility function, Ut, according to which it selects
actions, which we wish to discover. Here, we assume that Ut has a structure cor-
responding to that of reinforcement learning infinite-horizon discounted reward
problems and that the agent tries to maximise the expected utility.

Assumption 1. The agent’s utility at time t is the total γ-discounted return
from time t:

Ut �
∞∑

k=t

γkrk, (2.2)

where γ ∈ [0, 1] is a discount factor, and the reward rt is given by the (stochastic)
reward function ρ so that rt | st = s, at = a ∼ ρ(· | s, a), (s, a) ∈ S ×A.

This choice establishes correspondence with the standard reinforcement learning
setting.2 The controlled Markov process and the utility define a Markov decision
process [16] (MDP), denoted by μ = (S,A, T , ρ, γ). The agent uses some policy
π to select actions with distribution π(at | st), which together with the Markov
decision process μ defines a Markov chain on the sequence of states, such that:

Pμ,π(st+1 ∈ S | st) =
∫
A

τ(S | a, st) dπ(a | st), (2.3)

where we use a subscript to denote that the probability is taken with respect
to the process defined jointly by μ, π. We shall use this notational convention
throughout this paper. Similarly, the expected utility of a policy π is denoted by
Eμ,π Ut. We also introduce the family of Q-value functions

{
Qπ

μ : μ ∈ M, π ∈ P
}
,

where M is a set of MDPs, with Qπ
μ : S ×A → � such that:

Qπ
μ(s, a) � Eμ,π (Ut | st = s, at = a) . (2.4)

1 We assume the measurability of all sets with respect to some appropriate σ-algebra.
2 In our framework, this is only one of the many possible assumptions regarding the

form of the utility function. As an alternative example, consider an agent who collects
gold coins in a maze with traps, and with a utility equal to the logarithm of the
number of coins if it exists the maze, and zero otherwise.
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Finally, we use Q∗
μ to denote the optimal Q-value function for an MDP μ, such

that:
Q∗

μ(s, a) = sup
π∈P

Qπ
μ(s, a), ∀s ∈ S, a ∈ A. (2.5)

With a slight abuse of notation, we shall use Qρ when we only need to distinguish
between different reward functions ρ, as long as the remaining components of μ
remain fixed.

Loosely speaking, our problem is to estimate the reward function ρ and dis-
count factor γ that the agent uses, given the observations sT , aT and some prior
beliefs. As shall be seen in the sequel, this task is easier with additional assump-
tions on the structural form of the policy π. We derive two sampling algorithms.
The first estimates a joint posterior distribution on the policy and reward func-
tion, while the second also estimates a distribution on the sequence of rewards
that the agent obtains. We then show how to use those estimates in order to
obtain a policy that can perform significantly better than that of the agent’s
original policy with respect to the agent’s true preferences.

3 The Statistical Model

In the simplest version of the problem, we assume that γ, ν are known and we
only estimate the reward function, given some prior over reward functions and
policies. This assumption can be easily relaxed, via an additional prior on the
discount factor γ and CMP ν. Let R be a space of reward functions ρ and P
to be a space of policies π. We define a (prior) probability measure ξ(· | ν) on
R such that for any B ⊂ R, ξ(B | ν) corresponds to our prior belief that the
reward function is in B. Finally, for any reward function ρ ∈ R, we define a
conditional probability measure ψ(· | ρ, ν) on the space of policies P . Let ρa, πa

denote the agent’s true reward function and policy respectively. The joint prior
on reward functions and policies is denoted by:

φ(P, R | ν) �
∫

R

ψ(P | ρ, ν) dξ(ρ | ν), P ⊂ P , R ⊂ R, (3.1)

such that φ(· | ν) is a probability measure on R × P . We define two models,
depicted in Figure 1. The basic model, shown in Figure 1(a), is defined as follows:

ρ ∼ ξ(· | ν), π | ρa = ρ ∼ ψ(· | ρ, ν),

We also introduce a reward-augmented model, where we explicitly model the
rewards obtained by the agent, as shown in Figure 1(b):

ρ ∼ ξ(· | ν), π | ρa = ρ ∼ ψ(· | ρ, ν), rt | ρa = ρ, st = s, at = a ∼ ρ(· | s, a).

For the moment we shall leave the exact functional form of the prior on the re-
ward functions and the conditional prior on the policy unspecified. Nevertheless,
the structure allows us to state the following:
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ξ

ψ

ρ

π

D

(a) Basic model

ξ

ψ

ρ

π rT

D

(b) Reward-augmented model

Fig. 1. Graphical model, with reward priors ξ and policy priors ψ, while ρ and π are
the reward and policy, where we observe the demonstration D. Dark colours denote
observed variables and light denote latent variables. The implicit dependencies on ν
are omitted for clarity.

Lemma 1. For a prior of the form specified in (3.1), and given a controlled
Markov process ν and observed state and action sequences sT , aT , where the
actions are drawn from a reactive policy π, the posterior measure on reward
functions is:

ξ(B|sT , aT , ν) =

∫
B

∫
P π(aT |sT ) dψ(π|ρ, ν) dξ(ρ|ν)∫

R
∫
P π(aT |sT ) dψ(π|ρ, ν) dξ(ρ|ν)

, (3.2)

where π(aT | sT ) =
∏T

t=1 π(at|st).

Proof. Conditioning on the observations sT , aT via Bayes’ theorem, we obtain
the conditional measure:

ξ(B | sT , aT , ν) =

∫
B

ψ(sT , aT | ρ, ν) dξ(ρ | ν)∫
R ψ(sT , aT | ρ, ν) dξ(ρ | ν)

, (3.3)

where ψ(sT , aT | ρ, ν) �
∫
P Pν,π(sT , aT ) dψ(π | ρ, ν) is a marginal likelihood

term. It is easy to see via induction that:

Pν,π(sT , aT ) =
T∏

t=1

π(at | st)τ(st | at−1, st−1), (3.4)

where τ(s1 | a0, s0) = τ(s1) is the initial state distribution. Thus, the reward
function posterior is proportional to:∫

B

∫
P

T∏
t=1

π(at|st)τ(st|at−1, st−1) dψ(π|ρ, ν) dξ(ρ|ν).

Note that the τ(st|at−1, st−1) terms can be taken out of the integral. Since they
also appear in the denominator, the state transition terms cancel out. ��

4 Estimation

While it is entirely possible to assume that the agent’s policy is optimal with
respect to its utility (as is done for example in [1]), our analysis can be made
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more interesting by assuming otherwise. One simple idea is to restrict the policy
space to stationary soft-max policies:

πη(at | st) =
exp(ηQ∗

μ(st, at))∑
a exp(ηQ∗

μ(st, a))
, (4.1)

where we assumed a finite action set for simplicity. Then we can define a prior on
policies, given a reward function, by specifying a prior on the inverse temperature
η, such that given the reward function and η, the policy is uniquely determined.3

For the chosen prior (4.1), inference can be performed using standard Markov
chain Monte Carlo (MCMC) methods [5]. If we can estimate the reward function
well enough, we may be able to obtain policies that surpass the performance of
the original policy πa with respect to the agent’s reward function ρa.

Algorithm 1. MH: Direct Metropolis-Hastings sampling from the joint distri-
bution φ(π, ρ | aT , sT ).
1: for k = 1, . . . do
2: ρ̃ ∼ ξ(ρ | ν).
3: η̃ ∼ Gamma(ζ, θ)
4: π̃ = Softmax (ρ̃, η̃, τ )
5: p̃ = Pν,π̃(sT , aT )/[ξ(ρ | ν)fGamma(η̃; ζ, θ)].
6: w.p. min

{
1, p̃/p(k−1)

}
do

7: π(k) = π̃, η(k) = η̃, ρ(k) = ρ̃, p(k) = p̃.
8: else
9: π(k) = π(k−1), η(k) = η(k−1), ρ(k) = ρ(k−1), p(k) = p(k−1).

10: done
11: end for

4.1 The Basic Model: A Metropolis-Hastings Procedure

Estimation in the basic model (Fig. 1(a)) can be performed via a Metropolis-
Hastings (MH) procedure. Recall that performing MH to sample from some
distribution with density f(x) using a proposal distribution with conditional
density g(x̃ | x), has the form:

x(k+1) =

{
x̃, w.p. min

{
1,

f(x̃)/g(x̃|x(k))

f(x(k))/g(x(k)|x̃)

}
x(k), otherwise.

In our case, x = (ρ, π) and f(x) = φ(ρ, π | sT , aT , ν).4 We use independent pro-
posals g(x) = φ(ρ, π|ν). As φ(ρ, π|sT , aT , ν) = φ(sT , aT |ρ, π, ν)φ(ρ, π)/φ(sT , aT ),
it follows that:
3 Our framework’s generality allows any functional form relating the agent’s pref-

erences and policies. As an example, we could define a prior distribution over the
ε-optimality of the chosen policy, without limiting ourselves to soft-max forms. This
would of course change the details of the estimation procedure.

4 Here we abuse notation, using φ(ρ, π | ·) to denote the density or probability function
with respect to a Lebesgue or counting measure associated with the probability
measure φ(B | ·) on subsets of R×P .
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φ(ρ̃, π̃ | sT , aT , ν)
φ(ρ, π | sT , aT , ν)

=
Pν,π̃(sT , aT )φ(ρ̃, π̃ | ν)

Pν,π(k)(sT , aT )φ(ρ(k), π(k) | ν)
.

This gives rise to the sampling procedure described in Alg. 1, which uses a
gamma prior for the temperature.

4.2 The Augmented Model: A Hybrid Gibbs Procedure

The augmented model (Fig. 1(b)) enables an alternative, a two-stage hybrid
Gibbs sampler, described in Alg. 2. This conditions alternatively on a reward
sequence sample rT

(k) and on a reward function sample ρ(k) at the k-th iteration
of the chain. Thus, we also obtain a posterior distribution on reward sequences.

This sampler is of particular utility when the reward function prior is conju-
gate to the reward distribution, in which case: (i) The reward sequence sample
can be easily obtained and (ii) the reward function prior can be conditioned on
the reward sequence with a simple sufficient statistic. While, sampling from the
reward function posterior continues to require MH, the resulting hybrid Gibbs
sampler remains a valid procedure [5], which may give better results than spec-
ifying arbitrary proposals for pure MH sampling.

As previously mentioned, the Gibbs procedure also results in a distribution
over the reward sequences observed by the agent. On the one hand, this could
be valuable in applications where the reward sequence is the main quantity
of interest. On the other hand, this has the disadvantage of making a strong
assumption about the distribution from which rewards are drawn.

Algorithm 2. G-MH: Two stage Gibbs sampler with an MH step
1: for k = 1, . . . do
2: ρ̃ ∼ ξ(ρ | rT

(k−1), ν).
3: η̃ ∼ Gamma(ζ, θ)
4: π̃ = Softmax (ρ̃, ε̃, τ )
5: p̃ = Pν,π̃(sT , aT )/[ξ(ρ | ν)fGamma(η̃; ζ, θ)].
6: w.p. min

{
1, p̃/p(k−1)

}
do

7: π(k) = π̃, η(k) = η̃, ρ(k) = ρ̃, p(k) = p̃.
8: else
9: π(k) = π(k−1), η(k) = η(k−1), ρ(k) = ρ(k−1), p(k) = p(k−1).

10: done
11: rT

(k) | sT , aT ∼ ρT
(k)(s

T , aT )
12: end for

5 Related Work

5.1 Preference Elicitation in User Modelling

Preference elicitation has attracted a lot of attention in the field of user mod-
elling and online advertising, where two main problems exist. The first is how to
model the (uncertain) preferences of a large number of users. The second is the
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problem of optimal experiment design [see 7, ch. 14] to maximise the expected
value of information through queries. Some recent models include: Braziunas and
Boutilier [4] who introduced modelling of generalised additive utilities; Chu and
Ghahramani [6], who proposed a Gaussian process prior over preferences, given a
set of instances and pairwise relations, with applications to multiclass classifica-
tion; Bonilla et al. [2], who generalised it to multiple users; [13], which proposed
an additively decomposable multi-attribute utility model. Experimental design
is usually performed by approximating the intractable optimal solution [3, 7].

5.2 Inverse Reinforcement Learning

As discussed in the introduction, the problems of inverse reinforcement learning
and apprenticeship learning involve an agent acting in a dynamic environment.
This makes the modelling problem different to that of user modelling where
preferences are between static choices. Secondly, the goal is not only to determine
the preferences of the agent, but also to find a policy that would be at least as
good that of the agent with respect to the agent’s own preferences.5 Finally, the
problem of experiment design does not necessarily arise, as we do not assume to
have an influence over the agent’s environment.

Linear Programming. One interesting solution proposed by [14] is to use a
linear program in order to find a reward function that maximises the gap between
the best and second best action. Although elegant, this approach suffers from
some drawbacks. (a) A good estimate of the optimal policy must be given. This
may be hard in cases where the demonstrating agent does not visit all of the
states frequently. (b) In some pathological MDPs, there is no such gap. For
example it could be that for any action a, there exists some other action a′ with
equal value in every state.

Policy Walk. Our framework can be seen as a generalisation of the Bayesian
approach considered in [18], which does not employ a structured prior on the re-
wards and policies. In fact, they implicitly define the joint posterior over rewards
and policies as:

φ(π, ρ | sT , aT , ν) =
exp

[
η
∑

t Q∗
μ(st, at)

]
ξ(ρ | ν)

φ(sT , aT | ν)
,

which implies that the exponential term corresponds to ξ(sT , aT , π | ρ). This
ad hoc choice is probably the weakest point in this approach.6 Rearranging, we
write the denominator as:

ξ(sT , aT | ν) =
∫
R×P
ξ(sT , aT | π, ρ, ν) dξ(ρ, π | ν), (5.1)

5 Interestingly, this can also be seen as the goal of preference elicitation when applied
to multiclass classification [see 6, for example].

6 Although, as mentioned in [18], such a choice could be justifiable through a max-
imum entropy argument, we note that the maximum-entropy based approach re-
ported in [22] does not employ the value function in that way.
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which is still not computable, but we can employ a Metropolis-Hastings step
using ξ(ρ | ν) as a proposal distribution, and an acceptance probability of:

ξ(π, ρ | sT , aT )/ξ(ρ)
ξ(π′, ρ′ | sT , aT )/ξ(ρ′)

=
exp[η

∑
t Qπ

ρ (st, at)]
exp[η

∑
t Qπ′

ρ′ (st, at)]
.

We note that in [18], the authors employ a different sampling procedure than
a straightforward MH, called a policy grid walk. In exploratory experiments,
where we examined the performance of the authors’ original method [17], we
have determined that MH is sufficient and that the most crucial factor for this
particular method was its initialisation: as will be also be seen in Sec. 6, we only
obtained a small, but consistent, improvement upon the initial reward function.

The Maximum Entropy Approach. A maximum entropy approach is re-
ported in [22]. Given a feature function Φ : S × A → �

n, and a set of trajecto-
ries

{
sTk

(k), a
Tk

(k) : k = 1, . . . , n
}
, they obtain features ΦTk

(k) =
(
Φ(si,(k), ai,(k))

)Tk

i=1
.

They show that given empirical constraints Eθ,ν ΦTk = ÊΦTk , where ÊΦT =
1
n

∑n
k=1 ΦTk

(k) is the empirical feature expectation, one can obtain a maximum

entropy distribution for actions of the form Pθ(at | st) ∝ eθ′Φ(st,at). If Φ is the
identity, then θ can be seen as a scaled state-action value function.

In general, maximum entropy approaches have good minimax guarantees [12].
Consequently, the estimated policy is guaranteed to be close to the agent’s.
However, at best, by bounding the error in the policy, one obtains a two-sided
high probability bound on the relative loss. Thus, one is almost certain to perform
neither much better, nor much worse that the demonstrator.

Game Theoretic Approach. An interesting game theoretic approach was
suggested by [20] for apprenticeship learning. This also only requires statistics
of observed features, similarly to the maximum entropy approach. The main
idea is to find the solution to a game matrix with a number of rows equal to the
number of possible policies, which, although large, can be solved efficiently by an
exponential weighting algorithm. The method is particularly notable for being
(as far as we are aware of) the only one with a high-probability upper bound on
the loss relative to the demonstrating agent and no corresponding lower bound.
Thus, this method may in principle lead to a significant improvement over the
demonstrator. Unfortunately, as far as we are aware of, sufficient conditions
for this to occur are not known at the moment. In more recent work [21], the
authors have also made an interesting link between the error of a classifier trying
to imitate the expert’s behaviour and the performance of the imitating policy,
when the demonstrator is nearly optimal.

6 Experiments

6.1 Domains

We compare the proposed algorithms on two different domains, namely on ran-
dom MDPs and random maze tasks. The Random MDP task is a discrete-state
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MDP, with four actions, such that each leads to a different, but possibly overlap-
ping, quarter of the state set.7 The reward function is drawn from a Beta-product
hyperprior with parameters αi and βi, where the index i is over all state-action
pairs. This defines a distribution over the parameters pi of the Bernoulli dis-
tribution determining the probability of the agent of obtaining a reward when
carrying out an action a in a particular state s.

For the Random Maze tasks we constructed planar grid mazes of different
sizes, with four actions at each state, in which the agent has a probability of 0.7
to succeed with the current action and is otherwise moved to one of the adjacent
states randomly. These mazes are also randomly generated, with the rewards
function being drawn from the same prior. The maze structure is sampled by
randomly filling a grid with walls through a product-Bernoulli distribution with
parameter 1/4, and then rejecting any mazes with a number of obstacles higher
than |S|/4.

6.2 Algorithms, Priors and Parameters

We compared our methodology, using the basic (MH) and the augmented (G-
MH) model, to three previous approaches. The linear programming (LP) based
approach [14], the game-theoretic approach (MWAL) [20] and finally, the
Bayesian inverse reinforcement learning method (PW) suggested in [18]. In all
cases, each demonstration was a T -long trajectory sT , aT , provided by a demon-
strator employing a softmax policy with respect to the optimal value function.

All algorithms have some parameters that must be selected. Since our method-
ology employs MCMC the sampling parameters must be chosen so that conver-
gence is ensured. We found that 104 samples from the chain were sufficient, for
both the MH and hybrid Gibbs (G-MH) sampler, with 2000 steps used as burn-
in, for both tasks. In both cases, we used a gamma prior Gamma(1, 1) for the
inverse temperature parameter η and a product-beta prior Beta|S|(1, 1) for the
reward function. Since the beta is conjugate to the Bernoulli, this is what we
used for the reward sequence sampling in the G-MH sampler. Accordingly, the
conditioning performed in step 11 of G-MH is closed-form.

For PW, we used a MH sampler seeded with the solution found by [14], as
suggested by [17] and by our own preliminary experiments. Other initialisations,
such as sampling from the prior, generally produced worse results. In addition,
we did not find any improvement by discretising the sampling space. We also
verified that the same number of samples used in our case was also sufficient for
this method to converge.

The linear-programming (LP) based inverse reinforcement learning algorithm
by Ng and Russell [14] requires the actual agent policy as input. For the random
MDP domain, we used the maximum likelihood estimate. For the maze domain,
7 The transition matrix of the MDPs was chosen so that the MDP was communicating

(c.f. [16]) and so that each individual action from any state results in a transition
to approximately a quarter of all available states (with the destination states ar-
rival probabilities being uniformly selected and the non-destination states arrival
probabilities being set to zero).
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we used a Laplace-smoothed estimate (a product-Dirichlet prior with parameters
equal to 1) instead, as this was more stable.

Finally, we examined the MWAL algorithm of Syed and Schapire [20]. This
requires the cumulative discounted feature expectation as input, for appropri-
ately defined features. Since we had discrete environments, we used the state oc-
cupancy as a feature. The feature expectations can be calculated empirically, but
we obtained better performance by first computeing the transition probabilities
of the Markov chain induced by the maximum likelihood (or Laplace-smoothed)
policy and then calculating the expectation of these features given this chain.
We set all accuracy parameters of this algorithm to 10−3, which was sufficient
for a robust behaviour.

6.3 Performance Measure

In order to measure performance, we plot the L1 loss8 of the value function of
each policy relative to the optimal policy with respect to the agent’s utility:

�(π) �
∑
s∈S

V ∗
μ (s) − V π

μ (s), (6.1)

where V ∗
μ (s) � maxa Q∗

μ(s, a) and V π
μ (s) � Eπ Qπ

μ(s, a).
In all cases, we average over 100 experiments on an equal number of ran-

domly generated environments μ1, μ2, . . .. For the i-th experiment, we generate
a T -step-long demonstration Di = (sT , aT ) via an agent employing a softmax
policy. The same demonstration is used across all methods to reduce variance.
In addition to the empirical mean of the loss, we use shaded regions to show
80% percentile across trials and error bars to display the standard error.

6.4 Results

We consider the loss of five different policies. The first, soft, is the policy of
the demonstrating agent itself. The second, MH, is the Metropolis-Hastings
procedure defined in Alg. 1, while G-MH is the hybrid Gibbs procedure from
Alg. 2. We also consider the loss of our implementations of Linear Programming
(LP), Policy Walk (PW), and MWAL, as summarised in Sec. 5.

We first examined the loss of greedy policies,9 derived from the estimated
reward function, as the demonstrating agent becomes greedier. Figure 2 shows
results for the two different domains. It is easy to see that the MH sampler sig-
nificantly outperforms the demonstrator, even when the latter is near-optimal.
While the hybrid Gibbs sampler’s performance lies between that of the demon-
strator and the MH sampler, it also estimates a distribution over reward se-
quences as a side-effect. Thus, it could be of further value where estimation of
8 This loss can be seen as a scaled version of the expected loss under a uniform state

distribution and is a bound on the L∞ loss. The other natural choice of the optimal
policy stationary state distribution is problematic for non-ergodic MDPs.

9 Experiments with non-greedy policies (not shown) produced generally worse results.
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(a) Random MDP (b) Random Maze

Fig. 2. Total loss � with respect to the optimal policy, as a function of the inverse
temperature η of the softmax policy of the demonstrator for (a) the Random MDP
and (b) the Random Maze tasks, averaged over 100 runs. The shaded areas indicate
the 80% percentile region, while the error bars the standard error.

reward sequences is important. We observed that the performance of the baseline
methods is generally inferior, though nevertheless the MWAL algorithm tracks
the demonstrator’s performance closely.

This suboptimal performance of the baseline methods in the Random MDP
setting cannot be attributed to poor estimation of the demonstrated policy, as
can clearly be seen in Figure 3(a), which shows the loss of the greedy policy
derived from each method as the amount of data increases. While the proposed
samplers improve significantly as observations accumulate, this effect is smaller
in the baseline methods we compared against. As a final test, we plot the relative
loss in the Random MDP as the number of states increases in Figure 3(b). We
can see that the relative performance of methods is invariant to the size of the
state space for this problem.

Overall, we observed the basic model (MH) consistently outperforms10 the
agent in all settings. The augmented model (G-MH), while sometimes outper-
forming the demonstrator, is not as consistent. Presumably, this is due to the
joint estimation of the reward sequence. Finally, the other methods under con-
sideration on average do not improve upon the initial policy and can be, in a
large number of cases, significantly worse. For the linear programming inverse
RL method, perhaps this can be attributed to implicit assumptions about the
MDP and the optimality of the given policy. For the policy walk inverse RL
method, our belief is that its suboptimal performance is due to the very re-
strictive prior it uses. Finally, the performance of the game theoretic approach

10 It was pointed out by the anonymous reviewers, that the loss we used may be biased.
Indeed, a metric defined over some other state distribution, could give different
rankings. However, after looking at the results carefully we determined that the
policies obtained via the MH sampler were strictly dominating.
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(a) Effect of amount of data (b) Effect of environment size

Fig. 3. Total loss � with respect to the optimal policy, in the Random MDP task.
Figure 3(a) shows how performance improves as a function of the length T . of the
demonstrated sequence. Figure 3(b) shows the effect of the number of states |S| of the
underlying MDP. All quantities are averaged over 100 runs. The shaded areas indicate
the 80% percentile region, while the error bars the standard error.

is slightly disappointing. Although it is much more robust than the other two
baseline approaches, it never outperforms the demonstrator, even thought tech-
nically this is possible. One possible explanation is that since this approach is
worst-case by construction, it results in overly conservative policies.

7 Discussion

We introduced a unified framework of preference elicitation and inverse reinforce-
ment learning, presented two statistical inference models, with two corresponding
sampling procedures for estimation. Our framework is flexible enough to allow
using alternative priors on the form of the policy and of the agent’s preferences,
although that would require adjusting the sampling procedures. In experiments,
we showed that for a particular choice of policy prior, closely corresponding to
previous approaches, our samplers can outperform not only other well-known
inverse reinforcement learning algorithms, but the demonstrating agent as well.

The simplest extension, which we have already alluded to, is the estimation of
the discount factor, for which we have obtained promising results in preliminary
experiments. A slightly harder generalisation occurs when the environment is
not known to us. This is not due to difficulties in inference, since in many cases
a posterior distribution over M is not hard to maintain (see for example [9, 15]).
However, computing the optimal policy given a belief over MDPs is harder [9],
even if we limit ourselves to stationary policies [11]. We would also like to consider
more types of preference and policy priors. Firstly, the use of spatial priors for the
reward function, which would be necessary for large or continuous environments.
Secondly, the use of alternative priors on the demonstrator’s policy.
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The generality of the framework allows us to formulate different preference
elicitation problems than those directly tied to reinforcement learning. For ex-
ample, it is possible to estimate utilities that are not additive functions of some
latent rewards. This does not appear to be easily achievable through the exten-
sion of other inverse reinforcement learning algorithms. It would be interesting
to examine this in future work.

Another promising direction, which we have already investigated to some
degree [8], is to extend the framework to a fully hierarchical model, with a
hyperprior on reward functions. This would be particularly useful for modelling
a population of agents. Consequently, it would have direct applications on the
statistical analysis of behavioural experiments.

Finally, although in this paper we have not considered the problem of ex-
perimental design for preference elicitation (i.e. active preference elicitation), we
believe is a very interesting direction. In addition, it has many applications, such
as online advertising and the automated optimal design of behavioural exper-
iments. It is our opinion that a more effective preference elicitation procedure
such as the one presented in this paper is essential for the complex planning task
that experimental design is. Consequently, we hope that researchers in that area
will find our methods useful.

Acknowledgements. Many thanks to the anonymous reviewers for their com-
ments and suggestions. This work was partially supported by the BMBF Project
”Bernstein Fokus: Neurotechnologie Frankfurt, FKZ 01GQ0840”, the EU-Project
IM-CLeVeR, FP7-ICT-IP-231722, and the Marie Curie Project ESDEMUU,
Grant Number 237816.

References

[1] Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning.
In: Proceedings of the 21st International Conference on Machine Learning, ICML
2004 (2004)

[2] Bonilla, E.V., Guo, S., Sanner, S.: Gaussian process preference elicitation. In:
NIPS 2010 (2010)

[3] Boutilier, C.: A POMDP formulation of preference elicitation problems. In: AAAI
2002, pp. 239–246 (2002)

[4] Braziunas, D., Boutilier, C.: Preference elicitation and generalized additive utility.
In: AAAI 2006 (2006)

[5] Casella, G., Fienberg, S., Olkin, I. (eds.): Monte Carlo Statistical Methods.
Springer Texts in Statistics. Springer, Heidelberg (1999)

[6] Chu, W., Ghahramani, Z.: Preference learning with gaussian processes. In: Pro-
ceedings of the 22nd International Conference on Machine Learning, pp. 137–144.
ACM, New York (2005)

[7] DeGroot, M.H.: Optimal Statistical Decisions. John Wiley & Sons, Chichester
(1970)

[8] Dimitrakakis, C., Rothkopf, C.A.: Bayesian multitask inverse reinforcement learn-
ing (2011), under review



48 C.A. Rothkopf and C. Dimitrakakis

[9] Duff, M.O.: Optimal Learning Computational Procedures for Bayes-adaptive
Markov Decision Processes. PhD thesis, University of Massachusetts at Amherst
(2002)

[10] Friedman, M., Savage, L.J.: The expected-utility hypothesis and the measurability
of utility. The Journal of Political Economy 60(6), 463 (1952)

[11] Furmston, T., Barber, D.: Variational methods for reinforcement learning. In:
AISTATS, pp. 241–248 (2010)

[12] Grünwald, P.D., Philip Dawid, A.: Game theory, maximum entropy, minimum
discrepancy, and robust bayesian decision theory. Annals of Statistics 32(4), 1367–
1433 (2004)

[13] Guo, S., Sanner, S.: Real-time multiattribute bayesian preference elicitation with
pairwise comparison queries. In: AISTATS 2010 (2010)

[14] Ng, A.Y., Russell, S.: Algorithms for inverse reinforcement learning. In: Proc. 17th
International Conf. on Machine Learning, pp. 663–670. Morgan Kaufmann, San
Francisco (2000)

[15] Poupart, P., Vlassis, N., Hoey, J., Regan, K.: An analytic solution to discrete
Bayesian reinforcement learning. In: ICML 2006, pp. 697–704. ACM Press, New
York (2006)

[16] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, New Jersey (2005)

[17] Ramachandran, D.: Personal communication (2010)
[18] Ramachandran, D., Amir, E.: Bayesian inverse reinforcement learning. In: 20th

Int. Joint Conf. Artificial Intelligence, vol. 51, pp. 2856–2591 (2007)
[19] Rothkopf, C.A.: Modular models of task based visually guided behavior. PhD

thesis, Department of Brain and Cognitive Sciences, Department of Computer
Science, University of Rochester (2008)

[20] Syed, U., Schapire, R.E.: A game-theoretic approach to apprenticeship learning.
In: Advances in Neural Information Processing Systems, vol. 10 (2008)

[21] Syed, U., Schapire, R.E.: A reduction from apprenticeship learning to classifica-
tion. In: NIPS 2010 (2010)

[22] Ziebart, B.D., Andrew Bagnell, J., Dey, A.K.: Modelling interaction via the prin-
ciple of maximum causal entropy. In: Proceedings of the 27th International Con-
ference on Machine Learning (ICML 2010), Haifa, Israel (2010)



A Novel Framework for Locating Software Faults

Using Latent Divergences

Shounak Roychowdhury and Sarfraz Khurshid

Department of Electrical and Computer Engineering,
University of Texas at Austin,

Austin, Texas, 78712-0240, USA
{sroychow,khursid}@ece.utexas.edu

Abstract. Fault localization, i.e., identifying erroneous lines of code in
a buggy program, is a tedious process, which often requires considerable
manual effort and is costly. Recent years have seen much progress in
techniques for automated fault localization, specifically using program
spectra – executions of failed and passed test runs provide a basis for
isolating the faults. Despite the progress, fault localization in large pro-
grams remains a challenging problem, because even inspecting a small
fraction of the lines of code in a large problem can require substantial
manual effort. This paper presents a novel framework for fault local-
ization based on latent divergences – an effective method for feature
selection in machine learning. Our insight is that the problem of fault lo-
calization can be reduced to the problem of feature selection, where lines
of code correspond to features. We also present an experimental evalua-
tion of our framework using the Siemens suite of subject programs, which
are a standard benchmark for studying fault localization techniques in
software engineering. The results show that our framework enables more
accurate fault localization than existing techniques.

1 Introduction

In software engineering, the process of locating the faults, i.e., selecting a set
of faulty statements, in a buggy program is called fault localization. In machine
learning, the process of selecting the most relevant features from a set of pos-
sible features is called feature selection. Both the processes are about selection.
Therefore, the central idea of this paper is to reduce the problem of fault local-
ization to the problem of feature selection, leverage ideas and constructs from
the feature selection research to solve the fault localization problem.

There is a growing demand to seek alternatives to the traditional ways of man-
ually debugging large-scale systems by using automated techniques. Some of the
promising attempts include algorithmic debugging methods [3], static and dy-
namic program slicing [5], and most recently to apply data analysis techniques
like Statistical Debugging [15]. Program spectrum-based methods [18], which
are also known as coverage-based technique, record the execution information
of a program. They deal with how statements and branches are executed with
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respect to a set of successful runs (positive test cases) and unsuccessful runs
(negative test cases). The basic insight of the spectrum-based techniques is that
similar test cases generate similar execution spectrum while dissimilar test cases
generate very different types of execution spectrum. Another effective alterna-
tive technique is the predicate-based intrumentation based technique in which
boolean predicates are injected within the code that collect the run-time statis-
tics of the program. Statistical Debugging is an example of such a technique [15].
The spectrum-based methods have a two fold advantage over the predicate-based
instrumentation methods: firstly it does not overly instrument the source code,
and secondly a variety of code coverage tools are easily available in the market
that can be used without affecting the runtime performance of source code. This
paper presents a novel spectrum-based framework for fault localization based on
latent divergences – an effective method for feature selection in machine learning.

The purpose of this paper is to seek a methodology in which the code coverage
data is modeled as a probabilistic data source and use tools such as probabilistic
divergences and their combinations to extract faulty lines of code. Our proposed
method provides an alternative to methods that employ similarity based mea-
sures. For doing so, we introduce a new concept called latent divergence, which
is in fact a product of divergences based on different conditional probabilities.
These probabilties are derived from the code coverage data. Through this mech-
anism we extract potentially hidden information that can effectively be used for
selecting faulty lines of code. Furthermore, it should be noted that latent diver-
gence does not use any latent variables. The term “latent” in latent divergence
indicates that these measures try to extract hidden information from conditional
divergences.

The main contributions of this paper are as follows: 1) It proposes a novel
approach of fault localization using latent divergence, a new concept based on
conditional probabilistic divergences. 2) It proposes a family of measures based
on latent divergence. 3) It gives a framework for using latent divergences in fault
localization. 4) The experimental results show that our method performs better
than state-of-the-art methods.

1.1 Related Work

In machine learning, feature selection deals with the process of selecting a sub-
set of features without degrading accuracy or classification performance. There
are three major feature selection mechanisms: filter, wrapper, and embedded
selection. For details, see [11].

In recent days machine learning techniques are being applied to debugging.
Neural network based methods have been proposed by Wong et al [21] in the
context of fault localization. They have used classic Back-Propagation algorithm
and Radial Basis Functions (RBF) based neural networks for fault localization.
Jiang and Su [13] proposed Context-Aware Statistical Debugging technique that
considers not only individual bug predictors and control flow paths that con-
nect those predictors. They used Support Vector Machines (SVM) and Random
Forests (RF) for statistical classification. Use of such intense computational ap-
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proach makes the debugging quite slow. The authors have also observed that
a single machine learning technique is not be able to properly rank predicates.
These methods can be quite sensitive to way the classifiers are trained.

2 Motivation

Usually similarity measures are often used for comparing sets of data. For di-
chotomous data, similarity measures are based on the combination of four com-
ponents of the binary contingency matrix. In the pattern recognition litera-
ture [17] several different dissimilarity measures have been widely used. The use
of similarity based measures in fault localization research was started by Jones
et. al [14] and Abreu et. al. [1]. The measure tuple (suspiciousness, confidence)
was proposed by Jones et. al. in their Tarantula system. Abreu et. al. [1]. used
the Ochiai metric as their similarity measure in their study. In fact, this measure
was first proposed by Ochiai in a biological study [16] in 1957. While experiment-
ing with some of these measures for our fault localization research, we observed
that some of the binary similarity measures like Yule or Kulcsyzski as described
in [17], which have range of [0,∞), were not effective in fault localization prob-
lem. Therefore, we were motivated to seek other alternatives to similarity-based
measures for our research.

The inspiration for the proposed method comes from elementary geometry.
Specifically, it comes from the theorem of the Power of a point with respect to a
circle. This is an old and well-known result in the area of inversive geometry. See
Fig.1. In simple terms, the theorem states that for a given circle with a center O
and radius r, and a point A that lies outside the circle, such that P and Q are
the intersections of a line through point A with the circle, then the power (p) of
the point A is given by:

p = AP × AQ. (1)

This was first described by Steiner in 1826 [20]. Coxeter and Greitzer [8] showed
that p = AO2 − r2. Furthermore, we use Eqn.(1)

AO =
√

AP × AQ + r2. (2)

The interesting part is when p = 0 then the point A is lies on the circle. Moreover,
when p > 0, the point lies outside the circle, and when p < 0 the point lies inside

A O

P
Q

B
R

Fig. 1. Power of point with respect to a circle
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the circle. Thus it might be quite effective to use this fact to compare relative
positions of points.

Without any loss of generality let us consider two points A and B that lie
outside the circle. In order to compute the relative distance between point A
and point B it might be possible to just compare the lengths of the segments
AO =

√
(AP × AQ + r2) and BO =

√
(BR × BQ + r2) where r is the radius

the circle. To approximately compute |AO − BO|, it might be reasonable to
ignore r for a given circle as it is a constant in both of the expressions, thus just
compute AP ×AQ and BR×BQ in order to find relative distance. This formed
the basis of our insight to multiply two distances or two probabilistic divergences
in our case to find a way of measuring relative distance or separatedness between
the data points. Notice that this technique is quite different when compared to
any similarity measure-based techniques. We will further explore this idea in
Section 5 from the perspective of conditional probabilistic divergences.

3 An Illustrative Example

In this section we show a simple motivating example that shows the product of
conditional divergences are able to accurately identify the faulty lines of code.
We show a sample C code in Fig.2 and test cases in Table 1 that were used by
Jones et. al. in their paper as an example. The purpose of the code is to find
out the middle number. The line numbers followed a colon are shown in the left
margin. Apparently a simple looking code is faulty for few inputs. We observe
that the fault is in line number 7. The correct code is shown as a comment
embedded in that same line.

# mid() {

1: read("Enter 3 numbers:",x,y,z);

2: m = z;

3: if (y<z)

4: if (x<y)

5: m = y;

6: else if (x<z)

7: m = y; // fault1. correct: m=x

8: else

9: if (x>y)

10: m = y;

11: else if (x>z)

12: m = x;

13: print("Middle number is:",m);

# }

Fig. 2. This simple C code is taken from Jones et al. [14] as a motivating example
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Table 1. This table shows the execution-statement hit for each line using 6 different
test-cases. The test cases t1-t5 generates a passed output (denoted by T(1)). The test
case t6 generates a failed output (denoted by F(0)).

1 2 3 4 5 6 7 8 9 10 11 12 13 R

t1 1 1 1 1 0 1 1 0 0 0 0 0 1 T(1)
t2 1 1 1 1 1 0 0 0 0 0 0 0 1 T(1)
t3 1 1 1 0 0 0 0 1 1 1 0 0 1 T(1)
t4 1 1 1 0 0 0 0 1 1 0 1 0 1 T(1)
t5 1 1 1 1 0 1 0 0 0 0 0 0 1 T(1)
t6 1 1 1 1 0 1 1 0 0 0 0 0 1 F(0)

Table 1 shows the execution-statement hits for 6 test cases such that t1 =
(3,3,5), t2=(1,2,3), t3=(3,2,1), t4=(5,5,5), t5=(5,3,4), t6=(2,1,6). Rows denote
the test cases and the columns denote the line numbers. The last column denotes
output of the program with respect to the test cases. We observe that out of
the 6 test cases only t6 gives an incorrect result. Fig.3 shows five subplots. Each
subplot shows the values of latent divergences with respect to each line number
for a set of test cases. The subplot (1) shows the result of two test cases t1 and
t6. The test case t1 produces successful output (T(1)). The test case t6 produces
an unsuccessful output (F(0)). The result column, which is column 14, records
the result of each test case. The values of t1 and t6 are the same for all columns:
from column 1 to column 13. Since there is no difference in information between
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Fig. 3. This figure shows latent divergence using KL-Divergence (KL-LD) for 6 test-
cases in 5 subplots. The x-axis shows the line numbers, and y-axis shows the Latent
divergence. Subplot (1) shows the latent divergence using 2 tests t1 & t6. Similarly
other plots show result for different number of testcases.
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two test cases, the latent divergence is zero for all the lines. The subplot (2)
shows the results of adding another test case t2 to the existing set of test cases.
In this scenario, we observe some changes in the values of the latent divergences
at line numbers 5, 6, and 7. When we add more test cases as seen in remaining
subplots, we notice that the values of latent divergence start to converge. In
subplot (5), we use all the six test cases, and where we notice that, the latent
divergence peaks at the line number 7 where the fault resides.

Table 2 compares the value of the metrics for Tarantula, Ochiai, and other
proposed measures. Herein, we see that Tarantula and Ochiai measures have
values 0.5 and 0.7071 at line 1 which is a little difficult to interpret. On careful
observations, we further notice that the nonzero values of both these metrics are
greater or equal to 0.5. For Tarantula, the base computed value is 0.5 (= 1

1+1 ).
For Ochiai metric, the base value is 0.7071. The computed values for the other
lines are relatively close to the base value for these metrics. In this context, we
believe that the power of the metric lies in its ability to differentiate the incorrect
lines of code from the correct ones by significant margins. As this table shows,
it is possible to localize bugs by using latent divergence.

Table 2. Comparison of Tarantula and Ochiai metrics different types of probabilistic
divergences used in Definition 1 of Latent Divergence. KL-LD is the latent divergence
uses KL-divergence, JS-LD uses Jensen-Shannon Divergence, R(α)-LD uses Renyi-
Divergence, and IS-LD uses Itakuro-Saito divergence.

1 2 3 4 5 6 7 8 9 10 11 12 13

Tarantula 0.50 0.50 0.50 0.625 0 0.71 0.83 0 0 0 0 0 0.5

Ochiai 0.7071 0.7071 0.7071 0.7906 0 0.8452 0.9129 0 0 0 0 0 0.7071

KL-LD 0 0 0 0.0095 0.0037 0.0444 0.2110 0.0160 0.0160 0.0037 0.0037 0 0

JS-LD 0 0 0 0.0366 0.0064 0.1312 0.4607 0.0366 0.0366 0.0064 0.0064 0 0

R(2)-LD 0 0 0 0.0089 0.0015 0.0332 0.1072 0.0089 0.0089 0.0015 0.0015 0 0

R(0.5)-LD 0 0 0 0.0019 0.0003 0.0069 0.0244 0.0019 0.0019 0.0003 0.0003 0 0

IS-LD 0 0 0 0.8730 0.1617 2.8838 8.8456 0.8730 0.8730 0.1617 0.1617 0 0

4 Probabilistic Divergences

Probabilistic divergence is a well-known concept like dissimilarity measure but in
the probabilistic space. The divergence actually measures the distance between
two probability mass functions p(x) and q(x) such that x ∈ X , and X is the
alphabet. The standard notation for divergence is D(p||q). It plays a significant
role in the areas of pattern recoginition, learning and inference, and optimization.

4.1 KL-Divergence

Information and coding theory extensively use Kullback-Liebler divergence also
known as KL-Divergence or Relative Entropy. Kullback-Liebler Divergence
(KLD) is given by:

DKL(p||q) =
∑
x∈X

p(x) log

(
p(x)
q(x)

)
. (3)
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KL-divergence measures the distortion between two probability mass functions
p(x) and q(x). In terms of entropies the Eqn.(3) can be written as follows:
DKL(p||q) = H(p, q) - H(p), where H(p, q) is the cross-entropy between p and
q and H(p) is the entropy of p. It is not a true metric as it does not satisfy the
symmetric and triangular properties of a metric. Jensen-Shannon Divergence
(JSD) is given by the mean of two Kl-divergences:

DJS(p||q) =
1
2

(
DKL(p, q) + DKL(q, p)

)
(4)

where DKL(p||q) =
∑

x∈X p(x) log(p(x)
q(x) ) and DKL(q||p) =

∑
x∈X q(x) log( q(x)

p(x)).
JS-divergence satisfies three properties of being a metric.

4.2 α-Divergences

Renyi [19] proposed a following class of divergence (R(α)), which is given by:

Dα(p||q) =
1

1 − α
log

(∑
x∈X

p(x)α

q(x)α−1

)
. (5)

It is a generalization of KL-divergence when α ≥ 0. When α = 0.5, D0.5(p||q)
= −2log

∑
x∈X

√
p(x)q(x) which is related to Bhattacharyya coefficient. When

α = 2, D2(p||q) = log E(p(x)/q(x)) which is related to log of expected value of
ratios of probabilities.

4.3 f-Divergences

Another broader class of divergence called f − divergence has been studied by
Ali-Silvey [2] and Csiszar [9]. It is given by:

Df (p||q) =
∑
x∈X

q(x) f

(
p(x)
q(x)

)
, (6)

where f is a real valued convex function over the domain of (0,∞). This is
a popular family as it can generate a variety of well-known distances like l1
norm (Df (p||q) =

∑
x∈X |p(x) − q(x)|), squared-Hellinger distance (Df (p||q) =∑

x∈X (
√

p(x) −
√

q(x))) etc.

4.4 Bregman-Divergences

There is another larger class of divergence called Bregman-divergence [7]. It en-
capsulates many well-known divergences. Like f -divergence, this class also uses
convex functions to generate its members. However, the general formulation of
Bregman divergence is DB(f)(p||q) = f(p)−f(q)−〈∇f(q), p−q〉, where f is con-
vex function and ∇ is the gradient operator, quite different from f -divergence.
The equation has flavor of first order Taylor expansion. The Euclidean distance,
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Mahalanobis distance, and KL Divergence are special cases of Bregman diver-
gence. Here we will use a non-obvious member of the Bregman family in our
study. Itakura-Saito Divergence (IS) [10] belongs to the class of Bregman diver-
gence, and it is given below:

DB(f)(p||q) =
∑
x∈X

(
p(x)
q(x)

− log
p(x)
q(x)

− 1
)

. (7)

Here the convex function is f(p) =
∑

x∈X log(p(x)). This divergence is quite
popular in the area of speech and signal processing.

5 Latent Divergence

In this subsection, we introduce a new measure called Latent Divergence, and
also propose its general family.

Let Xl denote a Bernoulli random variable for the coverage data of a par-
ticular line l such that pXl

(x) = Pr(Xl = x) and pXl
is the probability mass

function. Similarly the result is also modeled as Bernoulli random variable R and
is denoted by pR(x) = Pr(R = x) and pR(x) is the probability mass function.
The result of the tests passed and failed are denoted by (T (1)) and (F (0)) respec-
tively. Since the values of Xl effect the values of R; we note that there is a joint
distribution between Xl and R, and it is given by p(x, r) = Pr(Xl = x, R = r).
We can calculate the marginals of Xl and R as P (Xl) and P (R). Let us com-
pute the conditional from the perspective of Xl = 1 on R, that is p{R|Xl=1}(x)
= Pr({R|Xl = 1} = x) which is again a conditional Bernoulli pmf. For Xl = 0
compute the conditional p{R|Xl=0}(x) = Pr({R|Xl = 0} = x), which is again a
conditional Bernoulli pmf. Using these conditional random variables we can find
a certain amount of information divergence that is hidden within them when
measured against random variable R. The idea is to find the amount of diver-
gence with respect to the random variable R. That implies that we are trying to
extract information like distance between {R|Xl = 0} and R, and {R|Xl = 1}
and R respectively.

Definition 1. The latent divergence measure (LD) between two Bernoulli ran-
dom variables Xl and R is defined as follows:

LD(Xl : R) = D(p{R|Xl=1}||pR)D(p{R|Xl=0}||pR). (8)

Definition 2. The family of latent divergence measure is denoted by (FLD)
between two Bernoulli random variables Xl and R is defined as follows:

FLD(Xl : R|f) = f(LD(Xl : R)), (9)

where f : (0,∞) → R+ is convex function.

Example 1. When f1(x) = x, then

FLD(Xl : R|f1) = LD(Xl : R). (10)
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Example 2. When f2(x) = ex − 1, then

FLD2(Xl : R|f2) = eLD(Xl:R) − 1. (11)

We show two members of the family and others can be easily be constructed. For
this paper, we show only the results using the simplest latent divergence which
is given by Eqn.(8).

The motivation section showed that it is possible to compare distances AO and
BO using multiplicative factors. We extend that idea to compute distance like
measure (separatedness) between two binary vectors with repect to a reference
binary vector using probabilistic divergences. A small illustration will clarify the
concept. It will also render a geometric flavor to the problem. Let there be two
binary vectors such as X1 = (1, 0, 1, 1, 0, 1, 1)t and X2 = (1, 0, 1, 0, 0, 0, 0)t along
with a reference binary vector given by R = (1, 1, 1, 1, 0, 0, 0)t. After all necessary
probability transformations, we plot X1, X2 and R in terms of their probability
components p0 and p1 in a Cartesian space. Let p0 be on y-axis and p1 be on
x-axis. Now see Fig. 4. Therefore, in that space we can represent X1 as filled
black circle and X2 as filled black square. R is presented by filled red circle.
The shaded circle Z1 and shaded square Z2 represent Pr({R|X1 = 0} = x) and
Pr({R|X2 = 0} = x) respectively. Similarly, the unfilled circle Y1 and unfilled
square Y2 represent Pr({R|X1 = 1} = x) and Pr({R|X2 = 1} = x) respectively.
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Fig. 4. A Bernoulli random variable is represented in terms components of its proba-
bilities p0 and p1. The distances between points like Z1 and R are actually divergences
and should not be confused with Euclidean distance. The intention of the figure is to
render a geometric idea.
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We find that the latent divergence LD(X1 : R) = 2.2262e − 005 using KL-
Divergence as a base divergence. Next for the other point, the latent divergence
is LD(X2 : R) = 0.0690. Therefore, X2 has more discrimination than X1 with
respect to R. It should be noted that the Fig. 4 is given to provide a geometry
flavor for visualization.

The first property of the metric holds. The latent divergence LD(Xl : R) ≥ 0
because component divergences are greater than 0. The symmetric property does
not hold as component divergences are not symmetric. The triangular property
does not hold as divergences do not satisfy triangular property.

Theorem 1. LD(Xl : R) is convex.

Proof. We know that divergence is a convex function for all classes of
divergences. Therefore,

D(αp1 + βp2||αr1 + βr2) ≤ αD(p1||r1) + βD(p2||r2) (12)

D(αq1 + βq2||αr1 + βr2) ≤ αD(q1||q1) + βD(p2||r2) (13)

Multiply Eqn.(12) and Eqn.(13), and we get the following: D(αp1 + βp2||αr1 +
βr2)×D(αq1 + βq2||αr1 + βr2)

≤ (αD(p1||r1) + βD(p2||r2))× (αD(q1||q1) + βD(p2||r2))

= α2D(p1||r1)D(q1||r1) +

αβ(D(p2||r2)D(q1||r1) + D(p1||r1)D(q2||r2))

β2D(p2||r2)D(q2||r2). (14)

From the knowledge of p1 and q1, and along with p2 and q2, we find that
following inequality holds true.

[D(αp1||αr1)−D(αp2||αr2)]× [D(αq2||αr2)−D(αq1||αr1)] ≤ 0. (15)

Rearrange the terms of the above inequality to get

D(αp1||αr1)D(αq2||αr2) + D(αp2||αr2)D(αq1||αr1) (16)

≤ D(αp1||αr1)D(αq1||αr1) + D(αp2||αr2)D(αq1||αr1) (17)

Recall α + β = 1. Use the above inequality in Eqn.(14) to get the following:

≤ α2D(p1||r1)D(q1||r1) + αβ
(
D(αp1||αr1)D(αq1||αr1) +

D(αp2||αr2)D(αq1||αr1)
)

+ β2D(p2||r2)D(q2||r2) (18)

= αD(p1||r1)D(q1||r1) + βD(p2||r2)D(q2||r2). (19)

Thus the convexity is preserved for product of two conditional probabilistic
divergences.
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Algorithm 1. Ranking Algorithm
Require: CodeCoverageMatrix: X, ResultVector: R
Ensure: Lines are ranked.

M ← GetNumberOfColumns(X)
for l = 1 to M do

Y [l]← LD(Xl : R)
end for
{Normalize the array Y to capture the ranks; the lines having with maximum latent
divergence will be ranked 1.}
for i = 1 to |Y | do

Z[i] ← Y [i]
max(Y )

end for
for i = 1 to |Z| do

Q[i]← �Z[i] + M × (1− Z[i])	
end for

Theorem 2. The measures generated by latent divergence family FLD(Xl : R|f)
are convex.

Proof. Given that f : R → (0,∞) and is a convex function and increasing, and
g : Rn → R and g is a convex function, then the composite function h(x) = f ◦ g
is convex. (See [6]). Using this fact and from Theorem 1 we know LD(Xl : R) is
convex. Thus, FLD(Xl : R|f)=f(LD(Xl : R)) is convex.

6 Latent Divergences and Fault Localization

6.1 Algorithm

Given a program P having M set of executable lines, and a set of N test cases.
Firstly it is necessary to collect code coverage data X by running both successful
test cases and unsuccessful test cases. The result data is collect in result vector
R. Table 1 shows a sample of X matrix which has binary values and the result
vector R consists of has T or F values.

After the data collection phase of X and R is over, we use the ranking algorithm
described in Algorithm1. Let the lth column of the code coverage matrix X be
denoted Xl = X [l]. The ranking algorithm first computes latent divergence for
each column Xl of the coverage matrix with the result vector R. It should be noted
that the user selects the type of base divergence like KL-divergence, Renyi etc.

The list of latent divergence of each column is normalized to capture the rank.
With respect to the algorithm the normalized data is stored in Z list. We easily
observe that the list Z only contains values between 0 and 1. Furthermore, Now
use the following formula in which any value of x in interval between a and b can
be written as λa+(1−λ)b, a formula quite trite in the theory of convex functions.
Finally the ranks of the lines are computed by using the following formula:

�Z[i] + M × (1 − Z[i])� ,

where M is also the number of columns of X .



60 S. Roychowdhury and S. Khurshid

Table 3. Summary of the Siemens Test Suite

Program Description Versions LOC Executable Testcases

print tokens Lexical Analyser 7 565 175 4130

print tokens2 Lexical Analyser 10 510 178 4115

replace Pattern replacement 32 563 216 5542

schedule Priority Scheduler 9 412 121 2650

schedule2 Priority Scheduler 10 307 112 2710

tcas Altitude Separation 41 173 55 1608

tot-info Information Measure 23 406 113 1052

The score measure has been used in the literature quite extensively and it is
as follows:

scorei =
(

1 − Q[i]
M

)
× 100 (20)

We see that the score is computed for each line. Since we are only interested in
the lines that are ranked number 1, unlike feature selection where the number of
features is usually bigger than 1, we collect the scores reported by those lines. In
other words we want the maximum value from the list of scores. On little more
careful observation we may easily notice that there is a little drawback with the
above equation 20 because it is highly possible that there may be more than
one line (or statement) that can have the maximum suspiciousness measure at
the same time. In that case the score values for all the lines that are ranked
1 will be same. However, we think that it is quite important and necessary to
differentiate between the scenarios when there are multiple lines having rank 1.
Thus, we introduce a weight factor W to the score value.

W =
M + 1 − |Q#1|

M
. (21)

Moreover, let us denote Q#1 as a subset of Q whose elements are lines that are
ranked 1. |Q#1| is the cardinality of that subset. Thus, the score of each line
then becomes:

scorei =
((

1 − Q[i]
M

)
× W

)
× 100 (22)

It is clear from the above equation that for when |Q#1| = 1, we get Eqn.(22) is
equal to Eqn.(20). As only the maximum score value is a signnificant number,
so the overall score is given by score=max{score1, ..., scoreM}.

Next we introduce another measure called Metric-Quality and it is denoted by
φ. It actually measures a quality of a metric that is able to rank least important
lines to lower ranks and most important lines to high ranks. It is defined as:

φ =
M∑
i=1

1
Q[i] × M

(23)

We can easily show that φ is bounded between 1/M and 1 as Q[i] can vary from
1 to M . When the φ is small and closer to 1/M that implies that the metric is



A Novel Framework for Locating Software Faults Using Latent Divergences 61

1 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Percentage of code to examine

P
er

ce
nt

ag
e 

of
 fa

ul
t v

er
si

on
s

Comparison of results of Fault Localization techniques Using Probabilistic Divergences.

 

 

JS−LD
RD(2)−LD
RD(0.5)−LD
KL−LD
BD_IS−LD
Hellinger
Tarantula
Ochiai
SOBER
CT
NN/Binary

Fig. 5. The Score is plotted between percentage of code to examine and percentage of
fault versions

able to suppress less important lines effectively and provide a better quality by
ranking important lines much higher.

Refer to Table 2, we observe that when we use metrics like Ochiai, it generates
suspiciousness values greater than to 0.9 even though the line may not be part of
the bug and that is happens primarily because of the presence of a square root
in Ochiai’s denominator that increases its value. Such high values may confuse
the programmer who might be inclined to look for statements having high sus-
piciousness values. Therefore, the metric’s higher values might not provide the
right direction for debugging.

7 Experiments

7.1 Siemens Test Suite

It is a standard practice to use the seven programs of the classic Siemens Test
Suite [12] for testing feasiblities of fault localization techniques and compare
them. Each program has a correct version as well as incorrect versions. All the
programs in this test suite are written in C. Similar to other studies we also
downloaded all the test cases from the web site [4]. Some of the test cases like
version 10 of “print-tokens” and version 32 of “replace”, version 9 of “Sched-
ule2” as they were the same as the original version and therfore had no failed
test cases, so they were not the part of our experiments. Similarly we also dis-
carded some of the other test cases like version 4 and version 6 of “print tokens”
where the faults were in the header files instead of the C files. Similar observa-
tions were are mentioned in other studies as well [14]. Table 3 shows the summary
of the programs. For each subject it includes the name of the program, a brief
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description, the number of faulty versions, Lines of code (LOC), number of ex-
ecutable lines (statements), and the number of test-cases.

7.2 Results

Fig. 5 shows the plot between percentage of faulty versions versus percentage
of code that needs to be examined. We find that the latent divergence performs
better than other methods in general. We observe that NN/Binary [18] performs
the worst while results of Tarantula and SOBER [22] are comparable. Out of
the existing methods the Ochiai method seem to reasonably well. When we
compare our results to the existing methods we find our method does much
better Tarantula, SOBER, and CT. Even though Ochiai performs well compared
to our method for only 42% of the fault versions while our method does it 33%,
but just by examining 10% more code our method performs better that Ochiai.
We are able to pin-point faults for 90% of the fault versions just by examining
20% of the code. We can practically cover more than 95% of the fault versions
by just examining only 30% of the code the Ochiai method can only match
upto 88% of the fault versions. The results obtained by using latent divergence
using KL-divergence is more or less similar to all other latent divergences using
different types of Renyi entropies at α = 2 and α = 0.5 and others.

Refer back to Eqn.(23). From the equations it is clear that the value of the φ
should be less when most of the lines are ranked low and only few lines line are
ranked high. We also observe the measure Metric-Quality (φ) in Fig.6 average
for all programs (we also sometimes call it datasets). As shown in the plot as the
number of tests are increased from 10% to 100% we can see that φ approaches
a lower value closer to 0. The closer it is to 0, it implies that ranks of non
related lines of statements are much lower and can be discard from further
examination. We note latent divergence methods do better in ranking only few
of the relevant lines or statements. Note that both Ochiai and Tarantula metrics



A Novel Framework for Locating Software Faults Using Latent Divergences 63

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

%
ch

an
ge

 in
 M

et
ric

−
Q

ua
lit

y

Versions

KL−Divergence and Tarantula for all datasets

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

%
ch

an
ge

 in
 M

et
ric

−
Q

ua
lit

y

Versions

KL−Divergence and Ochiai−Metric for all datasets

Fig. 7. (1) The percentage of the metric quality is compared between latent diver-
gence based on KL-Divergence and Tarantula for all different program versions. (2)The
percentage of the metric quality is compared between latent divergence based on KL-
Divergence and Ochiai for all different program versions.

ranks of lines (statements) much higher compared to the ranks assigned by the
latent divergence method on the same lines, and that may lead the programmer
to wrong direction. Therefore the value of φ for latent divergence is naturally
quite less than φs for the Ochiai method and the Tarantula method. Furthermore,
Fig.7 shows percentage change in metric quality for each program separately.
For some program versions the both Ochiai metric and Tarantula perform quite
poorly. The %-change of metric-quality values shown in the Fig.7(1) and Fig.7(2)
confirm trend observed in Fig.6.

8 Conclusions

In this paper we introduced a novel framework for spectrum-based fault localiza-
tion using latent divergence, a novel concept based on probabilistic divergences.
We show that it is feasible to use a family of latent divergences to accurately
identify the lines of code that are faulty. Our experimental results show that our
technique performs better than existing methods.
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Abstract. The success of regularized risk minimization approaches to
classification with linear models depends crucially on the selection of a
regularization term that matches with the learning task at hand. If the
necessary domain expertise is rare or hard to formalize, it may be diffi-
cult to find a good regularizer. On the other hand, if plenty of related or
similar data is available, it is a natural approach to adjust the regularizer
for the new learning problem based on the characteristics of the related
data. In this paper, we study the problem of obtaining good parame-
ter values for a �2-style regularizer with feature weights. We analytically
investigate a moment-based method to obtain good values and give uni-
form convergence bounds for the prediction error on the target learning
task. An empirical study shows that the approach can improve predictive
accuracy considerably in the application domain of text classification.

Keywords: transfer learning, multitask learning, regularization.

1 Introduction

Many approaches to classification optimize the sum of a data-dependent risk
functional and a data-independent regularizer. Modern machine learning appli-
cations often use such methods on complex data objects, which can be described
by large amounts of features. Since one has many more features than training
instances in such settings, it is important to choose good regularization. Ideally,
one would want to choose a regularizer that matches well with the unknown
data-generating distribution. Finding such a good regularizer can either be done
based on the available data (which might lead to overfitting) or based on domain
expertise or meta knowledge, which is often rare or requires significant amount
of work. Modern automated data processing systems, on the other hand, have
led to the availability of vast amounts of potentially related data, which might
help in selecting a good regularizer.

In this paper we address the problem of automatically adapting the regular-
izer for a target learning problem, if one has access to a (possibly large) number
of related source learning tasks. To do so, we choose a highly parameterized
regularizer for the target learning problem and try to obtain good settings for
� A part of the work was fone while MK was with University of California, Berkeley.

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 65–80, 2011.
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the parameters from the source data sets. We frame the problem theoretically
using a frequentist hierarchical model, similar to the ones by Baxter [4] and
Ando and Zhang [1]. However, instead of bounding the average prediction error
over all learning tasks (multitask learning), we give bounds only for the pre-
diction error on the target task (inductive transfer). We also do not make any
fixed assumption about how the source and target learning tasks are related,
such as transformation-based relatedness [5,12] or preprocessing-based related-
ness [11,17]. Instead, we start from a worst-case analysis and only make the
assumption that source and target learning tasks are drawn i.i.d. from a fixed
but unknown distribution. We then show how one can add additional assump-
tions to improve those worst case bounds in particular situations. The resulting
uniform convergence bounds relate the success of the regularization parameters
obtained from the source data sets to the number of source data sets and quan-
tifies the trade-off between estimation and approximation errors.

We evaluate our approach empirically in the application domains of text clas-
sification and predicting molecular structure-activity relationships. The results
indicate that our approach works at least as well as a regular SVM and in a few
cases yields drastic gains in prediction accuracy up to 19% over approaches that
do not transfer information from the source tasks.

Our main contributions can be summarized as follows:

– We present a novel approach to transfer learning, for which we show upper
bounds on the generalization error on the target task in a hierarchical i.i.d.
setup.

– We show how our bound can be further tightened when distribution-dependent
information is available. We demonstrate that the so-obtained generalization
bounds can be strictly tighter than standard results.

– We show that our approach works well in the domain of text classification,
yielding gains in accuracy of up to 19% compared to a regular SVM and the
approach of Evgeniou & Pontil [8].

Finally, we would like to mention that our method is easy-to-use since one just
needs a regular SVM implementation. We thus believe that our method could
be useful to other researchers for exploring new application domains in which
transfer learning might be helpful. Our implementation will be made available
with the final version of this paper.

2 Regularization Adaptation with Transfer Learning

Let us now describe the setting more formally. We are given a space of data
objects X that are embedded in an Euclidean feature space, i.e. X � Rm, and
a set of binary class labels Y = {−1, +1}. We assume that nature poses a
sequence of source learning tasks T 1, . . . , T p and one target learning task T ◦.
We assume that all these learning tasks are drawn i.i.d. from a fixed but unknown
distribution T . The goal is to find a good classifier for the target learning problem
T ◦. For each learning task T i = (X i, Y i) we are given a sample of training data



Transfer Learning with Adaptive Regularizers 67

X i = {x1, ..., xni}, and labels Y i = {y1, ..., yni}, drawn i.i.d. from some unknown
distribution, which in turn is drawn from T . For ease of notation, we assume
n := n1 = . . . = np in the following.

As we are not interested in the actual data-generating distributions for the
source tasks, but only the distribution of the observed data, we will not dis-
tinguish between “true” and “empirical” source distributions. Instead we simply
assume that each source task distribution P i is defined with regard to the sample
(X i, Y i). This means we write PrP i to denote the sample probability measure
PrP i(x, y) := 1

ni

∑
(xi,yi)∈(Xi,Y i) I[x = xi ∧ y = yi] and E(x,y)∼P i for the sam-

ple expectation E(x,y)∼P i[f(x, y)] := 1
ni

∑
(xi,yi)∈(Xi,Y i) f(xi, yi). For the target

learning task T ◦, we follow the same convention, but assume that we have seen
only a smaller fraction n◦ << n of all target examples. This means that the
“true” probabilities PrP◦ and expectations EP◦ are still defined with regard to
the sample X◦ = {x◦

1, . . . , x
◦
n}. However, for learning a classifier, we only have

access to a smaller subset {x◦
1, . . . , x

◦
n◦} ⊂ X◦ of examples.

We denote by E and Pr the overall expectation and probability over the choice
of both the learning tasks and a particular training sample, unless stated other-
wise, while conditional expectations will be marked by a subscript; for example,
E(x,y)∼P◦ takes the expectation over the target data generating distribution P ◦,
but is still a random variable with regard to the learning task generating distribu-
tion T . In the cases where we take the overall probability, the random quantities
usually only depend on the drawing of the target task P ◦ from the data set
generating distribution T . Therefore, it is usually safe to assume E = ET and
Pr = PrT in the following.

For the source data sets (X1, Y 1), . . . , (Xp, Y p), we would like to find linear
classifiers w1, . . . , wp ∈ Rmi

whose loss eri(wi) is as small as possible, while
constraining ‖w‖2 ≤ C. For ease of notation, we set C = 1, but the following
results also hold for other choices of C. Define

∀i = 1, ..., p : wi := argmin
w:‖w‖2≤1

eri(w), (1)

where ∀w : eri(w) :=
1
n

n∑
j=1

�(w�xi
jy

i
j).

Here, � : R → [0, 1] is a loss function measuring the quality of a prediction.
Suppose the criterion has a unique solution wi. We can then view the w1, . . . , wp

as a random sample of empirical risk minimizers.
However, our goal is to find a vector w that minimizes the expected error

er◦(w) on the target task, while we can only observe the empirical error êr◦(w):

∀w : er◦(w) := E
(x,y)∼P◦

�(w�xy) =
1
n

n∑
j=1

�(w�x◦
jy

◦
j ), (2)

êr◦(w) :=
1
n◦

n◦∑
j=1

�(w�x◦
jy

◦
j ).
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To this aim, we could employ a standard approach such as (1). However, since
we know that T ◦ is drawn from the same distribution T as the T 1, . . . , T p, it
would make sense to re-use some of the information in the source data sets for
the selection of the target classifier. In the following we do so by using an ad-
justable regularization term, which is modeled on base of the observed source
tasks:

Proposed Transfer Learning Approach

ŵ◦ := argmin
w∈Bb

êr◦(w), (T)

where Bb is a regularizer depending on the source tasks. The main idea is that
the new regularizer forces the classifier to be from a more restricted set Bb,
whose size and form depends on the source learning tasks T 1, . . . , T p and a scale
parameter b ∈ R.

More specifically, the Bb is designed to keep the favorable properties of �2

regularization, but to transfer information about the relevance of individual fea-
tures or feature groups. A feature, which gets assigned large weights on most
source data sets is likely to also be informative on the target data set. Thus, it
makes sense to adjust the regularizer for the target learning task so that it en-
courages the assignment of large weights to informative features and to penalize
the assignment of large weights to features which have not received considerable
weights on the source learning tasks. Note that the actual sign of a weight is
not important, as the assignment of +1 and −1 to individual class labels is ar-
bitrary and may change between individual learning tasks. We therefore use the
absolute values |wj |, or, more generally, the qth moment |wj |q to assess feature
relevance. More formally, we define:

μ̂ :=
1
p

p∑
i=1

|wi|q, μ := E
[
|w1|q

]
= ... = E [|wp|q] , (3)

Here, wq := (wq
1 , . . . , w

q
m) is meant to be the elementwise power. Note the wi

are i.i.d. and hence the definition of μ can be made on base of any of the wi.
As explained above, the qth moment μ̂ measures how much information each
component of the wis has about the class label on average. For example, large
components μ̂j correspond to large absolute values |wi

j |, and hence the jth fea-
ture is likely to be discriminative—it is thus suggestive to employ a regularizer
that promotes features with large μj . To promote features that are likely to be
discriminative, we employ the following regularizer:

Moment-based Regularizer

Bb := Bb(T 1, . . . , T M) =
{

w

∣∣∣∣ ∥∥w ◦ μ̂−1
∥∥ ≤ b

}
,

where b > 0 (B)
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Here, ◦ denotes the elementwise multiplication of vectors, and we employ the
notation w−1 = (1/w1, . . . , 1/wm) to denote the elementwise inverse. Note that∥∥w ◦ μ̂−1

∥∥ is only a shorter way to write
√∑m

j=1 w2
j

/
μ̂2

j . Informally speaking,
the regularizer (B) is an �2-norm regularizer, where the dimensions are scaled
according to the moment of the corresponding features in the source data sets.
Using this regularizer, we can state the proposed transfer approach as an easy
three step procedure: First, obtain good weight vectors wi on the source data
sets, then compute the new regularizer Bb from the moments of the wi, and
finally learn a target weight vector ŵ◦ using Bb as regularizer. Note that the
restriction to norm constraints is not a limitation since non-centered hypothesis
classes are also subsumed by our analysis. This is because translations w �→ w+t
cannot modify the Rademacher complexity by more than ‖t‖∞/

√
n [3].

3 Theoretical Analysis

In this section we analyze the proposed transfer learning method theoretically
in terms of upper bounds on the generalization error.

Theoretical performance measure. In order to theoretically measure the success
of our approach, we compare its expected test error to one of the theoretically
optimal linear classifier on the target data, i.e. we wish to obtain a bound of the
form

er◦(ŵ◦) − er◦(w∗) ≤ bound,

where w∗ := argmin
w:‖w‖≤1

er◦(w). (4)

This bound compares the performance of our method to the one of the theoret-
ically optimal vector w∗. Of course, this quantity can not be observed, because
the true underlying distribution is unknown. However, one can nevertheless ob-
tain such an inequality by decomposing the above quantities into two terms as
follows:

er◦(ŵ◦) − er◦(w∗)
≤ er◦(ŵ◦) − êr◦(ŵ◦) + êr◦(ŵ◦) (5)
− er◦(w◦) + er◦(w◦) − er◦(w∗)

≤ 2 sup
w∈Bb

(
|er◦(w) − êr◦(w)|

)
︸ ︷︷ ︸

estimation error ere

+ er◦(w◦) − er◦(w∗)︸ ︷︷ ︸
approximation error era

, (6)

where we use the quantity w◦ := argminw∈Bb
er◦(w) (this is the theoretical

outcome of our approach (T) if we would optimize with regard to all n target
examples instead of just the observed n◦ examples). To see that inequality (5)
holds, note that êr◦(ŵ◦) ≤ êr◦(w◦). In the following, we address how to bound
the estimation and approximation error separately.
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3.1 Estimation Error

First, for the estimation error, we assume a fixed target regularizer Bb and only
deal with the target data set. As explained in the error decomposition (6), it
is sufficient to give a uniform convergence bound on the generalization error to
bound the estimation error. To this aim, we give the following result:

Theorem 1. Let the regularizer be as defined in (B). Suppose the loss � : R ⊃
X → [0, 1] is Lipschitz with constant L, and the data lies in the unit cube,
x ∈ [−1, 1]m. Then, the following holds with probability larger than 1 − δ:

sup
w∈Bb

∣∣er◦(w) − êr◦(w)
∣∣ ≤ 2Lb√

n◦ + 2

√
2 ln 2

δ

n◦ .

The proof uses the established techniques and is shown in the Appendix. From

(6) immediately follows for the estimation error ere ≤ 4L b√
n◦ + 4

√
2 ln 2

δ

n◦ .

3.2 Approximation Error

The following theorems give upper bounds of the approximation error of the
proposed approach (T) with Bb defined in (B). We start by giving a worst-case
upper bound which does not make any assumption about the dataset-generating
distribution T .

Theorem 2. Let the regularizer be defined as in (B). Suppose the loss � : R ⊃
X → [0, 1] is Lipschitz with constant L, and the data lies in the unit cube,
x ∈ [−1, 1]m. Then, with probability greater than 1 − δ over the choice of the
source data sets and with probability greater than 1 − ε over the choice of the
target learning task,1 the approximation error era = er◦(w◦) − er◦(w∗) has

era ≤ Lm

b
1
q

[
1
ε

(
qq

(q + 1)q+1
+ b

√
ln m

δ

2p

)] 1
q

(7)

Proof. We start the proof by noting that, since � is Lipschitz with constant L,
we know that �(a)− �(b) ≤ L|a− b| for all a, b ∈ R. Thus we can use the Hölder
inequality to bound the difference between the error of w◦ and the error of w∗

as follows:

era = er◦(w◦) − er◦(w∗)

= E
(x,y)∼P◦

[
�(yw◦�x)

]
− E

(x,y)∼P◦

[
�(yw∗�x)

]
≤ L E

(x,y)∼P◦

[
inf

w∈Bb

∣∣∣(y (w − w∗)� x)
∣∣∣]

≤ L E
(x,y)∼P◦

[
‖yx‖ q

q−1
inf

w∈Bb

‖w − w∗‖q

]
≤ Lm

q−1
q inf

w∈Bb

‖w − w∗‖q, (8)

1 In other words, with probability (1−ε)(1−δ) over the combined distribution T ×P ◦.
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where in the last step we exploit that the data lies in the unit cube, x ∈ [−1, 1]m,
and the labels are binary, y ∈ {−1, 1}. Note that infw∈Bb

‖w − w∗‖q is a ran-
dom variable because the optimal w∗ depends on the draw of the target task
T ◦. The above result (8) shows that in order to complete the proof, it suf-
fices to show that with high probability (over the draw of the target task)
infw∈Bb

‖w − w∗‖q is smaller than the rightmost term in (7); i.e., we need:
Pr [infw∈Bb

‖w − w∗‖q ≥ t] ≤ bound.
Before we proceed with this, we first need an auxiliary result: we show that the

moment μ̂ is concentrated around its expected value μ (see definition in (3)). To

this aim, consider the random variable Vj := μj − μ̂j
Def.(3)

= E[w1
j

q]− 1
p

∑p
i=1 wi

j
q.

Changing one source weight vector wi changes the value of Vj by at most 1
p .

Thus, we can apply McDiarmid’s inequality and obtain that Pr[Vj ≥ t] ≤ e−2t2p.
Taking the union bound over all Vj , 1 ≤ j ≤ m we get Pr[maxj Vj ≥ t] ≤
me−2t2p. Then, setting t =

√
ln(m/δ)/2p yields

Pr

[
∀j : E[|w1

j |q] −
1
p

p∑
i=1

|wi
j |q ≤

√
ln m

δ

2p

]
≥ 1 − δ. (9)

We are now ready to bound infw∈Bb
‖w−w∗‖q, which is the projection of w∗

on Bb. Define wB = w∗ ◦ min (1, bμ̂), where the min on a vector is understood
elementwise. Using ‖w∗‖ ≤ 1, it is readily verified that wB ∈ Bb. Hence, defining
x+ := max(0, x), we have

Pr
[

inf
w∈Bb

‖w − w∗‖q ≥ t
]

≤ Pr
[
‖wB − w∗‖q ≥ t

]
= Pr

[
‖w∗ − wB‖q ≥ t

]
= Pr

[∥∥∥w∗ ◦
(
1− b

p

p∑
i=1

|wi|q
)
+

∥∥∥
q
≥ t

]

= Pr
[ m∑

j=1

∣∣∣∣w∗
j

(
1 − b

p

p∑
i=1

|wi
j |q

)
+

∣∣∣∣q ≥ tq
]

≤ 1
tq

m∑
j=1

E
[
|w∗

j |q
]
E

[(
1 − b

p

p∑
i=1

|wi
j |q

)q

+

]
︸ ︷︷ ︸

=:Wj

. (10)

The last step is an application of Markov’s inequality. We are now left with
bounding the right hand side of (10).

We start by distinguishing between the cases E[|w∗
j |q] ≤

√
ln m

δ

/
2p and

E[|w∗
j |q] >

√
ln m

δ

/
2p. In the first case, we can use the bound Wj ≤ E[|w∗

j |q] ≤√
ln m

δ

/
2p, because E

[ (
1 − b

p

∑p
i=1 |wi

j |q
)q

+

]
≤ 1. In the second case, we sub-

stitute (9) into the definition of Wj , so that it holds with probability larger than
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1 − δ that Wj ≤ E
[
|w∗

j |q
] (

1 − b E
[
|w∗

j |q
]
+ b

√
ln m

δ /2p
)q

+
. In both cases, Wj is

no more than

Wj ≤ E
[
|w∗

j |q
](

1 − b
(

E
[
|w∗

j |q
]
+
√

ln
m

δ
/2p

)
+

)q

+
.

We now proceed by bounding each Wj independently. Setting a :=
√

ln m
δ

2p

and x := E
[
|w∗

j |q
]
, the above has the form f(x) = x[1 − bx + ba]q+, when

restricting f to the interval [a, 1]. A straightforward calculation shows that f
has only one positive maximum at the position x′ = 1+ab

b+qb . If ab > 1
q , then

x′ < a, so f reaches its maximum at the interval border x = a with maximum
value f(x) = f(a) = a. On the other hand, if ab < 1

q , then x′ > a and we

can use f(x′) = qq

(q+1)q+1
(1+ab)q+1

b as an upper bound. In both cases f is not

larger than qq

b(q+1)q+1 + a. Re-substituting the definitions of a and x′ we obtain

Wj ≤ qq

b(q+1)q+1 +
√

ln m
δ

2p . Plugging this into (10) yields

Pr
[

inf
wB∈Bb

‖w∗ − wB‖ ≥ t

]
(11)

≤ m

tq

(
qq

b(q + 1)q+1
+

√
ln m

δ

2p

)
.

The result follows by setting t =
[

m
ε

(
qq

b(q+1)q+1 +
√

ln m
δ

2p

)] 1
q

.

Of course, this inequality is loose in the sense that it gives non-trivial upper
bounds only for cases where b ≥ m. Ideally one would like to have b <

√
m,

because this would improve the estimation error over the standard Rademacher
bound, which is O(

√
m/n◦). The looseness is not surprising, because we have not

made any assumption about the dataset-generating distribution T . In the worst
case, the distribution might have large variance, so that the source data sets do
not contain any useful information about the target weight vector. However, it
is easy to see how the result can be adapted to incorporate knowledge about T .
In the following, we give two results, where we make additional assumptions on
T .

3.3 Approximation Error with Sparse and Concentrated Moment
Vectors

In the first case, we assume that only a fraction of the features are informative,
so that some of the moment vector μ’s components can be bounded by a small
constant. In the second case, we assume that the variance of the moment vectors
is bounded.
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Theorem 3. Consider the same setting as in Theorem 2, but assume that there
are m1 < m uninformative features, so that μj ≤ c for 1 ≤ j ≤ m1 and some
small constant c > 0, while the remaining m2 := m−m1 features are informative,
i.e. μj is possibly larger than c for m1 < j ≤ m. Then, with probability greater
than 1 − δ over the choice of the source data sets and with probability greater
than 1 − ε over the choice of the target learning task, the approximation error
can be upper-bounded by

era ≤ Lm
q−1

q

b
1
q

[
m1c

ε
+

m2

ε

(
qq

(q + 1)q+1
+ b

√
ln m

δ

2p

)] 1
q

Proof. The proof follows the one of Theorem 2, but differs in the bound for
the right hand side of (10). For the first 1 ≤ j ≤ m1 summands in (10), we

can use Wj ≤ c, because E
[ (

1 − b
p

∑p
i=1 |wi

j |q
)q

+

]
≤ 1. For the remaining m2

summands, we use the original bound Wj ≤ qq

b(q+1)q+1 +
√

ln m
δ

2p . Plugging this
into (10) yields

Pr
[

inf
wB∈Bb

‖w∗ − wB‖ ≥ t

]
≤ m1c

tq
+

m2

tq

(
qq

b(q + 1)q+1
+

√
ln m

δ

2p

)
.

The result follows by setting t =
[

m1c
ε + m2

ε

(
qq

b(q+1)q+1 +
√

ln m
δ

2p

)] 1
q

.

The result leads to particularly tight bounds, if q = 1 and m2 is small. It shows
that one can achieve a comparably low generalization error, even if it is not
known in advance, which features are informative and which ones are not. The
following theorem deals with the case where all features are informative, but
the moment vectors for all source and target data sets are concentrated sharply
around the mean.

Theorem 4. Consider the same setting as in Theorem 2, but assume that the
variance of the moment vectors for the source and target data sets is bounded,
that is, E[(μj −E[μj ])2] ≤ v is bounded by a constant v for all 1 ≤ j ≤ m. Then,
with probability greater than 1 − δ over the choice of the source data sets and
with probability greater than 1− ε over the choice of the target learning task, the
approximation error can be upper-bounded by

era ≤ Lm

⎡⎣1
ε

⎛⎝ qq

b(q + 1)q+1
+

ln m
δ

3p
+

√
4
9 [ln m

δ ]2 + 8pv

2p

⎞⎠⎤⎦
1
q

(12)

If v > 1, the rightmost summand of the bound scales with O(
√

1/p), just as
with the original result in Theorem 2. However, if v is close to zero, the two
left summands are bounded by a O(1/p) factor, leading to a significantly tighter
bound.
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Proof. The result follows by using the following inequality instead of (9) in the
proof of Theorem 2:

Pr

⎡⎣∀j : E[|w1
j |q] −

1
p

p∑
i=1

|wi
j |q ≤

ln m
δ

3p
+

√
1
9 [ln m

δ ]2 + 2pv ln m
δ

p

⎤⎦ ≥ 1 − δ.

(13)

To see that (13) holds, consider the random variable Vj := μj − μ̂j
Def.(3)

=
E[|w1

j |q] − 1
p

∑p
i=1 |wi

j |q. Since the variance of the moment vector’s components
is bounded by v, we can use Bernstein’s inequality and obtain

Pr[Vj ≥ t] ≤ exp
[

pt2

2v + 2t
3

]
.

Taking the union bound over all Vj , 1 ≤ j ≤ m, we get

Pr[max
j

Vj ≥ t] ≤ m exp
[

pt2

2v + 2t
3

]
.

Setting t = 1
3p ln m

δ + 1
p

√
1
9 [ln m

δ ]2 + 2pv ln m
δ yields (13).

Of course, there are many other possible assumptions about the learning task
generating distribution T which would lead to non-trivial error bounds.

3.4 Discussion

We are now able to combine the bounds for the estimation and approximation
error to obtain a bound for the total regret. For instance, setting q = 1 and using
the setting in Theorem 3, we get the following Corollary:

Corollary 1. Under the conditions of Theorem 3 it holds for the empirical risk
minimizer w◦ ∈ Bb defined in (T) and (B) for q = 1

er(w◦) − er(w∗) ≤ 4

√
2 ln 4

δ

n◦ + L

(
4b√
n◦ +

m1c

bε
+

m2

bε

(
1
4

+

√
ln m

δ

2p

))
.

The bound can be expected to improve on standard regret bounds if c and the
number of informative features m2 are small, and the number of uninformative
features m1 is large. This is a very reasonable assumption as there are many
problems in practice where only a few features are relevant and the large majority
of features gets assigned only small weights (see, for example, [10]). In this
scenario, we obtain a bound of the form O( b√

n
+ m1c

b + m2
b
√

p ) (omitting logarithmic

factors), which can be considerably smaller than the O(
√

m/n) rate achieved by
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Algorithm 1. Moment-based transfer learning algorithm based on (B) and (T)
1: input target data set T ◦ and source data sets T i = (Xi, Y i), i = 1, ..., p
2: for i = 1 to p
3: compute SVM weight vectors wi := SVM(Xi, Y i) for source data sets (Xi, Y i),

i = 1, ..., p,
with SVM parameter C tuned on a validation set

4: normalize each weight vector to unit norm: wi := wi/ ‖wi‖2 for each i = 1, . . . , p

5: end for
6: for various values of q

7: compute moment vector μ̂ :=
(

1
p

∑p
i=1 |wi|q

)
8: reweight target training data: ∀i = 1, . . . , n : x◦

i := μ̂x◦
i

9: train SVM on target data set with parameter C tuned on validation set
10: denote the so-obtained weight vector by w◦

q

11: end for
12: output the one SVM weight vector w◦

q with q such that the error on the validation
set is minimal

standard Rademacher-style concentration results. As a by-product, our analysis
shows that the transfer learning approach is most beneficial when the sample size
n is small and the dimensionality m is large. This is in accordance with anecdotal
reports indicating that transfer learning is especially beneficial in small sample
cases [15].

4 Algorithmic Details

In this section we describe the moment-based transfer learning algorithm based
on (B) and (T) that we employed in the experiments in Section 5. To this aim,
let us consider (B). It is easy to see that, instead of optimizing the original
criterion (T), one can equivalently optimize a regular Support Vector Machine
(SVM) [7] with the target data preprocessed by feature reweighting as follows:
xnew

i := xold
i ◦ μ̂. To see this, note that by employing a change of variables

w̃ = w ◦ μ̂−1 it holds for the original criterion

ŵ◦ (T )
= argmin

w:‖w◦μ̂−1‖≤C

1
n◦

n◦∑
i=1

�(y◦
i w�x◦

i )

= argmin
w̃:‖w̃‖≤C

1
n◦

n◦∑
i=1

�(y◦
i w̃�(x◦

i ◦ μ̂))

The proposed method can now be stated as Algorithm 1. Lines 2–5 compute the
optimal SVM weight vectors wi on the source data sets and lines 6–11 perform the
actual transfer learning on the target data set as defined on (B) and (T). In line 7 the
transferred moments μ̂ are computed and in line 8–9 the actual transfer learning
step is performed—as discussed above this is achieved by reweighting the features



76 U. Rückert and M. Kloft

(line 8) and subsequently training an SVM on the so-obtained features (line 9). The
final weight vector for the target task is output in line 12. The parameters q and C
of our algorithm are tuned on a validation set.

5 Experiments

In this section we report on experiments with two application domains, text
document classification and structure-activity-relationships. The first applica-
tion domain, text document classification, is well suited for transfer learning
because, even for very specialized topics, the Internet provides a large body of
related source learning tasks. We downloaded ten data sets from TechTC, the
Technion repository of text categorization data sets2 [9]. Each data set contains
between 142 and 277 text documents from two categories taken from the web
directory Open Directory Project. In total this results in 1794 documents. The
(binary classification) task is to tell for each data set the two categories apart. We
employed a (binary) bag of words feature representation as provided by TechTC
resulting in total in 142468 features.

To evaluate the predictive accuracy of the induced classifiers, we randomly
split each data set into r = 250 training/validation/test partitions of size
50/25/25%. Then, we set one data set as target learning problem aside and
kept the remaining data sets as source data. This process is repeated for each
data set. Subsequently, we run Algorithm 1, a baseline (linear) SVM and the
method of Evgeniou & Pontil [8] on the training partitions. For each repetition
of the experiment, the optimal parameters were determined by a grid search over
q ∈ 10[−1,−0.8,...,1] and C ∈ 10[−3,2.5,...,4] on base of the validation data set,3 and
test errors are computed on the test partition for the optimal parameter choices.

We give the results on the left hand side of Figure 1. The error bars indi-
cate standard errors over the 250 repetitions. One can see that the method of
Evgeniou & Pontil achieves an test error that is about 2% lower than the one
of the SVM baseline for most data sets. The proposed method is on par with
the SVM baseline for seven of the ten data sets and it is never worse than the
SVM (as it contains the SVM as a special case for q ≈ 0). For three data sets
our method clearly outperforms the two other approaches with drastic gains in
accuracy ranging from 13% to 19%.

In order to investigate why our method performed considerably better on these
three particular data sets than on the remaining ones, we performed another ex-
periment. We trained an SVM for each data set, using all feature vectors and all
instances. This yields ten linear classifiers, that is, weight vectors ŵi. We then
compute the pairwise (absolute) correlation coefficients ρi,j := |corr(ŵi, ŵj)| for
all i, j = 1, . . . , 10. The result is shown in Figure 1 (right). One can see that most
tasks are only weakly correlated. This explains that our method did not improve
2 The data sets are available at http://techtc.cs.technion.ac.il/.
3 Optimal values of C were attained inside the grid. The second regularization pa-

rameter δ of the method of Evgeniou & Pontil was also determined by grid search:
δ ∈ 10[−2,−1,...,2].

http://techtc.cs.technion.ac.il/
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Fig. 1. Empirical results of the text categorization experiment: test errors (left) and
correlation coefficients of the SVM weights (right). Vertical bars indicate standard
errors. One can see that the correlation is maximized for the data set pair (7,8)—this
accordance with the test errors: the gain in accuracy of our method over the baselines
is maximal on these data.
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Fig. 2. Empirical results of the structure-activity relationship experiment

over the baselines on most data sets—one might conjecture that the corresponding
tasks are only weakly related. However, the correlation is substantially stronger
for the data set pair (7,8): it is ρ7,8 = 0.51 while the second largest coefficient
only has ρ2,9 = 0.11. This observation is in accordance with our empirical results:
the gain in accuracy over the baselines was the highest for data sets 7 and 8 (19%
and 16%, respectively)—thus, we conclude that those two tasks are very closely
related and this is why our method works best in these cases.

We also performed some experiments with learning the biological activity of
compounds given their molecular structure as a graph. We obtained the six
datasets used in [14]. Each dataset contains a number of molecular graphs and
about 1000 features testing for the presence of one frequently occurring substruc-
ture. We again randomly split each data set into r = 100 training/validation/test
partitions of size 50/25/25%, evaluated the proposed approach and compared it
to the baseline approaches as done above. It turns out that there is no gain in
using the proposed method for these data sets (see Figure 2). A closer investiga-
tion indicates that there are too many substructure features, which are distinct
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between the individual tasks to make feature-level transfer suitable. This is true
both for our approach as the one by Evgeniou & Pontil. It is an interesting open
question whether one could use feature description data to transfer information
between distinct, but similar features.

6 Discussion and Conclusion

In this paper we presented a transfer learning approach for adjusting the regu-
larizer of a target learning problem. This is an important task for many of the
modern machine learning applications, where the features often outnumber the
training instances. Empirical results have shown that it is often not enough to
impose strong standard regularizers (e.g. to encourage sparsity), but that in-
dividual learning problems benefit from customized regularization [2,8,13,6,16].
The results in this paper demonstrate that adaptive regularization can be suc-
cessfully applied to transfer information from source to target data sets. The
main idea is to extend an �2-norm regularizer with feature weights and to trans-
fer good values for these weights from the source data sets. A theoretical analysis
showed that the expected prediction error depends critically on the trade-off be-
tween estimation and approximation error. If the source classifiers are close to
the optimal target classifier, then it is possible to keep the approximation error
small simply by choosing a strong regularizer that penalizes weight vectors too
far away from the source classifiers. The empirical analysis on real text classifi-
cation data shows that our approach works well in practice if the dataset share
transferable information: for some data sets a gain in accuracy of up to 19% was
observed while it never performed worse than the SVM baseline. It is an open
question whether the bounds can be improved for special cases, and if other
parametrization approaches lead to better theoretical or practical results.
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A Proof of Theorem 1

Let Sn = {s1, . . . , sn} be a set of independent Rademacher variables, which ob-
tain the values -1 or +1 with the same probability 0.5. Then, the Rademacher
complexity of the class of linear classifiers with regularizer Bb is given by RB :=
ESn

[
| supw∈Bb

1
n

∑n
i=1 siw

�x◦
i |
]
. We will now give an upper bound for the

Rademacher complexity of the moment-based approach to transfer learning.

Proposition 1. Then, the Rademacher complexity of linear classifiers with Bb

regularization as defined in (B) is upper-bounded by:

RB ≤ b√
n

.
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Proof. By employing variable substitutions of the form v = b−1w ◦ μ̂−1 we can
use the Cauchy-Schwarz (C-S) inequality to bound the Rademacher complexity
RB as follows:

RB = ESn

[
sup

v:‖v‖2≤1

∣∣∣ 1
n

n∑
i=1

si (bv ◦ μ̂)� x◦
i

∣∣∣]
C−S
≤ E

Sn

[
sup

v:‖v‖2≤1

‖v‖
∥∥∥ b

n

n∑
i=1

si (μ̂ ◦ x◦
i )
∥∥]

=
b

n
ESn

⎡⎣√√√√ n∑
i,j=1

sisj (μ̂ ◦ xi)
� (μ̂q ◦ xj)

⎤⎦
≤ b

n

√√√√ n∑
i,j=1

ESn

[
sisj (μ̂ ◦ xi)

� (μ̂ ◦ xj)
]

=
b

n

√√√√ESn

n∑
i=1

‖μ̂ ◦ xi‖2 ≤ b

n

√√√√ESn

n∑
i=1

‖μ̂‖2

where for the third step we use that the Rademacher variables are independent,
and in the forth step that the data is in [−1, 1]m. Recall that ‖wi‖2 ≤ 1 for all
i and thus ‖|wi|q‖2 ≤ 1. Hence,

‖μ̂‖ ≤ ‖1
p

p∑
i=1

|wi|q‖ ≤ 1
p

p∑
i=1

‖|wi|q‖ ≤ 1.

Combining this with the above bound gives the claimed result.

If the Rademacher complexity of a class of classifiers is known, it can be used to
bound the generalization error:

Theorem 5 ([3]). Suppose the loss � : R ⊃ X → [0, 1] is Lipschitz with constant
L. Then, the following holds with probability larger than 1 − δ:

sup
w∈Bb

∣∣er◦(w) − êr◦(w)
∣∣ ≤ 2LRB + 4

√
2 ln 4

δ

n
.

Theorem 1 follows now from combining the previous two results.
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Abstract. In many filtering problems the exact posterior state distri-
bution is not tractable and is therefore approximated using simpler para-
metric forms, such as single Gaussian distributions. In nonlinear filtering
problems the posterior state distribution can, however, take complex
shapes and even become multimodal so that single Gaussians are no
longer sufficient. A standard solution to this problem is to use a bank
of independent filters that individually represent the posterior with a
single Gaussian and jointly form a mixture of Gaussians representation.
Unfortunately, since the filters are optimized separately and interactions
between the components consequently not taken into account, the re-
sulting representation is typically poor. As an alternative we therefore
propose to directly optimize the full approximating mixture distribu-
tion by minimizing the KL divergence to the true state posterior. For
this purpose we describe a deterministic sampling approach that allows
us to perform the intractable minimization approximately and at rea-
sonable computational cost. We find that the proposed method models
multimodal posterior distributions noticeably better than banks of in-
dependent filters even when the latter are allowed many more mixture
components. We demonstrate the importance of accurately representing
the posterior with a tractable number of components in an active learn-
ing scenario where we report faster convergence, both in terms of number
of observations processed and in terms of computation time, and more
reliable convergence on up to ten-dimensional problems.

1 Introduction

Filtering is a common problem in robotics and other areas where observations
become available sequentially. The observations have a stochastic dependence on
an unobserved underlying state and the goal is to infer the posterior distribution
over the state at a particular time step given the observations up to that time
step. In settings where the observation function is nonlinear the posterior state
distribution can take on complex shapes and even become multimodal. For ex-
ample, in visual tracking, observations are often ambiguous due to other moving
objects or occlusion. In such cases, the posterior distribution might comprise a
relatively small number of reasonably well isolated modes, each of which could
be modeled well by a single Gaussian distribution. Representing such multi-
modal distributions as a whole with a single Gaussian distribution, however, can
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lead to divergence of the filter estimates and generally poor performance. Prop-
erly representing posterior state distributions, including their multimodality, is
especially important when using active learning methods since the uncertainty
captured by the posterior is used directly in the decision of how to query the next
observation in order to resolve ambiguities in the state as quickly as possible.

Although filtering approaches that rely on mixtures of Gaussians to represent
a skewed or multimodal state distribution have a long history, most of these ap-
proaches rely on banks of linear filters, each with a Gaussian state distribution,
that are updated independently [2]. While this has the advantage of being com-
putationally very efficient, since interactions between the mixture components
are being ignored, the resulting mixture distribution is likely to be a poor fit of
the true underlying state distribution. This can lead to poor overall performance
unless a large number of mixture components is used.

Yet, in many situations a small number of Gaussian components can be suf-
ficient to capture the essential structure of the posterior distribution if the pa-
rameters of the mixture components are chosen appropriately. This leads us
to explore new ways of optimizing the parameters of the approximate mixture
representation of the posterior distribution: We present a novel approach to the
problem of mixture filtering that takes inspiration from variational approaches to
approximate inference and combine this with a deterministic sampling approach:
We assume that the prior (e.g. the filtering distribution from the previous time
step) is given as a mixture of Gaussians (MoG). Due to this MoG prior, and
due to a nonlinear observation function the posterior distribution over the state
given a new observation can have a complex shape. We therefore approximate
the new posterior distribution again as a MoG distribution. We optimize this
approximate posterior distribution by approximately minimizing the Kullback-
Leibler (KL) divergence between the true updated state distribution and the
approximate MoG representation. Exact minimization of the KL divergence is
intractable. Our approximate minimization relies on a deterministic sampling
approach, Gauss-Hermite Quadrature, which evaluates general integrals by eval-
uating the integrand at suitably chosen sample points, and we describe a novel
way to re-formulate the required integrals so as to optimize the accuracy of the
method for the problem at hand.

2 Methods

2.1 Problem Statement

We are interested in filtering problems, but in this paper ignore the time update
and instead focus on the measurement update.1 At each time step we receive
a new observation yt and use this to update our current estimate of the latent
state xt: p(xt|yt,y1...t−1) ∝

∫
dxt−1p(yt|xt−1)p(xt|xt−1)p(xt−1|y1...t−1) where

1 This corresponds to a static target. Including a dynamics model is straightforward
and time updates could be done as in other mixture filters by propagating each
mixture component independently.
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p(xt|xt−1) = δ(xt − xt−1). For any time step this problem can be thought of as
computing the posterior p(x|y) using the state distribution from the previous
time-step as the prior p(x). As discussed above, for most interesting cases the
true posterior cannot be computed exactly. This is the case, when the likelihood
p(y|x) is not of the convenient linear-Gaussian form. The focus of this paper is
on developing a formulation of the filtering problem that allows for an approx-
imate representation of the state distribution given previous observations that
is sufficiently flexible to account for uncertainty in the latent state e.g. when
the true posterior is multimodal or skewed. Since in our scenario the posterior
computed in step t will be the prior for step t+1 we are interested in a represen-
tation of the posterior that can be directly used as the prior in the calculations
for the next time step. Specifically, we will be representing the prior and the
approximate posterior as a MoG distribution. Furthermore, we assume that the
observation likelihood is a Gaussian with fixed covariance, but with a mean that
depends on x via a nonlinear function f(·) which we choose to represent as a
radial basis function (RBF) network. We choose this form because it allows us
to treat terms arising from the likelihood analytically (cf. Sec. 2.2) and at the
same time is general enough to approximate any nonlinear function to arbitrary
accuracy [15]. Alternative formulations, e.g. using a Gaussian process represen-
tation are also conceivable [5]2. Thus, at each time step we are faced with the
following problem: Given

p(x) =
∑

n

γnpn(x) (1)

pn(x) = N (x|νn, Θn) (2)
p(y|x) = N (y|f(x), Σy) (3)

f(x) =
∑

j

cjk(x,mj) (4)

k(x,mj) = exp
{
−0.5(x− mj)T S−1(x − mj)

}
(5)

our goal is to approximate the state posterior p(x|y) with a mixture of Gaussians

qmix(x) =
∑
m

αmqm(x) (6)

qm(x) = N (x|μm, Σm). (7)

2.2 Fitting a Gaussian Mixture to the Posterior

Given a new observation y, and the current prior p(x) we need to optimize the
parameters of q(x) so as to match p(x|y) as closely as possible. The variational

2 If the observation function is given in analytical form, expected values can instead be
estimated by the using linearization methods from commonly used unimodal filters,
like the extended Kalman filter or the unscented filter.
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approach requires the Kullback-Leibler (KL) divergence between the approxi-
mate posterior q(x) and the true posterior to be minimized

KL [q||p] =
∫

dx q(x) log
q(x)

p(x|y)
. (8)

The choice of KL [q||p] can be motivated by the fact that the resulting approx-
imate posterior leads to a lower bound on the log marginal likelihood log p(X)
of a latent variable model p(X, Z):

log p(X) = log
∫

dZ p(X, Z) ≥
∫

dZ q(Z) log
p(X, Z)
q(Z)

(9)

where the difference between the left-hand and the right-hand side is just the KL
divergence between the approximate posterior q and the true posterior p(Z|X).
Minimizing this divergence tightens the bound (it becomes tight iff q is equal
to the true posterior, in which case the KL divergence is zero). Maximizing this
bound with respect to the model parameters allows for maximum likelihood
learning in models with intractable posteriors.

In order to be able to capture complex shapes of the true posterior, including
multimodality, we choose MoG as our approximate posterior distribution. In our
case KL [qmix||p] can be broken down as follows:

KL [qmix||p] =
∫

dx qmix(x) log
qmix(x)
p(x|y)

(10)

= − H [qmix] −
∑
m

αmEqm [log p(x)]

−
∑
m

αmEqm [log p(y|x)] + const (11)

where H [q] = −
∫

dx q(x) log q(x) is the differential entropy of q and the ex-
pectations Eqm [·] are taken with respect to the Gaussian components qm of the
mixture posterior.

In order to obtain the approximate posterior this expression needs to be min-
imized with respect to the parameters of qmix. With the choices made above for
prior, likelihood, and approximate posterior (equations 1–6) we can exactly com-
pute the third term in (11) (see Appendix A.1) but the first and second term are
not tractable since they involve integrals taken over log-sums. We approximate
these intractable integrals in (11) using quadrature methods as described in the
next section.

2.3 Gauss-Hermite Quadrature

Gauss-Hermite quadrature [1] approximates d-dimensional integrals by deter-
ministically selecting sample points from a weight function—in this case a Gaus-
sian N (x|μn, Σn)—and then computing a weighted sum of the function values
at those sample points:
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∫
dxN (x|μm, Σm)f(x) = Eqm [f(x)] ≈ π− d

2

∑
h

whf(zh) (12)

where wh =
∏

d wh(d), i.e. the overall weights are determined as the product of
the individual single dimension weights. zh are the transformed sample points
zh = Lmxh

√
2 + μm, where LmLT

m = Σm. In this paper, we set Lm to be
the Cholesky factor, but any triangular decomposition of Σm could be used
(cf. [3]). The sample points and corresponding weights are given by the roots of
the Hermite polynomial and can be calculated offline and stored. Derivatives of
the resulting approximation are straightforward to calculate. In our setup, the
function f(·) is given as an RBF and thus the integral has the following form:

Eqm [f ] = Eqm

[
log

∑
n

αnN (x|μn, Σn)

]
(13)

Gauss-Hermite quadrature could be used to approximate this integral directly
(see [7] for such an approach), but we found that the estimate can become highly
inaccurate if the variances of the individual mixture components differ consid-
erably and only a small number of sample points is used. This can then lead to
a divergence of the optimization of the KL-divergence. Instead of increasing the
number of sample points, which quickly becomes untenable in high dimensions,
we instead rewrite the integral as a sum, which allows us to approximate each
term of this sum individually. This should allow for higher accuracy, as we can
optimize the sample points for each term separately. Thus, we write Eqm [f ] as:

Eqm [f ] = Eqm [log α1N1] +
N∑

n=2

Eqm

[
log

(
1 +

αnNn∑n−1
k=1 αkNk

)]
(14)

where we use the abbreviation Nn to stand in for the longer N (x|μn, Σn). The
first component of this sum can be calculated analytically, while the remaining
ones have to be approximated. We use different weighting functions for each
of these terms. For each integral, we approximate it in the standard way as
described above, if the variance of Nm is smaller than the variance of Nn. Oth-
erwise, we rewrite the integral and choose Nn instead of Nm as the weighting
function:

Eqm

[
log

(
1 +

αnNn∑n−1
k=1 αkNk

)]
︸ ︷︷ ︸

Integral over qm

= Eqn

[
Nm

Nn
log

(
1 +

αnNn∑n−1
k=1 αkNk

)]
︸ ︷︷ ︸

Integral over qn

(15)

As illustrated in Fig. 1 this makes it more likely that the sample points will capture
the region that is interesting for integration, as the mean and variance of the new
weighting function should be closer to the mode and log curvature of the integrand,
and thereby improving accuracy [14]. In the multivariate case, we either pick the
component with the lowest covariance determinant, or (when restricting ourselves
to diagonal covariance matrices) treat each dimension independently.
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Fig. 1. Illustration of the improved Gauss-Hermite method. Left: Mixture of two Gaus-
sians, q1 (left) and q2 (right). Middle: Sample points from q1 (red), integrand (dark
blue) and implicit polynomial fit to integrand by quadrature method (light blue) when
integrating according to the left-hand term in Eq. (15). Right: Improved fit in relevant
region (around sample points) when integrating according to the right-hand term in
Eq. (15), with sample points taken from q2.

3 Related Work

As explained in the introduction, Gaussian mixture distributions as an approxi-
mation to the true state distribution have a long history in the filtering literature.
The classic approach to Gaussian mixture filtering uses a weighted sum of ex-
tended Kalman filters (EKFs) running in parallel [2]. Newer approaches replace
the EKFs with linear filters using deterministic sampling [10,3]. However, in all
these cases several unimodal filters run independently of each other in parallel.
While this is computationally very efficient, it also leads to inferior representation
of the posterior distribution. Different ways to compute the posterior mixture
weights have also been proposed, in an attempt to decrease the distance between
the true posterior and the mixture approximation [10]. In contrast, in our ap-
proach we adapt all Gaussian mixture parameters (i.e. means, covariances, and
mixture weights) jointly so as to fit the true posterior as closely as possible.

Mixture distributions as approximate posterior distributions have been con-
sidered previously in the literature on variational inference [11]. In particular
Lawrence and Azzouzi[13], as well as Bouchard and Zoeter [4] consider the
use of MoGs to approximate continuous-valued posterior distributions. To our
knowledge, these have, however, not been considered in the context of filter-
ing. Compared to previous work, the filtering application leads to an additional
intractable term in (11) in the form of the integral over the logarithm of the
prior which, in our case, does not have a simple parametric form such as Gaus-
sian, but rather is a MoG itself. Previous work deals with the intractable terms
differently: Jaakola and Jordan [11], who consider the case of discrete distri-
butions, employ an advanced upper bound to approximate the expectation of
the logarithm arising in the expectation of H [qmix]. This bound requires the
optimization of additional variational parameters including a set of “smoothing
distributions”. Lawrence and Azzouzi [13] adapt this approach to the continuous
case using MoGs for the posterior. The variational smoothing distributions then
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take the form of Gaussians whose parameters need to be optimized alongside
the other variational parameters. This happens in an iterative scheme which
alternates gradient ascent with respect to the different sets of parameters.

In this paper we are primarily interested in a fast method for estimating
the approximate representation of the posterior. Instead of minimizing an up-
per bound on the KL divergence as in [11,13] we therefore approximate the
intractable integrals in (11) using quadrature methods which (a) avoid the need
to iteratively optimize additional parameters and are therefore fast, and (b) di-
rectly extend to the second intractable term to which the upper bound to the
logarithm used for evaluating the entropy is not applicable.

Gauss-Hermite quadrature has been used in unimodal Gaussian filtering be-
fore to approximate certain integrals [10,3]. The well-known unscented filter [12]
also relies on deterministic sampling, but uses a slightly different approach to
selecting the sample points and weights. In all these cases, deterministic sam-
pling is used in order to calculate expectations over the observation function. In
our approach, we use deterministic sampling in order to approximate expecta-
tions over log-sums, i.e. entropy-like terms and their gradients. While entropies
of mixtures of Gaussians have been approximated using deterministic sampling
before [7], our way differs in that we treat each component inside the log-sum in-
dependently, and therefore achieve higher accuracy. Another way that has been
proposed would be to derive the Taylor expansion of the log-sum up to a certain
degree and then integrate analytically [9].

4 Results

4.1 Problem Setup

In order to test the performance of our proposed variational approach, we ex-
amined how well it could fit complex (i.e. multimodal or skewed) state distri-
butions when compared with other approaches. To highlight the importance of
such representations, we additionally tested whether an improved posterior rep-
resentation would help in a localization task with ambiguous observations, while
using active learning in order to speed up convergence.

Depending on task difficulty, we compared our approach with a number of
other options: first, a linear mixture filter3 using the same number of components
as the variational mixture filter; second, linear filters using a higher number
of components (3d or 7d)4; and finally, a variational filter using just a single
component, in order to examine how well a unimodal approach would perform5.
3 Our linear mixture filter implementation is a bank of independent filters that are

updated independently. Note that because of the particular form of the nonlinear
likelihood (RBF, cf. Eqs. (4), (5)) all required expectations can be computed ana-
lytically (see Appendix A.1).

4 d denotes the dimensionality of the state distribution.
5 The unimodal variational filter still needs to be optimized iteratively, but since the

posterior distribution only consists of a single Gaussian, the KL divergence and its
gradient can be evaluated analytically, so no numerical quadrature is needed and
optimization is usually much quicker.
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Fig. 2. Comparison of true posterior (black lines), variational (red) and ’bank of filters’
(blue) approximations for different observation functions. Each row represents a new
observation, with successive time steps ordered from top to bottom, while each of the
four columns stands for a different problem: 1. Bimodal posterior, approximated with
two components. 2. Same posterior as in (1), approximated with 4 components, 3.
Skewed posterior, 2 components, 4. Highly multimodal posterior, 4 components.

The problem was set up as a localization task where the position of a (sta-
tionary) target at location x∗ had to be estimated by probing search locations θ
sequentially and receiving observations y that depended on both the probe and
target locations: y = f(θ − x∗). Each run started with a wide Gaussian prior
(zero-mean with an isotropic variance of 9), reflecting the fact that the location
of the target was unknown. The observation function f(·) was set up as an RBF
consisting of a small number of individual squared exponential components. In
each new run, the location of these components with respect to the target lo-
cation was sampled from a uniform distribution over a hyper-cube of length 8
centred at the origin. The number and kernel width varied with the dimension-
ality of the problem: We used 3 kernels with a width of 1.5 for the 4D problem, 4
kernels with width 1.5 for 6D, 5 kernels with width 3 for 8D, and 5 kernels with
width 7 for 10D. We used two different types of observations: Ambiguous and
Infomax observations. For ambiguous ones, search locations θ were fixed such
that observations always came from the mode of an individual RBF component,
which frequently resulted in the posterior becoming multimodal. This type of
observations was used to test how well the different methods were able to model
multimodal state distributions (see results in Sec. 4.2). For Infomax observations,
the search locations θ were optimized via active learning such that they resulted
in the biggest information gain about the position of the target (see Appendix
A.2 for mathematical details and Sec. 4.3 below for results). These observations
should allow the posterior to quickly converge onto the correct target. That is,
knowing the observation function as well as the current (possibly multimodal)
state distribution allows selecting search locations that disambiguate between
the different potential target positions effectively.

For the cases where the linear filter used a higher number of components than
the variational one, its prior was initialized to match the original prior as closely
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(a) (b)

Fig. 3. (a) and (b). Two example runs with time increasing from left to right (4 steps
each). Top row: Actual posterior (calculated numerically). Middle row: Variational
mixture approximation (3 components). Bottom row: Linear mixture approximations (3
components). All methods start with the same prior and receive the same observations.

as possible by placing components on a grid and adjusting their weights so that
the resulting mixture distribution matched the original broad Gaussian prior
distribution. We also tried other initializations, e.g. randomly sampling com-
ponents from the original prior, and found that different initializations did not
influence the results much. For the variational approach, we used 3 quadrature
points per dimension in all examples, leading to 3d samples in total. For prob-
lems where d > 2, we restricted the variational method to diagonal covariance
matrices; components in linear filters always maintained full covariance matri-
ces, however. All algorithms were implemented in Matlab, using some functions
from the Lightspeed toolbox6. For gradient descent we used the scaled conjugate
gradient implementation provided by the Netlab toolbox7.

4.2 Representation of Multimodal Posterior Distributions

First, we tested how well our approach could represent skewed and multimodal
posterior state distributions of different dimensionalities. Some examples for dif-
ferent setups in 1D and 2D are shown in Figs. 2 and 3. As can be seen, the
variational approximation generally approximates the posterior well and cor-
rectly finds and represents the major modes. The quality of approximation evi-
dently improves with the number of mixture components that is used (see second
column in Fig. 2). Moreover, skewed distributions can be fitted well, by using
several mixture components (see e.g. the third column in Fig. 2). Sometimes the
variational approximation covers several posterior modes with a single compo-
nent, which also happens when there are more posterior modes than mixture
components (see right panel in Fig. 3). The ’bank of filters’ method on the other
hand runs into problems if a unimodal prior splits into a posterior consisting of
several components, and often retains an excessively high variance.

6 http://research.microsoft.com/en-us/um/people/minka/software/

lightspeed/
7 http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/

lightspeed/
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We also ran a more exhaustive test on low-dimensional problems (1–2D),
where we kept the observation function constant, but systematically varied the
mean and the (co)variance of the prior distribution with respect to the obser-
vation function. This introduced a big range of different nonlinearities for the
methods to encounter. We ran the algorithms on several different observation
functions by varying the number and locations of RBF components. For each
individual trial, we (numerically) calculated the KL divergence between the dis-
tributions approximated by the mixture methods and the true state posterior.
We found that, generally, our algorithm was at least as good as the linear mixture
filter but often dramatically better, usually when the posterior state distribution
became either considerably skewed or multimodal.
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Fig. 4. Differences between the KL divergence between respective posterior approxi-
mation and the true posterior, and the KL divergence between the variational filter
and the true posterior as a function of the number of observations. Positive values indi-
cate that the variational mixture filter was closer to the true posterior (in terms of the
KL divergence), while negative values denote the respective other filter being a better
fit. Left: 4D problem with observation function consisting of a single bump. Middle:
4D problem with three observation function modes. Right: 8D problem with 5 modes.
Blue line: Average difference between linear and variational mixture filters (both using
4 mixture components). Green line: Difference between unimodal (1 component) and
variational filter). Light blue and black lines (4D only): Same for linear filters using
81 and 2401 components, respectively. Shaded regions indicate standard error of the
mean.

In a further set of tests, we examined how well the different mixture methods
were able to capture high-dimensional complex posterior distributions. In order
to quantify the fit of the different representations, we calculated differences in
the KL divergences between the different mixture approximations and the true
posterior distributions over time: we used Monte-Carlo integration in order to
arrive at an estimate of the KL divergence (up to a constant). In these tests we
only presented ambiguous samples as we were interested in a complex posterior
shape. Results for tasks in 4D (with either a single or three observation func-
tion modes) and 8D (using 5 modes) can be seen in Fig. 4. We ran this task
for 100 (4D) or 25 (8D) random configurations of the observation function and
target. We noticed several interesting effects. First, a linear filter using the same
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number of components as the variational filter consistently performs worse, in-
dependent of whether the posterior state distribution is skewed (left panel) or
becomes multimodal (middle panel). Second, adding more components to the
linear filter improves the difference in KL divergence. However, even with a very
large number of components (2401), performance is generally much worse than
the variational mixture filter. Also, the number of components that would be
needed quickly becomes infeasible in higher dimensions (d > 4). For example,
using 7 mixture components per dimension would have required more than 5
million components in 8 dimensions, which exceeds the memory limitations of
our setup. Finally, a unimodal variational filter cannot represent the complex
posterior shapes properly. We noticed that most of the time, the unimodal ver-
sion tends to cover all of the posterior modes, although in some cases it could
“fall” into a single posterior mode, leaving other ones uncovered.

4.3 Convergence When Using Active Learning

In another set of simulations, we used active learning in order to quickly resolve
the uncertainty introduced by ambiguous observations. For this, we optimized
successive search locations with respect to their informativeness about the tar-
get location (see Appendix A.2 for mathematical details). This was to highlight
the importance of multimodal representations in a practical scenario. In these
tests we first presented a number of ambiguous samples (3–5), causing the pos-
terior distribution to acquire a complex shape and possibly become multimodal.
We then iterated between optimizing the next search location and updating
the state distribution after receiving an observation from that location. This
optimization crucially depended on the prior state distribution at the current
time step. Using active learning should quickly resolve any ambiguities in the
state distributions and lead to quick convergence of the posterior distribution to
the actual target. Methods better at representing multimodal posteriors should
converge more quickly as they should be better at correctly representing the
uncertainty in the state space. In this part of the analysis, we did not examine
linear filters with a bigger number of components than the variational filter,
as the runtime of our active learning framework is quadratic in the number of
Gaussian mixture components (see Appendix A.2), and therefore prohibitively
slow to use with a lot of individual components.

We examined how well the different algorithms converged onto the target lo-
cation for both 6D and 10D problems. Fig. 5 shows both the mean squared error
(MSE) as well as the root covariance determinant over time8. Additionally we
plot the log likelihood of the actual target over time. Convergence is indicated by
both decreasing error and root covariance determinant, while the log likelihood
of the target should increase over time. We found that the variational mixture
filter converged well towards the actual target over time, while both the linear
and unimodal filters seemed to stall. This means that the active learning com-
ponent could exploit the multimodal representation of the variational approach
8 The MSE and mean root covariance determinant were calculated with respect to the

overall mean and covariance of the approximate mixture distribution.
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Fig. 5. Convergence results for different algorithms on a 6D (top row of panels) and
10D (bottom row) problem, respectively, with the linear and variational algorithm us-
ing 3 components each. Left panels: Average mean squared error over 15 or 20 time
steps, respectively, for 25 runs of the variational (red), linear (blue), and unimodal vari-
ational (green) algorithms. Shaded regions indicate standard error of the mean. Both
multimodal approaches used 4 mixture components. Middle panels: Average covariance
determinant over time. Right panels: Log likelihood of the actual target over time.

and resolve the ambiguity about the target location. The representation of the
state distribution by the other methods, however, was not sufficient to allow for
effective target localization.

As the variational mixture filter is computationally more involved, it is slower
in updating the posterior state distribution after receiving an observation due
to the numerical optimization involved. We asked whether these delays would
have any effects on performance. We therefore set a fixed time span (30–90
seconds), during which each of the methods would iteratively determine the
next sample point using active learning, then receive an observation and update
its posterior state distribution. The time needed for both optimization of the
next search location (i.e. the active learning part) and updating the posterior
distributions counted towards each method’s time budget. Thus, the faster an
algorithm updated its state representation and the lower its number of mixture
components, the more observations it was able to request. Fig. 6 plots the number
of observations that was used by each method against the log likelihood at the
end of the time span for a 3D (left) and a 6D problem (right). In this plot,
a marker in the left, upper corner indicates that the respective method was
only able to request a small number of observations, but achieving a high log
likelihood. Markers in the right, lower corner, however, would indicate that an
algorithm requested a high number of observations but failed to increase the
log likelihood considerably. We found that the variational mixture filter does
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Fig. 6. Log likelihood of target after updates plotted against number of processed
observations. Markers denote mean (over 25 runs each) and vertical lines indicate
standard errors of the mean. Left: 3D state space. Right: 6D state space. A fixed
time budget of 30 and 90 seconds, respectively, was imposed per algorithm. Light blue
marker (left plot only): Linear filter with 27 components. Red: Variational mixture
filter (3 components). Blue: Linear filter (3 components). Green: Unimodal variational
filter.

well in both tasks, by increasing the log likelihood more than other methods,
despite being relatively slow and therefore only processing a small number of
observations. The linear filter with 27 components also does well in the 3D
example, but performs even slower due to increased computational demands in
the active learning stage. The variational unimodal filter is generally the fastest,
but does not perform well. The extremely high standard error observed is due
to its mode-seeking behavior, which caused it to model only a single posterior
mode, which often turned out to be the “wrong” one.

5 Discussion

In this paper we have proposed a novel approach to filtering in which the ap-
proximate posterior distribution over the state is maintained as a mixture of
Gaussians. Using a MoG to approximately represent the posterior makes it pos-
sible to capture complex shapes of the true state distribution such as skewedness
or multimodality which often arise when the observation function is nonlinear.
Unlike previous approaches to mixture filtering we do not maintain a set of
independent Gaussian components but take interactions between the mixture
components into account when optimizing the approximate representation of
the posterior distribution given a new observation. This requires the calcula-
tion of expectations over log-sums, which cannot be done analytically, and we
propose to approximate these terms using quadrature methods. We find that
optimizing the mixture representation directly captures the true shape of the
posterior much better than a bank of independent linear filters, even when al-
lowing many more components. We demonstrate the impact of this improved
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representation in a task where active learning is used in order to directly resolve
the uncertainty in the posterior distribution resulting from ambiguous samples:
The proposed approach converges considerably faster and more reliably than the
alternative filtering approaches. Importantly, faster convergence is achieved not
just when measured as a function of observations but also in terms of overall
compute time, despite the fact that our filtering approach is computationally
more expensive than the alternatives: The additional computational complex-
ity in processing individual observations by the filter is more than compensated
for by the noticeably faster convergence per observation as demonstrated in the
experiments with limited overall run-time.

In this paper we have focused on a mixture of Gaussians representation in
order to capture multimodal or skewed posterior distributions. Sampling meth-
ods like the particle filter have been proposed as an alternative to traditional
filtering methods when dealing with nonlinear observation functions and the re-
sulting multimodal state distributions. They work by maintaining a large collec-
tion of weighted samples (particles) that provide a sample based representation
of the posterior distribution. While such a sample based representation can in
principle approximate distributions of any shape (including multi-modal distri-
butions), the number of particles required increases exponentially so that they
become impractical in high-dimensional spaces. Furthermore, for many applica-
tions a compact representation of the posterior e.g. in terms of a small number of
mixture components is crucial: For instance, in the context of the application dis-
cussed in this paper, active learning, the sample-based methods that have been
proposed so far are very slow even with a relatively small number of particles,
which renders them feasible in very low-dimensional spaces only [8,16].

There are several interesting directions for future work. Firstly, our method
uses an observation function that is represented as an RBF network. A relatively
straightforward extension would be to use a Gaussian Process representation in-
stead [5]. In cases where the observation function is given directly in analytic
form, it might not be possible to calculate expectations over this function. In
such cases, expectations can be estimated using methods from unimodal Gaus-
sian filters, such as in the extended Kalman filter or in the unscented filter [12].
Secondly, an important practical consideration is the number of mixture com-
ponents used to represent the posterior. In the experiments described above this
number was fixed. Using too many components does not negatively impact the
quality of the posterior representation, but it does slow down the algorithm. Us-
ing as few components as possible is therefore desirable in order to achieve fast
convergence in terms of compute time. On the other hand, choosing the number
of components too small will leave some part of the state space unrepresented or
requires a single component to cover multiple posterior modes, which will result
in a worse representation and in the extreme case can lead to similar prob-
lems as for a unimodal filtering approach. One interesting approach would be
to dynamically adjust the number of components, adding new components in
each observation step, and then merging the most similar ones.
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A Appendix

A.1 Additional Calculations

Usually, expectations over the observation function f have to be approximated,
however if f is represented as a RBF as in our case, or as a Gaussian Process [5],
then these expectations can be calculated analytically (e.g. [6]), as given below:
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Eqmix [f(x)] =
∑
m

∑
j

Eqm [cjk(x,mj)] (16)

Eqm [cjk(x,mj)] = cj|S−1Σm + I|− 1
2 · (17)

exp
{
−0.5(μm − mj)T (Σm + S)−1(μm − mj)

}
(18)

Eqmix

[
f(x)2

]
=
∑
m

∑
i

∑
j

Eqm [cik(x,mi)cjk(x,mj)] (19)

Eqm [cik(x,mi)cjk(x,mj)] = cicj|2S−1Σm + I|− 1
2 (20)

exp
{
−0.5(μm − m̂ij)T (Σm + 0.5S)−1(μm − m̂ij)

}
(21)

A.2 Active Learning

In the active learning scenario, our aim is to pick a search location θ, which
maximizes the mutual information between the current state distribution and
the expected observation. As the mutual information cannot be calculated ana-
lytically when distributions are represented as mixtures of Gaussians, we instead
optimize a surrogate measure, called ’quadratic mutual information’ (QMI) that
has been originally proposed for clustering [17].

IQMI(X ; Y |Θ) =
∫∫

dxdy
(
p(x,y|θ) − p(x)p(y|θ)

)2 (22)

=
∫∫

dxdy p(x,y|θ)2 +
∫∫

dxdy p(x)2p(y|θ)2− (23)

2
∫∫

dxdy p(x,y|θ)p(x)p(y|θ) (24)

Each of the integrals involved can now be calculated analytically in a similar
fashion as described in Appendix A.1. At each step, I is optimized by gradient
ascent with respect to the new search location θ. The computational complexity
of this approach is quadratic in the number of mixture components.
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Abstract. In this paper, we harness the synergy between two important
learning paradigms, namely, active learning and domain adaptation. We
show how active learning in a target domain can leverage information
from a different but related source domain. Our proposed framework, Ac-
tive Learning Domain Adapted (Alda), uses source domain knowledge
to transfer information that facilitates active learning in the target do-
main. We propose two variants of Alda: a batch B-Alda and an online
O-Alda. Empirical comparisons with numerous baselines on real-world
datasets establish the efficacy of the proposed methods.

Keywords: active learning, domain adaptation, batch, online.

1 Introduction

We consider the supervised1 domain adaptation setting [9] where we have a large
amount of labeled data from some source domain, a large amount of unlabeled
data from a target domain, and additionally a small budget for acquiring labels
in the target domain. We show how, apart from leveraging information in the
usual domain adaptation sense, the information from the source domain is further
leveraged to selectively query for labels in the target domain (instead of choosing
them randomly, as is the common practice). We achieve this by first training the
best possible classifier in the source without using target labels, for instance,
either by simply training a supervised classifier on the source labeled data, or
by using some unsupervised adaptation technique using the unlabeled target
data as well. Then, we use this learned hypothesis in various ways to leverage
the source domain information when we are additionally given some fixed budget
for acquiring some extra labeled target data (i.e., the active learning setting [12]).

� Authors contributed equally.
1 We define supervised domain adaptation as having labeled data in both source and

target, unsupervised domain adaptation as having labeled data in only source, and
semi-supervised domain adaptation as having labeled data in source and both labeled
and unlabeled data in target.

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 97–112, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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We call this framework Active Learning Domain Adapted (Alda). Our pro-
posed framework is based on three key components. The first component is
unsupervised domain adaptation (i.e., without target labeled data). The goal of
this step is to suitably adapt the source data representation such that it makes
the marginal distributions of both source and target distributions look similar.
This enables training any traditional supervised classifier for the target domain
using the adapted representation of the source data. The second and the third
components improve this classifier even further by using active learning to selec-
tively acquire the labels of target examples, given a budget on the target labels.
Moreover, these components leverage the source domain information as well.
Specifically, the second step employs a domain separator hypothesis that rules
out querying labels of those target examples that appear “similar” to examples
from the source domain. The domain separator hypothesis is a classifier that
distinguishes between source and target domain examples and is learned using
only unlabeled examples from the two domains. The third component is a hybrid
oracle which consists of two oracles: one that provides labels for free but is im-
perfect (there could be noise), and one expensive (but “perfect”) oracle used in
the standard active learning settings. The source classifier acts as the free oracle
which, although not perfect, can provide correct labels for most of the examples
queried (essentially, the ones that appear ‘source’ like).

The proposed Alda framework is sufficiently general to allow varied choices
of domain adaptation and active learning modules. In addition, Alda applies to
both batch (Section 2) as well as online settings (Section 3). In this paper, we
present empirical results (Section 4) for specific choices of the domain adaptation
and the active learning schemes. For both batch and online settings, we empiri-
cally demonstrate that the proposed approach leads to significant improvement
in prediction accuracies for a given target label budget, when compared to other
baselines. Moreover, for the online setting, apart from showing empirically better
performance, we also show that our approach results in smaller mistake bounds
under suitable notions of domain separation. We provide intuitive arguments for
smaller label complexity in the target domain when compared to the standard
active learning where we do not have access to data from a related distribution.

2 ����: Active Learning Domain Adapted

In this section, we propose a principled approach towards active learning in a
target domain by leveraging information from a related source domain. In our
setting, we are given a small budget for acquiring labels in a target domain, which
makes it imperative to use active learning in the target domain. However, our
goal is to additionally leverage the domain relatedness by exploiting whatever
information we might already have from the source domain. At a high level, our
proposed approach aims to answer the following questions:
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1. given source information, which samples in the target are the most informa-
tive (in an active sense)?

2. among the informative target samples, can we use source information to infer
labels of a few informative target samples, such that the actual number of
target labels queried (from an oracle) is reduced even further?

In the following, we provide answers to the above questions. We begin by intro-
ducing some notations and presenting an overview of the Alda framework.

2.1 Preliminaries

Let X ⊂ Rd denote the instance space and Y = {−1, +1} denote the label
space. Let Ds(x, y) and Dt(x, y) be the joint source and target distributions,
respectively. We have a set of source labeled examples Ls(∼ Ds(x, y)) and a
set of source unlabeled examples Us(∼ Ds(x)). Additionally, we also have a
set of target unlabeled instances Ut(∼ Dt(x)), from which we actively acquire
labels. Furthermore, wsrc denotes a classifier learned from the source labeled
data and wds denotes the domain separator hypothesis. Finally, let φ represent
an unsupervised domain adaptation algorithm that outputs a classifier uφ. Note
that learning uφ does not require labeled target examples.

Fig. 1 shows our basic setup for Alda. The Active Learning (AL) module is
a combination of the sub-modules Uncertainty Sampler (US) (that is initialized
using the uφ classifier from the unsupervised domain adaptation phase) and Do-
main Separator (DS) (that uses the wds classifier). In addition, the setup employs

Costly Oracle
Oe

Free Oracle Of

wsrc

LearnerHybrid

Oracle

φ: Domain Adaptation

uφ

wds

Active Learning

Target

Source

Learn classifier
on source

labeled data

(in target)

Fig. 1. An illustration of the proposed Alda framework. Domain adaptation can be
performed using any black-box unsupervised domain adaptation approach (e.g., [2,14]).
The active learning block can be any batch or online active learner.
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a hybrid oracle which is a combination of a free oracle Of and an expensive ora-
cle Oc. The free oracle Of is nothing but the classifier (wsrc) learned using the
source labeled samples Ls. At each step, the learner actively selects an informa-
tive target sample and gets it labeled by an appropriate oracle. This continues in
an iterative (for the batch setting) or online fashion until some stopping criterion
is met (say, for example, reached prescribed accuracy or exhausted label budget).
Next we describe each of these individual modules in more detail.

2.2 Initializing the Uncertainty Sampler

The first phase of Alda learns an unsupervised domain adapted classifieruφ which
uses labeled source data, and unlabeled source and target data. Note that this
phase does not use any labeled target data (hence the name unsupervised). There
are a number of ways to learn the classifier uφ. In this paper, we take the ap-
proach [14] that is based on estimating the importance ratio between the source
and the target distribution, without actually estimating these distributions. The
source domain examples, with their corresponding importance weights, can then
be used to train any classifier which is now readily adapted for the target domain
(of course, this can potentially still be improved, given extra labeled target data).
Note that the unsupervised domain adaptation step can be performed using a
number of other ways as well; for example, Kernel Mean Matching (KMM) can be
performed by matching the source and target distributions in some Reproducing
Kernel Hilbert Space (RKHS) and computing the importance weights of source
domain examples [8]. Another approach (especially for NLP problems), could be
to use Structural Correspondence Learning (SCL) to identify invariant (“pivot”)
features between source and target, and use these features for unsupervised do-
main adaptation [2]. The unsupervised domain adapted classifier uφ serves as the
initializing classifier for the subsequent active learning phase of our approach.

2.3 Leveraging Domain Divergence

It turns out that, in addition to using the source domain information to initialize
our active learner in the target domain (Section 2.2), we can further leverage
the domain relatedness information to improve the active learning phase in the
target. In this section, we propose the domain separator that further leverages
the relatedness of source and target domains while performing active learning in
the target. Assuming the source and target domains to be related, our proposed
technique exploits this relatedness to upfront rule out acquiring labels of those
target domain examples that “appear” to be close to the source domain.

As an example, Fig. 2 shows a typical domain separator hypothesis (denoted
by wds) that separates the source and target examples. We note that similar
source and target examples are expected to have the same labels since only
the marginal distribution of examples changes between the source and target
examples (i.e., Ds(x) �= Dt(x)) whereas the conditional distribution of labels
(given the examples) stays the same (i.e., Ds(y|x) = Dt(y|x)). Observe that if
the source and target distributions are far apart, then the two domains can be
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Fig. 2. An illustrative diagram showing the domain separator hypothesis wds separat-
ing source data from target data and the classifier uφ learned using the unsupervised
domain adapted source classifier.

perfectly classified by this separator. However, if the domains are similar, it is
expected that there will be a reasonable overlap and therefore some of the target
(or source) domain examples might lie on the source (or target) side (encircled
instances in Fig. 2) and hence will be misclassified by the domain separator
hypothesis. Acquiring labels for such target domain examples (that lie on the
source side) is not really needed since the initial hypothesis (refer uφ in Fig. 1)
of Alda would already have taken into account such examples. Therefore, such
target examples can be effectively ignored from being queried. Thus the domain
separator hypothesis, which can be learned using only source and target unla-
beled examples, provides a novel way of performing active sampling in domain
adaptation settings.

The domain separator hypothesis avoids querying the labels of all those target
examples that lie on the source side of the domain separator and hence are mis-
classified by it. This number, in turn, depends on the domain divergence between
the source and target domains. For reasonably similar domain pairs, the domain
divergence is expected to be small which implies that a large number of target
examples lies on the source side. We can formalize the label complexity reduction
due to the domain separator hypothesis. As earlier, let Ds and Dt denote the
source and target joint distributions, and let pDs(x) and pDt(x) be probabilities
of an instance x belonging to the source and the target respectively, in the un-
labeled pool used to train the domain separator hypothesis. Let Δ denote the
Mahalanobis distance between the source and target distributions. The Bayes
error rate [15] of the domain separator hypothesis is: Ebayes ≤ 2pDs (x)pDt(x)

1+pDs (x)pDt (x)Δ .
Thus, the label complexity reduction due to the domain separator hypothesis
is proportional to the number of target examples misclassified by the domain
separator hypothesis. This is again proportional to the Bayes error rate, which
in turn is inversely related to the distance between the two domains.
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2.4 Hybrid Oracle

Alda additionally exploits the source domain information by using the source
learned hypothesis (see, wsrc in Hybrid of Fig. 1) as an oracle that provides
labels for free. We denote this oracle by Of . Accordingly to the Covariate Shift
assumption in domain adaptation, only the marginal distribution changes across
domains whereas the conditional distribution remains fixed. If some target ex-
ample appears to be close to the source domain then it is reasonable to assume
that the prediction of the source classifer (which depends on the source condi-
tional distribution) on that target sample should be close to the prediction of a
good target classifier on that target sample. This explains the use of the source
learned classifier as a free oracle for the target domain examples. Moreover, as in
the standard active learning setting, we also have an expensive oracle Oc. This
leads to a hybrid setting which utilizes one of these two oracles for each actively
sampled target example. The hybrid oracle starts with a domain adapted source
initialized classifier (uφ in US of Fig. 1) and uses the domain separator hypoth-
esis (wds in DS of Fig. 1) to assess which of the uncertain target examples lie
on the source side and, for all such examples, it queries the labels from the free
oracle Of . For the remaining uncertain examples that lie on the target side, the
hybrid approach queries the expensive oracle Oc. Although the oracle Of is not
perfect, the hope is that it can still provide correct labels for most of the target
examples.

Algorithm 1 presents the final algorithm that combines all aforementioned
schemes. This algorithm operates in a batch setting and we call it B-Alda (for
Batch-Alda). As mentioned earlier (ref. Section 2.2), the importance ratio in
line 2 of Algorithm 1 can be obtained by the techniques SCL [2], KMM [8], etc.

Algorithm 1. B-Alda

input Ls = {xs, y}; Us; Ut; maxCost (label budget K and/or desired accuracy ε);
output v (target classifier);
1: cost := 0;
2: S := L̃s (importance weighted Ls learned using Ls, Us and Ut);
3: uΦ := learn a domain adapted source classifier using S;
4: wds := learn a classifier using the data {Us, +1} and {Ut,−1};
5: wsrc := learn a domain adapted source classifier using Ls;
6: while (cost < maxCost) do
7: x̄t := US(uΦ,Ut); /* choose most informative target point */
8: ŷds := DS(wds, x̄t); /* compute source resemblance */
9: if (ŷds == +1) then

10: yt = Of (wsrc, x̄t); /* query the free oracle */
11: else if (ŷds == −1) then
12: yt = Oc(x̄t); /* query the costly oracle */
13: cost ← cost + 1;
14: end if
15: S = S ∪ {x̄t, yt};
16: retrain uΦ using S;
17: end while
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3 Online ����

In B-Alda, the active learning module, at each iteration, chooses the data point
that lies closest to the decision boundary. However, this approach is prohibitively
slow for large or even moderately sized datasets. Hence, we propose Online Alda
(O-Alda) which performs active learning in an online fashion and for each
example decides whether or not to query its label. As in standard active learning,
this query decision must be biased by the informativeness of the example.

To extend Alda to the online setting, we adopt the label query strategy
proposed in [3]. However, we note that our framework is sufficiently general and
allows integration with other active online sampling strategies. The sampling
scheme in [3] proceeds in rounds and at round i queries the label of the example
xi with probability b

b+|ri| , where |ri| is the confidence (in terms of margin) of the
current weight vector on xi. Parameter b quantifies how aggressively the labels
are being queried. A large value of b implies that, in expectation, a large number
of labels will be queried (aggressive sampling) whereas a small value would lead
to a small number of examples being queried (conservative sampling). For each
label queried, the algorithm updates the current weight vector if the label was
predicted incorrectly. It is easy to see that the total number of labels queried by
this algorithm is

∑T
i=1 E[ b

b+|ri| ], where T is the total number of rounds. At this
point we note that the preprocessing stage of O-Alda assumes the existence of
some (maybe, a small amount) of target unlabeled data that can be utilized to
construct the common representation. The online active learning in the target
starts after this preprocessing phase when O-Alda selectively queries the labels
of the target data points that arrive in some random order.

Algorithm 2 presents the online variant of Alda which we refer to as O-
Alda (for Online-Alda). As shown in Theorem 1, our proposed O-Alda yields
provable guarantees on mistake bounds and label complexity.

Theorem 1. Let S = ((x1, y1), . . . , (xT , yT )) ∈ (R×{−1, +1})T be any sequence
of examples and UPT the (random) set of update trials for the algorithm (i.e.,
the set of trials i ≤ T such that ŷi �= yi and Zi = 1). Let v0 be the weight
vector with which the base target classifier is initialized and ri be the margin
of O-Alda on example xi. Then the expected number of mistakes made by the
algorithm is upper bounded by

inf
γ>0

inf
v∗∈RD

(
(2b + 1)

2b
E

[ ∑
i∈UPT

1
γ

Dγ(v∗; (x̂i, yi))
]

+
(2b + 1)2

8b

||v∗ − v0||2
γ2

)

The expected number of labels queried by the algorithm is equal to
∑T

i=1 E[ b
b+|ri| ].

In the above theorem, γ refers to some margin greater than zero such that
the cumulative hinge loss of the optimal target hypothesis v∗ on S is given by∑T

1 Dγ(v∗; (xi, yi)), where Dγ(v∗; (xi, yi)) = max{0, γ − yiv∗T xi} is the hinge-
loss on example i. In Appendix A, we discuss the above theorem and provide
a proof sketch for the mistake bound and the label complexity of O-Alda. In



104 A. Saha et al.

Algorithm 2. O-Alda

input b > 0; Ls = {xs, y}; Us; Ut; maxCost (label budget K/desired accuracy ε);
output v (target classifier);
1: cost := 0;
2: uΦ := learn a domain adapted source classifier using Ls, Us and Ut;
3: wds := learn a classifier using the data {Us, +1} and {Ut,−1};
4: wsrc := learn a domain adapted source classifier using Ls;
5: while ( (i <= T ) & (cost < maxCost) ) do
6: ri := US(uΦ,xi

t); /* compute margin of ith target point */
7: ŷi

ds := DS(wds,x
i
t); /* compute source resemblance */

8: sample Zi ∼ Bernoulli( b
b+|ri| );

9: if (Zi == 1) then
10: if (ŷi

ds == +1) then
11: yi

t = Of (wsrc,x
i
t); /* query the free oracle */

12: else if (ŷi
ds == −1) then

13: yi
t = Oc(x

i
t); /* query the costly oracle */

14: cost ← cost + 1;
15: end if
16: if (yi

t �= uT
Φxi

t) then
17: update uΦ using online update rule (such, as perceptron);
18: end if
19: end if
20: end while

addition, we discuss the conditions on v0 that lead to improved mistake bounds
in domain adaptation settings as compared to the case where there is no access
to data from a related source domain.

4 Experiments

In this section, we demonstrate the empirical performance of our algorithms and
compare them with a number of baselines.

4.1 Setup

Datasets: We present results for Sentiment and Landmine datasets. The
Sentiment dataset consists of user reviews of eight product types (apparel,
books, DVD, electronics, kitchen, music, video, and other) from Amazon.com.
The sentiment classification task for this dataset is binary classification which
corresponds to classifying a review as positive or negative. The dataset consists of
several domain pairs with varying A-distances, akin to a sense described in [1].
Table 1 shows some of the domain pairs used in our experiments and their
corresponding domain divergences in terms of the A-distance [1].

To compute the A-distance from finite samples of source and target domain,
we use a surrogate to the true A-distance (the proxy A-distance) in a manner
similar to [1]. First, we train a linear classifier to separate the source domain
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Table 1. Proxy A-distances between some domain pairs in the sentiment data

Source Target A-distance

Dvd (D) Books (B) 0.7616
Dvd (D) Music (M) 0.7314

Books (B) Apparel (A) 0.5970
Dvd (D) Apparel (A) 0.5778

Electronics (E) Apparel (A) 0.1717
Kitchen (K) Apparel (A) 0.0459

from the target domain using only unlabeled examples from both. The average
per-instance hinge-loss of this classifier subtracted from 1 serves as our estimate
of the proxy A-distance. A score of 1 means perfectly separable distributions
whereas a score of 0 means that the two distributions are essentially the same.
The amount of useful information that can be leveraged from the other domain
would depend on how similar the two domains are. To this end, we therefore
choose two datasets from the sentiment data - one with a domain-pair that is
reasonably close (Kitchen→Apparel), and another with a domain-pair that
is reasonably far apart (DVD→Books).

Our second dataset (Landmine) is the real Landmine Detection data [16]
which consists of 29 datasets. The datasets 1 to 10 are collected at foliated
regions whereas the datasets 20 to 24 are collected from bare earth or desert
regions. We combined datasets 1 − 5 as our source domain and treat dataset 24
as the target domain.

Methods: Table 2 summarizes the methods used with a brief description of
each. Among the first three (ID, sDA, Feda), Feda [6] is a state-of-the-art
supervised domain adaptation method but assumes passively acquired labels.
The first three methods (ID, sDA, Feda) acquire labels passively. The last five
(Alzi, Alri, Alsi, B-Alda and O-Alda) methods in Table 2 acquire labels
in an active fashion. As the description denotes, Alzi and Alri start active
learning in target with a zero initialized and randomly initialized hypothesis,
respectively. It is also important to distinguish between Alsi and Alda (which
jointly denotes both B-Alda and O-Alda). While both are products of our
proposed Alda framework, Alsi uses an unmodified source classifier learned
only from source labeled data as the initializer, whereas Alda (i.e., both B-
Alda and O-Alda) uses an unsupervised domain-adaptation technique (i.e.,
without using labeled target data) to learn the initializer.

In our experiments, we use the instance reweighting approach [14] to construct
the unsupervised domain adaptated classifier uφ. However, we note that this
step can also be performed using any other unsupervised domain adaptation
technique such as Structural Correspondence Learning (SCL) [2] and Kernel
Mean Matching (KMM) [8].

We compare all the approaches based on classification accuracies achieved for a
fixed unlabeled pool of target examples with varying label budgets. For B-Alda,
we use a margin based classifier (SVM) whereas for O-Alda we use vanilla
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Table 2. Description of the methods compared

Method Summary Active ?

ID In-domain data No
sDA Unsupervised domain adaptation followed by No

passively chosen labeled target data
Feda Frustratingly Easy Domain Adaptation [6] No

Alzi Active learning zero initialized Yes
Alri Active learning random initialized (with fixed label budget) Yes

���� Active learning source (hypothesis) initialized Yes
������ Batch active learning domain adapted Yes
	����� Online active learning domain adapted Yes

Perceptron as the base classifier. All online experiments have been averaged
over multiple runs with respect to random data order permutations.

4.2 ������ Results

We present results for B-Alda using a fixed target unlabeled pool and varying
target label budgets. Since, domain adaptation is required only when there are
small amounts of labeled data in the target, we limit our target label budget to
values that are much smaller than the size of the unlabeled target data pool. In
addition, due to long running times of our batch Alda (owing to repeated re-
training), we report results on relatively smaller target pool sizes. The B-Alda
results are presented for a unlabeled target pool size of 2500 data points.

Table 3. Classification accuracies and number of labels requested. Note: ID, sDA and
Feda are given labels of all examples in the target pool.

(a) DVD→Books

Met- Target Label Budget
hod 100 200 300 400 500

Acc Acc Acc Acc Acc

ID 50.83 57.86 62.42 55.69 62.68
sDA 62.18 62.78 55.75 52.45 50.49
Feda 63.92 64.27 64.88 65.94 66.19

Alzi 54.40 54.36 54.33 54.33 54.33
Alri 54.99 59.42 61.28 65.81 65.52

���� 63.75 66.26 68.73 63.10 62.08
������ 63.40 65.17 67.84 68.61 68.51

Acc: Accuracy

(b) Kitchen→Apparel

Met- Target Label Budget
hod 100 200 300 400 500

Acc Acc Acc Acc Acc

ID 48.40 43.44 44.92 48.40 49.77
sDA 52.78 55.41 57.37 53.60 46.37
Feda 70.47 69.97 70.06 71.83 69.96

Alzi 54.56 54.50 54.44 54.44 54.44
Alri 64.97 66.86 69.01 70.40 71.06

���� 74.91 70.58 72.97 72.34 72.29
������ 71.30 70.90 71.19 71.73 73.07

Acc: Accuracy

Sentiment Classification: Table 3a and Table 3b present the results for the do-
main pairs DVD→Books and Kitchen→Apparel, respectively. For these do-
main pairs, both Alsi and B-Alda substantially outperform all other baselines.
For the distant source-target pair (DVD→Books), Alsi performs very well for
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a small number of target labels (say, 100 and 200). As the number of target labels
increases B-Alda consistently improves with increasing number of target labels
and finally outperforms Alsi. When the source-target pairs are reasonably close
(Kitchen→Apparel), both Alsi and B-Alda have similar prediction accura-
cies which are in turn are much higher that the baseline accuracies.

Table 4. AUC scores and labels requested
for the Landmine dataset

Method Target Budget (300)
AUC

ID 0.59
sDA 0.60
Feda 0.56
Alzi 0.59
Alri 0.53
���� 0.63

������ 0.65
AUC: AUC score

Lab: Labels Requested

Landmine Detection: The Land-
mine dataset has a high class
imbalance (only about 5% positive ex-
amples), so we report AUC (area un-
der the ROC curve) scores instead
of accuracies. We compare our algo-
rithms with other baselines in terms
of the AUC score on the entire pool
of target data (the pool size was 300;
rest of the examples in dataset 24 were
treated as test data). As shown in Ta-
ble 4, our approaches perform better
than the other baselines with the do-
main separator based B-Alda doing
the best (in terms of AUC scores).

We do not report any label complexity result for B-Alda as the nature of
the algorithm is such that it iterates until the entire label budget is exhausted.
Hence, in all the results presented above in Table 3a, Table 3b and Table 4, the
number of labels used is equal to the target label budget provided.

4.3 	����� Results

One of the goals to propose an online variant for Alda is to make the pro-
posed approach scale efficiently for larger target pool sizes because batch mode
Alda requires repeated retraining. On the other hand, an online active learner
is an efficient alternative because it allows incremental update of the learner for
each new selected data point. In this section, we present results for O-Alda
and demonstrate the scalability of the Alda framework to larger target pool
sizes. The results for O-Alda use the entire target unlabeled pool (∼ 7000 for
Sentiment data). As a result, the label budget allocated is also much larger as
compared to B-Alda. We note that ID and sDA and Feda have been made
online by the use of the perceptron classifier. In addition, the same online active
strategy as O-Alda has been used for Alzi, Alri and Alsi.

Sentiment Classification: The results are shown in Table 5a and Table 5b. As
the results indicate, on both datasets, our approaches (Alsi and Alda) perform
consistently better than the baseline approaches (Table 2) which also include
one of the state-of-the-art supervised domain adaptation algorithms (Feda).
We note that Alda outperforms Alsi for Kitchen→Apparel as compared to
DVD→Books. When the domains are far (DVD→Books), the performance of
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Table 5. Classification accuracies and number of labels requested. Results are averaged
over 20 runs (w.r.t. different permutations of the training data). Note: ID, sDA and
Feda are given labels of all examples in the target pool.

(a) DVD→Books

Met- Target Label Budget
hod 1000 2000 3000 4000 5000

Acc(±Std) Acc(±Std) Acc(±Std) Acc(±Std) Acc(±Std)

ID 65.94(±3.40) 66.66(±3.01) 67.00(±2.40) 65.72(±3.98) 66.25(±3.18)
sDA 66.17(±2.57) 66.45(±2.88) 65.31(±3.13) 66.33(±3.51) 66.22(±3.05)
Feda 67.31(±3.36) 68.47(±3.15) 68.37(±2.72) 66.95(3.11) 67.13(±3.16)

Alzi 66.24(±3.16) 66.72(±3.30) 63.97(±4.82) 66.28(±3.61) 66.36(±2.82)
Alri 51.79(±4.36) 53.12(±4.65) 55.01(±4.20) 57.56(±4.18) 58.57(±2.44)

���� 68.22(±2.17) 69.65(±1.20) 69.95(±1.55) 70.54(±1.42) 70.97(±0.97)
	����� 67.64(±2.35) 68.89(±1.37) 69.49(±1.63) 70.55(1.15) 70.65(±0.94)

Acc: Accuracy | Std: Standard Deviation

(b) Kitchen→Apparel

Met- Target Label Budget
hod 1000 2000 3000 4000 5000

Acc(±Std) Acc(±Std) Acc(±Std) Acc(±Std) Acc(±Std)

ID 69.64(±3.14) 69.61(±3.17) 69.36(±3.14) 69.77(±3.58) 70.77(±3.05)
sDA 69.70(±2.57) 70.48(±3.42) 70.29(±2.56) 70.86(±3.16) 70.71(±3.65)
Feda 70.05(±2.47) 69.34(±3.50) 71.22(±3.00) 71.67(±2.59) 70.80(±3.89)

Alzi 70.09(±3.74) 69.96(±3.27) 68.6 (±3.94) 70.06(±2.84) 69.75(±3.26)
Alri 52.13(±5.44) 56.83(±5.36) 58.09(±4.09) 59.82(±4.16) 62.03(±2.52)

���� 73.82(±1.47) 74.45(±1.27) 75.11(±0.98) 75.35(±1.30) 75.58(±0.85)
	����� 73.93(±1.84) 74.18(±1.85) 75.13(±1.18) 75.88(±1.32) 75.58(±0.97)

Acc: Accuracy | Std: Standard Deviation

Alda depends on the underlying domain adaptation technique. However, when
the domains are close (Kitchen→Apparel), Alda performs better than Alsi.
This behavior suggests that the performance gains achieved by these variants is
significant when the source and target domains are reasonably close.

Landmine Detection: Similar to B-Alda results, in this case also we used
the entire pool of 300 target data points. The rest of the examples in dataset
24 were treated as test data. As earlier, our approaches perform better than
the other baselines with the domain separator based O-Alda demonstrating
slightly better AUC score and slightly lesser label complexity as compared to
online Alsi. Table 6 presents the AUC scores and the label complexities of the
various methods.

4.4 Remarks

For all datasets considered, both batch and online versions of Alda demonstrate
substantial improvement of prediction accuracy for Sentiment data
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Table 6. AUC scores and labels requested
for the Landmine dataset. Results are av-
eraged over 20 runs.

Method Target Budget (300)
AUC±Std (Lab)

ID 0.57±0.03 (-)
sDA 0.60±0.02 (-)
Feda 0.52±0.04 (-)
Alzi 0.61±0.02 (284)
Alri 0.56±0.05 (229)
���� 0.65±0.02 (244)

	����� 0.67±0.03 (241)
AUC: AUC score

Std: Standard Deviation
Lab: Labels Requested

(∼ (0.4% − 5.09%)). This improve-
ment is particularly high when the
domains are reasonably similar (for
example, Kitchen→Apparel in Ta-
ble 3b and Table 5b). In addition, the
Landmine data reports AUC scores
(not accuracies), and 1% increase in
AUC score implies substantial im-
provement.

For Sentiment and Landmine
datasets, both Alsi and Alda (i.e.,
B-Alda and O-Alda) demonstrate
improvement in prediction accuracy
for a fixed label budget when com-
pared to other baselines. Apart from
the results for DVD→Books in the
batch setting (Table 3a), the predic-
tion accuracies obtained by Alsi and Alda in all other cases are comparable.
However, to get a better sense of the robustness of these two approaches, we
compare the number of mistakes made by the online variants of these two ap-
proaches during the training phase. Table 7 presents the results for Sentiment
data. As can be seen, in almost all case the number of mistakes made by O-Alda
is much lesser (almost half in many cases) than online Alsi. Hence, irrespective
of the nearness or farness of the source-target domain pairs, Alda is a better
choice as compared to Alsi.

Table 7. Number of mistakes made by Alsi and O-Alda for Sentiment data

Target Label Budget
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

Number of Mistakes
Method DVD→Books Kitchen→Apparel

Alsi 369 739 1117 1460 1816 245 532 810 1097 1088
O-Alda 384 741 1000 1012 1004 232 478 549 551 556

5 Related Work

Active learning in a domain adaptation setting has received little attention so
far and, to the best of our knowledge, there exists no prior work that presents
a principled framework to harness domain adaptation for active learning. One
interesting setting was proposed in [4] where the authors apply active learning
for word sense disambiguation in a domain adaptation setting. In addition, they
also improve vanilla active learning when combined with domain adaptation.
However, their approach does not use the notions of domain separator and hy-
brid oracle. Moreover, unlike our approach, their method only works in a batch
setting.
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Active learning in an online setting has been discussed in [5] and [3]. The
work of [5] assumes input data points uniformly distributed over the surface of
an unit sphere. However, we cannot make such distributional assumptions for
domain adaptation. As mentioned earlier, [3] provide worst-case analysis which
is independent of any input data distribution. However, none of these explic-
itly consider the case of domain adaptation. Nonetheless, the framework of [3]
folds nicely into our proposed Alda framework. [10] present extensive empirical
results to compare the performance of the two aforementioned approaches. How-
ever, all these settings are different from our in that these works consider only
active learning in an online setting without leveraging inter-domain information.

A combination of transfer learning with active learning has been presented
in [13]. One drawback of their approach is the requirement of an initial pool of
labeled target domain data which helps train the in-domain classifier. Without
this in-domain classifier, no transfer learning is possible in their setting.

6 Discussions and Future Work

In this work, we have considered a domain adaptation setting, and presented
a framework that helps leverage inter-domain information transfer while per-
forming active learning in the target. Both the batch and online versions of
the proposed Alda empirically demonstrate the benefits of domain transfer for
active learning.

At present, Alda is oblivious to the feature set used and, as such, does not
depend on domain knowledge and feature selection. It takes all features into
consideration. Nonetheless, it is possible that in the feature space, not all fea-
tures contribute equally while transferring information from source to target
and without a priori information about the source and target domains, it is
difficult to assess which features might maximally benefit the transfer of pa-
rameters from source to target. However, if prior domain knowledge about the
target is available from related source domains, then one can potentially leverage
active learning to selectively choose only those features that transfer maximum
information between the two domains.

An alternative approach to leverage feature information for Alda is to per-
form active learning on features. There exists work in active learning that queries
labels for features [7] and, in some cases, queries labels for both instances and
features in tandem [11]. We note that this is different from the above where ac-
tive learning can essentially be used as a tool for feature selection. In this case,
active strategies query labels that exploit both instance and feature informa-
tiveness (for e.g., in NLP, consider querying labels for rare words which serve as
informative features in the target domain). It would be interesting to extend the
proposed Alda to perform active domain transfer by querying labels of both
instances and features.
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A Discussion of Theorem 1

To conserve space, we skip presenting a detailed proof of the mistake bound
in Theorem 1. Proceeding in a manner similar to the proof of Theorem 1 of
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[3], it can be seen that almost all terms in the final expression for the mistake
bound cancel out by the telescopic argument. The term that remains is ||v∗ −
v0||2 and the mistake bound follows. It is easy to see that setting v0 = 0 in
Theorem 1 yields mistake bounds for online active learning in traditional single
task settings. We note that, the first term in the mistake bound of Theorem 1 is
the cumulative hinge loss of the optimal target classifier which is the same for
both domain adaptation and non-domain adaptation (traditional single task)
settings and hence is independent of the initialization used. The second term
in the mistake bound, in our case, is smaller than single task settings provided

θ ≤ cos−1

(
||v0||
2||v∗||

)
, where θ is the angle between the initializing hypothesis v0

and the target hypothesis v∗. Without loss of generality, assuming the norm
of v0 and v∗ stays fixed (which is true since both the initial and the optimal
hypotheses remain unchanged during learning in target domain), as the value of
θ decreases, it causes ||v∗ − v0||2 to decrease, leading to our claim of reduced
mistake bounds. Thus, in our framework, θ incorporates the notion of the domain
separation that improves the mistake bounds. For small values of θ, the source
and target domains have high proximity such that the initial target hypothesis
v0 lies reasonably close to the optimal target hypothesis v∗. As a result, is such
cases, O-Alda is expected to make a smaller number of mistakes to get to the
optimal hypothesis.

Now, we present an intuitive argument for the lower label complexity of O-
Alda as compared to single task online active settings. O-Alda is initialized
with a non-zero hypothesis v0 = wsrc learned using data from a related source
domain. Hence, the sequence of hypotheses O-Alda produces will in expecta-
tion have higher confidences margins |r̄i| as compared to some zero initialized
hypothesis. Therefore, at each step the sampling probability of O-Alda given
by b

b+|r̄i| will also be smaller, which will lead to a smaller number of queried

labels since it is nothing but
∑T

i=1 E[ b
b+|r̄i| ].
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Abstract. We consider algorithms for generating Mixtures of Bagged
Markov Trees, for density estimation. In problems defined over many
variables and when few observations are available, those mixtures gen-
erally outperform a single Markov tree maximizing the data likelihood,
but are far more expensive to compute. In this paper, we describe new
algorithms for approximating such models, with the aim of speeding up
learning without sacrificing accuracy. More specifically, we propose to use
a filtering step obtained as a by-product from computing a first Markov
tree, so as to avoid considering poor candidate edges in the subsequently
generated trees. We compare these algorithms (on synthetic data sets)
to Mixtures of Bagged Markov Trees, as well as to a single Markov tree
derived by the classical Chow-Liu algorithm and to a recently proposed
randomized scheme used for building tree mixtures.

Keywords: mixture models, Markov trees, bagging, randomization.

1 Introduction

Estimation of multivariate probability densities from observational data is a
widely used strategy to tackle decision making problems under uncertainty. A
density model can be used to answer various queries about the underlying data
generation mechanism (also called performing inference), such as computing the
likelihood of observing a problem instance, or estimating the conditional proba-
bility density of a subset of variables given observed values of another subset.

The framework of probabilistic graphical models [18,28] provides well founded
approaches to model probability densities and to perform inference by combin-
ing graph theory, with statistics and algorithmics. The structure of a graphi-
cal model encodes relationships between variables while its parameters quantify
those interactions. Bayesian networks are a class of models that encode a joint
probability density over a set of variables by a product of conditional probability
densities (see Sect. 2). Both learning and inference are however NP-hard with
those models when the underlying graph is unconstrained [11,22].
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To cope with the problem size expansion faced today in many applications
due to the rapid increase in measurement resolution, many learning methods for
bayesian networks incorporate some constraints on their graphical structure, e.g.
[7,14,16,31]. In that regard, an interesting subset of those models is the class of
Markov trees, where each conditional probability distribution is conditioned on
a single variable (except the root) [28]: learning a Markov tree maximizing the
data likelihood by the Chow-Liu algorithm [10] has a computational complexity
essentially quadratic in the number of variables, while performing inference with
such models is of linear complexity. Another advantage of Markov trees is their
small number of parameters, which reduces the risk of overfitting when data
is scarce. However, for problems with very large numbers of variables and low
sample size this model class may already be too large, and it may be desirable
to impose additional regularization constraints on top of this method [23].

Bootstrap aggregation (bagging) [8,12] is a meta-algorithm that compensates
for a lack of data by applying a given algorithm on several bootstrap replicas
of the original data set and averaging the predictions of the resulting models. A
bootstrap replica is obtained by randomly drawing (with replacement) original
samples and copying them into the replica. Averaging the predictions from an
ensemble of models derived from an ensemble of bootstrap replicas leads to a
decrease in variance and hence a reduction in overfitting. This meta-algorithm,
originally developed in the context of supervised learning, has already been ap-
plied for learning probabilistic graphical models e.g. [13,15], often to get a more
robust structure but without consideration for inference on the said structure.

When one is willing to use bootstrapping to obtain a density model on which
inference is tractable, one interesting possibility is to use bagged mixtures of
Chow-Liu trees. Indeed, these have been shown to outperform single Chow-Liu
trees, specially on high-dimensional problems with small sample sizes [2]. How-
ever, the extra computational cost with respect to learning one single Chow-Liu
tree may prove problematic on very large problems. In this work we therefore
investigate means to reduce this complexity by approximating the original boot-
strap procedure. We propose to couple a first application of the Chow-Liu algo-
rithm to either subsampling the set of candidate edges, or to a statistical test to
detect irrelevant edges, in order to avoid considering all candidate edges in the
subsequent runs of the Chow-Liu algorithm on subsequent bootstrap replicas.
The second approach can be seen as applying a structural regularization to iden-
tify a skeleton comprising only potentially relevant edges, and then restricting
the search of optimal Markov trees on subsequent bootstrap replicas within that
smaller envelope instead of the complete set of all possible edges; it may hence
also be beneficial in terms of accuracy in very small sample size conditions.

In Sect. 2 we cover the concept of bayesian networks, bayesian learning and
mixtures of Markov trees in more details. We then describe the baseline algo-
rithms for Markov tree based density models upon which we propose improve-
ments (Sect. 3), before detailing our new algorithms (Sect. 4). The experiments
performed to compare them in terms of accuracy, convergence speed and com-
puting times are presented and discussed in Sect. 5.
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2 Graphical Probability Density Model Learning

A bayesian network [28] is a probabilistic graphical model that encodes a joint
probability density over a finite set X of n variables {X1, X2, ..., Xn}. Those
variables correspond to the nodes of a Directed Acyclic Graph (DAG) G that en-
codes conditional independence relationships between variables and allows their
algorithmic verification. The graphical structure actually defines a factorization
of the joint density as a product of conditional densities of each variable Xi

conditionally to the set of its parents PaG(Xi) in the graph:

P (X ) =
n∏

i=1

P (Xi|PaG(Xi)) . (1)

In the case of discrete variables, learning the parameters defining those condi-
tional densities from data is relatively straightforward, but structure learning
is not. There are three main structure learning approaches: a score-based, a
constraint-based and a bayesian one [18].

In the score-based approach [5], a numerical criterion (maximum likelihood,
BIC, AIC...) is defined over the set of DAGs, and learning can be defined as
selecting, among all DAGs, the one that maximizes this score with respect to the
data set. However, the number of possible DAGs (as well as the number of their
equivalence classes) grows superexponentially with the number of variables n
[29]. Since existing unconstrained score optimization algorithms are not scalable,
simplifications must in practice be used. These may be achieved by reducing the
number of candidate structures, either by restricting the resolution of the search
space [6] or by limiting its range (e.g. by constraining the number of candidate
parents or the global structures searched [14]).

The constraint-based approach [1] consists in extracting from the observa-
tional data a set of conditional independence relationships (statements Si⊥Sj |Sk,
where Si,Sj ,Sk are disjoint subsets of variables), and searching for a structure
that best matches those constraints. Algorithms typically consider the assess-
ment of a polynomial number of independence relationships, and achieve this by
limiting the cardinalities of the subsets of variables inspected.

The bayesian averaging approach [24] considers the set of all possible struc-
tures rather than identifying a single best one, and averages predictions from
those structures in accordance with the goal of the learning procedure. Taking
into account all possible structures is rarely possible, and approximations must
thus be employed. One of these strategies is the bootstrap aggregation approach
that we are considering in this article (see Sect. 2.1).

But the cost of inference must also be considered. Its complexity grows with
the tree-width of the DAG [22], which is the minimum size, minus one, of the
largest connected subgraph in a moralized and triangularized version of the DAG
(obtained by first joining all non-adjacent parents of any variable, and then
by chordalizing all cycles). Although many heuristic approaches to inference
have been developed, many learning methods target low tree-width structures
[7,14,16,31] and thus also limit inference complexity.
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Markov trees, a subclass of bayesian networks, allow for scalable learning and
inference; it consists of all bayesian networks where each variable has a single
parent. The Chow-Liu algorithm (Sect. 3.1) produces a Markov tree maximizing
the likelihood of a data set, and its complexity is essentially quadratic in the
number of variables. The tree-width of a Markov tree is always one, and inference
is thus linear in the number of variables. Both properties make Markov trees
extremely interesting for high-dimensional density modeling.

2.1 Bagging in the Context of Learning Bayesian Networks

Bagging is a model averaging method where a given learning algorithm is ran-
domized by applying it on m different bootstrap replica data sets, therefore
resulting in m different models. A bootstrap replica D′ of size p′ is obtained
from an original data set D of p observations by uniformly and independently
drawing p′ natural numbers ri ∈ [1, p], and by compiling D′ by

D′[i] = D[ri] ∀i ∈ [1, p′] , (2)

where D[j] (resp. D′[k]) refers to jth (resp. kth) observation of D (resp. D′),
and where typically (as in this paper) p = p′.

The result of the bagging algorithm is an average between the m models
learnt from the m bootstrap replicas that typically exhibits a lower variance
than a model learned directly from the original data set. This approach has
been quite popular and effective in the context of supervised learning [8].

Bagging has been proposed for Gaussian density modeling [27], and for struc-
ture learning of graphical models, e.g. by considering the frequency of occurrence
of interesting graphical features among the structures derived from bootstrap
replicas [15], and also to improve score-based structure learning by incorporat-
ing the bootstrap procedure in the computation of the score [13]. Recently, it
was proposed for generating ensembles of bagged Chow-Liu trees [2]; this latter
approach is denoted in the rest of this paper by Bagged Mixture of Chow-Liu
Trees; it is discussed more in detail in the next section.

2.2 Mixtures of Markov Trees

A mixture of Markov trees over a set of n variables X is a convex combination
of a set T̂ = {T1, . . . , Tm} of m elementary Markov tree densities, i.e.

PT̂ (X ) =
m∑

i=1

μiPTi(X ) , (3)

where {μi}m
i=1 are the weights of the mixture (μi ∈ [0, 1] and

∑m
i=1 μi = 1). The

complexity of inference in this model is thus equal to m times the complexity of
inference with a single tree, which is linear in the number n of variables.

Several learning algorithms of mixtures of Markov trees have already been
proposed; they can be categorized into two groups: the maximum likelihood and
the randomization approaches.
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In the former approach, the mixture of trees is primarily used as a mean to
exploit the good algorithmic properties of trees while improving their modeling
capabilities. These methods include using the EM algorithm to partition the
data between a given number of terms [25], or using clever reweighting schemes
on the whole data set to fit modes of the density [21].

The second approach can be viewed as an attempt to approximate true
bayesian learning in the space of Markov tree structures. In these methods,
a set of tree models are generated using a more or less strongly randomized pro-
cedure, that can range from completely random structures based on Prüfer lists
to bagged Mixtures of trees. The weights associated to these trees can be either
uniform or proportional to the score of the structure based on the data set. A
comparison of theses approaches can be found in [3]. The present work adopts
this strategy and some of those methods are further described in Sect. 3.

An approach at the intersection of those two categories has been proposed in
[17], where a MCMC exploration scheme is defined on the space of mixtures of
trees using a Dirichlet process and a suitable prior on tree structures [26].

3 Baseline Markov Tree Based Learning Algorithms

In this section, we describe the three baseline methods of density estimation with
Markov trees reused in this paper, and we state their computational complexity.

3.1 The Chow-Liu Algorithm for Learning a Markov Tree

The algorithm for learning a Markov tree structure TCL(D) maximizing the
likelihood of a training set D was introduced by Chow and Liu [10]. It solves the
optimization problem

TCL(D) = argmax
T

∑
(Xi,Xj)∈E(T )

ID(Xi;Xj) , (4)

where E(T ) is the set of edges in T , constrained to be a tree, and where ID(Xi, Xj)
is the maximum likelihood estimate of the mutual information among variables
Xi and Xj computed from the dataset D (composed of p observations).

Algorithm 1 has two steps: first ID(Xi, Xj) (∀i = 1 . . . n, ∀j = i+ 1 . . . n) are
computed to fill an n × n symmetrical matrix (MI), then used to compute a
maximum weight spanning tree (MWST, e.g. by [19] as here, or by [9]).

Algorithm 1 (Chow-Liu (CL) tree)

1. MI = [0]n×n

2. Repeat for i1 = 1, · · · , n:
Repeat for i2 = i1 + 1, · · · , n:

MI [i1, i2] = MI [i2, i1] = ID(Xi1 ; Xi2 )

3. TCL = MWST(MI)

4. Return TCL.

Step 2 requires O(n2p) computations, while computing a MWST has a complex-
ity of E log(E) with E the number of candidate edges. Here E = n(n− 1)/2, so
that, for fixed sample size p, the complexity is O(n2 log(n2)) ≡ O(n2 log(n)).
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3.2 Bagging of Chow-Liu Markov Trees

Bagging of the Chow-Liu algorithm is described by Algorithm 2.

Algorithm 2 (Generating a mixture of bagged Chow-Liu trees)

1. T̂ = {}
2. Repeat for j = 1, · · · , m:

(a) D′= bootstrap(D)

(b) T̂ = T̂ ∪ {Chow-Liu(D′)}
3. Return T̂ , μ = {1/m, · · · , 1/m}.

The complexity of Algorithm 2 is m times the complexity of the Chow-Liu
algorithm, or O(mn2 log(n)), for fixed sample size p.

Notice that it was shown in [30] that learning the parameters of each tree in
T̂ on D rather than on the replica D′ used to generate its structure improves
accuracy, and we will therefore use D to estimate the parameters of all Markov
trees generated by all the algorithms studied in this paper, according to [30].

3.3 Inertial Search Heuristic

This algorithm [4] improves the computational complexity of the Bagging method
by limiting to a specified number K the number of variable pairs and mutual in-
formations computed and considered for each MWST construction. Constructing
T̂ is done here by a sequential procedure: for optimizing the first tree, a random
subset of K edges is considered, and then for each subsequent tree Ti, the con-
sidered subset is initialized by the edges of the previous tree, S = E(Ti−1), and
completed with an additional random subset of K − |E(Ti−1)| edges.

Algorithm 3 (Inertial search of mixtures of Markov trees (ISH))

1. T̂ = {}, S = {}
2. Repeat for j = 1, · · · , m:

(a) D′= bootstrap(D)

(b) MI = [0]n×n

(c) Repeat for k = 1, · · · , |S|:
i. (i1, i2) = GetIndices(S [k])

ii. MI [i1, i2] = MI [i2, i1] = ID′(Xi1 ; Xi2)

(d) Repeat for k = |E|+ 1, · · · , K
i. (i1, i2) = drawNewRandomEdge

ii. MI [i1, i2] = MI [i2, i1] = ID′(Xi1 ; Xi2)

(e) T= MWST(MI)

(f) S = E(T )

(g) T̂ = T̂ ∪ {T}
3. Return T̂ , μ = {1/m, · · · , 1/m}.

The parameter K controls the computational complexity of the method, which
is O(mK logK). We use K = Cn lnn as in [4] (with C = 1 in most of our
simulations) leading to a complexity approximately of O(mn log(n)).
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4 Proposed Algorithms

In this section we propose our alternative algorithms. They all start by comput-
ing a Chow-Liu tree on the original data set D and they then use the results of
this computation for accelerating the generation of subsequent ensemble terms.

4.1 Improving the Inertial Search Heuristic by Warm Start

While Algorithm 3 is of log-linear complexity in n and gradually improves as
new trees are added to the model, it consists essentially in an exploration of
the matrix MI of mutual informations. Notice that without bagging (i.e. by
using D′ = D at all iterations), this algorithm would eventually converge to the
Chow-Liu tree, since Tarjan’s red rule [32] implies that the lightest edge of any
cycle is not part of the MWST. However, the number of iterations needed to
fully explore the matrix essentially increases with n, since

lim
n→∞

Edges considered at each iteration
Total edges

=
O(n log n)

O(n2)
= 0 , (5)

and hence the algorithm will take longer and longer to converge as n increases
(see also our experimental results in the next section).

We hence modified this method, by changing the first iteration so as to start
with a more optimal set of edges (E(TCL) computed by the Chow-Liu algorithm
based on a complete matrix of mutual informations; see Algorithm 4).

Algorithm 4 (Warm start inertial research procedure (Warm start ISH))

1. T̂ = {Chow-Liu(D)}, S = E(Chow-Liu(D))

2. Repeat for j = 2, · · · , m:
· · · (identical to points (a) to (g) of Algorithm 3)

3. Return T̂ , μ = {1/m, · · · , 1/m}.

The complexity of this method is O(n2 log(n) + mK log(K)) where K is the
number of edges considered at each iteration after the first one. As in Algorithm
3, we set K = Cn lnn. In practice the gain in convergence speed strongly com-
pensates for the increased complexity needed for computing the first term (see
our results in the next section).

Alternatively, both methods could be viewed as a stochastic walk in the space
of Markov tree structures that at convergence will attain the set of good struc-
tures. Algorithm 3 however starts very far from this set while the variant we
propose in Algorithm 4 starts from a more sensible initial guess.

4.2 Pruned Mixtures of Bagged Chow-Liu Trees

The Chow-Liu method (Algorithm 1), and its bagging (Algorithm 2) compute
connected Markov tree structures of maximum likelihood over the data sets they
get as input. But in high-dimensional problems (with p � n), maximizing the
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data likelihood over all possible tree structures may already lead by itself to
overfitting. We therefore consider a structural regularization of the Chow-Liu
method, by modifying its optimization criterion of eqn. (4), so as to penalize
model complexity in terms of its number of edges |T |,

T λ
CL(D) = argmax

T

∑
(Xi,Xj)∈E(T )

ID(Xi;Xj) − λ|T | , (6)

where T is now allowed to be a forest (at most one path between any two nodes).
The optimal solution to this problem can be obtained by modifying the greedy

Chow-Liu algorithm, to return the ‘forest model’ as soon as the next edge to be
included provides an information quantity ID(Xi;Xj) smaller than λ. Further-
more, as for supervised decision tree growing [33], we notice that penalizing in
this way the tree complexity is tantamount to using a hypothesis test for check-
ing independence of the next pair of variables to be included; such a test may be
formulated by comparing the quantity 2p(ln 2)ID(Xi;Xj) (χ-square distributed
under independence, with a degree of freedom of 1 for binary variables) to a criti-
cal value depending on a postulated p-value, say α = 0.05 or smaller. This means
that an arc relating to a pair of variables (Xi, Xj) such that 2p(ln 2)ID(Xi;Xj)
computed from the dataset is smaller than the χ-square statistic threshold com-
puted for α will never be included in the forest by our modified algorithm.

To take advantage of the first iteration of the algorithm, we use the com-
putations performed for building a first tree of the mixture by the Chow-Liu
algorithm to identify those pairs of variables whose mutual information is above
the threshold, and we then consider only the set S of those latter pairs of vari-
ables for building trees composing the rest of the mixture (see Algorithm 5).

Algorithm 5 (Pre-pruned (bagged) Chow-Liu trees (PMBCL))

1. S = {}, MI = [0]n×n

2. Repeat for i1, i2 > i1, i1, i2 ∈ 1, · · · , n
if ID(Xi; Xj) > λ(α)
(a) MI [i1, i2] = MI [i2, i1] = ID(Xi1 ; Xi2 )

(b) S = S ∪ (i1, i2)

3. T̂ = MWST(MI)

4. Repeat for j = 2, · · · , m:
(a) D′= bootstrap(D)

(b) Repeat for k = 1, · · · , |S|:
i. (i1, i2) = GetIndices(S [k])

ii. MI [i1, i2] = MI [i2, i1] = ID′(Xi1 ; Xi2)

(c) T̂ = T̂ ∪MWST(MI)

5. Return T̂ , μ = {1/m, · · · , 1/m}.
The complexity of Algorithm 5 is O(n2+mK(α) log(K(α)), i.e. similar to that of
Algorithm 4 (where K = n lnn); its first term is also independent of the mixture
size m and its second term now depends on the effect of the chosen value of α on
the number of candidate edges K(α) ≡ |S| retained in the skeleton (the smaller
α, the smaller K(α), in a dataset size dependent fashion).
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5 Experiments

Here we empirically compare our algorithms of Sect. 4 to the baseline methods
of Sect. 3. To this end, we use simulated target densities that are represented by
synthetic bayesian networks over binary variables. Each structure is randomly
drawn by considering variables sequentially, by uniformly drawing the number of
parents for each Xi in [0,max(5, i− 1)] and by randomly selecting these parents
in {X1, ..., Xi−1}. Parameters of the networks are drawn from uniform Dirichlet
distributions [30]. We present results with n = 200 or n = 1000 variables, and
we performed our analysis based on data sets of p = 200, 600, 1000 observations,
i.e. small samples given the number of variables. All results are averaged over 5
target densities and 6 learning sets for each density.

We focussed the analysis on the merit of the estimation of the probability
distribution. We assessed the quality of each generated mixture by the Kullback-
Leibler divergence [20], an asymmetric measure of similarity of a given density
PT̂ to a target density P , defined by

DKL(P || PT̂ ) =
∑

X∈X
P (X) log2

(
P (X)
PT̂ (X)

)
. (7)

But for computational reasons (considering all 2n possible configurations of X
is not feasible) this score was approximated by a Monte-Carlo procedure:

D̂KL(P || PT̂ ) =
1
N

N∑
X∼P

log2

(
P (X)
PT̂ (X)

)
, (8)

where we used one test set of 50000 independent observations to estimate all the
models inferred for a given target density.

For a given data set, we applied all algorithms and compared their results to
the target density. Except for the Chow-Liu algorithm that produces a single tree,
all mixture models are evaluated for growing numbers of terms (m=1,10,20...)
up to 500 for 200 variables, in order to assess the convergence of the different
methods (especially Algorithm 3), and up to 200 trees for 1000 variables to
investigate the impact of the number of variables.

Parameters of all trees are learned from the full training sets (i.e. not from the
bootstrap replicas that are used only to generate the structures), by maximizing
the posterior likelihood of the data set based on uniform Dirichlet priors [30].

5.1 Results in Terms of Accuracies

Let us start by an evaluation of the relative accuracy performances of the dif-
ferent algorithms in the case of 1000 variables and 200 observations. Figure 1
displays the Kullback-Leibler divergence (vertical axis) with respect to the target
density for the single CL tree (Algorithm 1) and for the other methods as a func-
tion of the mixture size m (horizontal axis). The PMBCL method (Algorithm
5) is tested here with 4 values of its parameter α: 1E−1, 5E−2, 5E−3, 5E−4.
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Fig. 1. A comparison between all methods presented in this paper shows the superiority
of model averaging methods (with n = 1000 and p = 200). Horizontal axis: ensemble
size m; vertical axis KL divergence to the target density estimated by Monte-Carlo
and averaged over 5 target densities and 6 training sets.

Looking first at m = 1 (initial values of all curves), we observe that all but
two methods start at the same point as the CL tree: ISH (Algorithm 3) is sig-
nificantly worse, while the strongly regularized PMBCL tree at α = 5E−4 is
significantly better1. For larger values of m, all the considered mixtures mono-
tonically improve, some more quickly than others, and for sufficiently high values
of m they all are quite superior to a single CL tree. For PMBCL, the smaller α,
the lesser the improvement rate; actually, for α = 5E−4, its improvement rate
is so small that it is quickly overtaken by the Mixture of Bagged CL Trees (at
m = 30) and later on by PMBCL with α = 5E−2 (at m = 60). On the other
hand, Warm Start ISH and PMBCL for α sufficiently large display comparable
performances and the same convergence rate than Bagged CL Trees.

These results confirm the superiority of the model averaging approach, and
they also suggest the interest of trying to limit the complexities of the individual
trees in PMBCL and to correctly initialize the inertial approach, given their
computational complexity advantage with respect to raw bagging (see below).

In order to allow a better understanding of the influence of α on the behavior
of PMBCL, Table 1 lists the number of edges in the skeleton S and in the first
tree T1 for different values of α. It comes as no surprise that those numbers
are decreasing with α. Note how the number of edges in T1 is almost at the
maximum (n − 1 = 999) for α ∈ {1E−1, 5E−2, 5E−3}, whose curves start at
the same performance as the CL tree, while the smallest α (5E−4) leads to a
much smaller tree. These numbers also show that the skeleton in that last case
has only a few edges more than the first tree. This is in accordance with the
very small improvement in the performance of the method when the mixture

1 Standard deviations of KL divergences, not reported for the sake of legibility, are
about 20 times smaller than the average differences that we comment.
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Table 1. Impact of the parameter α on the number of edges in PMBCL, averaged on
5 densities times 6 data sets for n = 1000 variables and p = 200 samples

Numbers (% of the total) for α =
1E−1 5E−2 5E−3 5E−4

Edges in T1 998 997.9 993.2 626.8
Edges in S 52278(10.5%) 26821(5.36%) 3311(0.66%) 683 (0.13%)

is expanded and its fast convergence: the skeleton is so small that only a few
different trees can be built with those edges, and the mixture quickly has them.

On the other hand, when the skeleton is larger, tree structures learned on
bagged replica have more freedom, which allows the consideration of more can-
didate structures and leads to a more effective variance reduction.

Effect of the Learning Set Size p. To further analyze the relative behavior
of the different methods, we increased the size p of learning samples to 600 and
1000. Results, reported in Figs 2(c,e), show that the most noticeable change is
that the different methods now start from different initial points: the CL tree
becomes initially better than a tree learned on a bagged replica. The advantage
of the first PMBCL tree with the smallest value α is decreasing. We deem that
both observations are a consequence of the improved precision of the mutual
information estimate derived from a larger data set.

Now that the estimations of the “good” edges are better, reducing α seems to
have an opposite effect on the improvement rate of PMBCL. Notice that, while
at m = 100, the lowest α still seems better on average, confidence intervals (not
displayed) suggest that the different methods cannot really be distinguished.

The Warm Start ISH is now doing far worse than the Mixture of Bagged CL
Trees. We conjecture that the larger sample size leads to less variation in the
mutual informations computed from bootstrap replicas, leading to slower moves
in the space of tree structures for this method.

Effect of the Problem Dimensionality n. Modifying the number of vari-
ables has mostly an effect on the ISH methods, since it impacts the relative
number of edges considered at each iteration, and thus the exploration speed
of the MI matrix. Smaller numbers of variables therefore should accelerate the
convergence of this method. Figures 2(a,b,d), provide a global picture of the rel-
ative performances of the considered methods, with n = 200 and over a longer
horizon m = 500 of averaging. These simulations show that both inertial meth-
ods converge to the same point. Therefore, and despite a better improvement
rate at the beginning, sampling structures far from the optimal one (in the orig-
inal ISH method) does not improve the mixture. Based on this observation, one
might actually be tempted to remove the first terms of that mixture, hoping for
an improved convergence speed. We however believe that considering all edges
in the first step of the method (the Warm Start variant) is more productive,
since the method is directly initialized in the neighborhood of good structures.
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(b) 200 variables, 600 samples.
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(c) 1000 variables, 600 samples.
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(d) 200 variables, 1000 samples.
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(e) 1000 variables, 1000 samples.

Fig. 2. Overview of accuracy performances of the different algorithms described in this
paper, with n = 200 or n = 1000 variables (left vs right), and for increasing sample
sizes p (200, 600 and 1000, from top to bottom). Vertical axis: KL divergence to the
target density estimated by Monte Carlo on 50,000 test observations, averaged over 5
target densities and 6 learning sets for each one. Horizontal axis: number m of mixture
terms used by the different methods (except for the CL tree method, using a single
tree).
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Fig. 3. Modifying the number of edges considered at each step only affects ISH when
all edges are not considered in the first iteration (shown here for n = 1000, p = 1000)

Inertial Search Heuristics. Modifying the number of edges considered at each
iteration in both variants of ISH, as depicted in Fig. 3, shows that the exploration
of the MI matrix affects the convergence of the base method. Indeed, doubling
(C = 2) or dividing by two (C = 0.5) the number of edges explored has a huge
impact on its convergence, while it hardly affects the Warm Start version.

5.2 Computing Times

Our experiments were performed on a grid running ClusterVisionOS and com-
posed of pairs of Intel L5420 2.50 Ghz processors with either 16 or 32 GB of
RAM. Due to the environment, run time for a method can vary a lot, and we
therefore decided to report relative minimum running time for every method.
Those results are displayed in Table 2 and 3 for respectively 200 and 1000 vari-
ables / 500 and 100 trees. Results for PMBCL are reported for α = 0.005.

Those numbers show that the proposed methods (lower part of the table) are
roughly an order of magnitude faster than the standard bagging method, and
this relative speed-up is stronger in the higher dimensional case. Also, as we saw
from the accuracy results, these methods converge as quickly as bagging.

If one is considering parallelizing those methods at a high level, namely by
computing trees individually on different cores, Bagged mixtures of CL Trees
and PMBCL are the best candidates, since the trees in these methods are inde-
pendent (independent conditionally on the first tree in the case of PMBCL). In
the two ISH methods, each tree depends on the previous one, and parallelizing
is hence more difficult. But, at a lower level, all algorithms could take advantage
of the parallelization of the computation of a MWST.

Overall, the PMBCL method appears as the most appealing method; it always
combines fast convergence (as fast as bagging) when the number of terms of the
mixture is increased and, from the computational point of view, it is also the most
efficient one among those that we investigated, about 20-30 times faster than
bagging in realistic conditions; furthermore it is easy to parallelize. Neverteless,
the inertial heuristic with warm start is competitive as well.
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Table 2. Serial minimum computing times (given for n = 200 variables)

Method Complexity running time (500 trees - except CL)
200 samples 600 samples 1000 samples

Chow-Liu n2 log(n) 1 3.07 5.3

Bagged CL Trees mn2 log(n) 532 1531 2674
ISH mn log(n) 45 186 432

PMBCL n2 + mK(α) log(K(α)) 21 82 191
Warm Start ISH n2 log(n) + mn log(n) 45 192 406

Table 3. Serial minimum computing times (given for n = 1000 variables)

Method Complexity running time (100 trees - except CL)
200 samples 600 samples 1000 samples

Chow-Liu n2 log(n) 37 98 174

Bagged CL Trees mn2 log(n) 5037 11662 19431
ISH mn log(n) 181 800 1433

PMBCL n2 + mK(α) log(K(α)) 139 612 1005
Warm Start ISH n2 log(n) + mn log(n) 218 766 1359

Note that convergence speed may vary between methods, and some might
require fewer iterations before performance (almost) stabilizes.

6 Conclusion

In this paper we have studied variance reduction oriented model averaging tech-
niques for density estimation, using probabilistic graphical models and more
precisely mixtures of Markov trees. Those models are particularly suited for
problems defined on very high dimensional spaces due to their scalability.

The contributions of this paper are the proposal of algorithms for learning
mixtures of Markov trees designed to approach the quality of approximation of
mixtures of bagged Chow-Liu trees at a lower computational cost, and the study
of their main properties. The bottleneck of the baseline bagging method is the
quadratic number of edges considered for building the structure of each Markov
tree of the ensemble. This is problematic since it may lead to restricting the total
number of trees in the mixture, while on the other hand larger numbers of trees
would yield more accurate models. The main idea behind our proposals is to use
the information obtained from the computation of a first tree of the mixture so
as to simplify the computation of the subsequent trees of the mixture.

We have demonstrated on synthetic datasets the interest of Markov trees av-
eraging over regularizing a single Chow-Liu tree. For example, when enough
Bagged Chow-Liu trees are averaged, they outperform that single model. Like-
wise, we have shown that our approximation schemes match the accuracy of
bagging better than existing alternatives. Among the proposed methods, the
most robust and computationally efficient one (PMBCL) defines a set of candi-
date edges by selecting all edges computed at the first iteration that are better
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than a constant complexity “edge penalty”, and subsequently only considers
those edges for building remaining ensemble terms. The approximation schemes
that we have proposed were in our experiments one order of magnitude faster
than Mixtures of Bagged Chow-Liu Trees.

Other variants of our methods could be investigated in the future. For exam-
ple, it might be interesting to perform a looser selection of edges at the first iter-
ation, and to include additional regularization when learning subsequent terms,
or vice versa. This might further ease the calibration of the tradeoff between
computational complexity gains and variance reduction potential.
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Abstract. This paper focuses on resource-aware and cost-effective
indoor-localization at room-level using RFID technology. In addition to
the tracking information of people wearing active RFID tags, we also in-
clude information about their proximity contacts. We present an evalua-
tion using real-world data collected during a conference: We complement
state-of-the-art machine learning approaches with strategies utilizing the
proximity data in order to improve a core localization technique further.

1 Introduction

While approaches for outdoor localization can utilize various existing global
sources, e.g., GPS signals, mobile broadcasting signals, or wireless network sig-
natures, methods for indoor localization usually apply special installations (e.g.,
RFID or Bluetooth readers), or require extensive training and calibration efforts.

In this paper, we propose an approach for indoor localization using active
RFID technology: We focus on a cost-effective and resource-aware solution that
requires only a small number of RFID readers (Figure 1). Furthermore, our
method can be applied to installations, where readers cannot be positioned freely.
The latter constraint is encountered often, especially in buildings under mon-
umental protection. Our application context is a conference, where conference
participants wear active RFID tags for tracking, for memorizing their contact
information, and for the personalization of conference services. Therefore, we
present an analysis of data collected in a real-life context, in contrast to scenar-
ios that examine RFID localization in laboratory experiments, e.g., [18][12]. In
Section 3.1 we discuss additional challenges, that such an application faces and
that are difficult to implement in simulated scenarios. We consider a real-life
localization problem at room-level, i. e., the task to determine the room, that a
person is in at a given point in time.

Our contribution is three-fold: We present an analysis of the contact and prox-
imity data in order to prove the validity and applicability for the sketched appli-
cation. Additionally, we evaluate the benefits of several state-of-the-art machine
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learning techniques for predicting the locations of participants at the room-level.
We propose to utilize the (proximity) contacts of participants for improving the
predictions of a given core localization algorithm. We evaluate the impact of
different strategies considering the top performing machine learning algorithm.
The real-world evaluation data was collected at the LWA 2010 conference (of
the German Association of Computer Science) in Kassel, Germany1.

The rest of the paper is structured as follows: Section 2 discusses related work.
After that, Section 3 describes the approach for resource-aware localization at
room-level using RFID technology. Next, Section 4 features the evaluation of the
approach utilizing several machine learning algorithms and different strategies
for implementing the proximity contacts. Finally, Section 5 concludes the paper
with a summary and interesting directions for future research.

2 Related Work

The Global Positioning System (GPS) is the most widely used localization sys-
tem for outdoor positioning. It is based on a network of 24-30 satellites placed
in the orbit. One of the drawbacks of GPS is that it cannot be used for in-
door localization, because its signals are blocked by most construction materials.
Therefore, the research on indoor localization systems has received great interest
during the last decade.

For indoor localization several algorithms have been proposed, usually based
on angle of arrival (AoA) [19], time of arrival (ToA) [15] or time difference of
arrival (TDoA) [20] methodologies. On the one hand, these methods are highly
accurate in estimating the position of an object; on the other hand they consume
a lot of energy. Furthermore, they require expensive hardware and an extensive
deployment of suitable infrastructure. Another class of localization algorithms
estimates the position of a target based on the received signal strength [12]. Most
of these approaches use the log-distance path loss model [21] to estimate the
distance from the object to at least three reference points. Then, the possible
position of the object is calculated using triangulation. The disadvantage of
this approach is that propagation effects such as reflection, multi-path-fading or
phase-fluctuations limit the precision of positioning.

Scene analysis is another option to estimate the position of an object [4][18][6].
Usually, this technique works in two phases, the off-line learning phase and the
online localization phase. In the off-line phase, data about the received signal
strengths (RSS) for each point in the localization area is stored in a database
to save the localization points. In the online phase two scene analysis tech-
niques of predicting the position exist: k-nearest-neighbor (kNN) and proba-
bilistic methods. kNN predicts the position by finding the k closest fingerprints
in the database. The estimated location is the (weighted) centroid of the cor-
responding k locations. The probabilistic model selects the location with the
highest probability.

1 http://www.kde.cs.uni-kassel.de/conf/lwa10/

http://www.kde.cs.uni-kassel.de/conf/lwa10/
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In our experiments, we consider a different approach using a new generation
of cost-effective and resource-aware RFID tags, i.e., tags with a low power con-
sumption. These RFID tags (proximity tags) are developed by the SocioPatterns
project2 and the company Bitmanufaktur3; at the time of writing the project
will soon become open-source, see the SocioPatterns web site for more informa-
tion. The technical innovation of the applied tags is their ability to detect the
proximity of other tags within a range of up to 1.5 meters. Due to the fact, that
the human body blocks RFID signals, face-to-face contacts can then be detected.
In this context, one of the first experiments using RFID tags for tracking the
position of persons on room basis was conducted by Meriac et al. (cf., [16]) in
the Jewish Museum Berlin in 2007. Cattuto et al. [8] added proximity sensing
in the SocioPatterns project. Barrat et al. [13] did further experiments.

For several research questions, e.g., for social network analysis, it is rather
interesting to combine the movement and contact data of persons. To conduct
such analysis we apply active RFID tags that provide data from which we can
extract positioning data as well as contact data. The proximity-tags are primarily
developed for recognizing face-to-face contacts.

In the context of the presented approach, one additional problem concerns
the exact positioning information: Our hardware setting does not provide in-
formation (like ToA, TDoA, AoA, RSSI, ...) used for positioning in traditional
localization algorithms. Like the work of [16] we use the number of packages each
RFID reader received from each RFID tag in a specific time interval (for each
signal strength) to determine the users position. Compared to the work of [16]
we use a fingerprint technique to estimate the location of the user. In [16] the
participant is allocated to the room whose RFID readers received most packages
with the weakest signal strength. This approach works fine, but it is based on
the fact that at least two readers are placed in each room. Unfortunately, often
it is not possible to place the RFID readers at arbitrary positions, e.g., in older
buildings, or buildings with monumental protection.

Localization with proximity tags and readers as applied in our hardware set-
ting is challenging for different reasons: First, the number of packages per second
sent by the RFID tags is very low. Second, the position of RFID readers can
not be chosen freely and the number of readers should be as small as possible.
Third, as discussed above, the RFID readers do not offer additional information
(like ToA, RSS,...) about the received packages from proximity tags. Fourth, as
already described in previous work RFID properties like reflection and multi-
path-fading complicate the task of localization. For further reading about RFID
we refer to [10,11].

In this paper, we propose a resource-aware approach for indoor localization
using proximity tags. To the best of the authors’ knowledge, this is the first time
that the accuracy of such a localization approach is investigated in a real world
application. In contrast, to the presented approach all existing literature studied
their approaches under nearly optimal (laboratory) conditions, e.g., [18][12].

2 http://www.sociopatterns.org
3 http://www.bitmanufaktur.de

http://www.sociopatterns.org
http://www.bitmanufaktur.de
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3 Resource-Aware RFID Room-Level-Localization

In the following section, we first outline the resource-aware application scenario
using active RFID tags. After that, we describe the application of machine learn-
ing for room-level prediction of the tags’ location. Next, we summarize the strate-
gies for improving the accuracy of the applied methods by utilizing the proximity
contacts between the applied RFID tags.

3.1 Resource-Aware RFID Application Scenario

In this paper, we aim at a flexible and resource aware approach for localization
using RFID: It should require only a small number of readers, and should further
allow the free placement of readers not constrained to single rooms. E. g., a reader
might be assigned to several areas, or to larger areas in general. In our experience,
such a setting is highly relevant for practical applications, and also needed to be
taken into account for our real-world evaluation scenario. Further issues, that
have to be overcome in a real-world setting are the interference between tags – if
many tags are put into one location and signals transcending room boundaries,
i. e., walls or ceilings.

In summary, in a real-life setup the localization problem is much more com-
plicated compared to a simulated environment, using very many readers and
resources e. g., [16] . Below, we describe the hardware and system architecture
used in our localization experiment.

Hardware. For our localization experiment at the poster session of a confer-
ence we asked each participant to carry an active RFID tag (see Figure 1).
The tags provide localization and proximity detection in a resource-aware and
cost-effective way, which conforms to our requirements. Every two seconds each
RFID tag sends one package in four different signal strengths (-18dbm, -12dbm,
-6dbm, -0dbm) to RFID readers placed at fixed positions in the conference area
(see Figure 2). Dependent on the signal strength the range of one package inside
a building is up to 25 meters. Each package is 128 bits long, encrypted, and con-
tains information about the tag id from the reporting RFID tag, signal strength
and CRC checksum. For more details, we refer to Barrat et al. [5] and [2]. The
continuous sending of RFID packages in uniform time-intervals (two seconds)
gives us the opportunity of determining the package-loss of an RFID tag at each
RFID reader. We use this information to create the characteristic RFID vectors.
Here, we note that we do not use the package loss explicitly. Instead we use the
number of packages an RFID reader receives from a tag.

One decisive factor, that makes proximity tags interesting for conference sce-
narios is the possibility to detect other proximity tags within a range of up to 1.5
meters. Since the human body blocks RFID signals, one can detect and analyze
face-to-face contacts in this way [5]. In this work, we show that this proximity
information helps to improve the localization accuracy. The information about
contacts is transmitted in the fourth and strongest signal strength of the tags.
Thus, a tag sometimes sends more than one package (every two seconds) in that
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strength, because more packages are needed to transport the contact informa-
tion. Since it is not possible to store information on the tags permanently, every
time-dependent information is lost, when a tag is out of the range of all RFID
readers.

The RFID readers (see Figure 1) receive RFID signals and forward them to
a central server via UDP where the signals are decrypted, analyzed and stored
in a database. Because of resource-awareness reasons the RFID readers do not
provide information like AoA or RSS of the received packages, which could help
to additionally improve the accuracy of the localization results.

Fig. 1. Proximity tag (left) and RFID reader (right)

3.2 Machine Learning for Prediction Using RFID Data

As described in Section 3.1, each RFID tag sends one package in four different
signal strengths every two seconds. Similar to most fingerprint approaches we
assume that the number of packages an RFID reader received is significantly
dependent on the position of the sending RFID tag, i. e., when a tag is moved
away from the reader, the number of received packages will decrease. Therefore,
we can determine sets of characteristic vectors (fingerprints) for each room in
the conference area.

Observation Vector Space. In a setting with R RFID readers and P proxim-
ity tags, each transmitting on S different signal strengths, let l denote the length
of a time window and t a point in time. Further, let V l

r (p, t) ∈ Ns (1 ≤ r ≤ R,
1 ≤ p ≤ P ) be an S-dimensional vector where the s-th entry is the number of
packages that RFID reader r received from proximity tag p with signal strength
s in the time interval [t− l, t]. The vector

V l(p, t) =
(
V l

1 (p, t), V l
2 (p, t), · · · , V l

R(p, t)
)

(1)

– i. e., the concatenation of the vectors V l
r (p, t) over all readers r, – is called the

package count vector or characteristic vector of the proximity tag p at time t.
The dimension of vector V l(p, t) is S · R. With the parameter l one can control
the influence of older signals. For longer time intervals, the probability rises that
packages sent from a previous location influence the vector at the current time
point t.

We consider the localization problem as a classification task. In the learning
phase, we create a set of fingerprints (training data) for each room, and learn
a classification model based on these fingerprints. In the online classification
(localization phase) we determine the position of a participant from his current



134 C. Scholz et al.

fingerprint, using the classification model. In this paper, we modify four state of
the art machine learning methods for that classification task by including prox-
imity contact information and analyze the resulting increase in their accuracy
due to these contacts.

Basic Room Prediction. In the following, we outline the basic machine learn-
ing methods that we applied as a benchmark for predicting locations of the par-
ticipants, and as initial methods to be complemented with the contact strategies
described below. We briefly summarize their basic features, and discuss their
application using the RFID data. We refer to the basic localization methods as
the Loc-Basic approach.

Naive Bayes (nBay). While naive Bayes [17] is a rather simple approach, studies
comparing classification algorithms have shown that the naive Bayes classifier is
often comparable in performance with decision trees, while achieving high accu-
racy and speed being applied to large databases. Therefore, for the localization
naive Bayes is a good candidate due to its learning performance and accuracy.

K-Nearest Neighbor (kNN). As a lazy learner, the k-nearest neighbor algorithm
[17] is easy to setup and implement, since only a certain set of training data
needs to be stored, and a suitable distance (similarity) metric be applied for
retrieving a similar case for a given query. Therefore, a scenario that does not
allow for long training periods favors a nearest neighbor classifier. The parameter
k controls the number of neighbors considered for each prediction.

Support Vector Machines (SVM). Support vector machines [9] have become one
of the benchmark techniques for machine learning approaches due to their good
classification performance for a broad range of applications. Therefore, we also
consider support vector machines as our basic learning strategy and benchmark
method. In this scientific work we use the SVMlight C-implementation [3] from
Thorsten Joachims. For our experiments described in Section 4 we chose an RBF
kernel

Ka,b = exp (−γ||xa − xb||2), (2)

where xa and xb are package count vectors. In Section 4 we analyze the best
parameter combination for parameter γ ∈ R and parameter j ∈ R. Here, the
parameter j is the cost factor, by which training errors on positive examples
dominate errors on negative examples4. For all other parameters we chose the
default values as described in [14].

Random Forest (RF). The random forest classifier [7] is an ensemble classifi-
cation method: It applies a set of unpruned decision trees for classification. It
can usually be learned in a cost-effective manner. Therefore, we also selected a
random forest method for our set of base learners for the localization approach.
In Section 4 we analyze the accuracy for different combinations of the two input
parameters mtry (denoting the number of predictors sampled for splitting at
each node) and ntree (the number of trees). For our experiments we use the
R-implementation of Random Forest [1].
4 http://svmlight.joachims.org/

http://svmlight.joachims.org/
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3.3 Advanced Room Prediction Using Contacts

In this section we describe three simple but effective techniques which include
contact information for improving the accuracy of the Loc-Basic algorithms.
Let Cw(p, t) denote the set of users (proximity tags) that were in contact with
user p within a time interval [t − w, t]. Hereby, the length w of that interval is
independent from the length l of the time interval used in the construction of
the characteristic vectors. Assume, that we want to predict the position of user
p at time t.

Mean-Approach. As input for the Loc-Basic algorithm the following vector
is used:

V l
mean(p, t) =

V l(p, t) +
∑

q∈Cw(p,t) V
l(q, t)

1 + |Cw(p, t)| . (3)

Thus, the new characteristic vector V l
mean(p, t) of user p is the average over all

package count vectors of the contacts of user p and of user p himself.

Max-Approach. Let (v1p, · · · , vSR
p ) be the component representation of V l(p, t).

As input for the Loc-Basic algorithm the vector

V l
max(p, t) =

(
max

q∈Cw(p,t)∪{p}
{
v1q
}
, · · · , max

q∈Cw(p,t)∪{p}
{
vS·R

q

})
(4)

is used. V l
max(p, t) is the component-wise maximum of the characteristic vectors

of user p and his contacts.

Vote-Approach. This approach consists of two phases. At first (preliminary)
positions for user p and all his contact users are predicted using Loc-Basic.
Then, the final prediction of p’s position is established by a majority vote among
all these Loc-Basic predictions.

4 Evaluation

Below, we first discuss the applied data before we describe the evaluation setting
in detail. After that, we present the results of our experiments, and conclude with
a comprehensive discussion.

4.1 Datasets

We utilized real-world data collected at the LWA 2010 conference in Kassel,
covering the locations of tracked participants and contacts between these. In
order to obtain a diverse and interesting set of observations we focused on the
two hour poster session, since during that time many participants had gathered
in 5 adjacent rooms. This provides us a challenging scenario for our methods.
To ensure that each point in the conference area was covered, we placed 6 RFID
readers at adequate positions in the conference area (see Figure 2).
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Fig. 2. Conference Area: the numbered rooms were used by participants during the
poster-session, the circles mark the positions of RFID readers

We consider two kinds of tags: user tags and object tags : A user tag is a
proximity tag worn by a participant during the conference. With an object tag
we denote a proximity tag fixed to an unmovable object. In total, we fixed 46
object tags to several posters, tables and seats. Depending on its size we put
between two and thirteen object tags in each room. The training data contains
the first 1500 characteristic vectors collected with the object tags for each room
of the conference area. Obtaining the training set took about 25 minutes.

Ground truth: In summary, 46 people took part in our localization experiment
during the poster session. We collected their tag data over a duration of two
hours. To evaluate the accuracy of our predictions we needed to determine the
positions of the participants, for which we applied the object tags. Since the tags
detect other proximity tags only within a range of up to 1.5 meters, whenever a
contact between the tag of a participant tag and an object tag was recorded, we
could infer that this participant was in the same room as the object tag (ground
truth). In the experiments, we predicted the rooms for those vectors where the
precise location could be verified with the ground truth data.

4.2 Setting

In all experiments, the target is to maximize the overall localization accuracy. The
setup of the experiments contains a variety of parameters such as tuning parame-
ters of the algorithms, parameters that control the vector space of our observations
or parameters to control the set of contacts for each user at a specific time. Several
of these parameters are data set dependent. Due to the nature of our setting as a
social get-together most users did not switch locations very often. It is therefore
possible and useful to choose large intervals to construct the observation vector
space, in our experiments we chose l = 10, 30 and 50 seconds. However, other
contexts might demand more frequent changes of the locations. In such cases fin-
gerprints should be collected only over rather short time intervals.

Since the fourth and strongest signal strength of the tags transmits in irreg-
ular intervals (in contrast to the other signal strengths), we considered vectors
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including or excluding the fourth signal strength. All in all, we obtained six dif-
ferent datasets, in the following referred to as F10−3 through F50−4 where e. g.,
the vectors of F50−4 are collected over l = 50 seconds and constructed with all
four signal strengths of each tag. Depending on the length of the time window
l and the number of used signals, the size of training data is shown in Table 1.
To include the contact information we used the mean, max and vote approach.
The first parameter to choose is the length w of the time window over which we
collect contacts. We experimented with five time windows: w ∈ {2, 5, 10, 20, 30}
(in seconds). A second parameter d is the degree of transitive closure, that is
added to the contact set. Contact information for one user at a specific time can
be sparse. In such cases it may be of help to “add more contacts” based on the
rationale, that contacts between users u1 and u2 and between u2 and u3 might
indicate a contact between users u1 and u3. This procedure of adding such (tran-
sitive) contacts can be iterated and d is the count of these iterations. Since for
d = 7 no new contacts were produced we investigated the values d = 0, 1, . . . , 6.

Table 1. Size of the ground truth dataset for different time window lengths l and
numbers of signals.

F10−3 F10−4 F30−3 F30−4 F50−3 F50−4
135208 137126 137454 137579 137570 137586

To prevent combinatorial explosion, we structured our experiments into two
parts, described below: In the first part, we applied each of our four Loc-Basic
algorithms with different parameter settings to each of the six datasets. In the
second part we additionally considered contact data to increase the localization
quality for those parameter settings, that performed best in part one. Addition-
ally, we conducted several experiments exploring variations of the size of the
training set.

4.3 Results and Discussion - Part 1: Machine Learning Baseline

Table 2 presents the results of the first phase showing the best parameter com-
binations for each dataset and algorithm together with the achieved overall ac-
curacies. We ran kNN with values for k from 5 through 200 in steps of 5. For
RF we tried all combinations of mtry = 1, . . . , 20 and forest sizes ntree of 25
through 500 in steps of 25. SVM was run with combinations of j = 1, . . . , 20
and γ ∈ {2, 0,−2,−4, . . . ,−18,−20}. Finally, the nBay does not depend on a
parameter. An immediate observation is, that nBay was always outperformed
by any of the other algorithms. This is not surprising as the basic assumption
of nBay is the complete independence of the entries in each observation. Such
independence can not be claimed for our datasets. If a reader receives, e. g., pack-
ages from a tag in its lowest signal strength, then it is much more likely that the
reader will also receive packages in a higher strength from that tag. However,
since we are interested in observing the boost that contact information can have
on the results of a given classifier, we experimented with nBay rather than with
more complex Bayes approaches taking dependencies into account.
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Table 2. For each algorithm and dataset the best parameters settings and the resulting
total accuracy in %. ∗ The same accuracy was achieved with γ = −12.

base F10−3 F10−4 F30−3 F30−4 F50−3 F50−4

kNN
k 50 165 125 185 180 200

acc 71.96 73.58 74.36 79.33 73.26 79.80

RF
mtry 1 1 1 2 1 4
ntree 475 375 400 350 275 200
acc 77.44 78.03 83.66 84.53 84.18 84.78

SVM
j 1 1 7 1 13 1
γ −14 −14 −10∗ −18 −10 −20

acc 78.05 77.95 82.55 84.15 82.53 84.84
nBay acc 33.42 38.97 51.14 56.96 56.57 61.97

The results of the other three algorithms are between 71.96% and 84.78%.
Taking into account the room layout and the hardware constraints due to our
resource-aware approach, these results can be considered acceptable. As can
be expected, in all cases the more sophisticated algorithms RF and SVM had
higher scores than the simple kNN. Including the fourth signal strength into
the datasets yielded better results than ignoring it – with one exception (SVM,
F10−4) where the two results differ, however only by 0.1%. Furthermore, the
datasets where the package vectors are collected over 30 or 50 seconds yield
better scores compared to the ones where only 10 seconds are considered.

A closer look at the influence of the algorithms parameters is presented (ex-
emplary) in the diagrams of Figure 3. For higher values of k the accuracy of
kNN rises, up to a certain level. After a (dataset dependent) threshold the ac-
curacy almost stabilizes at that level. While the choice of the forest size ntree
for RF did not influence the result much, the choice of the mtry parameter is
of importance. In general, with lower values (1 through 4) the results were sig-
nificantly better than for other choices. The curves of SVM fluctuate strongly
on the datasets F10−3 and F10−4 and yield more stable curves for the others. In
general, better results where achieved using very small values for the parameter
j – in the cases where the best score was obtained with j = 7 or j = 13, the
scores using j = 1 were not significantly lower. In all cases, results were better
using lower values for γ such as −20.

4.4 Results and Discussion - Part 2: Utilizing Contact Information

In the second phase of the experiments, we employed the best parameters de-
termined in phase one (Table 2) and included contact information to boost the
localization accuracy. Tables 3, 4 and 5 present for each dataset and algorithm
the best choice of the two parameters w and d and the achieved accuracy. Fur-
thermore, for each method the lowest accuracy that was achieved with any com-
bination of the two parameters is given. In the tables, bold numbers mark the
accuracies of those methods, that performed best for the given algorithm and
dataset. Italic numbers indicate accuracies, that are below the according baseline
of phase one.

A first encouraging observation is, that in all experiments with the mean or
max approach, the methods had a strictly positive influence on the accuracy.
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Fig. 3. Exemplary for F30−4, the diagrams, showing the accuracies in % a) vs. k (kNN),
b) vs. ntree for different values of mtry (RF) and c) vs. j for different values of γ
(SVM). In c) the graphs for γ = 2, γ = 0 and γ = −2 were left out for the sake of
legibility. All three are constant with accuracies 14.81%, 15.94% and 48.74%.

Table 3. For each algorithm with max aggregation and each dataset the best choices
of w and d with the according accuracy in % and the minimum accuracy achieved with
max aggregation.

max F10−3 F10−4 F30−3 F30−4 F50−3 F50−4

kNN
w 30 20 30 30 30 30
d 4 4 1 2 1 2

top acc 80.26 80.28 83.39 85.40 82.78 85.53
min acc 78.01 78.75 80.99 84.04 80.25 84.1

RF
w 20 20 20 20 20 5
d 3 2 6 1 6 1

top acc 84.94 85.49 89.59 89.96 88.94 87.53
min acc 83.25 83.99 88.31 88.92 87.95 86.73

SVM
w 20 20 20 20 20 20
d 2 2 5 1 2 1

top acc 84.43 85.46 88.16 89.14 88.65 88.72
min acc 82.89 83.73 87.09 88.33 87.42 88.06

nBay
w 30 30 30 30 30 30
d 3 4 2 6 1 1

top acc 50.60 56.81 65.80 71.95 69.55 76.57
min acc 44.40 50.13 61.30 66.70 66.77 72.50

Only voting performed in some cases worse than the baseline, mainly for nBay.
For nBay we attribute this to the fact, that the voting scheme is a probabilistic
method. Since nBay itself has only a very low accuracy, it is likely that among
the votes many are in fact false predictions. Thus, the probability of a wrong
classification even rises.

With one exception the best results were always achieved using max or mean
aggregation. Here, including the contact information yielded significant boosts
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Table 4. For each algorithm with mean aggregation and each dataset the best choices
of w and d with the according accuracy in % and the minimum accuracy achieved with
mean aggregation.

mean F10−3 F10−4 F30−3 F30−4 F50−3 F50−4

kNN
w 10 20 30 20 30 30
d 1 1 1 2 2 2

top acc 75.79 79.55 80.68 85.62 79.63 86.24
min acc 75.19 78.52 79.35 84.30 78.24 84.73

RF
w 10 10 20 20 30 30
d 2 3 6 3 4 5

top acc 79.51 80.65 88.04 88.33 88.29 88.83
min acc 78.00 79.31 86.57 87.29 86.83 87.57

SVM
w 20 20 30 30 30 20
d 2 3 2 2 2 2

top acc 83.96 85.01 88.43 89.49 88.89 89.39
min acc 82.56 83.39 86.91 88.33 87.26 88.32

nBay
w 30 30 30 30 30 30
d 5 5 2 2 2 2

top acc 49.61 52.62 65.22 68.88 71.26 75.54
min acc 43.93 48.20 60.23 64.31 66.26 70.59

Table 5. For each algorithm with voting aggregation and each dataset the best choices
of w and d with the according accuracy in % and the minimum accuracy achieved with
voting aggregation. ∗ The same accuracy was achieved with d = 4

vote F10−3 F10−4 F30−3 F30−4 F50−3 F50−4

kNN
w 20 30 20 20 20 20
d 2 3 2∗ 3 3 3

top acc 77.39 79.71 80.02 85.17 78.63 85.94
min acc 76.11 78.35 78.82 83.80 77.69 84.49

RF
w 10 10 20 10 20 20
d 5 1 1 2 2 3

top acc 81.32 81.67 86.77 87.55 87.81 88.97
min acc 80.75 81.14 86.27 87.08 87.03 87.88

SVM
w 20 20 5 20 2 30
d 4 4 0 2 0 2

top acc 81.35 81.09 83.22 86.75 82.76 87.46
min acc 80.05 79.51 81 .29 85.55 80 .86 86.17

nBay
w 2 2 2 2 2 2
d 0 0 0 0 0 0

top acc 33 .05 38 .70 50 .90 56 .53 56 .10 61 .31
min acc 31 .48 37 .54 50 .39 55 .81 55 .22 60 .66

Table 6. For each algorithm (in its best performing aggregation parametrization) the
fraction of data for which contact information is available (in %) and a comparison
of prediction accuracy of the algorithms without contacts and those using the best
performing method of contact data aggregation.

kNN RF SVM nBay
strategy F50−3 F10−3 F10−4 F10−4

contact fraction 69.23 65.01 64.91 69.3
contact base acc 74.33 76.83 77.78 33.05
contact best acc 88.09 88.18 89.34 58.80

boost 13.76 11.34 11.57 25.74
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Fig. 4. a) through d) present the accuracies in % of all experiments with the max
approach on F10−4, e) through h) those of the experiments with the vote approach on
F50−4. For several choices of w, the accuracy is plotted vs. the degree of transitivity d.

in overall accuracy: up to an additional 9.52% for kNN (F50−3), 7.5% for RF
(F10−3), 7.51% for SVM (F10−4) and 17.84% for nBay (F10−4). These results
are clear evidence, that the contact information can support the localization
approach significantly. Even stronger evidence for that presents Table 6. This
table shows for the above mentioned four settings the fraction of test data where
contact information (depending on the parameters d and w, chosen as in Table 3)
is available (contact fraction). Further, given are the prediction accuracies on
only that fraction of the dataset of both, the Loc-Basic algorithms (contact
base acc) and the best contact boosted algorithms (contact best acc). Boost
denotes the additional gain of accuracy due to the inclusion of the contact data.
Here, the scores of kNN, RF and SVM profit with more than 11% while the
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Fig. 5. The accuracy in % vs. the number of training samples per room

accuracy of nBay increases by more than 25%. Our best performing algorithm
with respect to the complete test set (RF with max aggregation using F30−4)
yields a prediction accuracy of 92.69% if applied to that part dataset for that
contact information is available.

Next, we investigated the influence of the parameters d and w. As can be
seen in the Tables 3, 4, 5 the fluctuation of the accuracy for different parameter
combinations was rather low, often less than 1%. Figure 4 displays exemplary
for each algorithm the results of the max approach for the F10−4 dataset and
of the vote approach for the F50−4 dataset. The behavior of the accuracy using
the mean approach was generally similar to that of the max approach. The
parameter d usually had only a small influence. In most experiments only the
difference between d = 0 and d = 1 was significant. For the values 1, . . . , 6
the accuracy stayed almost constant. Variations of the w parameter also caused
similar behavior throughout the experiments. In those, where the contacts had
positive influence on the accuracy, the choices w = 20 or w = 30 delivered the
best results, while w = 10 usually was better than w = 5 or w = 2.

Furthermore, we analyzed the influence of the training set size. We applied the
method from our previous experiments that performed best (RF with ntree =
350 , mtry = 2, w = 20 and d = 1 using the max approach on F30−4) to
classify with models based on differently sized training sets. Figure 5 shows the
resulting accuracies compared to those of the according Loc-Basic method. Up
to 450 samples per room, increasing the training size increases the accuracy.
Afterwards the accuracy increases only little or decreases in some cases. The
distance between the curves (the boost due to the contacts) is almost constant,
only for very small training set sizes it is slightly larger.

5 Conclusions

In this paper, we have presented an approach for cost-effective and resource-
aware localization at room level using RFID-tags. We evaluated several state-
of-the-art machine-learning algorithms in this context, complemented by novel
techniques for improving these using the RFID (proximity) contacts. The results
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of the experiments yielded several reasonable values for the applicable param-
eters. For the simpler algorithms, they could also have been learned in a short
preceding training phase, which demonstrates the broad applicability of the ap-
proach in the sketched resource-aware setting.

In the presented experiments we always considered training data collected by
the object tags. In future work, we aim to analyze the accuracy of the proposed
approach using the user tags in more detail. An extended analysis concerns using
all available and also no contact information at all, respectively, when we consider
the user tags for obtaining the training data. Furthermore, we plan to focus on
optimizing the applied parameter combinations, i.e., number of readers, number
of packages per second, etc., in order to increase the accuracy further. Testing
our algorithms in WiFi and GPS based localization settings is also another
interesting option for future work.
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Abstract. Stratified sampling is a sampling method that takes into
account the existence of disjoint groups within a population and pro-
duces samples where the proportion of these groups is maintained. In
single-label classification tasks, groups are differentiated based on the
value of the target variable. In multi-label learning tasks, however, where
there are multiple target variables, it is not clear how stratified sam-
pling could/should be performed. This paper investigates stratification
in the multi-label data context. It considers two stratification methods
for multi-label data and empirically compares them along with random
sampling on a number of datasets and based on a number of evaluation
criteria. The results reveal some interesting conclusions with respect to
the utility of each method for particular types of multi-label datasets.

1 Introduction

Experiments are an important aspect of machine learning research [14,7]. In
supervised learning, experiments typically involve a first step of distributing the
examples of a dataset into two or more disjoint subsets. When training data
abound, the holdout method is used to distribute the examples into a training
and a test set, and sometimes also into a validation set. When training data
are limited, cross-validation is used, which starts by splitting the dataset into a
number of disjoint subsets of approximately equal size.

In classification tasks, the stratified version of these two methods is typically
used, which splits a dataset so that the proportion of examples of each class in
each subset is approximately equal to that in the complete dataset. Stratification
has been found to improve upon standard cross-validation both in terms of bias
and variance [13].

To the best of our knowledge, what stratification means for multi-label data
[23] and how it can be accomplished has not been addressed in the literature.
Papers conducting experiments on multi-label data use either predetermined
train/test splits that come with a dataset or the random version of the holdout
and cross-validation methods. Whether this version is the best that one can do
in terms of variance and/or bias of estimate has not been investigated.

Furthermore, random distribution of multi-label training examples into subsets
suffers from the following practical problem: it can lead to test subsets lacking even
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just one positive example of a rare label, which in turn causes calculation problems
for a number of multi-label evaluation measures. The typical way these problems
getby-passed in the literature is throughcomplete removal of rare labels.This, how-
ever, implies that the performance of the learning systems on rare labels is unim-
portant, which is seldom true. As an example consider that a multi-label learner is
used for probabilistic indexing of a large multimedia collection, given a small anno-
tated sample according to a multimedia ontology. Avoiding the evaluation of the
multi-label learner for rare concepts of the ontology, implies that we should not al-
low users to query the collection with such concepts, as the information retrieval
performance level of the indexing system for these concepts would be uncertain.
This limits the usefulness of the indexing system.

The above issues motivated us to investigate in this paper the concept of
stratification in the context of multi-label data. Section 2 considers two inter-
pretations of multi-label stratification. The first one is based on the distinct
labelsets that are present in the dataset, while the second one considers each
label independently of the rest. Section 3 proposes an algorithm for stratified
sampling of multi-label data according to the second interpretation. Section 4
presents empirical results comparing the two multi-label sampling approaches
as well as random sampling on several datasets in terms of a number of evalu-
ation criteria. Results reveal some interesting relationships between the utility
of each method and particular types of multi-label datasets that can help re-
searchers and practitioners improve the robustness of their experiments. Section
5 presents the conclusions of this work and our future plans on this topic.

2 Stratifying Multi-Label Data

Stratified sampling is a sampling method that takes into account the existence of
disjoint groups within a population and produces samples where the proportion
of these groups is maintained. In single-label classification tasks, groups are
differentiated based on the value of the target variable.

In multi-label data [23], groups could be formed based on the different combi-
nations of labels (labelsets) that characterize the training examples. The number
of distinct labelsets in a multi-label dataset withm examples and q labels is upper
bounded by min(m, 2q). Usually this bound equals m, because in most applica-
tions q is not very small and as a result 2q is a very large number. Table 1 shows
that, for a variety of multi-label datasets, the number of distinct labelsets is often
quite large and sometimes close to the number of examples. In such cases, this strict
interpretation of stratified sampling formulti-label data is impractical for perform-
ing k-fold cross-validation or holdout experiments, as most groups would consist
of just a single example. Table 1 is actually sorted in ascending order of the ratio
between distinct labelsets and number of examples and accordingly in descending
order of average examples per distinct labelset. Notice that in the last two datasets,
the average number of examples per labelset is 1 (rounded).

We further consider a more relaxed interpretation of stratified sampling for
multi-label data, which sets as a goal the maintenance of the distribution of
positive and negative examples of each label. This interpretation views each
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Table 1. A variety of multi-label datasets and their statistics: number of labels, ex-
amples, distinct labelsets and distinct labelsets per example, along with the minimum,
average and maximum number of examples per labelset and label

dataset labels examples
label labelsets

examples

examples examples

sets
per labelset per label

min avg max min avg max

Scene [1] 6 2407 15 0.01 1 160 405 364 431 533

Emotions [21] 6 593 27 0.05 1 22 81 148 185 264

TMC2007 [20] 22 28596 1341 0.05 1 21 2486 441 2805 16173

Genbase [6] 27 662 32 0.05 1 21 170 1 31 171

Yeast [9] 14 2417 198 0.08 1 12 237 34 731 1816

Medical1 45 978 94 0.10 1 10 155 1 27 266

Mediamill [19] 101 43907 6555 0.15 1 7 2363 31 1902 33869

Bookmarks [12] 208 87856 18716 0.21 1 5 6087 300 857 6772

Bibtex [12] 159 7395 2856 0.39 1 3 471 51 112 1042

Enron2 53 1702 753 0.44 1 2 163 1 108 913

Corel5k [8] 374 5000 3175 0.64 1 2 55 1 47 1120

ImageCLEF2010 [16] 93 8000 7366 0.92 1 1 32 12 1038 7484

Delicious [22] 983 16105 15806 0.98 1 1 19 21 312 6495

label independently. However, note that we cannot simply apply stratification
independently for each label, as this would lead to different disjoint subsets of
the data for each label. Such datasets are unsuitable for evaluating multi-label
learning algorithms, with the exception of the simple binary relevance approach.
Even this approach, however, could only be evaluated using measures that can
be calculated using independent computations for each label, such as Hamming
loss and macro-averaged precision, recall and F1.

Achieving this kind of stratification when setting up k-fold cross-validation or
holdout experiments on multi-label data is meaningful, because most labels in
multi-label domains are characterized by class imbalance [11,3]. The last three
columns of Table 1 show the minimum, average and maximum number of exam-
ples per label for each dataset. They give an impression of the imbalance ratios
found in multi-label domains.

Achieving this kind of stratification is expected to be beneficial, in two direc-
tions. Firstly, based on past studies of single-label data, it is expected to improve
upon random distribution in terms of estimate bias and variance [13]. Secondly,
it will lower the chance of producing subsets with zero positive examples for one
or more labels. Such subsets raise issues in the calculation of certain commonly
used multi-label evaluation measures, such as the macro-averaged versions of
recall, F1, area under the receiver operating characteristic curve (AUC) and
average precision3, a popular metric in multimedia information retrieval [15].

1 http://www.computationalmedicine.org/challenge/index.php
2 http://bailando.sims.berkeley.edu/enron_email.html
3 The macro-averaged version of average precision is more commonly called mean

average precision (MAP) in information retrieval.

http://www.computationalmedicine.org/challenge/index.php
http://bailando.sims.berkeley.edu/enron_email.html
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Consider for example the contingency table depicted in Fig. 1, which concerns
the predictions for a label. In the case where the test set has none positive
examples of this label, then fn = tp = 0. Given that recall is defined as tp/(tp+
fn), the value of recall for this label is undefined (0/0). If the model is correct and
doesn’t predict this label for any of the test examples, then fp = 0, rendering the
value of precision for this label undefined too (0/0), since precision is defined as
tp/(tp+fp). F1 is the harmonic mean of precision and recall, which by definition
is rendered undefined when one of precision and recall is undefined. AUC is also
undefined, because it depends on the true positive rate, which is equivalent to
recall. Average precision considers a ranking of the positively predicted examples
of a label based on some confidence value. It is the average of tp precisions,
Precisioni, i = 1 . . . tp, where Precisioni is the precision computed for the
positively predicted examples ranked higher or equally to the ith true positive
example in this ranking. Since tp = 0, average precision is also undefined. Macro-
averaging means taking the average of a measure across all labels. If a measure
is undefined for one of the labels, its average across all labels is also undefined.

predicted

negative positive

actual
negative tn fp

positive fn tp

Fig. 1. Contingency table concerning the predictions for a label

3 Iterative Stratification

We here propose an algorithm for achieving the relaxed version of multi-label
stratification that we discussed in Sect. 2. The pseudo-code is given in Algorithm
1. The input to the algorithm is a multi-label data set, D, annotated with a set
of labels L = {λ1, ..., λq}, a desired number of subsets k and a desired proportion
of examples in each subset, r1, . . . rk. For example, if we would like to use the
algorithm for performing 10-fold CV, then k should be 10 and r1 = . . . = rk
should be 1/10.

The algorithm starts by calculating the desired number of examples, cj , at
each subset, Sj , by multiplying the number of examples, |D|, with the desired
proportion for this subset rj (lines 1-3). It then calculates the desired number
of examples of each label λi at each subset Sj , cij , by multiplying the number
of examples annotated with that label, |Di|, with the desired proportion for
this subset rj (lines 5-9). Note that both cj and cij will most often be decimal
numbers, but this does not affect the proper functioning of the algorithm.

The algorithm is iterative (lines 10-33). It examines one label in each itera-
tion, the one with the fewest remaining examples, denoted l (lines 13-14). The
motivation for this greedy key point of the algorithm, is the following: if rare
labels are not examined in priority, then they may be distributed in an undesired
way, and this cannot be repaired subsequently. On the other hand with frequent
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Algorithm 1. IterativeStratification(D,n, r1 . . . rn)

Input: A set of instances, D, annotated with a set of labels L = {λ1, ..., λq},
desired number of subsets k, desired proportion of examples in each
subset, r1, . . . rk (e.g. in 10-fold CV k = 10, rj = 0.1, j = 1 . . . 10)

Output: Disjoint subsets S1, . . . Sk of D

// Calculate the desired number of examples at each subset1

for j ← 1 to k do2

cj ← |D|rj3

// Calculate the desired number of examples of each label at each subset4

for i← 1 to |L| do5

// Find the examples of each label in the initial set6

Di ← {(x, Y ) ∈ D : λi ∈ Y }7

for j ← 1 to k do8

ci
j ← |Di|rj9

while |D| > 0 do10

// Find the label with the fewest (but at least one) remaining examples,11

// breaking ties randomly12

Di ← {(x, Y ) ∈ D : λi ∈ Y }13

l ← arg min
i

(|Di|)⋂{i : Di �= ∅}
14

foreach (x, Y ) ∈ Dl do15

// Find the subset(s) with the largest number of desired examples for this16

// label, breaking ties by considering the largest number of desired examples,17

// breaking further ties randomly18

M ← arg max
j=1...k

(cl
j)

19

if |M | = 1 then20

m ∈M21

else22

M ′ ← arg max
j∈M

(cj)
23

if |M ′| = 1 then24

m ∈M ′
25

else26

m← randomElementOf(M ′)27

Sm ← Sm

⋃{(x, Y )}28

D ← D \ {(x, Y )}29

// Update desired number of examples30

foreach λi ∈ Y do31

ci
m ← ci

m − 132

cm ← cm − 133

return S1, . . . , Sk34
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labels, we have the chance later on to modify the current distribution towards
the desired, due to the availability of more examples.

Then, for each example (x, Y ) of this label, the algorithm selects an appropriate
subset for distribution. The first criterion for subset selection is the current desired
number of examples for this label clj . The subset that maximizes it gets selected
(line 19). This is also a greedy choice, since this is actually the subset whose current
proportion of examples of label l deviates more from the desired one. In case of ties,
then among the tying subsets, the one with the highest number of desired examples
cj get selected (line 23). This is another greedy choice, since this is actually the
subset whose proportion of examples irrespectively of labels deviates more from
the desired one. Further ties are broken randomly (line 27).

Once the appropriate subset, m, is selected, we add the example (x, Y ) to Sm

and remove it from D (lines 28-29). In the end of the iteration, we decrement
the number of desired examples for each label of this example at subset m, cim,
as well as the total number of desired examples for subset m, cm (lines 30-33).

The algorithm will finish as soon as the original dataset gets empty. This will
normally occur after |L| iterations, but it may as well occur in less, due to the
examples of certain labels having already been distributed. It may also occur in
more, as certain datasets (e.g. mediamill) have examples that are not annotated
with any label. One may argue that such examples don’t carry any information,
but in fact they do carry negative information for each label. These examples are
distributed so as to balance the desired number of examples at each subset. This
special case of the algorithm is not shown in the pseudocode of Algorithm 1 in
order to keep it as legible as possible.

4 Experiments

4.1 Setup

We compare three techniques for sampling without replacement from a multi-
label dataset: a) random sampling (R), b) stratified sampling based on distinct
labelsets (L), as discussed in Sect. 2, and c) the iterative stratification technique
(I), as presented in Sect. 3.

We experiment on the 13 multi-label datasets that are presented in Table 1.
We have already commented on certain statistical properties of these datasets
in Sect. 2. All of them, apart from ImageCLEF2010, are available for download
from the web site of the Mulan library for multi-label learning4 where their
original source is also given. ImageCLEF2010 refers to the visual data released to
participants in the photo annotation task of the 2010 edition of the ImageCLEF
benchmark [16]. Feature extraction was performed using dense sampling with
the SIFT descriptor, followed by codebook construction using k -means clustering
with k=4096.

Following a typical machine learning experimental evaluation scenario, we
perform 10-fold cross-validation experiments on datasets with up to 15k exam-
ples and holdout experiments (2/3 for training and 1/3 for testing) for larger
4 http://mulan.sourceforge.net

http://mulan.sourceforge.net
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datasets. Both types of experiments are repeated 5 times with different ran-
dom orderings of the training examples. The results in the following sections are
averages over these 5 runs.

4.2 Distribution of Labels and Examples

This section compares the three different sampling techniques in terms of a
number of statistical properties of the produced subsets. The notation used here,
follows that of Sect. 3. In particular, we consider a set of instances, D, annotated
with a set of labels, L = {λ1, ..., λq}, a desired number, k, of disjoints subsets
of D, S1, . . . Sk, and a desired proportion of examples in each of these subsets,
r1, . . . rk. The desired number of examples at each subset Sj is denoted cj and is
equal to |D|rj . The subsets of D and Sj that contain positive examples of label
λi are denoted Di and Si

j respectively.
The Labels Distribution (LD) measure, evaluates the extent to which the dis-

tribution of positive and negative examples of each label in each subset, follows
the distribution of that label in the whole dataset. For each label λi, the mea-
sure computes the absolute difference between the ratio of positive to negative
examples in each subset Sj with the ratio of positive to negative examples in the
whole dataset D, and then averages the results across all labels. Formally:

LD =
1
q

q∑
i=1

⎛⎝1
k

k∑
j=1

∣∣∣∣∣
∣∣Si

j

∣∣
|Sj | −

∣∣Si
j

∣∣ −
∣∣Di

∣∣
|D| − |Di|

∣∣∣∣∣
⎞⎠

The Examples Distribution (ED) measure evaluates the extend to which the
number of examples of each subset Sj deviates from the desired number of
examples of that subset. Formally:

ED =
1
k

k∑
j=1

||Sj | − cj |

For the cross-validation experiments we further compute two additional mea-
sures that quantify the problem of producing subsets with zero positive examples:
a) The number of folds that contain at least one label with zero positive examples
(FZ), and b) the number of fold-label pairs with zero positive examples (FLZ).

Table 2 presents the afore-mentioned statistical properties (ED, LD, FZ, FLZ)
for the produced subsets in each of the 13 datasets. The best result for each
dataset and measure is underlined. The second column of the table presents the
ratio of labelsets to examples in each dataset to assist in the interpretation of
the results that follows.

We first observe that iterative stratification achieves the best performance
in terms of LD in all datasets apart from Scene, Yeast and TMC2007, where
the labelsets-based method is better. This shows that the proposed algorithm is
generally better than the others in maintaining the ratio of positive to negative
examples of each label in each subset.
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We further notice that the difference in LD between iterative stratification
and the labelsets-based method grows with the ratio of labelsets over examples
(2nd column of Table 2). Indeed, when this ratio is small (e.g. ≤ 0.1), the LD
of the labelset-based method is close to that of iterative stratification, while
when it is large (e.g. ≥ 0.39), it is close to that of random sampling. This
behavior is reasonable, since as we discussed in Sect. 2, the larger this ratio is,
the more impractical the stratification according to labelsets becomes, as each
labelset annotates a very small number of examples (e.g. one or two). This also
justifies the fact that the labelsets-based method managed to overcome iterative
stratification in terms of LD in Scene, Yeast and TMC2007, as these datasets
are characterized by a small ratio of labelsets over examples.

In terms of ED, the labelsets-based and the random sampling methods achieve
the best performance in all datasets, while iterative stratification is much worse,
with the exception of Mediamill. The subsets produced by these methods pay
particular attention to the desired number of examples. Iterative stratification on
the other hand, trades-off the requirement for constructing subsets with spec-
ified number of examples in favor of maintaining the class imbalance ratio of
each label. The exception of Mediamill is justified from the fact that it con-
tains a number of examples with no positive labels, which are distributed by our
algorithm so as to balance the desired number of examples in each subset, as
discussed in the last paragraph of Sect. 3.

Finally we observe that iterative stratification produces the smallest value
for FZ and FLZ in all datasets. In the Bibtex and ImageCLEF2010 datasets in
particular, only iterative stratification leads to subsets with positive examples for
all folds. This means that only iterative stratification allows the calculation of the
multi-label evaluation measures that were mentioned in Sect. 2. All methods fail
to produce subsets with positive examples for all labels in the datasets Corel5k,
Enron, Medical and Genbase, which contain labels characterized by absolute
rarity [11] (notice in Table 1 that the minimum number of examples per label
in these datasets is just one). All methods produce subsets with at least one
positive example for all labels in the scene and emotions datasets, where the
minimum number of examples per label is large.

4.3 Variance of Estimates

This section examines how the variance of the 10-fold cross-validation estimates
for six different multi-label evaluation measures is affected by the different sam-
pling methods. Table 3 shows the six measures, categorized according to the
required type of output from a multi-label model (two representative measures
from each category). The experiments are based on the 9 out of 13 datasets,
where cross-validation was applied.

Two different multi-label classification algorithms are used for performance
evaluation: The popular binary relevance (BR) approach, which learns a single
independent binary model for each label and the calibrated label ranking (CLR)
method [10], which learns pairwise binary models, one for each pair of labels.
Similarly to iterative stratification, BR treats each label independently of the
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Table 2. Statistical properties of the produced subsets by a) random sampling, b)
labelsets-based stratification, and c) iterative stratification: Labels Distribution (LD),
Examples Distribution (ED), folds that contain at least one label with zero positive
examples (FZ), and number of fold-label pairs with zero positive examples (FLZ).

dataset labelsets
examples

stratification ED LD FZ FLZ

Scene 0.01

Random 0.42 0.0267 0 out of 10 0 out of 60

Labelsets 0.42 0.0038 0 out of 10 0 out of 60

Iterative 2.77 0.0043 0 out of 10 0 out of 60

Emotions 0.05

Random 0.42 0.0973 0 out of 10 0 out of 60

Labelsets 0.42 0.0316 0 out of 10 0 out of 60

Iterative 1.80 0.0273 0 out of 10 0 out of 60

Genbase 0.05

Random 0.32 0.0205 10 out of 10 90 out of 270

Labelsets 0.32 0.0078 10 out of 10 77 out of 270

Iterative 0.45 0.0055 10 out of 10 74 out of 270

TMC2007 0.05

Random 0.00 0.00250

Labelsets 0.00 0.00046 —

Iterative 27.4 0.00052

Yeast 0.08

Random 0.42 0.0862 1 out of 10 1 out of 140

Labelsets 0.42 0.0273 0 out of 10 0 out of 140

Iterative 3.53 0.0342 0 out of 10 0 out of 140

Medical 0.10

Random 0.32 0.0110 10 out of 10 203 out of 450

Labelsets 0.32 0.0059 10 out of 10 179 out of 450

Iterative 1.47 0.0039 10 out of 10 173 out of 450

Mediamill 0.15

Random 0.33 0.00140

Labelsets 0.33 0.00056 —

Iterative 0.33 0.00002

Bookmarks 0.21

Random 0.67 0.00026

Labelsets 0.67 0.00016 —

Iterative 71.20 0.00002

Bibtex 0.39

Random 0.50 0.0033 1 out of 10 1 out of 1590

Labelsets 0.50 0.0027 1 out of 10 1 out of 1590

Iterative 7.08 0.0006 0 out of 10 0 out of 1590

Enron 0.44

Random 0.32 0.0165 10 out of 10 95 out of 530

Labelsets 0.32 0.0132 10 out of 10 88 out of 530

Iterative 2.96 0.0050 10 out of 10 47 out of 530

Corel5k 0.64

Random 0.00 0.0026 10 out of 10 1140 out of 3740

Labelsets 0.00 0.0023 10 out of 10 1118 out of 3740

Iterative 4.20 0.0010 10 out of 10 788 out of 3740

ImageCLEF2010 0.92

Random 0.00 0.0324 4 out of 10 4 out of 930

Labelsets 0.00 0.0265 4 out of 10 4 out of 930

Iterative 4.48 0.0069 0 out of 10 0 out of 930

Delicious 0.98

Random 0.67 0.00084

Labelsets 0.67 0.00084 —

Iterative 52.47 0.00034
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Table 3. Six multi-label evaluation measures categorized according to the required
type of output from a multi-label model

Measure Type of Output

Hamming Loss Bipartition

Subset Accuracy Bipartition

Coverage Ranking

Ranking Loss Ranking

Mean Average Precision Probabilities

Micro-averaged AUC Probabilities

rest. Similarly to the labelsets-based stratification, CLR considers label com-
binations, though only combinations of pairs of labels. Both BR and CLR are
instantiated using random forests [2] as the binary classification algorithm un-
derneath. We selected this particular algorithm, because it is fast and usually
highly accurate without the need of careful tuning.

Following the recommendations in [5], we will discuss the results based on the
average ranking of the three different stratification methods. The method that
achieves the lowest standard deviation for a particular measure in a particular
dataset is given a rank of 1, the next one a rank of 2 and the method with the
largest standard deviation is given a rank of 3.

Table 4 shows the mean and standard deviation of the 10-fold cross-validation
estimates for the six different measures on the 9 different datasets using BR,
along with the average ranks: a) across datasets with small ratio of labelsets over
examples (≤ 0.1), b) across datasets with large ratio of labelsets over examples
(≥ 0.39), and c) across all datasets.

Looking at the last row of the table, we first notice that random sampling has
the worst total average rank in all measures, as its estimates have the highest
standard deviation in almost all cases. Iterative stratification has an equal or
better overall rank compared to the labelsets-based method, apart from the case
of Mean Average Precision. However, these ranks are computed based only on
the two datasets where none of the measures was undefined. As already noted,
iterative stratification manages to output an estimate in two datasets more than
the labelsets-based method and three datasets more than random sampling.

We then look at the average ranks for the upper and lower part of the table
that differ in terms of the labelsets over examples ratio. We notice that in the
upper part of the table, the labelsets-based method exhibits better rank in all
measures, apart from ranking loss. On the other hand, in the lower part of the
table, iterative stratification is better than the other methods for all measures.
This reinforces the conclusion of the previous section, where we found that the
labelsets-based method is more suited to datasets with small ratio of labelsets
over examples.

As far as the measures are concerned, we notice that iterative stratification
is particularly well suited to ranking loss, independently of the ratio of labelsets
over examples. This may seem strange at first sight, as ranking loss is a measure
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Table 4. Mean and standard deviation of six multi-label evaluation measures (columns
3 to 8) computed using 10-fold cross validation, the binary relevance algorithm and the
three different sampling methods: (R)andom, (L)abelsets, and (I)terative. The first 5
rows correspond to datasets with small ratio of labelsets over examples (≤ 0.1), followed
by the average rank of each method. The next 4 rows correspond to datasets with large
ratio of labelsets over examples (≥ 0.39), followed by the average rank of each method.
The last line presents the average rank for all 9 datasets.

dataset str.
Hamming Subset

Coverage
Ranking Mean Average Micro-averaged

Loss Accuracy Loss Precision AUC

Scene
R 0.0806±0.0078 0.5938±0.0333 0.3542±0.0406 0.0543±0.0070 0.8695±0.0177 0.9612± 0.0064
L 0.0801±0.0059 0.5959±0.0279 0.3557±0.0421 0.0545±0.0082 0.8696±0.0163 0.9616± 0.0055
I 0.0805±0.0060 0.5947±0.0261 0.3573±0.0454 0.0549±0.0069 0.8699± 0.0149 0.9613±0.0058

Emotions
R 0.1809±0.0193 0.3247±0.0570 1.6528±0.1424 0.1397±0.0269 0.7568±0.0378 0.8777±0.0197
L 0.1792±0.0170 0.3299±0.0434 1.6394±0.1221 0.1367±0.0223 0.7603±0.0340 0.8804±0.0193
I 0.1786±0.0175 0.3270±0.0553 1.6453±0.1308 0.1380±0.0265 0.7616±0.0409 0.8787±0.0222

Genbase
R 0.0024±0.0013 0.9444±0.0295 0.4077±0.2308 0.0030±0.0043 NaN±NaN 0.9952±0.0075
L 0.0024±0.0012 0.9444±0.0267 0.3995±0.1968 0.0027±0.0038 NaN±NaN 0.9957±0.0063
I 0.0024±0.0011 0.9438±0.0232 0.3878±0.1808 0.0025±0.0032 NaN±NaN 0.9962±0.0054

Yeast
R 0.1892±0.0070 0.1746±0.0196 6.1383±0.1853 0.1584±0.0108 NaN±NaN 0.8533±0.0093
L 0.1884±0.0045 0.1762±0.0146 6.1236±0.1082 0.1576±0.0063 0.5358±0.0160 0.8543±0.0062
I 0.1887±0.0051 0.1757±0.0185 6.1247±0.1219 0.1578±0.0076 0.5429±0.0198 0.8539±0.0071

Medical
R 0.0153±0.0014 0.4531±0.0413 1.5570±0.4584 0.0224±0.0071 NaN±NaN 0.9789±0.0072
L 0.0151±0.0012 0.4616±0.0351 1.5022±0.3972 0.0217±0.0071 NaN±NaN 0.9798±0.0062
I 0.0151±0.0014 0.4557±0.0400 1.4497±0.3715 0.0209±0.0069 NaN±NaN 0.9803±0.0058

Average R 2.9 3 2.6 2.7 2.5 2.8
Rank L 1.2 1.4 1.6 1.9 1.5 1.4

(≤ 0.1) I 1.9 1.6 1.8 1.4 2 1.8

Bibtex
R 0.0308±0.0029 0.1015±0.0101 44.9221±1.5618 0.2130±0.0083 NaN±NaN 0.7780±0.0066
L 0.0315±0.0021 0.1025±0.0064 45.0660±1.0094 0.2140±0.0066 NaN± NaN 0.7682±0.0056
I 0.0313±0.0017 0.1029±0.0079 44.6686±1.0397 0.2181±0.0067 0.3505±0.0100 0.7691±0.0054

Enron
R 0.0475±0.0020 0.1229±0.0179 12.7126±1.0364 0.0820±0.0084 NaN±NaN 0.9138±0.0068
L 0.0474±0.0021 0.1245±0.0202 12.6388±0.8306 0.0810±0.0070 NaN±NaN 0.9148±0.0074
I 0.0474±0.0018 0.1213±0.0197 12.4571±0.6189 0.0797±0.0062 NaN±NaN 0.9165±0.0055

Corel5k
R 0.0094±0.0001 0.0032±0.0023 217.6020±5.5919 0.2717±0.0084 NaN±NaN 0.7821±0.0061
L 0.0094±0.0001 0.0022±0.0020 217.1086±4.7339 0.2708±0.0086 NaN±NaN 0.7827±0.0060
I 0.0094±0.0001 0.0026±0.0022 217.4484±4.0884 0.2701±0.0058 NaN±NaN 0.7834±0.0044

Image
R 0.0996±0.0013 0.0003±0.0006 60.5913±0.8638 0.1391±0.0025 NaN±NaN 0.8591±0.0023

CLEF2010
L 0.0997±0.0013 0.0005±0.0007 60.6276±0.8242 0.1392±0.0022 NaN±NaN 0.8589±0.0021
I 0.0997±0.0008 0.0001±0.0004 60.8236±0.6342 0.1394±0.0021 0.2338±0.0048 0.8588±0.0019

Average R 2.4 2.3 3.0 2.8 2.8
Rank L 2.4 2.0 1.8 2.0 - 2.3

(≥ 0.39) I 1.3 1.8 1.3 1.3 1.0

Average
R 2.7 2.7 2.8 2.7 2.5 2.8

Rank
L 1.7 1.7 1.7 1.9 1.5 1.8
I 1.6 1.7 1.6 1.3 2.0 1.4

computed across all labels for a given test example. However, it is also true that
good ranking loss for BR depends on good probability estimates for each label,
which in turn is affected by the distribution of positive and negative examples
for each label.

Table 5 shows the mean and standard deviation of the 10-fold cross-validation
estimates for the six different measures using CLR on 5 datasets only, those
with less than 50 labels, as the quadratic space complexity of CLR resulted into
memory shortage problems during our experiments with datasets having more
than 50 labels. The last row shows the average rank of the three stratification
methods across these datasets.

We here notice that random sampling again has the worst average rank, while
the labelsets-based method is better than iterative stratification, even in terms
of ranking loss. In this experiment, all datasets have a small ratio of labelesets
over examples (≤ 0.1), so according to what we have seen till now, the behavior
that we notice is partly expected.
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Table 5. Mean and standard deviation of six multi-label evaluation measures (columns
3 to 8) computed using 10-fold cross validation, the calibrated label ranking (CLR)
algorithm and the three different sampling methods: (R)andom, (L)abelsets, and
(I)terative. The last row shows the average rank of the three stratification methods
across the datasets.

dataset str.
Hamming Subset

Coverage
Ranking Mean Average Micro-averaged

Loss Accuracy Loss Precision AUC

Scene
R 0.0807±0.0073 0.5899±0.0329 0.3943±0.0498 0.0624±0.0085 0.8246±0.0242 0.9423±0.0082
L 0.0802±0.0051 0.5918±0.0237 0.3884±0.0358 0.0613± 0.0070 0.8137±0.0218 0.9427±0.0062
I 0.0808±0.0061 0.5898±0.0267 0.3891±0.0534 0.0612±0.0082 0.8191±0.0232 0.9423±0.0083

Emotions
R 0.1803±0.0196 0.3264±0.0575 1.6522±0.1311 0.1400±0.0255 0.7240±0.0500 0.8583±0.0225
L 0.1795±0.0169 0.3272±0.0384 1.6354±0.1260 0.1365± 0.0221 0.7230±0.0371 0.8603±0.0202
I 0.1782±0.0171 0.3278±0.0553 1.6457±0.1261 0.1382±0.0237 0.7405±0.0432 0.8596±0.0221

Genbase
R 0.0024±0.0013 0.9444±0.0295 0.4743±0.2597 0.0043±0.0049 NaN±NaN 0.9907±0.0083
L 0.0025±0.0012 0.9432±0.0270 0.4651±0.2040 0.0041±0.0041 NaN±NaN 0.9913±0.0064
I 0.0024±0.0012 0.9438±0.0238 0.4879±0.1925 0.0045±0.0037 NaN±NaN 0.9898±0.0063

Yeast
R 0.1888±0.0071 0.1756±0.0183 6.0975±0.1887 0.1580±0.0109 NaN±NaN 0.8339±0.0095
L 0.1883±0.0045 0.1793±0.0143 6.0852±0.1050 0.1570± 0.0062 0.4830±0.0134 0.8346±0.0058
I 0.1883±0.0052 0.1791±0.0198 6.0895±0.1109 0.1575±0.0069 0.5670±0.0254 0.8344± 0.0059

Medical
R 0.0154±0.0014 0.4497±0.0402 2.2879±0.5601 0.0337±0.0075 NaN±NaN 0.9610±0.0100
L 0.0150±0.0012 0.4612±0.0359 2.1629±0.3853 0.0319±0.0069 NaN±NaN 0.9631±0.0073
I 0.0152±0.0013 0.4532±0.0398 2.1774±0.2709 0.0320±0.0052 NaN±NaN 0.9629±0.0052

Average
R 3.0 2.8 2.8 3.0 3.0 2.8

Rank
L 1.1 1.2 1.4 1.4 1.0 1.4
I 1.9 2.0 1.8 1.6 2.0 1.8

However, if we compare the rankings in Table 5 with the rankings in the upper
part of Table 4, which contains exactly the same datasets, we notice that for CLR
the benefits of the labesets-based method are larger. We attribute this to the fact
that contrary to BR, CLR does consider combinations between pairs of labels,
and contrary to iterative stratification, the labelsets-based method distributes
examples according to label combinations.

It is also interesting to notice that the measure where iterative stratification
exhibits the best performance is again ranking loss, as in the case of BR.

5 Conclusions and Future Work

This paper studied the concept of stratified sampling in a multi-label data con-
text. It presented two different approaches for multi-label stratification and em-
pirically investigated their performance in comparison to random sampling on
several datasets and in terms of several criteria.

The main conclusion of this work can be summarized as follows:

– Labelsets-based stratification achieves low variance of performance estimates
for datasets where the ratio of distinct labelsets over examples is small,
irrespectively of the learning algorithm. It also works particularly well for
the calibrated label ranking algorithm. This could be generalizable to other
algorithms that take into account label combinations.

– Iterative stratification approach achieves low variance of performance esti-
mates for datasets where the ratio of the distinct labelsets to the number of
examples is large. This was observed when the binary relevance approach was
used, but could be generalizable to other algorithms, especially those learn-
ing a binary model for each label in one of their steps [18,4]. Furthermore,



On the Stratification of Multi-label Data 157

iterative stratification works particularly well for estimating the ranking loss,
independently of algorithm and dataset type. Finally, iterative stratification
produces the smallest number of folds and fold-label pairs with zero posi-
tive examples and it manages to maintain the ratio of positive to negative
examples of each label in each subset.

– Random sampling is consistently worse than the other two methods and
should be avoided, contrary to the typical multi-label experimental setup
found in the literature.

In this paper we mainly focused on the application of stratified sampling to ex-
perimental machine learning, in particular producing subsets for cross-validation
and holdout experiments. Apart from the purpose of estimating performance,
cross-validation and holdout are also widely used for hyper-parameter selection,
model selection and overfitting avoidance (e.g. reduced error pruning of decision
trees/rules). The points of this paper are relevant for all these applications of
stratified sampling in learning from multi-label data. For example, the stratified
sampling approaches discussed in this paper could be used for reduced error
pruning of multi-label decision trees [24], for down-sampling without replace-
ment in the ensembles of pruned sets approach [17] and for deciding when to
stop the training of a multi-label neural network [25].

In the future, we plan to investigate the construction of a hybrid algorithm
that will combine the benefits of both the iterative and the labelsets-based strat-
ification, in order to have a single solution that will work well for any type of
dataset, classification algorithm and evaluation measure.

References

1. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification.
Pattern Recognition 37(9), 1757–1771 (2004)

2. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
3. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from

imbalanced data sets. SIGKDD Explorations 6(1), 1–6 (2004)
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Abstract. We study the problem of exact learning of first-order defi-
nite theories via queries, toward the goal of allowing humans to more
efficiently teach first-order concepts to computers. Prior work has shown
that first order Horn theories can be learned using a polynomial number
of membership and equivalence queries [6]. However, these query types
are sometimes unnatural for humans to answer and only capture a small
fraction of the information that a human teacher might be able to eas-
ily communicate. In this work, we enrich the types of information that
can be provided by a human teacher and study the associated learn-
ing problem from a theoretical perspective. First, we consider allowing
queries that ask the teacher for the relevant objects in a training ex-
ample. Second, we examine a new query type, called a pairing query,
where the teacher provides mappings between objects in two different
examples. We present algorithms that leverage these new query types as
well as restrictions applied to equivalence queries to significantly reduce
or eliminate the required number of membership queries, while preserv-
ing polynomial learnability. In addition, we give learnability results for
certain cases of imperfect teachers. These results show, in theory, the
potential for incorporating object-based queries into first-order learning
algorithms in order to reduce human teaching effort.

1 Introduction

This work is motivated by the goal of enabling non-experts in first-order logic to
easily and efficiently teach first-order concepts to computers. We are interested
in situations where the teacher has a reasonable semantic understanding of the
target concept but is unable to provide a definition due to lack of expertise in
formal knowledge representation. A key research issue is to understand the types
of information that a teacher can provide and how to best use them for learning.
Most work on learning first-order concepts limits the teacher to labeling examples
as positive or negative, which is a restricted and indirect form of teaching.

In this work, we study algorithms that elicit and utilize information about
the relevance and correspondence between objects in first-order training exam-
ples. Given that examples are often produced and/or analyzed by teachers, it is
reasonable to expect that teachers will be able to at least partially provide this
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information. The question we ask is: How can we use such information and what
will its impact on learning efficiency be?

We study this question from a theoretical perspective where the problem is to
exactly identify a target first-order definite theory using labeled examples and
queries to a teacher. Prior theoretical work [10,6] focused on using equivalence
queries to obtain positive and negative examples, and on membership queries to
obtain example labels from the teacher. While the number of queries is shown
to be polynomial in certain problem parameters, the use of only these queries
is quite restricted and membership queries can be problematic in practice. For
example, an algorithm may ask membership queries about examples that will
appear nonsensical to a typical teacher which is a well-documented problem [4].
In general, past work has not given much consideration to how suitable such
queries might be for humans to answer.

We consider the use of two new types of queries that are directly about the
objects in examples provided by the teacher. As such, it is plausible that the
queries might be more easily answered than queries about synthetic examples
constructed by the learner. The first query type is a relevant object query that
returns the set of “relevant objects” in a specific example. We show that by
using this query type it is possible to significantly reduce the number of required
membership queries. Further, we show that membership queries can be reduced
or eliminated altogether with simple restriction applied to the equivalence ora-
cle. We also analyze what happens when the teacher’s responses are imperfect,
showing that there can still be benefits if the imperfection is bounded. The sec-
ond query type considered is the use of pairing queries, which ask the teacher
to match “corresponding” objects between two specific examples. We show that
with such queries membership queries can be eliminated.

Our main contribution is a theoretical investigation into the use of object-
based queries for learning first-order concepts. To our knowledge this is the first
such investigation. As our results are of a worst-case nature, the exact bounds
and algorithms are likely not directly applicable to practice. However, similar to
past work on identifying Horn theories [6], which led to new practical algorithms
[3], we expect that our work will lead to practical algorithms for utilizing object-
based feedback from teachers.

2 Previous Work

The problem of exactly learning propositional Horn sentences from membership
and equivalence queries was shown to have polynomial runtime with a fixed
number of variables and a fixed number of clauses [2]. This algorithm was later
generalized to learning first-order Horn theories from equivalence and member-
ship queries for several learning settings, including learning from interpretations
and learning from entailment [6]. All of the algorithms in this paper are built
upon the algorithms given in [6].

A different algorithm using the same query types was also shown to have
polynomial runtime with certain fixed problem parameters for first-order Horn
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theories where all the consequents involve the same predicate (called Horn pro-
grams) [10]. The generalization process used least-general-generalizations with a
much finer minimization step than used here. This algorithm was used to learn
control knowledge in a planning setting using goal-decomposition rules [11].

The notion of using relevant objects provided by a teacher to initialize a
search-based first-order rule learner was examined [13]. Similarly, a system that
used “nudges” and object highlighting to learn various constraints was created
for programming games [7]. Both approaches incorporate information about ob-
jects from the teacher into experimental systems, but neither provide a theoret-
ical analysis of the learning problem, which is the main emphasis of our work.

Recently various error models were introduced for membership queries [5] and
the resulting behavior was analyzed, similar to the (j, f)-based queries discussed
here. A different type of algorithm analysis that accounts for noise in learning
theory is the PAC-Learning framework introduced by [12]. With query learning,
it was shown that any language exactly learnable by equivalence queries is also
PAC-Learnable [1]. For examples of first-order logic PAC-Learning algorithms
that learn with certain fixed problem parameters, see [9], [11] and [6].

3 Preliminaries

We assume a fixed set of first-order predicates P , each with an associated arity
that is upper-bounded by a. An atom is a predicate from P applied to the proper
number of variables or constants. A literal is either an atom (positive literal) or
the negation of an atom (negative literal). A clause is a disjunction of literals
and is a ground clause if it contains no variables. The head of a clause is its set
of positive literals and the body is the set of negative literals. A definite clause is
one that contains exactly one positive, or head, literal. A set of definite clauses
is a definite theory. We will be interested in the space of all definite theories over
P that do not contain constants, denoted by HD(P ).

Following prior work [6] and without loss of generality, our algorithms em-
ploy the notion of d-subsumption (also known as object-identity subsumption)
between clauses. A clause C1 d-subsumes clause C2 if there exists a substitution
θ, where no two variables map to the same object, such that C1θ ⊆ C2 (viewing
clauses as sets of literals). That is, the substitution must be a 1-1 mapping.

Problem Setup. Our goal is to exactly learn an unknown target hypothesis
T ∈ HD(P ) by interacting with different types of oracles. These oracle types
can be thought of as different ways of interacting with a teacher. In particular
we are interested in how many queries must be issued to the oracles in order to
learn a hypothesis H ∈ HD(P ) that is equivalent to T with respect to coverage
of examples as defined below.

In our formulation a training example is a definite ground clause. The body of
an example can be viewed as a set of facts describing the context of an example
and the single head literal can be viewed as a predicate that we would like to
predict given the context. Readers familiar with inductive logic programming can
view the bodies of our examples as encoding the ground background knowledge
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that is relevant to a particular example. For example, if the problem was to
learn what configurations of a chessboard represent a state where a king is in
check, the body might consist of literals describing the state of the board and
the head would be a literal representing the concept of check. Note that the head
predicate is not restricted to be the same across all examples.

A theory T ∈ HD(P ) covers an example E if there is at least one clause in
T that d-subsumes E. A positive example is one that is covered by the target
theory, while all other examples are negative. Note that, as detailed in prior work
[6], there is no loss in generality in defining coverage in terms of d-subsumption
rather than standard subsumption. In particular, for any target theory T de-
fined relative to standard subsumption, there is an equivalent theory (possibly
larger) under d-subsumption. Note that under our definition, positive examples
are required to be directly covered by at least one clause in the target hypothe-
sis. This is a weaker notion of coverage than entailment, since examples that are
entailed may not be considered covered according to subsumption. For example,
a theory with the two clauses P (X) → Q(X) and Q(X) → R(X), entails the
example P (c) → R(c), but does not cover the example under subsumption. This
difference does not limit the learnability of HD(P ), rather it will influence the
behavior of the oracles when generating examples and answering queries.

Standard Query Types. The two most common query types in learning the-
ory are equivalence queries and membership queries. They have been used ex-
clusively in past work on learning first-order definitions. Equivalence queries
provide a way for algorithms to obtain new counter-examples for the current
hypothesis (examples where the hypothesis and target disagree about coverage).
Note that in practice humans are not expected to actually answer equivalence
queries, since this would require a full understanding of the current hypothesis
and target concept, which is clearly impractical. Rather, equivalence queries are
best viewed as a theoretical model for a large set of labeled training examples,
which can produce counter examples. In this sense, a practical implementation
of any of the algorithms described below would implement an equivalence or-
acle via such a training set that is automatically checked for consistency with
the current hypothesis. This type of equivalence oracle implementation has been
used successfully in the past for moving from a theoretical algorithm to practice
[3]. Formally, in our setting we have:

Definition 1. An equivalence query (EQ) takes a definite theory H as input
and returns “done” if H is equivalent to the target theory T with respect to
example coverage. Otherwise, a counter-example is returned.

Membership queries allow an algorithm to generate an example and ask the
oracle to label it. There are no restrictions placed on examples used for MQs
which is a known problem [4] with human teachers, as the learner can generate
nonsensical examples that confuse the teacher.

Definition 2. A membership query (MQ) takes an example E as input and
returns “true” if E is a positive example of the target T . Otherwise “false” is
returned.
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Our results will provide worst-case bounds on the number of queries (of various
types) needed to exactly learn a target theory. These bounds will depend on
certain quantities related to the target theory. Table 1 provides a reference for
symbols used to represent these quantities.

Table 1. Notational reference

Variable Meaning

T target definite theory
P fixed set of predicates
a largest arity of any predicates in P
k largest number of distinct variables in a

clause of T
m number of clauses in T
n largest number of objects in any example

4 Base Algorithm

Our algorithms are based on Khardon’s algorithmic framework for learning first-
order Horn theories from membership and equivalence queries [6]. As a starting
point, we describe a base algorithm for our problem that uses membership and
equivalence queries. This algorithm is similar to those in [6] but adapted to
the specific learning problem outlined above.1 Our later algorithms are based
on viewing membership queries as the “assembly language of learning queries”,
which are grouped into functional units and replaced by higher-level object-based
queries. As we will see, many of the queries used in the base algorithm can be
reformulated as queries about objects.

Overview. Algorithm Learn-MQ gives pseudo-code for our base algorithm. The
algorithm maintains a current definite theory hypothesis H and a set of ground
clauses S from which H is derived. The algorithm initializes S and H to the
empty sets and then enters the main loop which updates S and H on each iter-
ation. Each loop iteration begins by issuing an equivalence query. If the result
is “done”, then H is correct and is returned as the answer. If a positive counter
example is returned (we will see that this is always the case for perfect oracles),
then MQs are used to incorporate the positive example into the current hypoth-
esis which results in a current clause being generalized or a new clause being
added. Note that there is no if condition for a negative counter example; it will
become apparent below that our algorithm will never overgeneralize, making
negative counter examples unnecessary.

Positive examples are incorporated into H via two steps. First, the procedure
call Min-MQ(E, ∅), described below, returns an example E′ ⊆ E that is still
1 Khardon’s main algorithm was for the setting of learning from interpretations. It

was then shown how to place a wrapper around this algorithm for learning from
entailment, which most resembles our formulation here. The algorithm described here
is defined directly for our learning problem rather than taking a wrapper approach
and hence is novel, though the key ideas follow rather directly from Khardon’s work.
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a positive example of the target theory, but where literals involving “irrelevant
objects” have been removed. Here irrelevant objects are those that are not nec-
essary in finding a variable substitution showing a target clause covers E. Given
the minimized example, the algorithm then calls Pair-MQ(E′, S), described be-
low, in order to merge E′ with the set of ground clauses in S. The set S is
maintained so that distinct ground clauses correspond to distinct clauses in the
target theory. The example E′ is combined with an existing clause s ∈ S if E′

and s are covered by a common target clause. Otherwise, if no such s exists
then E′ is added as a new element to S. Given the updated S, the hypothesis
H is set to a variabilized version of S (via the call variabilize(s), where dis-
tinct constants in s are replaced with distinct variables). Below we review the
key functions Min-MQ and Pair-MQ and show the correctness and worst-case
number of queries for Learn-MQ.

1 S = ∅, H = ∅
2 repeat
3 E = EQ(H)
4 if E = done then return H
5 if E is a positive counter example then
6 E′ = Min-MQ(E, ∅) // See text

7 S = Pair-MQ(E′, S)

8 H = variabilize(S)

Algorithm Learn-MQ. Learns HD(P ) using EQ and MQ queries.

Data: An example E′ and a set of positive examples S
Result: S is updated by appending E′ or by modifying S

1 for each s ∈ S do
2 for every pairing J between s and E′ do
3 if MQ(J) then
4 return S = S ∪ {J} − s

5 return S ∪ {E}

Algorithm Pair-MQ. Updates the set of examples S with a new example
E′ using MQs

Minimizing Examples. Algorithm Min-MQ (omitted due to space constraints)
accepts an example and a list of objects already known to be relevant and con-
siders each object o in E (and not in the known relevant list) and removes literals
involving objects that are determined to be irrelevant. To test the relevance of
object o, all literals in the current E involving o are dropped and a MQ is issued
on the resulting example. If the MQ indicates that the result is still a positive
example, then o is considered irrelevant. If the example becomes negative, then
we know that o must bind with some variable in a clause of the target theory
T so we should not remove it. Importantly, after minimization an example is
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guaranteed to be positive and will have at most k objects in it, where k is the
largest number of variables contained in a single clause of T .

Merging via Pairing Examples. Algorithm Pair-MQ illustrates how a mini-
mized example E′ is combined with the current set of ground clauses S. A key
operation in the algorithm is pairing two examples E1 and E2 to produce a new
example J as follows: 1) Select a 1-to-1 mapping M between the objects in E1

and E2, 2) Let E′
1 be a version of E1 with its objects mapped according to M

and return J = E′
1 ∩ E2.

Example 1. The pairing of

E1 = P (1, 2), P (2, 3), R(1, 1) → Q(1, 3)

and
E2 = P (a, b), P (b, c), R(b, b) → Q(a, c)

under mapping {1/a, 2/b, 3/c} results in:

J = P (a, b), P (b, c) → Q(a, c).

Although the constants from E2 are used in J , they are used in our algorithms
as placeholders for variables.

In general, there will be exponentially many pairings in the number of objects in
the examples (which is bounded by k in the algorithm). Note that this operation
is similar to the standard least-general generalization (LGG) operator [8] (the
LGG can be viewed as the conjunction of all pairings), but unlike the LGG
operation, the result is guaranteed to be no larger than the input examples.

The algorithm attempts to find an example s ∈ S that is covered by a target
clause C that also covers E′. It then generalizes s and E′ to a new clause J
that is a (smaller) positive example that is also covered by C. In this way,
examples in S are continually being generalized and the number of examples in
S is bounded until they become maximally general. This process is carried out
by considering each possible pairing between E′ and s and then asking an MQ
about the resulting example J . If J is positive, then it replaces s in S with J .
This is justified by the following:

Lemma 1. For any examples E1 and E2, we have that E1 and E2 are covered
by a common target clause C if and only if there exists a pairing J of E1 and
E2 that is covered by C.

The proof is omitted due to space constraints, but it is similar to the correspond-
ing result in [6].

Note that, according to this result, the number of examples in S will only
grow when a new positive example E is not covered by any of the target clauses
that cover current examples in S. Thus, the size of S will never grow larger than
the number of target clauses.

Correctness and Complexity. We now show that Learn-MQ makes progress
after each EQ resulting in a bound on the number of queries overall. We first
give two simple lemmas.
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Lemma 2. If algorithm Pair-MQ replaces an example s ∈ S with a new example
J , then J contains strictly fewer literals than s.

Proof. J can never grow larger than s by the definition of pairing. Suppose J
and s were the same size. This means that no literals were dropped during the
pairing of E and s for some 1-to-1 mapping. This implies that the variabilized
version of s in H covers E′, which implies that H covers E. However, this is
a contradiction, since E′ is guaranteed by the main loop of Learn-MQ to be a
positive counter example to H . �

Lemma 3. The size of S in algorithm Learn-MQ will never grow larger than
the number of clauses in the target hypothesis.

Proof. Suppose that |S| > |T |. As all examples in S are positive, there must be
two examples s1 and s2 in S that are covered by the same clause C in T . By
Lemma 1, there is a pairing of s1 and s2 that is also covered by C. However, we
know that one of s1 or s2 was added to S in the presence of the other and that
would only be done if there was no such pairing, showing a contradiction. �

We can now give the main result, showing that for constant a (max predicate
arity) and k (max variables per clause) exact learning of HD(P ) is possible with
a polynomial number of queries.

Theorem 1. For any T ∈ HD(P ), Algorithm Learn-MQ learns an equivalent
hypothesis after at most |P |mka equivalence queries and |P |mka(n+mkk) mem-
bership queries.

Proof. (sketch) The maximum size of an example (as measured by the number
of literals) is |P |na. For every example, the algorithm removes an object and
then asks a membership query. Therefore, the number of membership queries
used on minimization for each example is bound by n.

After an example is minimized the maximum size of E′ is |P |ka, as there are
at most k objects in a binding to a clause C in T . The algorithm now searches
all mappings of objects to find a correct pairing. For two examples, both with
k objects, the number of mappings is kk. In the worst case, we will search all
mappings for all elements in S (limited by m as shown by Lemma 3). Therefore
the number of membership queries used for pairing an example is bound bymkk.

Because every pairing removes at least one literal from an element in S, by
Lemma 2 the number of examples returned by EQs is bound by |P |mka, as it is
easily verified that EQs will only return positive counter-examples.

Finally, the number of membership queries is bound by |P |mka(n+mkk). �

5 Object-Based Queries

While EQs and MQs have been shown to be sufficient for efficient learning of
HD(P ) with constant k and a, there is no reason to believe that such query types
are ideal for use with human teachers. In particular, MQs are arguably the most
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primitive form of query and provide a relatively small amount of information
compared to the teacher effort required to answer them (this involves analyzing
a novel example which may or may not make sense from a semantic perspective).

Here we focus on reducing the number of membership queries required for
learning by allowing for queries about the relevance of objects in an example. It
is reasonable to expect that natural interfaces for such queries can be constructed
in many teaching domains, where the teacher is able to mark the relevant objects
in examples that they have already created or analyzed. For example, if the goal
was to teach the legal moves of chess, the interface would allow for the selection
of pieces and squares on a chess board.

5.1 Relevant Object Queries

In Min-MQ, membership queries are used to discover the objects necessary for
a positive example to remain covered by the target. Since this information is
likely obvious to a human teacher in many situations, it makes sense to consider
a new type of query that directly asks for the same information.

Definition 3. A relevant object query (ROQ) takes a positive example E as
input and returns a minimal set of objects Q bound in a substitution θ such that
for some clause C ∈ T , Cθ ⊆ E.

Note that when an example is covered by multiple target clauses, there is not
a unique answer to an ROQ. Given a set of objects Q and an example E, we
let E[Q] denote a new example that discards any literal in E that involves an
object outside of Q. It is easy to verify that if a set of objects Q′ is a strict subset
of ROQ(E), then E[Q′] will not be covered by the target theory. Thus, a single
ROQ can play the same role as Min-MQ in the base algorithm. This yields the
most basic modification to Learn-MQ called Learn-MQ-ROQ that uses ROQs
for example minimization instead of Min-MQ. In particular, Learn-MQ-ROQ is
identical to Learn-MQ except that a call to Min-MQ for example E is replaced
with E[ROQ(E)]. This results in a decrease in the number of MQs with the
addition of ROQs.

Proposition 1. For any T ∈ HD(P ), Learn-MQ-ROQ learns an equivalent hy-
pothesis after at most |P |mka equivalence queries and ROQ queries, and reduces
the number of membership queries over Learn-MQ by |P |mkan. Learn-MQ-ROQ
does not depend on the maximum number of objects per example n.

If, on average, the teacher cost of answering ROQs is less than a factor of n
more than answering MQs, then there is an overall reduction in the teaching
cost. This is a plausible situation, particularly in domains with many objects
where a human teacher can often easily ignore the potentially large number of
irrelevant objects.

5.2 Eliminating Membership Queries

With the aid of relevant object queries, one might wonder if it is possible
to eliminate membership queries completely. The only other use of MQs in
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algorithm Learn-MQ is in Pair-MQ, where membership queries are used to dis-
cover if the pairing generated is still positive.

Instead of using a new query type to discover such pairings (such an approach
is used in algorithm Learn-PQ), we instead apply a simple restriction on the
equivalence oracle. Specifically, we require that the EQ always return a negative
counter-example if one exists. Such an oracle is called negatively-biased.

Definition 4. An oracle that answers equivalence queries is called negatively-
biased if it always returns a negative counter-example for H when one exists.

With this restriction we can guarantee that, upon a positive counter-example,
our hypothesis H is guaranteed to be correct (albeit under-specified). Instead of
searching for pairings using membership queries, we will search for the correct
pairing by testing each one out in the hypothesis. If the pairing is incorrect, we
will get a negative counter example that the new clause incorrectly covers. If we
get a positive example, then the pairing must be correct.

Algorithm Learn-ROQ demonstrates how such an approach would work. A
positive counter-example is minimized using Min-ROQ as we saw before. Then,
the algorithm steps through every element in S, testing all possible pairings. A
pairing is tested by directly adding it to the hypothesis and asking an equivalence
query. If a negative counter-example is returned, the search continues. Otherwise,
the algorithm replaces S with S′ (the candidate for S) and starts over with the
most recent positive example. If all pairings are eliminated via negative counter-
examples then the example is appended to S as a new clause. A new positive
example is received and the algorithm continues as before.

1 S = ∅, H = ∅, E = EQ(H)
2 repeat
3 if E = done then return H
4 E′ = Min-ROQ(E, ∅)
5 for each s ∈ S do
6 for every pairing J between s and E′ do
7 S′ = S ∪ {J}
8 H = variabilize(S′)
9 E = EQ(H)

10 if E is a positive counter example then
11 S = S′

12 Goto line 3

13 S = S ∪ {E′}
14 H = variabilize(S)
15 E = EQ(H)

Algorithm Learn-ROQ. Learns HD(P ) using EQ and ROQ queries

Theorem 2. The number of equivalence queries in algorithm Learn-ROQ is
bound by |P |mka(1 + mkk). No membership queries are used. The number of
relevant object queries is bound by |P |mka.
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Proof. (sketch) As before, the algorithm removes at most one literal or adds a
new clause on every positive example. The number of positive examples is bound
by |P |mka. Each example requires one ROQ, yielding the same bounds.

If a negative example is returned from the EQ oracle, then a pairing was
incorrect and the algorithm tries to find a new one. There are mkk total pairings
for a single example, so each positive example requires at most mkk negative
examples to test pairings. The total number of examples is |P |mka(1 +mkk),
which is equal to the number of EQs. �

While Learn-ROQ no longer uses membership queries, the number of equivalence
queries has greatly increased. This is beneficial in situations where examples are
plentiful but asking for new labelings is costly. A great deal of the examples
(|P |m2k(a+k) at most) provided by the equivalence query are negative examples,
implying that this algorithm might be a good match for domains where negative
examples are easy to provide.

Finally, Learn-ROQ provides motivation for an algorithm that successfully
learns with mislabeled negatives. Often many real-world learning problems have
a strong world model (i.e. creating an example by randomly inserting literals
into a clause is very unlikely to produce a positive example). Unfortunately,
the problem of a single mislabeled example is difficult to recover from with the
framework in this paper, as there is no mechanism for noise. We believe a solution
would be very useful in practice, and hope future work builds on this approach.

5.3 Imperfect Relevance Oracles

In all likelihood, a human answering ROQs would be unlikely to behave perfectly.
This could be due to human error or in some cases due to interface issues. For
example, in some domains there may be classes of objects for which the human
is able to interact with as well as other objects that are internal to the domain
encoding and hence are inaccessible. In such cases, imperfect heuristics might
be used to determine relevance for the second class of objects.

Here we consider learning in the presence of specific types of imperfect ROQ
oracle that are either verbose (includes objects that are not relevant) or conser-
vative (does not include all the relevant objects). We will require the MQ and
EQ oracles to operate perfectly. This restriction is not unreasonable as different
query types may have different costs or underlying mechanisms associated with
them.

Verbose Oracles. Recall that for an example E covered by multiple target
clauses there are multiple possible ROQ answers, depending which covering
clause C the oracle considers. When an oracle answers based on a clause C,
we say that its answer is relative to C.

Definition 5. An ROQ oracle is (j, f)-verbose if for at most j clauses in the
target theory T , the oracle’s answer Q′ relative to any of those j clauses is a
superset of the true set of relevant objects with at most f additional objects.
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Note that we can directly use a (j, f)-verbose oracle to answer ROQs in Learn-
MQ-ROQ and still guarantee correct learning. However, the queries required
increases with the amount of verbosity as quantified by j and f .

Theorem 3. For any T ∈ HD(P ), Learn-MQ-ROQ, using a (j, f)-verbose ROQ
oracle, learns an equivalent hypothesis. Compared to a perfect ROQ oracle, the
number of EQs and ROQs increases by at most |P |j(k+f)a and the total number
of MQs is now bound by (|P |j(k+f)a + |P |(m−j)ka)(j(k+f)(k+f) +(m−j)kk).

Proof. (sketch) If we have an extra f objects returned from a ROQ for j clauses
in T , then the size of an example after minimization is bounded by |P |(k+f)a. On
the other m− j clauses, the size remains the same as before (|P |ka). Therefore,
if each example removes one literal, the total number of examples (and hence
EQs) is bound by |P |j(k + f)a + |P |(m − j)ka. This is the same bounds for
ROQs.

As before, the worst case for membership queries is when all possible pairings
must be searched. The total number of pairings for an example is bound by
(m − j)kk for clauses in S that the oracle does not make a mistake on, and
j(k + f)(k+f) for the clauses that it does. Adding this up and multiplying by
the number of examples gives the bounds (|P |j(k + f)a + |P |(m − j)ka)(j(k +
f)(k+f) + (m− j)kk). �

Unfortunately, it appears that for domains where n (max objects) is not ex-
ceedingly large, directly using Learn-MQ-ROQ with a (j, f)-verbose oracle can
result in many more membership queries compared to the base learning algo-
rithm Learn-MQ. It is an open question about whether it is possible to improve
the dependence on j and f .

Conservative Oracles. Next, we restrict the oracle in the opposite direction
where relevant objects can be missing.

Definition 6. An ROQ oracle is (j, f)-conservative if, for at most j clauses in
the target theory T , the oracle’s answer Q′ relative to any of those j clauses is
a subset of the true set of relevant objects with no more than f missing relevant
objects.

Because relevant objects are missing, we cannot directly use Learn-MQ-ROQ
or Learn-ROQ as our examples may be overly general. This is because con-
servative answers lead to overly general minimized examples, which break the
assumptions of the merging processes. Instead we give a new algorithm
Learn-MQ-ROQ-Conservative that is similar to the base algorithm. An impor-
tant change is that the pairing algorithm Pair-MQ is slightly modified so that
it only considers pairing together examples that contain the same number of
objects. This new modified algorithm is referred to as Pair-MQ-Con.

Upon a positive example, Learn-MQ-ROQ-Conservative minimizes it using
the ROQ oracle and then searches for pairings. If no pairing was found between
E′ (the minimized example) and the set of positive examples S, the algorithm
checks to see if E′ is truly a positive example using an MQ. If it is not positive
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then a relevant object was missed (the oracle made a mistake). The mistake is
resolved by re-minimizing the example using Min-MQ. Since all objects given by
the conservative ROQ are relevant, they are passed to Min-MQ so the routine
does not spend time testing them. After minimization the correct example is now
passed to Pair-MQ-Con for pairing. Using Pair-MQ-Con in place of Pair-MQ
implies that the algorithm will never try to pair E′ to the same example s more
than once. If a relevant object is missing and E′ does not pair with anything in
S, then the number of objects in E′ will necessarily increase (as the membership
query will detect it and employ Min-MQ. Because the size has increased, E′ will
not be checked against previously checked elements in S and avoid a significant
amount of redundant work.

1 S = ∅, H = ∅
2 repeat
3 E = EQ(H)
4 if E = done then return H
5 if E is a positive counter example then
6 E′ = Min-ROQ(E)
7 S = Pair-MQ-Con(E′, S)
8 if E′ ∈ S (E′ did not pair with any elements) and MQ(E′) is false then
9 S = S − {E′}

10 E′ = Min-MQ(E,objects(E′))
11 S = Pair-MQ-Con(E′, S)

12 H = variabilize(S).

Algorithm Learn-MQ-ROQ-Conservative. Learns HD(P ) using EQ,
MQ, and conservative ROQ queries

Theorem 4. For any T ∈ HD(P ), Learn-MQ-ROQ-Conservative, using a
(j, f)-conservative ROQ oracle, learns an equivalent hypothesis. Compared to
Learn-MQ-ROQ with a perfect oracle the maximum number of EQs and ROQs
are unchanged and the total number of MQs is bound by |P |jka(mkk + 1 + n−
(k − f)) + |P |m(m− j)k(a+k).

Proof. (sketch) The number of examples remains the same as Learn-MQ-ROQ
(|P |mka), giving the bounds on equivalence queries and relevant object queries.
If the relevant object oracle makes a mistake (j > 0), then the algorithm searches
for pairings. The worst case occurs when all clauses in the target hypothesis have
the same number of variables, so this search for pairings adds no membership
queries as E′ has k − f variables.

Before generating H , the algorithm asks a membership query to verify the
example is actually positive (which it is not). The search for the true number of
relevant objects in an example takes n− (k − f) membership queries, as that is
how many objects there are that might possibly be relevant. Finally, the search
for pairings is restarted, giving mkk total pairings that can be found.
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When an example does not have a mistake, the number of membership queries
remains the same as the original algorithm (mkk for finding the correct pairing).
Multiplying the number of MQs for each example by the size of each type of
example gives |P |jka(mkk +1+n− (k−f))+ |P |m(m− j)k(a+k), which is what
is provided above. �

Algorithm Learn-MQ-ROQ-Conservative has a much more reasonable increase
of membership queries with respect to j and f compared to the verbose setting.
Instead of an exponential increase of MQs with f , the change is now linear. It
remains an open problem as to whether it is possible to remove membership
queries altogether when using a conservative ROQ oracle.

Verbose vs. Conservative. The above results show that clearly, when MQs are
available, a conservative oracle is superior to a verbose oracle with respect to the
number of MQs. This is because it is much easier to identify an example missing
relevant objects than an example with extra objects. This has implications for
domains where heuristics are used to judge relevance of objects that are not
available via an interface for a human teacher to judge relevance. In particular, it
suggests that when MQs are available using a conservative heuristic is desirable.

5.4 Pairing Queries

The majority of the MQs in Learn-MQ are used in the search over pairings.
However, it is plausible that often a teacher will be able to directly indicate
which objects between two existing examples “correspond” with respect to the
target concept. For this purpose we introduce pairing queries.

Definition 7. A pairing query (PQ) is a query that, given two positive examples
E1 and E2, returns false if there is no clause C ∈ T that covers both E1 and E2.
Otherwise it picks a target clause C that covers both examples via substitutions
θ1 and θ2 and returns a 1-to-1 mapping between objects in θ1 and objects in θ2
where objects are mapped together if they correspond to the same variable in θ1
and θ2.

Note that by definition the mapping returned by a PQ will only involve relevant
objects. In this sense, PQs are strictly more powerful than ROQs. Pairing queries
can be directly placed in Learn-MQ-ROQ by replacing the loop that searches
over pairings. The algorithm directly asks if two examples pair together and asks
for a mapping P . If the query is false, the algorithm proceeds through the set S,
appending the example if no pairing is found. Otherwise, a pairing is calculated
using the mapping P and the algorithm proceeds normally. This is demonstrated
in algorithm Learn-PQ. From previous results we can easily bound the required
number of EQs and PQs.

Proposition 2. For any T ∈ HD(P ), Learn-PQ, learns an equivalent hypothe-
sis using no more than |P |mka EQs and |P |m2ka PQs. No MQs or ROQs are
required.
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It is unclear how much more difficult it would be for PQs to be answered
compared to ROQs; ultimately experience with real users is needed. It is not
difficult to imagine a natural interface for PQs in many domains. A system
could be implemented that shows the two examples to a user (e.g. two chess
boards) and asks for a matching between objects that have the same role in
each example. This is similar to asking “What do these two examples have in
common?” which is a question that seems natural in a learning environment.
The problem of learning with noisy pairing queries is currently open and an
important future direction.

1 S = ∅, H = ∅
2 repeat
3 E = EQ(H)
4 if E = done then return H
5 if E is a positive counter example then
6 for each s ∈ S do
7 P = PQ(E, Si)
8 if P is not false then
9 Let J be the pairing generated using mapping P with E and Si,

where objects not found in P are removed by dropping literals
that reference them.

10 S = S ∪ {J} − s

11 if no pairings were found then
12 S = S ∪ {E}
13 H = variabilize(S)

Algorithm Learn-PQ. Learns HD(P ) using EQ and PQ queries

6 Summary and Future Work

We have shown algorithms that allow for object-based queries to learn in a
polynomially-bounded number of queries. We specifically focused on relevant
object queries and pairing queries, but these are by no means the only object-
based queries that may be useful. It is our hope that the results shown above
motivate a further examination into new query types.

While it was claimed that object-based queries might be easier for a human
to use than traditional membership queries, no user study has been performed
to evaluate this claim. This motivates a user study where users act as various
oracle types to try to teach a concept. Users could also be asked what sort of
information they would like to be able to express, possibly giving motivation for
a new query type or annotation.

Finally, we examined two types of error-bound object-based queries. Both
types were deterministic, but such a restriction may not be practical. A prob-
abilistic model of oracle responses may be more likely in practice. Other error
models can also be considered, such as a mixing of the two error types, or pro-
viding a large set of negative examples that are correct with some probability.
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Abstract. In this paper, we propose three important enhancements of
the approximate cutting plane algorithm (CPA) to train Support Vector
Machines with structural kernels: (i) we exploit a compact yet exact rep-
resentation of cutting plane models using directed acyclic graphs to speed
up both training and classification, (ii) we provide a parallel implemen-
tation, which makes the training scale almost linearly with the number
of CPUs, and (iii) we propose an alternative sampling strategy to handle
class-imbalanced problem and show that theoretical convergence bounds
are preserved. The experimental evaluations on three diverse datasets
demonstrate the soundness of our approach and the possibility to carry
out fast learning and classification with structural kernels.

1 Introduction

Various kernels have been successfully applied to different Natural Language
Processing (NLP) tasks, e.g. [13,5,17,12,6,2]. However, previous work is limited
to relatively small datasets. Indeed, the major drawback of kernel methods is
the necessity to carry out learning in dual spaces, where training complexity
typically is quadratic in the number of instances.

Recently, a number of efficient CPA-based algorithms have been proposed [10,8].
Unfortunately, these algorithms scale well only when linear kernels are used. To
address slow learning with non-linear kernels [12] propose to extract basis vec-
tors to compactly represent cutting plane models, which speeds up both classi-
fication and learning. However, this requires to solve a non-trivial optimization
problem when arbitrary kernel functions are used. Finding a set of basis vectors
in high-dimensional spaces produced by arbitrary kernels, structural kernels in
particular, is an open research area and is definitely worth further exploration.

Another approach of adapting CPA for non-linear kernels by reducing the
number of kernel evaluations is studied in [23], where sampling is used to reduce
the number of basis functions in the kernel expansion. [16] showed that the same
algorithm can be successfully applied to SVM learning with structural kernels on
very large data obtaining speedup up factors up to 10 over conventional SVMs.

In this paper, we provide three important improvements of the approximate
CPA with sampling. The proposed techniques make SVMs with structural kernels

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 175–190, 2011.
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a viable tool to tackle real-world tasks. In particular, we first present an idea to
use (Directed Acyclic Graphs) DAGs to compactly represent cutting plane models
computed at each iteration of the CPA algorithm. This has the benefit of reduc-
ing the number of expensive kernel evaluations, since DAGs provide the means
to avoid redundant computations over shared substructures. We present two al-
gorithms that deliver impressive speedups for both training and testing. We also
parallelize the code improving scalability even further. Finally, we provide an ef-
fective and sound method to handle class imbalanced datasets, which plays an
important role to obtain the optimal balance between Precision and Recall.

2 Preliminaries: Cutting Plane Algorithm with Sampling

In this section, we illustrate a re-elaborated version of the cutting plane method
(originally proposed in the context of structural SVMs) for binary classification.
After briefly explaining it for linear SVMs, we point out the main source of
inefficiency for the case when kernels are used. Next we present the idea of [23]
to use sampling to alleviate high training costs for SVMs with non-linear kernels.

2.1 Cutting-Plane Algorithm (Primal)

Consider a slight modification of SVM training problem, known as a 1-slack
reformulation [10], to derive CPA for binary classification1:

minimize
w,ξ≥0

1
2
‖w‖2 + Cξ

subject to
1
n

n∑
i=1

ciyiw · xi ≥
1
n

n∑
i=1

ci − ξ, ∀c ∈ {0, 1}n
(1)

where binary vector c = (c1, . . . , cn) ∈ {0, 1}n forms a constraint that is a linear
combinations of the constraints yi(w · xi) ≥ 1 − ξi.

The CPA is presented in Alg. 1. It starts with an empty set of constraints S
and computes the optimal solution to the unconstrained problem (1). Next, the
algorithm forms a binary vector c to compute a cutting plane model defined by
its offset d(t) = 1

n

∑n
i=1 ci and gradient g(t) = 1

n

∑n
i=1 ciyixi (lines 5-9). This

produces a constraint w · g(t) ≥ d(t) − ξ that is violated the most by the current
solution w, which is included in the set of active constraints S (line 10). This
way, a series of successively tightening approximations to the original problem
is constructed. The algorithm stops when no constraints are violated by more
than ε, which is formalized by the criteria in line 12.

2.2 Cutting-Plane Algorithm (Dual)

To enable the use of kernels, we need to solve the Wolfe dual of the problem (1).
Its solution w lies in the feature space defined by a kernel K(xi,xk) = φ(xi) ·
1 Here we fix the bias term b at zero, as it could be easily incorporated in feature

vectors as an additional constant.
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Algorithm 1. Cutting Plane Algorithm (primal)
1: Input: (x1, y1), . . . , (xn, yn), C, ε
2: S ← ∅; t = 0
3: repeat
4: (w, ξ)← optimize (1) over the constraints in S

/* find a cutting plane */
5: for i = 1 to n do

6: c
(t)
i ←

{
1 if

(
yi(w · xi) ≤ 1

)
0 otherwise

7: end for
8: d(t) ← 1

n

∑n
i=1 ci

9: g(t) ← 1
n

∑n
i=1 ciyiφ(xi)

/* add a constraint to the set of constraints */
10: S ← S ∪ {(d(t), g(t))}
11: t← t + 1
12: until w · g(t) ≥ d(t) − ξ + ε
13: return w, ξ

φ(xi). It can be easily verified (by deriving the the dual from (1)) that primal
and dual variables are connected via:

w =
t∑

j=1

αjg
(j), (2)

where g(j) = 1
n

∑n
k=1 c

(j)
k ykφ(xk) denotes the gradient of the cutting plane

model added at iteration j and t is the size of the set S.
As one can see, with the use of kernels the gradient g(j) (that also defines

the most violated constraint (MVC) added at iteration j) cannot be compactly
represented as in the linear case by simply summing up n feature vectors since
it now lies in the feature space spanned by φ(·). We will address the problem of
compact representation of the cutting plane models in the next section.

Computing an inner product between the weight vector w and an example
xi involves the sum of kernel evaluations for each example xk in the constraint
j for each constraint in S. In particular, using the expansion of w from (2), the
inner product required to compute the MVC (steps 5-9 in the Alg. 1), renders
as:

w · φ(xi) =
t∑

j=1

αjg
(j) · φ(xi) =

n∑
k=1

( t∑
j=1

1
n
αjc

(j)
k yk

)
K(xi,xk), (3)

The analysis of the inner product given by (3) reveals that the number of kernel
evaluations at each iteration is O(tn2). Indeed, the number of non-zero elements
in each g(j) is proportional to the number of support vectors which grows linearly
with the training size n [19]. Summing over all constraints in the set S, the
complexity of (3) is O(tn). Since the inner product (3) needs to be computed
for each training example (lines 5-7 in Alg. 1) we obtain O(tn2) scaling behavior
at each iteration.
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The obtained quadratic scaling in the number of examples makes cutting
plane training for non-linear SVMs prohibitively expensive for even medium-
sized datasets. To address this limitation [23] proposed to construct approximate
cuts by sampling r examples from the training set. The idea is to replace the
expensive computation of the MVC (lines 5-7, Alg. 1) over all training examples
n by a sum over a smaller sample r, s.t. the number of examples in g(j) is
reduced from O(n) to O(r). In this case the double sum of kernel evaluations
in (3) reduces from

∑n
i,j=1K(xi,xj) to a more tractable

∑r
i,j=1K(xi,xj).

3 Fast CPA for Structural Kernels

In this section we present an approach to significantly speed up the approximate
CPA for structural kernels. We observe that for convolution structural kernels,
e.g. tree kernels, the cutting plane model can be compactly represented as a
Directed Acyclic Graph (DAG). This helps to speed up both the training and
classification as the repeating kernel evaluations over shared substructures can
be avoided. Most interestingly this approach can be parallelized during training
thus making structural kernel learning practical on larger datasets.

3.1 Compacting Cutting Plane Models Using DAGs

In the previous section we have seen that computing an MVC at each itera-
tion involves quadratic number of kernel evaluations. Using smaller samples to
approximate the cutting plane helps to reduce the number of kernel evaluations.

Here we explore another avenue to reduce the number of kernel computations
when convolution structural kernels are used. Indeed, when applied to structural
data such as sequences, trees or graphs, we can take advantage of the fact that
many examples share common sub-structures. Hence, we can use a compact
representation of a cutting plane model to avoid redundant computations over
repeating sub-structures. In particular, when dealing with tree-structured data,
a collection of trees can be compactly represented as a DAG [1]. In the following
we briefly introduce the idea behind using DAGs to compactly represent a tree
forest and then show how it applies to speed up the learning algorithm.

3.2 DAG Tree Kernels

A DAG can efficiently represent a set of trees by including only the unique
subtrees and accounting for the frequency of the repeated substructures. Fig. 1
shows three syntactic trees on the left and the resulting DAG on the right. As
we can see, the subtree of the noun phrase [NP [D a][N car]] is repeated in
two trees, thus the frequency of the corresponding node is updated to 2. Also
smallesubtrees such as [D a] and [D car] are shared with a frequency of 3. The
two subtrees rooted in VP are different and require different roots but they can
still share some of their subparts, e.g. [V buy].

Given a collection of trees, there are various methods to efficiently build a
corresponding DAG and allow for fast access to its tree nodes, see for example [1].
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Fig. 1. Three syntactic trees and the resulting DAG

In our approach, for each node in a tree, we generate a string representation
of its subtree. This requires linear time in the number of tree nodes and can
be done at the preprocessing step. These strings are unique identifiers of each
respective node and serve as keys in the hash table, whose values are pointers to
the corresponding nodes. To perform efficient search within a DAG, we maintain
a simple and efficient nested structure of two associative arrays. The first is a
hash table, which given a node retrieves the set of nodes associate with the same
production rule. Each entry in the retrieved set contains a tuple of a pointer to
the node and its current frequency. In this way we can efficiently enumerate all
the candidate substructures to compute the tree kernel [4] between a DAG and
a given tree.

Tree Kernels (TKs). Convolution TKs compute the number of common sub-
structures between two trees T1 and T2 without explicitly considering the whole
fragment space. For this purpose, let the set T = {t1, t2, . . . , t|T |} be the sub-
structure space and χi(n) be an indicator function, equal to 1 if the target ti is
rooted at node n and equal to 0 otherwise. A tree-kernel function over T1 and T2

is TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

Δ(n1, n2), NT1 and NT2 are the sets of the

T1’s and T2’s nodes, respectively and Δ(n1, n2) =
∑|T |

i=1 χi(n1)χi(n2). The latter
is equal to the number of common fragments rooted in the n1 and n2 nodes.

Theorem 1. Let D be a DAG representing a tree forest F and Kdag(D,T2) =∑
n1∈ND

∑
n2∈NT2

f(n1)Δ(n1, n2) then∑
T1∈F

TK(T1, T2) = Kdag(D,T2), (4)

where f(n1) is the frequency associated with n1 in the DAG.

Proof. Let S(F ) the set of possible subtrees of F , i.e. the substructures whose
leaves coincide with those of the original tree (in general T �= S), then∑

T1∈F TK(T1, T2) =
∑

T1∈F

∑
n1∈NT1

∑
n2∈NT2

Δ(n1, n2)=
∑

T1∈F

∑
n1:t∈S(T1)
n1=r(t)∑

n2∈NT2
Δ(n1, n2), where r(t) is the root of the subtree t. The last expres-

sion is equal to
∑

n1:t∈S(F )
n1=r(t)

∑
n2∈NT2

Δ(n1, n2). Let S′ the unique subtrees of
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S, we can rewrite the above equation as:
∑

n1:t∈S′(F )
n1=r(t)

f(n1)
∑

n2∈NT2
Δ(n1, n2)=∑

n1:t∈D
n1=r(t)

∑
n2∈NT2

f(n1)Δ(n1, n2)=
∑

n1∈D

∑
n2∈NT2

f(n1)Δ(n1, n2). �

3.3 Fast Computation of the MVC on Structural Data

Having introduced the DAG tree kernel, we redefine the inner product (3) re-
quired to compute the MVC by compacting g(j) into a single DAG model dag(j):

w · φ(xi) =
t∑

j=1

αjKdag(dag(j),xi) (5)

Unlike (3), where each cutting plane g(j) is an arithmetic sum of training
examples, here we take advantage of the fact that a collection of trees can be
efficiently put into an equivalent DAG. Please note that computing a kernel
Kdag(·, ·) between an example and a DAG that represents a collection of trees
yields an exact kernel value as shown in Th. 1. The benefit of such representation
comes from the efficiency gains obtained by speeding up kernel evaluations over
the sum of examples compacted into a single DAG.

Now we are ready to present the new cutting plane algorithm (see Alg. 2)
adapted for the use of structural kernels. The weight vector w (line 6) is now
expanded over the dual variables αj obtained by solving Wolfe dual of (1) (line 5)
and cutting plane models, each compactly represented by dag(j). To compute
the MVC we use a smaller set of examples uniformly sampled from the original
training set. A binary vector c formed in (lines 8-12) defines the examples that
are inserted into a DAG model (line 11). The obtained algorithm preserves all
the theoretical benefits of the approximate CPA with sampling, while reducing
the number of expensive kernel evaluations to compute the MVC.

To benefit even more from the compact representation offered by DAGs, we
can put all cutting planes from the set S into a single DAG, such that the inner
product (3) is reduced to a single kernel evaluation:

w · φ(xi) = Kdag(d̂ag(t),xi) (6)

where d̂ag(t) at iteration t is built by inserting nodes from dag(j) together
with the frequency counts multiplied by the value of the corresponding dual
variable αj . This ensures that a single Kdag evaluation over the full DAG model
makes Eq. 6 equivalent to computing a weighted sum of Kdag using individual
dag(j) in Eq. 5. Even though d̂ag(t) has to be re-built at each iteration to
accommodate updated vector α, this imposes little computational overhead in
practice. Another computational drawback of using full DAG model compared
to the set of dag(j) is that in the former case we need to compute the update
of the Gram matrix column (line 4 in Alg.2) Git = g(i) · g(t) for 1 ≤ i ≤ t, while
in the latter case it is obtained automatically from computing Eq. 5.

Even though the worst-case complexity for computing the MVC using both
variants of using DAGs is still O(r2), it is highly unlikely to observe in practice,
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Algorithm 2. Cutting Plane Algorithm (dual) using DAG model representation
1: Input: (x1, y1), . . . , (xn, yn), C, ε
2: S ← ∅; dag ← 0; t = 0;
3: repeat
4: Update the Gram matrix G with a new constraint
5: α ← argmaxα≥0h

T α− 1
2
αT Gα, s.t. αT 1 ≤ C where hi = d(i) and G = g(i) ·g(j)

6: w =
∑|t|

j=1 αjdag(j)

7: Sample r examples from the training set
/* find a cutting plane */

8: for i = 1 to r do

9: c
(t)
i ←

{
1 if

(
yi

∑t
j=1 αjKdag(dagj , xi) ≤ 1

)
0 otherwise

10: end for
11: dag(t) = build dag(c)
12: d(t) = 1

r

∑r
i=1 ci

13: /* add dag to the active set */
14: S ← S ∪ {(dt, dagt)}
15: t = t + 1
16: until d(t) −w · dag(t) ≤ ξ + ε
17: return w, ξ

where input examples tend to share many common substructures. This speeds
up both training and classification by avoiding redundant kernel computations.

3.4 Parallelization

The modular nature of the CPA suggests easy parallelization. In fact, in our
experiments, we observed that at each iteration 95% of the total learning time
is spent on computing the MVC (steps 8-12, Alg. 2). This involves computing
Eq. 5 over the set of individual DAGs or Eq. 6 using full DAG model for r
training examples in the sample. This observation suggests high parallelizability
of the code: using p processors the complexity of this pre-dominant part can be
brought down from O(r2) to O(r2/p).

4 Handling Class-Imbalanced Data

In this section, we extend the theory of cutting-plane algorithm to tackle class-
imbalance problem. Our approach is based on an alternative sampling strategy
that is effective for tuning up Precision and Recall on class-imbalanced data. We
also provide a convergence proof of the proposed algorithm.

4.1 Cost-Proportionate Sampling

Conventional SVM problem formulation allows for natural incorporation of ex-
ample dependent importance weights into the optimization problem. We can
modify the objective function to include example dependent cost factors:
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minimize
w,ξi≥0

1
2
‖w‖2 +

C

n

n∑
i

ziξi

subject to yi(w · xi) ≥ 1 − ξi, 1 ≤ i ≤ n
(7)

where zi is the importance weight of example i and 1
n

∑n
i ziξi serves as an upper

bound on the total cost-sensitive empirical risk. This problem formulation where
there is an individual slack variable ξi for each example is typically referred to
as “n-slack” formulation.

In the dual space, the example-dependent costs captured by cost factors zi
translate into the box constraints imposed on each dual variables: 0 ≤ αi ≤
ziC, 1 ≤ i ≤ n such that the ziC sets an upper bound on the values of αi.
This feature to integrate importance weights zi in the problem formulation is
implemented in SVM-light software.

This natural modification of the quadratic problem, is, however, difficult to
incorporate in the case of 1-slack formulation (1). Indeed, in the case of 1-
slack formulation we have a single slack variable ξ that is shared among all the
constraints. More importantly, moving to the dual space, the box constraints
0 ≤ αi ≤ C are no longer for each individual dual variable but for a sum:

∑
i αi.

This makes the 1-slack problem formulation difficult to incorporate importance
weights directly. Nevertheless, the idea of approximating the cutting plane model
at each iteration via sampling suggests a straightforward solution.

Indeed, we can extend the original CPA to the case of cost-sensitive classifica-
tion. A straight-forward way to do this is instead of using uniform sampling to
build an approximation to the cutting plane model at each iteration (steps 8-12
in Alg. 2), we can draw examples according to their importance weights using
the cost-proportionate rejection sampling technique (Alg. 3).

Algorithm 3. Cost-proportionate rejection sampling
1: Pick example (xi , yi, zi) at random
2: Flip a coin with bias zi/Z
3: if heads then
4: keep the example
5: else
6: discard it
7: end if

Here zi is the importance weight of the i-th example and Z is an upper bound
on any importance value in the dataset. This process is repeated until we sample
the required number of examples r. This modification enables the control over
the proportion of examples from different classes that will form a sample used
to compute the MVC.

Unlike the conventional approaches for addressing the class-imbalance prob-
lem, that either under-sample the majority class or over-sample the minority
class from the training data, the rejection sampling coupled with CPA does not
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completely discard examples from the training set. At each iteration it forms a
sample according to the pre-assigned importance weights for each example, such
that examples from both the majority and minority classes enter the sample in
the desired proportion. This process is repeated until the algorithm converges.
Thus, the learner has the chance to incorporate relevant information present in
the data over a number of iterations before it converges. This way, the method
preserves the global view on the dataset and no relevant information is lost during
the iterative optimization process unlike in the “one-shot” sampling methods.

Another benefit of this approach is that by increasing the importance weight
of the minority class, we give its examples more chance to end up in the MVC and
hence, become support vectors. This way the imbalanced support-vector ratio
is automatically tuned to include more examples from the minority class, which
gives more control over the class-imbalance problem. Proving this property could
be an interesting theoretical result.

4.2 Theoretical Analysis of the Algorithm

Cost proportionate rejection sampling allows for natural extension of the binary
classification to importance weighted binary classification. It achieves this task
by re-weighting the original distribution of examples D according to the impor-
tance weights of examples such that the training is effectively carried out under
the new distribution D̂.

In [24] it is shown that by transforming the original distribution D to a train-
ing set under D̂, one can effectively train a cost-insensitive classifier on a
dataset D̂ such that it will minimize the expected risk under the original distri-
bution D.

Theorem 2. (Translation Theorem; [24]) Learning a classifier h to minimize
the expected cost-sensitive risk under the original distribution D is equivalent
to learning a decision function to minimize the expected cost-insensitive risk
under the distribution D̂(x, y, z) ≡ z

E(x,y,z)∼D [z]D(x, y, z).

The proof is a straight-forward application of the definitions and simply follows
by establishing an equivalence relationship between the expected cost-sensitive
risk E(x,y,z)∼D[zΔ(y, h(x))] under the original distribution D and the expected
cost-insensitive risk E(x,y,z)∼D̂[Δ(y, h(x))] under the transformed distribution D̂.
The theorem produces an important implication that by transforming the orig-
inal distribution D to D̂ according to example-dependent importance weights,
a classifier for the cost-sensitive problem over D can be obtained with a cost-
insensitive learning algorithm over D. We can use this finding to show that the
convergence proof for the original CPA with uniform sampling naturally applies
to the proposed version of the algorithm that uses cost-proportionate rejection
sampling:

Theorem 3. (Convergence) Assume R = max1≤i≤n‖φ(xi)‖, i.e. R is an upper
bound on the norm of any φ(xi), and Δ = max1≤i≤n‖ Δ(y, yi)‖, the number of
steps required by Alg. 2 using the sampling strategy of Alg. 3 is upper bounded
by 8CΔR2/ε2.
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Proof. We first note that the cost-proportionate rejection sampling (Alg. 3), used
to build the approximate cutting plane model, at each step re-weights the original
distribution D according to the importance weights of the examples. This means
that we are effectively training a cost insensitive classifier that draws examples
to build the cutting plane model from the transformed distribution D̂. By in-
voking the Translation Theorem (2), we establish that, to obtain a cost-sensitive
classifier that minimizes the expected risk under the original distribution D, it is
sufficient to learn a cost-insensitive classifier under the transformed distribution
D̂. The CPA that draws examples from D using rejection sampling is equivalent
to the original CPA applying uniform sampling to the transformed distribution
D̂. Thus, we can reutilize the proof in [23] of the convergence bounds for the
original CPA with uniform sampling over D̂. This states that CPA with uni-
form sampling terminates after at most 8CΔR2/ε2 iterations. By applying such
bound, we have proved the thesis of the theorem.

Remarks. The main idea to obtain convergence bounds in [23] is to set an upper
bound on the value of the dual objective and if there exists a lower bound on the
minimal improvement of the dual objective at each iteration, then the algorithm
will terminate in a finite number of steps.

Indeed, using the relationship between primal and dual problems, we have
that a feasible solution of the primal problem (1), such as, for example: w = 0,
ξ = Δ, forms an upper bound CΔ on the dual objective of 1. Next, in [20] it is
shown that the inclusion of ε-violated constraint at each iteration improves the
dual objective by at least ε/8R2 . Since the dual objective is upper bounded by
CΔ, the algorithm terminates after at most 8CΔR2/ε2 iterations.

The derivation of the bound on the minimal improvement of the dual objective
obtained at each step only depends on the values of ε and R and does not rely on
the assumption about distribution of the examples. Also note that each cutting
plane model built via rejection sampling is a valid constraint for the optimization
problem (1).

5 Experiments

In our experiments we pursue a three-fold goal: (i) study the effects of compact-
ing the cutting plane model by using DAGs on both training and classification
runtimes; (ii) demonstrate the speedup factors one can obtain after straight-
forward parallelization offered by the CPA; and (iii) demonstrate the ability of
the cost-proportionate sampling scheme to tune up Precision and Recall;

5.1 Experimental Setup

We integrated CPA with uniform sampling as described in [23] within the frame-
work of SVM-Light-TK [14,9] to enable the use of structural kernels, e.g. tree
kernels. For the DAG implementation we employ highly efficient Judy arrays2.
2 http://judy.sourceforge.net

http://judy.sourceforge.net
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For brevity, we refer to the CPA with uniform sampling as uSVM; uSVM where
each cutting plane g(j) is compacted into a dag(j) as SDAG; uSVM with a sin-
gle DAG that fits all active constraints in the set S as SDAG+; uSVM with
rejection sampling as uSVM+j (Alg. 3), and SVM-light-TK as SVM. Parallel
implementation relies on the OpenMP library.

To carry out learning, we used the subset tree (SST) kernel [4] since it has been
indicated as the most accurate in similar tasks, e.g. [14]. As the stopping criteria
of the algorithms, we fix the precision parameter ε at 0.001. The margin trade
off parameter is fixed at 1.0. To measure the classification performance, we use
Precision, Recall and F 1-score. We ran all the experiments on machines equipped
with Intel R© Xeon R© 2.33GHz CPUs carrying 6Gb of RAM under Linux.

5.2 Data and Models

To evaluate the efficiency of the compact model representation offered by SDAG
and SDAG+ algorithms with respect to uSVM, we use Semantic Role Labeling
(SRL) benchmark, using PropBank annotations [15] and automatic Charniak
parse trees [3]. SRL dataset has already been used to extensively test uSVM for
structural kernels and we follow the same setting as described in [16].

In the next set of experiments to study the ability of uSVM+j to tune up
Precision and Recall we used two different natural language datasets: TREC 10
QA3 (training: 5,483, test: 500) and Yahoo! Answers (YA)4(train: up to 300k,
test: 10k) to perform two similar tasks of QA classification. The task for the first
dataset is to select the most appropriate type of the answer from a set of given
possibilities. The goal of the experiments on these relatively small datasets is to
demonstrate that rejection sampling is able to effectively handle class imbalance
similar to SVM. For Yahoo! Answers dataset the classification task was set up
as follows. Given pairs of questions and corresponding answers learn if in a given
pair the answer is the ’best’ answer for a question. The goal of this experiment is
to have a large classification task (300k examples in our experiments) to demon-
strate that class-imbalance problem can be handled effectively at a scale where
SVM becomes too slow.

5.3 Results and Analysis

Compact model representation using DAGs. The goal of this set of ex-
periments is to study computational savings that come from using a compact
representation of individual (SDAG) or the full set (SDAG+) of cutting plane
models in S. As the baseline for the learning and classification runtime compar-
ison we use plain uSVM algorithm. To carry out training we use 100k of SRL
dataset. The number of iterations for the algorithms is fixed at 300 and the rest
of the parameters are kept at default values. For evaluating speedups obtained
during classification phase we carry out learning on SRL subsets of increasing
size and then test trained models on 10k of data.
3 http://l2r.cs.uiuc.edu/cogcomp/Data/QA/QC/
4 retrieved through the Yahoo! Webscope program.

http://l2r.cs.uiuc.edu/cogcomp/Data/QA/QC/
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Table 1. Runtime comparison between uSVM, SDAG and SDAG+. Training on 100k
subset of SRL across multiple values of the sample size (left) and classification on 10k
subset when learning on SRL subsets of varying size (right). Time indicated in seconds;
values in parenthesis for SDAG and SDAG+ are speedups w.r.t uSVM; #SVs- number
of support vectors.

Training

sample uSVM SDAG SDAG+

1000 2196 312 (7.0) 283 (7.8)
2000 8282 1127 (7.3) 752 (11.0)
3000 18189 2509 (7.2) 1275 (14.3)
4000 31012 4306 (7.2) 1802 (17.2)
5000 50060 6591 (7.6) 2497 (20.0)

Classification

Data #SVs uSVM SDAG SDAG+

10k 1686 11 9 (1.1) 1 (24.0)
25k 3392 41 25 (1.6) 1 (33.2)
50k 5876 82 40 (2.1) 3 (28.3)
75k 7489 112 55 (2.0) 5 (20.5)
100k 8674 131 59 (2.2) 7 (19.5)

Runtime results for SDAG, SDAG+ and uSVM are reported in Table 1 (since
SDAG and SDAG+ produce exact kernel evaluations, hence they train the same
model as uSVM, accuracy is not of concern and is omitted). As one can see both
SDAG and SDAG+ deliver significant speedups during the learning. SDAG+ is
a clear winner here delivering speedups up to 20 when a large sample size is used.
Regarding classification, SDAG+ is also the fastest, although as the number of
support vectors of the learned model increases, the speedup factor decreases.
This is due to the increased overhead of maintaining a single large DAG. As the
number of elements in the DAG grows the inefficiencies from the implementation
of the underlying data structure slow down the node lookup time. We plan to
address this problem in the future.

Tuning up Precision and Recall. We first report experimental results on
question classification corpus on six different categories in Table 2 (since the
dataset is small, we only report the accuracy). For both uSVM and uSVM+j,
we fixed the sample size to 100. For uSVM+j, we picked the value of j from
{1, 2, 3, 4, 5, 10} and use the best results obtained on the validation set. For
SVM, we carried out tuning of j parameter on a validation set. It is important to
note that such parameter has slightly different meaning for uSVM+j and SVM.
For the former, it controls the bias to reject negative examples during sampling
(Alg. 3) to compute MVC, while for the latter it defines the factor by which
training errors on positive examples outweigh errors on negative examples.

Analyzing the results from Table 2 (top), we can see that uSVM algorithm
that uses uniform sampling obtains high Precision, as it minimizes the training
error dominated by examples from negative class. This results in lower values of
the Recall. Its rather high F1 for ABBR dataset shows that the model simply
misclassifies the examples from the minority class saturating the Precision. On
the other hand, uSVM+j is able to establish a much better balance between
Precision and Recall resulting in high F1 scores across the majority of categories.
Also the performance of SVM with the optimal set of parameters suggests that
our method has a better capacity to control the imbalance problem than SVM.
This can be explained by the fact, as suggested in [22], that ziC imposes only an
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Table 2. Handling class-imbalance problem on TREC 10 (top) YA (bottom). Ratio
- proportion of negative examples w.r.t. positive; P/R - precision (P) and recall (R).
The bottom row in YA is the performance using bag-of-words features on 75k subset.

Trec 10

Data Ratio uSVM uSVM+j SVM
F-1 P/R F-1 P/R F-1 P/R

ABBR 1:60 87.5 100.0/77.8 84.2 80.0/88.9 84.2 80.0/88.9
DESC 1:4 96.1 95.0/97.1 96.1 95.0/97.1 94.8 97.7/92.0
ENTY 1:3 72.3 91.8/59.6 79.1 79.6/78.7 80.4 82.2/78.7
HUM 1:3 88.1 98.1/80.0 90.3 94.9/86.2 87.5 88.9/86.2
LOC 1:3 81.4 96.6/70.4 87.0 87.5/86.4 82.6 86.5/79.0
NUM 1:5 86.0 98.9/76.1 91.2 96.1/86.7 89.9 98.9/82.3

Yahoo Answers

10k 1:1.5 37.4 33.5/42.2 39.1 29.6/57.7 37.9 24.2/87.7
50k 1:2.0 36.5 36.0/36.9 40.6 30.0/62.5 39.6 25.7/86.9
100k 1:2.4 33.4 36.2/31.1 40.2 30.2/59.9 40.3 26.6/83.5
150k 1:2.8 33.5 36.9/30.7 41.0 30.2/64.0 - -
300k 1:3.4 23.8 40.1/16.9 41.4 30.7/63.8 - -

BOW 1:2.0 34.2 33.2/35.3 38.1 27.5/61.7 36.3 22.5/93.5

upper bound on dual variables αi, which results in poorer flexibility to control
the class-imbalance with the j parameter of SVM.

The results on Yahoo! Answers are displayed in Table 2 (bottom). For uSVM
and uSVM+j, we fix the sample size at 500. Due to the constant time scaling
behavior of uSVM [23], the training time for both uSVM and uSVM+j was
slightly less than 10 hours across all subsets reported here. While being faster
on small subsets of 5k, 10k and 25k, SVM begins to scale poorly on the subsets
larger than 50k. Indeed, as studied in [23,16], CPA with sampling begins to
outperform SVM starting from datasets of moderate size (around 50k in our
experiments). SVM did not finish the training within 5 days for 150k and 300k
subsets, hence there are missing values. We set the value of j parameter for
uSVM+j equal to the ratio of negative to positive examples. This natural setting
of j parameter for uSVM+j is driven by the intuition to make the distribution of
examples from different classes approximately balanced inside each sample, such
that the classifier learns on a balanced data. As one can see, this gives much
better trade-off between Precision and Recall compared to uSVM. Looking at
the results of SVM, we conjecture that here j parameter, similar to the results
in previous experiments, is not flexible enough to deliver the optimal P/R trade-
off. Also note that training SVM on 100k subset requires almost 4 days, which
makes uSVM+j a viable tool for advanced text classification on large datasets,
where obtaining optimal balance between Precision and Recall is hindered by
the class imbalance problem.

The bottom row of Table 2 reports the results using bag-of-words (BOW) fea-
ture representation on 75k subset. We note that SST kernel delivers an
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Fig. 2. Speedups due to parallelizing SDAG/SDAG+ on 50k Yahoo! Answers dataset

interesting 12% of relative improvement over BOW model on SVM. However,
the main goal of this experiment was not to obtain the top classification per-
formance on such noisy web data but rather to demonstrate that uSVM+j can
efficiently deal with large imbalanced data.

Parallelization. To assess the effects of parallelization, we tested parallel ver-
sions of SDAG and SDAG+ on 50k subset of Yahoo! Answers dataset using up
to 8 CPUs. The achieved speedups over the sequential algorithm are reported in
Figure 2, where each curve corresponds to runtimes using different sample sizes:
{100, 250, 500, 1000}. Increasing the sample size leads to the increase of the time
spent to compute MVC, which makes the speedup achieved by parallelization for
large sample sizes even more significant. Using the maximum number of 8 CPUs,
we are able to achieve the speedup factor of about 7.0 (using sample size equal
to 1000). Since classification can also be easily parallelized, we could experiment
with larger sample sizes to obtain a more accurate model.

6 Related Work

To improve the scaling properties of SVM-light, a number of efficient algorithms
using CPA-based algorithms have been proposed. For example, SVMperf [10] ex-
hibits linear computational complexity in the number of examples when linear
kernels are used. While CPA-based approaches deliver state of the art perfor-
mance w.r.t. accuracy and training time, they scale well only when linear ker-
nels are used. The problem of efficient kernel learning for CPA has been studied
in [11], where cutting plane models are compacted by extracting basis vectors.
This, however, leads to a non-trivial optimization problem when arbitrary kernel
functions are applied.

Regarding learning with structural kernels, compact representation of
tree forests offered by DAGs was applied for speeding up training of the voted
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perceptron algorithm in [1]. Another interesting idea of hash kernels for struc-
tured data is proposed in [18], where hashing can generate explicit vector repre-
sentation such that linear learning methods can be applied. However, it is likely
that hashing all possible substructures generated by SST kernel, which is expo-
nential in the tree length, will make the preprocessing step too expensive. Also,
due to hash collisions, this method computes approximate kernel values and its
implications on the accuracy need to be studied more extensively.

Concerning class-imbalance problem for SVM learning, the most widely
adopted method is to introduce different cost factors in the objective function
s.t. the training errors for positive and negative examples receive different penal-
ties [21]. This approach is implemented as the j option in SVM-light [9] that has
a super-linear scaling behavior, which prohibits its use on large datasets. Our ap-
proach to accomplish cost-sensitive classification shares the idea of reductions put
forward in [24] together with the benefit of the conventional approach in SVMs [21]
to incorporate importance weights directly into the optimization process.

7 Conclusions and Future Work

In this paper we have presented a set of techniques to make SVMs with struc-
tural kernels a more useful tool to apply in real-world tasks. First, we derive
two learning algorithms SDAG and SDAG+ that compact cutting plane mod-
els using DAGs. This makes both learning and classification much faster when
compared to the original CPA with sampling. Next, we present parallelized ver-
sions of both algorithms to deliver even faster runtimes. Finally, we propose an
alternative sampling strategy to efficiently handle class-imbalanced data. The
distinctive property of the proposed method is that it directly integrates the
cost-proportionate sampling into the CPA optimization process, unlike the other
sampling approaches based on the reductions idea of [24]. In other words, sam-
pling is carried out iteratively, such that no information is discarded from train-
ing examples as in “one-shot” sampling methods.
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FP247758: Trustworthy Eternal Systems via Evolving Software, Data and Knowl-
edge (EternalS).
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Abstract. Generalizations of chance corrected statistics tomeasure inter-
expert agreement on class label assignments to the data instances have tra-
ditionally relied on the marginalization argument over a variable group of
experts. Further, this argument has also resulted in agreement measures
to evaluate the class predictions by an isolated classifier against the (mul-
tiple) labels assigned by the group of experts. We show that these mea-
sures are not necessarily suitable for application in the more typical fixed
experts’ group scenario. We also propose novel, more meaningful, less vari-
able generalizations for quantifying both the inter-expert agreement over
the fixed group and assessing a classifier’s output against it in a multi-
expert multi-class scenario by taking into account expert-specific biases
and correlations.

Keywords: Agreement statistics, classifier evaluation, multiple experts.

1 Introduction

Performance evaluation of learning algorithms over data for which deterministic
(true) labeling is unknown comes with unique issues. When the ground truth is
known, the evaluation consists of calculating a loss function between the true
labels and the ones predicted by the classifier. An indicator loss function is used
in the case of classification algorithms resulting in an accuracy estimate. How-
ever, various relevant application scenarios exist where expert-labels are sought
since the true labels cannot be determined due to one or more issues such as
inadequate data acquisition, limited knowledge of the application domain and so
on. Note that the expert can also be an automatic labeling process (e.g., a clas-
sifier). Further, labels from multiple experts are typically obtained to mitigate
the variability in individual estimates1. Examples of such applications include
tasks such as medical image segmentation or alignment of stock price move-
ment prediction approaches with other market indicators (e.g., market analysts’
predictions). With technological advances such as Amazon’s Mechanical Turk2

1 In this paper, we do not consider novice or extremely imperfect label generation
processes, including experts.

2 http://www.mturk.com
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(AMT), obtaining such labels for various human intelligence tasks is becoming
increasingly easier.

It has been widely argued that chance agreements, resulting from experts’
natural labeling propensities, should be taken into account while measuring
inter-expert agreements. This is also the case when evaluating a classifier’s per-
formance, both against true (or even single expert generated) labels and against
labels obtained from a group of experts. This argument resulted in various chance
corrected agreement statistics such as Scott’s π statistic (Scott 1955) and Co-
hen’s kappa (Cohen 1960) measure (see (Kuncheva 2004, Japkowicz and Shah
2011) for discussion).

We consider the general form of this problem. Given a dataset S each of whose
instances has been labeled by one of r experts, two quantities of interest need to
be quantified. First, the extent of agreement among the r experts generating the
labels, called the Inter-expert or Inter-rater agreement; and, Second, the extent
to which the labeling output by a new classifier r agrees with those of r experts
as a group.

With regard to measuring the inter-expert agreement, however, the earlier at-
tempts such as Cohen’s kappa estimate resulted in statistics that applied only to
binary classification scenarios over two sets of labels. One of the famous general-
izations of Cohen’s κ statistic was proposed by Fleiss (1971), denoted here by κF

and has since been projected to be a standard in measuring inter-expert agree-
ment (even hard coded in toolkits such as WEKA (Witten and Frank 2005)).
Moreover, attempts motivated by argument along the lines of Fleiss (1971), al-
though few, have also been made to quantify the agreement between a classifier
(or an isolated expert) and a group of experts. One of the recent generalizations
in this tradition has been that of Vanbelle and Albert (2009) that we will discuss
later (we denote the unweighted variant κ̂ in (Vanbelle and Albert 2009) here
by κva).

In both these cases, the typical approach has been that of marginalizing over
the experts comprising the group, under the variable expert assumption that each
individual expert in the group comes from a (much larger) pool of experts and
is interchangeable as long as the size of the group remains fixed. Marginalization
over experts refers to obtaining probabilistic estimates of random assignment of
a label to an example by a random expert. Since the experts need not be the
same over instances in the variable expert assumption, this amounts to obtaining
such estimates from the pool of all the labels by all the experts taken together.
However, we contend that such estimation is not suitable over a fixed group of
experts. In this case more information on correlated expert behavior is avail-
able and needs to be taken into account. By ignoring the expert specific biases
and their correlations, the marginalized estimates invariably lead to pessimistic
agreement measurements characterized by a higher variance in the fixed expert
group scenario. In addition, the marginalization approach has more serious im-
plications when there is a high heterogeneity in expert biases. Further, measures
such as κva, motivated by similar arguments, also suffer from similar limitations
when applied to the fixed expert scenario.
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This paper proposes agreement statistics for measuring agreement between
and against a group of r fixed experts. In particular, for inter-expert agreement,
we propose a generalization of Cohen’s kappa statistic to the case of multiclass
classification (nominal scale) by a fixed group of experts. The proposed general-
ization has the property that it reduces to the classical version of Cohen’s kappa
in the case of binary classification by two experts. We then use this statistic to
obtain a measure of agreement of a new classifier against the fixed group of ex-
perts. This argument results not only in tighter agreement statistics but also in
more meaningful treatment of chance agreement as we will see below. A point to
note here is that we do not assume existence of ground truth and as such neither
attempt to learn the raters’ behavior nor to obtain an estimate of the ground
truth. Attempts along these lines have been made but differ in the inherent
assumptions of the framework (see, for instance, (Raykar et al. 2010) which ex-
tends the STAPLE approach of (Warfield et al. 2004), or (Whitehill et al. 2009)
that, based on different premise, propose estimating ground truth from multiple
labels and also model the expertise of each labeler). This work also differs from
the recent works in learning from crowds (e.g., (Snow et al. 2008)) settings in
that we assume a setting in which the experts are assumed to be fixed and focus
on obtaining evaluative estimates, as well as from works in developing probabilis-
tic models (e.g., (Yan et al. 2010)) on annotater expertise to provide an estimate
of true label in that we do not assume a determinable ground truth.

The rest of the paper is organized as follows: Section 2 proposes a new mea-
sure for inter-expert agreement estimation by treating chance agreement in a
more coherent manner w.r.t. the observed agreement. Based on this, Section 3
then introduces a novel measure to estimate agreement between a classifier and
a fixed group of experts. Both this sections also contrast the proposed measures
with their respective marginalization-based counterparts. Section 4 provides an
insight into both asymptotic and empirical behavior of the proposed statistics
along with the crucial differences from related metrics. These insights are em-
pirically supported by some results on synthetic and real data in Section 5.
Section 6 discusses some related approaches along with their limitations with
regard to fixed expert group scenario. Finally, we conclude in Section 7.

2 Measuring Inter-expert Agreement

Let S = {i1, . . . , in} denote a dataset with n instances. Each instance i ∈ S is
assigned one of the k class labels from

{
l1, . . . , lk

}
by a group R of r experts.

By cij we denote the number of experts assigning instance ii to class lj. Also,
cpj denotes the number of instances assigned to class lj by expert p. Note that
the measures such as κF (as well as κva) that marginalize over experts assume
R ⊂ R where R denotes a pool of experts from which R is drawn for different
instances. However, under our setting R is considered to be fixed as is the case
in many typical applications of the kind mentioned above.

Given any agreement statistic A, a chance corrected agreement estimate can
be defined as κ = ES(A)−E(A)

maxS(A)−E(A) where ES(A) denotes the average empirical



194 M. Shah

agreement between the experts on dataset S, E(A) denotes the true expecta-
tion of A and maxS(A) denotes the maximum achievable agreement between
the experts on dataset S. Various characterizations of the agreement statistic A
lead to different agreement estimates. For instance, Cohen’s κ assumes A to be
proportion of instances on which two raters agree in a binary classification sce-
nario. Consequently, the true expectation measures the probability that these
raters will agree just by chance (based on their individual labeling probabili-
ties/biases) on a random example. In this sense, different agreement estimates
attempt to capture different characteristics of the scenario to obtain assessments
of rater agreements obtained above and beyond their coincidental concordance,
also referred to as chance agreement (the expectation).

For notational simplicity, let us denote Ao = ES(A), Ae = E(A) and Amax =
maxS(A). Hence,

κ =
Ao − Ae

Amax − Ae
(1)

We adopt a pairwise agreement statistic for A to model the expert agreements.
By taking into account the agreement between all the individual pairs of experts,
we can quantify the overall observed agreement among the r experts as:

Ao =
1
n

n∑
i=1

Ao(ii)=
1
n

n∑
i=1

k∑
j=1

Ao(ii, lj) =
1
n

n∑
i=1

k∑
j=1

1
r(r − 1)

∑
p∈R

∑
p′∈R,p′ �=p

epij · e
p′

ij

where Ao(ii, lj) is nothing but the proportion of pairwise agreement between
experts over an instance ii assigned to class lj out of a total of r(r − 1) possible
expert pairs; epij = 1 if the expert p assigns instance ii to class lj and zero oth-
erwise. Notice that this includes the duplicate pairs of experts as well. However,
we adhere to this more general form since potentially the pairwise costs may be
asymmetric. Weights to take into account these asymmetric costs can then be
easily integrated in this form.

The above computation yields:

Ao =
1
n

n∑
i=1

k∑
j=1

[ 1
r(r − 1)

cij(cij − 1)
]

(2)

This agreement criterion has been widely utilized including the case of κF .
The measures assuming a variable expert case obtain the chance agreement by
relying on marginalization over the experts. For instance, Fleiss (1971) used
Ae =

∑k
j=1 c

2
.j where c.j = 1

nr

∑n
i=1 cij . Replacing this in Equation 1 and set-

ting Amax = 1 gives the κF coefficient. However, this results in an excessively
optimistic estimate over chance agreement which in turns gives a very conser-
vative agreement statistic. For unique pairs of experts, the expectation of the
pairwise A statistic has been discussed by (Hubert 1977). We use a similar ar-
gument for the more general case of all possible pairs used in Ao of Equation 2
and obtain, for the fixed experts case:
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Ae =
k∑

j=1

Ae(lj) =
k∑

j=1

1
r(r − 1)

∑
p∈R

∑
p′∈R,p′ �=p

[
vp

j v
p′

j

]
(3)

where Ae(lj) quantifies the pairwise chance agreement between the experts on
any given class label lj such that vp

j denotes the probability with which the
expert p assigns a random instance to class lj . The empirical estimate of Ae can
be obtained from the data as:

Ae =
k∑

j=1

1
r(r − 1)

∑
p∈R

∑
p′∈R,p′ �=p

[
cpj

n

cp′j

n

]
(4)

Using Ao and Ae defined in Equations 2 and 4 respectively, along with Amax =
1 in Equation 1, we get the desired inter-expert agreement statistic as:

κS =

∑n
i=1

∑k
j=1 cij · (cij − 1) − 1

n

∑k
j=1

∑
p∈R

∑
p′∈R,p′ �=p[cpjcp′j ]

nr(r − 1)
[
1 − 1

n2r(r−1)

∑k
j=1

∑
p∈R

∑
p′∈R,p′ �=p[cpjcp′j ]

] (5)

Note that this statistic reduces to the classical version of Cohen’s Kappa for the
case of k = r = 2.

3 Measuring Agreement against a Group of Experts

Let r denote a new classifier (or expert) with rij being unity if r assigns a label
lj to instance ii and zero otherwise. Since we assume r to be a discrete classifier,
rij can be interpreted in a probabilistic sense.

In this discrete classification scenario, one way to measure the agreement of r
against R would be to measure the agreement of label assigned by r against the
proportion of experts from R over certain class of interest lj while controlling for
other classes (that is, mapping it to a binary problem by assigning 1 to lj and
0 to all other classes), in a fashion similar to the IntraClass kappa Coefficient
(ICC) (Kraemer 1979). Similarly, an empirical estimate over the expectation of
this statistic (the chance agreement) could be obtained by marginalizing over this
proportion (under variable assumption of R sampled from R for each instance)
in conjunction with the label assigned by r. Using these and then adjusting for
the maximum achievable agreement can give us the extent to which r agrees with
R. This one-against-all approach can then be extended to multi-class scenario
by iterating over classes with a different lj being set to 1 in each iteration.
This is the approach adopted by Vanbelle and Albert (2009), referred to here
as κva. However, the problems with this approach in the fixed experts’ group
scenario, are obvious. First is, of course, related to its formulation which ignores
interaction biases over classes other than the class of interest since these classes
are lumped together while mapping the problem to the binary case (although
the parameter estimation takes the general form and is directly computable).
Moreover, due to the implicit assumption over variable R ∈ R, it marginalizes
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over the expert biases. We propose an alternate measure for the fixed R case
based on the consideration of the κS measure derived above.

Extending our notion of pairwise agreement between experts in R on each
example, the overall observed agreement between r and R can be obtained as:

Ao = Ei∼S[Ao(ii)] =
1
n

n∑
i=1

Ao(ii) =
1
n

n∑
i=1

k∑
j=1

rijAo(ii, lj) (6)

where Ao(ii) is the agreement between r and the group of raters over all the
classes, with Ao(ii, lj) as defined in Equation 2.

Next, Ae for this case denotes the overall chance agreement between r and
the group of experts R. Its empirical estimate can be obtained analogous to our
previous discussion as:

Ae =
k∑

j=1

rj · Ae(lj) =
k∑

j=1

[
rj · 1

r(r − 1)

∑
p∈R

∑
p′∈R,p′ �=p

[
cpj

n

cp′j

n

]]
(7)

where rj = Ei∼Srij = 1
n

∑n
i=1 rij is the probability of the rater r classifying a

random example to class lj.
The next important quantity to evaluate is the maximum achievable agree-

ment Amax, between r and the group of experts R. Note that the earlier measures
assumed this to be unity (see, e.g., (Schouten 1982)). This turns out to be a sig-
nificant limitation since Amax = 1 if and only if all the raters in R agree on
all the instance labels and further when r agrees with these labels on all the in-
stances. That is, this assumes κS to be unity as a pre-condition for the measure
to achieve perfect score. However, this does not reflect the goal of assessing the
extent of agreement of the classifier labeling with that of the group R.

This is a crucial point. What we are interested in is the maximum agreement
that the classifier r can achieve against the combined labelings of R indepen-
dent of the extent of agreement achieved among experts in R (of course still
requiring at least some degree of inter-expert agreement for group qualification).
Hence, the maximum agreement that r can achieve would be when it assigns a
labeling such that each assigned label corresponds to the label on which there is
a maximum agreement actually obtained among the experts in R.

With this consideration, we define the maximum possible agreement in our
case as:

Amax =
1
n

n∑
i=1

max
j
Ao(ii, lj) =

1
n

n∑
i=1

max
j

( 1
r(r − 1)

(cij(cij − 1))
)

(8)

Hence, replacing Ao, Ae and Amax from Equations 6, 7 and 8 in Equation 1, the
new measure, denoted as S, of agreement between a classifier and a fixed group
of experts becomes:

S =
1
n

∑n
i=1

[∑k
j=1 rijAo(ii, lj)

]
−
∑k

j=1 rj ·Ae(lj)
1
n

∑n
i=1 maxj Ao(ii, lj) −

∑k
j=1 rj · Ae(lj)
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Notice that, unlike the measure of Vanbelle and Albert (2009), S enables incor-
porating the expert-specific bias in calculating both Ae and Amax by considering
R to be fixed. Also, S can be evaluated directly over all classes unlike the former.

4 Analysis

We present another main result of this work in the form of a theorem upper
bounding the variance of the proposed κS statistic and showing how this is a
more stable measure than κF in the fixed-experts case. The arguments for the
variance analysis for various agreement measures follow from the large sample
estimation of moments in the statistics literature (see, for instance, (Rao 2001)).
While we relegate the detailed analysis of empirical variances and associated
statistical significance tests for these statistics to the longer version of the paper,
we nevertheless deem it important to discuss the following theoretical result.

Theorem 1. Let κF and κS denote, respectively, the agreement statistics of Fleiss
(1971) and that proposed in Equation 5 computed on a population (dataset) with
large sample-size n where each of the sample has been assigned one of k labels by a
fixed group of r experts. If σ2(κ) denotes the variance of κ then we have that:

σ2(κS) ≤ σ2(κF )

with equality satisfied when the experts emulate the pool.

Proof. The hypothesis of no agreement suggests labeling according to E(A) (or
Ae). Let us analyze this chance agreement Ae with regard to κS as defined
in Equation 4. Under our formulation we can model the bias of each expert
assigning example i ∈ S to a class lj , j ∈ {1, . . . , k} as a multinomial b. That is,
the multinomial bp(lj) models the probability with which the expert p assigns
a label lj to a random example i chosen from S. The overall bias of expert p
can then be modeled by a vector bp = (bp(l1), . . . , bp(lk)). Hence, the chance
agreement Ae essentially models these probabilities of the pairs of experts for
each class which for the purposes of our analysis can be considered a constant.
Therefore, the variance of κS depends basically on the variance of the observed
agreement Ao of Equation 2. Then for large samples, for any agreement statistic
A, the variance of the metric κ = ES(A)−E(A)

max(A)−E(A) can be obtained as:

σ2(κ) =
σ2(A)

[max(A) − E(A)]2

For the case of κS statistic, disregarding the constants, the expectation of the
agreement statistic (denoted with superscript κS), is:

E(AκS) =
k∑

j=1

1
r(r − 1)

∑
p∈R

∑
p′∈R,p′ �=p

[
vp

j v
p′

j

]
(9)
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Consequently, the variance becomes:

σ2(AκS ) =
∑
p∈R

∑
p′∈R,p′ �=p

[ k∑
j=1

(vp
j v

p′

j (1 − vp
j − vp′

j )) + (
k∑

j=1

vp
j v

p′

j )2
]

(10)

Similarly, for the case of κF , without differentiating between the experts (un-
der the variable expert assumption) and disregarding constants, the expectation
of the agreement term becomes,

E(AκF ) =
k∑

j=1

c2.j (11)

Now, the variance σ2(AκF ) , using Equation 2 for Ao, can be approximated as:

σ2(
∑

j

c2ij) = 2r(r − 1)[
∑

j

(c2j ) − (2n− 3)(
∑

j

(c2j ))
2 + 2(n− 2)

∑
j

(c2j)] (12)

Note, however, the crucial difference between the no agreement hypotheses as-
sumed by κS and κF . In the case of former, we assume that experts label the in-
stances according to their respective biases while in the case of latter, we assume
that the labeling occurs in agreement with the marginals of the pool of experts.

Hence, it can be seen that the expectation E(AκS ) of Equation 9 is upper
bounded by E(AκF ) of Equation 11. Similarly, Equation 12 upper bounds Equa-
tion 10. Now, since both κS and κF consider all possible expert pairs, the con-
stants would be identical, i.e. n2r2(r − 1)2 in the denominator for the variance
calculation of both measures. This concludes the proof. �

Using similar arguments, the variance of S can be seen to be upper bounded
by the variance of κva. The sampling variances for S and κva can be com-
puted using the Jackknife or leave-one-out method (Efron and Tibshirani 1993,
Japkowicz and Shah 2011). For S, let S\i denote the agreement on the label
assignments of all the instances in S except ii. Calculating S\i repeatedly n
times leaving a different instance each time and subsequently averaging it can
then yield the pseudovalues.

4.1 Properties and Behavior

The marginalization argument for estimating Ae, such as that in κF , can result
in excessively pessimistic agreement estimates. That is, while such measures
estimate the observed agreement3 they do not measure the chance probabilities
over agreements. As a result the inter-expert correlations, partly as a result of
the variable experts assumption, are ignored. This not only results in a loose
estimate of Ae but can also yield less meaningful (even unwarranted negative)

3 The pairwise consideration highlight that it would take at least 2 experts to agree
on any given instance for the observed agreement to be non zero.
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values of agreement measure even when the empirical evidence is to the contrary,
for smaller values of Ao. We will illustrate this in the next Section. In the fixed
expert case, κS offers better consistency in the estimation of Ao and Ae.

Similarly, while κva depends on the proportion of experts with maximum
labels when computing Amax, S depends on the labels on which the pairwise
agreement over R is maximum. Hence, even when all the experts disagree over
labels for all the instances, Amax is not zero for κva while it is zero in the case
of S. The latter is indeed desirable in the fixed expert group case since in the
event of no agreement among the experts themselves (extreme variability), the
agreement of the classifier with any individual expert, being unrepresentative of
the group agreement, is rendered meaningless (even more so when k > r). Similar
differences exist in the computation of other quantities. The marginalization
argument when applied to the case of calculating Ae can also result in an overly
conservative, and sometimes less meaningful, estimates of κva in contradiction
with the the empirical evidence (as we will see in the next Section). There is
an important point to be made here. While, analytically, it can be seen that
κF is more conservative than κS , such a relationship need not exist between
κva and S since their estimates would depend not only on the expert labels but
also on their subsequent agreement with the new classifier. The contribution of
individual expert (even when it disagrees with all the others) is not zero for both
κF and κva.

5 Empirical Results and Discussion

We compare the behavior of the most commonly employed κF metric for inter-
expert agreement measurement against the proposed measure κS . With regard to
estimating the agreement of a classifier with group of fixed experts, we compare
the generalization proposed by Vanbelle and Albert (2009) denoted as κva with
the proposed S metric.

For both sets of comparisons, we use 4 different sized multi-class datasets
from UCI repository (Asuncion and Newman 2007) over WEKA implementa-
tions of 6 different classifiers in addition to their true labels. Further, we also
illustrate the limitations of κF in the fixed experts case with the help of syn-
thetic data. The main aims of the simulations presented here are two-fold: i)
illustrating the differences between the compared measures; and ii) highlighting
the discrepancies in the estimation of variable expert assumption based mea-
sures when applied to the fixed experts cases making them unsuitable for the
purpose. The datasets used include CMC (1473 instances, 3 classes), Car (1728
instances, 4 classes), Iris (150 instances, 3 classes) and Glass (214 instances, 7
classes) while the learning algorithms used are Support Vector Machine (with
linear kernel), Naive Bayes, C4.5 Decision Trees, 3-Nearest Neighbor, Ripper
and a Conjunction Rule learning algorithm. The reported results are over 10-
fold Cross Validation with default parameter values over learning algorithms4.
4 Note that model selection is not our main concern here since we aim to show the

difference in the agreement estimates.
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Finally, we illustrate these differences in a real world example of Syphilis Sero-
gen data (Williams 1976). Novel venues such as AMT can also yield relevant
data for such simulations. While data from learning from crowds scenario are
sometime publicly available (Snow et al. 2008), we are not aware of any relevant
AMT datasets available yet for the fixed experts case.

5.1 Evaluating Inter-expert Agreement

Let us first consider a simple synthetic dataset of 200 instances labeled by 4
experts (E1, E2, E3 and E4) into one of the 4 classes (L1, L2, L3 and L4) and
consider 5 different illustrative scenarios. The first label configuration “Hypo0”
denotes the case when on each instance all four experts disagree. We do this by
simply making E1 assign L1, E2 assign L2 and so on to all instances. Next, we
flip the first 100 labels of E1 from L1 to L2 and the last 100 labels of E2 from L2
to L1 so that these two experts agree on all the labels while still disagreeing with
E3 and E4 who themselves are in disagreement. This case is denoted “Hypo2”.
Next, from “Hypo2”, we let E3 assign L1 to the first 100 instances and L2 to last
100 instances so that E3 agrees with both E1 and E2 yielding dataset “Hypo3”.
We then obtain a dataset “Hypo4” where all experts assign L1, L2, L3 and L4
to the respective subsets of 50 instances and are in complete agreement. Finally,
We obtain a dataset “Hypo4a” that too simulates all experts in agreement but
this time all the experts assign L1 to the first 100 instances and L2 to last 100
instances. (Note that the suffix in the name of each synthetic variation denote
the number of experts in complete agreement). The results are presented in
Figure 1(a).

In the case of “Hypo0”, Ae > 0 for κF so that κF < 0. Note here that
there is a strict heterogeneity among experts’ biases in this case (e.g. E1 never
assigns any label other than L1, and so on) and the estimation of Ae using
the marginalization argument is not meaningful since it does not reflect the
probabilities of random label assignments. Unlike κF , Ae = 0 for κS . Similarly,
the marginalization argument over Ae results in negative value for κF in the

(a) Synthetic Cases (b) UCI Data

Fig. 1. Comparison of the proposed κS (kappa-S in figures) statistic against the Fleiss’
Kappa coefficient κF . Also shown are the corresponding estimates of chance agreements
in both cases. An absence of a bar indicates a zero value.
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event of partial agreement in the case of “Hypo2” data where E1 and E2 agree
on all the instances. Again, this is not desirable since, here, both the Ao and Ae

are solely based on E1 and E2 for classes L1 and L2. Keeping in view the label
assignment in these cases, κS gives a more realistic estimate. Note that κF → κS

as Ao → 1. This can be seen in the case of “Hypo4” and “Hypo4a” datasets.
However, even when Ao for both the measures is 1, the chance agreement is not
treated in the similar manner in these two cases.

Next, we compare the inter-expert agreement between the set of 7 label sets
obtained on the 4 UCI datasets, one from each of the 6 classifiers, and the true
labels of the instances, using both the κF and κS measures in Figure 1(b). As a
result of optimistically estimating the chance agreement by marginalization over
experts, κF is consistently more conservative than κS. However, the measures
seem to converge with increasing levels of agreement with κF → κS as the
agreement approaches unity. An example can be seen in the case of Iris datasets
where classifiers typically obtained a very high accuracy rate and are in high
agreement. However, the gap between the two measures is higher for moderate
to low agreement values.

5.2 Evaluating Agreement against a Group of Fixed Experts

We consider the UCI datasets to compare S against κva. For each case, the
experts’ group is simulated by taking into account the true labels along with
the two classifiers achieving highest 10-fold accuracy on each dataset. The (un-
weighted) κva and S are then estimated for each of the remaining classifiers
against the group. The results are presented in Figure 2. As can be seen, κva

consistently results in a conservative agreement estimate as compared to S in

Fig. 2. Comparison of the proposed S measure against the κva statistic for measuring
the agreement of isolated classifier (on horizontal axis) against expert labels composed
of the actual labels and outputs of SVM and Decision Trees for the case of Car, CMC
and Iris datasets; and of actual labels along with outputs of Ripper and 3-NN in the
case of Glass dataset. C1 and C4 represent 3-NN and Conjunction Rule respectively
in all datasets. C2 and C3 represents, respectively, SVM and NB in the case of Glass
data while NB and Ripper in the case of the other three datasets.
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these cases (at least partly due to marginalization). Note, in particular, the
case of Car and CMC datasets over the comparison of conjunction rule learner
against expert labels. While in both cases Conjunction rule learner obtains a
trivial classifier assigning class 1 to all the instances, it should be noted that this
class is highly overrepresented in these datasets (about 70% in CAR and 42% in
CMC). While κva gives a less meaningful null estimate in both these cases, this
scaling is better captured by the S measure as can be seen in the last column of
Figure 2. Also, the two measures seem to converge as Ao approaches unity (see
e.g., the Iris dataset over C1, C2 and C3 in Figure 2).

5.3 Illustration on Real Data

We illustrate the proposed indices of agreement on the Syphilis Serogen data
of Williams (1976) who presented result obtained by three reference laboratories
(denoted by Ref-1, Ref-2 and Ref-3) and an additional participant laboratory
(denoted by T) on 28 specimens (data is shown in Table 1). Each specimen

Table 1. Syphilis Serogen data of (Williams 1976) used in Section 5

# T Ref-1 Ref-2 Ref-3

1 RE RE RE RE
2 RE RE RE RE
3 BL NR NR NR
4 BL NR NR NR
5 BL NR NR NR
6 RE RE RE RE
7 BL NR NR NR
8 RE RE RE RE
9 NR NR NR NR
10 NR NR NR NR
11 RE RE RE RE
12 RE RE BL BL
13 RE RE RE RE
14 RE RE BL BL
15 RE RE RE RE
16 RE RE NR BL
17 RE RE NR BL
18 RE RE RE RE
19 RE RE RE RE
20 BL BL NR NR
21 RE RE RE RE
22 BL NR NR NR
23 BL BL NR NR
24 BL BL NR NR
25 RE RE RE RE
26 NR NR NR NR
27 RE RE RE RE
28 NR NR NR NR
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was classified into one of the three classes viz. Non Reactive (NR), Borderline
(BL) and Reactive (RE). The additional participant laboratory also classified
the 28 specimen into one of the three classes. The same dataset was also used
by Vanbelle and Albert (2009, Table 3). For both κF and κS , we get Ao =
0.81 between the three reference laboratories. The difference, analogous to the
synthetic cases, appears in terms of optimistic estimate of Ae = 0.412 in the case
of κF . In the case of κS , we obtain Ae = 0.272. Hence, we obtain κF = 0.676
and κS = 0.738. We can see how κF results in a pessimistic agreement estimate
due to overestimating chance agreement. Also, note the difference in the results
obtained for κS as compared to the agreement statistic such as ICC which was
found to be 0.68 as reported by Vanbelle and Albert (2009).

Similarly, when comparing the three reference laboratories to laboratory T,
we obtain, for κva: Ao = 0.655, Ae = 0.362 and Amax = 0.893. On the other
hand, for S, we get: Ao = 0.571, Ae = 0.105 and Amax = 0.81. This gives
κva = 0.551 and S = 0.662. These results too demonstrate the manner in which
the two measures differ in the estimation of various quantities.

6 Related Work

In addition to Fleiss’ coefficient, various other general inter-expert agreement
measures such as the well known ICC (Kraemer 1979) or context-specific mea-
sure of Schouten (1982), have also appeared (e.g., see (Kuncheva 2004) for a
discussion on some such measures in the context of classifier fusion). However,
these measures too typically marginalize over the experts.

In this respect the proposed κS statistic is more in line with the arguments
of Berry and Mielke Jr (1988) who propose a generalization over interval mea-
surements and multiple experts by way of measuring the extent of disagreements
between the experts in the l2-norm setting. However, the disagreement measured
by the Δ function there need not reflect the corresponding agreement under the
l2-norm. Furthermore, it requires rescaling the label assignments.

With regard to measuring the agreement against the group of experts, another
commonly applied approach is the consensus approach where, for each instance,
the label assigned by a majority (defined by a consensus threshold) of the experts
is considered as the true label (see, for instance, (Soeken and Prescott 1986,
Smith et al. 2003)). This simplifies the subsequent evaluation against a classifier
by mapping the problem to a deterministic label matching problem amenable to
more conventional techniques such as Cohen’s kappa. However, such consensus
labeling makes the output dependent on the consensus threshold and has serious
limitations. In addition, issues such as not accounting for experts’ dispersion as
well as difficulty in dealing with instances with no consensus makes this approach
highly contentious (Eckstein et al. 1998, Salerno et al. 2003, Miller et al. 2004).

Approaches proposed to bypass such consensus requirement such as those
of Schouten (1982), Williams (1976) and Light (1971) either do not address the
problem of interest directly or pose issues such as introduction of bias or ignoring
interdependence of experts (Vanbelle and Albert 2009). Note, in particular, that
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the approach of Schouten (1982), even though applied in fixed expert settings,
disregards the interdependence of experts when measuring agreement of one
expert against others in the same group.

Another important caveat in above approaches lies in the assumption over the
maximum achievable agreement between the classifier and the group of experts
being unity. This caveat has profound implications since it makes the assess-
ment of classifier performance dependent on the inter-expert agreement. Such
measures, hence, can achieve a perfect score for the classifier only when the
inter-expert agreement is unity which essentially obviates the need for (and util-
ity of) multiple experts altogether. Vanbelle and Albert (2009) also noted these
limitations and proposed an alternative general measure (κva discussed earlier).
As mentioned above, κva too followed the marginalization argument in a binary
classification case. It was then extended to the multi-class case in an indirect
manner using an iterative one-against-all strategy5. We compared κva against S
on various criteria above.

7 Conclusion and Future Work

In this paper, we noted the main limitations of measures based on marginaliza-
tion over experts rendering them unsuitable for application in the typical fixed
experts’ group scenario. Among the crucial issues lie the excessively conservative
agreement estimate obtained by the inter-expert agreement measures such as κF .
Moreover, these measures, as seen in both theoretical arguments and empirical
results, can yield less meaningful values when the heterogeneity in the expert
biases is high. We also proposed two novel statistics, respectively, to measure
inter-expert agreement (κS) between, and agreement of a classifier against, a
fixed group of experts (S) in the general case of multiple classes and multiple
experts. The main advantage of the proposed measures can be seen in terms of
their accounting for expert specific biases and correlations yielding tighter agree-
ment assessments. The proposed measure S also scales the maximum achievable
agreement in accordance thereby allowing more meaningful characterization of
classifier’s performance that is independent of the agreement achieved within
the expert group. Finally, in contrast to the marginalization based measures,
κS reduces to the classical Cohen’s κ in the binary classification case over two
label sets. The future work includes investigating the behavior and dependence
of proposed statistics, as well as extending them, to testing scenarios such as
asymmetric loss, bias, prevalance and class imbalance. Another area worth in-
vestigating is the sample size requirement for the data over classes since the
expert specific biases are obtained from the data empirically. A sparse class
can in principle affect such estimates adversely (of course, even in this case,
the assessed biases are best that can be obtained in accordance with both the
maximum likelihood as well as information-theoretic arguments). Finally, the
proposed measures can also be generalized for probabilistic classifiers.
5 This effectively generalizes Fleiss’ kappa, or alternatively Scott’s π statistic and not

Cohen’s kappa.
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Abstract. Transfer learning techniques have witnessed a significant de-
velopment in real applications where the knowledge from previous tasks
are required to reduce the high cost of inquiring the labeled information
for the target task. However, how to avoid negative transfer which hap-
pens due to different distributions of tasks in heterogeneous environment
is still a open problem. In order to handle this kind of issue, we propose
a Compact Coding method for Hyperplane Classifiers (CCHC) under a
two-level framework in inductive transfer learning setting. Unlike tradi-
tional methods, we measure the similarities among tasks from the macro
level perspective through minimum encoding. Particularly speaking, the
degree of the similarity is represented by the relevant code length of the
class boundary of each source task with respect to the target task. In
addition, informative parts of the source tasks are adaptively selected
in the micro level viewpoint to make the choice of the specific source
task more accurate. Extensive experiments show the effectiveness of our
algorithm in terms of the classification accuracy in both UCI and text
data sets.

1 Introduction

Transfer learning [20] provides a solution of how to learn a target task in real ap-
plications where a large amount of auxiliary data from source domains are given.
However, the negative transfer problem [13] tends to happen if the distributions
of the source and the target domains are too dissimilar. A typical example is
about language study, where learning English is the target task, and learning
Japanese and French are regarded as the source tasks. It would be much effective
for a learner to study English if he (she) is familiar with French. However, the
learning process would be impeded if the learner only masters Japanese, because
the lexical and semantic structure of Japanese is different from that of English.
Negative transfer is more likely to happen once we underestimate the side effect
resulting from the distribution differences of multiple source tasks [20], which is
common in real applications.

To solve this problem, it is reasonable to measure the similarity between
tasks and instances in heterogeneous environment [2,9,15,19] by considering the
distribution dis(similarity) of different domains. For example, [15] proposed a
dictionary-based compression dissimilarity measure between two instances in
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different domains for clustering. In this paper, we confine our focus on the classi-
fication problems using hyperplane lassifiers. Attempts to avoid negative transfer
are made in transfer learning for classification by evaluating the distance between
tasks [2,3] or distance between two instances [22,26,4] in different domains. For
example, [2] tried to find a common representation among different groups of
tasks which can be regarded as the transferred information. A novel kernel func-
tion is sophisticatedly designed in [4] by exploiting the Gaussian process model.
Although this method is able to model the negative similarity between two in-
stances, it can be only applied to one source task. We note that also, measuring
the similarity between only tasks has a limited power, since the negative transfer
would be induced when some instances are considered “too dissimilar” in one
task compared to another, even if the the degree of the dissimilarity between
the two tasks is very small. In addition, in the typical setting of the transfer
learning, the labeled information is insufficient in the target task. It is difficult
to get a reliable classifier by only considering the similarities between tasks [3].

Unlike the traditional methods above, we establish a different paradigm by
proposing a method that consists of macro level and micro level evaluations,
in order to spot relevant portions of the source tasks with the target task. Our
fundamental idea is to measure the similarity in the macro level (task level) by
compact coding which is inspired by the Minimum Description Length Principle
(MDLP) [16]. The MDL Principle is built with a solid theoretical foundation
that is suitable for model selection to avoid overfitting. It is successfully applied
in the inductive transfer learning problem [10], but only confined to one source
task and one target task. Put it another way, it is radical to consider that how
to select informative knowledge from multiple source tasks can be conceptually
regarded the same as the model selection. In our method, informative parts of
the source tasks are adaptively selected in the micro level viewpoint to make the
choice of the specific source task more accurate.

2 Problem Setting and Preliminaries for Encoding

In this paper, we deal with the inductive transfer learning problem where sev-
eral source tasks are available. There is a task set S from the source domain
which contains K tasks Si (i = 1, ...,K), one target training data set T and
one test data set E from the target domain. Instances in Si and T are la-
beled. All instances in Si, T and E share the same attribute vector of m di-
mensions. From each data set, we obtain a hyperplane classifier wx = 0, where
x = (x1, x2, ..., xm, 1). The weight vectors of hyperplanes for the source tasks
are denoted by w1,w2, ...,wK , where wi = (w1

i , w
2
i , ..., w

m
i ) and our objective is

to find the weight vector wt for the target task. In the transfer learning setting,
the number of labeled instances in the target domain is assumed to be much
smaller than that in the source domain. Although the labeled data is not suffi-
cient to obtain an accurate hyperplane classifier on T , we can still draw a rough
estimation using the limited labeled data, which is denoted by vt.

We provide here the preliminaries for MDLP, which may be viewed as a prin-
ciple for avoiding overfitting, i.e., it is a means to balance the simplicity of a
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classifier and its goodness-of-fit to the data [7,11]. It states that the best classi-
fier hbest is given as follows.

hbest = arg min
h

(− logP (h) − logP (D|h)) (1)

where h is a hypothesis on a data set D, and P (h) and P (D|h) represent the
probability that h occurs and the conditional probability that D occurs given h,
respectively. Consider the problem of encoding h as a binary string. According
to the coding theory [6], the length of the code string for h using an optimally ef-
ficient code is − logP (h). Similarly, − logP (D|h) may be regarded as the length
of the code string for D encoded with the help of h. In the MDLP for classifica-
tion, these code lengths are calculated in a problem setting where the receiver
has D except for the class labels of examples in D. The sender first sends h,
then the class labels of examples in D with the help of h. The code used in this
setting is a prefix code, in which no extension of a code word can itself be a
code word. Intuitively, the hypothesis chosen by the MDLP coincides with the
maximum a posteriori hypothesis.

The MDLP can be interpreted as assigning priors to theories based on a com-
pact coding, i.e., P (h) is defined by the coding method for calculating − logP (h).
It is important that the coding method is efficient otherwise the assigned priors
deviate from the philosophy of the MDLP.

We then consider a problem of encoding a binary string of length a which
consists of b binary 1s and (a− b) binary 0s under the framework of the sender
and the receiver problem. An obvious method is to send the number b of binary
1s with the code length log(a+1) then specify the positions of binary 1s with the

code length log
(
a
b

)
[7,11]. We hereafter call this method a binary coefficient

method and denote the required code length with Θ (a, b) as follows.

Θ (a, b) ≡ log(a+ 1) + log
(
a
b

)

3 Compact Coding for Hyperplane Classifiers in
Heterogeneous Environment

We provide in this section a detailed explanation of the coding scheme for our
CCHC. Given a small number of labeled instances in the target domain, it is
difficult to measure the similarity between a source task and the target task.
Suppose there are two source tasks S1, S2 and one target training data set T ,
as shown in Fig. 1. The corresponding weight vectors of the hyperplanes are w1,
w2 and vt, w1 = {1, 1,−3}, w2 = {1, 0,−1} and vt = {1, 0,−2}.

Intuitively, by applying w1 and w2 to T , we see from Fig. 1 that both w1

and w2 have 1 wrong prediction on T and it is difficult to tell which one is more
similar to the target domain if no other information is provided.

To deal with such a problem, our main idea is to divide the classification
task into a two-level evaluation: in the macro level, we evaluate the degrees of
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Fig. 1. An example of the three hyperplanes

similarity of the source tasks with the target task and in the micro level, we
try to select useful parts of a relevant source task. In such a way, we intend
to avoid negative transfer by adaptively selecting more relevant data from the
source domain for training the classifier, and exclude those data which bring
negative effects on the results.

Our algorithm includes two sub procedures:

1. Macro level: Sort Si in descending order on the degrees of similarity with
the target data set T .

2. Micro level: Divide the data set of the related source task into several
components and select related parts to help training the classifier in the
target domain.

3.1 Macro Level: Arrange Related Tasks

The objective of the macro level evaluation is to sort the source tasks based on
the degrees of similarity with T . In the general MDLP framework, the model
space contains candidates of models induced from the data, and the best model
is obtained by minimizing the two-part code length. The model that fits the
data more is assigned with a shorter code length. Consider w1,w2, ...,wK are
in the model space. Since each of the wi is induced from the source task Si,
we call P (wi|Si) a posteriori probability for the source task Si and a wi that
compresses the data well has a higher P (wi|Si). By substituting Si with T , we
infer that if P (wi|T ) is high, wi is assumed to be a good hypothesis which can be
induced from T . In such a case, we may say that Si and T are similar. Therefore,
P (wi|T ) could be used as a degree of similarity between Si and T . Taking the
negative logarithm function, the best model w∗ to explain the data T is the one
that minimizes the sum of the length, in bits, of the description of the model
and the length of the description of the data when encoded with the help of the
model. We could sort w1,w2, ...,wK in descending order of P (wi|T ) as follows:
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P (wi|T ) ∝ P (T |wi)P (wi)

Or in ascending order of the code length (− logP (wi) − logP (T |wi)).
Although the labeled information in T is not sufficient to obtain the optimal

hyperplane in the target domain, vt could be adopted to improve the perfor-
mance as it is a rough estimation of the underlying hyperplane. We believe that
it can be used to help sorting the source tasks by evaluating the degree of similar-
ity between a source task Si and T . In the learning process, it can be iteratively
updated using transferred information from the source domain. Therefore, we
take vt into consideration to help coding the hyperplanes of the source tasks.
We need to sort wi in descending order of the posterior probability as follows:

P (wi|T,vt) ∝ P (T,vt|wi)P (wi)

It can be further decomposed as:

P (wi|T,vt) ∝ P (T |wi)P (vt|wi)P (wi)
∝ P (T |wi)P (wi|vt)P (vt)
∝ P (T |wi)P (wi|vt)

where P (vt) is neglected in the third line because we could not settle a proper
prior for vt due to the small size of T , and it is of the same value when we
compare different wi given the specific vt.

By taking the negative log function,

Li = − logP (wi|vt) − logP (T |wi) (2)

The best w∗ is the one that minimizes the two-part code length among all
the models. Note that by compact coding, an optimal code assigns shorter codes
to the model that suits the data most while others are given longer codes. This
principle also coincides with the principle of minimum encoding. As an exten-
sion of the coding method that searches for the best hypothesis among all the
candidates, we could use the code length as a similarity measure. Therefore, the
degree of similarity between one source task Si using the class boundary wi in
terms of the target task T can be represented by the code length as (2).

The first part is the complexity of one model given another and the second
part can be treated as the negative log-likelihood of the data given the model.
It is considered to be effective because the hyperplanes are concise summaries of
the data, and in the classification tasks, it makes sense to use class boundaries
in terms of T to measure the similarities between a source task and the target
task.

Now let’s consider the calculation of the first part by first introducing how
to encode a real number x under the assumption that x = μ is most likely,
where μ is also a real number. Let f be a continuous probability measure
on the real numbers. Here we legitimately assume that f is a Gaussian, f =
1/(2πσ2)1/2 exp(−(x− μ)2/2σ2). Then we need to determine the value of σ.
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The probability of x with precision ε is thus [25]:

P (x) =
∫ x+ ε

2

x− ε
2

f(x)dx ≈ εf(x) (3)

To obtain the variance σ, we assume that the probability of x = μ is q (0 <
q < 1), so we have

P (x = μ) = ε
1

(2πσ2)1/2
= q (4)

From (4), we can have that σ equals to ε/(2πq2)1/2, and in the calculation,
we need to set two parameters ε and q. q ought to be high because in our
coding scheme, x is more likely to take the value around μ. We set ε = 0.01 and
q = 0.8 throughout the paper. Note that, a general precision is adequate for our
similarity measure to distinguish different hyperplanes because the code lengths
would be uniform for each hyperplane under the same precision.

Let Λ(x, u) be the code length of sending x given μ,

Λ(x, u) = − log
(
ε

1
(2πσ2)1/2

e−
(x−μ)2

2σ2

)
= − log

(
qe−

π(x−μ)2q2

ε

)
(5)

Now we consider how to calculate − logP (wi), with the help of vt. vt is
taken into consideration because we want to use as much information as possible
that can be inferred from the small number of labeled instances in the target
task. Note that both wi and vt contain m entries, wi = (w1

i , w
2
i , ..., w

m
i ) and

vt = (v1t , v2t , ..., vm
t ). Consider the sender and the receiver’s problem, both the

sender and the receiver have vt in advance. To send wi, we assume that each
entry in wi is more likely to be approximate to the corresponding entry in vt.
Therefore, the code length of − logP (wi) with the help of vt should be

− logP (wi|vi) =
m∑

j=1

Λ(wj
i , v

j
t ) (6)

For the second part of (2), the class labels of all instances in T form a binary
string, and thus it is convenient for us to send only the wrong predictions of wi

on this string. Let ω(wi, T ) denote the number of misclassified examples on T ,

− logP (T |wi) := Θ(|T |, ω(wi, T )) (7)

Combining equations (6) and (7), we have the code length Li for wi on T :

Li =
m∑

j=1

Λ(wj
i , v

j
t ) +Θ(|T |, ω(wi, T )) (8)

Then the source data sets could be arranged in ascending order on the code
lengths with the target data set T . We have Lmin as the shortest code length
among the k code lengths.
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For the example in Table 1, by calculating the code lengths for each of the
hyperplane, we could obtain the following results:

L1 = Θ(|T |, ω(w1, T )) +
3∑

j=1

Λ(wj
1, v

j
t ) = 587.31bits

L2 = Θ(|T |, ω(w2, T )) +
3∑

j=1

Λ(wj
2, v

j
t ) = 297.22bits

Based on our similarity measure, w2 is more similar to vt than w1. That
means, the source data set S2 is more similar to the target task. Therefore, we
incline to select more information from S2 in the micro level evaluation.

3.2 Micro Level Evaluation

In the macro level evaluation, the source data sets are sorted in descending order
on the similarities with the target data set T , with indexes re-assigned from 1 to
K. Suppose we now intend to transfer S1 in the source domain to T , as some of
the data in S1 may not be useful, or sometimes harmful to the results, we need
to adaptively select some parts of the data in the micro level evaluation.

A source task Si is divided into ns parts (1 ≤ ns ≤ |Si|). Our objective is
to transfer only useful parts to T based on the coding method. Note that, if ns

equals to 1, all the instances in Si are transferred and if ns equals to |Si|, it
coincides with the instance-based transfer methods which evaluate all instances
in the data sets.

To divide the source data sets, a simple clustering method such as k-means
can be adopted in our framework. When we select one related source task Si,
we first perform clustering on this data set, which generates ns clusters, namely
S1

i , S
2
i , ..., S

ns

i . Each cluster is then regarded as a data set and is evaluated in
the same way as the macro level by compact coding, with a code length assigned
to evaluate the degree of similarity to the target task T .

3.3 The Transfer Learning Algorithm

We provide our CCHC algorithm as follows:

Algorithm CCHC
for i = 1 to K

calculate Li for each Si by (8), obtain Lmin

sort Si based on the ascending order of Li

TR = ∅
for j = 1 to K

perform clustering on Sj , obtain St
j (t = 1,...,ns)

calculate lt for each St
j by (8)

sort St
j based on the ascending order of lt

for t = 1 to ns
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TR = TR ∪ St
j with the shortest lt

perform classification by SVM on TR and obtain w′

calculate L′ = − logP (w′|vt) − logP (T |w′)
if L′ < Lmin

Lmin = L′

vt = w′

Sj = Sj − St
j

else break
wt = vt

output wt

where TR denotes the training set for the classification task. lt represents the
code length for each part of the source task in the micro level evaluation.

4 Experiments

4.1 Experimental Setting

We perform experiments on the data sets from the UCI repository1 and the Text
data sets. The three data sets in the UCI repository used in the experiments are
mushroom, splice and krvskp. We adopted a pre-processing method [22,26] on
them to fit the transfer learning scenario. For the Text data sets, we choose
20NewsGroup data sets2.

The mushroom data set has 8124 examples with 22 attributes in each exam-
ple and one binary class label. The splice data set has 3190 examples with 60
attributes in each example and one binary class label. The mushroom data set
is split into the source task and the target task based on the attribute stalk-
shape, the source task contains examples whose stalk-shape are tapering and
the examples in the target task have stalk-shape of enlarging. The splice data
set is divided into two based on the first attribute. If the first attribute value of
an example is “A” or “G”, it is added into the target task, otherwise it is added
into the source task. [22] and [26] show that the splitting method could ensure
different distributions between the source and the target tasks. The krvskp data
set has 3196 examples with 36 attributes in each example and one binary class
label. Since it is not included in [26], we adopt the same strategy to split the
data into two. The data set is divided based on the eleventh attribute as it shows
a result similar to the splice data set. The source and the target tasks contain
examples with the attribute value f and t, respectively.

The number of examples in the source task for the mushroom data, the
splice data and the krvskp data is set to be 1000 which is the same as in [26].
We investigated the influence of the number of instances in the target data set,
and the noise level in the target data set. The noise is added by reversing the
correct class labels of the examples in the training data sets.
1 http://archive.ics.uci.edu/ml/
2 http://people.csail.mit.edu/jrennie/20Newsgroups
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We follow the splitting strategy on 20Newsgroups data sets as [22]. Three
data sets are chosen which are rec vs talk, rec vs sci and sci vs talk. For
example, in rec vs talk data set, all the positive instances are from the category
rec, while negative ones are from the category talk. The instances in the source
domain and the target domain are selected based on the subcategories. In the
experiments, each of the target tasks in the three data sets are chosen as the
single target task, and the training data in the three data sets are all chosen as
the source tasks. In such a way, S contains 3 different tasks as S1, S2 and S3 and
we test our algorithm in this transfer learning setting. Note that, 20Newsgroups
data is regarded to be class-balanced. The challenging issues such as handling
class-imbalanced data will be considered as one of our future works.

Our CCHC is compared with the COITL [26] and TrAdaBoost [22], which are
two state-of-the-art instance-based methods in transfer learning, Active Transfer
(AT) [23] which is a feature-based method, and k-NN with k = 3 as well as the
basic SVM. We follow the values of the parameters in the original papers. The
source data sets are merged into one data set for these algorithms. k-means clus-
tering method was chosen as the clustering method in our micro level evaluation.
After carefully testing the parameters, for mushroom, splice and krvskp data
sets, k is set to be 4 and for the remaining data sets, k=2. All the experiments
are repeated ten times and we report the average results. The hyperplanes are
obtained by C-SVC with polynomial kernel [5], which are considered effective to
data with a large number of features and without class noise.

For the UCI data sets, each of mushroom, splice and krvskp has one source
task and one target task, CCHC is thus used only in the micro level to select
useful parts. For the Text data sets, both the macro level and the micro level
evaluations are examined. We mainly test two factors in the experiments. One
is the different number of instances in the target task. We set |T | equals to 50
and 100, respectively. The other is the noise level in the target task from 0%
to 15%. For example, when |T |=50 and the noise level is 15%, there are only a
small number of instances correctly labeled and this number can be regarded as
“few”. We also check the number of source tasks and the number of clusters in
each task that are transferred to the target task.

4.2 Experimental Results

Table 1, 2 and 3 provide the results on the mushroom data set, the krvskp
data set and the splice data set, respectively. As the general tendency, the error
rates become larger with the noise level increases from 0% to 15%. Also, given
more labeled instances in the target domain, such as |T | = 100, the results are
obviously better. It can be observed from the tables that our method outperforms
the other methods in most conditions. For the mushroom data set in Table 1,
however, our method is outperformed by others in a small number of conditions
such as in 15% noise level while |T | = 50. The possible reason is that,mushroom
data sets are well organized and it is simple to find the underlying hypotheses
even with a few labeled instances. The improvements by transferring information
from the source domain to the target domain are not as promising as expected.
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Table 1. Results on mushrom data set

Percentage of noise on T
0% 3% 6% 9% 12% 15%

SVM 0.087 0.12 0.146 0.173 0.19 0.207
CCHC 0.079 0.106 0.129 0.127 0.156 0.171

|T |=50 TrAdaBoost 0.158 0.159 0.173 0.191 0.168 0.195
KNN 0.117 0.125 0.153 0.147 0.167 0.163

COITL 0.132 0.144 0.146 0.161 0.168 0.159
AT 0.156 0.196 0.177 0.16 0.185 0.142

SVM 0.067 0.052 0.111 0.129 0.167 0.198
CCHC 0.058 0.05 0.081 0.116 0.162 0.179

|T |=100 TrAdaBoost 0.145 0.143 0.158 0.178 0.167 0.166
KNN 0.081 0.084 0.104 0.12 0.147 0.159

COITL 0.103 0.08 0.087 0.121 0.11 0.112
AT 0.2 0.189 0.177 0.199 0.184 0.178

Table 2. Results on krvskp data set

Percentage of noise on T
0% 3% 6% 9% 12% 15%

SVM 0.15 0.22 0.192 0.167 0.256 0.282
CCHC 0.095 0.128 0.126 0.143 0.153 0.18

|T |=50 TrAdaBoost 0.514 0.504 0.504 0.489 0.491 0.493
KNN 0.25 0.277 0.328 0.303 0.297 0.311

COITL 0.246 0.283 0.33 0.288 0.285 0.313
AT 0.18 0.192 0.144 0.13 0.18 0.19

SVM 0.11 0.099 0.171 0.166 0.243 0.207
CCHC 0.066 0.085 0.115 0.132 0.167 0.169

|T |=100 TrAdaBoost 0.509 0.505 0.496 0.484 0.497 0.478
KNN 0.221 0.215 0.224 0.242 0.24 0.276

COITL 0.24 0.219 0.229 0.24 0.233 0.276
AT 0.11 0.133 0.122 0.135 0.127 0.138

In Table 2 of krvskp, our method outperforms other methods in most conditions.
In Table 3 of splice, our method is the best one among all the methods even
with 15% noise. And the improvements are nearly 10% compared to those of the
state-of-the-arts methods. From the experiments, we observed that the quality
of vt tends to fluctuate when the noise is high. In splice data sets with 60
attributes, this impact becomes less serious and CCHC could gain much help
from the abundant information in the source tasks to improve the hyperplane in
the target task.

We also evaluate the number of source tasks and the number of clusters in the
source tasks that are transferred in Table 4, where S denotes the source task for
the mushroom, krvskp and splice data sets. The values in the table represent
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Table 3. Results on splice data set

Percentage of noise on T
0% 3% 6% 9% 12% 15%

SVM 0.302 0.321 0.354 0.368 0.391 0.346
CCHC 0.18 0.207 0.212 0.214 0.216 0.222

|T |=50 TrAdaBoost 0.343 0.296 0.318 0.323 0.314 0.39
KNN 0.375 0.354 0.347 0.379 0.398 0.415

COITL 0.385 0.401 0.388 0.422 0.394 0.436
AT 0.468 0.47 0.441 0.469 0.48 0.478

SVM 0.232 0.23 0.276 0.293 0.309 0.322
CCHC 0.18 0.182 0.184 0.199 0.209 0.203

|T |=100 TrAdaBoost 0.234 0.3 0.302 0.267 0.294 0.299
KNN 0.331 0.349 0.352 0.377 0.367 0.396

COITL 0.319 0.339 0.327 0.362 0.367 0.374
AT 0.472 0.458 0.474 0.484 0.465 0.477

Table 4. Transferred components of the source tasks in UCI data sets

Percentage of noise on T
0% 3% 6% 9% 12% 15%

mushroom |T | = 50 S 2 2 1 1 2 1
|T | = 100 S 2 1 2 2 2 2

krvskp |T | = 50 S 1 2 3 3 2 2
|T | = 100 S 1 2 3 2 2 3

splice |T | = 50 S 2 3 1 2 3 3
|T | = 100 S 2 2 2 3 3 3

the number of clusters in each source task that are used in the learning process.
As shown in Table 4, in the two data sets krvskp and splice, the components of
the source tasks are transferred as much as possible. The reason is that in the two
data sets, the number of attributes is more than that in the mushroom data set,
and the labeled instances in the target training task are not adequate to obtain
good hyperplanes. Therefore, our method tries to find relevant information from
the source tasks as much as possible.

Table 5, Table 6 and Table 7 provide the results on rec vs talk, rec vs sci,
and sci vs talk, respectively, with |T | equals to 50 and 100. It can be seen from
the three tables that our method is obviously better than other methods, even
under noise conditions. However, CCHC is sometimes outperformed by COITL
or TrAdaBoost in a small number of situations while |T | = 100. We ascribe the
results to the reason that when the number of labeled instances increases, other
methods also could find good hyperplanes. But under the circumstances when
|T | = 50, our method is always the best one. It is a proof of the robustness of
our method given only a few labeled instances in the target domain. We also
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Table 5. Results on rec vs talk as the target task

Percentage of noise on T
0% 3% 6% 9% 12% 15%

SVM 0.154 0.174 0.189 0.228 0.227 0.23
CCHC 0.122 0.144 0.167 0.196 0.21 0.223

|T |=50 TrAdaBoost 0.236 0.234 0.275 0.309 0.32 0.321
KNN 0.207 0.255 0.237 0.256 0.244 0.305

COITL 0.206 0.255 0.229 0.25 0.241 0.294
AT 0.472 0.364 0.38 0.388 0.488 0.49

SVM 0.088 0.166 0.177 0.269 0.285 0.295
CCHC 0.084 0.154 0.151 0.186 0.191 0.248

|T |=100 TrAdaBoost 0.265 0.283 0.338 0.348 0.355 0.338
KNN 0.23 0.248 0.267 0.277 0.281 0.283

COITL 0.224 0.245 0.257 0.267 0.278 0.283
AT 0.406 0.363 0.492 0.477 0.315 0.517

Table 6. Results on rec vs sci as the target task

Percentage of noise on T
0% 3% 6% 9% 12% 15%

SVM 0.163 0.177 0.187 0.181 0.223 0.24
CCHC 0.159 0.167 0.179 0.18 0.221 0.227

|T |=50 TrAdaBoost 0.266 0.289 0.292 0.353 0.351 0.375
KNN 0.245 0.224 0.255 0.246 0.261 0.3

COITL 0.243 0.236 0.259 0.255 0.268 0.311
AT 0.41 0.37 0.44 0.325 0.354 0.419

SVM 0.139 0.152 0.153 0.174 0.21 0.213
CCHC 0.126 0.128 0.15 0.168 0.208 0.21

|T |=100 TrAdaBoost 0.24 0.23 0.24 0.228 0.267 0.284
KNN 0.216 0.185 0.192 0.182 0.212 0.231

COITL 0.206 0.2 0.194 0.183 0.22 0.231
AT 0.433 0.316 0.399 0.359 0.315 0.438

notice that, when the sci vs talk data set is used as the target task, the error
rates for all the methods are slightly higher than that of the other two data sets.
The possible reason is that the discrepancy of distributions between the source
domain and the target domain is large.

In Table 8, we report the number of source tasks and the number of clusters
in each source task used in the micro level stage, where S1, S2 and S3 denote
the source task from rec vs talk, rec vs sci and sci vs talk, respectively. The
integer values in the table represent the numbers of clusters in each source task
that are used in the micro level. It can be observed that, our method is able
to choose relevant parts from relevant tasks. For example, when rec vs talk is
used as the target task, by examining the learning procedure of the algorithm,
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Table 7. Results on sci vs talk as the target task

Percentage of noise on T
0% 3% 6% 9% 12% 15%

SVM 0.183 0.195 0.223 0.24 0.307 0.364
CCHC 0.174 0.189 0.205 0.232 0.244 0.272

|T |=50 TrAdaBoost 0.301 0.282 0.317 0.372 0.372 0.409
KNN 0.285 0.305 0.301 0.327 0.307 0.385

COITL 0.286 0.303 0.318 0.327 0.31 0.385
AT 0.368 0.425 0.446 0.382 0.366 0.371

SVM 0.221 0.235 0.239 0.264 0.329 0.342
CCHC 0.167 0.174 0.172 0.21 0.232 0.254

|T |=100 TrAdaBoost 0.195 0.219 0.255 0.244 0.213 0.23
KNN 0.184 0.185 0.196 0.194 0.194 0.233

COITL 0.172 0.184 0.188 0.188 0.192 0.234
AT 0.352 0.399 0.323 0.327 0.418 0.362

Table 8. Transferred components of the source tasks in 20Newsgroup data sets

Percentage of noise on T
0% 3% 6% 9% 12% 15%

rec vs talk as T |T | = 50 S1 0 0 0 1 0 0
S2 1 1 1 1 1 0
S3 1 1 1 1 1 1

|T | = 100 S1 1 0 0 0 0 0
S2 1 1 1 1 1 1
S3 1 1 1 1 1 1

rec vs sci as T |T | = 50 S1 1 1 0 1 1 1
S2 0 0 0 0 0 0
S3 1 1 1 1 1 0

|T | = 100 S1 1 1 1 1 1 1
S2 0 0 0 0 1 0
S3 0 0 1 1 0 1

sci vs talk as T |T | = 50 S1 1 1 1 1 1 1
S2 0 0 0 0 0 0
S3 1 1 1 0 0 1

|T | = 100 S1 1 1 0 1 1 1
S2 0 0 0 0 0 0
S3 1 1 1 1 1 1

we found that in the macro level, our method arrange the source tasks as S3, S2

and S1, thus CCHC is more likely to choose the clusters in S3 and S2, while the
third source task is regarded as to bring negative effects on the results. It can be
a proof of the effectiveness of our method that can adaptively choose relevant
information from the source domain in order to avoid negative transfer.
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5 Related Work

In this section, we review research works similar to ours including different meth-
ods for inductive transfer learning, and related works on negative transfer. Our
CCHC belongs to the supervised inductive transfer learning where both the
source and the target tasks contain labeled data [18,3,19]. Existing methods
for inductive transfer learning may be classified into instance-based approaches
[22,26] and feature-based approaches [1,21,23,24]. For instanced-based methods,
each instance in the source task is evaluated before being added to the target task
to help the classification process in the target task. Both [22] and [26] adopted
a re-weighting method to judge the impact of examples in the source task in the
learning of the target task. The feature-based methods try to find a subspace
spanned by relevant features as common knowledge to help to improve the classi-
fication results on the target task. However, most of them are not parameter-free
and sensitive to noise. [1] proposed a method to learn a low-dimensional repre-
sentation for multiple tasks. [24] provided a spectral-based solution to transfer
the eigenspace where the process is adjusted by the KL divergence. [21] tried
to find a kernel given a set of predefined kernels. Our method also belongs to
the feature-based transfer. For feature selection, the MDLP based method was
proposed in [17] to learn prior knowledge over the features.

To tackle with the problem of negative transfer, current works mainly focus
on finding the similarities among tasks or instances such as [2,4,23,22,26,9]. [22]
extended the AdaBoost algorithm which aims at improving the accuracy of a
weak learner by adjusting the weights of the instances in the training sets. Their
TrAdaBoost algorithm could evaluate the instances from a large amount of data
in the source domain and assign weights based on the the similarities to the
target task in order to boost the accuracy of the classifier. [26] also proposed
a semi-supervised learning method by extending the co-training method which
deals with the same problem as [22]. Instances that can be put into the target
task are obtained by re-weighting those in the source task. [2] tried to find a
common representation among different groups of tasks which can be regarded
as the transferred information. However, the method was restricted to linear
classification functions and the instances in the target task are not considered
to be much less than that in the source tasks. The basic Probabilistic Latent
Semantic Analysis (PLSA) is extended in [9], in order to simultaneously capture
both the domain distinctions and commonality among multiple domains. In [4], a
new kernel function was designed by exploiting the Gaussian process to evaluate
the negative similarity between two instances, but it is designed for only one
single source task and without taking multiple source tasks into the framework.
An active learning approach ERS [14] (Error Reduction Sampling) is integrated
into the transfer learning [23] with a heuristic similarity function. It is pointed
out by the author that experts are heavily relied on, as the possibility to query
an expert is set to be higher than 50%. Moreover, the degree of reliability of the
oracles is not fully taken into consideration. Our work relates to the feature-based
transfer learning, and a two-level evaluation method was proposed, in which the
similarities among both the tasks and the components of tasks are considered.
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6 Conclusion

This paper proposed a compact coding algorithm CCHC for inductive transfer
learning to solve the negative transfer problem. The coding scheme is inspired
by MDLP and a two-level evaluation is adopted to adaptively select useful parts
in the source domain, and meantime to neglect those parts which will result in
negative effects from further consideration. By incorporating a simple classifier
such as SVM, given a few labeled examples, our method performs well on the real
data sets, and outperforms other state-of-the-art methods in most conditions.
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Abstract. Multi-label learning aims at predicting potentially multiple
labels for a given instance. Conventional multi-label learning approaches
focus on exploiting the label correlations to improve the accuracy of
the learner by building an individual multi-label learner or a combined
learner based upon a group of single-label learners. However, the gener-
alization ability of such individual learner can be weak. It is well known
that ensemble learning can effectively improve the generalization abil-
ity of learning systems by constructing multiple base learners and the
performance of an ensemble is related to the both accuracy and diver-
sity of base learners. In this paper, we study the problem of multi-label
ensemble learning. Specifically, we aim at improving the generalization
ability of multi-label learning systems by constructing a group of multi-
label base learners which are both accurate and diverse. We propose
a novel solution, called EnML, to effectively augment the accuracy as
well as the diversity of multi-label base learners. In detail, we design
two objective functions to evaluate the accuracy and diversity of multi-
label base learners, respectively, and EnML simultaneously optimizes
these two objectives with an evolutionary multi-objective optimization
method. Experiments on real-world multi-label learning tasks validate
the effectiveness of our approach against other well-established methods.

Keywords: Multi-label learning, ensemble learning, multi-objective op-
timization, negative correlation learning.

1 Introduction

Traditional supervised learning works on the single-label scenario, i.e. each in-
stance is associated with one single label within a finite set of labels. However, in
many real-world applications, one instance can be associated with multiple labels
simultaneously. For example, in text categorization, each document may belong
to several topics [20]; in bioinformatics, each gene may be associated with a num-
ber of functional classes [6]. This kind of problem is called multi-label learning,
which corresponds to the classification problem of classifying each instance with
a set of labels within the space of possible label sets. Multi-label learning has
been drawing increasing attentions from the machine learning and data mining
communities in the past decade [5,13,25].

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 223–239, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



224 C. Shi et al.

(a) Individual multi-label
learner

(b) Multiple single-label
learners

(c) Multi-label en-
semble learning

Fig. 1. Comparison of three strategies of constructing multi-label learning system.
SL and ML represent the single-label and multi-label learner, respectively. Y and Z
represent the single and atomic label, respectively.

The multi-label learning faces a major challenge that the number of possible
label combinations grows exponentially. Conventional multi-label learning ap-
proaches focus on exploiting the label correlations to improve the accuracy of
individual multi-label learner [5,13,15,17,25]. These approaches can be roughly
characterized into the following two categories based on the strategy of con-
structing the learning system: (1) Multi-label learning approaches based upon
individual multi-label learner (shown in Figure 1(a)). In this type of approaches,
a multi-label learner is constructed to make predictions on all labels. The label
correlations are exploited in the structure or learning process of the multi-label
learner, such as the neural network structure in ML-RBF [21] and the Bayesian
learning in LEAD [25]. (2) Multi-label learning approaches based upon a group
of single-label learners (shown in Figure 1(b)), such as EPS [14] and RAKEL
[17]. Ensemble learning is used to construct such a group of single-label base
learners. Each base learner in the ensemble is constructed to make a prediction
on a single label or atomic label (i.e. treating each label subset as a class label).
Then those base learners are combined as one multi-label learner to make pre-
dictions on all labels. The label correlations are usually exploited among these
single-label base learners.

Generally, conventional multi-label learning approaches focus on building one
individual multi-label learner. However, the generalization ability of one individ-
ual learner can be weak. It is well-known that ensemble learning can improve
the generalization ability of a learning system and reduce the overfitting risk
by constructing multiple base learners in the single-label setting. In the case of
multi-label learning, if we ensemble a group of multi-label base learners to make
predictions on all labels, the generalization ability of the multi-label learning
system can be significantly improved. This is called the multi-label ensemble
learning problem (shown in Figure 1(c)). Since the generalization error of an
ensemble is related to the average generalization error of the base learners as
well as diversity among the base learners [10], the aim of multi-label ensemble
learning is to build a group of multi-label base learners which are not only accu-
rate but also diverse. Note that, different from previous ensemble methods for
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multi-label learning which combine a group of single-label base learners into one
multi-label learner, the base learners in the multi-label ensemble learning are
the multi-label learners, instead of the single-label learners.

Despite its value and significance, the multi-label ensemble learning has rarely
been studied in this context so far. It is challenging to generate a set of accurate
and diverse multi-label base learners in the multi-label scenario. The major re-
search challenges are as follows: (1) Conventional ensemble learning approaches
usually focus on single-label learning problems. When it is applied to multi-label
learning problems, one of the difficulties is the accuracy evaluation of multi-label
base learners, which needs to consider the correlations among different labels. (2)
In multi-label scenario, it is also difficult to evaluate the diversity of multi-label
base learners, since the output of the base learners is a label set (vector), instead
of a single label (scale number). (3) It is far more complex when considering the
accuracy and diversity of multi-label base learners simultaneously. We need to
consider how to balance the trade-off between these two aspects.

In this paper, we first study the problem of multi-label ensemble learning and
propose a novel solution, named EnML. Different from conventional multi-label
learning approaches, EnML builds a group of accurate and diverse multi-label
base learners. First, we propose two novel evaluation objectives to effectively
depict the accuracy and diversity of multi-label base learners, respectively. In-
spired by the Hilbert-Schmidt Independence Criterion (HSIC) [8], ML-HSIC is
proposed to evaluate the accuracy of base learners while considering the label cor-
relations in full order. Enlightened by the Negative Correlation Learning (NCL)
[11,12], ML-NCL is proposed to characterize the diversity of base learners. In or-
der to balance the trade-off between these two objectives for the generalization
ability of the ensemble, we then propose a novel evolutionary multi-objective
algorithm to search the optimal trade-off among the different objectives. Exten-
sive experiments on the different types of multi-label datasets show that EnML
significantly outperforms other popular multi-label learning approaches.

2 Related Work

In order to improve the generalization ability of multi-label learner system, con-
ventional approaches focus on building an accurate multi-label learner by ex-
ploiting the label correlations. According to strategies of building learner, con-
ventional multi-label learning approaches can be roughly classified into following
two categories. (1) The first type of approaches build an individual multi-label
learner to make predictions on all labels. The multi-label learner uses different
methods to exploit the label correlations, such as learner structure, optimized
criterion, and learning algorithm. For example, the neural network structures in
ML-RBF [21] and BP-MLL [23] mix the label relations, the ranking loss criterion
[6,25] considers the second order correlation of labels, and the Bayesian learning
in LEAD [25] learns the label dependency. EnML is different from this type of
approaches in building a group of multi-label learners. (2) The second type of
approaches build a set of single-label base learners. In these approaches, each
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single-label base learner is built to make a prediction on a single label or atomic
label, and then these base learners are combined as a multi-label learner. The
label correlations can be exploited among these base learners. Ensemble learning
is usually used to build such a set of single-label base learners [14,15,16,17]. For
example, RAKEL [17] trains each single-label base learner for the prediction of
each element in the powerset of label set, and the single-label base learner in EPS
[14] is built for a pruning label subset. Different from these ensemble methods
for multi-label learning, the base learners in EnML are the multi-label learners.

Ensemble of multiple learners has attracted a lot of research interest in the
machine learning community since it is considered as a good approach to im-
prove the generalization ability [2]. Most ensemble learning algorithms train the
individual learner independently or sequentially, so the advantages of interac-
tion and cooperation among the individual learners are not effectively exploited.
However, Liu and Yao [11,12] have shown that the cooperation with ensemble
members is useful for obtaining better ensembles. Negative Correlation Learning
(NCL) [3,11,12] introduces a correlation penalty term into the error function of
each individual base learner in the ensemble so that the learners are as different
as possible on the training error. NCL emphasizes the interaction and coopera-
tion among individual base learners in the ensemble and has performed well on
a number of empirical applications. However, the conventional NCL focuses on
single-label learning, and has never been applied in multi-label learning so far.

3 The EnML Method

Let χ = Rd be the d-dimensional input space and L = {1, 2, · · · , L} be the finite
set of L possible labels. Given a multi-label training set D = {(xi, Yi)|1 ≤ i ≤
m}, where xi ∈ χ is the i-th instance and Yi ⊆ L is the label set associated with
xi. The task of multi-label learning is to learn a multi-label learner h : χ → 2L

from D which predicts a set of labels for each unseen instance.
As we all know, the ensemble can improve the generalization ability of learn-

ing systems by constructing multiple base learners, and the ensemble members
should be accurate and diverse [10]. In multi-label ensemble learning, we aim at
building such an ensemble, in which each multi-label base learner has good clas-
sification performances while these base learners are as diverse as possible. To
do so, we propose a multi-objective optimization based solution. Concretely, we
proposes two novel criteria, ML-HSIC and ML-NCL, to evaluate the accuracy
and diversity of multi-label base learners, respectively. An evolutionary multi-
objective optimization algorithm is then designed to train a set of multi-label
base learners which are diverse and all optimal in these two proposed criteria.

3.1 Measure Criteria

ML-HSIC . Many criteria have been proposed to evaluate performances of
multi-label learning, such as hamming loss [21] and ranking loss [23]. These
criteria can be used as the accuracy evaluation. However, they fail to directly
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address the correlations between different labels. An ideal criterion needs to be
able to evaluate the accuracy of learners while considering the label correlations.

The accuracy of a multi-label learner h can be considered as the similarity
of the true label set TL = {Y1, · · · , Ym} and the predicted label set by h on
the training data D, PL = {h(x1), · · · , h(xm)}. Furthermore, the similarity can
be evaluated with the dependence between PL and TL. That is, the higher
dependence between PL and TL, the more similar they are. Many methods can
be used to characterize the dependence. In this paper, we derive an evaluation
criterion for multi-label learning based upon a dependence evaluation method
named Hilbert-Schmidt Independence Criterion (HSIC) [8]. By deriving from
the definition of HSIC, we define the accuracy of a learner h as follows:

ML-HSIC(h) = tr(PHQH) (1)

where tr(·) is the trace of a matrix and H = [hij ]m×m, hij = δij −1/m, and δij is
the indicator function which takes 1 when i = j and 0 otherwise. P = [pij ]m×m

denotes the label kernel matrix based on the true label set TL with the kernel
function p(Yi, Yj) = 〈φ(Yi), φ(Yj)〉. Q = [qij ]m×m denotes the label kernel matrix
based on the predicted label set PL with the kernel function q(h(xi), h(xj)) =
〈ψ(h(xi)), ψ(h(xj))〉. The ML-HSIC has the following two advantages: (1) It can
effectively evaluate the dependence of TL and PL; (2) The appropriate kernel
function can be used to exploit the label correlations. Here, many kernel functions
can be applied in P and Q. For example, by using the polynomial kernel of the
second degree in the label kernel Q, the second order label correlations can be
considered. In this paper, we use RBF kernel in P and Q, since the RBF kernel
can potentially exploit the correlations among labels in full order. Therefore,
different from conventional accuracy criteria, ML-HSIC effectively evaluates the
accuracy of multi-label learners with fully considering the correlations among
labels.

ML-NCL. Evaluating the diversity of multi-label learners is much more chal-
lenging than single-label learning, because, in multi-label learning, the output
are a set of labels, instead of a single label. Inspired by the success of Negative
Correlation Learning (NCL) in single-label ensemble learning [3,11,12], we pro-
pose a criterion to evaluate the diversity of multi-label learners, called ML-NCL.

Similar to NCL, the basic idea of ML-NCL is to evaluate the negative correla-
tion of each base learner’s error with the error for the rest of ensemble. Formally,
ML-NCL is defined as follows:

ML-NCL(hj) = −
m∑

i=1

{(hj(xi) − hens(xi))T
∑
k �=j

(hk(xi) − hens(xi))}

=
m∑

i=1

‖hj(xi) − hens(xi)‖2

(2)

where hj(xi) ∈ 2L means the output of leaner hj on data xi. hens is the output
of the ensemble of N base learners, which is defined as follows:
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hens(xi) =
1
N

N∑
j=1

hj(xi) (3)

The definition shows that ML-NCL(hj) characterizes the significance of differ-
ence between the multi-label base learner hj and the ensemble hens on training
error. Maximizing ML-NCL encourages the multi-label base learners to perform
differently on training error, so it increases the diversity of base learners. The
benefits of ML-NCL come from two aspects: (1) It evaluates the diversity of
vectors, instead of scale numbers, so ML-NCL can be considered as a multi-label
version of NCL. (2) It exploits the correlations among multi-label base learners,
which has never been done before.

3.2 Multi-objective Optimization Solution

After two criteria are proposed to evaluate the accuracy and diversity of multi-
label learners, the next problem is how to optimize them. Different from the
single-objective optimization in conventional machine learning, this is a multi-
objective optimization problem, i.e. simultaneously maximizing ML-HSIC and
ML-NCL. It can be solved through converting the multi-objective optimization
into a single objective optimization by weight sum method. However, this method
greatly suffers from the weights setting, because the generalization ability of
ensemble largely depends on the trade-off between these two objectives. In this
paper, we makes use of an Evolutionary Multi-objective Optimization technology
(EMO) [4] to balance the trade-off, since EMO can automatically find optimal
trade-off through population evolutionary. Without loss of generality, we focus
on solving the multi-objective minimization problem in the following section.
The maximization of ML-HSIC and ML-NCL can be easily converted into a
minimization problem.

A good EMO needs to generate a set of solutions that uniformly distributed
along the Pareto optimal front [18], which includes two key issues: (1) solutions
prone to converge to Pareto optimal front and maintain diversity in the evolu-
tionary process; (2) generating promising solutions in each generation. In order
to make EMO fit for multi-label learning, we design many novel mechanisms in
the following two sections.

Multi-objective Optimization Mechanism. In this section, we apply the
non-dominated-sort and density-assignment process to make the solutions con-
verge to Pareto optimal front and maintain diversity, respectively.

Non-dominated-sort. The non-dominated-sort process sorts solutions according
to their raw fitness (i.e. ML-HSIC and ML-NCL). Instead of the raw fitness, this
paper employs the rank-based fitness assignment [7] to reassign the fitness (i.e. a
rank value) to the solutions, because the rank-based fitness assignment behaves
in a more robust manner. In the rank-based fitness assignment, the solution
set is divided into different fronts according to their dominating relations of raw
fitness. An example is shown in Figure 2 (ML-HSIC and ML-NCL are minimized
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Fig. 2. Illustration of non-dominated-sorting and density-assignment process

here). The solutions in the same front are non-dominated to each other (e.g.
solution A and B) and solutions in the higher front are always dominated by
some solutions in the lower front (e.g. C in F2 is dominated by B in F1). In this
way, each solution (i.e. base learner) hi in a front Fa has a rank value hrank

i = a,
and solution hi is better than solution hj when hrank

i < hrank
j .

Density-assignment. Along with convergence to the Pareto optimal front, it is
also desired that an Evolutionary Algorithm (EA) maintains a good spread of
solutions. So the solution in the crowded region is more likely to be deleted.
To get a density estimate of solutions surrounding a particular solution in the
population, we design the density-assignment process that calculates the aver-
age distance of two solutions on either side of this solution along each of the
objectives. It is simple and effective to estimate the density of solutions. The
density estimation of solution hi, h

density
i , serves as the perimeter of the cuboid

formed by using the nearest neighbors as the vertices. As shown in Figure 2, the
density of this i-th solution in its front is the average side length of the cuboid.
The small hdensity

i means solution hi is in a more crowded region. It implies the
solution hi should be more likely to be deleted.

Select-population. Every solution hi in the population has two feature values:
(1) non-domination rank hrank

i ; (2) density estimation hdensity
i , which are deter-

mined by the raw fitness ML-HSIC and ML-NCL. Comprehensively considering
both of the features, we define a partial order ≺ to compare two solutions. For
two solutions hi and hj , hi ≺ hj , if and only if

hrank
i < hrank

j ∨ (hrank
i = hrank

j ∧ hdensity
i > hdensity

j ) (4)

That is, between two solutions with different non-domination ranks, we prefer
the solution with the lower rank. Otherwise, if both solutions belong to the same
front, then we prefer the solution that is located in a less crowded region. After
sorting the population with ≺, select-population process selects top solutions,
and guarantees that good solutions will be kept.

Base Learner and Evolutionary Operators. In the framework of EnML,
many multi-label base learners can be used, such as HMC tree [19], BP-MLL
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(a) Genetic representation (b) Crossover operation

Fig. 3. (a) Architecture of RBF and its corresponding genetic representation. (b) The
crossover operation. The crossover point i is selected between two prototype vectors.

[23] and ML-RBF [21]. Different types of base learners will lead to different
genetic representation and operation. Because the structure can be effectively
encoded and the weights can be efficiently calculated in close form, we select the
RBF neural network in ML-RBF [21] as the multi-label base learner in EnML,
however an additional regularization term is added to reduce overfitting risks.

The architecture of RBF is shown in Figure 3(a). It is described as follows: (1)
The input of a RBF corresponds to a d-dimension feature vector. (2) The hidden
layer of RBF is composed of L sets of prototype vectors, i.e.

⋃L
l=1 Cl. Here, Cl

consists of kl prototype vectors {cl1, cl2, · · · , clkl
}. For each class l ∈ L, the k-

means clustering is performed on the set of instances Ul with label l. Thereafter,
kl clustered groups are formed for class l and the j-th centroid (1 ≤ j ≤ kl) is
regarded as a prototype vector clj of basis function φl

j(·). (3) Each output neuron
is related to a possible class. In the hidden layer of RBF, the number of clusters
kl is a fraction α of the number of instances in Ul:

kl = α× |Ul| (5)

The scale coefficient α controls the structure and complexity of RBF base learner.
Different from the error function in original RBF, we add a regularization term

into the error function. The regularization term greatly reduces the overfitting
risk and improves the stability of solutions as observed in the experiments.

E =
1
2

m∑
i=1

L∑
l=1

(yl(xi) − til)2 + γ
K∑

j=0

L∑
l=1

w2
jl (6)

where yl(xi) represents the predicted value of instance xi on label l, til is the real
value of instance i on label l,K =

∑L
l=1 kl, and γ is the regularization coefficient.

Similar to the derivation of minimizing the error function by scaled-conjugate-
gradient descent in [3], the optimal output weightsW can be computed in closed
form by

W = (Φ′Φ+ γI)−1Φ′T (7)
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Here Φ = [φij ]m×(K+1) with elements φij = φj(xi), W = [wjl](K+1)×L with
elements wjl, and T = [til]m×L with elements til = til . Through extensive exper-
iments, the regularization coefficient γ is fixed at 0.1 in this paper.

Genetic representation. According to the structure of RBF, we propose a novel
genetic representation that is the sequence of prototypes {bias, c11, c21, · · · cLkL

}.
An example is shown in Figure 3(a). The genetic representation has the following
advantages. (1) When the prototypes (c) are determined, the basis functions (φ)
and the weights (W ) can be efficiently computed. It means the performance of
RBF mostly depends on the selection of the prototypes. (2) It is easy to design
the crossover and mutation operators by tuning these prototypes.

Initialization. When the base learner is RBF, the initialization operation of EnML
generates a set of RBF learners with different scale coefficient α (see Equation 5).
As suggested in [21], α is randomly selected from [0.01, 0.02] in the experiments,
which generates a set of RBF base learners with different structures.

Generate-offspring. Generating new solutions is realized by the generate-offspring
process. The basic idea is to randomly select parent solutions from the current
population based on the roulette wheel selection [1,3] and do crossover and muta-
tion operation to generate new solutions with the ratio of cro Rat and 1−cro Rat
respectively. Following the general rule in EA, cro Rat is fixed at 0.8 in this paper.

The roulette wheel selection [1,3] assigns each solution with the appropriate
selection pressure, and guarantees the better solution with a high and appropri-
ate selected probability. This paper adapts the cut and splice crossover [9] which
randomly chooses a crossover point for two RBFs and swaps their prototypes be-
yond this point. Different from traditional cut and splice crossover, the crossover
point in EnML is randomly selected between two prototype vectors, rather than
in a arbitrary position. It guarantees that each prototype vector in the newly
generated RBF is unabridged cluster centroids. Figure 3(b) shows an example
of crossover operation. The mutation operator randomly selects some prototype
vectors in a RBF, and does the following two structural mutation operations
with the same probability. (1) Randomly delete a prototype. (2) Add one pro-
totype whose center is determined by a random combination of all centroids in
this prototype vector. The width of the centroid of the new RBF is recalculated
as in [21]. The weights are calculated following Equation 7.

3.3 Algorithm Framework

EnML is described in Algorithm 1. In the model training phase, EnML trans-
forms the optimized objectives (i.e. ML-HSIC and ML-NCL) to a fitness measure
by the creation of a number of fronts, sorted according to non-dominated-sort.
After the fronts have been created, density-assignment assigns its members with
a density value later to be used for diversity maintenance. In each generation,
N new solutions are generated with generate-offspring. Of the 2N solutions,
select-population selects the N best solutions for the next generation. In this
way, a huge elite can be kept and optimized from generation to generation. In
the testing phase, all solutions predict labels of unseen data and combine their
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Algorithm 1. EnML
Input:
D: training data U : testing data h: base learner
N : # of base learners G: # of generations
output:
Y (x): predicted labels for instance x ∈ U
procedure Training

generate P0 = {h1, h2, · · · , hN} on D at random
P1=(F1,F2, · · · )=non-dominated-sort(P0)
for t = 1 : G do

Qt=generate-offspring(Pt)
Rt = Pt

⋃
Qt

F = (F1,F2, · · · )=non-dominated-sort(Rt)
density-assignment(F )
Pt+1=select-population(F )
t = t + 1

end for
end procedure

procedure Testing
For x ∈ U , label set Y (x) = {l| 1

N

∑N
i=1 hi(x, l) > 0; hi ∈ Pt, l ∈ L}

end procedure

Table 1. Summary of experimental datasets

Dataset

Characteristic Image Yeast Arts Health Science Recreation Entertain.

# of instances 2000 2417 5000 5000 5000 5000 5000
# of features 294 103 462 612 743 606 640
# of labels 5 14 26 32 40 22 21
domain biology media text text text text text

results with a simple vote. Note that EnML can not only optimize ML-HSIC
and ML-NCL but also directly optimize either of these two objectives.

4 Experiments

4.1 Experimental Setup

Data Collections: We tested our algorithm on seven real-world multi-label
classification datasets from three different domains as summarized in Table 1.
The first dataset is Yeast [15,21,23,25] in biology, where the task is to predict
the gene functional classes of the Yeast Saccharomyces cerevisiae. The second
dataset Image [15,21,23,25] involves the task of automatic image annotation for
scene images. The other five dataset are from Yahoo [21,24], where the task is
to predict topic categories of each text document.

Evaluation Metrics: Here we adopt five state-of-the-art multi-label evaluation
metrics which are most popular in the literature. Assume we have a multi-label
dataset U containing n multi-label instances (xi, Yi). Let h(xi) denote the pre-
dicted label set of a multi-label learner h for xi, and the real-valued function
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f(xi, yl) ∈ R represents the ranking quality score of learner h on label yl for
input xi. We have the following evaluation criteria:

• hamming loss [5,22]: evaluates the number of labels whose relevance is incor-
rectly predicted.

hammingloss(h,U) =
1
n

n∑
i=1

1
L
‖h(xi) ⊕ Yi‖1 (8)

where
⊕

stands for the symmetric difference of two sets (XOR operation), and
‖.‖1 denotes the l1-norm. The smaller the value, the better the performance.

• ranking loss [6,25]: evaluates the average fraction of label pairs that are mis-
ordered for the instance.

rankingloss(h,U) =
1
n

n∑
i=1

1
|Yi||Yi|

|Ri| (9)

where Ri = {(y1, y2)|f(xi, y1) ≤ f(xi, y2), (y1, y2) ∈ Yi×Yi}. Here Yi denotes the
complementary set of Yi in Y . The smaller the value, the better the performance.

• one-error [6,25]: evaluates how many times the top-ranked label is not in the
set of proper labels of the instance.

one-error(h,U) =
1
n

n∑
i=1

�[argmaxy∈Lf(xi, y)] /∈ Yi� (10)

Here for predicate π, �π� equals 1 if π holds and 0 otherwise. The smaller the
value, the better the performance.

• coverage [6,25]: evaluates how many steps are needed, on average, to move
down the ranked label list in order to cover all the proper labels of the instance.

coverage(h,U) =
1
n

n∑
i=1

maxy∈Yirank
f (xi, y) − 1 (11)

rankf (·, ·) is derived from the real-valued function f(·, ·). If f(xi, y1) > f(xi, y2),
then rankf (xi, y1) < rankf (xi, y2). The smaller the value, the better the per-
formance.

• average precision [6,25]: evaluates the average fraction of proper labels ranked
above a particular label y ∈ Yi.

avgprec(h,U) =
1
n

n∑
i=1

1
|Yi|

∑
y∈Yi

|Pi|
rankf (xi, y)

(12)

where Pi = {y′|rankf (xi, y
′) ≤ rankf (xi, y), y′ ∈ Yi}. The larger the value, the

better the performance.

Compared Methods: In order to test performance of our proposed EnML, we
do comprehensive comparison with the most representative multi-label learning
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approaches, including ML-RBF [21], the base learner of our approach, and two
ensemble based approaches: ECC [15] and RAKEL [17]. In addition, in order to
validate the effectiveness of two objective functions, we include two special cases
of EnML that only optimize one single objective (i.e. ML-HISC or ML-NCL).
These approaches are briefly summarized as follows.

• EnML: the proposed approach in this paper. It simultaneously optimizes two
objectives: ML-HSIC and ML-NCL.

• EnMLHSIC : a special case of EnML, which only optimizes ML-HSIC.

• EnMLNCL: a special case of EnML, which only optimizes ML-NCL.

• ML-RBF [21]: the multi-label learning algorithm based on RBF neural network,
which is also the base learner we use in EnML.

• ECC [15]: an ensemble method for multi-label learning based on the bagging
of classifier chains.

• RAKEL [17]: another ensemble method for multi-label learning, where the
single-label base learner is trained for a small random subset of labels.

In order to fit for EnML as a minimization problem, we convert the original
objectives into an equivalent minimization problem as follows:

ML-HSIC′ = 1/log(ML-HSIC)
ML-NCL′ = 1 − ML-NCL/(m× L)

(13)

Note that the two new objectives both need to be minimized and fall in [0,1], such
that it is convenient to perform non-dominated-sort and density-estimate process
in our evolutionary multi-objective optimization algorithm. As in [21], ML-RBF
is implemented with fixed default parameters (α = 0.01 and μ = 1.0). For ECC,
the ensemble size is set to 10 and sampling ratio is set to 67% as suggested
in the literature [15]. For RAKEL [17], we always set the parameter k as |L|

2
to provide the highest accuracy. The population size and running generation of
EnML based approaches are set as 30 and 10 respectively in all experiments.

4.2 Performance Comparison

We perform ten-fold cross-validation on each experimental dataset. On each
dataset, we report the mean values performance and standard deviations for
each algorithm with the rank based on its results indicated in the parentheses.
All experiments are conducted on machines with Intel Xeon Quad-Core CPUs
of 2.26 GHz and 24 GB RAM.

The performances of six algorithms are shown in Table 2 to Table 6. It is
clearly shown that EnML significantly outperforms the other baseline methods,
including the non-ensemble method ML-RBF and two ensemble methods ECC
and RAKEL, on all criteria and datasets. The small standard deviations of the
rank values of EnML (ranging from 0 to 0.49) also indicate the superior of EnML
is consistent on all datasets and evaluated criteria. The results illustrate that the
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Table 2. Performance (mean±std.(rank)) of each algorithm in terms of hamming loss.
Ave. Rank represents the mean and standard deviation of the rank values of each
algorithm in all datasets.

Algorithm

Dataset EnML ML-RBF ECC RAKEL EnMLHSIC EnMLNCL

Image 0.1603±0.0058(2) 0.1653±0.0067(3) 0.1786±0.0108(6) 0.1724±0.0117(5) 0.1586±0.0065(1) 0.1665±0.0051(4)
Yeast 0.1889±0.0052(2) 0.1935±0.0058(4) 0.2056±0.0082(5) 0.2287±0.0105(6) 0.1887±0.0064(1) 0.1894±0.0059(3)
Arts 0.0531±0.0014(2) 0.0542±0.0016(4) 0.0754±0.0045(6) 0.0612±0.0013(5) 0.0528±0.0014(1) 0.0538±0.0015(3)
Health 0.0316±0.0016(2) 0.0331±0.0016(4) 0.0361±0.0021(5) 0.0373±0.0016(6) 0.0314±0.0017(1) 0.0322±0.0017(3)
Science 0.0317±0.0008(2) 0.0324±0.0009(4) 0.0424±0.0054(6) 0.0360±0.0016(5) 0.0313±0.0010(1) 0.0320±0.0008(3)
Recreation 0.0543±0.0023(2) 0.0555±0.0022(4) 0.0688±0.0055(6) 0.0589±0.0028(5) 0.0539±0.0021(1) 0.0553±0.0025(3)
Entertain. 0.0502±0.0016(2) 0.0512±0.0016(3) 0.0654±0.0053(6) 0.0587±0.0030(5) 0.0496±0.0013(1) 0.0514±0.0012(4)
Ave. Rank 2.00±0.00 3.71±0.49 5.71±0.49 5.29±0.49 1.00±0.00 3.29±0.49

Table 3. Performance (mean±std.(rank)) of each algorithm in terms of ranking loss

Algorithm

Dataset EnML ML-RBF ECC RAKEL EnMLHSIC EnMLNCL

Image 0.1478±0.0112(1) 0.1558±0.0121(4) 0.2411±0.0153(6) 0.1765±0.0200(5) 0.1485±0.0112(2) 0.1536±0.0106(3)
Yeast 0.1597±0.0083(1) 0.1621±0.0073(4) 0.2776±0.0223(6) 0.2179±0.0156(5) 0.1603±0.0087(2) 0.1619±0.0073(3)
Arts 0.1119±0.0099(1) 0.1131±0.0098(3) 0.3814±0.0251(6) 0.2589±0.0106(5) 0.1150±0.0104(4) 0.1124±0.0093(2)
Health 0.0482±0.0057(1) 0.0496±0.0051(3) 0.2401±0.0130(6) 0.1822±0.0125(5) 0.0505±0.0056(4) 0.0490±0.0054(2)
Science 0.0957±0.0072(1) 0.1002±0.0071(3) 0.3840±0.0238(6) 0.2854±0.0138(5) 0.1017±0.0079(4) 0.0992±0.0072(2)
Recreation 0.1216±0.0101(1) 0.1253±0.0099(3) 0.3434±0.0203(6) 0.2874±0.0227(5) 0.1257±0.0118(4) 0.1229±0.0095(2)
Entertain. 0.0913±0.0070(1) 0.0946±0.0073(3) 0.2926±0.0193(6) 0.2874±0.0221(5) 0.0949±0.0073(4) 0.0933±0.0062(2)
Ave. Rank 1.00±0.00 3.29±0.49 6.00±0.00 5.00±0.00 3.43±0.98 2.29±0.49

Table 4. Performance (mean±std.(rank)) of each algorithm in terms of one error

Algorithm

Dataset EnML ML-RBF ECC RAKEL EnMLHSIC EnMLNCL

Image 0.2735±0.0236(2) 0.2860±0.0299(4) 0.2935±0.0249(5) 0.3065±0.0335(6) 0.2695±0.0247(1) 0.2815±0.0208(3)
Yeast 0.2156±0.0235(1) 0.2189±0.0175(3) 0.2742±0.0218(5) 0.2751±0.0300(6) 0.2193±0.0286(4) 0.2160±0.0210(2)
Arts 0.4400±0.0134(2) 0.4512±0.0124(4) 0.4734±0.0291(5) 0.5470±0.0137(6) 0.4314±0.0177(1) 0.4450±0.0130(3)
Health 0.2416±0.0204(2) 0.2482±0.0250(4) 0.2430±0.0183(3) 0.2946±0.0184(6) 0.2398±0.0230(1) 0.2494±0.0219(5)
Science 0.4862±0.0185(2) 0.5016±0.0181(5) 0.5008±0.0432(4) 0.5784±0.0199(6) 0.4794±0.0174(1) 0.4916±0.0187(3)
Recreation 0.4492±0.0159(2) 0.4542±0.0220(3) 0.4618±0.0196(5) 0.5304±0.0281(6) 0.4398±0.0187(1) 0.4548±0.0132(4)
Entertain. 0.3824±0.0241(2) 0.3916±0.0251(5) 0.3836±0.0309(3) 0.4746±0.0278(6) 0.3816±0.0222(1) 0.3914±0.0234(4)
Ave. Rank 1.86±0.38 4.00±0.82 4.29±0.95 6.00±0.00 1.47±1.13 3.43±0.98

Table 5. Performance (mean±std.(rank)) of each algorithm in terms of coverage

Algorithm

Dataset EnML ML-RBF ECC RAKEL EnMLHSIC EnMLNCL

Image 0.8740±0.0548(2) 0.8955±0.0562(4) 0.9715±0.0776(5) 0.9795±0.0831(6) 0.8570±0.0487(1) 0.8900±0.0468(3)
Yeast 6.1845±0.1465(1) 6.2465±0.1433(4) 7.1431±0.2688(5) 7.5347±0.2521(6) 6.2138±0.1353(2) 6.2453±0.1384(3)
Arts 4.5738±0.4115(1) 4.6116±0.3783(3) 7.8582±0.4686(5) 8.8862±0.3652(6) 4.7192±0.4110(4) 4.5808±0.3720(2)
Health 3.1998±0.3144(1) 3.2280±0.2797(3) 8.2418±0.3797(5) 8.7686±0.4684(6) 3.2930±0.2942(4) 3.2122±0.3042(2)
Science 5.5188±0.4325(1) 5.6016±0.4341(3) 11.403±0.4453(5) 13.744±0.6340(6) 5.7114±0.4432(4) 5.5476±0.4108(2)
Recreation 3.6858±0.2916(1) 3.7452±0.2983(3) 6.2390±0.4696(5) 7.6552±0.6209(6) 3.7790±0.3304(4) 3.6872±0.2831(2)
Entertain. 2.7686±0.1832(1) 2.8102±0.1739(3) 5.7008±0.2569(5) 7.1750±0.4761(6) 2.8478±0.1885(4) 2.7796±0.1434(2)
Ave. Rank 1.14±0.38 3.29±0.49 5.00±0.00 6.00±0.00 3.29±1.25 2.29±0.49
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Table 6. Performance (mean±std.(rank)) of each algorithm in terms of average preci-
sion

Algorithm

Dataset EnML ML-RBF ECC RAKEL EnMLHSIC EnMLNCL

Image 0.8288±0.0144(1) 0.8118±0.0145(4) 0.7977±0.0148(5) 0.7952±0.0215(6) 0.8226±0.0141(2) 0.8139±0.0122(3)
Yeast 0.7754±0.0146(1) 0.7720±0.0133(4) 0.7313±0.0236(5) 0.7170±0.0165(6) 0.7747±0.0152(2) 0.7734±0.0127(3)
Arts 0.6433±0.0113(2) 0.6366±0.0116(4) 0.5613±0.0149(5) 0.5122±0.0138(6) 0.6473±0.0123(1) 0.6406±0.0112(3)
Health 0.7988±0.0135(2) 0.7941±0.0151(4) 0.7247±0.0115(5) 0.6986±0.0142(6) 0.7994±0.0142(1) 0.7957±0.0132(3)
Science 0.6128±0.0152(2) 0.6026±0.0155(4) 0.5328±0.0227(5) 0.4712±0.0213(6) 0.6178±0.0172(1) 0.6090±0.0167(3)
Recreation 0.6501±0.0159(2) 0.6435±0.0170(4) 0.5770±0.0145(5) 0.5355±0.0242(6) 0.6520±0.0164(1) 0.6448±0.0134(3)
Entertain. 0.7028±0.0146(2) 0.6971±0.0169(4) 0.6338±0.0151(5) 0.5763±0.0232(6) 0.7029±0.0142(1) 0.6976±0.0143(3)
Ave. Rank 1.71±0.49 4.00±0.00 5.00±0.00 6.00±0.00 1.29±0.49 3.00±0.00

ensemble in our EnML can effectively improve the generalization performance
in multi-label learning, compared to non-ensemble methods (e.g. ML-RBF). In
addition, the superior of EnML over those ensemble methods for multi-label
learning (e.g. ECC and RAKEL) also confirms our assumption: the ensemble of
multi-label base learners is more effective to improve the generalization ability
of multi-label learning system than the ensemble of single-label base learners.
We think one of the important reasons behind the performance improvement of
EnML lies in our EnML emphasizes the diversity of multi-label base learners by
explicitly optimizing a diversity-related objective, which has never been done in
multi-label learning so far.

Then we further study the effect of objective functions in our EnML method
on the performances by comparing EnML with EnMLHSIC and EnMLNCL.
From Table 2 to Table 6, we can also observe that the three versions of EnML
rank top three on most criteria and they always have the best performance on
each dataset. By optimizing the diversity-related objective ML-NCL, EnMLNCL

generates a set of diverse base learners, so EnMLNCL outperforms the base
learner ML-RBF on most criteria. However, without optimizing the accuracy of
individual base learner, EnMLNCL performs worse than EnML on all criteria.
Although EnMLHSIC can achieve a little better performances than EnML in
hamming loss, one-error, and average precision on some datasets, however, on
the other two criteria, ranking loss and coverage, EnMLHSIC is not only worse
than EnML and EnMLNCL, but also worse than the base learner ML-RBF. It
can be explained that EnMLHSIC optimizes the accuracy-related objective ML-
HSIC, which makes it perform well on the ML-HSIC related criteria, such as
hamming loss, one-error, and average precision. However, without emphasizing
the diversity of base learners, the optimal base learners obtained by EnMLHSIC

can be very similar with each other, thus the generalization ability of the en-
semble can be weak. By considering the accuracy and diversity objectives simul-
taneously, EnML can obtain a group of accurate and diverse multi-label base
learners and the population evolutionary strategy in EnML automatically finds
the optimal trade-off between these two objectives. As a consequence, EnML
consistently improves the generalization ability of multi-label ensemble, thus it
comprehensively boosts the multi-label classification performances.
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Fig. 4. The evolutionary performances of EnML with different parameter settings

4.3 Parameter Settings

In this section, we study the effects of the parameters in our EnML method.
There are two genetic operation related parameters in EnML, i.e. the popula-
tion size N and the running generation G. We perform the experiment on 2000
instances of the Arts dataset in Yahoo dataset collection [21,24] with ten-fold
cross-validation under different parameter configurations. Specifically, when the
population size N is set as 10, 30, and 50, we report the average of objective
values, running time and weights (sum of absolute values in W ). The results are
shown in Figure 4.

From Figure 4(a) and (b), we can clearly observe that ML-NCL goes up but
ML-HSIC goes down when the running generation increases. The different trend
of these two objectives indicate that they have the intrinsic conflict. It is not
surprising. The maximization of the ML-HSIC guides the predicted labels of
base learners to converge to the real labels. So it makes these base learners
identical. However, the maximization of the ML-NCL encourages base learners
to be as diverse as possible on the training error. Therefore, these two objectives
are naturally conflicting. The conflict makes EnML seek to find a good balance
between the two objectives by population optimization. Note that here ML-
HSIC and ML-NCL just evaluate the accuracy and diversity of base learners,
not the performance of the ensemble. The decrease of ML-HSIC does not mean
the degradation of the ensemble. In fact, the increase of ML-NCL shows that
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base learners become more diverse, which helps to improve the performance of
the ensemble. Figure 4(c) shows that the weight goes down and then goes up
when the running generation increases. We think the reason is that ML-NCL
helps to control the model complexity. However, when the running generation
becomes too large, these learners become more complex, and thus their weights
increase. If we do not add the regularization term in the error function of RBF
(see Equation 6), the weights will increase sharply, which means these learners
are overfitting. Figure 4(d) illustrates that the running time of EnML increases
linearly with the population size N and running generation G.

5 Conclusion

In this paper, we first study the multi-label ensemble learning problem which
aims at building a set of accurate and diverse multi-label base learners to im-
proves the generalization ability of multi-label learning system. In order to solve
this problem, we propose a novel solution EnML. With an evolutionary multi-
objective optimization method, EnML simultaneously optimizes two objective
functions that evaluate the accuracy and diversity of multi-label learners, re-
spectively, and constructs a set of accurate and diverse multi-label base learners
to make predictions. Extensive experiments show that EnML can effectively im-
prove the generalization ability of multi-label learning system and thus boosts
the predictive performance for multi-label classification.
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Abstract. Learning to rank (L2R) algorithms rely on a labeled training set to
generate a ranking model that can be later used to rank new query results. Pro-
ducing these labeled training sets is usually very costly as it requires human an-
notators to assess the relevance or order the elements in the training set. Recently,
active learning alternatives have been proposed to reduce the labeling effort by
selectively sampling an unlabeled set. In this paper we propose a novel rule-based
active sampling method for Learning to Rank. Our method actively samples an
unlabeled set, selecting new documents to be labeled based on how many rel-
evance inference rules they generate given the previously selected and labeled
examples. The smaller the number of generated rules, the more dissimilar and
more “informative” is a document with regard to the current state of the labeled
set. Differently from previous solutions, our algorithm does not rely on an initial
training seed and can be directly applied to an unlabeled dataset. Also in contrast
to previous work, we have a clear stop criterion and do not need to empirically
discover the best configuration by running a number of iterations on the valida-
tion or test sets. These characteristics make our algorithm highly practical. We
demonstrate the effectiveness of our active sampling method on several bench-
marking datasets, showing that a significant reduction in training size is possible.
Our method selects as little as 1.1% and at most 2.2% of the original training sets,
while providing competitive results when compared to state-of-the-art supervised
L2R algorithms that use the complete training sets.

1 Introduction

Many applications need ranking functions to order results before presenting them to
their users, mainly when there is a large potential number of candidate results. Search
engines and product recommendation systems, for instance, need to rank results based
on their estimated relevance with respect to a query or based on a user profile and/or
personal preferences. In the last few years, there has been considerable interest in the
research community for machine learning techniques to learn to rank lists of documents
or other data effectively [20]. Learning to Rank algorithms, which deliver superior per-
formance when compared to more traditional approaches such as BM25 [13], use la-
beled training sets to build ranking models that are used to rank results at query time.
The effectiveness of the learned functions is usually directly correlated with the amount
of supervised training data available [9]. Yet it is very costly and laborious to produce
training sets containing labeled instances, since they must be assessed by a human an-
notator. Some of the benchmarking datasets we use in our experimental evaluation, for
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example, have training sets comprised of almost 90,000 labeled instances. In most real-
life settings it is unfeasible to create such large sets from scratch.

Active learning techniques have been given much attention lately to help deal with
the labeling effort problem [2, 3, 9, 21]. These techniques are used to actively sample
an unlabeled dataset to select instances that maximize the effectiveness of learned rank
functions. By carefully selecting and labeling instances it may be possible to use a
(very) small training set and yet achieve highly effective learned functions, thus min-
imizing the labeling effort. The rationale behind active learning is that the instances
selected are representative of the document corpus and somehow more “informative” to
the learning algorithm. By using only a highly informative set, there may be a reduction
of noise and uncertainty in the learning process, possibly yielding even more effective
functions than those obtained using a large training set. In most active learning meth-
ods, samples are selected incrementally from an unlabeled set and are used to update
an already existing learning function. At each step the most “informative” instances are
selected to be labeled and added to the training set. Several strategies and heuristics
have been proposed in the literature on how to determine the most informative samples.
In some methods, the most ambiguous - or those instances for which the learner is most
uncertain about - are selected [7]. In other settings, a query-by-committee (QBC) strat-
egy is employed where competing learners vote on the label of the candidate samples
and those about which they most disagree are selected [17]. Some algorithms select the
samples that would cause the greatest change to the currently learned function [16].
Other methods select instances that would lead to the minimal expected future error or,
similarly, optimize some other performance measure such as precision or recall [15].

There has been work proposing active learning methods for classification tasks [4,10,
11]. While classification functions output an specific class for each data item, ranking
functions must produce partial orders of items either through some scoring function,
pairwise ordering or listwise ordering of the items. Most active sampling methods for
classification try to directly minimize the classification error, but this approach is not
straightforward to extend to the ranking problem since position-based measures such as
MAP and NDCG are usually non-continuous and non-differentiable [8]. Additionally,
in most supervised learning settings, samples can be treated as independent of each
other which is not the case for L2R where each sample represents a document relative
to a query. Thus, in L2R, instances are conditionally independent given a query [9].

In this paper we propose a new active sampling technique based on association rules.
Learning to rank using demand-driven association rules has been shown to provide
competitive ranking quality [19]. The method proposed here uses association rules to
actively select documents1 from an unlabeled set based on how many inference rules
are generated for each document. At each step, a new document is chosen for label-
ing as the most “dissimilar” with respect to the already selected samples (but with no
need to create a model), with the goal of increasing diversity and representativeness.
This is performed by choosing from the unlabeled data the document ui that gener-
ates the smallest number of rules when considering a “projection” of the current se-
lected training set with respect to the features of ui. This projection aims at removing
examples from the current training set that are not useful in producing rules for ui.

1 We use the terms documents, instances, samples, and examples interchangeably in this paper.
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The more dissimilar the candidate document, the fewer the rules generated for it, mean-
ing that few already labeled instances in the projected training set share common feature-
values with the candidate. This process is repeated until the algorithm converges, which
happens when an already selected document is selected again, i.e., there is no more
information useful for generating rules from any other document in the unlabeled set.

Despite being very effective in several cases, as demonstrated in our experiments, our
method may sometimes converge too fast, resulting in a very small labeled training set.
We propose a strategy to delay this convergence and increase the size and diversity of
the labeled set which consists in vertically partitioning the features in the unlabeled set,
generating in practice several reduced (in terms of features, not instances) unlabeled
sets, over which our active sampling method can be applied. Once the final reduced
training set is created by the union of the documents selected in each partition, we apply
the supervised on-demand association rule algorithm to rank the test set. One of the key
advantages of our method is that it can be directly applied on an unlabeled set containing
the extracted features for the documents in the corpus, without the need of an initial
labeled set. Furthermore, once the unlabeled set is generated (i.e. feature extraction is
performed on the corpus) and processed (i.e. discretized and partitioned), the method
can be directly applied without extra parametrization since it naturally converges while
selecting the training samples. This is different from most previous work where there is
no clear stop criterion and the number of iterations has to be empirically determined.

We compare our method against a number of baselines that use the complete labeled
training set, including some published by the LETOR dataset producers with many
supervised L2R algorithms, and show that it is competitive when compared to several
of them while selecting and using as little as 1.12% and at most 2.18% of the original
training sets (average of 1.63% for all datasets considered). Best results reported in the
literature with other active sampling strategies for L2R reported selecting at least 11%
of the training set to produce similar competitive results. Moreover, in most cases our
method improved the results of the original on-demand associative method (by as much
as 13%), or produced similar results when compared to using the whole training set,
confirming the hypothesis of noise reduction.

2 Related Work

Some researchers have recently proposed active learning schemes for L2R based on the
optimization of approximations of position-based measures. The authors of [9], for ex-
ample, propose a general active learning framework based on expected loss optimiza-
tion (ELO). The framework uses function ensembles to select training examples that
minimize a chosen loss function. The authors approach the unique challenges of active
learning in L2R by separating their selection algorithm into query level and document
level parts (what they call Two-stage Active Learning). To approximate their chosen
metric, namely, DCG (Discounted Cumulative Gain), they use ensembles of learners to
produce relevance scores and estimate predictive distributions for the documents in the
active learning set. To produce the ensemble, they use a bootstrap technique that relies
on an initial labeled set. Thus, their technique requires an initial labeled set to build the
ensemble of learners, which needs to be large enough for the learners in the ensemble
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to be minimally effective. In their case, the initial labeling sets contain thousands of
instances.

In [21], an SVM-specific active learning method is proposed that interactively se-
lects the most ambiguous set of samples with respect to the learned ranking function
and a initial set of “real-world queries”. At each round, those instances that minimize
the support vector margin for the function learned so far are selected and the user is
required to input a partial order for these instances. Compared to “traditional” active
learning, this means a much more laborious labeling process for the user, who has to
partially order results for every query in the initial set. This procedure is repeated an
empirically established number of times with the function learned from all the user or-
dered instances, always selecting the most ambiguous instances for the current learned
function. Although the algorithm could be modified to be used for document retrieval,
in the paper it is tested using a data retrieval application which enables fuzzy search on
relational databases.

Another SVM-specific strategy is presented in [2]. The authors rely on the relation-
ship between the area under de ROC curve (AUC) and the hinge rank loss proposed
by [18] to develop a loss minimization framework for active learning in ranking. Instead
of testing each and every unlabeled sample to determine the one that has the smallest
expected future error, the authors suggest selecting the examples that have the largest
contribution to the estimated current error. These are potentially the ones that will bring
more benefit when labeled for the functions that will be trained in the next rounds of the
method. The proposed selection criterion is based on the hinge rank loss calculated on a
per query basis and depends on the determination of a rank threshold that estimates the
rank position that separates the lowest ranked relevant element from the highest ranked
non-relevant example. The algorithm starts with a small labeled per query set and pro-
ceeds selecting unlabeled samples that have the highest uncertainty (as defined by the
rank threshold). These samples are then labeled and added to the per query labeled sets
and the process is repeated as many times as desired. The method is experimentally
tested using the TD2003 and TD2004 datasets from LETOR and compared against four
sampling baselines. The experimental setup starts with 11 labeled samples per query
and selects 5 new samples per query per round. On the 20th iteration, the selected set
corresponds to approximately 11% of the original training sets in both collections.

A slightly different approach is proposed in [3]. Their method relies on the estimated
risk of the ranking function on the labeled set after adding a new instance with all pos-
sible labels. The authors present results using this sampling technique with RankSVM
and RankBoost. Their method, which also relies on an initial labeled training set and
incrementally adds new samples, achieves competitive results with around 15% of the
original training sets.

In contrast, our method does not use any initial labeled set and selects all samples
from the unlabeled set. Furthermore, there is no need to empirically determine (using
the validation or test sets) how many iterations are required to obtain competitive re-
sults, since the selection process naturally converges. Finally, our method achieves very
good results with as little as 1.12% of the original training sets.
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3 Selective Sampling Using Association Rules

In our context, the task of learning to rank is defined as follows. We have as input
the training data (referred to as D), which consists of a set of records of the form
< q, d, r >, where q is a query, d is a document (represented as a list of m feature-
values or {f1, f2, . . . , fm}), and r is the relevance of d to q. Features include BM25,
Page Rank, and many other document and query-document properties. The relevance
of a document draws its values from a discrete set of possibilities {r0, r1, . . ., rk}
(e.g. 0: not relevant, 1: somewhat relevant, 2: very relevant). The training data is used
to build functions relating features of the documents to their corresponding relevance.
The test set (referred to as T ) consists of records < q, d, ? > for which only the query
q and the document d are known, while the relevance of d to q is unknown. Ranking
functions obtained from D are used to estimate the relevance of such documents to the
corresponding queries.

3.1 Learning to Rank Using Association Rules

Ranking functions exploit the relationship between document features and relevance
levels. This relationship may be represented by association rules. We denote as R a

rule-set composed of rules of the form {fj ∧ . . . ∧ fl
θ−→ ri}. These rules can con-

tain any mixture of the available features in the antecedent and a relevance level in the
consequent. The strength of the association between antecedent and consequent is mea-
sured by a statistic, θ, which is known as confidence [1] and is simply the conditional
probability of the consequent given the antecedent. In this section we discuss the use of
association rules for the sake of learning to rank, and we present the algorithm LRAR
(Learning to Rank using Association Rules) which extracts rules from D on a demand-
driven basis and then combine these rules in order to estimate the relevance of each
document in T .

Demand-Driven Rule Extraction. The search space for rules is huge, and thus, com-
putational cost restrictions must be imposed during rule extraction. Typically, a mini-
mum support threshold (σmin) is employed in order to select frequent rules (i.e., rules
occurring at least σmin times in D) from which the ranking function is produced. This
strategy, although simple, has some problems. If σmin is set too low, a large number
of rules will be extracted from D, and often most of these rules are useless for esti-
mating the relevance of documents in T (a rule {X −→ ri} is only useful to estimate
the relevance of document d ∈ T if the set of features X ⊆ d, otherwise the rule is
meaningless to d). On the other hand, if σmin is set too high, some important rules will
not be included in R, causing problems if some documents in T contain rare features
(i.e., features occurring less than σmin times in D). Usually, there is no optimal value
for σmin, that is, there is no single value that ensures that only useful rules are included
in R, while at the same time important rules are not missed. The method to be proposed
next deals with this problem by extracting rules on a demand-driven basis.

Demand-driven rule extraction is delayed until a set of documents is retrieved for a
given query in T . Then, each individual document d in T is used as a filter to remove
irrelevant features and examples from D. This process produces a projected training
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data, Dd, which is obtained after removing all feature-values not present in d. Then, a
specific rule-set, Rd extracted from Dd, is produced for each document d in T .

Lemma 1: All rules extracted from Dd (i.e., Rd) are useful to estimate r.

Proof: Since all examples in Dd contain only feature-values that are present in d, the
existence of a rule {X −→ ri} ∈ Rd, such that X � d, is impossible. �

Theorem 1: The number of rules extracted from D depends solely on the number of
features in Dd, no matter the value of σmin.

Proof: If an arbitrary documentd ∈ T contains at most l features then any rule matching
d can have at most l feature-values in its antecedent. That is, for any rule {X −→ ri}, such
thatX ⊆ d, |X | ≤ l. Consequently, forσmin ≈ 0, the number of possible rules matching
d is k × (l +

(
l
2

)
+ . . . +

(
l
l

)
) = O(2l), where k is the number of distinct relevances.

Thus, the number of rules extracted for all documents in T is O(|T | × 2l). �

Relevance Estimation. In order to estimate the relevance of a document d, it is neces-
sary to combine all rules in Rd. Our strategy is to interpret Rd as a poll, in which each

rule {X θ−→ ri} ∈ Rd is a vote given by a set of features X for relevance level ri. Votes
have different weights, depending on the strength of the association they represent (i.e.,
θ). The weighted votes for relevance level ri are summed and then averaged (by the to-
tal number of rules in Rd that predict relevance level ri), forming the score associated
with relevance ri for document d, as shown in Equation 1 (where θ(X → ri) is the
value θ assumes for rule {X −→ ri}):

s(d, ri) =

∑
θ(X −→ ri)

| Rd | , where X ⊆ d (1)

Therefore, for a document d, the score associated with relevance ri is given by the
average θ values of the rules in Rd predicting ri. The likelihood of d having a rele-
vance level ri is obtained by normalizing the scores, as expressed by p̂(ri|d), shown in
Equation 2:

p̂(ri|d) =
s(d, ri)

k∑
j=0

s(d, rj)

(2)

Finally, the relevance of document d is estimated by a linear combination of the
likelihoods associated with each relevance level, as expressed by the ranking function
rank(d), which is shown in Equation 3:

rank(d) =
k∑

i=0

(
ri × p̂(ri|d)

)
(3)

The value of rank(d) is an estimate of the true relevance of document d (i.e., r) using
p̂(ri|d). This estimate ranges from r0 to rk , where r0 is the lowest relevance and rk is
the highest one. Relevance estimates are used to produce ranked lists of documents. All
steps of LRAR are depicted in Algorithm 1.
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Algorithm 1. Learning to Rank using Association Rules
Require: The training data D, test set T , and σmin (≈ 0)
Ensure: rank(d)

1: for all pair (d, q) ∈ T do
2: Dd ⇐D projected according to d
3: Rd ⇐ rules extracted from Dd | σ ≥ σmin

4: for all i | 0 ≤ i ≤ k do

5: s(d, ri)⇐
∑

θ(X −→ ri)
|Rd|

6: end for
7: rank(d)⇐0
8: for all i | 0 ≤ i ≤ k do
9: rank(d)⇐ rank(d) + ri × p̂(ri|d)

10: end for
11: end for

3.2 Rule-Based Active Sampling

In this section we present a novel algorithm referred to as SSAR (Selective Sampling
using Association Rules), which relies on an effective selective sampling strategy in
order to deal with the high cost of labeling large amounts of examples. The key idea of
SSAR is that it may provide results as effective (or even better) as LRAR by carefully
choosing a much smaller set of training examples from which it learns the ranking
functions. As we will see in detail below, SSAR takes each unlabeled document in
turn, obtaining its projection from the current reduced training set and generating the
rules that would be used to rank the document. After it has the rules for all unlabeled
documents, it chooses the one that generated the fewest rules, obtaining its label and
inserting it into the current selected and labeled training set. The goal is to label as few
instances as possible, while providing equal or even improved ranking performance.

Sampling Function. Consider a large set of unlabeled documentsU={u1, u2, . . . , un}.
The problem we investigate in this section is how to select a small subset of documents
in U , such that the selected documents carry almost the same information of all doc-
uments in U . These highly informative documents will compose the training data D,
and, ideally, |D| � |U|. Particularly, SSAR exploits the redundancy in feature-space
that exists between different documents in U . That is, many documents in U may share
some of their feature-values, and SSAR uses this fact to perform an effective selective
sampling strategy.

Intuitively, if a document ui ∈ U is inserted into D, then the number of useful rules
for documents in U that share feature-values with ui will possibly increase. In contrast,
the number of useful rules for those documents in U that do not share any feature-
value with ui will clearly remain unchanged. Therefore, the number of rules extracted
for each document in U can be used as an approximation of the amount of redundant
information between documents already in D and documents in U . The sampling func-
tion employed by SSAR exploits this key idea, by selecting documents that contribute
primarily with non-redundant information, and these informative documents are those
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likely to demand the fewer number of rules from D. More specifically, the sampling
function γ(U) returns a document in U according to Equation 4:

γ(U) = {ui such that ∀uj : |Rui | ≤ |Ruj |} (4)

The document returned by the sampling function is inserted into D, but it also re-
mains in U . In the next round of SSAR, the sampling function is executed again, but the
number of rules extracted from D for each document in U is likely to change due to the
document recently inserted into D. The intuition behind choosing the document which
demands the fewest rules is that such document should share less feature-values with
documents that were already inserted into D. That is, if only few rules are extracted for
a document ui, then this is evidence that D does not contain documents that are similar
to ui, and, thus, the information provided by document ui is not redundant and ui is
a highly informative document. This simple heuristic works in a fine-grained level of
feature-values trying to maximize the diversity in the training set. The extracted rules
capture the co-occurrence of feature-values, helping in our goal of increasing diversity,
since in this case, the document which demands the fewest rules is exactly the one
which shares the least possible number of feature-values with documents already in the
training data. In the case of a tie, the algorithm selects the document based on the size
of the projection.

Notice that initially D is empty, and thus SSAR cannot extract any rules from D.
The first document to be labeled and inserted into D is selected from the set of available
documents U . In order to maximize the initial coverage of D, the selected document is
the one that maximizes the size of the projected data in U , that is, it is the document d
for which Ud is the largest. This is the document that shares more feature-values with
the other documents of the collection and can be considered as the best representative
of it. After the first document is selected and labeled, the algorithm proceeds using the
fewest rules heuristic, as described above.

Natural Stop Condition. After selecting the first document and at each posterior
round, SSAR executes the sampling function and a new example is inserted into D.
At iteration i, the selected document is denoted as γi(U), and it is likely to be as dis-
similar as possible from the documents already in D={γi−1(U), γi−2(U), . . . , γ1(U)}.
The algorithm keeps inserting documents into the training data, until the stop criterion
is achieved.

Lemma 2: If γi(U) ∈ D then γi(U)=γj(U) ∀j>i.

Proof: If γi(U) ∈ D then the inclusion of γi(U) does not change D. As a result, any
further execution of the sampling function must return the same document returned by
γi(U), and D will never change. �
The algorithm stops when all available documents in U are less informative than any
document already inserted into D. This occurs exactly when SSAR selects a document
which is already in D. According to Lemma 2, when this condition is reached, SSAR
will keep selecting the same document over and over again. At this point, the training
data D contains the most informative documents, and LRAR can be applied to estimate
the relevance of documents in T . All steps of SSAR are shown in Algorithm 2.
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Algorithm 2. Selective Sampling using Association Rules
Require: Unlabeled data U , and σmin (≈ 0)
Ensure: The training data D
1: continue
2: for all document ui ∈ U do
3: Dui ⇐D projected according to ui

4: Rui ⇐ rules extracted from Dui | σ ≥ σmin

5: end for
6: if D = ∅ then
7: γi(U)⇐ ui such that ∀uj : |Uui | ≥ |Uuj |}
8: else
9: γi(U)⇐ ui such that ∀uj : |Rui | ≤ |Ruj |}

10: end if
11: if γi(U) ∈ D then break
12: else append γi(U) to D

4 Experimental Evaluation

4.1 LETOR Datasets

To evaluate the effectiveness of our method, we did extensive experimentation using the
Learning to Rank (LETOR) benchmark datasets version 3.0. LETOR 3.0 is composed
of 6 separate web datasets plus the OHSUMED corpus. The web datasets contain la-
beled instances selected from web pages obtained from a 2002 crawl of the .gov TLD.
These collections are separated in three search tasks: topic distillation (TD), homepage
finding (HP) and named page finding (NP) and contain 2 sets each (namely, TREC2003
and TREC2004). The collections contain instances represented by 64 features for the
top 1.000 documents returned for a specific set of queries using the BM25 model [12].
These datasets use a binary relevance judgment indicating whether a document is or is
not relevant to a given query. We evaluate our method on all the largest, more diverse,
LETOR 3.0 web datasets. In all datasets we have used the query-based normalized ver-
sions as suggested by the producers of the LETOR benchmarking datasets. We also use
5-fold cross validation for all results reported as well as the evaluation script provided
in the LETOR package to generate the final precision, MAP and NDCG metrics.

4.2 Results

As described in Section 3, SSAR, our rule-based active sampling algorithm processes
a given list of unlabeled instances selecting the one that produces the fewest rules. In
this setup, the training set for the selection process is initially empty and grows one
instance at a time as they are selected from the unlabeled set and labeled. The algorithm
eventually converges when it selects an instance it has already selected before. Once
that happens, the selected items can be used as a reduced training set to rank the test
set using LRAR (i.e. the supervised rule-based rank-learner). All results presented here
use, therefore, 2 distinct sets. The original training set is used as the unlabeled set from
which instances are selected by SSAR. The test set is then ranked by the LRAR using
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Table 1. SSAR MAP Results and Statistics

SSAR LRAR LBM25 Random G% Sel Utot Sel% Rsel% R% R25%

TD2003 0.2032 0.2459 0.1402 0.1181±0.0234 44.94 157 29,435 0.53 6.80 0.82 13.22
TD2004 0.1792 0.2463 0.1452 0.1267±0.0163 23.47 141 44, 488 0.32 7.82 1.50 11.32
NP2003 0.7202 0.6373 0.5346 0.4981±0.0688 34.72 207 89, 194 0.23 3.04 0.10 25.32
NP2004 0.4993 0.5155 0.2672 0.3695±0.0575 35.15 181 44, 300 0.41 3.18 0.10 5.76
HP2003 0.6487 0.7083 0.5230 0.5486±0.0493 18.25 218 88, 564 0.25 3.62 0.12 26.04
HP2004 0.6332 0.5443 0.3712 0.3117±0.0496 70.55 222 44, 645 0.50 1.68 0.11 4.24

Table 2. SSAR with Partitions (SSARP) MAP Results and Statistics

SSARP LRAR LBM25 Random G% Sel Utot Sel% Rsel% R% R25%

TD2003 0.2689 0.2459 0.2104 0.1573±0.0198 27.84 642 29,435 2.18 4.40 0.82 7.70
TD2004 0.2006 0.2463 0.1818 0.1707±0.0112 10.37 633 44,488 1.42 5.72 1.50 6.00
NP2003 0.6960 0.6373 0.6321 0.5573±0.0423 10.09 995 89,194 1.12 2.42 0.10 7.28
NP2004 0.5499 0.5155 0.4064 0.4038±0.0580 35.29 860 44,300 1.94 1.80 0.10 2.16
HP2003 0.7411 0.7083 0.6487 0.5825±0.0460 14.25 1091 88, 564 1.23 2.00 0.12 6.90
HP2004 0.6168 0.5443 0.3685 0.3718±0.0479 65.89 855 44,645 1.91 1.68 0.11 1.74

the selected and labeled instances as training. Observe that our method does not use
an initial labeled set to learn an initial model. The labeling effort is restricted to the
examples selected by the algorithm directly from the unlabeled set2.

Experimental Setup and First Results. The association rule mining algorithm uses
nominal values to generate the inference rules used in ranking the results or in select-
ing samples. Therefore it is necessary to discretize the original LETOR data. Since all
our data is unlabeled, we need to use an unsupervised discretization algorithm. Simple
algorithms such as Uniform Range Discretization (URD) or Uniform Frequency Dis-
cretization (UFD) could be used, but being oversimplistic, they may cause some loss
of information. Instead, we use the Tree-based Unsupervised Bin Estimator (TUBE)
proposed in [14]. TUBE is a greedy non-parametric density estimation algorithm that
uses the log-likelihood measure and a top-down tree building strategy to define varying-
length bins for each attribute in the dataset. The algorithm can automatically determine
the number of bins using cross-validation and the log-likelihood. Since this approach
can lead to too many bins in some cases, we chose to use 10 varying-length bins for
all attributes in all datasets (which is the default for the URD algorithm implemented
in Weka). The results shown in tables 1 and 2 were obtained using TUBE to discretize
each feature from the training set into 10 bins. After the bins were determined using the
training sets in each fold, the test sets were discretized using the same bins.

Table 1 presents the results for this initial setup. The first column, “SSAR”, shows
the MAP obtained using only the samples selected from the unlabeled set. The number
of selected samples appears in the “Sel” column. The “UTot” column shows the number

2 In our experiments, the presence of the user who would provide the labels is simulated; we use
instead the original labels available in the collection after a document is selected.
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of instances in the unlabeled set (from which the samples were selected) and the “Sel%”
column indicates the percentage of the unlabeled set that the selected examples repre-
sent. The “RSel %” column shows the proportion of relevant samples in the selected
set while the “R%” field shows the proportion of relevant documents in the full training
set. “R25%” shows the proportion of relevant samples selected by the BM25 baseline
described below. As a reference result, the “LRAR” column contains the MAP obtained
by the LRAR algorithm using the complete training set and supervised discretization.
We show this result for comparison, since it uses a very effective supervised discretiza-
tion method [5] and provides a target to measure our hypothesis of noise reduction. The
baselines appear on the 3rd and 4th columns: “LBM25” shows the resulting MAP from
running LRAR with the same amount of samples selected by SSAR as training but se-
lected using the value of the BM25 attribute in descending order (i.e. instances with the
highest BM25 were used); “Random” shows the MAP obtained by randomly selecting
the same amount of samples selected by SSAR and using these as the training set for
supervised LRAR ranking. Finally, the “G%” column indicates the gain obtained by
SSAR over the best value from the LRAR BM25 and Random baselines. The Random
baseline was produced by randomly sampling the same amount of instances selected by
SSAR at least 20 times for each fold and averaging the resulting MAPs. We present the
mean obtained from all runs and all folds as well as the confidence interval for a con-
fidence level of 95%. The LRAR with BM25 baseline tries to select more interesting
instances by using the BM25 attribute value as a measure of instance quality.

From Table 1 we can see that the method converges very fast, selecting from 0.23
to 0.53% of the instances in the unlabeled set. Compared to the baselines, it performs
very well as can be seen on the “G%” column. SSAR even beats the LRAR reference
result in NP2003 and HP2004. Notice also that SSAR tends to select a much higher
proportion of relevant instances than present in the original sets (RSel% vs. R%). These
datasets have an extremely reduced amount of relevant instances and SSAR seems to
single them out based on the “fewer rules” heuristic. On the other hand, the BM25-
based selection obtains an even higher proportion of relevant documents, showing the
power of this classic IR measure. But from the LBM25 results we can see that it is
not only a matter of using many relevant instances, but also about the “quality” of the
instances used. Our rule-based selection method does choose many relevant instances,
but it does so based on the rules created from all attributes. These initial results are
promising, but the algorithm is converging too fast in some collections for the selected
samples to have sufficient representativeness and diversity. Next we propose a simple
and yet effective strategy to delay the convergence.

Increasing Sample Diversity. The approach described above has two potential issues:
first, it may take some time to run on datasets with too many features, since the active
sampling algorithm’s complexity depends on the number of features and the size of the
unlabeled set. Second, as we can see in Table 1, the number of instances selected using
this method is very small, ranging from 0.23 to 0.53% of the unlabeled set size. There’s
no doubt that the selected samples are very informative, since the results obtained by
SSAR are usually reasonably better than the baselines. Nonetheless, the resulting train-
ing dataset may still be too small to provide, in some collections, the minimum diversity
of examples for the supervised algorithm to reach a performance comparable to that
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obtained using the complete training set (i.e. column “LRAR” in Table 1). By delay-
ing convergence and increasing the number of sampled instances we can improve the
diversity of the selected set.

We propose partitioning the unlabeled set into vertical sections containing subsets of
the features3. Each of these partitions contain all unlabeled instances, but only a group
of each instance’s features. The active sampling algorithm can then be run on each par-
tition, selecting instances based on distinct feature sets. This simple strategy increases
the number of selected instances, since for each partition the algorithm will choose
those that are most informative given the features in that partition. It also improves the
diversity of the samples, as they are selected based on distinct characteristics. To apply
this strategy, we need to determine how to separate the features into the partitions and
how many partitions should be used. The features need to be divided in such a way as
to allow the algorithm to select informative samples regardless of which feature set is
used. However, features have diverse informational values, with some being more in-
formative to the rank learning algorithm than others. Ideally, we want to distribute the
most informative features through all partitions in order to maximize the quality and
variety of the instances selected by SSAR from each partition. There are many ways to
estimate which features provide more information. We chose to estimate the χ2 value
of each feature. Since we do not have relevance information, we cannot calculate the
χ2 in relation to the label. What we do instead is to calculate the χ2 of each feature in
relation to the others (i.e. how well one feature performs in predicting another feature’s
value). Thus we produce a n× n matrix containing in line i the n − 1 features ranked
in descending order of their χ2 value in relation to the ith feature. We then combine
the n rankings by scoring each feature according to its positions in all rankings. If a
feature appears at the first position in a ranking we add 1 to its score, otherwise, we
add 1/log(10 × j) where j is the feature’s position in that ranking. Then we order the
features in descending order of score, obtaining the final ranking.

With this ranked list of features, we can now vertically partition the unlabeled set by
spreading the features into the partitions in the ranked order. Thus, given the ranked list
of m features F = {f1, f2, ..., fm}, and a set of n partitions P = {U1,U2, ...,Un}, we
place feature f1 (the one in the first position of the χ2 ranking) in partition U1 then f2
in U2, eventually reaching partition Un and starting over by placing the next feature, fi

into U1 and fi+1 into U2 and so on. We now run SSAR using each Uk set as input, and
obtaining n sets of selected documents Dk. We then obtain the original set of features
for all selected documents from U and run LRAR using this new set as training.

The next step is to determine how many partitions to use. If very few partitions are
used, then the increase in document diversity and the number of selected instances may
be small, yielding only marginal gains. If we use too many partitions, then the informa-
tional value of each document is diluted and SSARP (SSAR with Partitions) will select
many instances that are not informative as a whole, but only when considered in the
context of the reduced feature set (i.e. the partition from which it was selected). Thus
it is important to determine how many partitions to use to obtain good diversity while
selecting informative samples. We performed preliminary tests using 2 collections, and

3 Another strategy would be to select documents per query, but this would entail a large number
of actively selected samples, thus hurting our goal of significantly reducing the labelling effort.
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Table 3. MAP for SVM using selected samples, BM25
and Random Baselines

SSARP SVMS SBM25 Random G%

TD2003 0.2689 0.2194 0.1568 0.1417±0.0285 39.95
TD2004 0.2006 0.1957 0.1335 0.1687±0.0145 16.01
NP2003 0.6960 0.6428 0.6587 0.5739±0.0237 -2.41
NP2004 0.5499 0.5929 0.5811 0.5787±0.0329 2.04
HP2003 0.7411 0.6747 0.7090 0.5798±0.0592 -4.84
HP2004 0.6168 0.6734 0.6731 0.5406±0.0357 0.05

Table 4. MAP for SSARP and LETOR
Baselines

SSARP RBoost FRank REG

TD2003 0.2689 0.2274 0.2031 0.2409
TD2004 0.2006 0.2614 0.2388 0.2078
NP2003 0.6960 0.7074 0.6640 0.5644
NP2004 0.5499 0.5640 0.6008 0.5142
HP2003 0.7411 0.7330 0.7095 0.4968
HP2004 0.6168 0.6251 0.6817 0.5256

Avg. 0.5122 0.5197 0.5163 0.4250

decided to set the number of features per partition to be from around 8 to 12. Using 5
partitions for all datasets, we have around 12 features per set for LETOR 3.04.

Table 2 presents the results for SSARP. All results were produced by splitting the
unlabeled sets in 5 partitions, selecting instances from the partitions, creating a new
labeled training set comprised of all the selected samples with all features and running
LRAR on the test set with 5-fold cross validation. Again we compare the resulting
MAPs with two baselines: LRAR BM25 and Random. The baselines were ran again,
since the number of documents selected has changed for all datasets. Notice that the
results for “LRAR” are the same as in Table 1, since it uses the complete training set.

As we can see, SSARP selects from 4 to 5 times the amount of instances selected by
SSAR although the percentages relative to the unlabeled set (column “Sel%”) remain
very low. These percentages now vary from 1.12 (NP2003) to 2.18% (TD2003). Not
only the size of the selected set increased, but there is more diversity in the selected set
as instances were chosen based on different feature groups. As a consequence, the MAP
for SSARP is better for 4 datasets. The improvement over SSAR was 32% for TD2003,
14% for HP2003, 11% for TD2004 and 10% for NP2004. For NP2003 and HP2004,
there was a small reduction of around 3%. The proportion of relevant instances selected
is also lower for both SSARP and the BM25 baseline. Our method is not only still better
than the baselines but also beats LRAR using the full training sets on all datasets except
TD2004. This is an indication that there is some noise reduction in the active selection
process. With only 2% of the original training set it is possible to obtain better results
than using the full training set with a supervised method such as LRAR.

5 Discussion

5.1 Does the Proposed Sampling Technique Work with Other L2R Methods?

Once the instances are actively selected by SSARP, it is possible to use other super-
vised learning algorithms to rank the test sets. Of course, different algorithms will find
the instances selected by SSARP more or less “informative”. Active learning methods
currently proposed in the literature are inherently algorithm-specific as illustrated by the

4 For datasets with more features, more partitions should be used.
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SVM-specific techniques discussed in section 2. For instance, the approach proposed
in [21] selects, at each round, the samples that minimize the support vector margin.
What if we run an SVM ranking algorithm using the selected instances as training5?
Table 3 shows the MAP resulting from running SVMRank6 [6] using the examples
selected by SSARP as training sets. The column “SSARP” repeats the results from Ta-
ble 2 for reference. “SVMS” shows the MAP obtained from running SVMRank using
the samples selected by SSARP (see Table 2 for other information such as the number
of instances selected, etc.). Again, we ran two baselines for comparison: “SBM25” con-
tains the results from running SVMRank with the same amount of samples as selected
by SSARP, but picked by their BM25 value. “Random” shows the average of 20 runs
where the instances are randomly selected and includes the confidence interval for a
95% confidence level. “G%” indicates the gain of SVMS over the best baseline.

From the results we can observe that SVMS fares very well on the TD2003 and
TD2004 datasets as compared to the baselines. For the other datasets, it basically ties
with the SBM25 baseline. This may be due to the fact that the BM25 method selects a
high proportion of relevant instances which are extremely rare in the original NP and
HP datasets (column “R%” of Tables 1 and 2). This is one of the difficulties in ranking
these datasets and both SSARP and the BM25 selection methods may help as they tend
to select a larger proportion of relevant samples. Though these results can be improved,
they illustrate that our method chooses informative instances that are useful even for
completely different algorithms.

5.2 How Does the Proposed Method Fare against Supervised LETOR Baselines?

To put SSARP results in perspective, Table 4 shows the MAP results for SSARP and
those for three supervised algorithms from the LETOR 3.0 published baselines (that
use the full training sets). The producers of the LETOR datasets have published re-
sults containing precision, MAP and NDCG obtained using 12 L2R algorithms on the
LETOR 3.0 datasets [12]. We chose to show the results for three algorithms: Rank-
Boost (“RBoost” in Table 4), FRank and Regression (“REG”). The first two were se-
lected mainly because, similarly to our method, they use non-linear ranking functions,
so they all lie in the same class of algorithms, making this a more fair comparison.
RankBoost achieves very good results, beating all other 11 algorithms in 2 of the 6
datasets (TD2004, NP2003). FRank has average results if compared to the other algo-
rithms and Regression obtains a lower average then the other algorithms, although it
still beats some of the them in some datasets. We use the results of these algorithms as
high, medium and low watermarks to show that SSARP obtains competitive results se-
lecting only a very small fraction of each dataset. In Table 4, SSARP results that appear
in italic are equal or better than one of the 3 baselines. Numbers in bold indicate that
the result is equal or better that 2 of the baselines. Finally, the results in bold and italic
are equal or better then all three baselines. We indicate which results from the baselines
were matched or surpassed by showing them in italic. From Table 4 we can see that
SSARP beats the chosen supervised baselines in TD2003 and HP2003. It also obtains

5 One reason to use RankSVM is that it is one of the best performing methods on LETOR 3.0.
6 Best parameters were determined using cross-validation on the training sets.
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Table 5. NDCG for SSARP and LETOR Baselines

SSARP RankBoost FRank Regression

@1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10
TD2003 0.3800 0.3255 0.3302 0.2800 0.3149 0.3122 0.3000 0.2468 0.2690 0.3200 0.2984 0.3263
TD2004 0.3600 0.3404 0.3061 0.5067 0.3878 0.3504 0.4933 0.3629 0.3331 0.3600 0.3257 0.3031
NP2003 0.5867 0.7850 0.7918 0.6000 0.7818 0.8068 0.5400 0.7595 0.7763 0.4467 0.6423 0.6659
NP2004 0.4133 0.6546 0.6805 0.4267 0.6512 0.6914 0.4800 0.6870 0.7296 0.3733 0.6135 0.6536
HP2003 0.7200 0.7809 0.7982 0.6667 0.8034 0.8171 0.6533 0.7780 0.7970 0.4200 0.5463 0.5943
HP2004 0.5200 0.6981 0.7111 0.5067 0.7211 0.7428 0.6000 0.7486 0.7615 0.3867 0.6130 0.6468

very good results for NP2003, beating 2 baselines and almost reaching the performance
of the 3rd (RankBoost). Overall, SSARP’s average performance is only 1.4% below the
best algorithm (RankBoost) but using on average 98% less training. For further per-
formance comparisons, Table 5 provides the NDCG@1, @5 and @10 using the same
baseline algorithms and markup scheme.

5.3 How Does SSARP Compare to Other Active Learning Methods for L2R?

Some of the most recent active learning strategies for L2R [2,3] were run on the TD2003
and TD2004 datasets, thus allowing some comparison with our strategy. Both works use
a similar overall sampling strategy: an initial per query labeled seed set is used and the
algorithms iteratively select new samples to be labeled. The initial seed sets contain 11
( [2]) or 16 ( [3]) samples per query with one of the samples being necessarily relevant
(amounting to 1.1 and 1.6% of the training sets for both datasets, respectively). The
algorithms can be run for as many rounds as necessary, always selecting 5 new samples
per query at each round. By the 20th round for the first article, 11% of the training sets
are selected and labeled. For the second paper, by the 25th round, 15% of the training
sets are selected. In both cases, there is no way to know a priori how many iterations
are necessary for convergence. In contrast, our method does not require initial labeled
sets nor do we have to empirically determine how many rounds are needed to achieve
good results. For TD2003, SSARP selects only 2.18% of the original training set and
achieves a higher MAP then those reported in both papers. TD2004 was the hardest
collection for our method and we did not beat the results reported in [2], but SSARP
uses only 1.42% of the original training set to obtain a reasonable performance, while
in that work around 11% of the training data had to be actively labeled.

6 Conclusions

We have proposed a rule-based active sampling method that is practical and effective,
selecting very few documents to be labeled and yet offering competitive results when
compared to established supervised algorithms using the complete training sets. Since
the method does not depend on an initial labeled set, it can be easily used in real-life
applications where labeling many documents can be prohibitively expensive or unprac-
tical. For future work we intend to investigate the use of other discretization techniques.
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ECML 2007. LNCS (LNAI), vol. 4701, pp. 116–127. Springer, Heidelberg (2007)

5. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for
classification learning. In: IJCAI 1993, pp. 1022–1029 (1993)

6. Joachims, T.: Optimizing search engines using clickthrough data. In: SIGKDD 2002, pp.
133–142 (2002)

7. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: SIGIR 1994,
pp. 3–12 (1994)

8. Liu, T.: Learning to rank for information retrieval. Found. Trends Inf. Retr. 3(3), 225–331
(2009)

9. Long, B., Chapelle, O., Zhang, Y., Chang, Y., Zheng, Z., Tseng, B.: Active learning for
ranking through expected loss optimization. In: SIGIR 2010, pp. 267–274 (2010)

10. Mccallum, A.K.: Employing EM in pool-based active learning for text classification. In:
ICML 1998, pp. 350–358 (1998)

11. Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: ICML 2004, p. 79
(2004)

12. Qin, T., Liu, T., Xu, J., Li, H.: LETOR: a benchmark collection for research on learning to
rank for information retrieval. Inf. Retr. 13, 346–374 (2010)

13. Robertson, S.E., Walker, S., Hancock-Beaulie, M.M.: Large test collection experiments on
an operational, interactive system: Okapi at TREC. IP&M 31, 345–360 (1995)

14. Schmidberger, G., Frank, E.: Unsupervised discretization using tree-based density estima-
tion. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005.
LNCS (LNAI), vol. 3721, pp. 240–251. Springer, Heidelberg (2005)

15. Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, Uni-
versity of Wisconsin–Madison

16. Settles, B., Craven, M., Ray, S.: Multiple-instance active learning. In: Advances in Neural
Information Processing Systems, vol. 20, pp. 1289–1296. MIT Press, Cambridge (2008)

17. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: COLT 1992, pp. 287–294
(1992)

18. Steck, H.: Hinge rank loss and the area under the ROC curve. In: Kok, J.N., Koronacki, J.,
Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS
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Abstract. We address the problem of clustering large graph databases
according to scaffolds (i.e., large structural overlaps) that are shared
between cluster members. In previous work, an online algorithm was
proposed for this task that produces overlapping (non-disjoint) and non-
exhaustive clusterings. In this paper, we parallelize this algorithm to
take advantage of high-performance parallel hardware and further im-
prove the algorithm in three ways: a refined cluster membership test
based on a set abstraction of graphs, sorting graphs according to size,
to avoid cluster membership tests in the first place, and the definition
of a cluster representative once the cluster scaffold is unique, to avoid
cluster comparisons with all cluster members. In experiments on a large
database of chemical structures, we show that running times can be re-
duced by a large factor for one parameter setting used in previous work.
For harder parameter settings, it was possible to obtain results within
reasonable time for 300,000 structures, compared to 10,000 structures in
previous work. This shows that structural, scaffold-based clustering of
smaller libraries for virtual screening is already feasible.

1 Introduction

Structured databases in various application areas, such as chemistry, provide a
rich source of data that, in many cases, contain groups of structurally similar and
dissimilar objects. To detect such groups in databases of graphs, graph clustering
methods have been extensively investigated over the past few years. Basically,
there exist two complementary approaches to graph clustering [7]. The simpler
and more established one is to calculate a vectorial representation of the graphs
and use standard similarity or distance measures in combination with standard
clustering algorithms. The feature vector can be composed of properties of the
graph and / or of subgraph occurrences [5,12]. Methods from this category have
been found to be highly efficient, but imply a loss of information with respect to
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the graph topology. Moreover, a problem with vectorial graph representations
is that it is unclear what a good or even optimal vectorial representation is.
The second approach to graph clustering is to use the structure of the graphs
directly [1,6,8,9,10], e.g., by computing the maximum common subgraph (MCS)
between a set of graphs. These techniques have the desirable property that the
calculated similarity measure is intuitive and can be visualized easily. However,
the efficiency and scalability of these methods is still an open problem.

In this paper, we address the problem of clustering large graph databases
according to scaffolds, i.e., large structural overlaps that are shared among all
cluster members. More precisely, we require the cluster members to share at least
one common subgraph that covers a specific fraction of the graphs in the cluster.
An important challenge in this endeavor is the scalability to large graph data
sets (of the order of 105 to 106 graphs). Graph databases such as the ones rep-
resenting chemical compounds routinely encompass several hundred thousand
graphs; thus, clustering methods that are able to explore and structure the vast
graph space are highly desirable. Clustering large databases has emerged as a
challenging research area with a large variety of applications, such as in the field
of virtual screening, where the task is to analyze large databases of chemical
compounds to identify possible drug candidates. By applying clustering tech-
niques it is, for example, possible to prestructure the chemical space, e.g., for
local modeling to capture the multi-mechanistic nature of many endpoints, the
rediscovery of analog series or visualization. The majority of structural (i.e.,
scaffold-based) graph-based clustering algorithms, involving e.g., the computa-
tion of the MCS, is hardly suitable for such data sets. Graph data sets covered in
related papers typically contain only several hundred graphs [1,4,6], and hardly
any effort has been spent on characterizing the performance of the clustering
algorithms. Only recently, a scaffold-based structural graph clustering algorithm
[8] has been shown to handle graph data sets of at least 10,000 graphs. As this
algorithm is still limited in performance, we present a parallel, scalable version
of this algorithm in this paper. The algorithm, called PSCG (parallel structural
clustering of graphs) in the following, is based on the idea of task partitioning
in conjunction with refined cluster membership tests. More precisely, we used
a set abstraction of graphs and a size-based clustering criterion to reduce the
number of expensive subgraph search computations, which are not affordable
exhaustively on large databases. Moreover, to avoid cluster comparisons with all
cluster members, which grow computationally more expensive with increasing
cluster size, we define a cluster representative for each cluster once a unique
cluster scaffold is found.

The remainder of the paper is organized as follows: In Section 2, we present
a few basic concepts and the sequential algorithm on which PSCG is based. In
Section 3, we describe PSCG in detail. Section 4 presents a description of the
data sets and experiments as well as an interpretation of the results. In Section 5,
we give a conclusion.
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2 Background

2.1 Notation and Definitions

In the following, all graphs are assumed to be labeled, undirected graphs. To be
more precise, a graph and its subgraphs are defined as follows: A labeled graph
is represented as a 4-tuple g = (V,E, α, β), where V is a set of vertices and
E ⊆ V ×V is a set of edges representing connections between all or some of the
vertices in V . α : V → L is a mapping that assigns labels to the vertices, and
β : V × V → L is a mapping that assigns labels to the edges. Given two labeled
graphs g = (V,E, α, β) and g′ = (V ′, E′, α′, β′), g′ is a subgraph of g, (g′ ⊆ g) if:

– V ′ ⊆ V
– E′ ⊆ E
– ∀x ∈ V ′ : α′(x) = α(x)
– ∀(x, y) ∈ V ′ × V ′ : β′((x, y)) = β((x, y))

Given two arbitrary labeled graphs g1 =(V1, E1, α1, β1) and g2 = (V2, E2, α2, β2),
a common subgraph of g1 and g2, cs(g1, g2), is a graph g = (V,E, α, β) such that
there exists a subgraph isomorphism from g to g1 and from g to g2. This can be
generalized to sets of graphs. The set of common subgraphs of a set of graphs
{g1, ..., gn} is then denoted by cs({g1, ..., gn}). Moreover, given two graphs g1
and g2, a graph g is called a maximum common subgraph of g1 and g2 if g is a
common subgraph of g1 and g2 and there exists no other common subgraph of
g1 and g2 that has more vertices than g. Finally, we define the size of a graph
as the number of its vertices, i.e., |V |.

2.2 Problem Definition

Structural clustering is the problem of finding groups of graphs sharing some
structural similarity. Instances with similar graph structures are expected to be
in the same cluster provided that the common subgraphs match to a satisfac-
tory extent. Only connected subgraphs are considered as common subgraphs.
The similarity between graphs is defined with respect to some user-defined size
threshold. The threshold is set such that the common subgraphs shared among
a query graph and all cluster instances make up at least a certain proportion
of the size of each graph. A graph is assigned to a cluster provided that there
exists at least one such common subgraph whose size is equal or bigger than
the threshold. In this way, an object can simultaneously belong to multiple clus-
ters (overlapping clustering) if the size of at least one common subgraph with
these clusters is equal or bigger than the threshold. If an object does not share a
common subgraph with any cluster that meets the threshold, this object is not
included in any cluster (non-exhaustive clustering). Figure 1 provides a sample
clustering output for a data set of molecular graphs. The figure illustrates the
overlapping and non-exhaustive character of the structural clustering algorithm.

Formally, we frame the problem of structural clustering as follows. Given a set
of graph objectsX = {x1, ..., xn}, we need to assign them into clusters which may
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Fig. 1. Example output of PSCG on a subset of the RepDose database (http://www.
fraunhofer-repdose.de) for θ = 0.7

overlap with each other. In clustering these objects, one objective is considered:
to maximize the average number of objects contained in a cluster, such that
at any time for each cluster C there exists at least one common subgraph that
makes up a specific proportion, θ, of the size of each cluster member. Considering
the state of a cluster C = {x1, ..., xm}1 at any point in time, the criterion can
formally be defined as:

∃ s ∈ cs({x1, ..., xm})∀xi ∈ C : |s| ≥ θ|xi| (1)

where s is a subgraph and θ ∈ [0, 1] is a user-defined similarity coefficient. Ac-
cording to this goal, a minimum threshold for the size of the common subgraphs
shared by the query graph xm+1 and the graphs in cluster C can be defined as

minSize = θ max(|xmax|, |xm+1|), (2)

where θ ∈ [0, 1] and xmax is the largest graph instance in the cluster. To obtain
meaningful and interpretable results, the minimum size of a graph considered for
cluster membership is further constrained by a minGraphSize threshold. Only
graphs whose size is greater than minGraphSize are considered for clustering.
Thus, the identification of the general cluster scaffold will not be impeded by
the presence of a few graph structures whose scaffold is much smaller than the
one the majority of the cluster members share. This will be especially useful in
real-world applications that often contain small fragments.

2.3 Sequential Structural Clustering

The proposed parallel clustering approach PSCG extends and improves a struc-
tural graph clustering approach proposed recently [8]. In short, the algorithm
works as follows. LetminGraphSize be the minimum threshold for the graph size
1 In slight abuse of notation, we use the same indices as above.

http://www.fraunhofer-repdose.de
http://www.fraunhofer-repdose.de
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and minSize be the minimum threshold for the size of the common subgraphs
specified by the user and defined in Equation 2. In the first step, an initial cluster
is created containing the first graph object that is larger than minGraphSize.
In the following steps, each instance is compared against all existing clusters.
In case the query instance meets the minGraphSize threshold and shares at
least one common subgraph with one or more clusters that meets the cluster
criterion in Equation 2, the instance is added to the respective cluster. Unlike
many traditional clustering algorithms, a graph object is allowed to belong to
no cluster, since it is possible that an object is not similar to any cluster. In this
case, a new singleton cluster is created containing the query graph instance.

For computing common subgraphs, a modified version of the graph mining
algorithm gSpan [11] that mines frequent subgraphs in a database of graphs sat-
isfying a given minimum frequency constraint is used. The structural clustering
approach requires a minimum support threshold of minSup = 100% in a set of
graphs, i.e., all common subgraphs have to be embedded in all cluster members.
For experiments with molecular graph data, gSpan′, an optimization of gSpan for
mining molecular databases (http://wwwkramer.in.tum.de/projects/gSpan.
tgz) is used. As the only interest lies in the determination of at least one com-
mon subgraph that meets the minimum size threshold defined in Equation 2, the
graph mining algorithm gSpan [11] was modified, to mine frequent subgraphs
with a maximum size of minSize. More specifically, once the size of the current
subgraph reachesminSize, it will not be grown any more and search terminates.
In this way, the computation of all frequent common subgraphs can be avoided,
thus achieving a substantial performance improvement.

3 Parallel Structural Graph Clustering

In this section, we present enhancements and optimizations of the structural
clustering algorithm proposed by Seeland et al. [8] that enable PSCG to handle
large data sets. The main idea of PSCG is to partition the clustering task into
independent tasks which are distributed among a set of processes, i.e., each
process is responsible for one cluster. The motivation behind partitioning the
set of clusters instead of the graph data set is that each process can compare
all relevant graph objects, i.e., all graph objects with an index greater than the
index of the graph that initiated the singleton cluster, against the assigned cluster
without the need to wait for the intermediate results of the other processes. To
achieve this, we need a master process which is responsible for managing the
cluster results of all processes.

We adopt the master-worker paradigm to implement PSCG. The master-
worker programming model consists of two kinds of entities: a single master
and multiple workers. The master is responsible for decomposing a clustering
problem into a subset of clustering tasks and distributing these tasks among a
farm of workers (by putting the tasks in a shared queue), as well as for gather-
ing the partial results in order to produce the final computation result. A queue,
shared between the master and the workers, is used to represent the shared space

http://wwwkramer.in.tum.de/projects/gSpan.tgz
http://wwwkramer.in.tum.de/projects/gSpan.tgz
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Algorithm 1. Master

1: stable sort(graph[]) //see Section 3.2
2: for (i← 0, num procs− 1) do
3: w ← new Worker()
4: w.start()
5: end for
6: first = 0
7: while |graph[first]| < minGraphSize do
8: first + +;
9: end while

10: c← new Cluster(graph[first])
11: queue.add(c)
12: for (i← first + 1, |graph[]| − 1) do
13: graph[i].nrClusterComparisons + +
14: end for
15: while (true) do
16: if (!workers.active && queue.isEmpty) then
17: for (i← 0, num procs− 1) do
18: w.terminate()
19: end for
20: break
21: end if
22: end while

where the pending clusters reside. Each worker is responsible for only one cluster
at any point in time, independently computing one iteration: It pulls a cluster-
ing task (input) from the queue, processes the task by comparing all relevant
graphs in the graph database against the cluster, and sends the result, i.e., the
processed cluster, back to the master (output).

One of the advantages of using this pattern is that the algorithm is based on
a dynamic load balancing of the cluster queue, i.e., the algorithm automatically
balances the load. This is possible due to the adoption of a receiver-initiated
dynamic load balancing approach based on polling: the work set is shared, and
the workers continue to pull work from the set until there is no more work to
be done. A static load balancing policy is not adequate for our algorithm as the
work load is not known in advance and cannot be estimated easily.

In the following sections, we describe the parallel structural clustering algo-
rithm PSCG in more detail.

3.1 Cluster Comparisons

Let minGraphSize be the minimum threshold for the graph size and minSize
be the minimum threshold for the size of the common subgraphs specified by
the user and defined in Equation 2. At the beginning of algorithmic execution,
we start with an empty set of clusters. In the first step, the master initiates the
computation by creating an initial cluster containing the first graph object that
is larger than minGraphSize (Algorithm 1, line 6-10). The master process is
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Algorithm 2. Worker

1: while (!terminationSignal) do
2: c← queue.getCluster()
3: if (c != null) then
4: PSCG(c, graphStartIdx,θ, minGraphSize)
5: end if
6: end while
7: w.terminate()

Algorithm 3. Structural Clustering
1: procedure PSCG(c,graphStartIdx,θ, minGraphSize)
2: graphEndIdx← idx(graph : |graph| ≤ θ · c.min)] //see Section 3.2
3: for (j ← graphStartIdx,graphEndIdx) do
4: if (graph[j] ≥ minGraphSize) then
5: hasCluster ← false
6: if (s(fffgraph[j],fffc) < θ max(|graph[j]|, |c.min|)) then //see Section 3.3
7: MISMATCH(c.id, j, j + 1)
8: continue
9: else

10: minSize← θ ·max(|graph[j]|, |c.max|)
11: if (!UniqueScaffold) then //see Section 3.4
12: minSup← |c|+ 1
13: ret← gSpan′′′(graph[j] ∪ c.graphs,minSup, minSize)
14: else
15: minSup← 2
16: ret← gSpan′′(graph[j] ∪ c.scaffold, minSup, minSize)
17: end if
18: if (ret = 1) then
19: c[last + 1]← graph[j]
20: hasCluster ← true
21: end if
22: end if
23: if (hasCluster = false) then
24: MISMATCH(c.id, j, j + 1)
25: end if
26: end if
27: end for
28: if (graphEndIdx + 1 < |graph[]|)) then
29: MISMATCH(c.id, graphEndIdx + 1, |graph[]|)
30: end if
31: results.add(c)
32: end procedure

responsible for putting the initial cluster in the cluster queue (line 11) which
stores cluster objects that are exchanged with the workers. Subsequently, the
master increases the number of necessary cluster comparisons for all subsequent
graphs (explained in more detail later in this section) (line 12-13). In the fol-
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Algorithm 4. Maintainance of Cluster Membership Information

1: procedure mismatch(cId,startId,endId)
2: for (graphId← startId, endId− 1) do
3: graph[graphId].nrMismatches + +
4: if (graph[graphId].nrCluComp = graph[graphId].nrMism) then
5: c← new Cluster(graph[graphId])
6: queue.add(c)
7: for (i← graphId + 1, |graph[]| − 1) do
8: graph[i].nrClusterComparisons + +
9: end for

10: end if
11: end for
12: end procedure

lowing steps, idle workers continue to pull one cluster at a time from the queue
(Algorithm 2, line 2) and perform clustering (line 4) by comparing all graph
instances in the graph database that lie within a specified index range (which
will be explained in more detail in Section 3.2) against the assigned cluster (Al-
gorithm 3, line 3). In case a query instance meets the minGraphSize threshold
and shares at least one common subgraph with the cluster that meets the cluster
criterion in Equation 2 (line 18), the instance is added to the respective cluster
(line 19). In case a graph object does not belong to any cluster, a new cluster is
created. In contrast to the sequential clustering setting, however, in the parallel
setting the information whether a graph belongs to a cluster is distributed over
the set of workers. Since a new cluster can only be created if it is not assigned to
any existing cluster, the master needs to maintain the cluster membership infor-
mation for all graph instances. In particular, for each graph we need to maintain
two cluster membership parameters: the number of necessary cluster compar-
isons as well as the numbers of clusters the graph does not fit into (denoted as

C1

# cluster 
comparisons

# 
mismatches

x1 0 0

x2 1 1

x3 2 2

x4 3 3

x5 4 2

x6 4 3
C2

C3

C2

x1 x2 x3 x4 x5 x6

Fig. 2. Graphical illustration of PSCG on a sample data set (θ = 0.8)
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(a) (b)

Fig. 3. Flow charts of the parallel structural clustering algorithm PSCG

the number of cluster mismatches). If a graph does not belong to a cluster the
worker forwards the non-membership information to the master (Algorithm 3,
line 24). Note, that due to the overlapping nature of the clustering algorithm, a
graph can be directly assigned to a cluster in case it meets the cluster criterion
without informing the master. Each time a worker reports a cluster mismatch
for a graph, the master first increases the mismatch parameter for the graph
(Algorithm 4, line 2-3) and then checks the two cluster membership parameters.
If the number of necessary cluster comparisons is equal to the number of cluster
mismatches (line 4), suggesting that the corresponding graph does not belong
to any cluster, a new cluster is created (line 5). The master puts the cluster
in the task queue (line 6) and increases the cluster comparison parameter for
all subsequent graphs in the graph data set (line 7-8). A graphical illustration
of the clustering process on a sample data set of molecular graphs is shown in
Figure 2, where large circles represent clusters and the single structures outside
denote singleton clusters. The table contains the cluster membership parameters
maintained by the master. Once a worker is done with an iteration, the resulting
cluster is added to the result queue managed by the master (Algorithm 3, line
31). Figure 3 illustrates the master-worker paradigm of PSCG in a flow chart.

As in the sequential clustering algorithm, we use gSpan′′ for computing com-
mon subgraphs. Given that pairwise subgraph similarity computation is very
expensive, it would be highly desirable to reduce the number of subgraph com-
putations. Therefore, we introduced the following cluster exclusion criteria to
avoid unnecessary calls to the gSpan′′ algorithm in the first place: a refined clus-
ter membership test based on node feature vectors of graphs, and a clustering
exclusion criterion based on the size of graph objects which requires the graph
data set to be sorted according to size. These criteria are used to perform a search
space pruning on the actual clustering. The aim of search space pruning is to
reduce the number of graph candidates in the database that need to undergo an
expensive, full fledged graph matching process. Further, to reduce gSpan running
times for larger clusters, we define a cluster representative for each cluster com-
posed of the common cluster scaffold once this scaffold is unique and thus also
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minimal. In the following three subsections, we describe the employed cluster
exclusion criteria and the intuition behind the definition of the cluster repre-
sentative in more detail. The impact of these algorithmic improvements will be
investigated in Section 4.

3.2 Size Based Exclusion Criterion

The cluster criterion defined in Equation 2 constrains the set of graphs being
considered for clustering. More precisely, only graphs in a certain size range are
considered for comparison with a specific cluster, i.e., graphs whose sizes lie in
the range [�θxmax�, � 1

θxmin ], where xmin is the smallest and xmax is the largest
graph instance in the cluster. The lower bound of the size range ensures that only
graph instances that are equal to or larger than the minimum required size for
at least one common subgraph, minSize, are considered for cluster membership.
This is necessary since at any point in time at least one common subgraph should
make up a proportion θ of the size of each cluster member. The upper bound
excludes query instances that are larger than minSize and thus would break up
an existing cluster. Incorporating this information in the clustering process would
give us the possibility to avoid comparing a cluster to the complete database.

To effectively employ the size based criterion, we sort the data set in increasing
order of graph size. Thus, we do not need to compare the subsequent graphs
against a cluster, once a query graph exceeds the upper bound of the size range
(see Figure 3(b)). To preserve the incremental character (i.e., each graph in
the graph database is only processed once by comparing it against all existing
clusters) of the structural clustering algorithm [8], we need to make sure that
the graph index corresponding to the lower bound is greater than the index
following the index of the graph instance that initiated the assigned singleton
cluster. However, due to the ordering of the data set by size, the graph index
corresponding to the lower bound is always equal to or smaller than the index of
the graph that initiated the singleton cluster. Thus, the graph indices that are
considered for comparison against a cluster lie in the range [idx(xmin)+1, idx(x :
|x| ≤ � 1

θxmin )], where xmin is the smallest graph in the cluster. Due to the
ordering of the data set, this graph corresponds to the graph that initiated the
clustering. Figure 4 illustrates the use of the size based exlusion criterion during
the clustering process on a data set of eight molecular graphs.

3.3 Exclusion Criterion Based on Node Feature Vectors

The second clustering exclusion criterion is based on a set abstraction of graphs,
i.e., a numerical feature vector representing the number of node types in a graph.
The underlying idea is that for two graphs the overlapping node set represents an
upper bound for the size of the maximum common subgraph. Thus, given a query
instance, we can skip the common subgraph computation with a cluster if the size
of the overlapping node set of the query graph and the cluster representantive
is smaller than minSize.

Formally, during the preprocessing phase of structural clustering, we repre-
sent each graph gi by a numerical feature vector fffgi = (f1

gi
, .., fn

gi
) corresponding
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Fig. 4. Example use of the size based cluster exclusion criterion on a data set of
chemical compounds containing eight graphs (θ = 0.5)

to a set of vertex types l1, ..., ln. Each entry in the feature vector records the
number of a specific vertex type occuring in the respective graph. Let fk

gi
de-

note the numerical feature associated with the vertex type vk. Each cluster Cj

is represented by a vector fffCj = (f1
Cj
, ..., fn

Cj
) defined in terms of the overlap of

the feature vectors of the instances in that cluster, i.e., the common vertex type
set shared by all cluster instances. The similarity s between fffgi and fffCj is com-
puted by summing up the minimum of each pair of feature vector components

s(fffgi , fffCj ) =
∑

k

(min({fffk
gi

∈ fffgi} ∪ {fffk
Cj

∈ fffCj})) (3)

representing an upper bound on the size of the maximum common subgraph (Al-
gorithm 3, line 6). If the similarity s(fffgi , fffCj ) is lower than the minimum threshold
for the size of the common subgraphs, minSize (Equation 2), i.e., s(fffgi , fffCj ) <
minSize, we omit the computation of the common subgraphs, report the cluster
mismatch to the master (line 7) and continue with the next cluster comparison
(line 8). In this way, we eliminate graphs with a limited degree of resemblance to
the target cluster, and increase the overall speed of the algorithm. Figure 5 shows
a sample application of the feature vector criterion. In this example, the query
graph xm+1 is compared against a cluster containing two graphs. As the similar-
ity between the node feature vector of the query graph and the cluster is lower
thanminSize, the query graph is not considered for the cluster membership test,
i.e., the computation of the common subgraphs can be omitted.

3.4 Definition of a Cluster Representative

As mentioned in Section 2.3, the structural clustering algorithm limits sub-
graph mining to the search of one common subgraph that satisfies the minimum
size threshold, minSize to avoid the computation of all frequent common sub-
graphs. This limitation forces us to compare each query graph against all cluster
members which may have a remarkable impact on the runtime of gSpan, in
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Fig. 5. Example use of the feature vector based cluster exclusion criterion (θ = 0.6)

particular for larger clusters. To reduce running times, we define a cluster repre-
sentative for each cluster once all cluster members share a unique cluster scaffold,
i.e., the minimum required common subgraph is the only common subgraph all
cluster members have in common. Since in the structural clustering algorithm
[8] subgraph mining is terminated once a common subgraph is found that satis-
fies minSize, the existence of further common subgraphs is unknown. Therfore,
we need to go one level deeper in the subgraph mining process and check if
there exists at least another common subgraph with size equal to or greater
than minSize. In the pseudocode, this modification of gSpan is called gSpan′′′

(Algorithm 3, line 13). As soon as all graphs in a cluster share no more than one
common subgraph, this unique subgraph is used as the cluster representative.
In the following, all subsequent query graphs are compared against the cluster
representative instead of comparing it against all graphs in the cluster (line 15-
16). Further, subgraph mining is terminated as soon as a common subgraph of
size minSize is found that is covered by the query graph and the cluster rep-
resentative, i.e., gSpan′′ is used. Note, that the reason for not defining a cluster
representative before the existence of a unique cluster scaffold is due to the fol-
lowing two reasons. First, there may exist at least another common subgraph of
size minSize. By using the first common subgraph found as cluster represen-
tative, it may be the case that the query graph and the cluster representative
share a common subgraph of size minSize that is not the first common sub-
graph. In this case, by mistake the query graph would not be assigned to the
cluster. Second, there may exist larger subgraphs. By ignoring the existence of
these subgraphs and using the first common subgraph found as cluster represen-
tative, it may be the case that the minSize threshold is smaller than the size of
the common subgraph shared by the query graph and the cluster representative.
Thus, the query graph would not be assigned to the cluster even if there exist
larger common subgraphs that fulfill the size threshold.

4 Experimental Results

To evaluate the efficiency of our parallel structural clustering algorithm PSCG,
introduced in Section 3, we conducted several experiments on several publicly
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available data sets of molecular graphs. In this section, we describe the data sets,
the experimental set-up and the results.

4.1 Test Environment and Data Sets

The clusterings on the data sets containing up to 200,000 graphs were carried
out on a SUN x4600 system with 32 AMD Opteron CPU cores (8 CPU sockets
with 4 cpu cores) using the multi-threaded version of the algorithm. The proces-
sor in each node runs at 2.5 GHz with 2 GB of main memory. The clusterings on
the data set containing 300,000 structures were carried out using the MPI paral-
lelized version of the algorithm. Here, the compute cluster consists of 2016 AMD
Opteron (Magny-Cours) CPU cores (42 Dell R815 nodes with 48 cpu cores and
128-256 GB main memory) and Qlogic infiniband interconnects. The algorithm
was implemented in C++ using the boost libraries (www.boost.org) for multi-
threading support. For the experiments, we employed the chemical domain as our
application area by using real data sets of molecular graphs. The first data set
contains the first 10,000 structures of the NCI anti-HIV database (http://dtp.
nci.nih.gov/docs/aids/aids_data.html) which contains 36,255 compounds.
The second data set, ChemDB, contains nearly 5 M commercially available small
molecules [2,3]. We created data sets sized from 100,000 to 300,000 graphs from
this data set using random sampling.

4.2 Performance Evaluation

We investigated the runtime performance of PSCG for different numbers of pro-
cessors (1, 2, 4, 8, 16 and 32) and different values of θ using the first 10,000
graph structures from the NCI anti-HIV database. The runtime performance of
PSCG was evaluated according to the speedup factor. Speedup (S) is defined as
a ratio of the time taken in running the sequential algorithm (Ts) to the time
taken in running the parallel algorithm (Tp) with P processors, i.e., S = Ts

Tp
.
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Fig. 6. (a) Execution time and (b) speedup of PSCG on the first 10,000 graphs of the
NCI anti-HIV data set
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Figure 6 shows the execution time and the speedup for different values of
θ. The results indicate that our algorithm scales well with the number of pro-
cessors and has a good speedup which is close to linear for certain parameter
settings, i.e., for smaller values of θ. For larger similarity coefficients, there is a
higher number of computationally more demanding cluster comparisons, espe-
cially at the end of the clustering when the graphs become larger and the runtime
degenerates.

4.3 Effects of Algorithm Improvements

We investigated the impact of the algorithm improvements presented in Section
3.2, 3.3 and 3.4 on the performance of PSCG. For this, we ran the algorithm
on the NCI anti-HIV data set with 32 processors using (i) no optimizations,
(ii) only the size based exclusion criterion, (iii) only the feature vector based
exclusion criterion, (iv) both the size and feature vector based criteria and (v)
all optimizations including the definition of a cluster scaffold once it is unique.
Figure 7 shows the runtime reduction and an overview of the relative frequency
of both exclusion criteria as well as the frequency of gSpan calls. The results in-
dicate that significant performance improvements, especially for θ ≤ 0.5, can be
achieved with the application of the cluster exclusion criteria and the definition
of a cluster scaffold.
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Fig. 7. a) Runtime reduction due to algorithm improvements and b) relative frequency
of size-based and feature vector based exclusion criterion and number of gSpan calls

4.4 Comparison to Sequential Structural Clustering

We compared the runtime performance of the sequential structural clustering
algorithm [8] with PSCG on the first 10,000 structures of the NCI anti-HIV
data set. For accurate comparison, we used the same experimental setup. We
only show the experimental results for θ ∈ [0.2, 0.5], since for θ ≥ 0.5, the se-
quential algorithm did not terminate within a certain timeout period. Table 1
shows the runtime performance of both clustering versions. The runtime advan-
tage of PSCG over the sequential clustering version is clear, showing improved
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computation efficiency by factors of 300 fold to 1900 fold for PSCG. The rea-
sons for this can be explained by the following improvements in PSCG. First,
the clustering task is partitioned into independent tasks which are distributed
among a set of workers. Each worker compares the graph structures in the data
set against the assigned cluster without the need to wait for the intermediate
results of the other processes. Second, we introduced two clustering exclusion
criteria which reduce the number of cluster membership tests. Third, we defined
a cluster representative once the scaffold of a cluster is unique, to avoid cluster
comparisons with all cluster members. Fourth, we reduced the invocation over-
head of the individual gSpan runs. This optimization is especially efficient for
gSpan runs with low overall runtimes.

Table 1. Runtime (in sec) of the sequential clustering version vs. PSCG on the first
10,000 graphs of the NCI anti-HIV data set for different values of θ

θ 0.2 0.3 0.4 0.5

tseq 747,000 1,068,420 1,434,780 2,087,280
tpar 396 1,244 3,394 6,235

4.5 Experiments on Large Graph Data Sets

We tested PSCG on three data sets sampled from the ChemDB data set contain-
ing 100,000, 200,000 and 300,000 graphs respectively. For the experiments, we
used 32 CPUs for the data sets with 100,000 and 200,000 graphs. For the data
set containing 300,000 graphs we used 96 CPUs for θ = 0.4. For θ = 0.6, we used
96 (48) CPUs to cluster the first (second) half of the data set. The rationale for
the change in the CPU number is that the parallel efficiency of the algorithm can
change over the runtime of the algorithm (i.e., towards the end a large number of
workers may be idle constantly). The MPI version contains a checkpoint/restart
facility which allowed us to adjust the number of used CPU cores to account for
this by manually balancing the workload on the cluster. Tables 2 and 3 show the
runtime performance as well as the number of created clusters on the sampled
data sets for θ = 0.4 and θ = 0.6 using all three previously described algorithmic
improvements.

Table 2. Runtime (in sec) for the sam-
pled data sets

|D| θ = 0.4 θ = 0.6

100,000 31,103 • 67,563 •
200,000 122,204 • 349,568 •
300,000 610,577 ◦ 1,163,761 �

Table 3. Number of clusters for the sam-
pled data sets

|D| θ = 0.4 θ = 0.6

100,000 4,112 16,295
200,000 6,096 25,685
300,000 9,811 38,775

•: 32 processors ◦: 96 processors �: first half: 96 processors, second half: 48 processors
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5 Conclusion

In this paper, we presented PSCG, a parallel and improved version of a recently
proposed structural graph clustering algorithm [8]. PSCG uses a task partition-
ing approach and makes use of two clustering exclusion criteria to reduce cluster
membership tests. Further, to reduce gSpan running times for larger clusters, we
define a cluster representative for each cluster composed of the common cluster
scaffold once this scaffold is unique. To study the effectiveness of our proposed al-
gorithm for clustering large data sets, we conducted extensive experiments. The
experimental results suggest that the algorithm scales well with the increasing
size of the data and, for certain parameter settings, speeds up nearly linearly
with the increasing number of processors. For real world data sets, this algorithm
is able to handle a much greater number of graph objects compared to previ-
ously proposed structure-based clustering algorithms. Given these performance
improvements, our algorithm should already be applicable to the large structure
databases from virtual screening.
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Abstract. Conditional random fields are among the state-of-the art
approaches to structured output prediction, and the model has been
adopted for various real-world problems. The supervised classification is
expensive, since it is usually expensive to produce labelled data. Unla-
beled data are relatively cheap, but how to use it? Unlabeled data can
be used to estimate marginal probability of observations, and we exploit
this idea in our work.

Introduction of unlabeled data and of probability of observations into
a purely discriminative model is a challenging task.

We consider an extrapolation of a recently proposed semi-supervised
criterion to the model of conditional random fields, and show its draw-
backs. We discuss alternative usage of the marginal probability and pro-
pose a pool-based active learning approach based on quota sampling. We
carry out experiments on synthetic as well as on standard natural lan-
guage data sets, and we show that the proposed quota sampling active
learning method is efficient.

Keywords: conditional random fields, probability of observations, ac-
tive learning, semi-supervised learning.

1 Introduction

In real-world applications (text, image, audio data processing) unlabeled data are
plentiful and cheap. Labeled data, on the contrary, are usually rather expensive
to gather. The problem how to exploit unlabeled instances is not recent and many
proposals have been already made. Another problem is how to select training
data. How to choose instances of high training utility is the active learning
problem.

Intuitively, the information one can get from unlabeled data is the marginal
probability of observations. In the asymptotic case, when we dispose infinitely
many unlabeled instances, we can estimate the true marginal probability of
observations. In real-world problems this is not feasible, since the number of
observations is always limited. However, the probability of observations can be
approximated.

Attention of the machine learning and data mining communities has been
drawn to semi-supervised approaches (see [4] for an overview), especially by
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probabilistic semi-supervised classifiers. Logistic regression is a simple efficient
discriminant model widely used for various applications. However, a number of
real-world applications has sequential structure, e.g., natural language and bio-
logical applications. Conditional random fields [11] are a generalization of logis-
tic regression, and therefore, a discriminative approach, which models sequential
dependencies and allows to take a rich set of features into account.

Probabilistic generative models fare easily with unlabeled data, usually via the
expectation-maximization algorithm [6,22]. Discriminative probabilistic models
are reported to perform better than probabilistic generative models [17]. The
introduction of unlabeled instances into discriminative models is much more
challenging, since it is not straightforward how to integrate marginal probability
of observations into a discriminative model.

Among the state-of-the art semi-supervised methods are combinations of gen-
erative and discriminative approaches in order to profit from both aspects, a
better generalization error of a discriminative model and information extracted
from unlabeled data, integrated into a generative model. A convex combination
of a discriminative model and a generative model is considered e.g. by [2] and
[9]. A Bayesian point of view for the hybrid approaches has been explored by [16]
and [12]. The proposed hybrid method is based on the fact that parameters of a
discriminative and of a generative models are related via their Bayesian distri-
bution. However, the number of parameters to be estimated is usually doubled
in the hybrid approaches, since the number of models increases.

The criterion of Bengio-Grandvalet [8] was probably the first attempt to in-
troduce unlabeled data into a discriminant classifier. The criterion implements
the idea that the classes have to be well-separated; conditional entropy over un-
labeled instances is taken as a measure of overlap of classes. Among significant
disadvantages of the criterion are its non-convexity and instability in cases where
the number of labeled points is small.

In this paper, we discuss ideas how to introduce the marginal probability of ob-
servations into a purely discriminative model, into the model of conditional ran-
dom fields (CRFs). It has been shown that the recently proposed semi-supervised
discriminative criterion [26] is efficient under model misspecification and covari-
ate shift scenarios for “simple” (i.e. without underlying structure) output tasks.
We apply the semi-supervised approach to the criterion of conditional random
fields and carry out experiments on structured output problems. We discuss the
limits and drawbacks of the criterion.

We propose to integrate the marginal probability of observations into an active
learning framework for the structured output prediction. We demonstrate on the
standard natural language processing data sets that the proposed pool-based
active learning approach based on quota sampling is efficient.

The paper is organized as follows: in Section 2 we consider the asymptotically
optimal semi-supervised criterion [26], Section 3 introduces the model of condi-
tional random fields [11], widely used for structured output prediction. In Sec-
tion 4 we discuss the application of the semi-supervised criterion to the model of
conditional random fields. Section 5 discusses the limits of the semi-supervised
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discriminative criterion applied to the CRFs and introduces our approach of
pool-based active learning based on quota sampling. Section 6 illustrates our ex-
periments on synthetic as well as real-world applications. We discuss the state-
of-the art approaches and related work in Section 7. Concluding remarks and
perspectives close the paper.

2 Semi-supervised Discriminant Estimator

To start with, let us place in a context of classification without taking any
structure into consideration. Let the observation variable X take its values in a
finite set X ; Y is the class variable which takes its values in Y. We suppose Y
to be a finite set, and {Xi, Yi}n

i=1 are observations and their labels available for
the training.

Let g(y|x; θ) be the conditional probability function, parameterized by θ. Then
the standard conditional maximum likelihood estimator is defined by

θ̂n = arg min
θ∈Θ

1
n

n∑
i=1

�(Yi|Xi; θ), (1)

where �(y|x; θ) = − log g(y|x; θ) denotes the negated conditional log-likelihood
function.

The asymptotically optimal semi-supervised estimator θ̂s
n proposed by [26] is

defined by

θ̂s
n = argmin

θ∈Θ

n∑
i=1

q(Xi)∑n
j=1 �{Xj = Xi}

�(Yi|Xi; θ), (2)

where q(x) is the marginal probability of observations and can be considered as
some prior knowledge. We suppose that infinitely many observations are avail-
able, and that the true value q(x) can be estimated. The semi-supervised estima-
tor presented as eq. (2) is a weighted version of the usual conditional maximum
likelihood estimator.

The semi-supervised estimator is shown to be asymptotically optimal and to
be particularly efficient for the misspecified cases, that is if g(y|x; θ�) �= η(y|x),
where η(y|x) is the true conditional probability that generated the data; in the
following, π(y, x) = η(y|x)q(x).

To be precise, the essential properties of the standard and weighted (semi-
supervised) estimators consist in the following:

√
n
(
θ̂n − θ�

)
L−→N

(
0, J−1(θ�)I(θ�)J−1(θ�)

)
, (3)

√
n
(
θ̂s

n − θ�
)

L−→N
(
0, J−1(θ�)H(θ�)J−1(θ�)

)
, (4)

where

H(θ�) = Eq (Vη [∇θ�(Y |X ; θ�)|X ]) , (5)

I(θ�) = Eπ

[
∇θ�(Y |X ; θ�) {∇θ�(Y |X ; θ�)}T

]
, (6)

J(θ�) = Eπ [∇θT∇θ�(Y |X ; θ�)] . (7)
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The case of a covariate shift (observation variables are sometimes called ex-
planatory variables or covariates) is a rather frequent situation in real-world
applications. The covariate shift arises if q0(x) �= q1(x), where q0(x) is deter-
mined by the sampling scheme and q1(x) is determined by the population.

In the absence of covariate shift:

lim
n→∞

q1(xi)
n−1

∑n
j=1 �{xj = xi}

−→ 1. (8)

With a covariate shift, we have:

lim
n→∞

q1(xi)
n−1

∑n
j=1 �{xj = xi}

−→ q1(xi)
q0(xi)

. (9)

The weighting scheme by the importance ratio is considered in [24].
The semi-supervised estimator of eq. (2) is shown to be asymptotically optimal

under the covariate shift [25]. The advantage of the semi-supervised approach
can be observed only when considering the scaled excess logarithmic risk

n(Eπ[�(Y |X ; θ̂n)] − Eπ [�(Y |X ; θ�)]) (10)

or the scaled squared error
n‖θ̂n − θ�‖2. (11)

The true marginal probability of observations have to be provided to compute
both the scaled excess logarithmic risk and the scaled squared error. However,
as we have already mentioned, this is not possible for real-world applications.

3 Conditional Random Fields

Conditional random fields (CRF) [11,27] are a discriminative model based on
the following probabilistic distribution

pθ(y|x) =
1

Zθ(x)
exp

{
T∑

t=1

K∑
k=1

θkfk(yt−1, yt, xt)

}
, (12)

where x = (x1, . . . , xT ) denotes the sequence of observations (input) and y =
(y1, . . . , yT ) is the sequence of labels (output); {fk}1≤k≤K is an arbitrary set
of feature functions and {θk}1≤k≤K are the associated real-valued parameter
values. By convention, y0 refers to a particular (always observed) label which
indicates the beginning of the sequence.

The CRF form presented as eq. (12) is usually referred to as linear-chain
CRF, although yt and xt could be composed not only of the individual sequence
tokens, but of sub-sequences (n-grams) of some fixed length or other localized
characteristics.
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We will denote by Y, X , respectively, the sets in which yt and xt take their
values. The normalization factor in eq. (12) is defined by

Zθ(x) =
∑

y∈Y T

exp

{
T∑

t=1

K∑
k=1

θkfk(yt−1, yt, xt)

}
. (13)

One of the possible ways to define features is the combination of bigram λy′,y,x

and unigram μy,x features

K∑
k=1

θkfk(yt−1, yt, xt) =
∑

y∈Y,x∈X

μy,x�{yt = y, xt = x}+

∑
y′,y∈Y 2,x∈X

λy′,y,x�{yy−1 = y′, yt = y, xt = x}, (14)

where �(test) = 1, if the variables are observed jointly and 0 otherwise. We
can rewrite equation (14) as μyt,xt + λyt−1,yt,xt , and we use this more compact
representation in the following. We use this feature combination, unigram and
bigram templates, in our experiments in Section 6.

Given N independent labeled sequences {x(i),y(i)}N
i=1, the conditional max-

imum likelihood estimation is based on the minimization, with respect to θ, of
the negated log-likelihood

�(D; θ) = −
N∑

i=1

log pθ(y(i)|x(i))

=
N∑

i=1

{
logZθ(x(i)) −

Ti∑
t=1

K∑
k=1

θkfk(y(i)
t−1, y

(i)
t , x

(i)
t )

}
, (15)

where Ti is the length of an observation x(i).
Although �(D; θ) is a smooth convex function, it has to be optimized numer-

ically, and standard gradient-based methods, such as a quasi-Newton approach,
can be applied directly.

The gradient of �(D; θ) is given by

∂�(θ)
∂θk

=
N∑

i=1

Ti∑
t=1

Epθ(y|x(i)) fk(yt−1, yt, x
(i)
t ) −

N∑
i=1

Ti∑
t=1

fk(y(i)
t−1, y

(i)
t , x

(i)
t ), (16)

where Epθ(y|x(i)) fk(yt−1, yt, x
(i)
t ) denotes the conditional expectation.

In our experiments, the log-likelihood is penalized by the L2 norm to avoid
overfitting.
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4 Semi-supervised Conditional Random Fields

The semi-supervised criterion presented as eq. (2) applied to the conditional
random fields criterion, referred later to as weighted CRFs, takes the form:

C(θ) =
∑
x∈X

−q(x)
1
Nx

log pθ(y|x), (17)

where pθ(y|x) is defined by eq. (12), and Nx is the number of times a sequence
x has been observed in the training corpus.

The marginal probability of observations q(x) has to be provided or approxi-
mated and introduced into the model of conditional random fields. In our case,
the observations are sequences, what makes the task even more difficult.

If our data are artificial, generated by a hidden Markov model of the first or-
der, then estimation of the probability of the observation sequences is straight-
forward. Following the standard notations [20], let A be the state transition
probabilities, B be the observation probability matrix, p(y) be the initial state
distribution, x = (x1, x2, . . . , xT ) be an observation sequence of the length T .
The probability of a series of observations, i.e., of a sequence is given by

q(x) =
∑
Y

p(x,y)

=
∑
Y

p(y1)by1(x1)ax1,x2by2(x2) . . . axT−1,xT byT (xT ). (18)

Usually in real-world problems, the structure of observations is unknown. It
is not possible to compute the marginal probability of observations exactly, and
it has to be estimated empirically.

Note, that Nx equals 1 in a number of real-world applications, since each
sequence is observed usually only once in a training corpus.

5 Motivation for Pool-Based Active Learning

The application of the semi-supervised discriminative estimator to real-world
data sets does not always ameliorate the performance.

There are several reasons, why the performance of the criterion does not
dominate the performance of the standard approach. The semi-supervised cri-
terion performs better in the case of a misspecified model (the more a model
is misspecified, the more efficient is the semi-supervised criterion compared to
the standard, not weighted approach) and under a covariate shift. Usually, both
scenarios are typical for a real data set. However, carrying out experiments on
simulated data, we have noticed that the advantage of the semi-supervised ap-
proach is observed only when considering the scaled excess logarithmic risk,
eq. (10), and the squared error, eq. (11). To compute these values, the true
distribution of the observations has to be provided. In any real-world task the
distribution is not available. From a number of experiments on the real data we
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made a conclusion that although the marginal probability of observations can be
efficiently approximated, the approximation is still not good enough to be used
in the semi-supervised estimator instead of the true one.

However, we guess that even an approximation of the marginal distribution
can be informative. We propose to use the probability of observations to sam-
ple a pre-defined pool of training instances (of a small size n) to achieve the
best possible generalization error. Our idea is close, in some sense, to [32], who
considered an active learning approach based on self-training.

In the discriminative semi-supervised criterion presented as eq. (2), train-
ing instances with high probability can be automatically considered to be more
important than those with low probability. In this sense, the discriminative semi-
supervised approach is associated with stratified sampling. However, one of natu-
ral language phenomena consists in that rare events are as important as frequent
events, and can therefore not be neglected.

We propose to apply the non-probabilistic quota sampling to select training
sequences efficiently. In the method we propose, candidates for training instances
are sorted according to their marginal probabilities and are divided into n groups,
where n is the number of observations we use for the training procedure. We
choose (randomly) one training instance from each group. Under quota sampling
we mean here that we sample (uniformly) data instances from each frequency
group. Therefore, we guarantee that we train our model taking frequent as well
as rare dependencies into consideration.

We illustrate on standard natural language processing problems, in Sections 6.3
and 6.4 that the quota sampling (QS) pool-based active learning approach out-
performs training procedures which choose their training instances randomly. In
Section 6.2 we show that the proposed method outperforms a state-of-the art
approach FuSAL.

6 Experiments on Artificial and Real Data Sets

In this section, we describe our experiments and provide our results on synthetic
and two standard natural language processing problems, namely on NetTalk
Phonetisation Task and on CoNLL 2003 challenge.

Section 6.1 illustrates limits of the semi-supervised criterion, even for an ar-
tificial data set. We demonstrate on real data that the proposed QS pool-based
active learning is an efficient approach (Sections 6.3 and 6.4), in particular in
case where the number of observations n is small.

The state-of-the art performance (mostly in the context of fully supervised
learning) of the considered real data sets can been found, for instance, in [25].

We would like to underline that we are especially interested in cases where n,
the number of observed instances, is small.

6.1 Weighted Conditional Random Fields Experiments

The synthetic sequential data are simulated with hidden Markov models of the
first order. The observation alphabet contains 5 symbols, the size of the labels
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alphabet is 6. All simulated sequences are of the same length which equals 5. The
minimal achievable error is about 6%. The value of Bayes error is approximated
by a percentage of errors obtained by decoding using the true values of the state
transition and observation probability matrices.

Since we know the distribution which generates the data and the true param-
eters are available, we use the forward algorithm and eq. (18) to compute the
marginal probability of observations q(x).

The results of our experiments with the synthetic sequential data are illus-
trated by Figure 1. The size of the training corpus varies from 10 to 200 training
instances. The percentage of error is always estimated on test data (test data
contains 10000 instances). The number of Monte-Carlo replications in the exper-
iment is 150. The boxplotted difference, which is shown on Figure 1, is positive, if
the weighted CRFs performs better, i.e. has a lower error rate than the standard
approach.

Fig. 1. Simulated data. Difference of error rates of standard and weighted conditional
random fields by marginal probability.

The difference in performance of the standard and the semi-supervised CRFs
is significant only for n = 10, 20, and not significant for larger n, even in the
ideal situation, where we know the exact marginal probability of observations.

As to the real-world data experiments, where we dispose only the approxi-
mated values of the probability of observations, we consider the difference in
performance to be not significant.

6.2 Fully Supervised Active Learning Approach (FuSAL)

We compare the performance of the proposed pool-based active learning to the
one of a state-of-the art method called FuSAL (Fully Supervised Active Learn-
ing) introduced in [32]. Algorithm 1 describes the approach. A utility function
we use in our experiments is the same as in [32]

uθ(x) = 1 − pθ(ŷ|x), (19)
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where ŷ is computed using the decoding Viterbi algorithm, and θ corresponds
to the current model. The intuition behind the utility function is to consider
sequences for which the current model is least confident to be more important
than other observations.

Algorithm 1. General Active Learning Framework
m – number of examples selected within one loop
Dl – set of labeled instances
Du – set of unlabeled instances
uθ(x) – utility function

while stopping criterion is not met do
train model M using Dl

estimate uθ(xi) ∀xi ∈ Du

choose m examples whose uθ(x) is maximal
get labels for the m chosen instances
move the m labeled examples from Du to Dl

end while

In our experiments, we add instances which are to be labeled one by one
(m = 1). The first instance is chosen randomly from the training corpus. The
stopping criterion is the number n of observed sequences. If the cardinality of
Dl is equal to n, the stopping criterion is met.

6.3 Active Learning Experiments on Nettalk Phonetisation Task

The original Nettalk corpus has been introduced in [23]. The Nettalk corpus
we use in our experiments has been suggested for the Pascal Letter-to-Phoneme
Conversion Challenge1. The English data set contains 16280 words aligned with
their phonetical transcriptions. The alphabet of observation symbols includes 26
letters, and the number of phonemes, i.e., the number of labels, is 53 including the
alignment symbol. The corpus is split into 10 parts. Each part includes 1628 se-
quences of observations and corresponding labels. One part, i.e., 1628 sequences,
is used to test the performance. We use all available observation sequences of
the corpus to estimate empirically the probability of observations q(x).

To approximate q(x), we follow the idea of n-gram linguistic models [7]. We
let q(x) = q(x1, . . . , xT ) =

∏
t p(xt|xt−1, xt−2, xt−3), where

p(xt|xt−1, xt−2, xt−3) ≈
C(xt, xt−1, xt−2, xt−3)/C(xt−1, xt−2, xt−3), (20)

C(·) means counts estimated on all available observations.
The estimated q(x) are sorted into n frequency groups, and we sample one

training instance from each frequency group. The training is performed with two
1 http://pascallin.ecs.soton.ac.uk/Challenges/PRONALSYL/
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types of features, bigram and unigram, as shown by eq. (14). The regularization
parameter ρ of the penalty term ρ‖θ‖2 is the same for all tested approaches, QS
active learning, random sampling, and FuSAL, and is fixed to ρ = 0.1 (the value
is chosen by cross validation).

Figure 2 illustrates the performance of the FuSAL method on the Nettalk
data sets (50 Monte-Carlo replications). One of its obvious disadvantages and
hence causes of its poor performance is that the method is not suitable for cases
where n is small. To train the initial model, the method requires a number of
labeled sequences, and if these sequences are not selected carefully, the training
results in a model whose error rate on the testing set is large. It is not reasonable
to compute the utility function, and therefore perform active learning based on
a model which is not efficient.
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Fig. 2. FuSAL performance (error rates). Nettalk corpus, n = 30, 100.
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Fig. 3. Nettalk corpus. Comparison of error rates for n = 30 and n = 100. The pool-
based active learning based on quota sampling (QS) is more efficient than random
choice of training sequences.

Figure 3 illustrates our results of the pool-based active learning approach
compared to random sampling. We performed 50 Monte-Carlo replications. For
a small number of observations, n = 30 and n = 100, we noticed that the test
error and its variance are smaller if observations are chosen according to the
proposed pool-based active learning method and not randomly.
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It is easy to see that the QS approach approach outperforms the random
sampling and FuSAL.

For the qualitative analysis of sequences selected by the proposed quota sam-
pling method and the standard approach presented as Algorithm 1, see Tables 1
and 2 respectively. Note that applying the utility function, eq. (19), we tend to
select sequences of similar morphological structure.

Table 1. Nettalk corpus. Sequences chosen by QS, n = 30.

ail inconceivably neat superlative chase
sworn interstate strain unnaturally fresco
secret invertebrate comrade ennoble haughtily
dribble meditate parasite woodwork meteoric

shoemaker unstained simpleton soberly snake
chloroform aspire babe cheese rise

Table 2. Nettalk corpus. Sequences chosen by FuSAL (Algotihm 1), n = 30, m = 1.

hogshead shepherdess aggressiveness
misrepresentation representation representative
misapprehension interdependence superintendence
superintendent misunderstanding experimentation
standardization interpretation transcontinental

undenominational unconstitutional counterrevolution
indiscriminately characteristically internationally
characterization instantaneously enthusiastically
constitutional conscientiously incomprehensible
intermittently instrumentality correspondingly

6.4 Active Learning Experiments on CoNLL 2003 Corpus

Named entity recognition consists in extracting groups of syntagmas that cor-
respond to named entities (e.g., names of persons, organizations, places, etc.).
The data used for our experiments are taken from the CoNLL 2003 challenge
[31] and imply four distinct types of named entities. Labels have the form B-X
or I-X, where B means “begin” and I means “inside” of a named entity X (note
that the label B-PER is not present in the corpus). Words that are not included
in any named entity, are labeled with O (outside). Overall, there are 8 labels.

At each position in the text, the input consists of three separate components,
so we have three types of observations: a word (with 30290 distinct words in
the corpus), its part-of-speech (44), and syntactic (18) tags. The training set
includes about 15000 sequences (phrases). Development set (Test A) and test
set (Test B) include about 3500 sequences each.

We use all available sequences to estimate q(x). We apply the same approach
as for the Nettalk corpus, described in the previous section. However, for the



284 N. Sokolovska

CoNLL 2003 data set we use the Markovian dependency of the second, and not
of the third, order. Since the data set has three types of observations, we have to
take into consideration marginal probabilities of each type of observation. The
probability q(x) is approximated by the product of marginal probabilities of its
components p(xword)p(xPOS tag)p(xsynt. tag).

The training is carried out with two dependencies, unigram and bigram, ex-
tracted for each type of observation, i.e. our feature choice is as follows:

μyt,xword,t
+ μyt,xPOS tag,t + μyt,xsynt. tag,t

+λyt,xword,t
+ λyt,xPOS tag,t + λyt,xsynt. tag,t . (21)

The regularization parameter ρ of the penalty term ρ‖θ‖2 is chosen by cross
validation and is the same for all tested sampling methods, ρ = 0.5.

Figure 4 illustrates the results of our experiments with FuSAL. Figure 5 shows
the results for random sampling and QS. We carried out 50 Monte-Carlo repli-
cations for all methods. For a small number of observations, n = 10 and n = 50,
as illustrated on the figure, it is obvious that the error rate on the test data
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Fig. 4. FuSAL performance (error rates). CoNLL 2003, for test A and test B sets,
n = 10, 50.
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Fig. 5. CoNLL 2003 data set. Comparison of error rates (for test A and test B sets)
while training on n = 10 and n = 50 sequences. Active learning based on marginal
probability (QS on the boxplots) is much more efficient than arbitrary choice of obser-
vations for training.
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(both test A and test B sets) is much smaller while using the quota sampling
active learning than choosing training instances arbitrary. FuSAL is less efficient
as well.

Our experiments show that FuSAL is an acceptable active learning method if
some initial, not very small, Dl is provided and if a reasonable initial model M
can be created.

7 Related Work

Many proposals of semi-supervised methods have been recently made to sequence
labeling. As to active learning for structured output prediction, there are much
less published ideas.

A maximum margin semi-supervised learning approaches for structured out-
put prediction are described in [1] and [3]; [10], [15], and [13] discuss semi-
supervised learning for conditional random fields.

The minimum entropy regularization approach of Grandvalet and Bengio [8]
has been applied to conditional random fields by [10] :

−
|Dl|∑
i=1

log pθ(y(i)|x(i)) +
||θ||2
2σ2

−

ρ

|Dl|+|Du|∑
i=|Dl|+1

∑
y

pθ(y|x(i)) log pθ(y|x(i)), (22)

where Dl are labeled data and Du are unlabeled instances; σ2 and ρ are parame-
ters fixed usually by cross validation. The direct computation of the gradient of
the entropy term of the criterion requires O(T 2|Y |3) operations in comparison
to O(T |Y |2) of a standard forward-backward procedure. [13] proposed an effi-
cient way (complexity of a standard forward-backward algorithm) to compute
the gradient of the criterion presented in (22).

A hybrid semi-supervised model is proposed in [28]. The model combines
discriminative and generative models, the parameters Γ = {{γi}I

i=1, {γj}I+J
j=I+1}

are associated with I generative and J discriminative models. Unlabeled data
are introduced into the generative models. The following criterion

p(y|x, Λ,Θ, Γ ) ∝
∏

i

pD
i (y|x, λi)γi

∏
j

pG
j (x,y, θj)γj (23)

contains three sets of parameters to be estimated, Γ , Λ, and Θ. The values of
Λ are estimated on labeled data. An iterative optimization procedure runs until
convergence is used to adjust Γ (parameters of hybrid models) and parameters
Θ associated with discriminative components.

Recently [29] introduced a semi-supervised approach that is simpler than the
one proposed in [28], since there are only two parameter vectors to be estimated.
The parameter vector Λ is estimated on labeled data using a discriminative
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model, and Θ on unlabeled data, using a generative approach. However, the
number of parameters to be estimated is quite large.

The approach discussed in [28] was called a great step forward in hybrid mod-
els [5], since it combines models that take the underlying structure into account,
namely hidden Markov models and conditional random fields. The approach of
[29] has been recently applied to parsing problems by [30].

One of the recent works on semi-supervised learning applied to natural lan-
guage processing is a trial to add incomplete annotations [33]. Ambiguous an-
notations are considered as candidate labels, and parameters are estimated by
marginalizing out the unknown labels. The method is a particular case of hidden
conditional random fields, introduced in [19].

The idea to introduce the knowledge of labels proportions, the method called
“expectation regularization”, proposed in [14] for maximum entropy models,
has been generalized in [15] for structured output prediction, using linear-chain
CRFs. The approach was called generalized expectation. It was supposed that
not only fully labeled instances can be used but labeled features as well.

Recently [32] proposed an approach that combines semi-supervised and active
learning. The semi-supervised active learning method [32] which is actually self-
training active learning approach, selects instances of high utility to be labeled
and to be used for training. Estimation of utility of a given sequence is a problem
in itself, since it can be done in many different ways.

It is discussed in [32] whether it is more reasonable to label manually only
subsequences (e.g., features) of high utility instead of labeling entire sequences.
A similar idea, an efficient learning of features from unlabeled data is considered
in [18].

8 Conclusion

In this contribution, we addressed two problems, semi-supervised learning and
active learning in discriminative models, more specifically, in conditional random
fields. We demonstrated on the artificial data set that the considered discrim-
inative semi-supervised method can be applied to conditional random fields.
However, its application to real tasks is still an open problem, since an efficient
approximation of the probability of observations, whose structure is complex and
unknown, is still a challenge.

The proposed pool-based active learning method is based on the intuition
that rare observations are not less important than frequent observations. In
particularly, this is the case in the domain of natural language processing. We
have shown that selecting training instances using quota sampling is much more
efficient in terms of error rates on test data than choosing them randomly. The
proposed approach is also more efficient than FuSAL, a state-of-the art method.
Most of state-of-the art active learning methods (e.g., FuSAL) are based on the
idea that there already exists a set of labeled instances, and are therefore not
suitable for cases where the number of labeled points is very limited.

An important advantage of the proposed quota sampling approach is simplic-
ity of implementation. The open issue is the theoretical analysis of the proposed
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quota sampling pool-based active learning approach, which is quite efficient on
the real-world data sets.

References

1. Altun, Y., McAllester, D., Belkin, M.: Maximum margin semi-supervised learning
for structured variables. In: NIPS (2005)

2. Bouchard, G., Triggs, B.: The trade-off between generative and discriminative clas-
sifiers. In: IASC (2004)

3. Brefeld, U., Scheffer, T.: Semi-supervised learning for structured output variables.
In: ICML (2006)

4. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cam-
bridge (2006)
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Abstract. Modelling the real world complexity of music is a challenge for ma-
chine learning. We address the task of modeling melodic sequences from the same
music genre. We perform a comparative analysis of two probabilistic models; a
Dirichlet Variable Length Markov Model (Dirichlet-VMM) and a Time Convo-
lutional Restricted Boltzmann Machine (TC-RBM). We show that the TC-RBM
learns descriptive music features, such as underlying chords and typical melody
transitions and dynamics. We assess the models for future prediction and compare
their performance to a VMM, which is the current state of the art in melody gener-
ation. We show that both models perform significantly better than the VMM, with
the Dirichlet-VMM marginally outperforming the TC-RBM. Finally, we evaluate
the short order statistics of the models, using the Kullback-Leibler divergence
between test sequences and model samples, and show that our proposed methods
match the statistics of the music genre significantly better than the VMM.

Keywords: melody modeling, music feature extraction, time convolutional re-
stricted Boltzmann machine, variable length Markov model, Dirichlet prior.

1 Introduction

In this paper we are interested in learning a generative model for melody directly from
musical sequences. This task is challenging for machine learning methods. Repetition
of musical phrases, which is essential for Western music, can occur in almost arbitrary
points in time and with different degrees of variation. Furthermore, although pieces
from the same genre are built using the same structural principles, the statistical rela-
tions among and within melodies from different pieces are highly complex, as melody
depends on several different components, such as scale, rythm and meter, which in
many cases interdepend on each other.

Capturing the statistical regularities within a musical genre is a first step towards re-
alistic music generation. Additionally, identifying and representing these dependencies
in an unsupervised manner is particularly desirable, as descriptive features of the un-
derlying structure of music can not only help in the analysis and synthesis of music, but
also enhance the performance on a variety of musical tasks such as genre classification
and music retrieval.

In this work we consider two methods for the problem of melody modeling; a Time
Convolutional Restricted Boltzmann Machine (TC-RBM) and a Dirichlet Variable
Length Markov Model (Dirichlet-VMM). The first is an adaptation of the Convolu-
tional RBM (Lee et al., 2009) for modeling sequential data and is motivated by the
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ability of RBM type models to extract high quality latent features from the input space.
The second one is a non-latent variable model and is a novel form of VMM, the latter
one being regarded as state of the art in melody generation (Paiement, 2008).

Our purpose is to answer the following questions. Are these probabilistic models
able to learn the inherent structure in melodic sequences and generate samples that
respect the statistics of the music genre? What aspects of the musical stucture can each
of the models learn? Can melodies be decomposed into a set of musical features in the
same way that images can be decomposed into sets of edges and documents into sets of
topics?

We train the models on a set of traditional reel tunes and perform a comparative
analysis of these with a standard VMM. We show that the TC-RBM learns descriptive
music features, such as underlying chordal structure, musical motifs and transforma-
tions of those. We assess the models on future prediction and find that our proposed
methods perform significantly better than the standard VMM and are comparable to
each other, with the Dirichlet-VMM having slightly higher log-likelihood. Likewise,
we evaluate the short order statistics of model samples, using the Kullback-Leibler di-
vergence, and show that samples from the TC-RBM and the Dirichlet-VMM match the
statistics of the test data significantly better than samples from the VMM.

2 Related Work

In many cases, the difficulties associated with modeling music have been dealt with by
incorporating domain knowledge in the models. In this line of research, Paiement (2008)
proposes modeling different aspects of music, such as chord progressions, rhythm
and melody, using graphical models and Input-Output HMMs. The structure of the
models and the data representations used are based on musical theory. Additionally,
Weiland et al. (2005) propose a Hierarchical Hidden Markov Model (HHMM) for pitch.
The HHMM is structurally simple and its internal states are pre-defined with respect to
music assumptions.

A different course of research examines more general machine learning methods,
which are able to automatically capture complex relations in sequential data, without
introducing much prior knowledge. In this paper we are taking this approach and con-
sider models that do not make assumptions explicit to music.

Lavrenko and Pickens (2003) propose Markov Random Fields (MRFs) for modeling
polyphonic music. In order for the MRF to remain tractable, much information needs
to be discarded, thus making the model less suitable for realistic music.

Eck and Schmidhuber (2002) show that a Long-Short Term Memory (LSTM) Recur-
rent Neural Network can successfully model long-term structure in two simple musical
tasks. In Eck and Lapalme (2008) the LSTM is extended to include meter information.
The output of the network is conditioned on the current chord and specific previous
time-steps, chosen according to the metrical boundaries. Trained on a set of traditional
Irish reels the LSTM is shown to generate pieces that respect the reel style.

Finally, Dubnov et al. (2003) propose Incremental Parsing (IP) and Prediction Suffix
Trees (PSTs) for modeling melodies, the latter one being the data structure used to
represent VMMs. Both algorithms train simple dictionary-based predictors that parse
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music into a lexicon of phrases or motifs. Paiement (2008) argues that despite their
simple nature, these two models generate impressive musical results when sampled and
can be considered state of the art in melody generation.

3 Preliminaries

3.1 Musical Motifs

Before describing the models, we explain the concept of motifs and their importance to
music modeling, as we believe it is useful in understanding the types of structures that
the VMM and the TC-RBM are trying to capture.

In Western Music, the smallest building block of a piece is called a motif. Motifs
typically comprise three, four or more notes and most pieces can be expressed as a
combination of different motifs and their transformations. Frequent transformations in-
clude replacement, splitting and merging of notes, and typically respect the metrical
boundaries of a piece. We believe that successful capturing of music motifs can be very
useful when modeling melodies, as specific motifs and their transformations are highly
likely to be repeated within a piece, as well as among pieces from the same musical
form.

3.2 Variable Length Markov Model

The VMM (Ron et al., 1994) is a statistical model for discrete sequential data and
has been shown to generate state of the art musical results when modeling melodies
(Dubnov et al., 2003). Its advantage to a standard Markov Model (n-gram) is that the
order of the former is not fixed, but instead depends on the observed context.

A VMM is represented by a Prediction Suffix Tree. The edges of the tree are labeled
with symbols from the alphabet, in this case the different music notes. Each node defines
the conditional probability distribution of the next symbol given the context we acquire
by concatenating all the edge symbols from the root to the node 1. The tree has depth
L, but is not complete2, thus giving rise to contexts that are shorter than L but are still
used for prediction.

To learn the tree, we start from a single root node labeled by the empty string
and ‘grow’ the tree using a breadth-first search for contexts that satisfy the following
criteria:

• The length of a context is upper bounded by a fixed length L

• The frequency counts of a context exceed a fixed threshold cmin

• The ratio of the conditional probability distribution defined at a node with that de-
fined at its parent node exceeds a fixed threshold εmin

The resulting tree comprises contexts corresponding to musical phrases that appear
frequently in the data and convey significant information about the value of future

1 Note that during prediction only the conditional probability distributions defined at the leaf
nodes are used.

2 The complete tree would represent a standard Markov Model of order L.
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time-steps. After the tree is built, the empirical conditional probability distributions
are smoothed by adding a constant probability γmin to all symbols in the alphabet and
renormalizing.

3.3 Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) is a two-layer undirected graphical model
with a set of visible and a set of hidden units. It is a special, bipartite form of the
Boltzmann Machine (Ackley et al., 1985), in which the interaction terms are restricted
to units from different layers. The joint distribution over observed and latent variables
is defined through an energy function, which assigns a scalar energy to every possible
configuration of the variables:

P (v,h|θ) =
1

Z (θ)
exp (−E (v,h|θ)) , (1)

where Z(θ) is a normalizing constant called the partition function and θ is used to
denote the set of model parameters.

In its original form, an RBM has binary, logistic units in both layers3 and its energy
function is defined as:

E (v,h|θ) = −cTv − bTh − vTWh, (2)

where c and b are the biases for the visible and hidden units, respectively, and W is the
weight matrix for the interaction terms.

Inference in this model can be performed efficiently using block Gibbs sampling, as
due to the bipartite structure of the model, the conditional distributions of the hidden
units given the visibles and of the visible units given the hiddens factorize.

Maximum Likelihood learning in the RBM is difficult due to the partition function
Z(θ) which is typically intractable4. However, parameter estimation can be performed
using Contrastive Divergence (Hinton, 2002), an objective that approximates the likeli-
hood and has been shown to work well in practice.

4 Models

4.1 Dirichlet-VMM

The VMM is similar to an n-gram model in that its performance is significantly influ-
enced by the smoothing technique used. An alternative to a standard form of variable
length Markov model is a hierarchical model, where each conditional multinomial dis-
tribution in the tree is sampled from a dirichlet Distribution, centered at the sample
multinomial for the parent node. In this model smoothing is performed implicitly by
taking a Bayesian approach and introducing an appropriate prior distribution at each
node while building the tree.

3 However, see for example Welling et al. (2004) on how to define RBMs with real-valued units.
4 Computing the partition function involves a sum over all possible configurations of visible and

hidden units.
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More formally, let m (xt|xt−1, . . . ,xt−τ−1) be defined by

mk = P (xt = k|xt−1, . . . ,xt−τ−1) .

Then we model each conditional distribution as:

P (xt|xt−1, . . . ,xt−τ ) ∼ Dirichlet (αm (xt|xt−1, . . . ,xt−τ−1)) . (3)

This forms a hierarchical tree with the marginal distribution P (xt) as the root node, and
successively more specific conditional distributions as we traverse down the tree. The
intermediate nodes, though identified with particular distribution, are not used directly
to model the data; that is done by the leaf nodes.

Learning this hierarchical distribution involves learning the posterior distributions at
each level of the hierarchy from the data associated with the given node (i.e. the data
that satisfies the conditional distribution).

P (xt|xt−1, . . . ,xt−τ , D) ∼
Dirichlet(αE [m(xt|xt−1, . . . ,xt−τ−1, D)] + c(xt,xt−1, . . . ,xt−τ )), (4)

where the ck(x) function counts the number of occurrances of sequence x in the dataset
where the last element is in state k, and E denotes expectation.

The mean of the posterior Dirichlet at each node is the prior Dirichlet for the data at
the child nodes. Note the top levels of the hierarchy have a large amount of associated
data, but as we progress down the tree the amount of data reduces. In the limit where
there is no data the posterior distribution for that node is just given by the posterior for
the parent node.

This model is directly related to the sequence memoizer (Wood et al., 2009), but
is a finite model using Dirichlet distributions, instead of a Pitman Yor model. Using
Dirichlet distributions makes the inference procedure entirely conjugate and thus no
sampling is required. We call this model a Dirichlet-VMM in this paper.

4.2 Time Convolutional RBM

We propose a Time Convolutional RBM (TC-RBM) as a new way of modeling se-
quential data with an RBM type network. We believe that models based on the RBM
are particularly suitable for capturing the componential structure of music, as they can
learn distributed representations of the input space, decoupling the different factors of
variation into features being “on” or “off”. The TC-RBM is an adaptation of the Con-
volutional RBM for sequences and it is motivated by the successful application of such
models in static image data (Lee et al., 2009; Norouzi et al., 2009).

Previous RBM approaches to sequence modeling use the RBM to model a single
time-step and attempt to capture the temporal relations in the data by introducing dif-
ferent types of directed connections from units in previous time-steps (Taylor et al.,
2007; Sutskever and Hinton, 2007; Taylor and Hinton, 2009). On the contrary, the TC-
RBM is a fully undirected network and attempts to capture the structure of music at a
motif level rather than a single time-step.

The TC-RBM is depicted in Fig. 1. Local temporal dependencies are captured by
learning an RBM on visible subsequences of fixed length - instead of single data points.
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Fig. 1. A Time Convolutional RBM with filter size τ = 3. The dashed frame shows the connec-
tions to the hidden units in a single time-step. Each unit receives input from all visible units in a
subsequence of length τ . The model is ‘unrolled’ in time through a weight sharing mechanism.

This allows the hidden units to learn valid configurations for a whole subsequence and
thus capture frequent motifs and their transformations. Longer sequences are modelled
by applying convolution along time. This weight sharing mechanism allows us to better
model boundary effects and provides the model with translation invariance along time,
which is desirable as motifs can appear anywhere in a musical piece.

The energy function of the TC-RBM is defined as:

E (V,H|θ) = −
∑

t

(
cTvt + bTht +

τ−1∑
k=0

vT
t+kWkht

)
, (5)

where V is a visible sequence, H is the hidden configuration for that sequence and τ is
the size of the filter we apply5. The interaction terms are parameterized by the weight
tensor6 W and the unit biases, c and b for visible and hidden units respectively, are the
same for all time-steps.

Similarly to an RBM, the joint probability distribution of the observed and hidden
sequence under the TC-RBM is defined as P (V,H|θ) = exp (−E(V,H|θ)) /Z(θ).

The conditional probability distributions of this model factorize over time and units
and are given by softmax and logistic functions:

P (vi,t = 1|H) =
exp

(
ci +

∑τ−1
k=0 Wi,·,kht−k

)
∑

q

exp

(
cq +

τ−1∑
k=0

Wq,·,kht−k

) , (6)

5 The filter size is the number of visible time-steps that a hidden unit receives input from.
6 Each slice k of the W tensor is the weight matrix for the connections of hidden units at time t

with the visible units at time t + k.
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P (hj,t = 1|V) =

[
1 + exp

(
−bj −

τ−1∑
k=0

vT
t+kW·,j,k

)]−1

. (7)

Inference can be performed using block Gibbs sampling. The computation of (6) and
(7) can be performed efficiently by convolving along the time dimension the appropriate
slice of the weight tensor with the hidden and visible sequence respectively. As in the
RBM, learning can be performed using the Contrastive Divergence rule.

5 Experiments

In the following section we want to assess the ability of the models to learn the inherent
structure of melodic sequences belonging to the same genre. An appropriate measure for
this evaluation is the marginal likelihood of the data under each modelM , P (D|M) =∫
P (D|θ,M)P (θ|M)dθ. However, computing the marginal likelihood under the TC-

RBM is intractable7 and thus we need to make use of other quantitative measures.
In the music modeling literature, evaluation is primarily based on qualitative

analysis, like listening to model generations. To our knowledge, the only quan-
titative measures used so far are next-step prediction accuracy (Paiement, 2008;
Lavrenko and Pickens, 2003) and perplexity (Lavrenko and Pickens, 2003). In this
work, we broaden this evaluation framework to consider longer future prediction, in-
stead of only next-step, as this provides an insight regarding model performance through
time.

To make our comparative analysis more rigorous, we also examine the short order
statistics of the models and compare them with the data statistics. To perform this anal-
ysis we compute the Kullback-Leibler divergence between the frequency distribution
of events in test sequences and in model samples, which measures how well the model
statistics match the data, or put differently, how much a model has yet to learn.

Besides the quantitative evaluation, we are also interested in assessing the capabili-
ties of the models to identify and represent the statistical regularities of the data. In the
VMM models, the learned lexicon of phrases determines the frequent musical motifs,
but does not provide any information regarding the underlying structure, as the encoded
patterns are fixed. On the other hand, the TC-RBM learns a distributed representation
of the input space; a set of latent features that are ‘on’ or ‘off’ depending on the input
signal. We demonstrate that these features are music descriptors extracted from the data
and convey information regarding music components such as scale, octaves and chords.

5.1 Data Processing and Representation

In the following experiments we use a dataset comprising 117 traditional reels collected
from the Nottingham Folk Music Database8. Reels are traditional Scottish and Irish
tunes used to accompany dances. All tunes are in the G major scale and have 4/4 meter.

7 Computing the data likelihood P (D|θ, M) in the RHS involves a sum over all possible con-
figurations of visible and hidden units.

8 We use the MIDI toolbox (Eerola and Toiviainen, 2004) to read and write MIDI files.
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Fig. 2. Data Representation: Time is discretized in eighth note intervals. At each time-step, pitch
is represented by a 1-of-26 dimensional vector. Red (left) arrows: a G4 quarter note lasts for two
time-steps and is represented by G4 followed by ‘continuation’. Blue (right) arrow: a G4 eighth
note lasts for one time-step and is represented by a single G4.

Our representation is depicted in Fig. 2. The components we wish to model are pitch
and duration of the notes in the melody. Duration is modelled implicitly by discretizing
time in eighth-note intervals. At each time-step, pitch is encoded using a 1-of-m vector.
We use only two octaves,C4-B5, giving rise to a 24-dimensional vector. Values outside
this octave range are trunctated to the nearest octave.

Finally, we augment the 1-of-m vector with two more values. The first one is used to
represent music silence. The second one is used to represent ‘continuation’ of an event
and allows us to keep more accurate information concerning the duration of notes.

5.2 Implementation Details

We trained a VMM, a Dirichlet-VMM and a TC-RBM. To set the parameters cmin,
εmin and γmin of the VMM we applied grid search over the product space of the pa-
rameters and chose the values that maximize the data log-likelihood using leave-one-out
cross validation on the training data. We used the same grid search procedure to set the
parameter α of the Dirichlet prior in the Dirichlet-VMM9.

For the TC-RBM, we used 50 hidden units. We chose the size of the filters to be
8 time-steps, which corresponds to the length of a music bar. For learning the model
we used the following settings: CD-5, 500 epochs, 0.5 learning rate decreasing on a

9 In the VMM, the maximum length L was set to a very large value (100), which resulted in
the depth of the tree being controlled by the parameter cmin for the frequency counts. The
resulting depth for the optimal tree is 13. In the Dirichlet-VMM, we used a global α parameter
and applied grid search over the product space of cmin , εmin and α.
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Fig. 3. Weight filters for 6 different hidden units of the learned TC-RBM. All units prefer notes
from the G major scale to be ‘on’; these notes are explicitly ticked in the y-axis. Filters 1 and 2
respond to similar patterns, but operate in the lower and higher octave respectively. Filters 3 and 4
respond to notes from either the Gmaj or the Am chord in alternate time-steps. Filter 5 is highly
selective to a specific motif, whereas filter 6 responds to several configurations of the scale notes.

fixed schedule, 0.0002 weight decay. We additionally used a sparsity term10 in the ob-
jective function, which encourages hidden units to be ‘off’. We implemented sparsity
as described in Lee et al. (2008), and set the desired activity level to 0.1.

5.3 Learning Musical Features

In the TC-RBM each hidden unit is connected with all the visible units from eight
subsequent time-steps. This gives rise to a 26×8-dimensional filter for each hidden
unit11.

The filters corresponding to 6 different hidden units from the learned TC-RBM are
depicted in Fig. 3. We can notice that all units prefer visible configurations with notes
from the G major scale12 to be ‘on’, but have various degrees of selectivity and respond
to different subsets of these notes in different positions.

For instance, filter (6) is fairly broad and may respond to several different configura-
tions of notes from the G major scale, whereas filter (5) is highly selective, responding

10 It has been suggested (Lee et al., 2009; Norouzi et al., 2009) that due to the over-complete hid-
den representation of convolutional RBMs, encouraging sparsity is important and can facilitate
learning.

11 The filter for hidden unit j is the slice W·,j,· of the weight tensor.
12 Notes from the G major scale: GABCDEF#G.
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Fig. 4. Two different visible configurations that frequently turn ‘on’ the hidden unit corresponding
to filter (5) from Figure 3 during sampling. The visible configurations are also depicted in the
musical score. Each configuration contains a different variation of the motif D∗BG, which is
prominent in filter (5).

primarily to the downwards-upwards movement EDCBGAB through the scale and
certain variations of it.

An interesting property of the top two filters is their relation with respect to the
octave. Both units respond to similar music phrases. For instance, both units respond to
the motif F#GAB starting at either position 1 or 3. However, the left unit operates in
the lower octave (C4-B4), whereas the right one operates in the higher octave (C5-B5).

Another interesting property is the relation of the filters to the tone chords of the
scale13. In several filters, the prefered subset of notes at each time-step corresponds to
the notes of a tone chord. This property is particularly prominent in filters (3) and (4).
For instance in filter (3), the prefered subset of notes at odd time-steps corresponds to
the notes of the Gmaj chord (GBD), whereas at even time-steps to the notes of the
Am chord (ACE).

In order to better understand how the filters behave, we looked at random visible
configurations that tend to activate a hidden unit during sampling. Figure 4 shows two
such visible configurations for the hidden unit corresponding to filter (5). Although
the two configurations seem fairly different, they both contain the motif D ∗BG in
positions 2 to 5 with either a pass through A or ‘continuation’ of D in position 3.
Filter (5) is highly responsive to this motif, and although time-steps 6 to 8 in the visible
configurations are not highly preferable, the unit is still very likely to turn ‘on’.

Overall, we can see that the learned filters encode familiar musical movements, such
as arpeggios and scales14. However, the interesting and potentially powerful character-
istic of the TC-RBM representation is that it also encodes and groups together many
possible transformations of these movements. Therefore, in contrast to the VMM rep-
resentation, the motifs learned by the TC-RBM are not fixed; the TC-RBM filters group
together musically sound variations of motifs, thus encoding possible note substitutions,
merging and splitting. This is very advantageous when modeling music, given its highly
complex and ingenious nature, and also allows for more genuine music generations.

13 These are chords of three, four or five notes built from alternate scale notes of G Major.
14 These can be loosely defined as groups of subsequent scale notes, either going up or going

down.
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5.4 Prediction Task

Given an observed test subsequence we want to evaluate how well a model can predict
the following k time-steps. We define the prediction log-likelihood of a test sequenceD
under a modelM with parameters θ, as the log probability of the actual future time-step
dt+τ given time-steps d1 up to dt, averaged over all time-steps Tn of the test sequence.
More specifically:

logLτ (θ,M ;D) =
1
Tn

T∑
t

logP (dt+τ |d1, . . . , dt,θ,M) . (8)

We use the empirical marginal distribution15 as a baseline for evaluating model per-
formance.

Computing Prediction log L under the VMM and the Dirichlet-VMM. For τ = 1
we can compute (8) exactly under the VMM models. For τ > 1 we need to marginalize
over the future time-steps that are between dt and dt+τ , ie:

P (dt+τ |d1, . . . , dt,θ,M) =
∑

dt+1,...,dt+τ−1

P (dt+1, . . . , dt+τ |d1, . . . , dt,θ,M) . (9)

We approximate this distribution by drawing a number of sampled paths from the
VMM and averaging over the conditional probability distributions defined by these
paths which are given exactly under the VMM:

P (dt+τ |d1, . . . , dt,θ,M)≈ 1
S

S∑
s=1

P (dt+τ |d1, . . . , dt, d
s
t+1, . . . , d

s
t+τ−1,θ,M). (10)

We use 100 sampled paths in the experiments reported here.

Computing Prediction log L under the TC-RBM. In order to evaluate (8) under the
TC-RBM, we need to marginalize over future visible time-steps that are between dt

and dt+τ for τ > 1 and over the possible configurations of hidden units for time-steps
t to t+τ . To avoid this computation we approximate the predictive distribution using
samples from the model. The sampling procedure is given in Algorithm 1.

In our experiments, we use 100 chains and run 15 Gibbs iterations within each chain.
Overall, we use 500 samples to approximate the predictive distribution, discarding the
first 10 samples from each chain.

Results. Figure 5 shows the log-likelihood of predicting the true succession given an
observed sub-sequence from a test tune under different models. As already mentioned,
our baseline for assessing model performance is the empirical marginal distribution.
The log-likelihood of the test data under the empirical marginal corresponds to the
black curve.
15 The empirical distribution of the training data under the assumption that all time-steps are

iid (independently and identically distributed). This distribution is the best predictor in the
absence of temporal dependencies.
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Algorithm 1. Sampling Procedure for the TC-RBM

Let V be a visible sequence and H a hidden sequence

Initialize V randomly

Set v1...t = dn
1...t

While s < numberOfSamples

H ∼ PTC−RBM (H|V, θ) (Equation 7)
V ∼ PTC−RBM (V|H, θ) (Equation 6)
Clamp to context: v1...t = dn

1...t

If equilibrium reached
Hs = H
s = s + 1

end
end

P (dn
t+τ |dn

1...t, θ, M) = 1
S

∑
PTC−RBM (vt+τ |Hs, θ)

Compared to the empirical marginal distribution, the standard VMM (green x) per-
forms significantly better in predicting the first two future time-steps, only slightly bet-
ter for time-steps 3 and 4 and significantly worse than the empirical marginal after the
5th time-step.

Both the Dirichlet-VMM (cyan crosses) and the TC-RBM (blue stars) perform sig-
nificantly better than the standrad VMM in predicting all future time-steps. These two
models have similar performance in the prediction task, with the Dirichlet-VMM out-
performing the TC-RBM for the first two time-steps and their prediction log-likelihood
being almost the same from the 3rd time-step onwards.

We should note that the performance of the TC-RBM in prediction may be com-
promised by the fact that the block Gibbs procedure samples the future sub-sequence
as a whole at each iteration. This means that due to the convolutional structure of the
model, the time-step we are trying to predict receives information not only from the
past, which is clamped to the observed context, but also from the future which is ini-
tialized randomly and can thus drive the samples into different energy basins.

Compared to the empirical marginal distribution, both the Dirichlet-VMM and the
TC-RBM perform better for the first 10 time-steps. The prediction log-likelihood under
the models is initially much higher than the one under the empirical marginal distribu-
tion, but decays as we try to predict further into the future. The models slowly forget the
information upon which they have been conditioned and after the 10th time-step con-
verge to a steady-state distribution, which is slightly worse than the empirical marginal
distribution for prediction.

While long-term prediction is useful for characterizing model behaviour through
time, it is not adequate for evaluating the generative capabilities of the models. For
instance, even if a musical phrase is highly predictable given a certain context, the
models can get bad predictive performance if they are not able to determine the correct
starting time-step for the phrase.

Nevertheless, we can note that in contrast to the standard VMM, our proposed mod-
els converge to the empirical marginal distribution over time and thus are better in
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Fig. 5. pREDICTION Log-Likelihood under different models plotted as a function of time. The
Log-Likelihood is averaged across 2,000 configurations of context-future observations, randomly
selected from the test data.

capturing the statistical regularities in the data, which is the first step towards realistic
music generation.

5.5 Using the Kullback-Leibler Divergence to Compare Statistics

The Kullback-Leibler (KL) divergence is a measure of how different two probability
distributions, P and Q, are. For discrete random variables, it is defined asDKL(P‖Q) =∑

i P (i) log P (i)
Q(i) and shows the average number of extra bits needed to encode events

from a distribution P with a code based on an approximating distribution Q. If the true
distribution that generated the data is P and the model distribution is Q, then the lower
the KL-divergence the better the model matches the data.

To compare model statistics with data statistics, we compute the frequency distribu-
tion of events in samples generated by each of the models and in test sequences, and
compute the KL-divergence between the normalized data and model frequencies. More
specifically, let dt denote the observation of a single time-step at time t. Then to com-
pare first-order statistics we estimate the KL-divergence between P (dt) and Q(dt) by
computing:

DKL(Pdata(dt)‖QM (dt)) =
1
N

N∑
n=1

Pdata(dn
t ) log

Pdata(dn
t )

QM (dn
t )
, (11)

where Pdata(dt) is the empirical marginal distribution of data sequences and QM (dt)
is the marginal distribution of samples generated by model M . Similarly, for pairwise
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Table 1. KL-divergence between data statistics and model statistics. We report the mean and
variance (in the parenthesis) of the KL-divergence for each statistic. These are computed using
50 resamples, obtained by random sampling with replacement from the test dataset.

order 1 order 2 order 3 order 4 order 5 order 6

Trainset 0.032 (1e-4) 0.433 (0.012) 1.351 (0.093) 3.150 (0.197) 5.455 (0.330) 7.985 (0.479)
TC-RBM 0.064 (2e-4) 0.273 (4e-4) 0.872 (0.002) 2.420 (0.047) 5.244 (0.248) 8.584 (0.645)
Dir-VMM 0.045 (3e-4) 0.302 (0.005) 1.158 (0.076) 2.594 (0.172) 4.295 (0.357) 6.462 (0.672)

VMM 0.187 (1e-4) 0.481 (4e-4) 1.331 (0.023) 3.242 (0.114) 5.839 (0.284) 8.772 (0.452)

lag 1 lag 2 lag 3 lag 4 lag 5 lag 6

Trainset 0.228 (0.002) 0.251 (0.003) 0.188 (8e-4) 0.236 (0.003) 0.180 (8e-4) 0.254 (0.001)
TC-RBM 0.229 (6e-4) 0.203 (5e-4) 0.222 (6e-4) 0.201 (5e-4) 0.204 (9e-4) 0.175 (4e-4)
Dir-VMM 0.198 (0.001) 0.175 (0.001) 0.224 (0.001) 0.184 (0.002) 0.215 (0.001) 0.202 (0.001)

VMM 0.476 (2e-4) 0.474 (4e-4) 0.542 (4e-4) 0.477 (6e-4) 0.533 (5e-4) 0.472 (6e-4)

statistics we compute DKL(Pdata(dt, dt+1)‖QM (dt, dt+1)), for third order statistics
DKL(Pdata(dt, dt+1, dt+2)‖QM (dt, dt+1, dt+2)), and so on.

Since the true distribution that generated the data is unknown, we perform a boot-
strapping procedure for the estimation of the KL-divergence. More specifically, we
compute the KL-divergence for each statistic 50 times, each time using a different data
resample, obtained by random sampling with replacement from the original test dataset.
In our results, we report the mean and variance of the KL-divergence for each statistic.

The number of possible events grows exponentially with the order we consider, which
makes the statistics for higher-orders less reliable, given that we have a finite test set.
In order to get a better understanding of how the models perform through time, we
additionally consider pairwise statistics with lags, that is statistics of events comprising
two time-steps which are not adjacent in time. For instance for lag l = 1 we consider
the frequencies of events (dt, dt+2), for lag l = 2 we consider (dt, dt+3) and so on.

Results. Table 1 shows the mean and variance of the KL-divergence between the statis-
tics of test sequences and a priori samples for various models. The first row compares
test sequences to train sequences and is used as a reference for interpreting the results.
Looking at the first order statistics we can note that the TC-RBM and the Dirichlet-
VMM have much lower KL-divergence than the VMM, with the Dirichlet-VMM having
the lowest amongst the models. In fact, the KL-divergence for the former two models
is very close to the KL-divergence between test sequences and train sequences, which
indicates that samples generated from these models match the statistics of the test data
well.

For the second, third and fourth order statistics, the TC-RBM has the lowest KL-
divergence, with the Dirichlet-VMM following closely and the VMM lagging behind.
Interestingly, the KL-divergence of these statistics for the TC-RBM and the Dirichlet-
VMM is even lower than the one for the train data. We believe that this stems from
the fact that the models are capturing the underlying structure that characterizes the
whole musical genre, and to some extent ignore the finer structure that characterizes
each individual music piece. This can result in model samples that have higher inter-
and lower intra-piece similarity than a set of real music sequences.
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For fifth and sixth order statistics, the KL-divergence for the TC-RBM and the VMM
is close to the KL-divergence for the train data, whereas for the Dirichlet-VMM is lower.
As mentioned earlier, the estimates for higher order statistics are less reliable, since
the number of possible configurations is exponentially large and thus very difficult to
characterize from a finite set of samples.

Finally, for the pairwise statistics with lags, the KL-divergence for both the TC-RBM
and the Dirichlet-VMM is low, very close to the one for the train data, whereas for the
VMM it is considerably higher. This suggests that our proposed methods respect the
short order statistics of the musical genre and are better than the VMM in capturing the
statistical regularities of the data through time.

6 Discussion

We addressed the problem of learning a generative model for music melody by consid-
ering two probabilistic models, the Dirichlet-VMM and the Time Convolutional RBM.
We showed that the TC-RBM, trained on a dataset of tunes from the same genre, learns
descriptive musical features that can be used to decompose the underlying structure of
the data into musical components such as scale, octave and chord.

We performed a comparative analysis of the two models with the standard VMM,
which, to our knowledge is state of the art in melody generation. We showed that in a
long-term prediction task both models perform significantly better than the VMM and
comparably with each other. The Dirichlet-VMM is a better next-step predictor, which
can be partially accredited to its main strength, that is its ability to use shorter or longer
contexts depending on whether they provide useful information or not.

We evaluated the short order statistics of the models by comparing the Kullback-
Leibler divergence between test sequences and model samples. We demonstrated that
sampled generations from our proposed methods match the statistics of the test se-
quences considerably better than samples from the VMM and respect the genre statis-
tics, as the KL-divergence for the TC-RBM and the Dirichlet-VMM is very close to the
KL-divergence between test and train sequences.

The ability of the TC-RBM to extract descriptive music features allows us to consider
hierarchical approaches for melody generation, which can help modulate the appear-
ance of features through time. We are currently experimenting with deeper TC-RBM
architectures, where TC-RBMs are stacked on top of one another in a greedy manner
(see Hinton et al. (2006) for the RBM case). Deep models have been shown to learn hi-
erarchical representations of the input space, where more abstract features are captured
in higher layers, which according to the tonal music theory (Lerdahl and Jackendoff,
1983) is how music composition should be understood.

Finally, an interesting direction for future research in music modeling involves ex-
ploration of methods that can distinguish between inter- and intra-piece similarity. The
methods examinded in this work can learn the statistical relations within a musical
genre, but are not able to effectively model piece-wise variation. Considering methods
that enable us to sample a prior distribution for each piece, such as topic models, would
be a first step towards this direction.
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Fast Projections onto �1,q-Norm Balls

for Grouped Feature Selection
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Abstract. Joint sparsity is widely acknowledged as a powerful struc-
tural cue for performing feature selection in setups where variables are
expected to demonstrate “grouped” behavior. Such grouped behavior
is commonly modeled by Group-Lasso or Multitask Lasso-type prob-
lems, where feature selection is effected via �1,q-mixed-norms. Several
particular formulations for modeling groupwise sparsity have received
substantial attention in the literature; and in some cases, efficient algo-
rithms are also available. Surprisingly, for constrained formulations of
fundamental importance (e.g., regression with an �1,∞-norm constraint),
highly scalable methods seem to be missing. We address this deficiency
by presenting a method based on spectral projected-gradient (SPG) that
can tackle �1,q-constrained convex regression problems. The most crucial
component of our method is an algorithm for projecting onto �1,q-norm
balls. We present several numerical results which show that our methods
attain up to 30X speedups on large �1,∞-multitask lasso problems. Even
more dramatic are the gains for just the �1,∞-projection subproblem: we
observe almost three orders of magnitude speedups compared against the
currently standard method.

1 Introduction

Sparsity offers powerful structural information that enables recovering unknown,
high-dimensional vectors robustly. Consequently, sparsity has been intensively
studied in signal processing, machine learning, and statistics, where it has played
a key role in numerous algorithms and applications. The associated literature
has grown too large, and a summary will be futile, so we refer the reader to [2,
24, 30, 31] as starting points.

Typically sparsity constrained problems that arise in machine learning and
statistics may be written as instances of the following general problem:

minw L(w) + λR(w), (1)

where L is differentiable, convex loss-function, λ > 0 is a scalar, while R is a
convex (possibly nonsmooth) regularizer that models sparsity. Alternatively, one
can consider the following constrained formulation of (1):

minw L(w) s.t. R(w) ≤ γ, (2)

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 305–317, 2011.
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for an appropriate scalar γ > 0. We focus on the latter formulation, especially
because it is particularly amenable to a simple first-order optimization proce-
dure. We note another benefit that can make formulation (2) attractive: several
variants of gradient-projection [6] remain applicable even when L is not convex;
mere differentiability suffices. Moreover, theoretical analysis of (2) is simpler
because the constraint ensures that we are minimizing over a compact set.

Amongst the dizzying number of variants of (2) that have been studied the
literature, we consider in this paper a particular family: groupwise sparsity. Here,
the regularizer R selects (or ignores) entire groups of variables simultaneously,
e.g. in multitask learning [12, 13, 19, 26], or in Group-Lasso [3, 36, 37]. One
practical way to induce groupwise sparsity is to let R be a mixed-norm, defined
as follows (for a more general definition, see [39]). Let a vector w ∈ Rd be
partitioned into the subvectors w1, . . . ,wG, where wg ∈ Rdg for 1 ≤ g ≤ G, and
let q ≥ 1. Then, the �1,q mixed-norm for w is given by

‖w‖1,q =
∑G

g=1
‖wg‖q. (3)

The most common variants of (3) are ‖·‖1,2 and ‖·‖1,∞; the former is often used in
Group-Lasso [37], while the latter arises in compressed sensing [35] and multitask
Lasso [19]. Less common are versions with 1 < q < ∞, see e.g., [18, 29, 38]—
though both work with penalized formulations. Also note that if 0 < q < 1,
then (3) yields a nonconvex, quasinorm, while for q = 0 and q = 1, ‖·‖1,q totally
decouples, thus losing the grouping effect of mixed-norms.

Other authors have considered overlapping versions of (3), i.e., where sub-
vectors wg might not be disjoint. However, unless the subvectors have a special
structure [15, 22, 24], the resulting mixed-norm can be computationally very
expensive. Because our aim is on developing fast algorithms, we focus on the
non-overlapping version (3), especially because this version is widely applicable
and enjoys numerous applications [5, 11, 12, 14, 16, 19, 26, 34, 36].

Contributions. Before beginning our theoretical discussion, we enlist the key
contributions of this paper here for the reader’s convenience:

1. An SPG-based algorithm for convex, sparsity-constrained regression prob-
lems (such as lasso, multitask lasso, group lasso, etc.).

2. A root-finding procedure grounded in convex-duality, which is crucial to
making the SPG-based algorithm practical. As a byproduct we also obtain
an efficient method to tackle operators for �∞,q∗ -mixed norms.

3. Experimental validation and illustration of our methods on large-scale mul-
titask lasso, leading to a highly competitive method for it.

2 Algorithm and Theory

The simplest method to solve (2) is perhaps gradient-projection [6], where start-
ing with some w0, one iterates

wt+1 = proj(wt − αt∇L(wt), γ, q), t = 0, 1, . . . , (4)
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where proj is the projection operator, defined as

proj(v, γ, q) := argminu
1
2‖u − v‖2

2 s.t. ‖u‖1,q ≤ γ. (5)

To implement (4) efficiently, there are three obvious, key components: (i) the
gradient ∇L; (ii) the step-size αt > 0; and (iii) the projection operator (5).
Almost all methods require computation of the gradient (or an approximation).

Let us begin by considering stepsize computation. There exist several classical
strategies for computing the step-size α, for example, by exact minimization,
by backtracking, Armijo line-search, and so on [6]. However, in general, these
strategies are more expensive than absolutely necessary, and although scalable,
may even lead to slowly converging algorithm [6, 16, 33].

A fairly recent, and powerful alternative is offered by the spectral step-sizes of
Barzilai and Borwein [4] (BB), which avoid line-search by providing closed-form
formulae for choosing αt. These stepsizes are

αBB1 :=
yT

t yt

sT
t yt

, or αBB2 :=
yT

t st

sT
t st

, (6)

where yt = wt−wt−1, and st = ∇L(wt)−∇L(wt−1). Directly setting αt to one
of the choices in (6) leads to a gradient-projection method whose convergence is
not guaranteed. However, often this substitution displays strong empirical per-
formance. Thus, there have been numerous attempts at using (6) in conjunction
with the iteration (4), and one of the most well-known amongst them is the
spectral-projected gradient (SPG) method [7].

SPG essentially substitutes (6) in (4) (using a safeguard to ensure bounded
and nonzero stepsizes), and thus leverages the strong empirical performance of-
fered by BB stepsizes [4, 7, 9, 33]. SPG ensures global convergence by invoking a
nonmontone line search strategy that allows the objective value to occasionally
increase, while maintaining some bookkeeping information that allows construc-
tion of a descending subsequence.

2.1 Efficiently Computing Projections

The second component of (4) is a core element of our algorithm: projection onto
the �1,q-norm ball. Since every iteration of (4) calls for a projection, it is critical
to implement it efficiently. But before we describe the details of our projection
algorithm, we first prove a useful duality result.

Lemma 1 (Dual-Norm). Let q ≥ 1, and let q∗ be its conjugate exponent, i.e.,
it satisfies 1/q + 1/q∗ = 1. Then, the norm ‖·‖∞,q∗ is dual to ‖·‖1,q.

Proof. By definition, the norm dual to (3) is given by [32]:

‖u‖∗ := supw {〈u, w〉 | ‖w‖1,q ≤ 1} . (7)

Consider the inequality

〈u, w〉 =
∑G

g=1
〈ug, wg〉 ≤

∑G

g=1
‖ug‖q∗‖wg‖q, (8)
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which follows directly from Hölder’s inequality. Now introduce vectors, ξ =
[‖ug‖q∗ ], and ψ = [‖wg‖q], and apply Hölder’s inequality again to obtain

〈ξ, ψ〉 ≤ ‖ξ‖∞‖ψ‖1 = ‖u‖∞,q∗‖w‖1,q, (9)

so that from Definition (7) we conclude that ‖u‖∗ ≤ ‖u‖∞,q∗. To prove that
‖u‖∗ = ‖u‖∞,q∗ , we now show that for each u, we can find a w satisfying
‖w‖1,q = 1, and for which 〈u, w〉 = ‖u‖∞,q∗ . To that end, let g∗ be any index in
the set

{
argmax1≤g≤G ‖ug‖q∗

}
. To simplify notation let z = ug∗ and y = wg∗ ,

and then set wg = 0 for all g except for g∗ for which

(wg∗)i = yi =
sgn(zi)|zi|q

∗−1

‖z‖q∗−1
q∗

. (10)

Now observe that the inner-product 〈u, w〉 satisfies

〈u, w〉 =
∑

g
〈ug, wg〉 = 〈z, y〉 =

1
‖z‖q∗−1

q∗

∑
i
ziyi

=
1

‖z‖q∗−1
q∗

∑
i
|zi|q

∗
= ‖z‖q∗ = ‖u‖∞,q∗ ,

and that the norm ‖w‖1,q = ‖wg∗‖q = ‖y‖q satisfies

‖y‖q =
(∑

i
|yi|q)1/q =

(∑
i
|zi|q(q

∗−1)/‖z‖q(q∗−1)
q∗

)1/q

=
(∑

i
|zi|q

∗
/‖z‖q∗

q∗
)1/q = 1,

which complete the proof of the theorem. �

Note: As the reader may already guess, the proof above also extends to showing
the �p∗,q∗ -norm is dual to the �p,q-norm; but we omit details for brevity.

2.2 Projections via Proximity

Often, for computing proj(v, γ, q) it proves beneficial to consider the closely
related proximity operator :

prox(v, θ, q) := argminu
1
2‖u − v‖2

2 + θ‖u‖1,q. (11)

In general, computing (11) can be simpler—for instance, with q = 1, (11) is
merely the soft-thresholding operator [10], and with q = ∞ efficient methods
already exist [11, 21]. Interestingly, for q = 2 both (11) and (5) are equally
easy [5] to compute. The key reason why one may expect (11) to be simpler is
because with non-overlapping variable groups, it separates into G independent
�q-norm proximity subtasks. We now show how to leverage this separability.

The idea is simple and could be regarded as well-known [27]. But exploiting it
effectively requires some care, as we show below. Let L(u, θ) be the Lagrangian
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to (5), and let the dual optimal be denoted by θ∗. Then, assuming strong-duality,
the primal optimal u∗ that solves (5) is obtained by computing

u∗(θ∗) = argminu L(u, θ∗) := argminu
1
2‖u − v‖2

2 + θ∗(‖u‖1,q − γ). (12)

But computing (12) requires the knowledge of the optimal θ∗, which in turn
depends on u∗. How do we break this circularity? The almost obvious, but really
crucial observation here is that the optimal θ∗ can be computed by solving a
single nonlinear equation. Let us see how.

Note that if ‖v‖1,q ≤ γ, then u∗ = v is the optimal solution. So we assume
that ‖v‖1,q > γ; in this case, the optimal θ∗ satisfies ‖u(θ∗)‖1,q = γ. Define now

u(θ) := prox(v, θ, q), (13)

and consider the nonlinear function

g(θ) = −γ + ‖u(θ)‖1,q, (14)

from which the optimal θ∗ can be obtained by solving g(θ) = 0. Toward solving
this equation, Lemma 2 proves useful.

Lemma 2. Let g(θ) be defined by (14). There exists an interval [0, θmax] on
which g(θ) is monotonically decreasing, and differs in sign at the endpoints.

Proof. First, observe that by our assumption on ‖v‖1,q, the inequality g(0) =
−γ + ‖v‖1,q > 0 holds.

Next, notice that for θ′ ≥ ‖v‖∞,q∗ , the solution u(θ′) = 0. To see why, suppose
θ′ ≥ ‖v‖∞,q∗ but u(θ′) �= 0. Then, 1

2‖u(θ) − v‖2
2 + θ′‖u(θ)‖1,q <

1
2‖v‖2

2. Since
‖·‖2

2 is strictly convex, for all u we have the inequality ‖u − v‖2
2 − ‖v‖2

2 >
−2〈v, u〉. Combining the two inequalities we obtain θ′ < 〈v, u(θ)〉/‖u(θ)‖1,q.
Hence, if θ′ ≥ supu �=0 〈v, u〉/‖u‖1,q = ‖v‖∞,q∗ (see (7)), then u(θ)∗ must equal
0. This argument implies that g(θ′) = −γ < 0, allowing us to select θmax = θ′.

Finally, to establish monotonicity of g(θ), merely recognize that g(θ) is the
derivative of the (concave) dual function infu L(u, θ). �

Since g changes sign in the interval [0, θmax], is continuous, and monotonic, it
has a unique root in [0, θmax]. We can compute this root θ∗ to ε-accuracy using
bisection in O(log(θmax/ε)) iterations. In practice, we do not use plain bisection,
but invoke a more powerful root-finder that combines bisection, inverse quadratic
interpolation, and the secant method. Algorithm 1 provides pseudocode for com-
puting the projection (5) based on the above ideas.

2.3 Computing the Proximity Operators

Now that we have reduced �1,q-projections to a sequence of proximity com-
putations, a few words about the associated proximity operators are in order.
Depending on the choice of q, these operators can range from trivial to compli-
cated. However, for all the computations, the key benefit arises from �1,q being a
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Input: Subroutine for computing prox(v, θ, q); vector v; scalar γ > 0
Output: u∗ = argminu ‖u − v‖2, s.t. ‖u‖1,q ≤ γ
if ‖v‖1,q ≤ γ then

return u∗ = v
else

Define g(θ) := −γ + ‖prox(v, θ, q)‖1,q ;
Compute root-bracket (θmin, θmax) = (0, ‖v‖∞,q∗);
Compute root θ∗ = FindRoot(g(θ), θmin, θmax);

end
return u∗ = prox(v, θ∗, q)

Algorithm 1. Projection via proximity using root-finding

sum of independent terms over the G groups (recall that v = [v1, . . . ,vG]). Ow-
ing to this separability, the computation (13) decomposes into G independent,
proximity subtasks, one for each vg, for 1 ≤ g ≤ G.

We reiterate that unlike [21] or other authors who solve �1,q-norm penalized
regressions, our setup (for general q) is harder: we solve an �1,q-constrained
regression. This requires computing u(θ) for several values of θ.

To simplify notation, in the sequel we use u(θ), v, and prox(v, θ, q) to refer
to an arbitrary single group of variables, so that the proximity task at hand is

u(θ) := argminu
1
2‖u − v‖2

2 + θ‖u‖q, q ≥ 1. (15)

First, we mention existing proximity algorithms for solving (15), and then, we
present some new results in Section 2.3.1.

For q = 1, (15) reduces to the well-known soft-thresholding operation [10]:

u(θ) = sgn(v) & max(|v| − θ, 0), (16)

where & represents elementwise multiplication. For q = 2, the solution is again
available in closed form (see e.g., [8, 11]), and is given by

u(θ) = max(1 − θ‖v‖−1
2 , 0)v. (17)

For q = ∞, the solution is slightly more involved than (16) and (17), but can be
obtained via the Moreau decomposition [8], which for prox(v, θ,∞) implies that

prox(v, θ,∞) = v − proj(v, θ, 1). (18)

The projection proj(v, θ, 1) is very well-studied: it is projection onto the �1-norm
ball [17, 23, 25]. This choice of q arises most notably in grouped feature selection
in multitask learning settings [19, 26, 28].

For q > 1 different from the choices above, the proximity problems are sig-
nificantly harder. Fortunately, efficient proximity algorithms for �q-norms were
recently developed in [20, 21]. These algorithms use nested root-finding sub-
routines: one for solving single variable nonlinear equations; one for performing
bisection over a parameter akin to θ. But unlike the cases with q ∈ {1, 2,∞}, due
to the highly nonlinear derivatives, one can obtain only an approximate solution
to the proximity operator.
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2.3.1. Proximity Operators for ‖·‖∞,q∗

We now leverage the machinery developed in Sections 2.1 and 2.2 to obtain fast
proximity operators for �∞,q∗ -norms, almost as a byproduct. The first step is to
invoke convex duality.

Proposition 1. Let ‖·‖ be any norm, and ‖·‖∗ its corresponding dual norm;
also let γ > 0. Then, the following two problems are dual to each other:

minu
1
2‖u − v‖2

2 + γ‖u‖, (19)

maxz − 1
2‖z‖

2
2 + zT v, s.t. ‖z‖∗ ≤ γ. (20)

Moreover, if z∗ is the optimal dual solution, then the corresponding primal is
given by u∗ = v − z∗.

Proof. Follows from [32, Theorem 31.5] (essentially Moreau’s decomposition).

Proposition 1 instantly yields the following useful corollary.

Corollary 1. A problem dual to the �∞,q∗-proximity operator

minu
1
2‖u − v‖2

2 + γ‖u‖∞,q,

is the �1,q-norm projection task (q is conjugate to q∗):

minz
1
2‖z − v‖2

2, s.t. ‖z‖1,q ≤ γ. (21)

Proof. Lemma 1 tells us that ‖·‖1,q∗ is dual to ‖·‖∞,q. Consequently, Proposi-
tion 1 implies the result (21) (after completing squares).

Corollary 1 allows computing �∞,q∗ -norm proximity by replacing it with the
corresponding �1,q-norm projection, which in turn can be solved by Algorithm 1.

3 Experimental Results

In the discussion above we presented the following two main algorithms:

(i) The SPG based method iteration (4) for solving (2);
(ii) Algorithm 1, a method for computing the �1,q-norm projection (5).

As previously mentioned, for q = 1, the projections reduce to the classical �1-
norm ball problem, while for q = 2, already highly efficient methods are avail-
able [5]. The case 1 < q < ∞ seems to be largely unstudied, while for q = ∞,
recently an efficient method was proposed [28]. Thus, we begin our numerical
results by evaluating our projection algorithms for computing projections onto
the �1,∞-norm ball.

Note: It is not one of the aims of this paper to compare different MTL formula-
tions (depending on different choices of q). Our main aim is to show scalability
that comes from having fast proximity operators, which we highlight by using
them as subroutines in a larger problem. The subroutines themselves can be used
in any proximal splitting method that solves �1,q-norm constrained problems.
However, a longer version of this paper will include more detailed experimental
evaluation.
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Table 1. Runtime and accuracy for QP and FP on a 50, 000 × 10, 000 matrix V

γ
‖V ‖1,∞

QPtime (s) FPtime (s) Speedup QPaccuracy FPaccuracy QPobj FPobj

0.01 22719.76 28.26 804.09 7.76E-09 7.28E-12 6.8778E+03 6.8778E+03
0.05 20165.31 24.08 837.38 7.33E-09 7.09E-11 6.1387E+03 6.1387E+03
0.10 17064.19 23.80 716.93 5.69E-09 5.82E-11 5.2850E+03 5.2850E+03
0.20 11491.00 24.74 464.40 8.32E-09 2.47E-10 3.8133E+03 3.8133E+03
0.30 7046.42 24.89 283.11 4.98E-09 4.44E-10 2.6484E+03 2.6484E+03
0.40 3933.99 29.69 132.52 1.64E-08 8.59E-10 1.7656E+03 1.7656E+03
0.50 1982.77 31.03 63.90 9.30E-09 5.82E-11 1.1263E+03 1.1263E+03
0.60 905.22 31.33 28.89 1.56E-09 7.13E-10 6.8445E+02 6.8445E+02
0.70 380.78 29.41 12.95 4.21E-09 6.29E-09 3.9254E+02 3.9254E+02

3.1 Projection onto the �1,∞-Ball

For ease of comparison, we use the notation of [28], which seems to be the
currently standard method. In their notation, the projection task is to solve

minW
1
2‖W − V ‖2

F, s.t.
∑d

i=1
‖wi‖∞ ≤ γ, (22)

where W is a d× n matrix, and wi denotes the ith row of W .
In our comparisons below, we refer to [28]’s algorithm, which was available as

C code1, as ‘QP’; our fast projection method is called ‘FP’. We show numerical
results for a representative large-sized problem, and to stress-test both QP and
FP we show results on a large dense matrix. In particular, we use a matrix
V ∈ R50,000×1000 having entries drawn following N (0, 1). Note that the matrix
V has a total of 50 million nonzero entries.

We compute the optimal W ∗, as γ varies from 0.01‖V ‖1,∞ (more sparse; dif-
ficult) to 0.7‖V ‖1,∞ (less sparse; easy) settings. Table 1 presents the associated
running times, objective function values, and accuracies (accuracy is measured
by the constraint violation: |λ− ‖W ∗‖1,∞|, for an estimated W ∗).

Minor numerical differences between both algorithms are due to unavoidable
floating-point round-off errors. Also noteworthy is the fact that although QP is
an “exact” method, and FP is based on root-finding, the latter ends up obtaining
solutions of higher accuracy than QP. The results indicate the tremendous ad-
vantages that our method offers for large-scale data, where it vastly outperforms
the competition.

3.2 Projection onto �1,q-Balls

Our next experiment shows running time results for computing projection onto
�1,q balls; in our experiment we selected q ∈ {1.5, 2.5, 3, 5}. Here too, we use
matrix-based groups and solve

minW ‖W − V ‖2
F, s.t.

∑
i
‖wi‖q. (23)

For each value of q, the plots in Figure 1 also show the running times requires as
the parameter γ is varied. From these plots the we observe four main points: (i)
1 http://www.lsi.upc.edu/∼aquattoni/CodeToShare/
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the runtimes seem to be largely independent of the value of γ; (ii) for relatively
small q, the projection times are approximately same; and (iii) for larger q (here
q = 5), the projection times increase dramatically.

Moreover, from the actual running times it is apparent our projection code
scales linearly with the data size. For example, the matrix corresponding to
the second bar plot has 25 times more parameters than the first plot, and the
runtimes reported in the second plot are approximately 25–30 times higher.

The running times in Figure 1 suggest that although the running times scale
linearly, a single �1,q-norm projection still takes nontrivial effort. Thus, even
though our �1,q-projection method is relatively fast, currently we can recommend
it only for small and medium-scale regression problems.
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Fig. 1. Running times for �1,q-norm projections as scalars q and ratios γ/‖V ‖1,q vary.
The left plot is on a 1000 × 100 matrix, while the right one is on a 5000× 500 matrix.

4 Multitask Lasso with �1,∞-Constraint

Multitask Lasso (Mtl) [19, 36] is a typical grouped feature selection problem,
where important features are separated from less important ones by using in-
formation shared across multiple tasks. The feature selection is effected by a
sparsity promoting mixed-norm, usually the �1,∞-norm [19].

Mtl is setup is as follows. Let Xj ∈ Rmj×d be the data matrix for task j,
where 1 ≤ j ≤ n. Mtl seeks a parameter matrix W ∈ Rd×n, each column of
which corresponds to a task, which are regularized across the same feature by
applying the mixed-norm over the rows wi (1 ≤ i ≤ d) of W . This leads to a
“grouped” feature selection, because if ‖wi‖∞ = 0, then the entire row wi is
eliminated (i.e., feature i is removed). A common formulation for Mtl is

min
w1,...,wn

L(W ) :=
∑n

j=1

1
2‖yt − Xjwj‖2

2, s.t.
∑d

i=1
‖wi‖∞ ≤ γ, (24)

where the yt are the dependent variables, and γ > 0 is a sparsity-tuning param-
eter. Notice that the loss-function combines the different tasks (over columns
of W ), but the overall problem does not decompose into separable problems
because the mixed-norm constrained is over the rows of W .
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Table 2. Details of simulation data used for MTL. For simplicity, all matrices Xj (for
each task 1 ≤ j ≤ n), were chosen to have size m× d.

Name (m,d, n) #nonzeros RAM required

M1 (10, 5000, 20) 106 7.63MB
M2 (100, 5000, 20) 107 76.29MB
M3 (100, 10000, 100) 108 0.75GB
M4 (800, 15000, 300) 3.6 · 109 26.822GB

4.1 Simulation Results for MTL

In our first set of results (Tables 2, 3) we report running time comparisons
between two different invocations of an SPG-based method for solving (24), once
with QP as the projection method and once with FP—we call the corresponding
solvers SPGQP, and SPGFP.

We show simulation results on small, medium, large, and very large-scale data
matrices. The key aim of our experiments is to offer strong evidence showing that
for data with a large number of features, or for data having large size, SPGFP

vastly outstrips SPGQP.
We only compare SPG based implementations because SPG offers a simple,

yet highly competitive framework for solving constrained convex problems. The
other efficient Mtl algorithms that are available, e.g., [16, 21], solve the simpler,
penalized version of the problem. Moreover, even if we were to use a method such
as PQN [33] that can handle mixed-norm constraints, the final performance of
potential PQN+QP or PQN+FP combinations would exhibit trends, similar to
those reported in Table 3. This is so, because of the vastly different costs of
projection incurred by QP and FP. We also note in passing that methods such
as block-coordinate descent that are popular for several lasso-type problems, do
not scale well to the large Mtl problems that we consider.

The running times shown in Table 3 suggest that SPGFP is a valuable choice
for solving large-scale Mtl problems. Note that both SPGQP and SPGFP find
exactly (up to roundoff error) the same solution, as both of them just perform
an equal number of SPG iterations and �1,∞-projections. The difference lies in
the speed of the overall execution.

4.2 MTL Results on Real-World Data

Now we show running time results comparing SPGQP against SPGFP on a real-
world dataset. These results corroborate the claims of the previous section, and
indicate that the powerful speedups observed on simulated data also carry over
to realistic data.

Also noteworthy is the observation that the speedups attained become more
significant with increasing data dimensionality. Thus, for many machine learning
and statistics datasets, the acceleration offered by our fast projection algorithms
can be advantageous.
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Table 3. Running time (in seconds) comparisons for four different (synthetic) MTL
datasets. The MTL problems were solved to an accuracy of 10−5, and the total number
of projections required to reach this accuracy are reported under the column ’#projs’.
The columns ’projQP’ and ’projFP’, report the total time spent by the SPGQP and
SPGFP methods, respectively, for the �1,∞-projections alone. The total time taken by
SPGQP and SPGFP is reported under columns with the same name. For SPGQP the
cost of projection dominates the total runtime, while SPGFP this is not the case.

Dataset #projs projQP SPGQP projFP SPGFP Speedup

M1 171 822.2 826.3 26.58 31.7 26.06
M2 31 121.9 125.9 5.6 11.4 11.04
M3 29 2433.9 2474.6 31.6 84.2 29.40

M4 16 735.2 1054.2 6.0 321.5 3.28

For our experiments with real-world data, we run Mtl on a subset of the
CMU Newsgroups dataset2. This data corresponds to 5 feature selection tasks
based on data taken from the following newsgroups: computer, politics, science,
recreation, and religion. The feature selection tasks are spread over the matrices
X1, . . . ,X5, each of size 2907× 53975, while the dependent variables y1, . . . ,y5

correspond to class labels.
We note that for timing experiments, the exact details of the data are not

that critical, except the fact that the number of features (53975) is large; indeed
much larger than in our simulations. For such a large number of features, based
on the results of Table 1, one can already anticipate that SPGFP will strongly
outperform the competition.

Table 4. Running time (in seconds) comparisons for 4 different runs of MTL on the
CMU newsgroups data. Here, γ-fraction (cf. Table 1) indicates sparsity-level; low γ
means high sparsity, and consequently difficult optimization. The other columns are
the same as in Table 3.

(γ-fraction) #projs projQP SPGQP projFP SPGFP Speedup

0.01 85 6322.2 6806.6 96.2 507.6 13.41
0.1 94 9335.2 9759.5 92.6 649.5 15.03
0.2 97 4209.8 4746.2 112.8 554.3 8.56
0.3 99 4516.6 4951.2 109.7 514.9 9.62

5 Conclusions

In this paper we took a careful look at projections onto �1,q-mixed norm balls.
This projection arises as a key step (particularly for q = 2,∞) in groupwise
feature selection problems, such as multitask lasso or group lasso. We first pre-
sented a simple spectral projected gradient (SPG)-based method for solving
2 Original available from: http://www.cs.cmu.edu/∼textlearning/. We obtained the re-

duced, pre-processed version from the authors of [16].
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convex regression problems with �1,q-norm constraints. We chose SPG as it of-
fers a simple to use method that displays strong empirical performance. This
performance, though, in mixed-norm regression problems depends on the pro-
jection step being cheap. Thus, to handle projections efficiently, we presented a
generic root-finding algorithm.

Our numerical results highlighted our root-finding method, specialized to the
�1,∞-norm, by comparing it against the state-of-the-art method of [28]. The
speedups observed were of almost three orders of magnitude. Building on these
speedups, we showed how SPG combined with our projection method leads to
an effective multitask lasso algorithm. On both simulated and real-world data
our numerical results indicate the added efficiency afforded by methods.

At this juncture, several directions of future work are open. The most chal-
lenging amongst them is the development of a projection based method that
can outperform the well-established SPG method. Additional avenues of work
include extending some of our ideas to tackle more complex structured sparsity
inducing norms [1, 24].
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Abstract. We introduce Generalized Dictionary Learning (GDL), a sim-
ple but practical framework for learning dictionaries over the manifold of
positive definite matrices. We illustrate GDL by applying it to Nearest
Neighbor (NN) retrieval, a task of fundamental importance in disciplines
such as machine learning and computer vision. GDL distinguishes itself
from traditional dictionary learning approaches by explicitly taking into
account the manifold structure of the data. In particular, GDL allows
performing “sparse coding” of positive definite matrices, which enables
better NN retrieval. Experiments on several covariance matrix datasets
show that GDL achieves performance rivaling state-of-the-art techniques.

1 Introduction

Recent times have seen a steep rise of data that are encoded as matrices or
tensors. Such data goes beyond traditional vector based models, and offers new
means of capturing intrinsic structure. The additional structure can in turn bring
several benefits, such as richer representations, robustness to noise, and perhaps
even improved empirical performance.

Some successful applications that depend on matrix valued data include:
multi-camera tracking based on covariance matrices derived from appearance
silhouettes [11,30]; medical diagnostics via diffusion tensor imaging [1,43]; com-
putational anatomy [23]; robust face recognition [31]; and action recognition [41],
among many others.

Like the works cited above, we too focus on matrix valued data, in particular
on the highly important class of symmetric positive (semi)definite (SPD) matri-
ces (e.g., covariance, correlation, kernel matrices). We deal with SPD matrices
in the context of overcomplete dictionary learning, for which we present a simple
but effective, new framework called Generalized Dictionary Learning (GDL).

Our framework extends the idea of dictionary learning over vectors [29,10] to
dictionary learning over matrices. Consequently, GDL provides an approach to
perform sparse coding for input covariance matrices. To illustrate the benefits
of such sparse coding, we show an application to Nearest Neighbor (NN)-based
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object retrieval—a problem of central importance in machine learning and com-
puter vision [42,31,38]. Experiments (see Section 4) reveal that GDL leads to
NN performance rivaling state-of-the-art approaches.

To help place this paper in perspective, we list below its key contributions.

– Framework. We extend dictionary learning to matrices, and specialize this
for the broadly useful class of SPD matrices.

– Algorithm. For GDL we present a scalable online algorithm that also allows
rapid sparse coding.

– Application. We apply GDL to accelerate NN-based object retrieval; GDL
leads to better accuracy than many of the competing methods.

1.1 Background and Related Work

We summarize below some relevant background material, which includes a brief
sketch of literature directly relevant to our paper. We begin with the key objects
of this paper: covariance matrices1.

Typically covariance matrices encode input data as follows. For each input
object, first, a set of vector-valued features is extracted. Then, the covariance
matrix of these features is computed to obtain a structured representation for
the object in question (also see Figure 1). Note that we are not talking about a
covariance matrix across objects—rather, there is a separate covariance matrix
for each input object.

What makes covariance matrices so special? Apart from encoding inter-feature
dependencies, a key aspect of covariance matrices that has been found to be
widely useful is their natural geometric property: they inhabit a Riemmanian
manifold of negative curvature [22]. This geometric property is central to several
algorithms that deal with covariance data while accounting for their manifold
structure [2,42,31,38]. But efficiently handling this structure is nontrivial. The
difficulty stems from two main reasons: (i) defining divergence, distance, or kernel
functions on covariances is not easy; and (ii) even for basic computations such
as distances, clustering, etc., the numerical burden is substantial.

These burdens are especially pronounced in the context of our application:
nearest neighbor retrieval, where rapid and accurate processing is crucial. Let
us, therefore, briefly review the state-of-the-art techniques for NN in general,
while considering how they extend to SPD matrices in particular.

Nearest Neighbors. Efficient NN retrieval on covariance data is an area still
in its infancy, so literature on it is scarce. Perhaps the simplest approach to NN
retrieval on covariances is to use their natural Riemannian metric, namely, the
geodesic distance [12]. This is defined for two covariance matrices X and Y , as

dgeo = ‖log(λX,Y )‖ (1)

where λX,Y is a vector of the generalized eigenvalues ofX and Y . This metric, to-
gether with the Karcher mean algorithm [30] for computing the centroids of SPD
1 We use the terms “symmetric positive definite” and “covariance” interchangeably.
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matrices opens up the possibility of using a metric tree [8] data structure. While
this seems an attractive option, it is seldom used in practice as the Karcher mean
is an iterative and computationally intensive algorithm, making it undesirable in
data intensive applications such as NN. Thus, the main line of investigation for
NN has been towards developing fast hashing schemes. A possibility for hashing
is in discarding the manifold structure by vectorizing the covariances through
their tangent space, albeit using the log-Euclidean projection, so that vector
space techniques such as locality sensitive hashing (LSH) [14,18,21] become ap-
plicable [37]. The log-Euclidean embedding was also used by [7] to develop a
spectral hashing method.

On the other hand, NN for vector valued data has been a core research topic
for many decades; several data structure based algorithms can be found in classic
references such as [19,28]. But it is well-recognized that exact NN is computation-
ally prohibitive for high-dimensional data, whereby in recent years increasingly
approaches based on approximate methods, such as approximate nearest neigh-
bors [3,16,15] and LSH [14,18,21] have emerged. These techniques exploit the
geometric properties of the data to assign “similar” data points to the same
bucket by using carefully chosen hash functions. More recently, machine learn-
ing techniques have been suggested to learn the hash functions directly from the
data itself [39,42,20]. We also take a machine learning based approach, but since
our underlying data space is actually a manifold, not a vector space, existing
vector-based methods do not directly apply.

Learning with SPD matrices. We propose to encode SPD matrices using a
weighted sparse combination of rank-1 positive semidefinite matrices. This idea
is natural, and has been previously explored in other contexts too. For example,
in [34,35] the authors investigate this idea for Mahalanobis metric learning. A
paper closer in spirit to our approach is [36], where a given covariance matrix is
assumed to be representable as a sparse linear combination of SPD atoms in a
tensor dictionary; the learning problem, however, is formulated as a Semidefinite
Program (SDP) which makes it improbable to scale to large datasets. Finally, we
note that in the compressed sensing community, optimizing over matrix-valued
data by minimizing the trace norm (nuclear norm) [5,26,6] is popular. But the
compressed sensing setup is orthogonal to ours: there one assumes that one has
a dictionary, while in our case, we seek to learn a dictionary.

2 Generalized Dictionary Learning

Traditional dictionary learning processes input vectors (signals) si ∈ Rp, 1 ≤ i ≤
m, to construct a matrix D ∈ Rp×n and vectors ci ∈ Rn (n is the number of
“basis” vectors; usually, n' p), so that

si ≈ Dci, and ci is sparse, for 1 ≤ i ≤ m.

The sparsity requirement on ci is commonly enforced using �0- or �1-norm penal-
ties (or constraints). Since, both D and ci are unknown, the dictionary learning
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problem leads to a difficult nonconvex optimization task. Nevertheless, numeri-
cally it has been a successful approach toward sparse coding [40,10].

Now, we depart from the traditional setup above: we assume that instead of
vectors, we have input matrices Si ∈ Rp×q, 1 ≤ i ≤ m. Thus, instead of a matrix
D, we learn a tensor D, which we identify with a linear operator D : Rn×r →
Rp×q. This operator maps a matrix Ci to obtain an approximate Si; formally,

Si ≈ DCi, and Ci is sparse, for 1 ≤ i ≤ m. (2)

Based on (2), we propose to solve Generalized Dictionary Learning (GDL) by
casting it as the penalized optimization problem

minC1,...,Cm,D
1
2

∑m

i=1
‖S −DCi‖2

F +
∑m

i=1
βisp(Ci), (3)

where βi > 0 are scalars, and the function sp(C) enforces some notion of spar-
sity. Typical choices for sp(C) include, the cardinality function ‖C‖0, its convex
relaxation ‖C‖1, the matrix rank function rank(C), or its convex relaxation, the
trace-norm ‖C‖tr.

How does (3) apply to SPD matrices? To answer this, let us restrict the
input matrices Si to S p

++, the set of p × p, SPD matrices. To ensure that the
approximation DCi is also SPD, we must impose some structural restrictions on
both the dictionary D and the coefficient matrix Ci. The following easily proved,
classical result from matrix algebra provides the key.

Theorem 1. If A ( 0, and B is any matrix (of suitable size), then BABT ( 0.

Theorem (1) suggests that we should encode D by the following bilinear map

DC := DCDT , for some matrix D, (4)

and additionally restrict to C ( 0. Notice that, viewed as a linear map (4) can be
written using the ‘vec’ operator that stacks columns of its argument as follows:

vec(DCDT ) = (D ⊗D) vec(C), (5)

where the operator D is identified with the product D⊗D. The matrix notation
in (4) looks simpler. If we were to use a general matrix in (5), the storage
and computational would be much higher. It can be easily seen that (5) takes
md2 + d2n +mn storage space for m covariance matrices of dimension d each,
while (4) takes md2 + dn+mn. Computationally, the second formulation leads
to O(d2n) per iteration cost, while the first one leads to just O(dn). Thus, we
prefer formulation (4).

As for the coefficient matrix C, there are two fundamental choices:
1. C = Diag(c1, . . . , cn) where ci ≥ 0; and
2. C =

∑k
j cjc

T
j , a general, potentially low-rank (if k < n) SPD matrix.

We focus on the first choice, and it is equivalent to modeling input SPD matrices
as weighted sums of rank-1 matrices; specifically,

S ≈ DCDT =
∑n

i=1
cidid

T
i , where ci = Cii. (6)
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Although choosing a diagonal C might appear to be simple, it is quite powerful
as equation (6) suggests; more importantly, this choice prevents a parameter
explosion and proves crucial for GDL’s computational efficiency.

2.1 Online GDL Algorithm

Now we proceed to deriving an efficient online (stochastic-gradient based) al-
gorithm for approximately solving the GDL problem. To keep the subproblems
tractable, we use the convex function sp(C) = ‖C‖1 for enforcing sparsity. Then,
using representation (6), the GDL formulation (3) becomes

min
C1,...,CN≥0,D

1
2

∑m

i=1
‖Si −DCiD

T ‖2
F +

∑m

i=1
βi‖Ci‖1, (7)

where βj > 0 are sparsity-tuning scalars, and C1, . . . , Cm ≥ 0 are diagonal.
Like its vector space counterpart, the GDL problem (7) is also nonconvex,

which makes it extremely unlikely to obtain a globally optimal solution. Fortu-
nately, it is individually convex in D and (C1, . . . , Cm), which suggests that a
minimization strategy that alternates between optimizing over D and the ma-
trices (C1, . . . , Cm), could be applied. However, often the number of input data
points m is very large, whereby, the alternating step over the Ci can easily be-
come computationally prohibitive. Taking cue from the recent work in dictionary
learning [10,27], we develop an online algorithm based on stochastic gradient de-
scent. The online approach allows our GDL algorithm to easily scale to large
datasets, as long as the subproblems can be solved efficiently. We now describe
the key algorithmic details.

To prevent degenerate solutions, it is often useful to impose some normal-
ization constraints on D. A practical choice is to require ‖dj‖ ≤ 1 for each
column of matrix D. We denote these requirements by the feasible set D . To
run a stochastic-gradient procedure, we break up the processing into B “mini-
batches.” Then, we rewrite the GDL (7) over these mini-batches as

min
D∈D

Φ(D) :=
∑B

b=1
φb(D), (8)

where φb denotes the objective function for batch b. Let kb be the size of batch
b (1 ≤ b ≤ B) that contains the input matrices

{
Sj(i)|1 ≤ i ≤ kb

}
, where j(i) de-

notes an appropriate index in 1, . . . ,m. With this notation, the objective function
for batch b may be written as

φb(D) := min
Cj(1),...,Cj(kb)≥0

1
2

∑kb

i=1
‖Sj(i) −DCj(i)D

T ‖2
F + βj(i)‖Cj(i)‖1. (9)

Our algorithm then iteratively updates the dictionary by computing

Dt+1 = ΠD(Dt − ηt∇Dφb(t)(Dt)), b(t) ∈ [1..B], t = 0, 1, . . . , (10)

whereΠD denotes orthogonal projection onto D . Standard analysis (see e.g., [13])
shows that under appropriate conditions of the stepsizes ηt, the iteration above
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Fig. 1. Sparse coding for covariances: From the object one extracts base-features
F1, . . . , Fk. These, then yield the covariance feature S =

∑
i(Fi − μ)(Fi − μ)T where

μ is the mean feature vector, which has a sparse coding C in the dictionary D, i.e.,
S ≈ DC.

converges to a stationary point of the problem. For implementing (10), note that
if φb is determined by a unique solution to (9), then it can be shown that the
gradient ∇Dφb(t) is well defined. Specifically, let (C∗

j(1), . . . , C
∗
j(kb)

) be the argmin
of (9). Some calculus then shows that (let b ≡ b(t))

∇Dφb(D) = 2
∑kb

i=1

(
DC∗

j(i)D
T − Sj(i)

)
DC∗

j(i). (11)

2.2 Sparse Coding: Computing φb

All that remains to specify is how to compute φb, i.e., how to solve (9). First,
notice that (9) is just a sum of kb independent problems, so without loss of
generality we need to consider only a subproblem of the form

min
C≥0

f(C) := 1
2‖S −DCDT ‖2

F + β‖C‖1, (12)

where β > 0, and C is restricted to be a diagonal matrix. Since C ≥ 0, prob-
lem (12) further simplifies to

min
C≥0

f(C) := 1
2‖S −DCDT ‖2

F + β Tr(C), (13)

which is nothing but a regularized nonnegative least-squares (NNLS) problem.
There exist a variety of solvers for NNLS, for example, LBFGS-B [25], SPG [4],
or the very recent SBB [17]. We prefer SBB, as it is not only simple, but also
exhibits strong empirical performance. Implementing SBB is simple, because it
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Algorithm 1. Online Algorithm for GDL

Require: Input covariances S1, S2 . . . ,; stepsizes ηt

Initialize t← 0.
while ¬ converged do

Obtain next mini-batch of size kb.
for i = 1 to kb do

Solve for Cj(i) using (13).
end for
Update dictionary, Dt+1 = ΠD(Dt − ηt∇Dφb(t)(Dt))
t← t + 1.

end while
return D.

only requires efficient computation of ∇f(C). Since C is diagonal, the gradient
∇f(C) is given by the diagonal matrix

∇f(C) = Diag
(
DT (DCDT − S)D

)
. (14)

Algorithm 1 assembles all the above details into pseudocode for online GDL.
Figure 1 provides a high level schema of the GDL algorithm.

3 Nearest Neighbors via GDL

Once we have a dictionary D that can sparse code an input covariance matrix
S, the next step is to obtain a representation of S in terms of its sparsity. Since,
we use an overcomplete dictionary of a much higher dimension than the input
data, and we assume that only a few elements of the dictionary participate in
the reconstruction of S, there is high probability that dissimilar input data will
get unique non-zero basis combinations. In other words, suppose that we use
a dictionary with n rank-1 basis matrices, and that only r of these matrices
are used to reconstruct a given input covariance matrix. Then, there are

(
n
r

)
unique active basis combinations possible. If n and r are chosen appropriately
(by adjusting the sparsity-controlling parameters βi), then there is a high chance
that each matrix gets assigned a unique set of rank-1 matrices that encode it.

Using this observation, we hash input covariances by computing a sorted
tuple representation composed of the indices (in the dictionary) of the rank-1
basis matrices involved in the reconstruction. Since each dictionary basis spans
a subspace (not necessarily uniquely), the tuple may be viewed as a subspace
combination corresponding to the input data. Thus, we call this representation
a Subspace Combination Tuple (SCT), and define it formally as follows:

Definition 1. Let S ∈ S p
++ be an input SPD matrix, D ∈ Rp×n an overcom-

plete dictionary, and ui, i ∈ {1, · · ·n} a unique identifier for the ith column
of D. If c = (c1, c2, · · · , cn) is the coefficient vector corresponding to the sparse
representation of S as per (13), then a tuple h(S) = 〈ui, · · · ,uk〉 is defined as
a Subspace Combination Tuple (SCT), if ∀j ∈ {i, · · · , k} , |cj | > ε, for some
ε > 0, and {i, · · · , k} is a strictly increasing sequence of dictionary indices.
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In our case, we assume that the ui’s are just integers from 1, · · · , n and that
the hashing tuple is a set of these indices in sorted order. The threshold ε helps
to select significant coefficients from the sparse coding, so that the chosen non-
zero indices are robust to noise. This encoding of input SPD matrices as tuples
opens up the possibility of using hash tables for fast locality sensitive hashing.
Figure 2 illustrates this idea. Each column of the dictionary is identified by its
index; so each hash-key is a set of integers encoded as a character string. To
tackle collisions in the hash buckets, the colliding input matrices are organized
in a linked list. If the linked list gets too long, the data within a hash bucket can
be further organized using a metric tree or any other efficient data structure.

Given a query (SPD matrix), we solve (13) to first obtain its coefficient matrix,
from which we obtain the SCT and query the hash table. If there are several
entries in a matching bucket, we run a linear scan using the geodesic distance (1)
to find the best matches (the bucket can also be organized for faster than linear
scans, if desired).

Fig. 2. An illustration of the hashing idea. The input covariance matrix is sparse
coded and the nonzero active coefficients are formed into a tuple, which is then used
for indexing into a hash table. To resolve hash table collisions, the colliding covariances
are arranged in a suitable data structure. The covariance matrices are denoted as Si
(for random values of i) in the figure.

4 Experiments and Results

We now present experimental results of applying the GDL framework to NN
retrieval. Specifically, we perform extensive experiments of GDL, and compare it
against the state-of-the-art NN techniques applied to NN retrieval for covariance
matrices.

Since there are no publicly available datasets of covariance matrices, we had
to resort to deriving them from other datasets. To this end, we selected the
following types of data: (i) real-world noisy data; (ii) covariance datasets of
relatively large dimensions; and (iii) a dataset with a large number of points. Our
key aim in selecting such data were to highlight the applicability and relevance
of our method.
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For (i) we used the LabelMe object annotation dataset, for (ii) the FERET
face recognition dataset, and for (iii) texture datasets. Details of each of these
datasets follow.

Object dataset. We obtained the LabelMe dataset2 of annotated images. We
used approximately 10K images from this dataset, where each image contains
one or more annotated objects, along with bounding box information about
the location of each object in the image. We extracted these annotated blobs
from each image, and created covariance matrices for these blobs. The fea-
ture vector F corresponding to each pixel in the blob of interest had the form:
F = [IR, IG, IB, Ix, Iy , Ixx, Iyy], where the first three dimensions encode the RGB
color intensities, and the last four capture the first- and second-order gradients,
respectively. Thus, our covariances were 7×7, and we created a dataset contain-
ing 25K covariances from this dataset.

Face recognition. Here, we downloaded the FERET face dataset [33,32]. This
dataset contains facial appearances segregated into multiple classes. Each class
has different views of the face of the same person for varying poses. We selected
six images from each class. Inspired by the success of covariances created from
Gabor filters for face recognition [24], we applied 40 Gabor filters on each im-
age, later combining the filters into a covariance of size 40 × 40. We created a
covariance dataset of approximately 10K descriptors using this approach.

Texture classification. Texture is an essential cue in many data mining appli-
cations like satellite imagery, industry inspection systems, etc. Thus, we used a
combination of the Brodatz dataset and the Curret dataset [9] for creating a tex-
ture covariance dataset. Brodatz contained approximately 111 texture classes,
while Curret contained approimately 60 classes. To create the covariance, we
used the feature vector F = [x, y, I, Ix, Iy ], where the first two dimensions are
the relative location of the pixel with respect to the texture patch, the third
dimension encodes the grayscale intensity, and the last two dimensions capture
the pixel gradients. Thus, each covariance is 5×5, and we created approximately
40K such covariances.

Sample images from each of these datasets are shown in Figure 3.

4.1 Methods Compared against GDL

Log-Euclidean Embedding. The main mechanism that the state-of-the-art
techniques use for NN on covariance datasets is vectorization. An input SPD
matrix is projected onto its tangent plane through a log-Euclidean mapping,
which results in a symmetric matrix. Since this resultant matrix is not confined
to the manifold of SPD matrices, it can easily be embedded into the Euclidean
space through vectorization. Then, the vectorized version can be hashed using
any of the conventional hashing techniques. In our experiments, we tried two
popular hashing algorithms: (1) �2-distance based LSH (h(x) = �x.r−b

w  ), where
x is the data vector to be hashed (L2LSH), and r and b are parameters of the

2 http://labelme.csail.mit.edu/
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Fig. 3. Sample image from LabelMe object dataset (top), FERET face appearances
(mid) and Brodatz texture database (bot)

hash function; and (2) using Hamming functions (HAM) via using the binary
encoding of the embedded vector.

Simple vectorization. A mere vectorization of the covariance matrix that iden-
tifies it with in Euclidean space (without projecting it using the Log-Euclidean
mapping, but rather by just stacking columns), does not lead to a good hashing
(VEC). However, this provides a baseline.

Kernelized LSH. A recently proposed, sophisticated technique built on LSH, is
Kernelized LSH (KLSH) [20]. A major impediment in using KLSH on the space
of covariances is the lack of known, effective kernel functions. We experimented
with a number of potential kernels on SPD matrices (e.g., trace-kernel, log-
Euclidean kernel, etc.), but found KLSH’s performance to be the best when
using the Riemannian kernel (which is actually a pseudo-kernel because it fails
to be positive definite) generated by the Riemannian metric [12]. This kernel K
has the following form: For two SPD matrices X and Y ,

K(X,Y ) := e−γ‖log(λ(X,Y ))‖2
, (15)

where γ > 0 is a “bandwidth” parameter, and λ(X,Y ) stands for the vector of
generalized eigenvalues of X and Y .
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4.2 Dictionary Learning

To determine the correct dictionary size for each of the datasets, we used cross
validation. Assuming the dataset Si ∈ S p

++, i = 1, 2, · · · , n, we computed dictio-
naries of sizes p×kp for k = 2, 3, · · · . For each of the dictionary, we compute the
hashing accuracy on a subset of the dataset, and used the dictionary for which
the best accuracy was best. This resulted in a dictionary of size 7 × 28 for the
object dataset, 40×160 for the faces dataset, and 5×50 for the texture dataset.
GDL took approximately 20 minutes for the texture dataset with 30K, 5 × 5
matrices, and approximately 2 hours for faces with 10K, 40 × 40 matrices. We
ran 300 iterations of sparse coding and dictionary learning. Each of the sparse
coding subproblems was seen to converge in 50–80 iterations of the SPG algo-
rithm. For regularization, we set all β values to the same value—β = 0.05 for
objects, β = 0.65 for faces, and β = 0.4 for texture, respectively. These values
for β were also determined via cross-validation, while ensuring that the tuple
size remained between 5–10.

4.3 Experimental Setup

GDL was implemented in Matlab; for L2LSH, VEC, and HAM we used the C-
implementation from the Caltech Toolbox3. Since the programs have different
computational baselines, we cannot compare their retrieval speed. Rather, we
show in Table. 1 the average portion of each of the datasets scanned by GDL to
find the nearest neighbor. The geodesic distance was used to resolve hash table
collisions. As is seen from the table, the coverage (amount of database scanned)
is small, which is exactly as desired.

Table 1. Percentage of the database searched by GDL to find the nearest neighbor

Dataset Objects Faces Texture

Avg. coverage (%) 5.11 3.54 6.26

Next, we substantiate the effectiveness of our algorithm for NN retrieval over
the three datasets. For this purpose, we split each of the datasets into database
and query sets (approximately 5% of the data). To compute the ground truth,
we used a linear scan via the geodesic distance over the entire database for each
query. Since it is hard to find exact NN, we restrict ourselves to Approximate
Nearest Neighbors (ANN). Assume Q is a query point, Xls is the exact NN found
by a linear scan and Xalgo is the neighbor returned by an NN algorithm. If dgeo

defines the geodesic distance, then we classify an NN as correct if dgeo(Q,Xls)
dgeo(Q,Xalgo) >

ε. We used ε = 0.75. Fig. 4 shows the accuracy of NN for each of the datasets,
where accuracy is defined as:

Accuracy :=
#correct matches

#query size
. (16)

3 http://www.vision.caltech.edu/malaa/software/research/image-search/
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Fig. 4. Plots of the accuracy of NN retrieval of GDL compared to various techniques;
(a) objects dataset, (b) faces dataset, and (c) texture dataset

As is evident from the plots, GDL performs well across all datasets, while
the performance of the other methods vary. The vectorization approach fail on
all datasets, while KLSH performed reasonably well. However, a disadvantage
of KLSH compared with our method is that the former needs to compute the
kernel matrix for the query point, against the entire dataset—this slows it down
drastically. On the face dataset, all methods had high accuracy, most probably
because this dataset is noise free. The other data are predominantly either out-
door images (as in LabelMe) or heavy changes in the reflectance in texture (as
in the Curret dataset). For such data, adjusting the regularization parameter
helps counter the effects of noise.

5 Conclusions

In this paper, we introduced a novel dictionary learning algorithm for SPD ma-
trices which represents each input SPD matrix as a non-negative, sparse linear
combination of rank-1 dictionary atoms. The key advantages of this framework
are (i) the algorithm is simple and scalable, (ii) it enables fast and accurate
NN on covariance datasets. We substantiated our claims by showing several ex-
periments on real-world data. Going forward, it will be interesting to see how
our framework can be extended to other matrix manifolds, beyond just SPD
matrices. Another area is learning distance metric on tensors using the sparse
framework, which will enable a classification or regression for SPD datasets.
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Abstract. Regression inference in network data is a challenging task in
machine learning and data mining. Network data describe entities rep-
resented by nodes, which may be connected with (related to) each other
by edges. Many network datasets are characterized by a form of auto-
correlation where the values of the response variable at a given node
depend on the values of the variables (predictor and response) at the
nodes connected to the given node. This phenomenon is a direct viola-
tion of the assumption of independent (i.i.d.) observations: At the same
time, it offers a unique opportunity to improve the performance of predic-
tive models on network data, as inferences about one entity can be used
to improve inferences about related entities. In this paper, we propose a
data mining method that explicitly considers autocorrelation when build-
ing regression models from network data. The method is based on the
concept of predictive clustering trees (PCTs), which can be used both
for clustering and predictive tasks: PCTs are decision trees viewed as
hierarchies of clusters and provide symbolic descriptions of the clusters.
In addition, PCTs can be used for multi-objective prediction problems,
including multi-target regression and multi-target classification. Empir-
ical results on real world problems of network regression show that the
proposed extension of PCTs performs better than traditional decision
tree induction when autocorrelation is present in the data.

1 Introduction

Network data describe entities represented by nodes generally of the same type
such as web-pages or telephone accounts, which may be connected with (related
to) each other by edges which represent various explicit relations such as hyper-
links between web-pages or people calling each other. Recently, data networks
such as social networks, financial transaction networks, sensor networks and com-
munication networks have become ubiquitous in everyday life. This ubiquity of
data networks motivates the recent focus of research in data mining to extend
traditional inference techniques in order to learn in network data.
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However, the extension of the traditional inference techniques opens several
issues when dealing with data networks. In particular, many data networks are
characterized by a form of autocorrelation where the values of the response
variable at a given node depend on the values of the variables (predictor and
response) at the nodes connected to the given node. Here autocorrelation is de-
fined as the property that a value observed at a node depends on the values
observed at neighboring nodes in the network. Different definitions of autocor-
relation are in use depending on the field of study which is being considered
and not all of them are equivalent. In statistics, autocorrelation is defined as the
cross-correlation of a variable with itself at certain time lag. In spatio-temporal
and time-series analysis, spatial autocorrelation has been defined as the correla-
tion among data values, which is strictly due to the relative location proximity
of the objects that the data refer to. It is justified by the Tobler’s [13] first law
of geography according to which “everything is related to everything else, but
near things are more related than distant things” whereas in network studies
the autocorrelation is defined by the homophily’s principle as the tendency of
nodes with similar values to be linked with each other [16]. The major difficulty
due to the autocorrelation is that the independence assumptions (i.i.d.), which
typically underlies machine learning methods, are no longer valid. The violation
of the instance independence has been identified as the main responsible of poor
performance of traditional machine learning methods [20]. To remedy the nega-
tive effects of the violation of independence assumptions, autocorrelation has to
be explicitly accommodated in the learned models.

Recently, there has been a number of methods that consider the autocorrela-
tion phenomenon and their success depends on the characteristics of the target
domain. One limitation of models that represent and reason with global auto-
correlation is that the methods assume the autocorrelation dependencies are sta-
tionary throughout the relational data graph [1]. Recent research has explored
the use of collective inference techniques to exploit this phenomenon. These
techniques achieve more accurate predictions than traditional algorithms that
predict data instances individually, without regard to the relationships or sta-
tistical dependencies that are prevalent in networked data. Collective inference
techniques, on the other hand, collectively predict the target values of related
instances simultaneously using similarities that appear among groups of similar
objects, for example tendency of friends to share political beliefs, siblings to have
similar speech patterns, and linked webpages to have similar topics.

In this work, we develop an approach to modeling (’labeling’) non-stationary
autocorrelation in network data by using predictive clustering [3]. Predictive
clustering combines elements from both prediction and clustering. As in clus-
tering, clusters of examples that are similar to each other are identified, but
a predictive model is associated to each cluster. The predictive model assigns
new instances to clusters based on their description and provides a prediction
for the target property. The benefit of using predictive clustering methods, as
in conceptual clustering [18], is that, besides the clusters themselves, they also
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provide symbolic descriptions of the constructed clusters. However, in contrast
to conceptual clustering, predictive clustering is a form of supervised learning.

Predictive clustering trees (PCTs) are tree structured models that generalize
decision trees. Key properties of PCTs are that i) they can be used to predict
many or all attributes of an example at once, ii) they can be applied to a wide
range of prediction tasks (classification and regression) and iii) they can work
with examples represented by means of a complex representation [8], which is
achieved by plugging in a suitable distance metric for the task at hand, and iv)
their tree structure permits to consider different effects of autocorrelation (non-
stationariness). In the context of this paper, PCTs can be easily extended to
network data in order to take (local and global) autocorrelation into account. The
method extends the predictive clustering framework implemented in the CLUS
system [3]1. Given a fully described network (nodes and edges), we evaluate
our models on real-world data networks (among them several geographical data
networks), comparing to models that reason regardless to the global and local
dependencies into the network.

The paper is organized as follows. The next section reports relevant related
work. Section 3 describes the proposed approach. Section 4 describes the datasets,
experimental setup and reports relevant results. Finally, in Section 5 some con-
clusions are drawn and some future work outlined.

2 Related Work

The motivation for this work comes from research reported in the literature for
mining networked data and predictive clustering. In the following subsections,
we discuss background and related work from both research lines.

2.1 Mining Network Data

In the recent years, numerous algorithms have been designed for modeling a
partially labeled network and providing estimates of unknown labels associated
with nodes. In general, network learning assumes that data for inference are
already in the form of a network and exploit the structure of the network to
allow the collective inference. Collective inference targets learning algorithms
where various interrelated values are inferred simultaneously such that estimates
of neighboring labels influence one another [14,10,24]. Since exact inference is
known to be an NP-hard problem and there is no guarantee that data network
satisfy the conditions that make exact inference tractable for collective learning,
most of the research in collective learning has been devoted to the development
of approximate inference algorithms.

Popular approximate inference algorithms include iterative inference, Gibbs
sampling, loopy belief propagation and mean-field relaxation labeling. An outline
of strengths and weakness of these algorithms is reported in [24]. In general, one
of the major advantages of collective learning lies in its powerful ability to learn
1 The CLUS system is available at http://www.cs.kuleuven.be/∼dtai/clus
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various kinds of dependency structures (e.g., different degrees of correlation)
[12]. However, as pointed out in [19], when the labeled data is very sparse,
the performance of collective classification might be largely degraded due to the
lack of sufficient neighbors. This is overcome by incorporating informative “ghost
edges” into the networks to deal with sparsity issues [15,19].

Interestingly learning problems similar to the tasks addressed in network
learning have been recently addressed outside the areas of network learning and
graph mining. In particular, in the area of semi-supervised learning and trans-
ductive learning [25] a corpus of data without links is given to the algorithms.
The basic idea is to connect data into a weighted network by adding edges (in
various ways) based on the similarity between entities and to estimate a func-
tion on the graph which guarantees the consistency with the label information
and the smoothness over the whole graph [26]. The constraint on smoothness
implicitly assumes positive autocorrelation in the graph, that is, nearby nodes
tend to share the same class labels (i.e., homophily).

Due to the recent efforts of various researchers, numerous algorithms have
been designed for network learning. Anyway, at the best of our knowledge, these
algorithms address the prediction problem only in the classification case. Ex-
clusively, in an recent work of Appice et.al. [2] the authors have considered the
problem of within network regression with an approach that follows the main
idea of iterative inference described in [24]. The learning process resorts in the
transductive setting, it is robust to sparse labeling and low label consistency and
improves traditional model tree induction across a range of several geographical
data networks. However, no final model is provided to the user.

2.2 Building Predictive Clustering Trees

The task of learning predictive clustering trees can be formalized in this way:
Given

• a descriptive space X = X1, X2, . . . Xm,
• a target space Y ,
• a set T of examples (xi, yi) with xi ∈ X and yi ∈ Y

Find

• a set of hierarchically organized clusters defined according to X × Y ,
• a predictive piecewise function f : X → Y , defined according to the hierar-

chically organized clusters.

The clusters to be found are defined on the basis of examples in T and rep-
resented according to both the descriptive space and the target space X × Y
(Figure 1(c)). This is different from what is commonly done in predictive mod-
elling (Figure 1(a)) and classical clustering (Figure 1(b)), where only one of the
the spaces is considered.

Note that this general formulation of the problem can take into account dif-
ferent aspects:
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Fig. 1. Illustration of predictive clustering: (a) clustering in the target space, (b) clus-
tering in the descriptive space, and (c) clustering in both the target and descriptive
spaces. Note that the target and descriptive spaces are presented as one-dimensional
axes for easier interpretation, but can be of higher dimensionality.

• multiple target attributes can be considered at the same time
• the distance function used in the clustering phase can consider the (possible)

complex nature of the data
• this formulation is valid both for classification and regression problems (it

depends on the nature of Y and on how the function f(·) is built)

In PCTs [3], a decision tree is viewed as a hierarchy of clusters: the top-node
corresponds to one cluster containing all data, which is recursively partitioned
into smaller clusters while moving down the tree. The construction of PCTs is not
very different from that of standard decision tree learners: at each internal node
t, a test has to be defined according to a given evaluation function. The main
difference is that PCTs select the best test by maximizing the (inter-cluster)
variance reduction, defined asΔY (A,P) = Var(A)−

∑
Ak∈P

|Ak|
|A| Var(Ak), where

A represents the examples in T and P defines the partition {A1, A2} of A.
If the variance V ar(·) and the predictive function f(·) are considered as pa-

rameters, instantiated for the specific learning task at hand, it is possible to
easily adapt PCTs to different domains and different tasks. To construct a re-
gression tree, for example, the variance function returns the variance of the given
instances’ target values, and the predictive function is the average of target val-
ues in a cluster. Indeed, by appropriately defining the variance and predictive
functions, PCTs have been used for clustering ([3]), multi-objective classification
and regression ([3,7]), and time series data analysis ([8]).

In this paper, we propose to extend the problem of constructing PCTs by
considering the network dimension in addition to the descriptive and target
spaces, to explicitly taking autocorrelation into account.

3 Learning PCTs from Network Data

3.1 The Problem

A network is a set of entities connected by edges. Each entity is called a node of
the network. A number (which is usually taken to be positive) called weight is
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Fig. 2. Autocorrelation in network data. Different labels are given in different colors

associated with each edge. In a general formulation, a network can be represented
as a (weighted) graph that is a set of nodes and a ternary relation which represent
both the edges between nodes and the weight associated to each edge. Formally,
a data network G is a pair (V, E ), where:
1. V is a set of nodes, and
2. E is a set of weighted edges between nodes, that is,
G = {〈u, v, w〉|u, v ∈ V,w ∈ *+}.

The network G is represented by an adjacency matrix W with entries wij > 0
if there is an edge between i and j, and wij = 0 otherwise. We impose wii = 0
and we define the degree of a node ui as: d(ui) =

∑
j wij . Figure 2 shows an

example of a data network where different colors represent different node labels.
In practice, when the original data come in the form of a network, the weight
wij usually has a natural interpretation. It could be the number of hyperlinks
between two web pages, or a binary value indicating whether proteins i and j
interact. Many times when the weights are not readily available from the data,
they are computed based on symmetric and nonnegative similarity measures.
For instance, if each node is represented in the Euclidean space Rd, a popular
choice is to use the Gaussian similarity measure (1)

wij = exp(‖ li − lj ‖2 /2 b2) (1)

where li ∈ Rd describes the location of node i and b is referred to as the band-
width. In addition, we use a weighting function linearly dependent on the inverse
Euclidean distance between objects (2) and a modified Gaussian kernel density
function (3):

wij = (1− ‖ li − lj ‖ /b) (2)

wij = (1− ‖ li − lj ‖2 /b2) (3)

which we refer to as ”Euclidean” and ”Modified”, respectively. Whatever weight-
ing function is selected, the estimated parameter surfaces will be, in part, func-
tions of the definition of that weighting function.
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In this work, each node of the network is associated with a data observation
(x, y) ∈ X × Y. X is a feature space spanned by m predictor variables Xi with
i = 1, . . . ,m, while Y is the possibly unknown response variables with a range
in *.

In order to formalize the learning task we are referring to, we need to define
the network arrangement of the data with the goal of explicitly taking autocor-
relation into account. For this purpose, in addition to the descriptive space X
and the target space Y , it is necessary to add information on the connectedness
of the data within the network (e.g., the links between the objects involved in
the analysis or the pairwise distances between them).

The problem of network regression is formulated as follows.
Given:
1. a set of labeled nodes L = {u|u ∈ X × Y}
2. a set of unlabeled nodes U = {u|u ∈ X}
3. a neighborhood function ηk : V +−→ (V ×*+)k such that:
ηk(u) = {(v1, w1), ..., (vk, wk)} with (u, vi, wi) ∈ A, i = 1...k
Find an estimate for the unknown value of the response variables Y for each
node u ∈ U , such that it is as accurate as possible.

3.2 Measures of Network Autocorrelation

The original CLUS algorithm uses variance reduction as an evaluation measure
for the tests used in the internal nodes in the tree. However, in order to take the
autocorrelation into account when partitioning the descriptive space, a different
measure is necessary. Therefore, 3 autocorrelation indexes are introduced below.

In spatial data analysis, several spatial autocorrelation statistics have been
defined. The most common one is the Global Moran’s I [13]. This requires a
spatial weight matrix that reflects the intensity of the spatial relationship be-
tween observations in a neighborhood.

The Global Moran’s I is defined as

IY =
N
∑

i

∑
j wij(Yi − Y )(Yj − Y )∑

i

∑
j wij

∑
i(Yi − Y )2

(4)

where N is the number of spatial objects indexed by i and j; Yi and Yj are the
values of the variable Y for the nodes ui and uj, respectively; Y is the variable
of interest; Y is the overall mean of Y ; and wij , i, j = 1, . . . , N are the values of
a N x N matrix of spatial weights. Values that are more positive than expected
indicate positive autocorrelation, while more negative values indicate negative
autocorrelation. Values generally range from -1 to +1 and 0 indicates a random
distribution of the data.

Connectivity (Randic) Index (CI) is the index of connectivity of a network
(or graph) [23]. For a given network G, CI is defined by (5)

CIY (G) =
∑

u,v∈V (G)

1√
d(u)d(v)

(5)
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Algorithm 1. Top-down induction of NetworkPCTs
1: procedure NetworkPCT(A) returns tree
2: if stop(A) then
3: return leaf(Prototype(A))
4: else
5: (c∗, h∗,P∗) = (null , 0, ∅)
6: for each possible test c do
7: P = partition induced by c on A

8: h =
α

|Y |
∑
Y

ΔY (A,P) +
(1− α)

|Y |
∑
Y

SY (A,P)

9: if (h > h∗) then
10: (c∗, h∗,P∗) = (c, h,P)
11: end if
12: end for
13: for each Ak ∈ P∗ do
14: treek = NetworkPCT(Ak)
15: end for
16: return node(c∗,

⋃
k{treek})

17: end if

where d(u) and d(v) represent the degree of nodes u and v respectively, and
V (G) represents the node set. This index gives the connectedness (or branching)
of a network G and can be used to compare the connectivity among networks.
It is typically used in chemistry, since it can be well correlated with a variety of
physico-chemical properties of alkanes, such as boiling points, surface area and
solubility in water.

Relational autocorrelation measures the strength of statistical dependencies
between values of a single attribute Y on related (linked) instances [1]. Any tra-
ditional measure of association, such as the χ2 statistics or information gain, can
be used to assess the association between these values of Y . For example, given
a set of related pairs PR, we can measure the autocorrelation of a continuous
variable Y as the correlation between related Yi and Yj :

PY =

∑
ij s.t. (ui,uj)∈PR

(Yi − Y )(Yj − Y )∑
ij s.t. (ui,uj)∈PR

(Yi − Y )2
(6)

3.3 PCTs for Network Regression

The Algorithm. We can now proceed to describe the top-down induction
algorithm for building PCTs from network data (Algorithm 1). It is a recursive
method which takes as input a set of training instances A and partitions the
descriptive space until a stopping criterion is satisfied (Algorithm 1 line 2).

The main loop (Algorithm 1, lines 6-11) searches for the best attribute-value
test c∗ that can be associated to a node t. It associates the best test c∗ to the
internal node t and calls itself recursively to construct a subtree for each subset
(cluster) in the partition P ∗ induced by c∗ on the training instances.
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Possible tests are of the form X ≤ β for continuous attributes, and X ∈
{xi1 , xi2 , . . . , xio} (where {xi1 , xi2 , . . . , xio} is a subset of the domain DX of
X) for discrete attributes. For continuous attributes, possible values of β are
found by sorting the distinct values of X in the training set associated to t,
then considering a threshold between each pair of adjacent values. Therefore,
if the cases in t have k distinct values for X , at most k − 1 thresholds are
considered. When selecting a subset of values for a discrete attribute, we rely on
a non-optimal greedy strategy [17]. It starts with an empty set Leftt = , and
a full set Rightt = DX , where DX is the domain of X . It moves one element
from Rightt to Leftt such that the move results in increased variance reduction.
This differs from the classical solution [4], where some ordering on the possible
values of DX is defined apriori, according to the data distribution. However, the
classical solution cannot deal with multi-objective predictive tasks as PCTs can.

The algorithm evaluates the best split according to the formula reported in
Algorithm 1, line 8. This formula is a linear combination of the variance reduction
and the statistic SY (A,P), computed only on labeled examples. According to
the above discussion for the selection of an appropriate evaluation measure for
the tests, SY (A,P) can be defined in terms of the three indexes we introduce
(Moran’s I, CI and and P ). However, since they all range in different intervals,
it is necessary to appropriately scale them. Since the variance reduction is non-
negative, we decided to scale them in the interval [0,2], where 2 means high
positive autocorrelation and 0 means high negative autocorrelation. For example,
for Moran’s I, SY (A,P) is:

SY (A,P) =
∑

Ak∈P

|Ak|
|A| ÎY (Ak)

where ÎY (Ak) is the scaled Moran’s I computed on Ak.
Moreover, in order to guarantee a fair combination of the variance reduction

and the statistic SY (A,P), we also need to scale the variance reduction in the
interval [0,2]. For that purpose, we use a common scaling function:

ΔY (A,P) = 2
ΔY (A,P) −Δmin
Δmax−Δmin (7)

where Δmax and Δmin are the maximum and the minimum values of ΔY (A,P)
for a particular split.

The search stops when the number of the examples in a leaf is less than
√
N ,

which is considered a good locality threshold that does not permit to lose too
much in accuracy also for rule based classifiers [11]. When the stopping criterion
is satisfied, the algorithm creates a leaf and labels it with a predictive function
(in this case, the average) defined for the instances falling in that leaf. When
predicting multiple variables, the predictive function is an aggregation function
(in this case, the average) over tuples of target values. Each target variable
contributes equally to the overall h value (Algorithm 1, line 8).
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Estimating the Bandwidth. The choice of the bandwidth (denoted by b in
(1)) is perhaps the most critical decision to be taken in the modeling process.
This parameter controls the degree of smoothing. A small bandwidth results
in very rapid distance decay, whereas a larger value will result in a smoother
weighting scheme. At the same time, this parameter influences the level of au-
tocorrelation.

The bandwidth may be defined manually or by using some form of adaptive
method, such as cross validation and the corrected Akaike Information Criterion
(AIC), as used in GWR [9]. A wrapper solution would significantly increase (by
a logarithmic factor, in the worst case) the NCLUS complexity. In this study, for
the bandwidth estimation we minimize the leave-one-out cross validated - Root
Mean Square Error (RMSE). Minimization is performed by means of the Golden
section search [5] that aims, in this case, at binary recursively partitioning of
the bandwidth domain. Partitions are not uniform in width, but maintain the
golden ratio γ = 1+

√
5

2 . For each couple of bandwidth values, b1 and b2 (at the
first iteration, they are initialized as minimum and maximum bandwidth, respec-
tively), the algorithm identifies a point b3 between them, according to the golden
ratio and computes the cross validated - RMSE for that point (RMSEb3). The
algorithm than identifies the only parabola with a vertical axis that intersects
the points {(b1, RMSEb1), (b3, RMSEb3), (b2, RMSEb2)}. On the basis of the
position of the minimum of this parabola, the system decides whether to con-
sider (b1, b3) or (b3, b2) as the next couple of bandwidth values. The search stops
when there is no cross validated - RMSE reduction. In the algorithm, RMSE is
computed by fitting a weighted linear model for the example left out. A wrapper
solution would significantly increase (by a logarithmic factor, in the worst case)
the NCLUS complexity. While we optimize b only for (1), additional experiments
have shown only minor differences among for (2) and (3).

Time Complexity. The computational complexity of the algorithm depends
on the computational complexity of adding a splitting node t to the tree, which
in fact depends on the complexity of selecting a splitting test for t. A splitting
test can be either continuous or discrete. In the former case, a threshold a has
to be selected for a continuous variable. Let N be the number of examples in
the training set, then the number of distinct thresholds can be N -1 at worst.
They can be determined after sorting the set of distinct values. If m is the
number of descriptive variables, the determination of all possible thresholds has
a complexity O(m ∗N ∗ logN) when an optimal algorithm is used for sorting.

For each of the possible thresholds, the system has to compute the measure
used of the evaluation of a single split. This computation has, in principle, time-
complexity O(N2); however, it is not necessary to recompute it at each splitting
evaluation since partial sums can be incrementally updated depending on the
examples that are moved from the right to the left branch. This optimization
makes the complexity of the evaluation of a single split O(N). This means that
the worst case complexity of adding a splitting node on a continuous attribute is
O(m∗(NlogN+N)), that is O(m∗NlogN). Similarly, for a discrete splitting test,
the worst case complexity is O(m ∗ k ∗N), where k is the maximum number of
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distinct values of a discrete variable (k ≤ N). Therefore, finding the best splitting
node (either continuous or discrete) has a complexity of O(m ∗NlogN). For the
induction of a complete clustering tree, this complexity, in the worst case, is
O(z ∗m ∗NlogN), where z is the number of internal nodes in the tree.

4 Empirical Evaluation

Before we proceed to presenting empirical results, we provide a description of
the used datasets and experimental settings.

4.1 Datasets

In this experimental evaluation, we use six network data obtained from spatial
datasets. They are described in the following.

NWE (North-West England) contains census data collected in the European
project SPIN!. The data concerns North West England, an area that is de-
composed into censual sections or wards for a total of 1011 wards. Census data
provided by the 1998 Census is available at ward level. We consider percentage of
mortality (target variable) and measures of deprivation level in the ward accord-
ing to index scores such as the Jarman Underprivileged Area Score, Townsend
score, Carstairs score and the Department of the Environments Index, as well
as the coordinates of the ward centroid.

The datasets SIGMEA MS and SIGMEA MF (MS and MF) [7] are derived
from one multi-objective dataset containing measurements of pollen dispersal
(crossover) rates from two lines of plants (target variables), that is, the transgenic
male-fertile (MF) and the non-transgenic male-sterile (MS) line of oilseed rape.
The predictor variables are the coordinates of the sampling point, the cardinal
direction and distance of the sampling point from the center of the donor field,
the visual angle between the sampling plot and the donor field, and the shortest
distance between the plot and the nearest edge of the donor field.

The FOIXA dataset contains measurements of the contamination rate at sam-
pling points located within a conventional field that comes from the surrounding
genetically modified (GM) fields within a 400 ha large maize production area
in the Foixa region in Spain. This includes the coordinates of sampling points,
the number of GM fields, the size of the surrounding GM fields, the ratio of the
size of the surrounding GM field and the size of conventional field, the average
distance between conventional and GM fields.

The GASD (USA Geographical Analysis Spatial Dataset) [22] contains 3106
observations on USA county votes cast in 1980 presidential election. Specifically,
it contains the number of votes cast in the 1980 presidential election per county
(target attribute), the coordinates, the number of owner-occupied housing units,
the aggregate income and the population in each county over 18 years of age.

The Forest Fires (FF) dataset [6] is public available for research at UCI Ma-
chine Learning Repository2. It collects 512 forest fire observations from the Mon-
tesinho park in Portugal, including the coordinates and the burned area of the
2 http://archive.ics.uci.edu/ml/
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forest (response variable), the Fine Fuel Moisture Code (FFMC), the Duff Mois-
ture Code (DMC), the Drought Code (DC), the Initial Spread Index (ISI), the
temperature, the relative humidity and the wind speed.

4.2 Experimental Setup

Each geo-referenced dataset is mapped into a data network G = (V,E) that
includes a node u ∈ V and associates it with for each observation (x1, ..., xn, y).
Let u and v be two distinct nodes in V , there is an edge from u to v labeled
with w in E (i.e., (u, v, w) ∈ G) iff v is within a bandwidth b. At the same time
b is used in the weighting functions for the measures of network autocorrelation
that use weights. If u and v are associated with observations taken at the same
geographical site, the weighting of observations collected at this site would be
unity. The weighting of other observations will decrease according to a Gaussian
curve as the Euclidean distance between u and v increases. For each data net-
work, experiments are performed in order to show the impact of the different
weighting schemes (weights are defined according to equations (1), (2) and (3)).

In this paper, we consider the distances between objects based on the dis-
tances over the descriptive attributes, the spatial attributes and both of them
together. Moreover, several data networks are constructed from the same dataset
by varying the bandwidth b, i.e., using 1%, 5%, 10%, 20% from the maximum
distance and an automatically estimated bandwidth. The bandwidth b is set
using training data only.

Errors are estimated by 10 fold cross-validation. The predictive performance
of the proposed system NCLUS is compared with that of the CLUS algorithm,
as well as to a modification of CLUS that considers the coordinates as target
variables, along with the actual response variables, for the computation of the
evaluation measure (henceforth CLUS*). The latter introduces the network ar-
rangement into CLUS without modifying the algorithm itself. We also compare
with the Iterative Transductive Learning (ITL) algorithm of Appice et.al. [2]
that deals with network regression tasks and also considers autocorrelation.

To evaluate the effect of different definitions of distances between objects in
the network, we use the non-parametric Wilcoxon two-sample paired signed rank
test [21]. To perform the test, we assume that the experimental results of the two
methods compared are independent pairs {(q1, r1), (q2, r2), . . . , (qn, rn)} of sam-
ple data. We then rank the absolute value of the differences qi−ri. The Wilcoxon
test statistics WT+ and WT− are the sum of the ranks from the positive and
negative differences, respectively. We test the null hypothesis H0: “no difference
in distributions” against the two-sided alternative H1: “there is a difference in
distributions”. Intuitively, when WT+ ' WT− and viceversa, H0 is rejected.
Whether WT+ should be considered “much greater than” WT− depends on
the considered significance level. The basic assumption of the statistical test is
that the two populations have the same continuous distribution. Since, in our
experiments, qi and ri are average MSE, WT+ ' WT− implies that the sec-
ond method (R) is better than the first (Q). In all experiments reported in this
empirical study, the significance level used in the test is set at 0.05.
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Table 1. The effect of different definitions of distances between objects in the network

DatasetDesc.+Spatial vs. Desc. Desc.+Spatial vs. Spatial Desc. vs. Spatial
++ + − −− ++ + − −− ++ + − −−

NWE 3 4 3 0 2 5 5 0 0 6 6 0

MS 0 0 11 0 0 5 7 0 0 10 2 0

MF 0 6 6 0 0 12 0 0 0 6 5 0

FOIXA 0 4 4 4 1 4 4 3 3 4 3 2

GASD 11 1 0 0 0 12 0 0 0 0 12 0

FF 0 0 0 0 0 0 0 0 0 0 0 0

Total. 14 15 24 4 3 38 16 3 3 26 28 2

4.3 Results and Discussion

Table 1 shows the summary of the different definition of the distances between
the objects in the network. Here, we consider three different ways of computing
the distances (distance over the descriptive attributes, the spatial attributes and
both of them together), all based on the computation of the Euclidean distance.
For each of these, we construct the autocorrelation indices (CI, Global Moran’s
I), two ways of combining the variance reduction and autocorrelation (α = 0
and α = 0.5) and three different weighting functions for the neighborhood, given
by equations (1), (2) and (3). This gives a total of 12 options: The Wilcoxon
test is calculated for each of these and the summaries are given in Table 1.
The results are presented in terms of the counts of the better (denoted with
+) and significantly better (denoted with ++) results at significance level 0.05
for each dataset and the average counts over all datasets when calculating the
distance between objects based on the distances over the descriptive attributes,
the spatial attributes and both of them together. Although the results very much
depend on the datasets characteristics (e.g., NWE, MF and GASD benefit from
the inclusion of non-spatial attributes), the distance should be calculated over
all (descriptive attributes and spatial) attributes.

The extension that we propose in this paper, introduces several parameters
that can be changed by the user within the modeling process. This opens several
dimensions through which one can compare the predictive performance of the
proposed method, i.e., one can change the the bandwidth, weighting functions,
the evaluation measure and the level of consideration of the autocorrelation.

Comparing the results obtained at different bandwidths (1%, 5%, 10%, 20%)
enables us to see the influence of the neighborhood similarity on the accuracy of
the results. However, in practice, this parameter is very much dependent from
the specific data network. Therefore, manual selection of the bandwidth does
not lead to a general conclusion for all data networks. Moreover, analysis with
different bandwidths (done outside this paper due to the space limitation) con-
firms that an automatic estimation of the bandwidth as the one explained in
3.3, in most cases, improves the predictive power of the models obtained with a
manual selection of the bandwidth. Therefore, we use the estimated bandwidth
for the evaluation of the obtained results. Table 2 shows the effect of the weight-
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Table 2. Average of the MSE values of NCLUS, CLUS, CLUS* and ITL. NCLUS
is run with different weighting functions, evaluation measures and an automatically
estimated bandwidth. For each dataset, the best results are given in bold.

Dataset est NCLUS CI NCLUS P
b α=0 α=0.5 α=0 α=0.5

(%) Mod. Gauss. Euc. Mod. Gauss. Euc.

NWE 7.67 0.0023 0.0023 0.0023 0.0024 0.0022 0.0024 0.0026 0.0024

MS 4.8 7.1220 6.1312 7.1220 6.8863 6.8863 6.8863 6.2860 7.1380

MF 9.14 2.4718 3.2346 2.4718 2.4718 2.4718 2.4718 2.4981 2.5133

FOIXA 64.62 1.0672 0.9220 1.0672 0.7666 0.8011 0.8011 0.9687 0.7313

GASD 2.5 0.1800 0.1808 0.1800 0.1770 0.1663 0.1780 0.1762 0.1734

FF 100 47.224 47.224 47.224 47.224 47.224 47.224 47.385 47.385

Dataset NCLUS Global Moran CLUS CLUS* ITL
α=0 α=0.5

Mod. Gauss. Euc. Mod. Gauss. Euc.

NWE 0.0024 0.0024 0.0023 0.0023 0.0023 0.0024 0.0025 0.0025 0.0025

MS 7.1844 6.1311 7.3152 6.7851 6.9259 5.0951 5.9114 6.6845 5.8532

MF 2.4718 3.0922 2.4718 2.4718 2.4718 4.2877 2.3532 2.5390 2.4085

FOIXA 0.8231 0.8240 0.7751 0.8445 1.0201 0.7718 0.8920 0.8710

GASD 0.1790 0.1688 0.1719 0.1695 0.1688 0.1688 0.1590 0.1590 0.1316

FF 47.224 47.224 47.224 47.224 47.224 47.224 47.950 47.998 64.731

ing function and its contribution within the splitting criterion. The results are
presented in terms of the average Mean Square Error (MSE) for each evaluation
measure, the best results are given in bold. The analysis of the results reveals
that the best results are obtained by combining the Euclidian weighting function
with the Global Moran spatial statistic and Gaussian weighting function with
the Connectivity Index. Note that for this comparison we set α = 0.

The selection of the user-defined parameter α is a very important step, in-
fluencing the learning process. The simplest solution is to set this parameter
to 0 (consider only the network arrangement) or 1 (consider only the variance
reduction for regression, as in the original CLUS algorithm). Any other solution
will combine the effects, allowing both criterion to influence the split selection.
Table 2 also presents the predictive performance (in terms of average MSE) of
the proposed algorithm, obtained by varying the parameter α in {0, 0.5, 1}.
The best results are obtained for α=0.5 for datasets where the effect of the au-
tocorrelation is not limited to small neighborhoods. Overall, there is a gain in
performance due to the used linear combination.

In Table 2, we can see that Connectivity Index CI and Global Moran I show
the best measures for network autocorrelation. Moreover, we can also compare
NCLUS with the original CLUS and the CLUS* version. The results show that
NCLUS outperforms CLUS, CLUS* and ITL when the effect of autocorrelation
are relatively high (high values of estimated bandwidth).
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5 Conclusions

In this paper, we propose a data mining method that explicitly considers au-
tocorrelation when building regression models from network data. The result-
ing models adapt to local properties of the data, providing, at the same time,
smoothed predictions. The novelty of our approach is that, due to the gener-
ality of PCTs, it can work for different predictive modeling tasks, including
regression and multi-objective regression, as well as some clustering tasks. We
use well known measures of (spatial and relational) autocorrelation, since we
deal with a range of several geographical data networks. The heuristic we use
in the construction of PCTs is a weighted combination of variance reduction
(related to predictive performance) and the autocorrelation of the response vari-
able(s). It can also consider different sizes of neighborhoods (bandwidth) and
different weighting schemes (degrees of smoothing) when calculating the auto-
correlation. We identify suitable combinations of autocorrelation metrics and
weighting schemes and automatically determine the appropriate bandwidth.

We evaluate our approach on six sets of geographical data. Empirical results
on real world problems of network regression show that the proposed extension
of PCTs performs better than both PCTs that capture local regularities but do
not take into account autocorrelation and iterative transductive learner with co-
training that takes into account autocorrelation. Future work will further exploit
the network structure and study additional evaluation measures.
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11. Góra, G., Wojna, A.: RIONA: A classifier combining rule induction and k-NN
method with automated selection of optimal neighbourhood. In: Elomaa, T., Man-
nila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 111–123.
Springer, Heidelberg (2002)

12. Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational
classification. In: Proc. 10th Intl. Conf. on Knowledge Discovery and Data Mining,
pp. 593–598 (2004)

13. Legendre, P.: Spatial autocorrelation: Trouble or new paradigm? Ecology 74(6),
1659–1673 (1993)

14. Macskassy, S., Provost, F.: Classification in networked data: a toolkit and a uni-
variate case study. Machine Learning 8, 935–983 (2007)

15. Macskassy, S.A.: Improving learning in networked data by combining explicit and
mined links. In: Proc. 22th Intl. Conf. on Artificial Intelligence, pp. 590–595 (2007)

16. McPherson, M., Smith-Lovin, L., Cook, J.: Birds of a feather: Homophily in social
networks. Annual Review of Sociology 27, 415–444 (2001)

17. Mehta, M., Agrawal, R., Rissanen, J.: Sliq: A fast scalable classifier for data min-
ing. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS,
vol. 1057, pp. 18–32. Springer, Heidelberg (1996)

18. Michalski, R.S., Stepp, R.: Machine Learning: An Artificial Intelligence Approach.
In: Learning from Observation: Conceptual Clustering, Tioga, pp. 331–363 (2003)

19. Neville, J., Jensen, D.: Relational dependency networks. Journal of Machine Learn-
ing Research 8, 653–692 (2007)

20. Neville, J., Simsek, O., Jensen, D.: Autocorrelation and relational learning: Chal-
lenges and opportunities. In: Wshp. Statistical Relational Learning (2004)

21. Orkin, M., Drogin, R.: Vital Statistics. McGraw Hill, New York (1990)
22. Pace, P., Barry, R.: Quick computation of regression with a spatially autoregressive

dependent variable. Geographical Analysis 29(3), 232–247 (1997)
23. Randic, M.: On characterization of molecular attributes. Journal of American

Chemical Society (1975)
24. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collec-

tive classification in network data. AI Magazine 29(3), 93–106 (2008)
25. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
26. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian

fields and harmonic functions. In: Proc. 20th Intl. Conf. on Machine Learning, pp.
912–919 (2003)



Learning from Label Proportions by
Optimizing Cluster Model Selection

Marco Stolpe and Katharina Morik

Technical University of Dortmund, Artificial Intelligence Group
Baroper Strasse 301, 44227 Dortmund, Germany

{marco.stolpe,katharina.morik}@tu-dortmund.de
http://www-ai.cs.tu-dortmund.de/

Abstract. In a supervised learning scenario, we learn a mapping from
input to output values, based on labeled examples. Can we learn such a
mapping also from groups of unlabeled observations, only knowing, for
each group, the proportion of observations with a particular label? Solu-
tions have real world applications. Here, we consider groups of steel sticks
as samples in quality control. Since the steel sticks cannot be marked in-
dividually, for each group of sticks it is only known how many sticks of
high (low) quality it contains. We want to predict the achieved quality
for each stick before it reaches the final production station and quality
control, in order to save resources. We define the problem of learning
from label proportions and present a solution based on clustering. Our
method empirically shows a better prediction performance than recent
approaches based on probabilistic SVMs, Kernel k-Means or conditional
exponential models.

1 Introduction

Consider a steel factory where charges of steel sticks are processed sequentially
at several production stations. The quality of sticks is assessed at the end of
the process. For each stick though, we are given sensor measurements and other
parameters during its being processed. Based on this information, we want to
predict the quality of individual sticks as early as possible, before they reach the
final production station and quality control. This saves resources, because sticks
that can no longer reach the desired quality can be locked out. The steel sticks
cannot be marked and tracked. Therefore, the available quality information is
not related to single sticks, but charges of sticks. For each charge, we know how
many sticks had a certain type of error (quality). We want to learn a prediction
function from the sensor measurements of the process and the error type counts
of charges. The learned model is used to predict the error type for individual
sticks at intermediate production stations.

We generalize this learning problem. It deviates from that of supervised learn-
ing, where we learn from individually labeled training examples. It is different
from semi-supervised learning [5], where we are given at least some labeled ex-
amples. Since we have some label information, it is not strictly unsupervised
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learning. Multiple instance learning [23] is a special case, because the bags of
examples are either labeled positive or negative, where we have proportions of
labels for each charge.

In this paper, we contribute a clustering approach for the problem which has
the following properties:

– It empirically shows good prediction performance.
– Learning has linear running time in the number of observations.
– Its prediction models are fast to apply.
– It can handle the case of multiple classes.
– It can handle additional labeled observations, if they exist.
– It can weight the relevance of features.
– It is independent of a certain clustering method.

To the best of our knowledge, no other method exists yet which shares all of
these properties.

The paper is structured as follows. Section 2 formally defines the learning
task and accompanying error measures. We analyze best and worst case from a
Bayesian perspective. Section 3 presents a new method for learning from label
proportions, LLP. In Sect. 4, we compare the prediction performance and run-
time of LLP with other existing methods. In Sect. 5, we shortly discuss related
work and conclude.

2 Learning from Label Proportions

In the following, we will first define the task of learning from label proportions.
Then, we introduce accompanying measures for evaluating the performanceof learn-
ers and discuss the problem of model selection. In the last subsection, we explore
best and worse case by analyzing the problem from a Bayesian perspective.

2.1 The Learning Task

The task of learning from label proportions can be defined as follows.

Definition 1 (Learning from label proportions). Let X be an instance
space composed of a set of features X1 × . . . × Xm and Y = {y1, . . . , yl} be a
set of categorical class labels. Let P (X,Y ) be an unknown joint distribution of
observations and their class label. Given is a sample of unlabeled observations
U = {x1, . . . , xn} ⊂ X, drawn i.i.d. from P , partitioned into h disjunct groups
G1, . . . , Gh. Further given are the proportions πij ∈ [0, 1] of label yj in group Gi,
for each group and label. Based on this information, we seek a function (model)
g : X → Y that predicts y ∈ Y for observations x ∈ X drawn i.i.d. from P , such
that the expected error

ErrP = E[L(Y, g(X))] (1)

for a loss function L(Y, g) is minimized. The loss penalizes the deviation between
the known and predicted label value for an individual observation x.
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G1 = {(x1, 1), (x3, 1), (x7, 0)}
G2 = {(x2, 0), (x4, 0), (x5, 1), (x6, 1)}
G3 = {(x8, 0), (x9, 0)}

Labeled examples (unknown)

SampleU(known)

G1 = {x1, x3, x7}
G2 = {x2, x4, x5, x6}
G3 = {x8, x9}

Π =
⎛⎝0.33 0.67

0.50 0.50
1.00 0.00

⎞⎠

Label proportions (known)

y1 y2

η

|G1| = 3
|G2| = 4
|G3| = 2

Y = {0, 1}

n = 9

0.56 0.44
h = 3
l = 2

Fig. 1. Example for a given label proportion matrix Π

The main difference to a supervised learning scenario is that the labels of individ-
ual observations are unknown or hidden, i.e., there is no set of labeled training
instances (xi, yi) ∈ X × Y .

The label proportions πij can be conveniently written as a h× l matrix Π =
(πij), where the values in a row Πi,· = (πi1, . . . , πil) sum up to one. (see Fig. 1).
The proportion of label yj over sample U can be calculated from Π :

η(Π, yj) = 1
n

h∑
i=1
|Gi| · πij (2)

By multiplication of πij with its respective group size |Gi|, one gets the fre-
quency counts μij of observations with label yj ∈ Y in group Gi.

2.2 Training and Test Error

In a supervised learning scenario, a learner can adjust its current hypothesis
based on the average loss on the training set. In contrast, when learning from
label proportions, one can only measure how well the given proportions are
matched. Applying the learned model g(X) to all xi ∈ U , the resulting label
proportions can be calculated, i.e., in each group one counts the number of
observations xi with g(xi) = yj for each label yj ∈ Y and divides the counts by
the size of their respective group. This leads to a new matrix Γg, containing the
model-based label proportions:

Γg = (γgij), γ
g
ij = 1
|Gi|
∑
x∈Gi
I(g(x), yj), I =

{
1 : g(x) = yj
0 : g(x) �= yj (3)

Similarly to defining a loss function for individual observations, it is now
possible to define a loss function for individual matrix entries, for example by
the squared error (πij − γgij)2. The total deviance between Π and Γg can then
be defined as the average squared error over all matrix entries:

ErrMSE(Π,Γg) = 1
hl

h∑
i=1

l∑
j=1

(πij − γgij)2 (4)
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Calculating ErrMSE for a function g(X) on sample U might be seen as an anal-
ogon to the training error in supervised learning. However, the loss in ErrMSE
uses aggregated label information, although by Definition 1, we really need
to minimize the loss over individual observations. The mismatch between the
two measures can lead to problems, because many labelings of U can minimize
ErrMSE . For example, when randomly sampling μij many observations from
Gi and assigning them label yj , the model-based label proportions will always
match exactly the given proportions. Hence, labelings that minimize ErrMSE
don’t necessarily minimize the average loss over individual observations, already
on sample U . Therefore, obtaining a good estimate of ErrP is difficult. In su-
pervised learning, one may select the model which has the lowest average loss
over one or several test sets. But without labels for individual observations in
the test set, only knowing its label proportions, a low ErrMSE on the test set is
no reliable indicator for a good model. As for the training error, many different
labelings can lead to the same label proportions, but only a few labelings will
minimize ErrP . However, if given a labeled test set, it is possible to evaluate
different models as in the supervised case.

For the experiments in Sect. 4, the error between Π and Γg wasn’t measured
by ErrMSE , but by ErrΠ , a combination of two different error measures:

ErrΠ(Γg) =
√

Errweight(Π,Γg) · Errprior(Π,Γg) with (5)

Errweight(Π,Γg) = 1
hl

h∑
i=1

l∑
j=1
η(Π, yj)

|Gi|
n

(πij − γgij)2 and (6)

Errprior(Π,Γg) = 1
l

l∑
j=1

(η(Π, yj)− η(Γg, yj))2 (7)

Errweight weights the squared error of individual matrix entries by their rel-
ative group and class size. Errprior catches situations where two hypotheses g1
and g2 are indistinguishable from each other, because the total error sum over
all matrix entries is the same. In such cases, they may be distinguished by their
column differences, as calculated by η.

If in addition to the label proportions, the labels c1, . . . , ct of individual obser-
vations T = {a1, . . . , at} ⊆ U are given, error criterion (5) can be easily extended
by including the average loss ErrT over these training examples:

ErrΠ =
√

Errweight · Errprior · ErrT with ErrT = 1
t

t∑
i=1
L(ci, g(ai)) (8)

2.3 Best and Worst Case from a Bayesian Perspective

From a Bayesian perspective, a good model can be obtained by estimating
the conditional class density P (Y |X). Applying Bayes theorem, one recognizes
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that P (Y |X) may also be estimated from other unknown densities—the class-
conditional density P (X |Y ) and the class prior density P (Y ):

P (Y |X) = P (X |Y )P (Y )
P (X)

(9)

P (X) doesn’t need to be estimated, since it can be calculated from P (X |Y )
and P (Y ). When learning from label proportions, the class prior P (yj) for label
yj can be estimated as η(Π, yj), the proportion of yj over sample U . However,
finding a good estimate for P (X |Y ) depends on the distribution of observations
over the given groups and the form of matrix Π .

In the best case, each group Gi only contains observations from a single class
and at least l groups contain observations from different classes. If πij = 1
appears in a row, all observations in the group must have the same label, which
can be assigned to all group members. We then are in a familiar supervised
learning scenario and can choose from many well-known classifiers for training.

However, without further knowledge about the distribution of observations
over the groups, the best we can assume is a uniform distribution. Here, in the
worst case, all πij are equal. Then, if we interpret πij as an estimate for the
class prior P (yj |Gi) of group Gi, it equals the estimated class prior P (yj). Since
each observation has the same probability of being sampled into group Gi, and
we assumed all priors to be equal, we can only guess the correct label with
probability 1/l. In general, if the number of groups remains constant, P (yj|Gi)
will approximate P (yj) for large sample sizes n. This can be seen if we imagine
each group Gi to be an independent data set with observations sampled from
the same distribution P (X,Y ).

For cases where all P (yj) are different, a better performance can be achieved
than in the worst case. One can at least predict the majority class. The question
is if one can get any better. Except for the best case, the estimation of P (X |Y )
is difficult, because observations with the same label are spread over all groups.
The LLP algorithm, introduced in the next section, is based on the idea that
observations sharing the same label might also have similar feature values.

3 Learning from Label Proportions by Clustering

The k-Nearest-Neighbour classifier predicts the majority label of k known ob-
servations closest to a given search point. It is presupposed that observations
lying close together in local regions of the input space also share the same class
label. If we could somehow identify these local groups of observations, which is
the problem of cluster analysis, the only problem left was to assign the correct
labels to the clusters.

Definition 2 (Cluster analysis). Given a sample U of n unlabeled observa-
tions x1, . . . , xn and a measure d : X × X → R+ for the dissimilarity of ob-
servations, the aim of cluster analysis is to determine a set C = {C1, . . . , Ck}
(clustering) of subsets Ci ⊂ U (clusters), such that observations within the same
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cluster are more similar to each other than those in different clusters, as mea-
sured by a quality function q : 22X → R+.

Many algorithms have been developed for solving this task. We focus on those
returning disjunct clusters, like the well-known k-Means algorithm [16], which
was also used for the experiments in Sect. 4. Given a clustering, it must be found
out which cluster best represents which class. The problem is solved by assigning
each cluster a label such that ErrΠ (5) is minimized (see Sect. 3.3).

In how far similar observations share the same class label not only depends
on P (X,Y ), but also on the chosen similarity measure. According to Hastie
et al. [13], the relevance of features can have an enormous influence on the cluster-
ing results. Therefore, the similarity measure should respect weights wf ∈ [0, 1]
for each feature, as given by a vector w = (w1, . . . , wm). In unsupervised learn-
ing, such weights are usually specified by a domain expert. Here, the relevance
weights can be approximated automatically (see Sect. 3.2), based on criterion
ErrΠ . In the next section, the accompanying optimization problem is stated.
Then, the LLP algorithm for solving it is described.

3.1 Optimization Problem

Let the vector λC = (λ1, . . . , λk) with λj ∈ Y represent a labeling for a clustering
C = {C1, . . . , Ck}. Let mλC : U → Y be a mapping that returns for a given
observation x ∈ Ci the label λi. Given a clustering C, we are searching for a
labeling λC of the clusters that minimizes the error (5) between the model-based
label proportions ΓmλC and the known label proportions:

min
λC

ErrΠ(ΓmλC ) (10)

Let qw be a function which is able to assess the quality of a clustering based
on a similarity measure that respects feature weights. We are searching for a
clustering which maximizes qw and whose labeling most minimizes ErrΠ , for all
possible weight vectors w. This optimization problem can be stated as follows:

min
w

ErrΠ(Γmλ∗C
), λ∗C = argmin

λC∗
ErrΠ(ΓmλC∗

), C∗ = argmax
C
qw(C) (11)

3.2 The LLP Algorithm

The LLP algorithm solves problem (11) by an evolutionary strategy. For each
weight vector w, the sub-optimization problem of maximizing qw is solved by an
inner clustering algorithm, where the particular qw depends on the algorithm.
The only prerequisite for the clusterer is that it returns disjunct clusters and
respects different feature weights. The sub-optimization problem (10) is inde-
pendent from the clusterer and currently can be solved by two different labeling
heuristics introduced in Sect. 3.3. Using an evolutionary strategy as a wrapper
has the advantage that it is not necessary to integrate criterion ErrΠ into the
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Algorithm 1. The LLP algorithm
Input: Label proportion matrix Π , sample U , groups G = {G1, . . . , Gh},

labels Y = {y1, . . . , yl}, clustering algorithm clusterer, labeling algorithm labeler,
parameters maxgen, psize, mutvar, crossprob, tournsize

Output: Clustering C, labeling λC, weight vector w
best_fit := −∞; generation := 0
Randomly initialize a population P of psize normalized weight vectors
while generation < maxgen do

for w ∈ P do
C := clusterer( U , w )
(λC, ErrΠ) := labeler( C, G, Π , Y )
if best_fit < −ErrΠ then
best_fit := −ErrΠ ; best_C := C; best_λC := λC ; best_w := w

end if
end for
generation := generation+ 1
if generation < maxgen then
Pcopy := P
Gaussian mutation of all individual weights in Pcopy with variance mutvar
Pchildren := Uniform crossover on P ∪ Pcopy with probability crossprob
P := Tournament selection with size tournsize on P ∪ Pcopy ∪ Pchildren

end if
end while
return best_C, best_λC, best_w

optimization problem of the inner clustering algorithm. For example, we already
have run LLP successfully with Kernel k-Means [10], DBSCAN [12] and PRO-
CLUS [1], without modification. Moreover, LLP can be used with different error
measures, for instance with criterion (8) that can respect individually labeled
examples.

LLP (see Alg. 1) takes a clustering algorithm clusterer and a labeling al-
gorithm labeler as parameters, in addition to Π , U , G1, . . . , Gh and Y , which
are related to the label proportions learning task. LLP then approximates the
optimal weight vector w and returns w, the related clustering C and labels λC
for the clusters.

The evolutionary strategy starts with a random population P of normalized
weight vectors, wi ∈ [0, 1]. For each individual in P , the clustering algorithm
clusterer is called. The clusters are labeled according to the given labeling al-
gorithm labeler and the fitness is evaluated by criterion ErrΠ . If the fitness is
higher than the best fitness seen so far, the newly found clustering, labeling
and weight vector are memorized as the new best ones. In each generation, the
weight values in a copy of P are mutated by a Gaussian distribution and, with
a certain probability, exchanged with P by a crossover operator. Then, the in-
dividuals take part in a tournament and only the best ones are kept in the next
generation. This process is repeated until the maximum number of generations
as specified by the user is reached.
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Algorithm 2. The greedy labeling algorithm
Input: Clustering C = {C1, . . . , Ck}, groups G = {G1, . . . , Gh},

label proportion matrix Π , labels Y = {y1, . . . , yl}
Output: Labeling λC = (λ1, . . . , λk)

Initialize components of λC with y1;
for i := 1 to k do

lowest_error := 0; best_label := y1;
for j := 1 to l do
λC[i] := yj ;
Γm := count_labels( G, C, λC );
current_error := ErrΠ(Γm);
if current_error < lowest_error then

lowest_error := current_error;
best_label := yj ;

end if
end for
λC[i] := best_label;

end for
return λC

3.3 Labeling Heuristics

The following two labeling algorithms solve the sub-optimization problem (10)
heuristically.

Greedy Labeling. As shown in Alg.2, in the initial step, all clusters get label y1.
Then, consecutively for each cluster, we calculate Γm for all labels and memorize
the label that most reduces ErrΠ(Γm). The strategy has runtime k · l.

Exhaustive Labeling. Since k can be restricted to a small number and l = 2
for a binary classification problem, trying lk possible labelings for a clustering
C is no problem. In our experiments (see section 4), good solutions often were
found for k ≤ 6. For each labeling, we need to calculate ErrΠ , which takes
linear time in the number of observations n. The calculations only involve basic
operations like count, addition, multiplication and division (see (5)).

3.4 Run-Time Analysis

The user-specified parametersmaxgen, psize and tournsize are constants. They
do not depend on the number of observations n and limit the number of iterations
to be constant. As discussed in Sect. 3.3, the asymptotic run-time of the heuristic
labeling strategies is linear in n, as k and l are constants and the evaluation of
(5) takes linear time. The asymptotic run-time of LLP will otherwise depend on
the used cluster algorithm. For example, if we allow for approximate solutions
and limit the number of iteration steps, k-Means has linear run-time. Hence,
LLP has linear run-time.
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Table 1. UCI data sets used for the experiments

Dataset n m Dataset n m

credita 690 42 sonar 208 60
vote 435 16 diabetes 768 8
colic 368 60 breast cancer 286 38
ionosphere 351 34 heartc 303 22

3.5 Generating a Prediction Model

The LLP algorithm returns labeled clusters of sample U . It is then possible to
assign labels to individual observations xi ∈ U withmλC . To predict the labels of
new observations, the clustering must be transformed into a prediction model.
The way to do this depends on the used clustering algorithm. In the case of
k-Means, one can simply assign new observations to their closest cluster mean
and predict the corresponding cluster label. A big advantage of the cluster mean
model is that it is usually very small, as k � n, and therefore fast to apply.
Another option for getting a prediction model is to train a classifier like Naïve
Bayes [14] or a Support Vector Machine [22] in a subsequent step, based on the
now labeled observations. However, this increases the training time.

4 Experiments

We have compared the LLP algorithm to three state-of-the-art methods for
learning from label proportions: The Mean Map method [19], Inverse Calibra-
tion (Invcal) [21] and AOC Kernel k-Means (AOC-KK) [6]. For a further dis-
cussion of these methods, see Sect. 5. LLP has been implemented in Java. As
inner clustering algorithm, we have used Fast k-Means [11], which is a variant
of k-Means utilizing the triangle inequality for faster distance calculations. As
distance measure, we have used the weighted Euclidean distance. We have im-
plemented AOC-KK using a combination of Java and Matlab. For Mean Map
and Invcal, we used R scripts provided by the author of Invcal [21].

4.1 Prediction Performance Experiments

The prediction performance (accuracy) of LLP, AOC-KK, Invcal and Mean Map
has been assessed on the eight UCI [3] data sets shown in Table 1. We have
mapped each possible value of a nominal feature to a binary numerical feature
with values 0 or 1. Numerical features were normalized to the [0, 1] interval.
Table 1 shows the number of features m after this preprocessing step.

In each single experiment, the accuracy has been assessed by a 10-fold cross-
validation. For learning from label proportions, we have partitioned the training
set of a particular fold into groups of size σ, by uniform sampling of observations.
We tried several group sizes σ: 2, 4, 8, 16, 32, 64 and 128 (with the last group
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smaller than σ, if necessary). The label proportions were calculated and the
individual labels removed. In each fold, the accuracy of the learned prediction
model has been calculated on a labeled test set.

The kernel methods Mean Map, Invcal and AOC-KK have been tested with
the linear kernel, polynomial kernels of degree 2 and 3 and radial basis kernels
(γ = 0.01, 0.1 and 1.0). LLP has been tested with both labeling heuristics (see
Sect. 3.3), for cluster sizes k ∈ [2, 12]. As parameters for the evolutionary strat-
egy, we used maxgen = 10, psize = 25, mutvar = 1.0, crossprob = 0.3 and
tournsize = 0.25. By running LLP with k-Means, we get a prediction model
consisting of cluster means. The same is true for AOC-KK. However, the clus-
ter methods also assign labels to each observation in sample U , allowing for
a subsequent training of other classifiers. Based on the clustering results, we
have trained models for Naïve Bayes [14], kNN [2], Decision Trees [20], Random
Forests [4], and the SVM [22] with linear and radial basis kernel. The model
parameters have been optimized by a grid or evolutionary search.

The combination of all datasets, group sizes, classifiers, their variants and
parameters results in a total of 13.216 experiments: 672 for Mean Map and
Invcal, 2.688 for AOC-KK and 9.856 for LLP. For group sizes 16, 32, 64 and
128 on the datasets colic and sonar, and for group size 128 on credita, we
conducted additional experiments with LLP for maxgen = 5 and psize = 100.
In some cases, we got a better prediction accuracy. All experiments took about
three weeks. They were run in parallel on up to six machines with an AMD
Dual-Core or Quad-Core Opteron 2220 processor and a maximum of 4 GB main
memory.

4.2 Prediction Performance Results

Figure 2 contains plots of the highest achieved accuracies for all data sets and
group sizes, based on the best performing models of LLP, AOC-KK, Invcal and
MeanMap, over all conducted experiments. LLP shows a higher accuracy than
Invcal for many group sizes on the data sets credita, vote, colic, sonar and
breast cancer. On credita, vote, ionosphere, sonar and diabetes, the
variance of accuracy between group sizes is smaller for LLP in comparison to the
other methods. Mean Map performs worse than LLP and Invcal in many cases.
The performance of AOC-KK varies, depending on the data set. It shows good
performance on breast cancer and heartc, but not on the others. Except
for the breast cancer and vote data set and a few other accuracy values, the
overall accuracy of all methods decreases with a larger group size.

4.3 Statistical Significance

For the comparison of multiple classifiers over multiple data sets, Demsar [9]
proposes the Friedman test, which is a non-parametric equivalent of ANOVA.
We use the adjusted version, with a test statistic distributed according to the
F-distribution (see [9]). The test ranks the classifiers for each data set separately.
Under the null-hypothesis, the average ranks of the classifiers should be equal. In
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Fig. 2. Highest accuracies for all data sets and group sizes, over all 13.216 runs of LLP,
AOC-KK, Invcal and MeanMap (plus the additional runs of LLP with maxgen = 5
and psize = 100). Some values for Mean Map and group size 128 are missing in the
plots, due to an error in the R script.
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Table 2. Average ranks of classifiers by group size, and their difference to LLP’s rank,
based on the best models for each data set and group size. Positive difference values
indicate a better performance of LLP. Highest ranks and significant differences (higher
than CD) at the 10%-level are marked in bold.

σ 2 4 8 16 32 64 128
Average Ranks

LLP 2.500 1.875 1.500 1.875 1.625 1.375 1.375
AOC-KK 2.000 2.750 3.000 2.875 2.625 2.375 2.000
Invcal 2.000 1.875 2.375 2.125 2.125 2.275 2.625
Mean Map 3.500 3.500 3.125 3.125 3.625 3.875 -

Differences, CD<128=1.4317, CD128=0.98
AOC-KK -0.500 0.875 1.500 1.000 1.000 1.000 0.625
Invcal -0.500 0.000 0.875 0.250 0.500 1.000 1.250
Mean Map 1.000 1.625 1.625 1.250 2.000 2.500 -

case of a critical difference, the null-hypothesis can be rejected. The test yielded
significant differences for all group sizes. One can then proceed with a post-hoc
test. We have decided for the two-tailed Bonferroni-Dunn test (again, see [9]),
which is for comparing a single classifier (here, LLP) to all others.

Table 2 shows the average ranks of the compared classifiers and their dif-
ference to LLP’s rank. Each rank was calculated based on the best performing
models (including the standard classifiers), over all conducted experiments. The
table also shows the critical difference (CD) values for the Bonferroni-Dunn test.
The CD for σ = 128 is different, because Mean Map was not included in the
comparison, due to missing values. LLP has the highest rank in six cases, for
σ > 2. At the 10%-level, LLP is significantly better than AOC-KK for σ = 8,
better than Invcal for σ = 128 and better than Mean Map for σ = 4, 8, 32 and
64. In all other cases, LLP performs equivalently.

The ranks in Table 3 are based on different models than those in Table 2.
For LLP and AOC-KK, we have only included the best performing cluster mean
models. We have compared them to the best performing models of Invcal and
Mean Map, i.e. to different kernels. The cluster mean models perform signifi-
cantly better than Mean Map for σ = 64 and better than Invcal for σ = 128. In
all other cases, they show an equivalent prediction performance, but are faster
to train and apply, as discussed in Sects. 3.4 and 4.4. In the same way, we have
separately compared the exhaustive and greedy labeling strategies to the best
performing models of all other classifiers. The exhaustive strategy performed
better, in the sense that it showed more significant differences to the other
methods.

Concerning the performance and significance of the standard classifiers, which
were trained based on the LLP and AOC-KK cluster models, Decision Trees
performed significantly better than Invcal for σ = 128, better than Mean Map
for σ = 64 and better than AOC-KK for σ = 4 and 32. Naive Bayes, k-NN
and Random Forests had a performance similar to the cluster mean models.
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Table 3. Average ranks of classifiers by group size, and their difference to LLP’s rank.
Ranks are based on the best performing models of Invcal and Mean Map and the
best performing cluster mean models of LLP and AOC-KK. Positive difference values
indicate a better performance of LLP. Highest ranks and significant differences (higher
than CD) at the 10%-level are marked in bold.

σ 2 4 8 16 32 64 128
Average Ranks

LLP 2.375 2.375 2.000 2.250 2.250 1.750 1.375
AOC-KK 3.750 3.250 3.125 2.875 2.875 2.375 2.125
Invcal 2.125 1.625 2.125 1.750 1.625 2.000 2.500
Mean Map 2.750 2.750 2.750 3.125 3.250 3.875 -

Differences, CD<128=1.4317, CD128=0.98
AOC-KK 1.375 0.875 1.125 0.625 0.625 0.625 0.750
Invcal -1.000 -0.750 0.125 -0.500 -0.625 0.250 1.125
Mean Map 0.125 0.375 0.750 0.875 1.000 2.125 -
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Fig. 3. Average run-time and accuracy of 10-fold cross-validations with LLP, Invcal,
Mean Map and AOC-KK on several samples of random data. The data was generated
for a two Gaussian mixture classification problem (n = 10000, m = 10, feature values
normalized to [0, 1]).

The linear SVM and the SVM with radial basis kernels showed no significant
differences to Invcal, MeanMap or AOC-KK.

4.4 Run-Time Comparison

For an empirical run-time comparison of LLP, Invcal, Mean Map and AOC-
KK, we have generated random data for a two Gaussian mixture classification
problem (10.000 observations and 10 features, with values normalized to [0, 1]).
Then, the average run-time for training and the accuracy of the classifiers over
10 folds of a cross-validation has been assessed for different samples of the data,
with varying sizes (see Fig. 3). The group size for learning from label proportions
has been σ = 16 for all runs. A radial basis kernel with γ = 0.1 has been used for
the kernel methods. LLP has been run with the exhaustive labeling strategy and
Fast k-Means (k = 6), with parameters maxgen = 3, psize = 25, mutvar = 1.0,
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crossprob = 0.3 and tournsize = 0.25 for the evolutionary optimization. Both
LLP and AOC-KK used the cluster mean model for prediction.

LLP shows a high prediction performance for all sample sizes. Moreover, LLP
has the lowest run-time. However, since the methods are implemented in different
programming languages (Java, Matlab, R), one should not compare the absolute
times, but the slope of the curves. The curve of LLP’s run-time is a straight line,
while the other curves indicate a polynomial run-time.

5 Related Work

The problem of learning from label proportions has gained attention in the ma-
chine learning community, only recently. Musicant et al. [18] formally defined the
problem of learning from aggregate values for regression and classification tasks.
They modified well-known methods like k-NN [2], backpropagation neural net-
works [17] and the linear SVM [22] to respect the given label proportions. Their
experimental results focus on regression tasks, while we are mainly interested in
classification.

Quadrianto et al. [19] have proposed the Mean Map method which estimates
the conditional class probability P (Y |X, θ) by conditional exponential models,
using a feature map Φ(X,Y ) and a normalization function g:

P (Y |X, θ) = exp( 〈Φ(X,Y ), θ〉 − g(θ|X) ) (12)

The parameter θ is estimated by solving a convex maximization problem for
the conditional log-likelihood logP (Y |X, θ). This depends on the unknown la-
bels only in terms of the empirical mean μXY , which they approximate by the
observation means for each group and its given label proportions. They compare
Mean Map to kernel density estimation, discriminative sorting, and MCMC [15].
Mean Map outperformed the related techniques. For this reason, we have com-
pared LLP only to Mean Map. Although LLP and Mean Map can both handle
multi class problems, for easier comparison with Inverse Calibration, we have
restricted our experiments to binary classification problems. During training,
Mean Map needs to solve a general convex optimization problem. In contrast,
LLP’s worst-case training time is linear in n for the cluster mean models. As was
shown in Sect. 4, these models achieved equivalent accuracy. Moreover, over all
trained models, LLP’s accuracy has been significantly higher than Mean Map’s
for several group sizes.

Rueping [21] proposes the inverse calibration method. The author converts
the regression SVM (SVR) into a probabilistic classifier by applying a scaling
function σ to the outputs y = f(x), such that σ(y) is a good estimate for
p = P (y = 1|x). Since no individual estimates p for each observation x are
given, it is only required that f predicts y = σ−1(p) well on average. This is
equivalent to approximating the given label proportions well. The constraints are
integrated as auxiliary conditions into the standard SVR optimization problem.
LLP outperformed the inverse calibration for σ = 128, also with the cluster mean
models. It achieved equivalent results on smaller group sizes, but in shorter time.
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For a semi-supervised learning case, Dara et al. [7] cluster the data first with
SOMs and then label the clusters. However, they have labeled observations,
which we do not. Demiriz et al. [8] adapt the k-Means optimization problem
to respect labeled data. Again, this is a semi-supervised setting, with labeled
observations. The idea is similar though to the AOC Kernel k-Means algorithm
by Chen et al. [6], who integrate the loss function (4) into the optimization
problem of Kernel k-Means clustering [10]. In comparison to AOC-KK, LLP has
achieved significantly better accuracy for σ = 8 over all conducted experiments.
For σ > 2, LLP had a higher average rank than AOC-KK. LLP needs only
linear training time, while in contrast, AOC-KK solves a quadratic optimization
problem in each iteration step of Kernel k-Means.

6 Conclusions and Future Work

We have presented a new approach for learning from label proportions, the
LLP algorithm. With k-Means as the clustering algorithm, LLP has only linear
worst-case training time and its cluster mean models are small and fast to apply.
In comparison to state-of-the-art methods, which need more training time, the
cluster mean models have shown significantly better or equivalent prediction ac-
curacy. By training other classifiers on the labeled clusters, the highest achieved
accuracy of LLP was significantly different in even more cases, and LLP had the
highest average rank for all σ > 2. In the future, we want to evaluate LLP’s
performance on data from the steel factory, as mentioned in the introduction.
Moreover, it would be interesting to assess LLP’s prediction performance with
multi class problems and additional labeled observations. Another direction is
to use different clustering algorithms with LLP and compare their performance.
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Abstract. We propose new approaches to exploit compression algorithms for
clustering numerical data. Our first contribution is to design a measure that can
score the quality of a given clustering result under the light of a fixed encoding
scheme. We call this measure the Minimum Code Length (MCL). Our second con-
tribution is to propose a general strategy to translate any encoding method into
a cluster algorithm, which we call COOL (COding-Oriented cLustering). COOL
has a low computational cost since it scales linearly with the data set size. The
clustering results of COOL is also shown to minimize MCL. To illustrate further
this approach, we consider the Gray Code as the encoding scheme to present G-
COOL. G-COOL can find clusters of arbitrary shapes and remove noise. More-
over, it is robust to change in the input parameters; it requires only two lower
bounds for the number of clusters and the size of each cluster, whereas most al-
gorithms for finding arbitrarily shaped clusters work well only if all parameters
are tuned appropriately. G-COOL is theoretically shown to achieve internal co-
hesion and external isolation and is experimentally shown to work well for both
synthetic and real data sets.

Keywords: Clustering, Compression, Discretization, Gray code.

1 Introduction

Clustering is a fundamental task in data analysis, and many clustering algorithms have
been developed in the fields of machine learning and knowledge discovery [1,9,14].
Several clustering algorithms have been recently proposed that focus on the compres-
sion of data points.

Kontkanen et al. [19] proposed the minimum description length (MDL) approach to
clustering taking advantage of an information theoretic framework. However, data en-
coding has to be optimized to find the best clusters; that is, all encoding schemes are
considered within the clustering process under the MDL criterion. As a result, their ap-
proach takes quadratic time with respect to the data set size and can only be handled
in practice using a stochastic algorithm [18]. Cilibrasi and Vitányi [6] proposed a clus-
tering algorithm based on the Kolmogorov complexity. Since their method measures the
distance between two data points on the basis of compression of finite sequences (i.e.,

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 365–380, 2011.
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discrete variables), it is difficult to apply it to multivariate data of continuous variables.
Moreover, although there are other approaches [16,20] that focus on compression of
data, they perform simple agglomerative hierarchical clustering, so it takes quadratic
time with respect to the data set size. These approaches are therefore not suitable for
clustering massive data sets.

Here we propose a new measure, called the minimum code length (MCL), to score
the quality of a given clustering result under a fixed encoding scheme. This use of fixed
encoding enables the performance of fast (i.e., linear complexity with respect to the
data set size) and exact clustering since we do not need to optimize data encoding. We
present a clustering algorithm, called COOL (COding-Oriented cLustering), that always
finds the best clusters; i.e., the globally optimal clusters which minimizes MCL, and re-
quires only the lower bounds for the number and size of the clusters. The discretization
of continuous variables with the fixed encoding scheme coincides with the clustering
process itself — a hierarchy of clusters is introduced automatically by increasing the
accuracy of discretization.

Mathematically, an encoding, or embedding, is a mapping from real numbers to in-
finite sequences over some alphabet [29], and discretization is realized by truncation of
infinite sequences. For example, in the binary embedding γB, every real number in [0, 1]
is translated into an infinite sequence composed of 0 and 1; e.g., γB(0) = 000 . . . ,
γB(0.2) = 001 . . . , and γB(0.4) = 011 . . . , where the first bit is 0 if the value is
in the interval [0, 0.5] and 1 if in (0.5, 1]. If these sequences are truncated at the first
bit, all of them become 0, and hence they are considered as in the same cluster since
they cannot be distinguished. If they are then truncated at the second bit, both 0 and 0.2
become 00, and 0.4 becomes 01. Thus, two clusters are generated: C1 = {0, 0.2} and
C2 = {0.4}. This means that representatives of C1 and C2 are 00 and 01, respectively.
Finally, if they are truncated at the third bit, 0 and 0.2 are separated. The hierarchy is
therefore constructed as {{0, 0.2, 0.4}}, {{0, 0.2}, {0.4}}, and {{0}, {0.2}, {0.4}}.

The complexity of making clusters can be measured by the length of the cluster
representatives. In the above example, 2 + 2 = 4 for clusters {0, 0.2} and {0.4} (00
and 01), and 3 + 3 + 2 = 8 for {0}, {0.2}, and {0.4} (000, 001, and 01). We call
these values the MCL since we cannot distinguish a pair of data points from different
clusters if their truncated codes are shorter than the MCL.

Since COOL does not optimize an embedding scheme within the clustering process,
the clustering result strongly depends on the embedding used. This means that we have
to carefully choose an appropriate embedding for effective clustering. In this paper, we
consider the Gray code as an embedding scheme for COOL — resulting in an algorithm
we call G-COOL. Gray code was originally developed for binary encoding of natural
numbers and has become especially important in applications requiring conversion be-
tween analog and digital information [17]. From the geometrical point of view, Gray
code embedding is the partitioning of each interval into overlapping smaller intervals.
This enables clusters with arbitrary shapes to be found, which cannot be done with bi-
nary embedding. There is theoretical support for clustering by G-COOL as shown in
Lemma 2 and Theorem 1. Figure 1 illustrates examples of computing the MCL with
binary and Gray code embedding.
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Fig. 1. Examples of computing MCL with binary (left) and Gray code (right) embedding. These
one-dimensional data sets are in [0, 1] and partitioned into three clusters, ©, ♦, and �. Level
means the length of each prefix. With binary embedding, cluster � is separated at level 1, and
© and ♦ are separated at level 2. They are encoded by 1, 00, and 01, respectively, so the MCL
is 1 + 2 + 2 = 5. With Gray code embedding, the intervals overlap, and adjacent clusters are
merged at each level. As a result,� is separated at level 2, and© and ♦ are separated at level 3.
Their representatives are {11, 10}, {000,001}, and {011,010}, respectively, so the MCL is
4 + 6 + 6 = 16.

The motivation for using Gray code comes from Computable Analysis [31], a well-
established mathematical framework for addressing analytical and computational as-
pects of real numbers in a fully computational manner through representation of real
numbers as infinite sequences. Computability for real numbers depends on the embed-
ding method used, and computation makes sense only if the method meets a key math-
ematical property: “admissibility” (see [31] for its mathematical definition and prop-
erties). It is thus natural that the clustering results depends on the embedding method.
Gray code has been shown to be admissible [29] whereas binary embedding is not, and
this property is a key for embedding that can detect arbitrarily shaped clusters.

This paper is organized as follows: Section 2 gives notation and Section 3 intro-
duces the MCL. Section 4 gives a formal definition of clustering based on the MCL
and explains the integration of COOL with the computation of the MCL. In Section 5,
we introduce Gray code embedding and analyze G-COOL theoretically. Section 6 de-
scribes the experiments, presents the results, and discusses them. Section 7 summarized
the key points with reviewing related work.

2 Notation

In the following, Rd denotes the d-dimensional Euclidean space. A data point x is a
vector in Rd, and a dataset X is a finite set of data points. For a pair of sets X and Y ,
X \ Y means the relative complement of Y inX .

Clustering is the partition of a datasetX intoK subsetsC1, . . . , CK , called clusters,
where Ci �= ∅, Ci ∩ Cj = ∅ with i �= j, and

⋃
i∈{1,...,K} Ci = X . Here we say that a

set C = {C1, . . . , CK} holding the above properties is a partition of X and denote the



368 M. Sugiyama and A. Yamamoto

set of all possible partitions by C(X); i.e., C(X) = {C | C is a partition of X}. For a
cluster C, #C denotes the number of data points in C.

The set of finite and infinite sequences over an alphabet Σ is denoted by Σ∗ and
Σω, respectively. The length |w| of a finite or an infinite sequence w is the number of
positions for symbols other than ⊥ (the undefinedness character) in w. For example, if
w = 11⊥100⊥⊥⊥ . . . , |w| = 5. For a set of sequences W , the size of W is defined
by |W | :=

∑
w∈W |w|.

An embedding of Rd is an injective function γ from Rd to Σω. For a pair of infinite
sequences p, q, we write p � q if p(i) = q(i) for all i with p(i) �= ⊥, where p(i)
denotes the ith position (including 0) of p. This means that q is more specific than p
since ⊥ denotes undefinedness. Moreover, if w⊥ω � p for w ∈ Σ∗, we write w � p
(w is a prefix of p). We define ↑w := {p ∈ range(γ) | w � p} for w ∈ Σ∗, and
↑W := {p ∈ range(γ) | w � p for some w ∈W} forW ⊆ Σ∗.

3 Minimum Code Length

The minimum code length, or MCL, is used to measure partitions under a fixed embed-
ding γ. We define, for p ∈ range(γ) and P ⊂ range(γ),

Φ(p |P ) :=

{
w ∈ Σ∗ p ∈ ↑w, and P ∩ ↑v = ∅

for all v with |v| = |w| and p ∈ ↑v

}
.

Every element in Φ(p |P ) is a prefix of p that discriminates p from P . Trivially, Φ(p |
P ) = ∅ if p ∈ P .

The MCL is introduced here in accordance with the above preparations.

Definition 1 (MCL). Given an embedding γ, for a partition C = {C1, . . . , CK} of a
datasetX , we define

MCL(C) :=
∑

i∈{1,...,K}
Li(C),

where

Li(C) := min

⎧⎪⎨⎪⎩ |W |
γ(Ci) ⊆ ↑W and

W ⊆
⋃

x∈Ci

Φ (γ(x) | γ(X \ Ci))

⎫⎪⎬⎪⎭ .
Intuitively, this gives the code length of the maximumly compressed representatives of
a given partition through discretization using fixed embedding γ since the following
property holds: For a partition C of X , if we discretize each data point x ∈ X into a
finite sequence c(x) with γ (i.e., c(x) � γ(x)) such that

∣∣⋃
x∈X c(x)

∣∣ < MCL(C),
then there must exist a pair of data points x, y ∈ X satisfying ↑c(x) ∩ ↑c(y) �= ∅ and
x ∈ Ci, y ∈ Cj with i �= j. Therefore, we cannot discriminate x from y and thus cannot
find the partition C from compressed codes c(X).
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Example 1. Suppose we use binary embedding γB. Assume a one-dimensional dataset
X = {0.1, 0.2, 0.8, 0.9} and partitions C1 = {{0.1, 0.2}, {0, 8, 0.9}}and C2 = {{0.1},
{0.2, 0.8}, {0.9}}. Then, MCL(C1) = L1(C1)+L2(C1) = 1+1 = 2 since γB([0, 0.5])
= ↑0 and γB((0.5, 1]) = ↑1, and MCL(C2) = L1(C2) + L2(C2) + L3(C2) = 3 +
(3 + 3) + 3 = 12 because we have γB([0, 0.125]) = ↑000, γB((0.125, 0.25]) = ↑001,
γB((0.75, 0.875]) = ↑110, and γB((0.875, 1]) = ↑111. Note that γB([0, 0.25]) = ↑00,
hence 0.1 and 0.2 cannot be discriminated using code00, and that γB((0.75, 1]) = ↑11,
hence 0.8 and 0.9 cannot be discriminated using 11.

The MCL is calculated forO(nd) time complexity by using a radix sort, where n is the
size of X (i.e., n = #X), and d is the dimension of X . This is why if the discretized
dataset {p(0)p(1) . . . p(k − 1) | p ∈ γ(X)} at level k is sorted in advance, each data
point simply needs to be compared with the subsequent one for each dimension, and
the MCL is obtained by checking from k = 1, 2, 3, . . . .

4 Minimizing MCL and Clustering

We formulate clustering using the MCL as a criterion and describe clustering algorithm
COOL, which always finds the globally optimal partition that minimizes the MCL.

4.1 Problem Formulation

The clustering problem with the MCL is defined as follows.

Definition 2. Clustering of a dataset X under the MCL criterion means finding the
globally optimal partition that minimizes the MCL with more than K clusters; that is,
finding Cop such that

Cop ∈ argmin
C∈C(X)�K

MCL(C),

where C(X)�K = {C ∈ C(X) | #C � K}.

In this framework, we assume that a lower bound on the number of clustersK is given
to avoid overgeneralization since, if we search for the optimal partition Cop in C(X)
(i.e., all possible partitions) instead of C(X)�K , we always have the nonsense result
Cop = {X}.

4.2 COOL Algorithm

Our COOL algorithm efficiently solves the optimization problem (Definition 2) by inte-
grating the computation of MCL within the clustering step. By contrast, naı̈ve approach
that would compare the MCLs of all possible partitions would result in an algorithm
with exponential time complexity. The pseudo-code of COOL is shown in Algorithm 1.

COOL is a level-wise clustering algorithm that finds the optimal partition Cop by
enumerating level-k partitions (k = 1, 2, 3, . . . ).
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Algorithm 1. COOL algorithm

Input: Dataset X, lower bound on number of clusters K, and noise parameter N
Output: Optimal partition Cop and noise data

Function COOL(X, K, N )
1: Find partitions C1

�N , . . . , Cm
�N such that #Cm−1

�N < K � #Cm
�N

2: (Cop, MCL)← FINDCLUSTERS(X, K, {C1�N , . . . , Cm
�N})

3: return (Cop, X \⋃ Cop)

Function FINDCLUSTERS(X, K, {Cl, . . . , Cm})
1: if K = 1 then
2: return (Cl, |W |), where γ(

⋃ Cl) ⊆ ↑W and |w| = l for all w ∈ W
3: end if
4: Find k such that #Ck−1 < K � #Ck

5: Cop ← Ck

6: MCL←MCL(Ck)

7: for each C in Cl ∪ · · · ∪ Ck

8: L←min{|W | | γ(C) ⊆ ↑W and |w| = j for all w ∈W}, where C ∈ Cj

9: (C, L′)← FINDCLUSTERS(X \ C, K − 1, {Cj , . . . , Ck})
10: if L + L′ < MCL then
11: Cop← C ∪ C
12: MCL← L + L′

13: end if
14: end for
15: return (Cop, MCL)

Definition 3 (Level-k partition). For a dataset X and an embedding γ, the level-k
partition Ck is defined as follows: Every pair of data points x, y ∈ X are contained
in the same cluster if and only if v = w for some v � γ(x) and w � γ(y) with
|v| = |w| = k.

This means that if x, y ∈ X are in the same cluster, there exists a chain of data points
z1, z2, . . . , zm (m � 2) such that, for all i ∈ {1, 2, . . . ,m − 1}, z1 = x, zm = y,
and wi = wi+1 for some wi � γ(zi) and wi+1 � γ(zi+1) with |wi| = |wi+1| = k.
Obviously, the level-k partition is determined uniquely. The time complexity of finding
the level-k partition is O(nd), where n and d are the size and dimension of the dataset,
respectively, since, if the discretized dataset {p(0)p(1) . . . p(k−1) | p ∈ γ(X)} at level
k is initially sorted using a radix sort, clusters are constructed by comparing each data
point to the next data point for each dimension.

The most important feature of the level-k partition is that the optimal partition Cop in
Definition 2 is obtained by searching for only clusters contained in the level-k partition.

Lemma 1. For every cluster C ∈ Cop, C is contained in some level-k partition, that is,
C ∈ Ck for some k ∈ N.

Proof. Let C be a partition such that, for every C ∈ C, C ∈ Ck for some k, and a pair
of clusters C,C′ ∈ C is fixed. Then, from the definition of the level-k partition, the



The Minimum Code Length for Clustering Using the Gray Code 371

following condition holds: For all pairs of clusters D,D′ such that D ∪D′ = C ∪ C′

andD ∩D′ = ∅, we have MCL(C) � MCL(C′), where C′ = (C \ {C,C′})∪ {D,D′}.
Therefore, for the optimal partition Cop, C ∈ Ck with k ∈ N for all C ∈ Cop. �

The level-k partition has a hierarchical structure: For each cluster C ∈ Ck, there must
exist a set of clusters D ⊆ Ck+1 such that

⋃
D = C. Thus, COOL works through

divisive hierarchical clustering. The MCL of the level-k partition used in line 6 of the
function FINDCLUSTERS in Algorithm 1 can thus be easily calculated: Let Ck be a set of
clusters {C1, . . . , CK}. For each Ci and for the minimum level l such that Ci ∈ Cl,

Li(Ck) = min{|W | | γ(Ci) ⊆ ↑W and |w| = l for all w ∈W}

holds. This means that we can obtain the MCL of the level-k partition by checking only
sequences with length l.

Next we show that COOL can solve the optimization problem in Definition 2.

Proposition 1. The COOL algorithm (Algorithm 1) always outputs the globally opti-
mal partition Cop.

Proof. Let #Cop = K . Then there must exist k ∈ N such that K � #Ck and #Ck′
<

K for all k′ < k since the number of clusters in the level-k partition #Ck increases
monotonically with respect to increase of k. Fix a cluster C ∈ Cop, and let C′

op be
the optimal partition for the dataset X \ C. Then we can easily check that C′

op ∪ {C}
coincides with Cop. Moreover, from Lemma 1 and the definition of the level-k partition,
for all C ∈ Cop, C ∈ Cl for some l ∈ {1, . . . , k}. Thus, COOL finds the optimal
partition Cop by recursive computing in Algorithm 1 (lines 4 - 7) with fixing each cluster
in C1 ∪ · · · ∪ Ck. �

COOL can find the globally optimal partition Cop efficiently, and its time complexity is
O(nd) andO(nd+K!) in the best and worst cases, respectively, since findingm parti-
tions in the first line of the function COOL takes O(nd), and the function FINDCLUSTERS

takes O(K!) in the worst case. Usually,K � n holds, so complexity becomesO(nd).
Furthermore, noise is directly removed by COOL using a lower bound on the size of

each cluster N , which we call the noise parameter. For a partition C, we denote the set
{C ∈ C | #C � N} by C�N . For example, let a dataset X = {0.1, 0.4, 0.5, 0.6, 0.9}
and C = {{0.1}, {0.4, 0.5, 0.6}, {0.9}}. Then, C�2 = {{0.4, 0.5, 0.6}}, and two data
points, 0.1 and 0.9, are detected as noise.

5 G-COOL: COOL with Gray Code

We use Gray code embedding for COOL, and show its powerful clustering ability by
theoretical analysis. We call COOL with Gray code embedding G-COOL.

5.1 Gray Code Embedding

Gray code embedding is illustrated in Figure 2. Its rich mathematical properties are
described elsewhere [29]. Gray code was originally simply binary encoding of natural
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numbers, as mentioned in introduction. For example, natural numbers 1, 2, . . . , 8 are
represented in Gray code as 000, 001, 011, 010, 110, 111, 101, 100, whereas, in
binary code, they are represented as 000, 001, 010, 011, 100, 101, 110, 111. The
importance of Gray code is that only one bit differs between one code and its successor,
that is, the Hamming distance between them is always one. Here I denotes the unit
interval [0, 1] × · · · × [0, 1] ⊂ Rd, and Σω

⊥,d denotes the set of infinite sequences for
which, in each sequence, at most d positions are ⊥. For example, if Σ = {0,1} and
d = 2, then 0⊥100 · · · ∈ Σω

⊥,d, ⊥⊥110 · · · ∈ Σω
⊥,d, and 0⊥1⊥⊥0 . . . /∈ Σω

⊥,d. In
the following, we consider only real vectors in I.

Definition 4 (Gray code embedding). (One-dimensional) Gray code embedding is an
injective function, γG : I → Σω

⊥,d (d = 1), that maps x ∈ I to an infinite sequence
p(0)p(1)p(2) . . . : For each i, p(i) := 1 if

2−im− 2−(i+1) < x < 2−im+ 2−(i+1)

holds for an odd number m, p(i) := 0 if the same holds for an even number m, and
p(i) := ⊥ if x = 2−im− 2−(i+1) for some integerm.

Moreover, by using the wrapping function

ϕ(p1, . . . , pd) := p1(0) . . . pd(0)p1(1) . . . pd(1)p1(2) . . . pd(2) . . . ,

we can define d-dimensional Gray code embedding γd
G : I → Σω

⊥,d as

γd
G(x1, . . . , xd) := ϕ(γG(x1), . . . , γG(xd)).

We abbreviate d of γd
G if it is understood from the context.

Example 2. For one-dimensional data points x = 0.2, y = 0.5, and z = 0.7, we have
γG(x) = 0010 . . . , γG(y) = ⊥100 . . . , and γG(z) = 1110 . . . with Gray code
embedding, while γB(x) = 0001 . . . , γB(y) = 0111 . . . , and γB(z) = 1011 . . .
with binary embedding. For a two-dimensional data point (x, y), we have γG(x, y) =
0⊥011000 . . . , and for a three-dimensional data point (x, y, z), γG(x, y, z) = 0⊥1
011101000 . . . with Gray code embedding.

5.2 Theoretical Analysis of G-COOL

Here we show that G-COOL achieves internal cohesion and external isolation without
any distance calculation or data distribution. In the following, we measure the distance
between x, y ∈ Rd by using the L∞ metric, where the distance is defined by

d∞(x, y) := max
i∈{1,...,d}

|xi − yi| .

Lemma 2. For the level-k partition Ck of a dataset X with Gray code embedding γG,
two data points x, y ∈ X are in the same cluster if d∞(x, y) < 2−(k+1) and are not in
the same cluster only if d∞(x, y) � 2−(k+1).
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Fig. 2. Gray code embedding γG. Position i is 1 if it is on the line, ⊥ if on the end point, and 0
otherwise. Diagonal lines are auxiliary lines. For example, if p = γG(0.25), p = 0⊥1000 . . .
because position 0 is not on the line, 1 is on the end point, 2 is on the line, and every i � 3 is not
on the line.

Proof. From the definition of Gray code embedding, if d∞(x, y) < 2−(k+1) for x, y ∈
X , there must exist a finite sequence w with |w| = k such that w � γG(x) and w �
γG(y). Thus, x and y are in the same cluster in the level-k partition Ck. Moreover, this
means that, if x and y are in the different clusters in Ck, d∞(x, y) � 2−(k+1). �

Informally, the redundancy of Gray code embedding enables the powerful property
described in the above lemma, that is, for an infinite sequence p = γG(x), there may be
two prefixes, v1 � p and v2 � p with |v| = |w|.

Example 3. Let us consider the situation illustrated in Figure 3, where we have five one-
dimensional data points: xa = 0.14, xb = 0.48, xc = 0.51, xd = 0.73, and xe = 0.77.
In binary embedding, the unit intervalI = [0, 1] is divided into two intervals [0, 0.5] and
[0.5, 1] at level-1, while it is divided into three intervals [0, 0.5], [0.25, 0.75], and [0.5, 1]
in Gray code embedding. Thus, there are three overlapping clusters {xa, xb} (encoded
as 0), {xb, xc, xd} (encoded as ⊥1), and {xc, xd, xe} (encoded as 1). Actually, there
is only one cluster {xa, xb, xc, xd, xe} since they are merged. At level-2, we have four
clusters with binary embedding although some data points such as xb and xc are close.
On the other hand, we have two natural clusters {xa} and {xb, xc, xd, xe} with Gray
code embedding.

Intuitively, this lemma theoretically supports the claim that G-COOL finds natural clus-
ters. For a data point x ∈ X , we say that a data point y ∈ X is the nearest neighbor of
x if y ∈ argminx′∈Xd∞(x, x′).

Theorem 1 (main theorem). The optimal partition Cop of a dataset X generated by
G-COOL has the following property: For every data point x ∈ C with C ∈ Cop and
#C � 2, its nearest neighbor y ∈ C.

Proof. From Lemma 1, every cluster C ∈ Cop is contained in Ck for some k. Thus,
from Lemma 2, trivially, any x ∈ C with C ∈ Cop, #C = 1 or its nearest neighbor
y ∈ C. �
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id Value Level 1 Level 2

Binary Gray Binary Gray

a 0.14 0 0 00 00
b 0.48 0 0, ⊥1 01 01, ⊥10
c 0.51 1 1, ⊥1 10 11, ⊥10
d 0.73 1 1, ⊥1 10 11, 1⊥1
e 0.77 1 1 11 10, 1⊥1

Level-1 partition

Gray-code embeddingBinary embedding

0 1

00 1001 11

0 1

⊥1

⊥10
00 1101 10

0⊥1 1⊥1

0 0.5 10.25 0.750 0.5 10.25 0.75

Level-2 partition

Fig. 3. Examples of level-1 and 2 partitions with binary and Gray code embedding
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Fig. 4. Clustering results for G-COOL and COOL with binary embedding (K = 2, N = 50) and
K-means (K = 2). Dataset size is 10,500 (where 500 points are noise). G-COOL detects two
natural clusters and noise. The other two methods cannot find such clusters.

This property of Gray code (Lemma 2) enables clusters with the condition in Theorem
1 to be quickly found, whereas the naı̈ve solution results in more than O(n2). Figure 4
illustrates the results of G-COOL for a two-dimensional dataset for which K-means
could not find natural clusters. We can see that COOL with binary embedding also
failed to find such clusters.
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6 Experiments

We analyze G-COOL empirically and evaluate the effectiveness of G-COOL and the
proposed measure, MCL. We use low-dimensional synthetic and real datasets, which
are common in spatial clustering setting.

6.1 Methods

Environment. G-COOL was implemented in R version 2.12.2 [24], and all experi-
ments were performed in R. We used Mac OS X version 10.6.5 with two 2.26-GHz
Quad-Core Intel Xeon CPUs and 12 GB of memory.

Datasets. The synthetic datasets were used to evaluate robustness against the number
of clusters, the size of the datasets, and noise existence. They were randomly gener-
ated using the R clusterGeneration package [23], and the parameters were set
as follows: sepVal = 0.34, numNonNoisy = 2, numNoisy = 1, numOutlier = 500,
and rangeN = c(1000, 2000). We generated 20 datasets to obtain the mean and s.e.m.
(standard error of the mean). The size of each cluster was around 1,500, so the size
of the datasets varied from ∼3,000 to ∼10,500. Each dataset was three-dimensional,
where one dimension was composed of noise and about 500 data point were added to
each dimension as noise.
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Five real datasets were collected from the Earth-as-Art website1, which contains
geospatial satellite images (see Table 1 and Figure 7). Similar datasets were used in
experiments with the state-of-the-art spatial clustering method [5]. Each image was
pre-processed using ImageJ software [25]; they were reduced to 200 × 200 pixels and
translated into binary images.

With G-COOL, each dataset was translated using min-max normalization [10] so
that the dataset was in the unit interval I, where each value x of ith dimensionXi of a
datasetX was mapped to x′ = (x− minXi)/(maxXi − minXi) and the runtime for
the translation was included in the G-COOL running time.

Control Methods. As control methods, we used K-means and DBSCAN because K-
means is the standard clustering algorithm and DBSCAN is a typical method for finding
arbitrarily shaped clusters, and their source codes are publicly available. DBSCAN was
executed using the R fpc package. We tuned the parameters of DBSCAN to obtain the
best results.

Evaluation. With the synthetic datasets, performance was evaluated using internal and
external measures. As internal measures, we used the MCL (with Gray code), the con-
nectivity (takes values in [0,∞], to be minimized) [11], and the Silhouette width (takes
values in [−1, 1], to be maximized) [26]. As an external measure, we used the adjusted
Rand index (takes values in [−1, 1], to be maximized) [13], which takes into account the

1 http://eros.usgs.gov/imagegallery/

http://eros.usgs.gov/imagegallery/
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Table 1. Running time (in seconds) and MCL for real datasets. In table, n and K denote the
number of data points and clusters, respectively. Clustering results are shown in Figure 7.

Name n K Running time (s) MCL

G-COOL K-means G-COOL K-means

Delta 20748 4 1.158 0.012 4010 4922
Dragon 29826 2 0.595 0.026 3906 7166
Europe 17380 6 2.404 0.041 2320 12210
Norway 22771 5 0.746 0.026 1820 6114
Ganges 18019 6 0.595 0.026 2320 12526
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Fig. 7. Results for real datasets obtained from satellite images by G-COOL and K-means. G-
COOL finds all natural clusters whereas K-means does not.

ground truth and is popular in the clustering literature. The measures were calculated
using the R clValid [2], cluster [22], and clues [3] packages, respectively. For
the real datasets, we used the MCL and simply show scatter plots of the results since
we had no information on the ground truth.
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6.2 Results and Discussion

The results obtained with the synthetic datasets (Figure 5) show that the quality of clus-
ters obtained with G-COOL is significantly higher for three of the four quality measures
(determined by paired t-test) and is competitive for the other one (adjusted Rand index).
Moreover, it is faster than DBSCAN. These results show that the MCL works reason-
ably well as a measure of cluster quality compared to existing ones.

Note that we need to input only the lower bounds for the number and size of the clus-
ters in G-COOL, whereas we have to tune the parameters carefully in DBSCAN and
other shape-based (spatial) clustering algorithms. Therefore, G-COOL is more efficient
and effective than existing clustering algorithms. Moreover, as shown in Figure 6, clus-
ter quality is stable with respect to the noise parameter N (i.e., lower bound on cluster
size) even if the dataset contains noise, when N is large enough. If N is too small,
then each noise is detected as a cluster. Thus, when clustering using G-COOL, all we
have to do is set the parameter large enough, meaning that G-COOL is equally useful
asK-means.

For all the real datasets, G-COOL finds natural clusters (N was set as 50 for all
the datasets), as shown in Figure 7, whereas K-means results in inferior clustering
quality (we did not perform DBSCAN since it takes too much time and needs manual
tuning of the input parameters). Moreover, MCL of clustering results for G-COOL is
much smaller than those for K-means (Table 1). These results show that G-COOL is
robust and that it can find arbitrarily shaped clusters without careful tuning of the input
parameters.

7 Conclusion

We have proposed an internal measure, the minimum code length (MCL), to evaluate
the results of clustering and presented a clustering algorithm COOL that always finds
the globally optimal partition; i.e., clusters that have the minimum MCL. Intuitively,
COOL produces the maximally compressed clusters using a fixed encoding scheme and
does not take optimization of encoding into account. Moreover, Gray code is used for
the encoding, resulting in an algorithm called G-COOL. Theoretically and empirically,
G-COOL has been shown to be noise tolerant and to have the ability to find arbitrarily
shaped clusters efficiently. The result is an effective solution to two essential problems,
how to measure the goodness of clustering results and how to find good clusters.

Many types of shape-based clustering, or spatial clustering, methods have been pro-
posed for finding arbitrarily shaped clusters, including partitional algorithms [4,5], the
mass-based clustering algorithm [28], density-based clustering algorithms (e.g., DB-
SCAN [7] and DENCLUE [12]), agglomerative hierarchical clustering algorithms (e.g.,
CURE [8], CHAMELEON [15]), and grid-based algorithms (e.g., STING [30] and
Wave Cluster [27]). However, most of them are not practical. Their clustering results are
sensitive to the input parameters, which have to be tuned manually, so they work well
only if all parameters are tuned appropriately by the user. As a result, these methods
are not well suited for users who are not specialized in machine learning. Furthermore,
most of them are not scalable: their time complexity is quadratic or cubic with respect
to data size. Compared to these methods, G-COOL is robust to the input parameters
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and always finds the globally optimal clusters under the MCL criterion. Moreover, G-
COOL is usually faster than most of these methods since the time complexity is linear
with respect to data size.

Many cluster validity methods have been proposed for quantitative evaluation of
clustering results [11]. These measures are usually divided into two categories: inter-
nal (e.g., connectivity and Silhouette width) and external (e.g., F -measure and Rand
index). The internal measures are intrinsic to actual clustering while the external mea-
sures need information that may not be available in an actual situation. Our proposed
measure, MCL, can be categorized as an internal measure. Its effectiveness has been
shown experimentally (see Section 6).

G-COOL’s results are robust to changes in the input parameters, and does not assume
a data distribution and does not need a distance calculation. Thus, it can be effectively
applied to other machine learning tasks, such as anomaly detection. Theoretical analysis
of relationship between admissibility of encoding schemes in computing real numbers
and the ability of clustering to detect arbitrarily shaped clusters is necessary future
work.
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This work was partly supported by Grant-in-Aid for Scientific Research (A) 22240010
and for JSPS Fellows 22·5714.
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Abstract. In online social networks, most relationships are lack of
meaning labels (e.g., “colleague” and “intimate friends”), simply because
users do not take the time to label them. An interesting question is: can
we automatically infer the type of social relationships in a large network?
what are the fundamental factors that imply the type of social relation-
ships? In this work, we formalize the problem of social relationship learn-
ing into a semi-supervised framework, and propose a Partially-labeled
Pairwise Factor Graph Model (PLP-FGM) for learning to infer the type
of social ties. We tested the model on three different genres of data sets:
Publication, Email and Mobile. Experimental results demonstrate that
the proposed PLP-FGM model can accurately infer 92.7% of advisor-
advisee relationships from the coauthor network (Publication), 88.0% of
manager-subordinate relationships from the email network (Email), and
83.1% of the friendships from the mobile network (Mobile). Finally, we
develop a distributed learning algorithm to scale up the model to real
large networks.

1 Introduction

With the success of many large-scale online social networks, such as Facebook,
MySpace, and Twitter, and the rapid growth of mobile social networks such as
FourSquare, online social network has become a bridge between our real daily
life and the virtual web space. Facebook, one of the largest social networks, has
more than 600 million active users in Jan 2011; Foursquare, a location-based
mobile social network, has attracted 6 million registered users by the end of
2010. Just to mention a few, there is little doubt that most of our friends are
online now. Considerable research has been conducted on social network analy-
sis [1,7,18,21], dynamic evolution analysis [13], social influence analysis [5,12,23],
and social behavior analysis [20,22]. However, most of these works ignore one
important fact that makes the online social networks very different from the
physical social networks, i.e., our physical social networks are colorful (“family
members”, “colleagues”, and “classmates”) but the online social networks are
still black-and-white: the users merely do not take the time to label the rela-
tionships. Indeed, statistics show that only 16% of mobile phone users in Europe
� The work is supported by the Natural Science Foundation of China (No.
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No.61035004).

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 381–397, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



382 W. Tang, H. Zhuang, and J. Tang

From Home
08:40

From Office
11:35

Both in office
08:00 – 18:00

From Office
15:20

From Outside
21:30

From Office
17:55

Colleagues
Friends
Family

0.89

0.77

0.98

0.63 0.70

0.86

Fig. 1. An example of relationship mining in mobile communication network. The left
figure is the input of our problem, and the right figure is the objective of the relationship
mining task.

have created custom contact groups [20,10] and less than 23% connections on
LinkedIn have been labeled. Identification of the type of social relationships can
benefit many applications. For example, if we could have extracted friendships
between users from the mobile communication network, we can leverage the
friendships for a “word-of-mouth” promotion of a new product [12].

In this work, we investigate to what extent social relationships can be in-
ferred from the online social networks: E.g., given users’ behavior history and
interactions between users, can we estimate how likely they are to be family
members? There exist a few related studies. For example, Diehl et al. [4] try
to identify the relationships by learning a ranking function. Wang et al. [26]
propose an unsupervised algorithm for mining the advisor-advisee relationships
from the publication network. However, both algorithms focus on a specific do-
main (Email network in [4] and Publication network in [26]) and are not easy to
extend to other domains. It is well recognized that the type of users’ relation-
ships in a social network can be implied by various complex and subtle factors
[9,14]. One challenging question is: can we design a unified model so that it can
be easily applied to different domains?

Motivating Examples. To illustrate the problem, Figure 1 gives an example
of relationship mining in mobile calling network. The left figure is the input of
our problem: a mobile social network, which consists of users, calls and messages
between users, and users’ location logs, etc. Our objective is to infer the type
of the relationships in the network. In the right figure, the users who are family
members are connected with a red-colored line, friends are connected with a
blue-colored dash line, and colleagues are connected with a green-colored dotted
line. The probability associated with each relationship represents our confidence
on the detected relationship types.

Thus, the problem becomes how to design a flexible model for effectively and
efficiently mining relationship types in different networks. This problem is non-
trivial and poses a set of unique challenges. First, what are the underlying factors
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that may determine a specific type of social relationship. Second, the input social
network is partially labeled. We may have some labeled relationships, but most
of the relationships are unknown. To learn a high-quality predictive model, we
should not only consider the knowledge provided by the labeled relationships, but
also leverage the unlabeled network information. Finally, real social networks are
getting bigger with thousands even millions of nodes. It is important to develop
a method that can scale well to real large networks.

Contributions. In this paper, we try to conduct a systematic investigation
of the problem of inferring social relationship types in large networks with the
following contributions:

– We formally formulate the problem of inferring social relationship in large
networks, and propose a partially-labeled pairwise factor graph model (PLP-
FGM).

– We present a distributed implementation of the learning algorithm based on
MPI (Message-Passing Interface) to scale up to large networks.

– We conduct experiments on three different data sets: Publication, Email,
Mobile network. Experimental results show that the proposed PLP-FGM
model can be applied to the different scenarios and clearly achieves better
performance than several alternative models.

The rest of paper is organized as follows. Section 2 formally formulates the
problem; Section 3 explains the PLP-FGM model; Section 4 gives experimental
results; Finally, Section 5 discusses related work and Section 6 concludes.

2 Problem Definition

In this section, we first give several necessary definitions and then present the
problem formulation.

A social network can be represented as G = (V,E), where V is the set of
|V | = N users and E ⊂ V ×V is the set of |E| = M relationships between users.
The objective of our work is to learn a model that can effectively infer the type
of social relationships between two users. To begin with, let us first give a formal
definition of the output of the problem, namely “relationship semantics”.

Definition 1. Relationship semantics: Relationship semantics is a triple
(eij , rij , pij), where eij ∈ E is a social relationship, rij ∈ Y is a label associ-
ated with the relationship, and pij is the probability (confidence) obtained by an
algorithm for inferring relationship type.

Social relationships might be undirected in some networks (e.g., the friendship
discovered from the mobile calling network) or directed in other networks (e.g.,
the advisor-advisee relationship in the publication network). To be consistent, we
define all social relationships as directed relationships. In addition, relationships
may be static (e.g., the family-member relationship) or change over time (e.g.,
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colleague relationship). In this work, we focus on static relationships, and leave
the dynamic case to our future work.

To infer relationship semantics, we could consider different factors such as
user-specific information, link-specific information, and global constraints. For
example, to discover advisor-advisee relationships from a publication network,
we can consider how many papers were coauthored by two authors; how many
papers in total an author has published; when the first paper was published
by each author. Besides, there may already exist some labeled relationships.
Formally, we can define the input of our problem, a partially labeled network.

Definition 2. Partially labeled network: A partially labeled network is an
augmented social network denoted as G = (V,EL, EU , RL,W), where EL is
a set of labeled relationships and EU is a set of unlabeled relationships with
EL ∪EU = E; RL is a set of labels corresponding to the relationships in EL; W
is an attribute matrix associated with users in V where each row corresponds to
a user, each column an attribute, and an element wij denotes the value of the
jth attribute of user vi.

Based on the above concepts, we can define the problem of inferring social re-
lationships. Given a partially labeled network, the goal is to detect the types
(labels) of all unknown relationships in the network. More precisely,

Problem 1. Social relationship mining. Given a partially labeled network
G = (V,EL, EU , RL,W), the objective is to learn a predictive function

f : G = (V, EL, EU , RL,W)→ R

Our formulation of inferring social relationships is very different from existing
works on relation mining [3]. They focus on detecting the relationships from
the content information, while we focus on mining relationship semantics in
social networks. Both Diehl et al.[4] and Wang et al.[26] investigate the problem
of relationship identification. However, they focus on the problem in specific
domains (Email network or Publication network).

3 Partially-Labeled Pairwise Factor Graph Model
(PLP-FGM)

3.1 Basic Idea

In general, there are two ways to model the problem. The first way is to model
each user as a node and for each node we try to estimate probability distributions
of different relationships from the user to her neighborhood nodes in the social
network. The graphical model consists of N variable nodes. Each node contains
a d × |Y| matrix to represent the probability distributions of different relation-
ships between the user and her neighbors, where d is the number of neighbors
of the node. This model is intuitive, but it suffers from some limitations. For
example, it is difficult to model the correlations between two relationships, and
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Fig. 2. Graphical representation of the PLP-FGM model

its computational complexity is high. An alternative way is to model each re-
lationship as a node in the graphical model and the relationship mining task
becomes how to predict the semantic label for each relationship node in the
model. This model contains M nodes (2M when the input social network is
undirected). More importantly, this model is able to incorporate different corre-
lations between relationships.

For inferring the type of social relationships, we have three basic intuitions.
First, the user-specific or link-specific attributes will contain implicit informa-
tion about the relationships. For example, two users who made a number of calls
in working hours might be colleagues; while two users who frequently contact
with each other in the evening are more likely to be family members or intimate
friends. Second, relationships of different users may have a correlation. For ex-
ample, in the mobile network, if user vi makes a call to user vj immediately after
calling user vk, then user vi may have a similar relationship (family member or
colleague) with user vj and user vk. Third, we need also consider some global
constraints such as common knowledge or user-specific constraints.

3.2 Partially-Labeled Pairwise Factor Graph Model (PLP-FGM)

Based on the above intuitions, we propose a partially-labeled pairwise factor
graph model (PLP-FGM). Figure 2 shows the graphical representation of the
PLP-FGM. Each relationship (vi1 , vi2) or ei1i2 in partially labeled network G
is mapped to a relationship node ri in PLP-FGM. We denote the set of rela-
tionship nodes as Y = {y1, y2, . . . , yM}. The relationships in G are partially
labeled, thus all nodes in PLP-FGM can be divided into two subsets Y L and
Y U , corresponding to the labeled and unlabeled relationships respectively. For
each relationship node yi = (vi1 , vi2 , ri1i2), we combine the attributes {wi1 ,wi2}
into a relationship attribute vector xi.
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Now we explain the PLP-FGM in detail. The relationships in the input are
modeled by relationship nodes in PLP-FGM. Corresponding to the three intu-
itions, we define the following three factors.

– Attribute factor: f(yi,xi) represents the posterior probability of the relation-
ship yi given the attribute vector xi;

– Correlation factor: g(yi, G(yi)) denotes the correlation between the relation-
ships, where G(yi) is the set of correlated relationships to yi.

– Constraint factor: h(yi, H(yi)) reflects the constraints between relationships,
where H(yi) is the set of relationships constrained on yi.

Given a partially-labeled network G = (V,EL, EU , RL,W), we can define the
joint distribution over Y as

p(Y |G) =
∏

i

f(yi,xi)g(yi, G(yi))h(yi, H(yi)) (1)

The three factors can be instantiated in different ways. In this paper, we use
exponential-linear functions. In particular, we define the attribute factor as

f(yi,xi) =
1

Zλ
exp{λT Φ(yi,xi)} (2)

where λ is a weighting vector and Φ is a vector of feature functions. Similarly,
we define the correlation factor and constraint factor as

g(yi, G(yi)) =
1

Zα
exp{

∑
yj∈G(yi)

αT g(yi, yj)} (3)

h(yi, H(yi)) =
1

Zβ
exp{

∑
yj∈H(yi)

βT h(yi, yj)} (4)

where g and h can be defined as a vector of indicator functions.

Model Learning. Learning PLP-FGM is to estimate a parameter con-
figuration θ = (λ, α, β), so that the log-likelihood of observation infor-
mation (labeled relationships) are maximized. For presentation simplicity,
we concatenate all factor functions for a relationship node yi as s(yi) =
(Φ(yi,xi)T ,

∑
yj

g(yi, yj)T ,
∑

yj
h(yi, yj)T )T . The joint probability defined in

(Eq. 1) can be written as

p(Y |G) =
1

Z

∏
i

exp{θT s(yi)} =
1

Z
exp{θT

∑
i

s(yi)} =
1

Z
exp{θT S} (5)

where Z = ZλZαZβ is a normalization factor (also called partition function), S is
the aggregation of factor functions over all relationship nodes, i.e., S =

∑
i s(yi).

One challenge for learning the PLP-FGM model is that the input data is
partially-labeled. To calculate the partition function Z, one needs to sum up the
likelihood of possible states for all nodes including unlabeled nodes. To deal with
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Input: learning rate η
Output: learned parameters θ

Initialize θ;
repeat

Calculate Epθ(Y |Y L,G)S using LBP ;

Calculate Epθ(Y |G)S using LBP ;
Calculate the gradient of θ according to Eq. 7:

∇θ = Epθ(Y |Y L,G)S− Epθ(Y |G)S

Update parameter θ with the learning rate η:

θnew = θold − η · ∇θ

until Convergence;

Algorithm 1. Learning PLP-FGM

this, we use the labeled data to infer the unknown labels. Here Y |Y L denotes
a labeling configuration Y inferred from the known labels. Thus, we can define
the following log-likelihood objective function O(θ):

O(θ) = log p(Y L|G) = log
∑

Y |Y L

1

Z
exp{θT S}

= log
∑

Y |Y L

exp{θT S} − log Z

= log
∑

Y |Y L

exp{θT S} − log
∑
Y

exp{θT S} (6)

To solve the objective function, we can consider a gradient decent method (or a
Newton-Raphson method). Specifically, we first calculate the gradient for each
parameter θ:

∂O(θ)

∂θ
=

∂
(
log

∑
Y |Y L exp θT S− log

∑
Y exp θT S

)
∂θ

=

∑
Y |Y L exp θT S · S∑

Y |Y L exp θT S
−

∑
Y exp θT S · S∑

Y exp θT S

= Epθ(Y |Y L,G)S− Epθ(Y |G)S (7)

Another challenge here is that the graphical structure in PLP-FGM can be arbi-
trary and may contain cycles, which makes it intractable to directly calculate the
second expectation Epθ(Y |G)S. A number of approximate algorithms have been
proposed, such as Loopy Belief Propagation (LBP) [17] and Mean-field [28].
In this paper, we utilize Loopy Belief Propagation. Specifically, we approximate
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marginal probabilities p(yi|θ) and p(yi, yj |θ) using LBP. With the marginal prob-
abilities, the gradient can be obtained by summing over all relationship nodes.
It is worth noting that we need to perform the LBP process twice in each itera-
tion, one time for estimating the marginal probability p(y|G) and the other for
p(y|Y L, G). Finally with the gradient, we update each parameter with a learning
rate η. The learning algorithm is summarized in Algorithm 1.

Inferring Unknown Social Ties. We now turn to describe how to infer the
type of unknown social relationships. Based on learned parameters θ, we can
predict the label of each relationship by finding a label configuration which
maximizes the joint probability (Eq. 1), i.e.,

Y ∗ = argmaxY |Y Lp(Y |G) (8)

Again, we utilize the loopy belief propagation to compute the marginal prob-
ability of each relationship node p(yi|Y L, G) and then predict the type of a rela-
tionship as the label with largest marginal probability. The marginal probability
is then taken as the prediction confidence.

3.3 Distributed Learning

As real social networks may contain millions of users and relationships, it is
important for the learning algorithm to scale up well with large networks. To
address this, we develop a distributed learning method based on MPI (Message
Passing Interface). The learning algorithm can be viewed as two steps: 1) com-
pute the gradient for each parameter via loopy belief propagation; 2) optimize
all parameters with the gradient descents. The most expensive part is the step of
calculating the gradient. Therefore we develop a distributed algorithm to speed
up the process.

We adopt a master-slave architecture, i.e., one master node is responsible for
optimizing parameters, and the other slave nodes are responsible for calculating
gradients. At the beginning of the algorithm, the graphical model of PLP-FGM
is partitioned into P roughly equal parts, where P is the number of slave proces-
sors. This process is accomplished by graph segmentation software METIS[11].
The subgraphs are then distributed over slave nodes. Note that in our imple-
mentation, the edges (factors) between different subgraphs are eliminated, which
results in an approximate, but very efficient solution. In each iteration, the mas-
ter node sends the newest parameters θ to all slaves. Slave nodes then start to
perform Loopy Belief Propagation on the corresponding subgraph to calculate
the marginal probabilities, then further compute the parameter gradient and
send it back to the master. Finally, the master node collects and sums up all
gradients obtained from different subgraphs, and updates parameters by the gra-
dient descent method. The data transferred between the master and slave nodes
are summarized in Table 1.
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Table 1. Data transferred in distributed learning algorithm

Phase From To Data Description

Initialization Master Slave i i-th subgraph
Iteration Beginning Master Slave i Current parameters θ
Iteration Ending Slave i Master Gradient in i-th subgraph

Table 2. Statistics of three data sets

Data set Users Unlabeled Relationships Labeled Relationships

Publication 1,036,990 1,984,164 6,096

Email 151 3,424 148

Mobile 107 5,122 314

4 Experimental Results

The proposed relationship mining approach is general and can be applied to
many different scenarios. In this section, we present experiments on three differ-
ent genres of data sets to evaluate the effectiveness and efficiency of our proposed
approach. All data sets and codes are publicly available1

4.1 Experiment Setup

Data sets. We perform our experiments on three different data sets: Publica-
tion, Email, and Mobile. Statistics of the data sets are shown in Table 2.

– Publication. In the publication data set, we try to infer the advisor-advisee
relationship from the coauthor network. The data set is provided by [26].
Specifically, we have collected 1,632,442 publications from Arnetminer [24]
(from 1936 to 2010) with 1,036,990 authors involved. The ground truth is
obtained in three ways: 1) manually crawled from researcher’s homepage;
2) extracted from Mathematics Genealogy project2; 3) extracted from AI
Genealogy project3. In total, we have collected 2,164 advisor-advisee pairs
as positive cases, and another 3,932 pairs of colleagues as negative cases.
The mining results for advisor-advisee relationships are also available in the
online system Arnetminer.org.

– Email. In the email data set, we aim to infer the manager-subordinate
relationship from the email communication network. The data set consists of
136,329 emails between 151 Enron employees. The ground truth of manager-
subordinate relationships is provided by [4].

1 http://arnetminer.org/socialtie/
2 http://www.genealogy.math.ndsu.nodak.edu
3 http://aigp.eecs.umich.edu

http://www.genealogy.math.ndsu.nodak.edu
http://aigp.eecs.umich.edu
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– Mobile. In the mobile data set, we try to infer the friendship in mobile
calling network. The data set is from Eagle et al. in [6]. It consists of call logs,
bluetooth scanning logs and location logs collected by a software installed in
mobile phones of 107 users during a ten-month period. In the data set, users
provide labels for their friendships. In total, 314 pairs of users are labeled as
friends.

Factor definition. In the Publication data set, relationships are established
between authors vi and vj if they coauthored at least one paper. For each pair of
coauthors (vi, vj), our objective is to identify whether vi is the advisor of author
vj . In this data set, we consider two types of correlations: 1) co-advisee. The
assumption is based on the fact that one could have only a limited number of
advisors in her/his research career. Based on this, we define a correlation factor
h1 between nodes rij and rkj . 2) co-advisor. Another observation is that if vi
is the advisor of vj (i.e., rij = 1), then vi is very possible to be the advisor of
some other student vk who is similar to vj . We define another factor function h2

between nodes rij and rik.
In the Email data set, we try to discover the “manager-subordinate” rela-

tionship. A relationship (vi, vj) is established when two employees have at least
one email communication. There are in total 3,572 relationships among which
148 are labeled as manager-subordinate relationships. We try to identify the
relationship types from the email traffic network. For example, if most of an
employee’s emails were sent to the same one, then the recipient is very likely to
be her manager. A correlation named co-recipient is defined, that is, if a user
vi sent more than ϑ emails of which recipients including both vj and vk (ϑ is a
threshold and is set as 10 in our experiment), then, the relationship rij and rik
are very likely to be the same. Therefore, a correlation factor is added between
the two relationships. Two constraints named co-manager and co-subordinate
are also introduced in an analogous way as that for the publication data.

In the Mobile data set, we try to identify whether two users have a friendship
if there were at least one voice call or one text message sent from one to the other.
Two kinds of correlations are considered: 1) co-location: if more than three users
arrived in the same location roughly the same time, we establish correlations
between all the relationships in this groups. 2) related-call. When vi makes a call
to both vk and vj from the same location, or makes a call to vk immediately
after the call with vj , we add a related-call correlation factor between rij and
rik.

In addition, we also consider some other features in the three data sets. A
detailed description of the factor definition for each data set is given in Table 5
in Appendix.

Comparison methods. We compare our approach with the following methods
for inferring relationship types:

SVM: It uses the relationship attribute vector xi to train a classification model,
and predict the relationships by employing the classification model. We use the
SVM-light package to implement SVM.
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Table 3. Performance of relationship mining with different methods on three data
sets: Publication, Email and Mobile (%)

Data set Method Accuracy Precision Recall F1-score

Publication
SVM 76.6 72.5 54.9 62.1
TPFG 81.2 82.8 89.4 86.0

PLP-FGM-S 84.1 77.1 78.4 77.7
PLP-FGM 92.7 91.4 87.7 89.5

Email
SVM 82.6 79.1 88.6 83.6

PLP-FGM-S 85.6 85.8 85.6 85.7
PLP-FGM 88.0 88.6 87.2 87.9

Mobile
SVM 80.0 92.7 64.9 76.4

PLP-FGM-S 80.9 88.1 71.3 78.8
PLP-FGM 83.1 89.4 75.2 81.6

TPFG: It is an unsupervised method proposed in [26] for mining advisor-advisee
relationships in publication network. This method is domain-specific and thus
we only compare with it on the Publication data set.

PLP-FGM-S: The proposed PLP-FGM is based on the partially-labeled network.
Another alternative strategy is to train the model (parameters) with the labeled
nodes only. We use this method to evaluate the necessity of the partial learning.

Evaluation measures. To quantitatively evaluate the proposed method, we
consider two aspects: performance and scalability. For the relationship mining
performance, we consider two-fold cross-validation(i.e., half training and half
testing) and evaluate the approaches in terms of accuracy, precision, recall, and
F1-score. For scalability, we examine the execution time of the model learning.

All the codes are implemented in C++, and all experiments are conducted on
a server running Windows Server 2008 with Intel Xeon CPU E7520 1.87GHz (16
cores) and 128 GB memory. The distributed learning algorithm is implemented
on MPI (Message Passing Interface).

4.2 Accuracy Performance

Table 3 lists the accuracy performance of inferring the type of social relationships
by the different methods.

Performance comparison. Our method consistently outperforms other com-
parative methods on all the three data sets. In the Publication data set, PLP-
FGM achieves a +27% (in terms of F1-score) improvement compared with SVM,
and outperforms TPFG by 3.5% (F1-score) and 11.5% in terms of accuracy. We
observe that TPFG achieves the best recall among all the four methods. This
is because that TPFG tends to predict more positive cases (i.e., inferring more
advisor-advisee relationships in the coauthor network), thus would hurt the pre-
cision. As a result, TPFG underperforms our method 8.6% in terms of precision.
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Table 4. Factor contribution analysis on three data sets. (%)

Data set Factors used Accuracy Precision Recall F1-score

Publication

Attributes 77.1 71.1 59.8 64.9
+ Co-advisor 83.5 80.9 69.8 75.0 (+10.1%)
+ Co-advisee 83.1 79.7 70.2 74.7 (+9.8%)

All 92.7 91.4 87.7 89.5(+24.6%)

Email

Attributes 80.1 79.5 81.2 80.3
+ Co-recipient 80.8 81.5 79.7 80.6 (+0.3%)
+ Co-manager 83.1 82.8 83.5 83.2 (+2.9%)

+ Co-subordinate 85.0 84.4 85.7 85.0 (+4.7%)
All 88.0 88.6 87.2 87.9 (+7.6%)

Mobile

Attributes 81.8 88.6 73.3 80.2
+ Co-location 82.2 89.2 73.3 80.4 (+0.2%)
+ Related-call 81.8 88.6 73.3 80.2 (+0.0%)

All 83.1 89.4 75.2 81.6 (+1.4%)

In Email and Mobile data set, PLP-FGM outperforms SVM by +4% and +5%
respectively.

Unlabeled data indeed helps. From the result, it clearly showed that by
utilizing the unlabeled data, our model indeed obtains a significant improvement.
Without using the unlabeled data, our model (PLP-FGM-S) results in a large
performance reduction (-11.8% in terms of F1-score) on the publication data set.
On the other two data sets, we also observe a clear performance reduction.

Factor contribution analysis. We perform an analysis to evaluate the con-
tribution of different factors defined in our model. We first remove all the corre-
lation/constraint factors and only keep the attribute factor, and then add each
of the factors into the model and evaluate the performance improvement by each
factor. Table 4 shows the result of factor analysis. We see that almost all the fac-
tors are useful for inferring the social relationships, but the contribution is very
different. For example, for inferring the manager-subordinate relationship, the
co-subordinate factor is the most useful factor which achieves a 4.7% improve-
ment by F1-score, and the co-manager factor achieves a 2.9% improvement; while
the co-recipient factor only results in a 0.3% improvement. However, by com-
bining all the factors together, we can further obtain a 2.9% improvement. An
extreme phenomenon appears on the Mobile data set. With each of the two fac-
tors (co-location and related-call), we cannot obtain a clear improvement (0.2%
and 0.0% by F1). However, when combining the two factors and the attribute
factor together, we can achieve a 1.4% improvement. This is because our model
not only considers different factors, but also leverages the correlation between
them.
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4.3 Scalability Performance

We now evaluate the scalability performance of our distributed learning algo-
rithm on the Publication data set. Figure 3 shows the running time and speedup
of the distributed algorithm with different number of computer nodes (2,3,4,8,12
cores) used. The speedup curve is close to the perfect line at the beginning. Al-
though the speedup inevitably decreases when the number of cores increases, it
can achieve ∼ 8× speedup with 12 cores. It is noticeable that the speedup curve
is beyond the perfect line when using 4 cores, it is not strange since our dis-
tributed strategy is approximated. In our distributed implementation, graphs are
partitioned into subgraphs, and the factors across different parts are discarded.
Thus, the graph processed in distributed version contains less edges, making the
computational cost less than the amount in the original algorithm. The effect
of subgraph partition is illustrated in Figure 4. By using good graph partition
algorithm such as METIS, the performance only decreases slightly (1.4% in ac-
curacy and 1.6% in F1-score). A theoretical study of the approximate ratio for
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the distributed learning algorithm would be an interesting issue and is also one
of our ongoing work.

5 Related Work

Relationship mining is an important problem in social network analysis. One
research branch is to predict and recommend unknown links in social networks.
Liben-Nowell et al.[16] study the unsupervised methods for link prediction. Xiang
et al. [27] develop a latent variable model to estimate relationship strength from
interaction activity and user similarity. Backstrom et al. [2] propose a supervised
random walk algorithm to estimate the strength of social links. Leskovec et al.
[15] employ a logistic regression model to predict positive and negative links in
online social networks, where the positive links indicates the relationships such
as friendship, while negative indicating opposition. However, these works con-
sider only the black-white social networks, and do not consider the types of the
relationships. There are also several works on mining the relationship semantics.
Diehl et al. [4] try to identify the manager-subordinate relationships by learning
a ranking function. Wang et al. [26] propose an unsupervised probabilistic model
for mining the advisor-advisee relationships from the publication network. Ea-
gle et al. [6] present several patterns discovered in mobile phone data, and try
to use these pattern to infer the friendship network. However, these algorithms
mainly focus on a specific domain, while our model is general and can be ap-
plied to different domains. Moreover, these methods do not explicitly consider
the correlation information between different relationships.

Another related research topic is relational learning[3,8]. However, the prob-
lem presented in this paper is very different. Relational learning focuses on the
classification problems when objects or entities are presented in relations, while
this paper explores the relationship types in social network. A number of su-
pervised methods for link prediction in relational data have also been developed
[25,19].

6 Conclusion

In this paper, we study the problem of inferring the type of social ties in large
networks. We formally define the problem in a semi-supervised framework, and
propose a partially-labeled pairwise factor graph model (PLP-FGM) to learn to
infer the relationship semantics. In PLP-FGM, relationships in social network are
modeled as nodes, the attributes, correlations and global constraints are modeled
as factors. An efficient algorithm is proposed to learn model parameters and to
predict unknown relationships. Experimental results on three different types of
data sets validate the effectiveness of the proposed model. To further scale up
to large networks, a distributed learning algorithm is developed. Experiments
demonstrate good parallel efficiency of the distributed learning algorithm.

Detecting the relationship semantics makes online social networks colorful and
closer to our real physical networks. It represents a new research direction in
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social network analysis. As future work, it is interesting to study how to further
improve the mining performance by involving users into the learning process
(e.g., via active learning). In addition, it would be also interesting to investigate
how the inferred relationship semantic information can help other applications
such as community detection, influence analysis, and link recommendation.
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Appendix: Feature Definition

In this section, we introduce how we define the attribute factor functions. In
the Publication data set, we define five categories of attribute factors: Paper
count, Paper ratio, Coauthor ratio, Conference coverage, First-paper-year-diff.
The definitions of the attributes are summarized in Table 5. In the Email data
set, traffic-based features are extracted. For a relationship, we compute the num-
ber of emails for different communication types. In the Mobile data set, the
attributes we extracted are #voice calls, #messages, Night-call ratio, Call du-
ration, #proximity and In-role proximity ratio.

Table 5. Attributes used in the experiments. In the Publication data set, we use Pi and
Pj to denote the set of papers published by author vi and vj respectively. For a given
relationship (vi, vj), five categories of attributes are extracted. In the Email data set, for
relationship (vi, vj), number of emails for different communication types are computed.
In the Mobile data set, the attributes are from the voice call/message/proximity logs.

Data set Factor Description

Publication

Paper count |Pi|, |Pj |
Paper ratio |Pi|/|Pj |

Coauthor ratio |Pi ∩ Pj |/|Pi|, |Pi ∩ Pj |/|Pj|
Conference coverage The proportion of the conferences which both vi and vj at-

tended among conferences vj attended.
First-paper-year-diff The difference in year of the earliest publication of vi and

vj .

Email Traffics

Sender Recipients Include
vi vj

vj vi

vi vk and not vj

vj vk and not vi

vk vi and not vj

vk vj and not vi

vk vi and vj

Mobile

#voice calls The total number of voice call logs between two users.
#messages Number of messages between two users.

Night-call ratio The proportion of calls at night (8pm to 8am).
Call duration The total duration time of calls between two users.
#proximity The total number of proximity logs between two

users.
In-role proximity ratio The proportion of proximity logs in “working place” and in

working hours (8am to 8pm).
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Abstract. Deciding whether the results of two different mining algo-
rithms provide significantly different information is an important open
problem in exploratory data mining. Whether the goal is to select the
most informative result for analysis, or decide which mining approach
will likely provide the most novel insight, it is essential that we can tell
how different the information is that two results provide.

In this paper we take a first step towards comparing exploratory re-
sults on binary data. We propose to meaningfully convert results into sets
of noisy tiles, and compare between these sets by Maximum Entropy mod-
elling and Kullback-Leibler divergence. The measure we construct this
way is flexible, and allows us to naturally include background knowledge,
such that differences in results can be measured from the perspective of
what a user already knows. Furthermore, adding to its interpretability, it
coincides with Jaccard dissimilarity when we only consider exact tiles.

Our approach provides a means to study and tell differences between
results of different data mining methods. As an application, we show
that it can also be used to identify which parts of results best redescribe
other results. Experimental evaluation shows our measure gives mean-
ingful results, correctly identifies methods that are similar in nature, and
automatically provides sound redescriptions of results.

1 Introduction

Deciding whether the results of different mining algorithms provide significantly
different information is an important, yet understudied, open problem in ex-
ploratory data mining. Whether we want to select the most promising result for
analysis by an expert, or decide which mining approach we should apply next
in order to most likely gain most novel insight, we need to be able to tell how
different the information is that different results, by possibly different methods,
provide. However, while the comparison of results is a well-studied topic in statis-
tics, it has received much less attention in the knowledge discovery community.

Clearly, any dataset only contains a limited amount of knowledge—which is
the most that we can hope to discover from it. To extract this information, we
have an ever growing number of data mining algorithms at our disposal. However,
most data mining results are complex, and their analysis and validation often

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 398–413, 2011.
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takes considerable effort and cost. So, simply applying ‘all’ methods and letting
an expert analyse ‘all’ results is not a feasible approach to extract ‘all’ knowledge.
Moreover, many of these results will be redundant, i.e. convey roughly the same
information, and hence only require effort while not providing extra insight.

Instead, we would ideally just select that result for analysis which will provide
us the most new knowledge. In order to be able to do this, two basic requirements
have to be met. First of all, we need to be able to measure how different two
results are from an information-providing perspective; if they essentially provide
the same information, we could just select one for processing. Second, we should
be able to include our background knowledge, such that we can gauge the amount
of information a result gives us compared to what we already know.

Although an important practical problem, it has been surprisingly under-
studied in data mining. The main focus in exploratory data mining research has
mostly been on developing techniques to discover structure, and, not so much on
how to compare between results of different methods. As a result there currently
exist no general methods or theory to this end in the data mining literature.

For tasks where a formal objective is available, we can straightforwardly use
it to compare fairly between the results of different methods. In classification,
for instance, we can use accuracy. For exploratory data mining, however, there
is no formal common goal: any result that provides novel insight is potentially
useful. The core of the problem is thus that comparing between methods is
like comparing apples to oranges : a clustering is a different result than a set of
itemsets, which are, in turn, different from a classifier, set of subgroups, etc. So,
in order to make a sensible comparison, we need to find a common language.

In this regard, the comparison of complex objects, e.g. of datasets [23, 25], is
related. Our setting, however, is more general, as now we do not want to compare
between one type of complex object, but want to consider a very rich class of
objects—potentially consisting of any data mining result. Arguably, some of the
most general complex objects to compare between are probability distributions.
Statistics and Information Theory provide us tools for measuring differences
between distributions, such as Kullback-Leibler divergence [2]. Mining results,
however, rarely are probability distributions, and if they are, not necessarily for
the same random variable; making these tools unsuited for direct application.

A simple yet important observation we make is that any mining result essen-
tially identifies some properties of the dataset at hand. In an abstract way, we
could identify all datasets for which these properties hold. This is an important
notion, as it provides us a way to compare between results of different methods:
if two results provide the same information, they identify the same subspace of
possible datasets, and the more different the information two results give, the
smaller the overlap between the sets of possible datasets will be. More generally
put: every data mining result implicitly defines a probability distribution over
datasets. And hence, if we can model these distributions, we can use standard
tools from Statistics to compare between data mining results fair and square.

In this paper, we propose to translate data mining results into probability dis-
tributions over datasets using the Maximum Entropy principle [3]. It allows us to
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uniquely identify the model that makes optimal use of the provided information,
but is fully unbiased otherwise. By subsequently measuring the Kullback-Leibler
divergence between these distributions, we can tell how different two results are
from an information perspective. Besides data mining results, we can also incor-
porate background knowledge into our model, and so use it to score results from
specific points of view [5].

Finding these probability distributions, and conditioning them using data
mining results, however, is far from trivial. Here, we therefore give a proof of con-
cept of our approach for binary data, for which the basics of maximum entropy
modelling are available. We show that many exploratory data mining results on
binary data can easily be translated into sets of noisy tiles: combinations of rows
and columns, for which we know the density of 1s. We show we can efficiently
acquire the maximum entropy distribution given sets of such tiles, and that by
KL divergence we can so compare between results.

More specifically, in our experiments we compare between the results of ten
different exploratory data mining methods, including (bi-)clusters, subspace clus-
ters, sets of tiles, and sets of frequent itemsets. Moreover, we give a theoretic
framework to mine for redescriptions. That is, given a (sub)set of noisy tiles
from one result, we can identify the set of tiles from another result that best
approximates the same information. Experiments show our measure works well
in practice: dissimilarity converges to 0 when models approximate each other,
methodologically close methods are correctly grouped together, and sensible re-
descriptions for tile-sets are obtained. In other words, we give an approach by
which we can meaningfully mix apples and oranges, and compare them fairly.

The roadmap of this paper is as follows. Next, in Section 2 we give the no-
tation and preliminaries we use throughout the paper. Section 3 details how we
can build a global model from a set of tiles, which we use in Section 4 to define a
measure to compare such sets. In Section 5 we subsequently use this measure for
redescribing sets of tiles. We discuss related work in Section 6, and we evaluate
our measure empirically in Section 7. We round up with discussion and conclu-
sions in Sections 8 and 9. Due to lack of space, we give the proofs, such as for
NP-completeness, in the Appendix [24].

2 Preliminaries

In this section, we define the preliminaries we will use in subsequent sections.
A binary dataset D is a binary matrix of size N ×M consisting of N rows,

binary vectors of size M . We denote (i, j)th entry of D by D(i, j). We denote
the space of all binary datasets of size N ×M by D.

We approach the comparison of different data mining results by first trans-
lating these into sets of tiles. A tile T = (t(T ) , a(T )) is a tuple consisting of two
lists. The first list, t(T ), is a set of integers between 1 and N representing the
transactions of T . The second list, a(T ), is a set of integers between 1 and M
representing the attributes. We define s(T ) to be the cartesian product of t(T )
and a(T ), s(T ) = {(i, j) | i ∈ t(T ) , j ∈ a(T )}. Given a tile set T we also define
s(T ) =

⋃
T∈T s(T ).
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Given a tile T and a dataset D we define a frequency fr (T ;D) to be the
proportion of ones in D corresponding to the entries identified by T ,

fr(T ;D) =
1

|s(T )|
∑

i∈t(T )

∑
j∈a(T )

D(i, j) .

There are numerous techniques for mining tile sets but we can also naturally
describe a large number of statistics and mining results using tile sets:

– density: the frequency of a tile containing the whole data is equal to the
density of the data.

– margins : the frequency of a column i can be expressed with a single (noisy)
tile containing the column i and all transactions. Analogously, we can express
the margins for each row.

– itemsets : any itemset can be converted into a tile by taking the supporting
transactions. Thus, an itemset collection can be converted into a tile set.

– bi/subspace-clustering: subspace and bi-clusters are sets of transactions and
columns. Hence, we can naturally represent these results by equivalent tiles.

– clustering: Given a clustering, either over transactions or items, we can con-
struct a tile set in two different ways. The first way is to represent each
cluster by a single tile, representing the density of a tile. The other way
is to compute (column) margins for each cluster and represent these mar-
gins by tiles. This is particularly natural for k-means, since a centroid then
corresponds to the column margins of the corresponding transactions.

Let p be a distribution defined over D, the space of all datasets of size N×M .
We define the frequency of a tile to be the average frequency with respect to p,

fr (T ; p) =
∑
D∈D

p(D)fr (T ;D) .

We can also express the frequency directly by this distribution.

Lemma 1. Given a distribution p and a tile T , the frequency is equal to

fr (T ; p) =
∑

(i,j)∈s(T )

p((i, j) = 1),

where p((i, j) = 1) is the probability of a dataset having 1 as (i, j)th entry.

We say a tile is exact if its frequency is 0 or 1, and otherwise say it is noisy.

Corollary 1. For an exact tile T , p((i, j) = 1) = fr (T ; p), where (i, j) ∈ s(T ).

Example 1. Consider a dataset D given in Figure 1(a). We consider five different
tiles, T1 = (2, . . . , 5) × (1, . . . , 5), T2 = (1, 2) × (1, 2), T3 = (3, 4, 5) × (1, 2),
T4 = (4, 5)× (3, 4, 5), and T5 = (3, 4, 5)× (4, 5). The frequencies are fr (T1;D) =
10/20 = 1/2, fr (T2;D) = fr(T4;D) = fr (T5;D) = 1, and fr (T3;D) = 0. By
definition, T2, . . . , T5 are exact, while T1 is not.

Given two distributions, say p and q, we resp. define entropy and Kullback-
Leibler divergence as



402 N. Tatti and J. Vreeken

T1

T2

T3

T5

T4

1 1 1
1 1

1 1
1 1 1
1 1 1

(a) D

1 1 1
2

1
2

1
2

1 1 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 1 1 1

1
2

1
2 1 1 1

(b) T

1 1 1
2

1
2

1
2

1 1 1
2

1
2

1
2

0 0 1
2 1 1

0 0 1
2 1 1

0 0 1
2 1 1

(c) U

1 1 1
2

1
2

1
2

1 1 1
2

1
2

1
2

0 0 1
2 1 1

0 0 1 1 1
0 0 1 1 1

(d) T ∪ U

1 1 1
2

1
2

1
2

1 1 1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6 1 1 1

1
6

1
6 1 1 1

(e) T ∪ B

1 1 1
2

1
2

1
2

1 1 1
3

1
3

1
3

0 0 1
3 1 1

0 0 1
3 1 1

0 0 1
3 1 1

(f) U ∪ B

1 1 1
2

1
2

1
2

1 1 0 0 0
0 0 0 1 1
0 0 1 1 1
0 0 1 1 1

(g) T ∪U∪B

Fig. 1. Toy example of a dataset and several maximum entropy models

H(p) = −
∑
D∈D

p(D) log p(D) and KL(p ‖ q) =
∑
D∈D

p(D) log
p(D)
q(D)

.

3 Building Global Models from Tiles

To meet our goal, we have to construct a statistically sound technique for com-
paring two sets of tiles. In this section we construct a global model for datasets
using the given tiles. We will use these models for comparing the tile sets.

Consider that we are given a tile set T , and for each tile T ∈ T we are also
given a frequency αT . Typically, the frequencies are obtained from the data at
hand, αT = fr (T ;Din), but this is not a necessary condition. The tiles convey
local information about the data Din and our goal is to infer a distribution p over
D, that is, how probable data set D ∈ D is given a tile set T . If the information
at hand defines the data set uniquely, then p(D) = 1 if and only if D = Din.

To derive the model, we use a well-founded notion from information theory,
the Maximum Entropy principle [2]. Roughly speaking, by Maximum Entropy,
we incorporate the given information into a distribution, yet further making it
as evenly spread as possible. To define the distribution, we first define the space
of distribution candidates. That is, the space of those distributions that produce
the same frequencies for the given tiles, P = {p | fr(T ; p) = αT , for all T ∈ T }.
In other words, P contains all distributions that explain the frequencies αT .
From this set, we select one distribution, which we denote by p∗T , such that p∗T
maximises the entropy, H(p∗T ) ≥ H(p) for any p ∈ P .

We will abuse notation and write H(T ) where we mean H(p∗T ). Similarly we
write KL(T ‖ U) to mean KL(p∗T ‖ p∗U), where U is another tile set.

A classic theorem states that p∗ can be written as an exponential form.

Theorem 1 (Theorem 3.1 in [3]). Given a tile set T , a distribution p∗ is the
maximum entropy distribution if and only if it can be written as

p∗(D) ∝
{

exp
(∑

T∈T λT fr (T ;D)
)
D /∈ Z

0 D ∈ Z,

where λT is a certain weight for fr(T ;D) and Z is a collections of datasets such
that p(D) = 0 for each p ∈ P.
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Algorithm 1. Iterative Scaling for solving the MaxEnt distribution
input : tile set T , target frequencies {αT }
output : Maximum entropy distribution p

1 p← a matrix of size N ×M with values 1/2;
2 foreach T ∈ T , αT = 0, 1 do p(i, j)← αT for all (i, j) ∈ s(T );
3 while not converged do
4 foreach T ∈ T , 0 < αT < 1 do
5 f ← fr(T ; p);
6 x← (αT (1− f))/(f(1− αT ));
7 p(i, j)← p(i, j)x/(1− p(i, j)(1− x)) for all (i, j) ∈ s(T );

The next theorem allows to factorize the distribution p∗ into a product of
Bernoulli random variables, each variable representing a single entry in the
dataset. Such a representation gives us a practical way for inferring the model.

Theorem 2. Let T be a tile set. Write T (i, j) = {T ∈ T | (i, j) ∈ s(T )} to be
the subset of T containing the tiles that cover an entry (i, j). Then, the maximum
entropy distribution can be factorized as p∗(D) =

∏
i,j p

∗((i, j) = D(i, j)), where

p∗((i, j) = 1) =
exp

(∑
T∈T (i,j) λT

)
exp

(∑
T∈T (i,j) λT

)
+ 1

or p∗((i, j) = 1) = 0, 1 .

Theorem 2 allows to represent p∗ as Bernoulli variables. We should stress that
this is a different model than assuming independence between items in a random
transaction. Our next step is to discover the correct frequencies for these vari-
ables. Here we use a variant of a well-known Iterative Scaling algorithm [4]. The
algorithm is given in Algorithm 1. Informally said, given a tile T the algorithm
updates the probabilities such that the frequency of T is closer to αT . This is
performed for each tile. Updating a single tile might change the frequency of
another tile. Hence, we need several passes. A single pass takes O(NM) time.
The original proof of correctness for iterative scaling assumes that p∗ has no
zero probabilities. This is often violated in our setup. Hence we provide a proof
of correctness in the Appendix.

Theorem 3. The iterative scaling algorithm given in Algorithm 1 correctly con-
verges to the maximum entropy distribution.

It turns out, that if the given tiles are exact, the maximum entropy distribution
is simple. A Bernoulli variable corresponding to the (i, j) entry is always 1 (or 0),
if the entry is covered by an exact tile, i.e. with frequency 1 (or 0). Otherwise, the
variable is equal to a fair coin toss. This form will allow us to express distances
between sets of exact tiles in the next section.

Theorem 4. Let T be a collection of exact tiles and let αT be the desired fre-
quency of a tile T ∈ T . Then
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p∗T ((i, j) = 1) =

{
αT if there exists T ∈ T such that (i, j) ∈ s(T )
1/2 otherwise .

Example 2. Let us continue Example 1. Consider the following three tile sets T =
{T2, T4}, U = {T2, T3, T5}, and B = {T1}. The corresponding maximum entropy
models are given in Figure 1, such that each entry represents the probability
p∗((i, j) = 1). As the sets T and U contain only exact tiles, by Theorem 4 the
entries for the models p∗T , p∗U , and p∗T ∪U are either 0, 1, or 1/2.

Consider p∗T ∪B. Corollary 1 states that entries in s(T2) and s(T4) should be 1,
since both tiles are exact. From T1, we know that there are 10 ones, yet T2 and
T4 account only for 8. Hence, there should be 2 ones in the 12 entries outside
of T , on average. We aim to be as fair as possible, hence we spread uniformly,
giving us probabilities 2/12 = 1/6. For p∗U∪B, there are 2 unaccounted 1s in 6
entries, giving us 2/6 = 1/3. Finally, all 1s are accounted for in p∗T ∪U∪B. Outside
of T ∪ U ∪ B we have no information, hence these probabilities default to 1/2.

4 Comparing Sets of Tiles

Now that we have a technique for incorporating the information contained within
a set of tiles into a model, we can use these models to compare sets of tiles.

We assume that we are given three tile sets T , U , and B. Let tile set B
contain the background information. Typically, this information would be simple,
like column margins, row margins, or just the proportions of ones in the whole
dataset. B can be also be empty, if we do not have or wish to use any background
knowledge. Our goal is now to compute the distance between T and U given
B. We assume that the frequencies for the tile sets we are given are mutually
consistent; which is automatically guaranteed if the frequencies for all three tile
sets are computed from a single dataset. Now, let M = T ∪U∪B be the collection
containing all tiles. We define the distance between T and U , w.r.t. B, as

d(T ,U ;B) =
KL(M‖U ∪ B) + KL(M‖T ∪ B)

KL(M‖B)
.

Using Theorem 2 we can compute the distance in O(NM) time.
If the given tiles are exact, the distance has a simple interpretable form;

namely, the distance can be expressed with Jaccard similarity.

Theorem 5. Assume three tile collections T , U , and B with exact frequencies
{αT }, {βU}, and {γB}. Define X = s(T ) \ s(B) and Y = s(U) \ s(B). Then
d(T ,U ;B) = 1 − |X ∩ Y |/|X ∪ Y |.

Example 3. Let us continue Example 2. To compute d(T ,U ; ∅) we first note that
T and U only have exact tiles, and hence we can use Theorem 5. So, we have
|s(T ) \ s(U)| = 2, |s(U) \ s(T )| = 8, and |s(T ) ∪ s(U)| = 18. And hence, the
distance d(T ,U ; ∅) = (2 + 8)/18 = 5/9.
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Next, let M = T ∪ U ∪ B. To compute d(T ,U ;B), note that

KL(M‖T ∪ B) = 2 log(6) + 10 log(6/5) ≈ 5.4067 .

where the first term represents the positive entries in M and the second term the
negative entries in M. Similarly, KL(M‖B) ≈ 15.2, and KL(M‖U ∪ B) ≈ 3.8.
Consequently, the distance is equal to d(T ,U ;B) ≈ 0.6 which is slightly larger
than d(T ,U ; ∅) ≈ 0.56. This is due to the fact that adding B to T makes the
probability of encountering a 1 at (3, 4) and (3, 5) in the model less likely. Hence,
given that background knowledge, and regarding U , we are more surprised to
find that these entries indeed contain ones.

5 Redescribing Sets of Tiles

Above, we were only concerned in finding out how much information two tile
sets share. In this section we consider a more elaborate problem. Namely, given
two tile sets, say T and U , we want to find out which tiles from U best describe
the information provided by T . To this end, we will use our distance as follows.

Problem 1 (Redescribe). Given three sets of tiles T , U , and B with consistent
frequencies, find a subset V ⊆ U such that d(V , T ;B) is minimized.

It turns out that finding the best tile subset is computationally intractable.

Theorem 6. The decision version of Redescribe is an NP-hard problem.

Hence, we resort to a simple greedy heuristic: we add iteratively a tile that makes
the current tile set closest to the target tile set. We stop the algorithm when we
can no longer decrease the distance by adding more tiles.

6 Related Work

To our knowledge, defining a distance between two general tile sets is a novel
idea. However, there exist several techniques for for comparing datasets using
patterns which comes to comparing the same pattern set with different supports.
Such proposals include a Mahalanobis distance between itemset collections [23]
and a compression-based distance between itemsets [25]. In addition, Hollmén
et al. suggested using L1 distance between frequent itemset collections, where
the missing frequencies were estimated with the support threshold [11].

From technical point of view, comparing pattern sets given background knowl-
edge is akin to defining an interestingness measure based on deviation from the
background knowledge. In fact, our approach for building a global Maximum
Entropy model from tiles was inspired by the work of De Bie [5], where he
builds a similar maximum entropy model from row and column margins (i.e. a
Rasch model [21]) and uses it as a static null hypothesis to rank tiles. Further
related proposals include iterative mining of patterns by empirical p-values and
randomisation [10], and maximum entropy models based on itemsets [27, 12].
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Several techniques have been proposed for mining sets of tiles. Geerts et al.
suggested discovering tilings that cover as many ones as possible [8]. Xiang et al.
gave a method to mine (possibly noisy) tiles that cover ones while minimising a
cost: the number of transactions and items needed to describe tiles [28]. These
methods focus on covering the ones in the data, alternatively, we can assess
the quality of a tiling by statistical means. Gionis et al. suggested discovering
hierarchical tiles by building a statistical model and optimising an MDL score [9].
De Bie gave a maximum entropy model based on column/row margins to rank
tiles [5]. Vreeken et al. propose that the best set of tiles (or itemsets) is the tile
set that compresses the dataset best [26].

An alternative approach for discovering tiles is to consider a Boolean matrix
factorisation [14]. That is, factorise the dataset into two low rank Boolean ma-
trices, where the row vectors of the one matrix correspond to itemsets, while the
column vectors of the other matrix correspond to tid-lists. The Boolean product
of these matrices naturally defines a set of noisy tiles.

Compared to tiles, computing maximum entropy models based on itemsets is
much more difficult. The reason for this is that there is no equivalent version of
Lemma 1 for itemsets. In fact, computing an expected value of an itemset from
a maximum entropy model is PP-hard [22]. To avoid these problems, we can
convert itemsets to exact tiles by considering their supporting transactions.

Redescribing tile sets is closely related to redesciption mining, in which the
idea is to find pairs of syntactically different patterns covering roughly the same
transactions. Ramakrishnan et al. [20] originally approached the problem by
building decision trees. Other approaches include Boolean Formulae with no
overlap [7], and exact minimal redescriptions [29]. From a computational point
of view, the difference between our problem and existing work is the goal: re-
description mining aims to construct an alternative pattern given a single target
pattern, while we consider sets of target and candidate patterns, and aim to find
the subset of patterns from candidates that together describe the target best.

7 Experiments

In this section we empirically evaluate our measure. We provide our code for re-
search purposes1. We evaluate our measure on four publicly available real world
datasets. Abstracts contains the abstracts of the papers accepted at ICDM up to
2007, where words have been stemmed and stop words removed [5]. The DNA
amplification data contains information on DNA copy number amplifications.
Such copies are known to activate oncogenes and are the hallmarks of nearly
all advanced tumours [17]. The Mammals presence data consists of presence
records of European mammals2 within geographical areas of 50 × 50 kilome-
ters [15]. Finally, Paleo contains information on fossil records3 found at specific
palaeontological sites in Europe [6]. Computing a single distance typically takes
1 http://www.adrem.ua.ac.be/implementations/
2 Available for research purposes: http://www.european-mammals.org
3 NOW public release 030717 available from [6].

http://www.adrem.ua.ac.be/implementations/
http://www.european-mammals.org
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Table 1. Number of tiles extracted by each of the considered methods

Number of Tiles per Method

Dataset N M clust bicl atcl sscl asso tiling hyper itt krimp mtv

Abstracts 859 3933 5×M 25 753 100 100 38 100 100 100 25
DNA 4590 392 5×M 25 56 100 100 32 100 100 100 100
Mammals 2183 124 5×M 25 28 100 91 3 100 2 100 14
Paleo 501 139 5×M 25 514 100 100 100 100 71 85 14

a few seconds, up to maximally two minutes for the Abstracts dataset when con-
sidering the most complex sets of tiles and most detailed background knowledge.

7.1 Methods and Mining Results

We apply our measure to compare between the results of ten different exploratory
data mining methods for binary data. Table 1 gives an overview, here we state
the parameters we use and how we refer to each of the methods between brackets.

We employ simple k-means clustering (clus) with k = 5 clusters, using L1 dis-
tance. We turn the clusters into tiles by computing column margins inside each
cluster. A bi-clustering simultaneously cluster the transactions and the items; a
cluster is then a tile defined by the corresponding pair of item and transaction
clusters [18]. We apply biclustering (bicl) by separately clustering the columns
and rows using again k-means clustering (k = 5) and combine the two cluster-
ings into a grid. Puolamäki et al. showed that a good approximation bound can
be achieved with this approach [19]. Each cluster is represented by a single tile.
We use the parameter-free attribute clustering (atcl) approach by Mampaey &
Vreeken [13], and convert each cluster into a tile — thereby somewhat oversim-
plifying these results. For subspace clustering (sscl), we used the implementation
of Müller et al. [16] of the ProClus algorithm [1], mined 100 clusters, each over
maximally 32 dimensions, and converted each into a noisy tile. We mined over-
lapping Tilings [8] of up to 100 exact tiles (tiling), allowing the algorithm a
maximum of 8 hours. The Asso algorithm [14], (asso), was ran with a maximum
of 100 factors, of which the non-empty ones were converted into tiles.

Per dataset, we mined up to 100 hyper rectangles [28], (hyper), as noisy tiles.
We mined Information-Theoretic exact Tiles [5], (itt), where the method auto-
matically selects the number of tiles, however, we used top-100 tiles, at most.
For mining Maximum-Entropy Tiles (mtv) [12], we set a maximum of 2 hours
and 100 tiles. We used Krimp [26] to mine itemsets that compress, and took the
top-100 most-used itemsets as tiles using their Krimp-usage as tid -sets (krimp).
All four of these methods select itemsets from a candidate collection, for which
we used closed frequent itemsets mined at as low as feasible support thresh-
olds, of resp. 5, 1, 800, and 1. For Krimp, however, we could use lower support
thresholds for the Abstract and Mammals datasets, resp. 4 and 300.
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Fig. 2. Distance between top-k tile sets and top-100 tile sets as a function of k. Rows
represent datasets while the columns represent the methods.

7.2 Measuring Distances

First, we evaluate whether the measured distance converges to 0 when two sets
of tiles approximate each other. To this end, we take the tile sets of asso, krimp,
and itt, as obtained on resp. the Abstracts and DNA datasets. In Figure 2 we
plot, per method, the measured distance between the top-k and top-100 tiles. We
give the measurements for three different background knowledge settings, resp.
no background knowledge, knowledge of the average density of the dataset, and
the column margins. The tiles are sorted according to their output order, for
asso and itt, and ascending on code length for krimp.

As Figure 2 shows, measurements indeed converge to 0 for higher k, i.e. when
the two tile sets become more identical. Adding background information typi-
cally increases the distance. This is due to two reasons. First, when density is
used, then we can infer additional differences between the areas that are not
covered by tiles, thus highlighting the differences. Second, when we are using
column margins, we reduce KL(M‖B), the joint information w.r.t. the back-
ground knowledge, consequently increasing the distance. Interestingly enough,
for Abstracts the distances for asso decrease when density is used. This is caused
by the fact that asso produces many overlapping tiles and these overlaps are em-
phasised when density is used.

7.3 Distances between Results

Our main experiment is to investigate how well we can compare between results
of different methods. To do so, for every dataset, and every method considered,
we convert their results into tile sets as described above. We measure the pairwise
difference between each of these tile sets, using resp. the empty set, overall
density, the column margins, and the combination of row and column margins, as
background knowledge. For analysis, we present these numerical results, and the
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Fig. 3. Sammon projections of distances between tile sets. Each row represents a
dataset and each column represents used background knowledge. Note that atcl and
mtv are not included in the rightmost columns, as their tiles provide no information
beyond column margins.

averages over the datasets, visually in Figure 3 by plotting all pairwise distances
by Sammon projection. We colour tiling and clustering methods differently.

Considering the first column first, we see that without background knowledge
three of the clustering approaches provide virtually the same result. We also see
that, albeit not identical, the results of asso, itt, krimp, and tiling are relatively
close to each other; which makes sense from a conceptual point of view, as
these methods are methodologically relatively similar. For DNA, the measured
dissimilarity between these methods lies between 0.28 and 0.38, whereas the
dissimilarities to the other methods measure approximately 0.9.

We observe that hyper, while conceptually similar, is measured to provide
different results when no background knowledge is given. This is mostly due to
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Table 2. Redescribing the results of clustering (clus). Measurements for the found
redescription, and complete tile set, and the number of selected tiles.

Redescription / Full Tile Set (# of Tiles)

Dataset asso tiling hyper itt krimp

Abstracts .76/.76 (70) .74/.74 (38) .50/.57 (32) .68/.68 (100) .85/.85 (98)
DNA .65/.83 (11) .70/.79 (9) .67/.84 (21) .67/.81 (11) .67/.81 (19)
Mammals .30/.31 (51) .68/.68 (3) .34/.39 (24) .78/.78 (2) .49/.49 (91)
Paleo .68/.83 (16) .69/.78 (28) .68/.81 (23) .73/.81 (21) .74/.79 (38)

associ rule
significantli outperform
high dimension
experiment evalu show
vector support machin

krimp

vector support machin
associ rule
dimension
outperform

itt, d = 0.77

associ rule mine algo
vector method support
algo method high dimension
algo show

asso, d = 0.83

Fig. 4. Redescribing 5 selected krimp tiles by those discovered by itt and asso

it including a few very large tiles, that practically cover the whole data, whereas
the other methods only cover the data partially. For hyper we see that once
background knowledge is included, these large tiles are explained away, and the
method subsequently becomes part of the ‘tiling’ group.

Clustering algorithms are close to each other when no background information
is used because they all convey the fundamental information of datasets being
sparse. When we use density as backgrond knowledge, the differences between
clusterings become visible. Interestingly enough, adding row margins to column
margins as background information has small impact on the distances.

7.4 Redescribing Results

Next, we empirically evaluate how our measure can be employed with regard to
redescribing results; both as validation as well as possible application.

To this end, we first investigate the redescription of results of completely
different methods. As such, we take clustering as the target and density as the
background information, and redescribe its result by using the tile sets of five
of the pattern mining methods as candidate tile sets. Table 2 shows the results
of these experiments: for four datasets, the measured divergence between the
redescription and the target, the divergence of the complete tile set to the target,
and the number of tiles selected for the redescription. First, and foremost, we see
that by redescription the measured divergence decreases, which correctly shows
that by filtering out, e.g. too specific, tiles that provide information not in the
target, we obtain a better description of the target.

We also see, with the exception of Mammals, that the measurements are quite
high overall, suggesting the clustering provides information these results do not;
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not surprising, as these pattern mining methods focus on covering 1s, and not
necessarily cover the whole data. Indeed, we see that by providing large and
noisy tiles, and so covering more of the data, asso and hyper lead to the best
redescriptions of the clustering results. In particular for Mammals, the target can
be approximated very well, by resp. only half and a quarter of the total tiles.
Overall, we note that typically only fractions of the full tile sets are selected, yet
the amount of shared information is larger than for the full tile set: the pattern
mining methods provide detailed local information not captured by clustering.

Second, we take a closer look at individual rediscriptions. In order to be able
to interpret these, we use the Abstracts dataset. We use asso, krimp, and itt, as
these provide sufficiently many tiles to choose from; we leave hyper out, as for
this data it mostly gives only very general tiles, covering all 1s in only 100 tiles.

By hand, we select 5 out of 100 krimp tiles, and we identify, for asso and itt,
the sets of tiles that best approximate that partial result, and investigate how
well the target concepts are approximated. In Figure 4, we give an example. By
the high distances, 0.77 and 0.83, we see the target is not approximated in detail.
Overall, for itt we find only high-level translations that leave out detail, as its
full tile set consists mostly of small itemsets. For asso, we see the redescription
consists of target tiles combined with general concepts, which together give a
reasonable approximation of the target. It is important to note that not simply all
intersecting itemsets are given, but only those that provide sufficient information
on the target; for both methods, overly large and overly general tiles (e.g. ‘high’)
are not included in the redescription.

8 Discussion

The experimental evaluation of our measure shows it works well in practice, pro-
viding insightful groupings of (the results of) exploratory data mining methods
on binary data, and meaningful redescriptions of partial results.

The goal of this paper is to take a first step towards comparing between the
results of different data mining methods. The method we propose here is for
results obtained on binary data. By developing further maximum entropy mod-
elling techniques, however, the same basic idea could be applied to richer data
types. We currently straightforwardly convert results into tile sets, capturing
much of the information they provide. Ideally, however, we would be able to
encode structure beyond simple tile densities, e.g. which attribute-value combi-
nations occur how often (i.e. for atcl), such that the information captured in a
data mining result can be maintained even more precisely when converted into
sets of tiles. Such more complex modelling aside, the general idea of comparing
how many possible datasets exhibit such structure remains the same.

Besides measuring divergence of results between different methods, our ap-
proach can also be used to choose the most informative result out of many of
one randomised method, or, to measure differences between results when varying
parameters of a method. It is important to note that our method solely mea-
sures the information shared between two sets of tiles; it does not measure the
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subjective quality of results, nor does it say anything about the ease of analysis
of a result. Instead, it gives insight whether or not a, possibly easily interpreted,
result is as informative as another, possibly much more complex result.

9 Conclusion

In this paper we discussed comparing results of different explorative data min-
ing algorithms. We argued that any mining result identifies some properties of
the data, and that, in an abstract way, we can identify all datasets for which
these properties hold. By incorporating these properties into a model using the
Maximum Entropy principle, we can measure the shared amount of information
by Kullback-Leibler divergence. The measure we construct this way is flexible,
and naturally allows including background knowledge, such that differences in
results can be measured from the perspective of what a user already knows.

As a first step towards comparing results in general, we formalised our ap-
proach for binary data, showed results are easily converted into tiles, and dis-
cussed how to incorporate these into a Maximum Entropy model. Our approach
provides a means to study and tell differences between results of different data
mining methods. As an application, we showed it can be used to parameter-
freely identify which parts of results best redescribe a given result. Experiments
showed our measure gives meaningful results, correctly identifies methods that
are similar in nature, and automatically identifies sound redescriptions of results.
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Abstract. The learning of predictive models that guarantee monotonic-
ity in the input variables has received increasing attention in machine
learning in recent years. While the incorporation of monotonicity con-
straints is rather simple for certain types of models, it may become a more
intricate problem for others. By trend, the difficulty of ensuring mono-
tonicity increases with the flexibility or, say, nonlinearity of a model. In
this paper, we advocate the so-called Choquet integral as a tool for learn-
ing monotone nonlinear models. While being widely used as a flexible
aggregation operator in different fields, such as multiple criteria decision
making, the Choquet integral is much less known in machine learning so
far. Apart from combining monotonicity and flexibility in a mathemat-
ically sound and elegant manner, the Choquet integral has additional
features making it attractive from a machine learning point of view.
Notably, it offers measures for quantifying the importance of individual
predictor variables and the interaction between groups of variables. As
a concrete application of the Choquet integral, we propose a general-
ization of logistic regression. The basic idea of our approach, referred
to as choquistic regression, is to replace the linear function of predictor
variables, which is commonly used in logistic regression to model the log
odds of the positive class, by the Choquet integral.

1 Introduction

A proper specification of the type of dependency between a set of predictor
(input) variables X1, . . . , Xm and the target (output) variable Y is an important
prerequisite for successful model induction. The specification of a corresponding
hypothesis space imposes an inductive bias that, amongst others, allows for the
incorporation of background knowledge in the learning process. An important
type of background knowledge is monotonicity: Everything else being equal, the
increase (decrease) of a certain input variable Xi can only produce an increase
in the output variable Y (e.g., a real number in regression, a class in ordered
classification, or the probability of the positive class in binary classification).
Adherence to this kind of background knowledge may not only be beneficial for
model induction, but is often even considered as a hard constraint. For example,
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no medical doctor will accept a model in which the probability of cancer is not
monotone increasing in tobacco consumption.

The simplest type of dependency is a linear relationship:

Y =
m∑
i=1
αiXi + ε , (1)

where α1, . . . , αm are real coefficients and ε is an error term. Monotonicity can
be guaranteed quite easily for (1), since monotonicity in Xi is equivalent to the
constraint αi ≥ 0. Another important advantage of (1) is its comprehensibility.
In particular, the direction and strength of influence of each predictor Xi are
directly reflected by the corresponding coefficient αi.

Perhaps the sole disadvantage of a linear model is its inflexibility and, coming
along with this, the supposed absence of any interaction between the variables:
The effect of an increase of Xi is always the same, namely ∂Y/∂Xi = αi, re-
gardless of the values of all other attributes. In many real applications, this
assumption is not tenable. Instead, more complex, nonlinear models are needed
to properly capture the dependencies between the inputs Xi and the output Y .

An increased flexibility, however, typically comes at the price of a loss in terms
of the two previous criteria: comprehensibility is hampered, and monotonicity is
more difficult to assure. In fact, as soon as an interaction between attributes is
allowed, the influence of an increase in Xi may depend on all other variables, too.
As a simple example, consider the extension of (1) by the addition of interaction
terms, a model which is often used in statistics:

Y =
m∑
i=1
αiXi +

∑
1≤i<j≤m

αijXiXj + ε . (2)

For this model, ∂Y/∂Xi is given by αi+
∑
j �=i αijXj and depends on the values of

all other attributes, which means that, depending on the context as specified by
these values, the monotonicity condition may change from one case to another.
Consequently, it is difficult to find simple global constraints on the coefficients
that assure monotonicity. For example, assuming that all attributes are non-
negative, it is clear that αi ≥ 0 and αij ≥ 0 for all 1 ≤ i ≤ j ≤ m will
imply monotonicity. While being sufficient, however, these constraints are non-
necessary conditions, and may therefore impose restrictions on the model space
that are more far-ranging than desired; besides, negative interactions cannot be
modeled in this way. Quite similar problems occur for commonly used nonlinear
methods in machine learning, such as neural networks and kernel machines.

In this paper, we advocate the use of the (discrete) Choquet integral as a
tool that is interesting in this regard. As will be argued in more detail later on,
the Choquet integral combines the aforementioned properties in a quite conve-
nient and mathematically elegant way: By its very nature as an integral, it is
a monotone operator, while at the same time allowing for interactions between
attributes. Moreover, the existence of natural measures for quantifying the im-
portance of individual and the interaction between groups of features, it provides
important insights into the model, thereby supporting interpretability.
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The rest of this paper is organized as follows. In the next section, we give
a brief overview of related work. In Section 3, we recall the basic definition
of the Choquet integral and some related notions. In Section 4, we propose a
generalization of logistic regression in which the Choquet integral is used to
model the log odds of the positive class. Experimental results are presented in
Section 5, prior to concluding the paper with a few remarks in Section 6.

2 Related Work

As already mentioned, the problem of monotone classification has received in-
creasing attention in the machine learning community in recent years,1 despite
having been introduced in the literature much earlier [1]. Meanwhile, several ma-
chine learning algorithms have been modified so as to guarantee monotonicity in
attributes, including nearest neighbor classification [2], neural networks [3], de-
cision tree learning [4,5], rule induction [6], as well as methods based on isotonic
regression [7] and piecewise linear models [8].

Instead of modifying learning algorithms so as to guarantee monotone mod-
els, another idea is to modify the training data. To this end, data pre-processing
methods such as re-labeling techniques have been developed. Such methods
seek to repair inconsistencies in the training data, so that (standard) classifiers
learned on that data will automatically be monotone [9, 10].

Although the Choquet integral has been widely applied as an aggregation
operator in multiple criteria decision making [11, 12, 13], it has been used much
less in the field of machine learning so far. There are, however, a few notable
exceptions. First, the problem of extracting a Choquet integral (or, more pre-
cisely, the non-additive measure on which it is defined) in a data-driven way has
been addressed in the literature. Essentially, this is a parameter identification
problem, which is commonly formalized as a constraint optimization problem,
for example using the sum of squared errors as an objective function [14,15]. To
this end, [16] proposed an approach based on the use of quadratic forms, while
an alternative heuristic, gradient-based method called HLMS (Heuristic Least
Mean Squares) was introduced in [17]. In [18, 19], the Choquet integral is used
in the context of ordinal classification. Besides, the Choquet integral has been
used as an aggregation operator in the context of ensemble learning, i.e., for
combining the predictions of different classifiers [20].

3 The Discrete Choquet Integral

In this section, we given a brief introduction to the (discrete) Choquet integral,
which, to the best of our knowledge, is not widely known in the field of machine
learning so far. Since the Choquet integral can be seen as a generalization of the
standard (Lebesque) integral to the case of non-additive measures, we start with
a reminder of this type of measure.
1 For example, a workshop on “Learning Monotone Models from Data” was organized

at ECML/PKDD 2009 in Bled, Slovenia.
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3.1 Non-additive Measures

Let C = {c1, . . . , cm} be a finite set and μ : 2C → [0, 1] a measure. For each
A ⊆ C, we interpret μ(A) as the weight or, say, the importance of the set of
elements A. As an illustration, one may think of C as a set of criteria (binary
features) relevant for a job, like “speaking French” and “programming Java”, and
of μ(A) as the evaluation of a candidate satisfying criteria A (and not satisfying
C\A). The term “criterion” is indeed often used in the decision making literature,
where it suggests a monotone “the higher the better” influence.

A standard assumption on a measure μ(·), which is, for example, at the core
of probability theory, is additivity: μ(A ∪ B) = μ(A) + μ(B) for all A,B ⊆ C
such that A∩B = ∅. Unfortunately, additive measures cannot model any kind of
interaction between elements: Extending a set of elements A by a set of elements
B always increases the weight μ(A) by the weight μ(B), regardless of A and B.

Suppose, for example, that the elements of two sets A and B are complemen-
tary in a certain sense. For instance, A = {French, Spanish} and B = {Java}
could be seen as complementary, since both language skills and programming
skills are important for the job. Formally, this can be expressed in terms of a
positive interaction: μ(A ∪ B) > μ(A) + μ(B). In the extreme case, when lan-
guage skills and programming skills are indeed essential, μ(A ∪ B) can be high
although μ(A) = μ(B) = 0 (suggesting that a candidate lacking either language
or programming skills is completely unacceptable). Likewise, elements can inter-
act in a negative way: If two sets A and B are partly redundant or competitive,
then μ(A∪B) < μ(A)+μ(B). For example, A = {C, C#} and B = {Java} might
be seen as redundant, since one programming language does in principle suffice.

The above considerations motivate the use of non-additive measures, also
called capacities or fuzzy measures, which are simply normalized and monotone
[21]:

μ(∅) = 0, μ(C) = 1 and μ(A) ≤ μ(B) for all A ⊆ B ⊆ C . (3)

A useful representation of non-additive measures, that we shall explore later on
for learning Choquet integrals, is in terms of the Möbius transform:

μ(B) =
∑
A⊆B
m(A) (4)

for all B ⊆ C, where the Möbius transform mμ of the measure μ is defined as
follows:

mμ(A) =
∑
B⊆A

(−1)|A|−|B|μ(B) . (5)

The value mμ(A) can be interpreted as the weight that is exclusively allocated
to A, instead of being indirectly connected with A through the interaction with
other subsets.

A measure μ is said to be k-order additive, or simply k-additive, if k is the
smallest integer such that m(A) = 0 for all A ⊆ C with |A| > k. This property
is interesting for several reasons. First, as can be seen from (4), it means that a
measure μ can formally be specified by significantly fewer than 2m values, which
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are needed in the general case. Second, k-additivity is also interesting from a
semantic point of view: As will become clear in the following, this property
simply means that there are no interaction effects between subsets A,B ⊆ C
whose cardinality exceeds k.

3.2 Importance of Criteria and Interaction

An additive (i.e., k-additive with k = 1) measure μ can be written as follows:

μ(A) =
∑
ci∈A
wi ,

with wi = μ({ci}) the weight of ci. Due to (3), these weights are non-negative and
such that

∑m
i=1 wi = 1. In this case, there is obviously no interaction between

the criteria ci, i.e., the influence of a ci on the value of μ is independent of
the presence or absence of any other cj . Besides, the weight wi is a natural
quantification of the importance of ci.

Measuring the importance of a criterion ci becomes obviously more involved
when μ is non-additive. Besides, one may then also be interested in a measure of
interaction between the criteria, either pairwise or even of a higher order. In the
literature, measures of that kind have been proposed, both for the importance
of single as well as the interaction between several criteria.

Given a fuzzy measure μ on C, the Shaply value (or importance index) of ci is
defined as a kind of average increase in importance due to adding ci to another
subset A ⊂ C:

ϕ(ci) =
∑

A⊆C\{ci}

1

m

(
m− 1
|A|
) (μ(A ∪ {ci})− μ(A)

)
. (6)

The Shaply value of μ is the vector ϕ(μ) = (ϕ(c1), . . . , ϕ(cm)). One can show
that 0 ≤ ϕ(ci) ≤ 1 and

∑m
i=1 ϕ(ci) = 1. Thus, ϕ(ci) is a measure of the relative

importance of ci. Obviously, ϕ(ci) = μ({ci}) if μ is additive.
The interaction index between criteria ci and cj , as proposed by Murofushi

and Soneda [22], is defined as follows:

Ii,j =
∑

A⊆C\{ci,cj}

μ(A ∪ {ci, cj})− μ(A ∪ {ci})− μ(A ∪ {cj}) + μ(A)

(m− 1)
(
m− 2
|A|
) .

This index ranges between −1 and 1 and indicates a positive (negative) interac-
tion between criteria ci and cj if Ii,j > 0 (Ii,j < 0). The interaction index can
also be expressed in terms of the Möbius transform:

Ii,j =
∑

K⊆C\{ci,cj},|K|=k

1
k + 1

m
(
{ci, cj} ∪K

)
.
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Furthermore, as proposed by Grabisch [23], the definition of interaction can be
extended to more than two criteria, i.e., to subsets T ⊆ C:

IT =
m−|T |∑
k=0

1
k + 1

∑
K⊆C\T,|K|=k

m
(
T ∪K

)
.

3.3 The Choquet Integral

So far, the criteria ci were simply considered as binary features, which are either
present or absent. Mathematically, μ(A) can thus also be seen as an integral
of the indicator function of A, namely the function fA given by fA(c) = 1 if
c ∈ A and = 0 otherwise. Now, suppose that f : C → R+ is any non-negative
function that assigns a value to each criterion ci; for example, f(ci) might be the
degree to which a candidate satisfies criterion ci. An important question, then,
is how to aggregate the evaluations of individual criteria, i.e., the values f(ci),
into an overall evaluation, in which the criteria are properly weighted according
to the measure μ. Mathematically, this overall evaluation can be considered as
an integral Cμ(f) of the function f with respect to the measure μ.

Indeed, if μ is an additive measure, the standard integral just corresponds to
the weighted mean

Cμ(f) =
m∑
i=1
wi · f(ci) =

m∑
i=1
μ({ci}) · f(ci) , (7)

which is a natural aggregation operator in this case. A non-trivial question,
however, is how to generalize (7) in the case where μ is non-additive.

This question, namely how to define the integral of a function with respect to a
non-additive measure (not necessarily restricted to the discrete case), is answered
in a satisfactory way by the Choquet integral, which has first been proposed
for additive measures by Vitali [24] and later on for non-additive measures by
Choquet [25]. The point of departure of the Choquet integral is an alternative
representation of the “area” under the function f , which, in the additive case,
is a natural interpretation of the integral. Roughly speaking, this representation
decomposes the area in a “horizontal” instead of a “vertical” manner, thereby
making it amenable to a straightforward extension to the non-additive case.
More specifically, note that the weighted mean can be expressed as follows:
m∑
i=1
f(ci) · μ({ci}) =

m∑
i=1

(
f(c(i))− f(c(i−1)

)
·
(
μ({c(i)}) + . . .+ μ({c(n)})

)

=
m∑
i=1

(
f(c(i))− f(c(i−1)

)
· μ
(
A(i)

)
,

where (·) is a permutation of {1, . . . ,m} such that 0 ≤ f(c(1)) ≤ f(c(2)) ≤ . . . ≤
f(c(m)) (and f(c(0)) = 0 by definition), and A(i) = {c(i), . . . , c(m)}; see Fig. 1 as
an illustration.
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Fig. 1. Vertical (left) versus horizontal (right) integration. In the first case, the height
of a single bar, f(ci), is multiplied with its “width” (the weight μ({ci})), and these
products are added. In the second case, the height of each horizontal section, f(c(i))−
f(c(i−1)), is multiplied with the corresponding “width” μ(A(i)).

Now, the key difference between the left and right-hand side of the above
expression is that, whereas the measure μ is only evaluated on single elements ci
on the left, it is evaluated on subsets of elements on the right. Thus, the right-
hand side suggests an immediate extension to the case of non-additive measures,
namely the Choquet integral, which, in the discrete case, is formally defined as
follows:

Cμ(f) =
m∑
i=1

(
f(c(i))− f(c(i−1))

) · μ(A(i))

In terms of the Möbius transform of μ, the Choquet integral can also be expressed
as follows:

Cμ(f) =
m∑
i=1

(
f(c(i))− f(c(i−1))

) · μ(A(i))

=
m∑
i=1
f(c(i)) · (μ(A(i))− μ(A(i+1)))

=
m∑
i=1
f(c(i))

∑
R⊆T(i)

m(R)

=
∑
T⊆C
m(T )×min

i∈T
f(ci) (8)

where T(i) =
{
S ∪ {c(i)} |S ⊂ {c(i+1), . . . , c(m)}

}
.

4 Choquistic Regression

Consider the standard setting of binary classification, where the goal is to predict
the value of an output (response) variable y ∈ Y = {0, 1} for a given instance

x = (x1, . . . , xm) ∈ X = X1 ×X2 × . . .×Xm
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represented in terms of a feature vector. More specifically, the goal is to learn a
classifier L : X → Y from a given set of (i.i.d.) training data

D =
{

(x(i), y(i))
}n
i=1
⊂ (X × Y)n

so as to minimize the risk

R(L) =
∫
X×Y
�(L(x), y) dPXY (x, y) ,

where �(·) is a loss function (e.g., the simple 0/1 loss given by �(ŷ, y) = 0 if ŷ = y
and = 1 if ŷ �= y).

Logistic regression is a well-established statistical method for (probabilistic)
classification [26]. Its popularity is due to a number of appealing properties,
including monotonicity and comprehensibility: Since the model is essentially lin-
ear in the input attributes, the strength of influence of each predictor is directly
reflected by the corresponding regression coefficient. Moreover, the influence of
each attribute is monotone in the sense that an increase of the value of the
attribute can only increase (decrease) the probability of the positive class.

Formally, the probability of the positive class (and hence of the negative class)
is modeled as a generalized linear function of the input attributes, namely in
terms of the logarithm of the probability ratio:

log
(

P(y = 1 |x)
P(y = 0 |x)

)
= w0 +w�x , (9)

where w = (w1, w2, . . . , wm) ∈ Rm is a vector of regression coefficients and
w0 ∈ R a constant bias (the intercept). A positive regression coefficient wi > 0
means that an increase of the predictor variable xi will increase the probability
of a positive response, while a negative coefficient implies a decrease of this prob-
ability. Besides, the larger the absolute value |wi| of the regression coefficient,
the stronger the influence of xi.

Since P(y = 0 |x) = 1−P(y = 1 |x), a simple calculation yields the posterior
probability

πl
df= P(y = 1 |x) =

(
1 + exp(−w0 −w�x)

)−1
. (10)

The logistic function z �→ (1 + exp(−z))−1, which has a sigmoidal shape, is a
specific type of link function.

Needless to say, the linearity of the above model is a strong restriction from
a learning point of view, and the possibility of interactions between predictor
variables has of course also been noticed in the statistical literature [27]. A
standard way to handle such interaction effects is to add interaction terms to the
linear function of predictor variables, like in (2). As explained earlier, however,
the aforementioned advantages of logistic regression will then be lost.

In the following, we therefore propose an extension of logistic regression that
allows for modeling nonlinear relationships between input and output variables
while preserving the advantages of comprehensibility and monotonicity.
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4.1 The Choquistic Model

In order to model nonlinear dependencies between predictor variables and re-
sponse, and to take interactions between predictors into account, we propose
to extend the logistic regression model by replacing the linear function x �→
w0 + w�x in (9) by the Choquet integral. More specifically, we propose the
following model

πc
df= P(y = 1 |x) =

(
1 + exp(−γ (Cμ(fx)− β))

)−1
, (11)

where Cμ(fx) is the Choquet integral (with respect to the measure μ) of the
function fx : {c1, . . . , cm} → [0, 1] that maps each attribute ci to a normalized
value xi = fx(ci) ∈ [0, 1]; β, γ ∈ R are constants.

The normalization is meant to turn each predictor variable into a criterion,
i.e., a “the higher the better” attribute, and to assure commensurability between
the criteria [28]. A simple transformation, that we shall also employ in our ex-
perimental studies, is given by the mapping zi = (xi −mi)/(Mi −mi), where
mi and Mi are lower and upper bounds for xi (perhaps estimated from the
data); if the influence of xi is actually negative (i.e., wi < 0), then the mapping
zi = (Mi − xi)/(Mi −mi) is used instead.

In order to verify that our model (11) is a proper generalization of standard
logistic regression, recall that the Choquet integral reduces to a weighted mean
(7) in the special case of an additive measure μ. Moreover, consider any linear
function x �→ g(x) = w0 +w�x with w = (w1, . . . , wm). This function can also
be written in the form

g(x) = w0 +
m∑
i=1

(wipi + |wi|(Mi −mi)zi)

= w0 +
m∑
i=1
wipi +

m∑
i=1
|wi|(Mi −mi)zi

= w′0 +

(
m∑
i=1
ui

)−1 m∑
i=1
u′izi

= γ

(
m∑
i=1
u′izi − β

)
,

where pi = mi if wi ≥ 0 and pi = Mi if wi < 0, ui = |wi|(Mi − mi), γ =
(
∑m
i=1 ui)

−1, u′i = ui/γ, w′0 = w0 +
∑m
i=1 wipi, β = −w′0/γ. By definition, the

u′i are non-negative and sum up to 1, which means that
∑m
i=1 u

′
izi is a weighted

mean of the zi that can be represented by a Choquet integral.
Recalling the idea of “evaluating” an instance x in terms of a set of criteria,

the model (11) can be seen as a two-step procedure: The first step consists of an
assessment of x in terms of a (latent) utility degree

u = U(x) = Cμ(fx) ∈ [0, 1].
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1
utility u estimated by the Choquet integral
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Fig. 2. Probability of a positive decision, P(y = 1 |x), as a function of the estimated
degree of utility, u = U(x), for a threshold β = 0.7 and different values of γ

Then, in a second step, a discrete choice (yes/no decision) is made on the basis of
this utility. Roughly speaking, this is done through a “probabilistic thresholding”
at the utility threshold β. If U(x) > β, then the decision tends to be positive,
whereas if U(x) < β, it tends to be negative. The precision of this decision is
determined by the parameter γ (see Fig. 2): For large γ, the decision function
converges toward the step function u �→ I(u > β), jumping from 0 to 1 at β. For
small γ, this function is smooth, and there is a certain probability to violate the
threshold rule u �→ I(u > β). This might be due to the fact that, despite being
important for decision making, some properties of the instances to be classified
are not captured by the utility function. In that case, the utility U(x), estimated
on the basis of the given attributes, is not a perfect predictor for the decision
eventually made. Thus, the parameter γ can also be seen as an indicator of the
quality of the classification model.

4.2 Parameter Estimation

The model (11) has several degrees of freedom: The fuzzy measure μ (Möbius
transform m = mμ) determines the (latent) utility function, while the utility
threshold β and the scaling parameter γ determine the discrete choice model.
The goal of learning is to identify these degrees of freedom on the basis of the
training data D. Like in the case of standard logistic regression, it is possible
to harness the maximum likelihood (ML) principle for this purpose. The log-
likelihood of the parameters can be written as

l(m, γ, β) = log P(D |m, β, γ)

= log

(
n∏
i=1

P(y(i) |x(i);m, β, γ)

)
(12)

=
n∑
i=1
y(i) log π(i)

c +
(
1− y(i)) log

(
1− π(i)

c

)
.
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One easily verifies that (12) is convex with respect to m, γ, and β. In principle,
maximization of the log-likelihood can be accomplished by means of standard
gradient-based optimization methods. However, since we have to assure that
μ is a proper fuzzy measure and, hence, that m guarantees the corresponding
monotonicity and boundary conditions, we actually need to solve a constrained
optimization problem:

max
m,γ,β

{
−γ

n∑
i=1

(1 − y(i))(Cm(x(i))− β)−
n∑
i=1

log
(

1 + exp(−γ (Cm(x(i))− β))
)}

s.t. γ > 0, 0 ≤ β ≤ 1,
∑
T⊆C
m(T ) = 1, and

∑
B⊆A\{ci}

m(B ∪ {ci}) ≥ 0 ∀A ⊆ C, ∀ci ∈ C.

A solution to this problem can be produced by standard solvers. Concretely,
we used the fmincon function implemented in the optimization toolbox of Mat-
lab. This method is based on a sequential quadratic programming approach.

Recall that, once the model has been identified, the importance of each at-
tribute and the degree of interaction between groups of attributes can be derived
from the Möbius transformm; these are given, respectively, by the Shapley value
and the interaction indexes as introduced in Section 3.2.

5 Experiments

5.1 Data Sets

Although the topic is receiving increasing interest in the machine learning com-
munity, benchmark data for monotone classification is by far not as abundant as
for conventional classification. In total, we managed to collect 9 data sets from
different sources, notably the UCI repository2 and the WEKA machine learning
framework [29], for which monotonicity in the input variables is a reasonable
assumption; see Table 1 for a summary. All the data sets can be downloaded at
our website3. Many of them have also been used in previous studies on monotone
learning. Some of them have a numerical or ordered categorical output, however.
These outputs were binarized by thresholding at the median. Moreover, all input
attributes were normalized.

5.2 Methods

Since choquistic regression (CR) can be seen as an extension of standard lo-
gistic regression (LR), it is natural to compare these two methods. Essentially,
2 http://archive.ics.uci.edu/ml/
3 http://www.uni-marburg.de/fb12/kebi/research/
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Table 1. Data sets and their properties

data set #instances #attributes source
Den Bosch (DBS) 120 8 [30]
CPU 209 6 UCI
Breast Cancer (BCC) 286 9 UCI
Auto MPG 392 7 UCI
Employee Selection (ESL) 488 4 WEKA
Mammographic (MMG) 961 6 UCI
Employee Rejection/Acceptance (ERA) 1000 4 WEKA
Lecturers Evaluation (LEV) 1000 4 WEKA
Car Evaluation (CEV) 1728 6 UCI

this comparison should give an idea of the usefulness of an increased flexibility.
On the other side, one may also ask for the usefulness of assuring monotonic-
ity. Therefore, we additionally included two other extensions of LR, which are
flexible but not necessarily monotone, namely kernel logistic regression (KLR)
with polynomial and Gaussian kernels. The degree of the polynomial kernel was
set to 2, so that it models low-level interactions of the features. The Gaussian
kernel, on the other hand, is able to capture interactions of higher order. For
each data set, the width parameter of the Gaussian kernel was selected from
{10−4, 10−3, 10−2, 10−1, 100} in the most favorable way. Finally, we included a
method which is both monotone and flexible, namely the MORE algorithm for
learning rule ensembles under monotonicity constraints [6].

5.3 Results

Classification accuracy was measured in terms of 0/1 loss and determined by
randomly splitting the data into two parts, one part for training and one part
for testing. This was repeated 100 times, and the accuracy degrees were averaged.

A possible improvement of CR over its competitors, in terms of predictive
accuracy, may be due to two reasons: First, in comparison to standard LR, it
is more flexible and has the ability to capture nonlinear dependencies between
input attributes. Second, in comparison to non-monotone learners, it takes back-
ground knowledge about the dependency between input and output variables
into consideration.

Both aspects have to be put in perspective, however. First, regarding flexi-
bility, it is clear that an improvement is unlikely unless additional flexibility is
indeed needed. On the contrary, if the true underlying dependency is indeed a
linear one, at least approximately, then standard logistic regression will be the
model of choice, whereas CR may tend to overfit the training data and hence
generalize worse. Regarding monotonicity, previous studies have indeed shown
that improvements are possible, albeit of a small margin. In fact, upon closer
examination, the benefit of enforcing monotonicity is not entirely obvious [31].
Moreover, the more extensive the training data, the smaller the improvement
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Table 2. Classification performance in terms of the mean and standard deviation of
0/1 loss. From top to bottom: 20%, 50%, and 80% training data.

dataset CR LR KLR-ply KLR-rbf MORE
DBS .2226±.0380 (4) .1803±.0336 (1) .2067±.0447 (3) .1922±.0501 (2) .2541±.0142 (5)
CPU .0457±.0338 (2) .0430±.0318 (1) .0586±.0203 (3) .0674±.0276 (4) .1033±.0681 (5)
BCC .2939±.0100 (4) .2761±.0265 (1) .3102±.0386 (5) .2859±.0329 (3) .2781±.0219 (2)
MPG .0688±.0098 (2) .0664±.0162 (1) .0729±.0116 (4) .0705±.0122 (3) .0800±.0198 (5)
ESL .0764±.0291 (3) .0747±.0243 (1) .0752±.0117 (2) .0794±.0134 (4) .1035±.0332 (5)

MMG .1816±.0140 (3) .1752±.0106 (2) .1970±.0095 (4) .2011±.0123 (5) .1670±.0120 (1)
ERA .2997±.0123 (2) .2922±.0096 (1) .3011±.0132 (3) .3259±.0172 (5) .3040±.0192 (4)
LEV .1527±.0138 (1) .1644±.0106 (4) .1570±.0116 (2) .1577±.0124 (3) .1878±.0242 (5)
CEV .0441±.0128 (1) .1689±.0066 (5) .0571±.0078 (3) .0522±.0085 (2) .0690±.0408 (4)

avg. rank 2.4 1.9 3.3 3.4 4
DBS .1560±.0405 (3) .1443±.0371 (2) .1845±.0347 (5) .1628±.0269 (4) .1358±.0432 (1)
CPU .0156±.0135 (1) .0400±.0106 (3) .0377±.0153 (2) .0442±.0223 (5) .0417±.0198 (4)
BCC .2871±.0358 (4) .2647±.0267 (2) .2706±.0295 (3) .2879±.0269 (5) .2616±.0320 (1)
MPG .0641±.0175 (1) .0684±.0206 (2) .1462±.0218 (5) .1361±.0197 (4) .0700±.0162 (3)
ESL .0660±.0135 (1) .0697±.0144 (3) .0704±.0128 (5) .0699±.0148 (4) .0690±.0171 (2)

MMG .1736±.0157 (3) .1710±.0161 (2) .1859±.0141 (4) .1900±.0169 (5) .1604±.0139 (1)
ERA .3008±.0135 (3) .3054±.0140 (4) .2907±.0136 (1) .3084±.0152 (5) .2928±.0168 (2)
LEV .1357±.0122 (1) .1641±.0131 (4) .1500±.0098 (3) .1482±.0112 (2) .1658±.0202 (5)
CEV .0346±.0076 (1) .1667±.0093 (5) .0357±.0113 (2) .0393±.0090 (3) .0443±.0080 (4)

avg. rank 2 3 3.3 4.1 2.6
DBS .1363±.0380 (2) .1409±.0336 (4) .1422±.0498 (5) .1386±.0521 (3) .0974±.0560 (1)
CPU .0089±.0126 (1) .0366±.0068 (4) .0329±.0295 (2) .0384±.0326 (5) .0342±.0232 (3)
BCC .2631±.0424 (2) .2669±.0483 (3) .2784±.0277 (4) .2937±.0297 (5) .2526±.0472 (1)
MPG .0526±.0263 (1) .0538±.0282 (2) .0669±.0251 (4) .0814±.0309 (5) .0656±.0248 (3)
ESL .0517±.0235 (1) .0602±.0264 (2) .0654±.0228 (3) .0718±.0188 (5) .0657±.0251 (4)

MMG .1584±.0255 (2) .1683±.0231 (3) .1798±.0293 (4) .1853±.0232 (5) .1521±.0249 (1)
ERA .2855±.0257 (1) .2932±.0261 (4) .2885±.0302 (2) .2951±.0286 (5) .2894±.0278 (3)
LEV .1312±.0186 (1) .1662±.0171 (5) .1518±.0104 (3) .1390±.0129 (2) .1562±.0252 (4)
CEV .0221±.0091 (1) .1643±.0184 (5) .0376±.0091 (3) .0262±.0067 (2) .0408±.0090 (4)

avg. rank 1.3 3.6 3.3 4.1 2.7

tends to be. This is understandable, since background knowledge will lose im-
portance with an increasing number of observations.

The results of the experiments are summarized in Table 2 and 3. As can be
seen, CR compares quite favorably with the other approaches, especially with
the non-monotone KLR methods. It also outperforms LR, at least for sufficiently
extensive training data; if the amount of training data is small, however, LR is
even better, probably because CR will then tend to overfit the data. Finally,
CR also compares favorably with MORE, although the difference in terms of
the average ranks is not statistically significant (the critical distance for the
Nemenyi test at significance level 0.05 is 2.03).

In Fig. 3, a visualization of the (pairwise) interaction between attributes is
shown for the car evaluation data, for which CR performs significantly better
than LR. In this data set, the evaluation of a car (output attribute) depends on
a number of criteria, namely (a) buying price, (b) price of the maintenance, (c)
number of doors, (d) capacity in terms of persons to carry, (e) size of luggage
boot, (f) safety of the car. These criteria form a natural hierarchy: (a) and (b)
form a subgroup PRICE, whereas the other properties are of a TECHNICAL
nature and can be further decomposed into COMFORT (c–e) and safety (f).
Interestingly, the interaction in our model nicely agrees with this hierarchy: In-
teraction within each subgroup tends to be smaller (as can be seen from the
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Table 3. Win statistics (number of data sets on which the first method was better
than the second one) for 20%, 50%, and 80% training data

CR LR KLR-ply KLR-rbf MORE
CR – 2 | 6 | 9 7 | 7 | 9 7 | 9 | 9 7 | 5 | 6
LR 7 | 3 | 0 – 7 | 5 | 5 7 | 7 | 6 7 | 3 | 2
KLR-ply 2 | 2 | 0 2 | 4 | 4 – 5 | 5 | 6 7 | 4 | 5
KLR-rbf 2 | 0 | 0 2 | 2 | 3 4 | 4 | 3 – 6 | 2 | 2
MORE 2 | 4 | 3 2 | 6 | 7 2 | 5 | 4 3 | 7 | 7 –
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Fig. 3. Visualization of the interaction index for the car evaluation data (numerical
values are shown in terms of level of gray, values on the diagonal are set to 0). Groups
of related criteria are indicated by the black lines.

darker colors) than interaction between criteria from different subgroups, sug-
gesting a kind of redundancy in the former and complementarity in the latter
case.

6 Concluding Remarks

In this paper, we have advocated the use of the discrete Choquet integral as an
aggregation operator in machine learning, especially in the context of learning
monotone models. Apart from combining monotonicity and flexibility in a math-
ematically sound and elegant manner, the Choquet integral offers measures for
quantifying the importance of individual predictor variables and the interaction
between groups of variables, thereby providing important information about the
relationship between independent and dependent variables.

As a concrete application, we have proposed a generalization of logistic re-
gression, in which the Choquet integral is used for modeling the log odds of the
positive class. First experimental studies have shown that this method, called
choquistic regression, compares quite favorably with other methods. We like to
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mention again, however, that an improvement in prediction accuracy should not
necessarily be seen as the main goal of monotone learning. Instead, the adherence
to monotonicity constraints is often an important prerequisite for the acceptance
of a model by domain experts.

An interesting question to be addressed in future work concerns a possible
restriction of the choquistic model to k-additive measures, for a suitable value
of k. This may have two important advantages: First, it may prevent from over-
fitting the data in cases where the full flexibility of the Choquet integral is
actually not needed. Second, since less parameters need to be identified, the
computational complexity will be reduced, too. Of course, the key problem to
be addressed in this regard concerns the question of how to choose k in the most
favorable way.

Beyond that, the Choquet integral can of course be combined with other
machine learning methods, and its use is not restricted to (binary) classification.
We are quite convinced of its high potential in machine learning in general, and
we are looking forward to exploring this potential in greater detail.
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Abstract. Common assumption in most machine learning algorithms
is that, labeled (source) data and unlabeled (target) data are sampled
from the same distribution. However, many real world tasks violate this
assumption: in temporal domains, feature distributions may vary over
time, clinical studies may have sampling bias, or sometimes sufficient
labeled data for the domain of interest does not exist, and labeled data
from a related domain must be utilized. In such settings, knowing in
which dimensions source and target data vary is extremely important to
reduce the distance between domains and accurately transfer knowledge.
In this paper, we present a novel method to identify variant and invari-
ant features between two datasets. Our contribution is two fold: First,
we present a novel transfer learning approach for domain adaptation,
and second, we formalize the problem of finding differently distributed
features as a convex optimization problem. Experimental studies on syn-
thetic and benchmark real world datasets show that our approach out-
perform other transfer learning approaches, and it aids the prediction
accuracy significantly.

1 Introduction

In real life applications of supervised machine learning, the conditions in which
the models are developed and used may differ. For instance, in clinical studies of
drugs, the selection of patients may not be representative of the general popula-
tion: the sample may have a gender bias, race bias, or patients in the study may
have a lower health status. A network intrusion software or a spam detection
software developed many years ago may not be predictive anymore, due to newer
attack or spam patterns. A survey conducted in a region, may not be applicable
to another region, due to differences in the populations. These examples conflict
with the major assumption of machine learning, that training and testing data
come from the same distribution. Moreover it is not always guaranteed that there
is sufficient labeled data in the target (newer) domain to train a new model.

There have been many efforts to deal with such situations, including rela-
tively new learning paradigms, such as transfer learning. Transfer learning tries
to utilize the readily available labeled data from another domain for prediction
in the target domain of interest. This approach is also known as domain adapta-
tion. An example application area for domain adaptation is sentiment analysis,
where one intends to use reviews in a particular domain, say stock reviews, to
predict the sentiments in another domain, say computer reviews. How products

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 430–442, 2011.
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are described in the reviews differ across domains, and therefore two dataset
distributions may be different [10]. In bioinformatics, one may want to utilize
labeled clinical data from one institution, to predict high-risk patients in another
institution. Although the two clinical datasets may share the same feature sets
(age, blood pressure, BMI etc.) we have no apriori reason to believe that the
sets of patients come from the same distribution.

An effective domain adaptation is only possible when common feature repre-
sentations of source and target domains are found [2]. In the literature of statis-
tics and machine learning, the question of whether two datasets come from the
same distribution, also known as the two-sample or homogeneity problem, has
been tackled for many years in the context of data integration [3]. However, iden-
tifying which features are variant between two datasets is a relatively unexplored
problem. Solving this problem is crucial for domain adaptation, since once the in-
variant features are identified, source and target domains can be reduced to the
same distribution, and supervised machine learning algorithms can be applied.

In this paper, we present a novel, reliable and efficient unsupervised method
to distinguish variant and invariant features across source and target datasets.
We formulate the problem as a convex optimization problem which has obvious
advantages such as reliability and efficiency. Experiments on the synthetic and
real-world datasets reveal that: 1. Our method can discriminate between variant
and invariant features with perfect accuracy 2. Knowing which features are vari-
ant is extremely important for domain adaptation: there is 30% improvement
in prediction accuracy when only invariant features are used for training as op-
posed to all features 3. Our method outperforms other state-of-the-art transfer
learning approaches on benchmark real-world datasets. Finally, rather than pro-
jecting source and target datasets to the feature space, or re-weighting instances
to reduce their distance, we introduce a novel transfer learning approach.

The rest of the paper is organized as follows: In the following section, we
formalize the problem statement and our solution. In section 3, we describe the
experiments we conducted on synthetic and real world datasets. In section 4,
we review related work. In the last section, we conclude the paper and provide
future prospects.

2 Feature Selection with MMD (f-MMD)

Current methods in information theory can provide a measure of distance be-
tween two domains. For example, Kullback-Leibler divergence is a widely used
metric to measure distance between two distributions. However, it requires ex-
pensive distribution density calculation. As a non-parametric distance measure,
Borgwardt et al. proposed Maximum Mean Discrepancy statistic [3]. The main
idea is that, under a sufficiently rich reproducing kernel Hilbert space (RKHS),
if feature means of the population are identical then it is guaranteed that the
distributions are the same [6]. Based on this theorem, distance between samples
of two distributions can be measured by the difference of the empirical means of
the samples in a RKHS [10]. Formally:
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Definition: Let X = {x1,x2,..,xm} and Y= {y1,y2,..,yn} be two sets of obser-
vations drawn from Borel probability distributions p and q. Let F be a class of
functions f: X → R then the empirical estimate of MMD is defined as :

MMD[F , X, Y ] = supf∈F

(
1
m

m∑
i=1

f(xi) −
1
n

n∑
i=1

f(yi)

)
(1)

As shown by Borgwardt et al. [3] when F is rich enough, MMD (F , X, Y) will
be zero if and only if p = q. However, if it is too rich, for most finite samples
of X and Y, MMD will differ significantly from 0. It has been shown that the
unit ball in a universal RKHS is a sufficiently large function class that can be
chosen as F . Let φ(x) be the feature map defined as φ(x): X → H, where H is
a universal RKHS. Function evaluation can then be written as f(x) = 〈φ(x), f〉.
Based on this argument, the distance between two domains, S and T, can be
measured by the squared difference in the empirical means:

Dist(XS , XT ) =

∣∣∣∣∣
∣∣∣∣∣ 1
nS

nS∑
i=1

φ(XSi) −
1
nT

nT∑
i=1

φ(XTi)

∣∣∣∣∣
∣∣∣∣∣
2

H
(2)

Let x and y denote instances from source and target domains respectively: x ∈
XS , y ∈ XT . Following Pan et al., equation (2) can be written in the following
form using the kernel trick, i.e. k(zi, zT

j ) = φ(zi)φ(zT
j ), where k is a positive

definite kernel [9]:

Dist(XS , XT ) = tr(KL) (3)such that:

K =

[
Kxx Kxy

Kyx Kyy

]
and L =

[
Lxx Lxy

Lyx Lyy

]
(4)

where K ∈ R(nS+nT )×(nS+nT ) is a composite kernel matrix and Kxx, Kyy and
Kxy are kernel matrices defined by k on the source domain, target domain and
cross domains respectively. nS and nT denotes the number of instances in the
source and target domains. L ( 0 is a coefficient matrix with Lxx = 1

n2
S
, Lyy = 1

n2
T

and Lxy = −1
nS∗nT

.
Our goal is to find the features whose distributions are variant between the

two domains. In other words, we are trying to find features which contribute
to the distance between two domains the most. Let’s define a diagonal weight
matrix W, whose diagonal entries correspond to feature weights. Let W ∈ Rd×d

be this diagonal weight matrix and x ∈ Rd×1 be a d dimensional sample vector.
Let σ be a feature map such that:

σ(x) → x W 1/2.

Finally, we can define the new (positive definite) kernel, k′(xi, x
T
j ) as:

k′(xi, x
T
j ) = 〈φ ◦ σ(xi), φ ◦ σ(xT

j )〉H
where H is a universal RKHS.
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The new kernel matrices K ′
xx, K ′

yy, K
′
xy can be defined by k′ on the source

domain, target domain and cross domain respectively. The new composite kernel
matrix K ′ can be computed with equation (4) on K ′

xx, K ′
yy, K ′

xy (note that K ′
yx

= (K
′

xy)
T ).

To illustrate the argument with an example, let φ(x): X → H be a polynomial
kernel with degree, d. Then, K ′

xx is:

K ′
xx = ((xW 1/2) ∗ (xW 1/2)T +1)d

K ′
xx = (xWx + 1)d

K ′
yy, K

′
xy can be computed in a similar fashion.

To solve for the matrix W, we present the following convex optimization
problem:

W ∗ = arg min
W

− trace(K ′L)

subject to diag(W )T ∗ diag(W ) ≤ 1
W > 0

(5)

where diag(W) ∈ Rd×1 is the diagonal of the weight matrix. Intuition behind
this optimization problem is the following:

– By assigning higher weights to features which minimize the negative MMD
score in the objective function, we create a gap between the weights of the
variant and invariant features across domains. Our assumption here is that
there is at least one feature that differs across domains, i.e. the domains are
not identical.

– With the first constraint, we are constraining the size of weights by applying
a ridge penalty.

Equation (5) is a quadratically constrained quadratic program (QCQP) which
can be cast as a Semidefinite Program (SDP). When interior point methods
are used, QCQP can have polynomial worst-case complexity [14]. After solving
equation (5), using a QCQP solver (in our experiments we used CVX [5][4]),
variant features can be found by applying a threshold function to the diagonal
entries of W ∗. Denoting the set of variant features as V, and the set of invariant
features as N, Algorithm 1 describes how we populate V and N. For the rest of
this paper we will refer our approach as f-MMD.

3 Experiments

We tested the performance of our algorithm first on the synthetic datasets we
designed, and then on the real world datasets. With the synthetic datasets, our
purpose is to see how well our algorithm can distinguish between variant and
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Algorithm 1. Feature Separation with MMD (f-MMD)
1: Input: Samples from source domain, XS , and target domain, XT , weight threshold

λ
2: Output: Variant feature set V, and invariant feature set N.
3: Solve the optimization problem (5) to obtain the weight matrix W ∗.
4: w ← diag(W ∗)
5: for i = 1 : d where d is the number of features do
6: if wi ≥ λ then
7: V ← V ∪ i
8: else {wi < λ}
9: N ← N ∪ i

10: end if
11: end for

invariant features, and how this information can aid the classification perfor-
mance. With the experiments on the real world datasets, since we don’t know
apriori which features are identically distributed (or differently distributed), we
only measured the improvement in the prediction performance, after applying
our algorithm to select invariant features.

3.1 Synthetic Datasets

Synthetic datasets are designed to address the following questions:

– Can f-MMD identify features whose distribution vary between domains?
– How does the removal of the variant features affect prediction performance?

Synthetic data is generated as follows: Given m, the number of samples from
each domain, d, the number of dimensions, k, the number of variant dimensions
and t, the number of dimensions related to the class label, we sample invari-
ant (d-k) features from (d-k) randomly picked distributions with zero mean and
unit variance. For the first domain, k variant dimensions are sampled from ran-
domly picked k distributions with zero mean and unit variance. For the second
domain, these dimensions are sampled from the same k distributions but with
linear shift in sample mean. Similar to the random signal generation used in
[1], there are 18 distributions from which a feature is sampled: exponential, stu-
dent (degrees of freedom = 3 or 5), Laplace, mixture of 2 double exponentials,
symmetric 2 gauss (multimodal, transmodal, unimodal), uniform, asymmetric 2
gauss (multimodal, transmodal, or unimodal), asymmetric 4 gauss (multimodal,
transmodal, or unimodal) and symmetric 4 gauss (multimodal, transmodal, or
unimodal). To create class labels, d dimensional weight vector, v ∈ Rd is drawn
from the standard uniform distribution. t features that are related to the class
label are randomly selected from all d features. A d dimensional indicator vector
is constructed, where Ii = 1 if ith feature is related to the class label, 0 otherwise.
Consequently,

∑d
j=1 Ij = t. For i = 1...d, we set vi = 0 if Ii = 0, otherwise, we

left it unchanged. Class labels are then found by applying sign function to the
data sample x, i.e. y = sign(v*x).
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The illustration of the synthetic data in 2 dimensions are shown in Figure 1.
Source data is shown in red, target data is shown in blue. x1 is the invariant
dimension (identically distributed in both domains), x2 is the variant dimension
- there is a linear shift in the means across domains. x2 is also the predictive
dimension for class labels in this example.
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Fig. 1. 2D synthetic data, source data is shown in red, target data is shown in blue.
Positive samples are shown with stars, and negative samples are shown with dots.

Next, we created d = 100 dimensional synthetic dataset with 200 samples (100
instances from each domain) by using the procedure described above. Each sub-
figure in Figure 2 shows the output weights for each dimension enumerated from
1 to 100. As evident from each subfigure, the features that are given significantly
higher weights by our algorithm, are indeed variant features.

To illustrate the weight distribution between variant and invariant features,
we generated another synthetic dataset with 10 dimensions. This time we varied
k from 1 to 10, i.e. we generated 10 source and target datasets with 1 to 10
variant dimensions. The output weights sorted in descending order are given in
Table 1. λ parameter for the threshold function can be found empirically by
observing the output weight distribution, and picking a value from the range
with largest difference in weights. In our experiments, we used λ = 0.1. Note
that the number of features that have weights above 0.1 is exactly the same as k,
our algorithm successfully identifies all of the variant features between datasets.

To address the second question, whether prediction performance improves af-
ter the removal of variant features, we trained linear SVM and logistic regression
on source domain to predict class labels in the target domain. Linear classifiers
are chosen to capture the contribution of each feature independently to the clas-
sification prediction. We used a source (training) dataset of size 300, with 20
dimensions (10 variant, 10 invariant). We randomly picked 10 features to be
related to the class variable, y.

Prediction performances of linear SVM and logistic regression on the synthetic
dataset are shown in Table 2 and in Table 3 respectively. First column indicates
the prediction accuracy when the classifier is trained only with the invariant
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Table 1. Feature weights for each synthetic dataset sorted in descending order. k is the
number of variant dimensions in each dataset. The weights for the invariant features
are significantly lower than the variant features as expected. Dimensions that have
weights above 0.1 are indeed the correct variant dimensions.

Dimension k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

w1 0.999 0.827 0.793 0.620 0.531 0.503 0.466 0.621 0.412 0.484

w2 0.028 0.563 0.470 0.597 0.498 0.464 0.435 0.339 0.406 0.335

w3 0.027 0.008 0.386 0.420 0.462 0.420 0.414 0.325 0.402 0.311

w4 0.024 0.007 0.006 0.287 0.440 0.390 0.399 0.292 0.341 0.306

w5 0.004 0.005 0.003 0.034 0.251 0.328 0.372 0.291 0.315 0.305

w6 0.003 0.004 0.001 0.000 0.002 0.310 0.285 0.287 0.309 0.295

w7 0.003 0.002 0.001 0.000 0.001 0.002 0.206 0.267 0.289 0.293

w8 0.001 0.002 0.000 0.000 0.001 0.001 0.002 0.262 0.289 0.283

w9 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.046 0.163 0.266

w10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.001 0.213

features whose f-MMD weights smaller than λ = 0.1. Second column indicates
the accuracy when its trained with all the features. Training sample size is fixed
at 300 instances, while the target dataset size is varied from 100 to 300 samples.
As can be seen from Table 2 and Table 3, there is a drastic improvement in
prediction accuracy when only invariant features are used in training and testing,
as opposed to using all the features. This further supports our intuition that using
only the invariant features can have significant benefits in domain adaptation.

We also compared dimensionality reduction with f-MMD to other benchmark
methods: Transfer Component Analysis (TCA) [10] and kernel PCA (KPCA).
TCA is dimensionality reduction method that uses MMD as a distance measure
across domains. It learns transfer components that reduce the distance across
domains in a RKHS and performs mapping onto the learned transfer compo-
nents. The prediction performance of the 3 algorithms on the synthetic dataset
is shown in Table 4. Total number of features is 40. Source domain size is fixed at
300, and target domain size is increased from 100 to 300. The reduced number
of dimensions is the same for all three methods, (d = 20). As can be seen in
Table 4, our method outperforms both TCA and kernel PCA, especially as the
target domain size increases.

3.2 Real World Datasets

We tested our approach on two real world datasets: USPS handwritten digit
images dataset and WIFI localization dataset [16]. Both datasets are commonly
used in transfer learning tasks. USPS dataset contains images of size 16 x 16,
totaling up 256 features, with pixel values ranging from 0 to 2. Many previ-
ous work states that, for the binary classification tasks on the USPS dataset,
discriminating 4 from 7 [15] and 4 from 9 is particularly challenging [12][17].
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Fig. 2. Weights, with respect to dimensions. Red dots illustrate variant features, blue
dots illustrate invariant features. As can be seen in each subfigure, f-MMD weights for
variant features are significantly higher than the invariant features.
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Hence to make our task harder, for source domain we used digits 4 and 7, and
for target domain we used digits 4 and 9. Labeling digit 4 as positive class and
7 and 9 as negative classes, the goal is to transfer the discriminative knowledge
between 4 and 7 in the source domain to 4 and 9 in the target domain. Dimen-
sion size is determined by the output of f-MMD: Using a threshold, λ = 0.1,
we removed all features with weights larger than λ. Denoting the number of
remaining features with p, for f-MMD, linear SVM is trained with the reduced
dataset of p-dimensions. For TCA, raw data is first mapped to the feature space,
and dimensions with the highest p eigenvalues are used for classification.

WIFI localization dataset consists of wifi data collected in an indoor building
at time points A and B. The goal is to predict the location where the wifi data is
received at time point B, using the labeled data collected at time point A. This
dataset has been used as a benchmark dataset for transfer learning applications,
since source domain (data from time point A) and target domain (data from
time point B) do not come from the same distribution [16]. For this dataset,
we trained a ridge regression with ridge penalty 0.05 to predict the locations.
Following [10] we used a training dataset of 621 instances, and varied the testing
dataset size from 100 to 500. We compared our approach to KPCA and TCA,
keeping the dimension size equal for all 3 methods.

Figure 3 (a) shows average absolute regression error results after applying
TCA, KPCA and f-MMD respectively, along with the ridge regression results
with no dimension reduction on the WIFI dataset. Figure 3 (b) shows the ac-
curacy of linear SVM after applying TCA, KPCA and f-MMD on the USPS
dataset. The exact performance results on WIFI localization dataset and USPS
dataset are shown in Table 5 and Table 6 respectively. On both datasets, ex-
periments show that our method significantly outperforms other feature repre-
sentation methods: On the USPS handwritten digits dataset, for 550 samples,
we obtain a 84% classification accuracy, while TCA and Kernel PCA achieves
a mere 44% and 78.8% respectively. On the WIFI localization dataset, with the
same number of dimensions and with 921 samples, average ridge regression error
after dimensionality reduction with our algorithm is 88.6, while after TCA and
Kernel PCA it is 103.37 and 92.4 respectively. This shows that our algorithm is
a very promising method for domain adaptation.

Table 2. Prediction accuracy of SVM on synthetic dataset

#Samples Invariant
Features

All Features

400 86% 61%

450 86.7% 55.3%

500 86% 55.5%

550 87.2% 57.2%

600 87% 56.7%
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Table 3. Prediction accuracy of logistic regression on synthetic dataset

#Samples Invariant
Features

All Features

400 82% 62%

450 84.7% 58%

500 83.5% 59.5%

550 85.2% 60.9%

600 84% 61.3%

Table 4. Linear SVM classification performance after f-MMD, TCA and KPCA on
synthetic dataset

#Samples f-MMD TCA KPCA

400 86% 81% 55%

500 86% 75% 48.5%

550 87.2% 67.2% 50.4%

600 87% 58% 51%

Table 5. Average absolute ridge regression error after f-MMD, TCA and KPCA on
WIFI localization dataset

#Samples f-MMD TCA KPCA

721 76.02 102.13 83.51

821 85.44 109.93 90.75

921 88.62 103.32 92.38

1021 85.32 100.84 90.23

1121 85.87 100.37 92.24

Table 6. Classification accuracy of linear SVM after f-MMD, TCA and KPCA on the
USPS dataset

#Samples f-MMD TCA KPCA

350 80 52 70

400 80 49 74

450 82 48 76.5

500 83.5 42 77.5

550 84 44 78.8

600 82 43 77.6

4 Related Work

Prior work in domain adaptation focuses on reducing the distance between source
and target domains, either through re-weighting the instances (instance based
approaches) or finding a common feature representation between two domains
(feature based approaches). Instance based approaches, first estimate the weights
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Fig. 3. Comparison of f-MMD to benchmark methods. Figure 3 (a) shows average
absolute ridge regression error of f-MMD, TCA and KPCA with respect to the sample
size, as testing sample size is increased from 100 to 500. Results when no dimensionality
reduction is applied is shown with black. Figure 3 (b) shows linear SVM prediction
accuracy after f-MMD and TCA with respect to sample size as testing sample size is
increased from 50 to 300.

corresponding to each instance in the source domain, prior model training. In-
stance weights are typically proportional to the distance between source and
target density distributions. As a distance measure, Kullback-Leibler divergence
[13], or Maximum Mean Discrepancy can be used [7]. Instance based approaches
assume that there is a subset of instances with similar distributions in source
and target domains, however such a subset may not exist when there are features
that are variantly distributed across the two domains.

This work is mostly related to feature based approaches, which assume that the
domains share a subset of features that come from similar distributions, and there
are features that are variantly distributed across domains. The goal is to find a
common feature representation of source and target domains. Among prior work
in feature based approaches,Pan et al. first proposedMaximum Mean Discrepancy
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Embedding (MMDE) [9] where the distance between distributions are measured
with Maximum Mean Discrepancy. In MMDE, first, the kernel that minimizes dis-
tance between two distributions is found, and then kernel PCA is applied to the
learned kernel. However this method requires an expensive SDP computation, and
it is not feasible to be used on large datasets. Hence subsequently Pan et al. pro-
posed Transfer Component Analysis (TCA), where the goal is to find a projection
that minimizes distance between distributions [10]. TCA doesn’t require an SDP
computation, it is shown to be more efficient than MMDE in domain adaptation
problems such as WIFI localization prediction [10].

5 Conclusion

In this paper, we proposed a novel and an extremely efficient method for do-
main adaptation. Unlike previous feature based approaches, rather than finding
a projection of the feature space to maximize the similarity between source and
target domains, we identify the features whose distribution vary between the two
domains. In our experiments, we showed that knowing which features are variant
and incorporating this knowledge to the prediction task significantly improves
prediction performance, a novel finding in domain adaptation. We showed that
our method significantly outperforms other comparable feature based methods
on benchmark datasets. In the future, our goal is to extend this work to select
the kernels that are differently distributed across domains. We are also intrigued
to see how we can incorporate variant features to further increase prediction
accuracy in domain adaptation.
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Abstract. We address the problem of learning to rank documents in
a multilingual context, when reference ranking information is only par-
tially available. We propose a multiview learning approach to this semi-
supervised ranking task, where the translation of a document in a given
language is considered as a view of the document. Although both mul-
tiview and semi-supervised learning of classifiers have been studied ex-
tensively in recent years, their application to the problem of ranking
has received much less attention. We describe a semi-supervised multi-
view ranking algorithm that exploits a global agreement between view-
specific ranking functions on a set of unlabeled observations. We show
that our proposed algorithm achieves significant improvements over both
semi-supervised multiview classification and semi-supervised single-view
rankers on a large multilingual collection of Reuters news covering 5 lan-
guages. Our experiments also suggest that our approach is most effective
when few labeled documents are available and the classes are imbalanced.

Keywords: Learning to Rank, Semi-supervised Learning, Multiview
Learning.

1 Introduction

We address the problem of ranking multilingual documents. Ranking is an im-
portant problem in several applications related to Information Retrieval such as
search, or summarization. Although multilingual document collections are very
common in many national or supranational contexts, the bulk of document orga-
nization techniques is still developed in a monolingual setting, often for English.
We aim at developing ranking tools for handling such multilingual collections in
ways smarter than using independent monolingual approaches. We also consider
situations where only partial supervision is available in the form of reference
ranking information.

In order to learn in a multilingual setting, our proposal relies on the frame-
work of multiview learning. In a parallel corpus of multilingual documents, we
consider each language as a separate view of a document. Each document will
therefore have as many views as there are languages in the corpus. Earlier work
suggests that this framework is an efficient way to learn classifiers in a multilin-
gual setting [3]. We show how multiview learning can be extended to ranking,
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and how it can be applied to ranking multilingual documents. More specifically,
we are interested in bipartite ranking problems such as information routing [23],
in which we seek a linear ordering of objects that belong to two relevance judg-
ments, such that relevant examples are ranked higher than irrelevant ones. This
task has been extensively studied in the supervised learning setting [9,11,16] due
to its practical importance. It is also a first step towards more general ranking
tasks, where the reference ranking information can take the form of an arbitrary
preference relation over the examples [13]. In addition, a common issue with
tasks involving large collections of textual documents is that providing extensive
human supervision (such as category labels or ranking information) can be pro-
hibitively expensive. Semi-supervised learning techniques have been developed
to address this problem. In the framework of multiview learning for classification,
these approaches use the labeled data to train several view-specific predictors,
and rely on the intuition that these predictors should have similar predictions
on the unlabeled set. This additional constraint may reduce the possible choices
of predictors, leading to better generalization guarantees [24]. Our approach to
semi-supervised multiview ranking (SmVR) follows the same intuition. Given score
functions (h1, ..., hV ) independently trained on each view, we define a notion of
global agreement between them as the expectation, over random pairs of objects
(x, x′), that two score functions (hv, hv′) predict the same relative ordering. We
hence describe a learning process in which language or view-specific ranking
functions should achieve high ranking performance on the labeled training set,
while minimizing a disagreement measure between each other on the unlabeled
dataset.

We propose an efficient multilingual ranking algorithm inspired by iterative
co-training techniques [7]. Our method exploits randomization and efficient algo-
rithms for supervised bipartite ranking to break the quadratic complexity (with
respect to the number of unlabeled objects) inherent to the SmVR approach based
on the minimization of the disagreement. Experiments carried out on a multi-
lingual text corpus indicate that SmVR provides a significant improvement over
both single-view semi-supervised ranking and semi-supervised multiview clas-
sification, and is more robust to class imbalance than a state-of-the-art semi-
supervised multiview classification algorithm. Promising results have also been
published on semi supervised ranking in the single-view setting [2,14,22], but to
the best of our knowledge, none was extended to multiview learning.

In the next section, we briefly review some related state-of-the-art. In Section
3, we present our solution to semi-supervised ranking in a multiview setting, and
Section 4 describes the algorithm applied in our experiments. The experimental
results are reported in section 5.2, where we show that our method is effective
on a large multilingual collection of Reuters documents covering five languages.

2 Related Work

In this section, we review the state-of-the-art on bipartite ranking, multiview
learning and semi-supervised learning for classification and ranking.
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2.1 Bipartite Ranking

The task of learning to rank was introduced by Cohen et al. [10], motivated by
information retrieval applications where the results take the form of an ordered
list of objects. The new framework introduced an algorithm with the ability
to learn from a new form of supervision, namely preference relations over the
examples. The algorithm also optimized some criteria related to the ranking
performance of the predictor. While that original ranking algorithm learned a
preference relation on the example space, subsequent proposals reduced the task
to learning a scoring function [15,13]. The ranking is then created by sorting the
examples by decreasing scores. Bipartite ranking is the special case of ranking
where the supervision is a bipartite graph [13]. It corresponds to information
routing problems where the query (or topic) is fixed and examples are either
relevant or irrelevant to the query [23]. Bipartite ranking can be formulated as
the learning of a scoring function by optimizing the area under the ROC curve
(AUC, see Section 3) [1]. While many classification algorithms produce scores and
thus can be used in the context of bipartite ranking, Cortes & Mohri [11] ana-
lyze the advantage of optimizing the AUC instead of the classification accuracy
when one searches good ranking performance. Their conclusion is that ranking
methods should be superior when the data is imbalanced (a vast majority of
the examples belong to the same class) or noisy. The theory underlying bipar-
tite ranking has been extensively studied [9] and efficient algorithms for AUC
optimization have been designed [13,16]. From an algorithmic perspective, the
extension of supervised learning algorithms from bipartite ranking to the gen-
eral case is usually straightforward, even though the computational cost might
significantly increase. Most works on bipartite ranking were done in the super-
vised and single view setting. We propose here an extension to semi-supervised
multiview learning.

2.2 Multiview Learning

Multiview learning deals with observations that can be described in several rep-
resentation spaces, such that each representation space may be used to build a
predictor. Multilingual documents can naturally be seen as multiview observa-
tions: each language in which a document is translated corresponds to a view.
The overall goal of multiview learning is to combine predictors over each view
(called view-specific predictors) in order to improve the overall performance be-
yond that of predictors trained on each view separately, or on trivial combi-
nations of views. The first successful multiview learning technique was Blum’s
co-training algorithm [7] which iteratively labels unlabeled examples based on
predictors trained in different views. A related approach is co-regularization [24]
where the view-specific predictors are constrained to produce similar predic-
tions. Other notable multiview techniques are multiple kernel learning approach
(MKL, e.g. [4]) , and techniques relying on (kernel) Canonical Correlation Anal-
ysis [18] or multiview Fisher Discriminant Analysis [12]. Note that although
co-training [7] and co-regularization [24] have different theoretical backgrounds
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and motivation, empirical evidence shows that view-specific classifiers trained
by iterative co-training algorithm tend to agree on the pool of unlabeled data.
The pseudo-labeling method of co-training can thus be seen as an iterative
method for increasing the agreement between predictors. This issue will be at
the core of our approach (see Section 4). Although multiview learning has been
used from its origin on textual data [7], it has only recently been applied to
multilingual data [3]. Moreover, the multiview framework has been extensively
studied for classification tasks, but its use in bipartite ranking is novel.

2.3 Semi-supervised Classification

Apart from multiview approaches, the field of single view semi-supervised learn-
ing has been an active area of research since the late nineties [27]. The overall
aim is to design algorithms which are able to extract information from both
labeled and unlabeled data to improve performance. While some work on semi-
supervised learning deals with ranking tasks, the main focus was classification.
Most studies on the semi-supervised paradigm rely on the cluster assumption,
which states that examples within a given cluster are likely to be of the same
class. Algorithms designed for this assumption are generally based on mixture
models [21]. Semi-supervised discriminative approaches are mainly based on a
similar but slightly different assumption of low density separation, which states
that high-density regions do not contain the decision boundary [8]. These ap-
proaches are mostly iterative algorithms designed to propagate the class labels in
the high density regions. Another marginally different assumption is the manifold
assumption, which holds when high dimensional data lie on a low-dimensional
manifold [6]. In such cases, the learning algorithm can avoid the curse of dimen-
sionality which may affect generative models by operating in a low-dimensional
space [5]. While both supervised learning for ranking and semi supervised learn-
ing for classification have been widely studied in the past, the combination of
semi-supervised learning for ranking has just begun to be explored.

2.4 Single View Semi-supervised Ranking

Both supervised learning and our approach to multiview, semi-supervised learn-
ing of ranking functions in the bipartite setting are inspired by algorithms for
binary classification. The approaches to single view semi-supervised learning of
classifiers, however, cannot be easily adapted to ranking. Indeed, the assump-
tions used in single view semi-supervised classification are such that the decision
boundary is easy to detect on the set of unlabeled data. The task of ranking,
however, is not about detecting a decision boundary, but rather a scoring func-
tion that induces the best possible complete ordering of the observations. This
ranking is given by scoring the observations according to their probability of be-
ing relevant [9], an information that is not considered by classification criteria:
these algorithms only need the most probable class label for a given observa-
tion. Some work has been done on single view semi-supervised bipartite ranking
with promising experimental results. In [2], an iterative pseudo-labeling step
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uses neighborhood information while optimizing a ranking objective function on
labeled (and pseudo-labeled) training sets. In [22], the unlabeled data is used
to change the representation space of the examples, motivated by cases where
the class conditional distributions are gaussian. These methods rely on the fact
that bipartite ranking data has the form of binary classified data. It is unclear
whether these approaches can be extended to more general ranking formulations.
In contrast, our multiview method uses a pseudo-labeling step induced by the
ranking on the unlabeled data, which should be easier to extend to more general
forms of feedback. To the best of our knowledge, all works on semi-supervised
ranking have been done in the single view setting. Through the use of multiple
views, our approach naturally takes into account the ranking information on the
unlabeled set to improve the rankers’ performance.

3 Semi-supervised Multiview Learning for Ranking

We present the framework of multiview, semi-supervised ranking with bipar-
tite feedback. We then describe the learning principle underlying our algorithm,
presented in Section 4.

3.1 Framework

In bipartite ranking problems, the labeled data take the form of a set Z =
(xi, yi)n

i=1 of (observation, target) pairs, where yi ∈ {−1,+1} is called the rele-
vance of observation xi. Following the standard assumption in machine learning,
we assume these examples to be sampled i.i.d. from some fixed (but unknown)
distribution, and we denote by (X,Y ) a generic pair of random variables which
follows that distribution. In a semi-supervised learning setting, we also assume
we have access to a pool of unlabeled examples U = (xn+j)m

j=1 which are i.i.d.
and follow the same distribution as X .

In the single-view setting, the goal of bipartite ranking is to learn a function
h which assigns a score to any possible input, so that relevant observations
(i.e. those with y = +1) obtain higher scores than irrelevant ones. The ranking
criterion to be optimized is usually taken as the Area Under the ROC Curve
(AUC). As shown in [9], the goal of learning is then to minimize the ranking risk:

L(h) = P
(
(Y − Y ′)sgn(h(X) − h(X ′)) < 0

)
(1)

where (X ′, Y ′) is an independent copy of (X,Y ), sgn(t)=2I{t≥0}−1 is the sign
function and I{.} is the indicator function. This risk can be estimated on the
labeled set by a U-statistics (which is the AUC, up to an affine transformation):

L̂Z(h) =
1

n(n−1)

∑
i,j

I{yi>yj}I{h(xi)≤h(xj)}

In multiview learning, an observation (in our case, a multilingual document) x =
(x1, ..., xV ) is described in several representation spaces Xv, v ∈ {1 . . . V }, such
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that each representation (here, a translation in a given language) xv can be used
to build a predictor. Following the framework of [25] for multiview classification
or regression, we can define the objective of multiview ranking as jointly learning
view-specific scoring functions hv : Xv → R (in our case, hv only considers the
translation of the documents in the v-th language) so that their average risk
is small, where the joint learning of these view-specific predictors consists in
constraining them to agree with each other (i.e. have similar predictions). Such
a principle is amenable to semi-supervised learning since the agreement between
predictors can be measured without knowing the labels of the observations, and
can thus be estimated (and optimized) from the pool of unlabeled data. Since
constraining the view-specific predictors to have a low disagreement reduces the
function space, one can then expect better generalization guarantees using semi-
supervised multiview learning than using plain supervised learning.

More formally, suppose we are given V view-specific scoring function sets
H1, ...,HV and a disagreement function D : H1 × ...×HV → [0, 1] (the exact
definition of D is given in the next subsection). We can then define:

∀t ∈ [0, 1],H(t)={(h1, .., hV ) ∈ H1×...×HV : D(h1, . . . , hV ) ≤ t} , (2)

which is the set of tuples (h1, ..., hV ) which have a disagreement smaller than
t ∈ [0, 1]. Using VC dimension [9] or Rademacher complexity arguments [26]
to obtain uniform generalization error bounds for ranking, we can find some
function Rn(H(t) , δ) which increases with t, such that for any t and δ ∈ (0, 1),
with probability at least 1 − δ over the random draws of Z, we have:

∀(h1, ..., hV ) ∈ H(t) ,
1
V

V∑
v=1

L(hv) ≤ 1
V

V∑
v=1

L̂Z(hv) + Rn(H(t) , δ) . (3)

This error bound gives us the principle of semi-supervised, multiview ranking:
after an appropriate design of the disagreement function D so that it can be
estimated on the pool of unlabeled data, the learning algorithm will aim at
optimizing the generalization guarantee Eq. (3) by searching among the view-
specific scoring functions with small empirical ranking risk, a tuple (h1, ..., hV )
with a small empirical disagreement on the pool of unlabeled data.

3.2 Disagreement for Bipartite Ranking

The semi-supervised multiview learning process described above is linked to an
appropriate measure of disagreement between view-specific scoring functions.
Since the ranking risk (and the AUC) linearly decompose into pairwise compar-
isons between scores, a natural measure of disagreement between two scoring
functions hv and hv′ is the probability, over any two random observations, that
they do not predict the same ordering:

D(hv, hv′) = P
(
sgn(hv(X) − hv(X ′)) �= sgn(hv′(X) − hv′(X ′))

)
,
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which can be estimated on the unlabeled data set U by:

D̂U (hv, hv′) =
1

m(m−1)

∑
i�=j

I{sgn(hv(xn+i
v )−hv(xn+j

v ))�=sgn(hv′ (x
n+i
v )−hv′ (x

n+j
v ))} .

We may note that the empirical disagreement is exactly Kendall’s tau between
the two rankings predicted on U by hv and hv′ . This notion of disagreement
(and its empirical counterpart) can then be extended to more than two views by
taking the average disagreement between scoring functions for any pair of views:

D(h1, . . . , hV )=
2

V(V –1)

∑
v<v′

D(hv, hv′) and D̂U (h1, . . . , hV )=
2

V(V –1)

∑
v<v′

D̂U (hv, hv′) .

(4)

Continuing the generalization error bound of Eq. (3), we can note that the
empirical disagreement also has the form of a U-statistics, so that VC-dimension
or Rademacher arguments can also be used to obtain a uniform (over the whole
set of functions H = H1×...×HV ) bound on D(h1, . . . , hV ) − D̂U (h1, . . . , hV ).
Denoting Gm(H, δ) such a bound, we have:

P
(

sup
hv∈Hv

[D(h1, . . . , hV ) − D̂U (h1, . . . , hV )] ≤ Gm(H, δ)
)
≥ 1 − δ ,

where the probability is taken over U . Using the union bound and plugging this
bound into Eq. (3), we have, for any t ∈ [0, 1], with probability at least 1 − 2δ
over both Z and U :

∀(h1, ..., hV ) s.t. D̂U (h1, . . . , hV ) ≤ t,

1
V

V∑
v=1

L(hv) ≤ 1
V

V∑
v=1

L̂Z(hv)+Rn(H(t∗) , δ) , with t∗ = t+ Gm(H, δ) .

When the unlabeled dataset is large (which is typically the case in semi-supervised
learning), Gm(H, δ) will be small so that the empirical disagreement will be close
to the true one. Thus, considering the last error bound, one can see that when
there are many empirical risk minimizers in H (which is typically true when the
labeled training set is very small), we may expect much better generalization
guarantees for tuples (h1, ..., hV ) with low disagreement. This is precisely what
the algorithm presented in the next section aims at, by iteratively finding view-
specific scoring functions with decreasing disagreement (and small empirical risk)
using a co-training like procedure, until the disagreement does not improve.

Remark 1. The authors of [25] argue that the notion of disagreement used in
multiview learning should be closely related to the definition of risk, in the sense
that they should satisfy a so-called inverse Lipschitz condition (see Assumption
2 of [25]). In our case of bipartite ranking, a Bayes-optimal predictor is ρ(x)=
P(Y =1|X=x) [9], and, using our notion of disagreement, the excess risk of any
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scoring function h can be written as L(f) − L(ρ) = E
[
|ρ(X) − ρ(X ′)|D(h, ρ)

]
.

With a low-noise assumption for ranking similar to the one used by [9] (formally:
∃c > 0, ∃α ∈ (0, 1) such that E

[
|ρ(X) − ρ(X ′)|−α] ≤ c), we can show that

D(h, ρ) ≤ √
c (L(f) − L(ρ))α/2, which is precisely an inverse Lipschtz condition

of [25]. Thus, in low-noise settings for bipartite ranking, one can obtain strong
theoretical results with our notion of disagreement, similar to those of Theorem
2 of [25] (up to a straightforward extension of their framework to ranking).

4 Algorithm

The learning process described above states that we should look for view-specific
functions with high AUC on the labeled training set, while minimizing the dis-
agreement between the view-specific rankers on the unlabeled dataset.

To that end, we propose an algorithm inspired by pseudo-labeling techniques
like iterative co-training [7]. Our approach relies on a supervised learning algo-
rithm for bipartite ranking, and iteratively trains independent rankers on each
view with a pseudo-labeling technique: at each round, some unlabeled examples
are added to the training set, and their target value is set using the consensus
prediction of the view-specific rankers of the previous iteration.

In classification tasks, the pseudo-labeling consists of aggregating the class la-
bels predicted by the view-specific classifiers, for instance taking a majority vote.
The unlabeled examples added to the training set at each round are chosen using
a measure of confidence in the pseudo-label, in order to avoid adding incorrectly
labeled examples to the training material. Although the pseudo-labeling tech-
nique used in iterative co-training is not intended to minimize the disagreement
between different views, it does empirically tend to decrease the disagreement
on the unlabeled set because each classifier is trained with an increasing portion
of examples pseudo-labeled by the other classifier. Pseudo-labeling techniques
are thus a natural heuristic for learning functions with low disagreement.

Considering our notion of empirical disagreement Eq. (4), it is then natu-
ral to define a notion of pseudo-labeling on pairs of unlabeled observations: a
pair (xn+i,xn+j) would be labeled +1 if the various view-classifiers agree on
hv(xn+i

v ) > hv(xn+j
v ), and −1 if they agree on the inverse relative ordering. Af-

ter pseudo-labeling, we would then obtain a training set with pseudo-pairwise
preferences (instead of pseudo labels in {−1, 1}). From a computational point of
view, however, this procedure would be extremely costly for two reasons. First,
it would require a pass over all pairs of unlabeled inputs at each round. Since
there are about m2 pairs, this is too large by an order of magnitude. Secondly,
the pairs of unlabeled inputs selected to be added in the training set do not have
the structure of a proper bipartite ranking. The underlying supervised learning
algorithm should then be an algorithm that can deal with arbitrary pairwise
preferences, which have Ω(�2) space and time complexity (� is the number of ob-
jects in the training set). By contrast, efficient algorithms for bipartite ranking
like RankBoost [13] or SVMmulti [16] run in time Õ(�) and require O(�) space.
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Algorithm 1. Semi-supervised Multiview Ranking
Input:
� supervised bipartite ranking algorithm: A;
� size of the random pairs sample: S;
� labeled Z = (xi, yi)n

i=1, and unlabeled U = (xn+j)m
j=1 multiview training data;

Initialize:
for each view, train h

(0)
v on Z with A.

t← 0;

repeat
for s = 1..S do

(i, j) = sample
({

(k, �) ∈ {1, ..., m}2, k �= �
})

if ∀v, h
(t)
v (xn+i

v ) > h
(t)
v (xn+j

v ) then
Z ← Z ∪ {(xn+i, +1), (xn+j ,−1)

}
else if ∀v, h

(t)
v (xn+i

v ) < h
(t)
v (xn+j

v ) then
Z ← Z ∪ {(xn+i,−1), (xn+j , +1)

}
end if

end for
t← t + 1;
for each view, train h

(t)
v on Z with A;

until D̂U

(
h

(t)
1 , ..., h

(t)
V

) ≥ D̂U

(
h

(t−1)
1 , ..., h

(t−1)
V

)
Output: ∀v ∈ {1, .., V }, h(t)

v ;

4.1 Weighted Pseudo-labeling

Our multiview approach to semi-supervised bipartite ranking follows existing
iterative pseudo-labeling methods for classification, but relies on two ingredients
to reduce the overall time and space complexity to Õ(n+m).

The first one is a reduction from the pseudo-labeled pairs to bipartite ranking
in order to use efficient learning to rank algorithms. The second one is a straight-
forward random sampling of pairs at each iteration rather than considering all
possible pairs of unlabeled examples.

The algorithm is fully described in Algorithm 1. In an initialization step, each
view-specific ranker is trained independently on the labeled training set. Then,
the algorithm iteratively re-trains one ranker per view on increasing training
sets composed of the initial labeled examples, and additional pseudo-labeled
examples. The first step of each iteration is the pseudo-labeling step, where we
increase the size of the labeled training set. Following iterative pseudo-labeling
methods for classification (but applied here to pairs of inputs) we pass through
unlabeled pairs and decide whether or not they contain information that should
be added to the training set based on a measure of confidence in the pseudo-label.

Following [3], we select only the pairs of examples for which all the view-
specific rankers agree on the relative ordering. This requirement of unanimity
may be too restrictive when there are many views, but we observed that it works
very well in practice (see section 5.2). It is not a major point of our algorithm
and can be relaxed if too many pairs are ignored in this step.
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Once the pairs are selected, we do not add them directly in the training set
for computational reasons: bipartite ranking algorithms are very efficient because
their implementation makes heavy use of bipartite structure of the preference
graph. In order to keep the preference graph bipartite, we actually add binary
labeled inputs: for each selected example pair, the input which is scored higher
by all view-specific rankers is added to the training set with label +1, and the
other example in the pair is added with label −1. The crucial point here is that
examples may be added several times, possibly with differing labels. Therefore,
examples are pseudo-labeled and implicitly weighted in the training set, so that
the algorithm will learn to rank the unlabeled examples according to how many
pairs they appear in as the greater or lower element.

If this process was applied to the entire unlabeled set, it would require a pass
over all pairs of unlabeled inputs, leading to O(m2) time complexity. In order
to avoid this overwhelming cost, we randomly select a much smaller number of
pairs (in our experiments, we sample 15, 000 pairs at each iteration, from a set
of 60, 000 unlabeled examples).

The iterative procedure is repeated until the disagreement does not decrease
after re-training. In order to avoid the costly computation of the disagreement
at each iteration, it is estimated using the pairs sampled at the current iteration.

4.2 Supervised Ranking Algorithm

Our semi-supervised process relies on an underlying efficient algorithm for learn-
ing bipartite ranking functions in a fully supervised setting. In this paper, we use
a linear SVM for ranking, since linear functions with a bag-of-words representation
are known to perform very well on textual data.

For each view, v, denoting Z = (xi, yi)�
i=1 the training set available at some

given iteration of the algorithm, we learn a linear scoring function hv of the form
hv(x) = 〈wv, xv〉 where 〈., .〉 is the dot product in Euclidian space, xv denotes the
bag-of-words representation of document x in the v-th language, and wv is the
parameter vector to be learnt for view v.

Learning is carried out by minimizing the following pairwise loss for each view
(see e.g. [16]):

wv = argmin
w

1
2
||w||2 +

∑
i:yi=1

∑
j:yj=−1

max
(
0, 1 −

〈
w, xi

v − xj
v

〉)
The optimization is carried out with an algorithm similar to SVMmulti [16],
which has time and space complexity in 0̃(�). Note that the training set we
consider has only binary-labeled pseudo-examples, but some may appear several
times with the same or a different pseudo-label as described before.

5 Experimental Results

We illustrate and validate the usefulness of our algorithm on a large collection
of documents covering five languages and six categories. We also investigate
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Table 1. Number of documents per language (left) and per class (right) in the Reuters
RCV1/RCV2 sub-collection considered in our experiments.

# docs # docs Total
Language source translated docs

English 18,758 92,982 111,740
French 26,648 85,092 111,740
German 29,953 81,787 111,740
Italian 24,039 87,701 111,740
Spanish 12,342 99,398 111,740

Topic # docs (%)

C15 18,816 16.84
CCAT 21,426 19.17
E21 13,701 12.26
ECAT 19,198 17.18
GCAT 19,178 17.16
M11 19,421 17.39

the impact of the number of annotated documents and the imbalance between
relevant and irrelevant documents.

We use a publicly available1 multilingual multiview text categorization corpus
extracted from the Reuters RCV1/RCV2 corpus [3], summarized in Table 1.
The corpus is originally comparable but was made into a parallel, multiview
corpus by translating each original document in all other languages. Each of the
111,740 documents is available in 5 views: original language and four translations.
The second column in Table 1 indicates the distribution of source languages for
our collection. All documents (originals and translations) were indexed using a
standard preprocessing chain and are available already indexed.

For each topic, the bipartite ranking problem is to rank documents within this
topic above documents belonging to the other topics. The evaluation is carried
out with two standard Information Retrieval metrics: the Average Precision (AvP)
and Area Under the ROC Curve (AUC) [20]. Each experiment is performed over 10
random splits (labeled training/unlabeled training/test) of the initial collection.
The test split always contains 25% of the documents. All labeled/unlabeled/test
splits respect the initial topic and language proportions.2

5.1 Models

In order to evaluate the benefits of the semi-supervised, multiview approach, and
justify our focus on bipartite ranking as opposed to classification, we compare
the following five models:

sVR-SVM: fully supervised, single-view ranking. Train monolingual ranking func-
tions on each view, on labeled data only. It corresponds to h(0)

v in Algorithm
1, uses no unlabeled data, and trains independent monolingual rankers.

SsVR-SVM: semi-supervised single-view ranking. Iterative pseudo-labeling ap-
proach propagating labels to neighbouring unlabeled examples, as in [2] but
using a SVM ranker instead of boosting.

Conc-SR: semi-supervised single-view ranking on concatenated views. Same as
the previous model, but operating on concatenated views, instead of inde-
pendently on each view.

1 http://multilingreuters.iit.nrc.ca/
2 With a minimum of 2 positive examples in each labeled training set.
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Table 2. AUC and AvP for four competing models, starting from 10 labeled training
examples, averaged over 10 random splits and five languages, keeping real class propor-
tions. ↓ indicates the performance is significantly worse than the best result (in bold).
SmVR-SVM is Algorithm 1.

Strategy
C15 CCAT E21 ECAT GCAT M11

AUC AvP AUC AvP AUC AvP AUC AvP AUC AvP AUC AvP

sVR-SVM .669↓.329↓.624↓.291↓.621↓.265↓.638↓.283↓.755↓.418↓.811↓.566↓

SmVC-SVM .698↓.334↓.645↓.312↓.652↓.282↓.649↓.294↓.773↓.434↓.821↓.591↓

SsVR-SVM .724↓.416↓.658↓.324↓.665↓ .306 .662↓.307↓.802↓.455↓.836↓.620↓

Conc-SR .752↓.438↓.679↓.333↓.672↓ .311.671↓ .308 .839↓.501↓.875↓.702↓

SmVR-SVM .805 .453 .727 .353 .681 .311 .694 .316 .866 .532 .901 .727

SmVC-SVM: semi-supervised multi-view classification. Classification counterpart
to our ranking approach, iteratively labeling examples based on the consen-
sus of classifiers3 trained on each view [3].

SmVR-SVM: semi-supervised multi-view ranking (this paper). Combines the mul-
tiple views available in the training data, using both the labeled and the
unlabeled examples as described in Algorithm 1.

All experiments use linear kernels, SVM regularization parameters are set to the
default values,4 and S (inner loop of Algorithm 1) is set to 15000.5 Performance
is reported in terms of average AUC and AvP of the view-specific scoring functions
over the five languages.

5.2 Results

We first compare the performance of all the models and investigate the effect
of the various aspects of our model. We compute the Average Precision and
AUC of the models obtained using 10 labeled training examples, and the unla-
beled training examples (for the models that use them). We chose 10 labeled
examples in order to study the role of unlabeled data in the regime where very
little annotation is available. Table 2 summarizes the results obtained on our
six topics by the approaches described above, averaged over five languages and
repeated over 10 random training/test splits. Bold face indicates the highest per-
formance, and ↓ indicates that the performance is significantly worse than the
best result, according to a Wilcoxon rank sum test used at p < 0.01 [19]. These
results show that our approach, SmVR-SVM, consistently and significantly outper-
forms the four competing models. Unsurprisingly, the simple baseline sVR-SVM
yields the lowest performance. The results clearly show that all semi-supervised
strategies outperform that baseline, suggesting that the unlabeled data already
significantly improves the performance in both AUC and AvP. However, compar-
ing the semi-supervised rankers shows that the multiview (SmVR-SVM) learning

3 linear SVMs minimizing misclassification error using SVM-Perf [17].
4 With little annotation, cross-validation proved unreliable to tune hyperparameters.
5 Increasing this value has almost no influence on the results.
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Fig. 1. Left: AUC learning curves for topic C15, averaged over 10 randomly chosen
training/test splits. Right: Disagreement, averaged over topics, as training progresses,
for 10, 100 and 200 labeled examples.

framework brings more performance increase (up to 16 points in AvP for M11)
than the single view (SsVR-SVM) algorithm.

Table 2 also shows that our ranking approach clearly and consistently outper-
forms semi-supervised multiview classification (SmVC-SVM). This suggests that
the classification approach is not well suited to solving a bipartite ranking prob-
lem even with the help of the richer, multiview information. In fact, this is rein-
forced by the fact that, in our experiments, even single-view ranking (SsVR-SVM)
outperforms multiview classification (SmVC-SVM). Note also that our approach
also outperforms Conc-SR, showing that using all views through a simple con-
catenation is not as efficient as a proper multiview framework.

We now investigate several issues. First, we study the evolution of the perfor-
mances of our approach depending on the training set size. Then, we show how
our approach effectively minimizes the disagreement of the view-specific rankers
on the unlabeled data. We also study the influence on the performance of the
imbalance of the initial labeled training set, and finally, we investigate the dif-
ference between our multiview algorithm and the approach consisting of simply
learning on the concatenated views, for increasing numbers of views.

Effect of the Labeled Training Set Size: One of the motivations for using
semi-supervised learning is that labeled data is usually costly to acquire. It is
therefore of great interest to investigate how the performance of the various
algorithms evolve as the number of available labeled examples changes. Figure
1 illustrates this on class C15 (other classes are qualitatively similar). It shows
how the AUC evolves with the number of labeled documents in the initial training
set. Our experiments correspond to |Zn| = 10, the leftmost points on the curves
in the figure. As expected, performance increases monotonically with additional
labeled data. The relative ordering observed in Table 2 is maintained throughout
the entire range of labeled data, with SmVR-SVM performing consistently (but
diminishingly) better than SsVR-SVM, which in turn does better than sVR-SVM.

When there are enough labeled examples, all algorithms actually converge to
the same AUC value, suggesting that the labeled data carries sufficient informa-
tion and that no additional information could be extracted from the multiview
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Fig. 2. Left: AUC vs. number of positive examples in the 10 labeled training documents,
on two topics, for ranking vs. classification. Right: AvP vs. # of views/languages on
topic CCAT for multiview learning (SmVR-SVM) vs. concatenation (Conc-SR).

unlabeled examples. For low amounts of labeled training data, however, the con-
tribution of the unlabeled data used in semi-supervised learning is clear.

Evolution of the Disagreement: The motivation of our algorithm is that we
improve the generalization performance by minimizing the disagreement between
the rankers trained on the different views. Figure 1 shows how the disagreement
on unlabeled examples (Eq. 4), averaged over all topics, evolves during training.
At iteration 0, the disagreement corresponds to that of sVR-SVM (the disagree-
ment of models trained independently on each view without using any unlabeled
data). The figure shows that for all three training set sizes pictured, as learning
progresses, the disagreement decreases towards a small asymptotic limit. Having
more labeled examples helps start with a lower disagreement. However, even for
10 labeled instances, multiview learning brings the disagreement well below that
observed for the single-view approach with 20 times more labeled data.

Effect of the Number of Positive Examples: The results in Table 2 use
labeled training sets respecting the real class proportions. The learning tasks
were thus extremely difficult, since very few positive examples were available.
As ranking costs are supposed to be more immune to class imbalance than the
misclassification error, we investigate how the performance of the classification
versus ranking approaches evolve when more positive examples are available as
initial labeled training data. Figure 2 compares the performance of the multi-
view ranking (SmVC-SVM) and classification (SmVR-SVM) algorithms for increasing
numbers of positive examples. We picked two classes, C15 and E21, which yield
differing patterns of results in Table 2: the impact of our method is much larger
for C15 than it is for E21. In both cases, Figure 2 shows that as the proportion of
positive examples nears 50% (5 positive examples), the classification approach
becomes more competitive, while the multiview ranking algorithm appears a lot
more robust to class imbalance. In fact, when the number of positive examples
grows past 50% (rightmost edge of the graph, 6 positive and 4 negatives), the
performance of the classification approach starts decreasing again.
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Comparison to Concatenated Views: The weighted pseudo-labeling step of
our algorithm uses a unanimous decision over the views to select examples that
should be added to the training set. The unanimous vote is used as a confidence
measure, in order to avoid introducing too much noise at each iteration. One
may then ask how the performance of the multiview approach evolves depend-
ing on the number of available languages? Figure 2 plots the AvP observed for
topic CCAT, as a function of the number of available languages, for our algorithm
SmVR-SVM and for the semi-supervised single view model which uses the con-
catenation of the views, Conc-SR. Results for less than 5 languages are averaged
over all possible subsets of languages. The results show that the performance of
SmVR-SVM and Conc-SR increase as more views are available, with a growing ad-
vantage for the multiview approach as the number of languages increases. This
confirms that the multiview paradigm offers a better semi-supervised learning
principle than the single view learning, and is better able to leverage the addi-
tional information available in the different view than simple concatenation of
the inputs.

6 Conclusion

We presented an algorithm for bipartite ranking with unlabeled data and mul-
tiple views, and showed its empirical performance on a multilingual data collec-
tion. The algorithm exhibits better ranking performance than both single-view
semi-supervised ranking and multiview classification, in particular when the ini-
tial labeled training set is highly unbalanced. Our analysis and algorithms are
tailored to bipartite ranking. This allowed us to give experimental comparisons
with semi-supervised classification algorithms and existing semi-supervised sin-
gle view ranking algorithms for bipartite ranking. The results show the impor-
tance of optimizing a ranking criterion, as well as the relative performances of
single view and multiview approaches.

A direct extension of our work is to examine the possibility of multiview, semi-
supervised ranking when the reference ranking information is not bipartite, but
take the form of either scores on an ordinal scale, or more generally preference
relations. Indeed, even though the weighted pseudo-labeling step is specific to
bipartite ranking, the learning principle of Section 3, as well as the method for
selecting pairs in the algorithm, extend to more general cases in a straightforward
manner. Another direction is to extend our method to search problems, where
the goal is to infer rankings on a fixed collection depending on a user query.
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Abstract. Large and complex data is challenging for most existing dis-
covery algorithms, for several reasons. First of all, such data leads to
enormous hypothesis spaces, making exhaustive search infeasible. Sec-
ond, many variants of essentially the same pattern exist, due to (nu-
meric) attributes of high cardinality, correlated attributes, and so on.
This causes top-k mining algorithms to return highly redundant result
sets, while ignoring many potentially interesting results.

These problems are particularly apparent with Subgroup Discovery
and its generalisation, Exceptional Model Mining. To address this, we
introduce subgroup set mining: one should not consider individual sub-
groups, but sets of subgroups. We consider three degrees of redundancy,
and propose corresponding heuristic selection strategies in order to elim-
inate redundancy. By incorporating these strategies in a beam search,
the balance between exploration and exploitation is improved.

Experiments clearly show that the proposed methods result in much
more diverse subgroup sets than traditional Subgroup Discovery
methods.

1 Introduction

In this paper, we assume that we are dealing with complex data. This complexity
can be due to several aspects of the data, e.g. datasets may contain many rows
as well as many attributes, and these attributes may be of high cardinality.
Such complex data is challenging for existing discovery algorithms, primarily
for reasons of computation time: all these aspects will have an impact on the
time required for mining the data. Especially where numeric data is concerned,
detailed analysis of the data will imply high cardinalities on such attributes, and
many candidate hypotheses will need to be tested. Also, complexity may reside in
the discovery task, for example when modelling non-trivial interactions between
attributes. The result of these challenges is that individual candidate testing
becomes very time-consuming, and hypothesis spaces become prohibitively large.

In the majority of discovery algorithms, including those for Subgroup Discov-
ery (SD) [6,17], it is assumed that complete solutions to a particular discovery
task are required, and thus some form of exhaustive search is employed. In order
to obtain efficiency, these algorithms typically rely on top-down search combined
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� Springer-Verlag Berlin Heidelberg 2011
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with considerable pruning, exploiting either anti-monotonicity of the quality
measure (e.g. frequency), or so-called optimistic estimates of the maximally at-
tainable quality at every point in the search space [3]. With small datasets and
simple tasks, these tricks work well and give complete solutions in reasonable
time. However, on the complex datasets that we assume, exhaustive approaches
simply become infeasible, even when considerable pruning can be achieved. Ad-
ditionally, we consider Exceptional Model Mining (EMM) [11,10], which allows
multiple target attributes and complex models to be used for measuring quality.
With EMM in particular, we are often dealing with quality measures that are
not monotonic, and for which no optimistic estimates are available.

Apart from the computational concerns with discovery in large datasets, one
also needs to consider the practicality of complete solutions in terms of the
size of the output. Even when using condensed representations [13,14] or some
form of pattern set selection [1,7,15] as a post-processing step, the end result
may still be unrealistically large, and represent tiny details of the data overly
specifically. The experienced user of discovery algorithms will recognise the large
level of redundancy that is common in the final pattern set. This redundancy
is often the result of dependencies between the (non-target) attributes, which
lead to large numbers of variations of a particular finding. Note that large result
sets are problematic even in top-k approaches. Large result sets are obviously
not a problem in top-1 approaches, but they are when k ≥ 2, as the mentioned
dependencies will lead to the top of the pattern list being populated with different
variations on the same theme, and alternative patterns dropping out of the top-
k. This problem is aptly illustrated by Figure 1, which shows that the top-100
subgroups obtained on Credit-G cover almost exactly the same tuples.

Approach and contributions. The obvious alternative to exhaustive search,
and the one we consider in this paper, is of course heuristic search: employ edu-
cated guesses to consider only that fraction of the search space that is likely to
contain the patterns of interest. When performing heuristic search, it is essential
to achieve a good balance between exploitation and exploration. In other words,
to focus and extend on promising areas in the search space, while leaving room
for several alternative lines of search. In this work, we will implement this bal-
ance by means of beam search, which provides a good mixture between parallel
search (exploration) and hill-climbing (exploitation). Within the beam search
framework, we will experiment with different variations of achieving diversity
in the beam, that is, the current list of candidates to be extended. Due to the
above-mentioned risk of redundancy with top-k selection, the level of exploration

Su
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Fig. 1. Redundancy in top-k Subgroup Discovery. Shown are the covers (in black) of
the top-100 subgroups obtained on Credit-G with weighted relative accuracy.
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within a beam can become limited, which will adversely affect the quality of the
end result. Inspiration for selecting a diverse collection of patterns for the beam
at each search level will come from pattern set selection techniques, which were
originally designed for post-processing the end-result of discovery algorithms.

In Section 2, we will first formalise both Subgroup Discovery and Exceptional
Model Mining, after which we will recap the commonly used search techniques,
including the standard beam search algorithm. We will then introduce the notion
of subgroup set mining in Section 3, and argue that it is better to mine subgroup
sets rather than individual subgroups, to ensure diversity. This leads to the Non-
Redundant Generalised Subgroup Discovery problem statement. We will show
that redundancy in subgroup sets can be formalised in (at least) three different
ways, each subsequent definition being more strict than its predecessor. Each of
these three degrees of redundancy is used as basic principle for a beam selection
strategy in Section 5. Section 4 presents the quality measures that will be used
in the experiments, which are presented in Section 6. We round up with related
work and conclusions in Sections 7 and 8.

2 Preliminaries

2.1 Subgroup Discovery and Exceptional Model Mining

We assume that the tuples to be analysed are described by a set of attributes A,
which consists of k description attributes D and l model (or target) attributes M
(k ≥ 1 and l ≥ 1). In other words, we assume a supervised setting, with at least
a single target attribute M1 (in the case of classical SD), but possibly multiple
attributes M1, . . . ,Ml (in the case of EMM). Each attribute Di (resp. Mi) has
a domain of possible values Dom(Di) (resp. Dom(Mi)). Our dataset S is now
a bag of tuples t over the set of attributes A = {D1, . . . , Dk,M1, . . . ,Ml}. We
use xD resp. xM to denote the projection of x onto its description resp. model
attributes, e.g. tD = πD(t) in case of a tuple, or SM = πM (S) in case of a bag
of tuples. Equivalently for individual attributes, e.g. SMi = πMi(S).

Arguably the most important concept in this paper is the subgroup, which
consists of a description and corresponding cover. A subgroup (cover) is a bag of
tuples G ⊆ S and |G| denotes its size, also called subgroup size or coverage.

A subgroup description is an indicator function s, as a function of description
attributes D. That is, it is a function s : (Dom(D1) × . . .× Dom(Dk)) +→ {0, 1},
and its corresponding subgroup cover is Gs = {t ∈ S | s(tD) = 1}. As is usual,
in this paper a subgroup description is a pattern, consisting of a conjunction of
conditions on the description attributes, e.g. Dx = true ∧ Dy ≤ 3.14. Such a
pattern implies an indicator function as just defined.

Given a subgroup G, we would like to know how interesting it is, looking only
at its model (or target) data GM . We quantify this with a quality measure. A
quality measure is a function ϕ : GM +→ R that assigns a numeric value to a
subgroup GM ⊆ SM , with GM the set of all possible subsets of SM .

Subgroup Discovery and Exceptional Model Mining. The above defini-
tions allow us to define the two main variations of data mining tasks that feature
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in this paper: Subgroup Discovery (SD) and Exceptional Model Mining (EMM).
As mentioned, in SD we consider datasets where only a single model attribute
M1 (the target) exists. We are interested in finding the top-ranking subgroups
according to a quality measure ϕ that determines the level of interestingness in
terms of unusual distribution of the target attribute M1:

Problem 1 (Top-k Subgroup Discovery). Suppose we are given a dataset S with
l = 1, a quality measure ϕ and a number k. The task is to find the k top-ranking
subgroups Gk with respect to ϕ.

EMM is a generalisation of the well-known SD paradigm, where the single tar-
get attribute is replaced by a collection of model attributes [11]. Just like in
SD, EMM is concerned with finding subgroups that show an unusual distribu-
tion of the model attributes. However, dependencies between these attributes
may occur, and it is therefore desirable to consider the joint distribution over
M1, . . . ,Ml. For this reason, modelling over GM is employed to compute a value
for ϕ. If the model induced on GM is substantially different from the model
induced on SM , quality is high and we call this an exceptional model. We can
now formally state the EMM problem.

Problem 2 (Top-k Exceptional Model Mining). Suppose we are given a dataset
S, a quality measure ϕ and a number k. The task is to find the k top-ranking
subgroups Gk with respect to ϕ.

2.2 Subgroup Search

To find high-quality subgroups, the usual choice is a top-down search strategy.
The search space is traversed by starting with simple descriptions and refining
these along the way, from general to specific. For this a refinement operator
that specialises subgroup descriptions is needed. A minimum coverage threshold
(mincov) is used to ensure that a subgroup covers at least a certain number of
tuples. A maximum depth (maxdepth) parameter imposes a maximum on the
number of conditions a description may contain.
Exhaustive search. When exhaustive search is possible, depth-first search is
commonly used. This is often the case with moderately sized nominal datasets
with a single target. Whenever possible, (anti-)monotone properties of the qual-
ity measure are used to prune parts of the search space. When this is not pos-
sible, so-called optimistic estimates can be used to restrict the search space. An
optimistic estimate function computes the highest possible quality that any re-
finement of a subgroup could give. If this upper bound is lower than the quality
of the current kth subgroup, this branch of the search space can be safely ignored.
Beam search. When exhaustive search is not feasible, beam search is the widely
accepted heuristic alternative. It also uses a levelwise top-down strategy and the
same refinement operator, but it explores only part of the search space. The basic
algorithm is shown as Algorithm 1. On each level, the w highest ranking sub-
groups with respect to quality are selected for the beam. Candidate subgroups for
the next level are generated from individual subgroups b using the refinement
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Algorithm 1. Beam Search
Input: A dataset S , a quality measure ϕ and parameters k, w, mincov and maxdepth.
Output: R, an approximation of the top-k subgroups Gk.
1. R ← ∅, Beam← {∅}, depth = 1
2. while depth ≤ maxdepth do
3. Cands← ∅
4. for all b ∈ Beam do
5. Cands← Cands ∪ GenerateRefinements(b,mincov)
6. for all c ∈ Cands do
7. UpdateTopK(R, k, c, ϕ(c))
8. Beam← SelectBeam(Cands, w, ϕ)
9. depth← depth + 1

10. return R

operator (GenerateRefinements), while respecting the mincov parameter. The
initial candidate set is generated from the empty subgroup description. Select-
Beam selects the w highest ranking c ∈ Cands (with respect to ϕ) to form the
beam for the next level.

3 Non-Redundant Generalised Subgroup Discovery

The redundancy issues experienced with SD/EMM algorithms suggest that we
should not only look at each individual subgroup locally, but also take the other
subgroups into account. That is, we should consider subgroup set mining, similar
to recent pattern set selection approaches [1,7,15].

Problem 3 (Non-Redundant Generalised Subgroup Discovery). Suppose we are
given a dataset S, a quality measure ϕ and a number k. The task is to find a
non-redundant set G of k high-quality subgroups.

The term Generalised Subgroup Discovery is used to emphasise that it encom-
passes both SD and EMM.

Although it may be clear to the data miner whether a (small) set of patterns
contains redundancy or not, formalising redundancy is no trivial task. We can
consider three degrees of redundancy removal.

In a non-redundant subgroup set G, all pairs Gi, Gj ∈ G (with i �= j) should
have substantially different:

1. subgroup descriptions, or
2. subgroup covers, or
3. exceptional models. (Only in the case of EMM.)

Note that each subsequent degree is more strict than its predecessor. On the first,
least restrictive degree, substantially different descriptions are allowed, ignoring
any potential similarity in the cover. The second degree of redundancy would
also address this kind of similarity in the subgroup covers. The third degree of
redundancy will consider subgroups that are different in both description and
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cover, and will address their difference in terms of the associated models built
on the model attributes M .

In Section 5, each of the three degrees of redundancy will be used as basic
principle for a subgroup set selection method and be incorporated in the beam
search. The resulting search strategies eliminate redundancy in subgroup sets.

To quantify redundancy in subgroup sets, we consider the subgroup covers
because it is independent of any other choices and can be easily interpreted.
By assuming a uniform distribution of all subgroup covers over all tuples in
the dataset, we can compute an expected cover count and measure how far each
individual tuple’s cover count deviates from this. This results in the following.

Definition 1 (Cover Redundancy). Suppose we are given a dataset S and
a set of subgroups G. Define the cover count of a tuple t ∈ S as c(t,G) =∑

G∈G sG(t). The expected cover count ĉ of a random tuple t ∈ S is defined as
ĉ = 1

|S|
∑

t∈S c(t,G). The Cover Redundancy CR is now computed as:

CRS(G) =
1
|S|

∑
t∈S

|c(t,G) − ĉ|
ĉ

The larger the CR, the larger the deviation from the uniform distribution. Be-
cause Generalised Subgroup Discovery aims to find only those parts of the data
that stand out, this measure on itself does not tell us much. However, if we have
several subgroup sets of (roughly) the same size and for the same dataset, a lower
CR indicates that less tuples are covered by more subgroups than expected, and
thus the subgroup set is more diverse/less redundant.

As an example, the subgroup set in Figure 1 has a CR of 1.19. Clearly, this
cover distribution is highly undesirable and (much) lower values are preferred.

4 Quality Measures

Weighted Relative Accuracy. Weighted Relative Accuracy (WRAcc) [9] is
a well-known SD quality measure for datasets with one binary target attribute.
Let 1G (resp. 1S) denote the fraction of ones in the target attribute, within the
subgroup (resp. entire dataset). Weighted Relative Accuracy is then defined as
ϕWRAcc(G) = |G|

|S| (1
G − 1S).

Weighted Kullback-Leibler divergence. We previously [10] introduced a
measure based on the Kullback-Leibler (KL) divergence. Each attribute-value
is assumed to be an independently drawn sample from an underlying random
variable. The empirical probability distribution for attribute Mi is estimated by
P̂ . We here present an alternative that weighs quality by subgroup size, because
this works better in combination with a levelwise search (without this weight,
smaller subgroups always tend to have larger qualities). This measure can be
used with either a single or multiple binary model attributes, and even with
nominal attributes.
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Definition 2 (WKL quality). Given a database S and subgroup G, define
(independent) Weighted KL quality as

ϕWKL(GM ) =
|G|
|S|

l∑
i=1

KL(P̂ (GMi) ‖ P̂ (SMi))

Weighted Krimp Gain. In [10] we introduced a second measure that, contrary
to (Weighted) KL quality, does take associations between (binary) attributes into
account. It uses Krimp code tables [16] as models, but the principle is equivalent
to that of WKL: a subgroup is interesting if it can be compressed much better
by its own compressor, than by the compressor induced on the overall database.
Similar to WKL quality, we here introduce a weighted alternative.

Definition 3 (Weighted Krimp Gain). Let D be a binary database, G ⊆ D
a subgroup, and CTD and CTG their respective optimal code tables. We define
the Weighted Krimp Gain of group G from D, denoted by WKG(G ‖ D), as

WKG(G ‖ D) = L(G | CTD) − L(G | CTG),

with L(G | CT ) the size of G, in bits, encoded with code table CT .

Given this, defining the quality measure is straightforward.

Definition 4 (WKG quality). Let S be a database and G ⊆ S a subgroup.
Define Weighted KG quality as ϕWKG(GM ) = WKG(GM ‖ SM ).

5 Non-Redundant Beam Selection

In this section we show how selection strategies based on the three degrees
of redundancy from Section 3 can be incorporated in the basic beam search
algorithm (see Algorithm 1). Instead of simply choosing the –potentially highly
redundant– top-k subgroups for the beam, we will modify the algorithm to select
diverse subgroup sets at each level. In other words, we strive to achieve high-
quality yet non-redundant beam selection.

A beam selection strategy is a selection scheme that decides which candidates
are included in the beam, and is invoked by SelectBeam in Algorithm 1. We will
refer to regular top-k beam selection as the Standard strategy.

Most pattern set selection criteria require all possible pattern sets to be taken
into consideration to ensure that the global optimum is found. However, large
numbers of subgroups may be evaluated at each search level and such exhaus-
tive strategies are therefore infeasible. Hence, we have to resort to greedy and
heuristic methods, as is usual in pattern set selection [1,7,15]. The following
three selection strategies correspond to the three degrees of redundancy.

Description-based beam selection. Order all candidates descending by qual-
ity and consider them one by one until beam width w is reached. For each con-
sidered subgroup G ∈ Cands, discard it if its quality and all but 1 conditions
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are equal to that of any b ∈ Beam, otherwise include it in the beam. Time
complexity for selecting the beam of a single level is O(|Cands| · log(|Cands|) +
|Cands| · depth) (the current search depth influences how long a comparison of
descriptions takes).

Cover-based beam selection, This strategy focuses on the subgroup covers
and how they overlap. A score based on multiplicative weighted sequential cov-
ering [9] is used to weigh the quality of each subgroup, aiming to minimise the
overlap between the selected subgroups. This score is defined as

Ω(G,Beam) =
1
|G|

∑
t∈G

αc(t,Beam),

where α ∈ 〈0, 1] is the weight parameter. The less often tuples in subgroup G
are already covered by subgroups in the beam, the larger the score. If the cover
contains only previously uncovered tuples, Ω(G,Beam) = 1.

In w iterations, w subgroups are selected for inclusion in the beam. In each
iteration, the subgroup that maximises Ω(G,Beam) ·ϕ(G) is selected. The first
selected subgroup is always the one with the highest quality, since the beam is
empty and Ω(G,Beam) = 1 for all G. After that, the Ω-scores for the remaining
Cands are updated each iteration. Complexity per level is O(w · |Cands| · |S|).
Compression-based beam selection. To be able to do model-based beam
selection, a (dis)similarity measure on models is required. For this purpose, we
focus on the models used by the WKL and WKG quality measures. These mea-
sures have in common that they rely on compression; they assume a coding
scheme and the induced models can therefore be regarded as compressors.

In case of WKG, the compressor is the code table induced by Krimp. In case
of WKL, the compressor replaces each attribute-value x by a code of optimal
length L(x) based on its marginal probability, i.e. L(x) = − log2(P̂ (Mi = x)).

Adopting the MDL philosophy [4], we say that the best set of compressors is
that set that together compresses the dataset best. Selecting a set of compressors
is equivalent to selecting a set of subgroups, since each subgroup has exactly one
corresponding compressor. Since exhaustive search is infeasible, we propose the
following heuristic.

1. We start with the ‘base’ compressor that is induced on the entire dataset,
denoted CS . Each t ∈ S is compressed with this compressor, resulting in
encoded size L(S | CS).

2. Next, we iteratively search for the subgroup that improves overall compres-
sion most, relative to the compression provided by the subgroups already
selected. That is, the first selected subgroup is always the top-ranked one,
since its compressor C1 gives the largest gain with respect to L(S | CS).

3. Each transaction is compressed by the last picked subgroup that covers it,
and by CS if it is not yet covered by any. So, after the first round, part of
the transactions are encoded by CS , others by C1.
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4. Assuming this encoding scheme, select that subgroup G ∈ Cands\{C1, . . . }
that maximises L(S | CS , C1, . . . )−L(S | CS , C1, . . . , G) in each subsequent
step. Stop when the beam has attained its desired width w.

To perform this selection strategy, all compressors belonging to the subgroups
of a certain level are required. If these can be kept in memory, the complexity
of the selection scheme is O(w · |Cands| · |S| · |M |), where |M | is the number
of model attributes. However, keeping all compressors in memory may not be
possible. They could then be either cached on disk or reconstructed on demand,
but both approaches would severely impact runtimes.

Each subsequent beam selection strategy is more strict than its predecessor,
but also computationally more demanding. This offers the data miner the op-
portunity to trade-off diversity with computation time.

5.1 Improving Individual Subgroups

Despite all efforts to prevent and eliminate redundancy in the result set, some
of the found subgroups may be overly specific. This may be caused by a large
search depth, but also by heuristic choices in e.g. the refinement operator. For
example, the subgroup corresponding to A = true ∧ B = true might have the
highest possible quality, but never be found since neither A = true nor B = true
has high quality. However, C = false ∧ A = true ∧ B = true could be found.
Now, pruning the first condition would give the best possible subgroup.

We propose to improve individual subgroups by pruning the subgroup descrip-
tions as a post-processing step, based on the concept of dominance. A subgroup
Gi dominates a subgroup Gj iff

1. the conditions of the description of Gi are a strict subset of those of Gj , and
2. the quality of Gi is higher than or equal to that of Gj , i.e. ϕ(Gi) ≥ ϕ(Gj).

Observe that although dominance is clearly inspired by relevancy [2], it is not
the same. The former is more generic, making it also suitable for e.g. EMM.

The heuristic method we propose for dominance-based pruning is to consider
each of the conditions in a subgroup description one by one, in the order in
which they were added. If removing a condition does not decrease the subgroup’s
quality, then permanently remove it, otherwise keep it.

5.2 Non-Redundant Beam Search

The overall subgroup set mining process we propose consists of three steps. First,
a beam search (Algorithm 1) is performed to mine N subgroups, with any of
the proposed beam selection strategies (plugged in as SelectBeam). Next, each
of the N resulting subgroups is individually pruned based on dominance, and
syntactically equivalent subgroups are removed. As the final result set potentially
also suffers from the redundancy problems of top-k-selection, a selection strategy
is used to select S subgroups (S � N) from the remaining subgroups (‘post-
selection’). For this, the same strategy as during the beam search is used.
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Refinements. We distinguish three types of description attributes, each with its
own associated condition types: {=} for binary, {=, �=} for nominal and {<,>}
for numeric attributes. For binary and nominal attributes, the refinement op-
erator always generates all possible refinements, i.e. each combination of con-
dition type and attribute-value. To prevent the search space from exploding,
the values of a numeric attribute are locally binned into 6 equal-sized bins and
{<,>}-conditions are generated for the 5 split points obtained this way. This ‘on-
the-fly’ discretisation, performed upon subgroup refinement, results in a much
more fine-grained binning than ‘a priori’ discretisation of numeric attributes.

Except for refinements that lead to a contradiction, all refinements for all de-
scription attributes are always considered. (Adding Dx = true to a description
that already contains Dx = false would be meaningless, for example.) Conse-
quently, multiple conditions on the same attribute can be imposed; especially
with nominal attributes, slowly peeling off tuples with �= can be helpful.

6 Experiments

Table 1. Datasets. For each dataset the num-
ber of tuples, the number of description and
model attributes, and the minsup used for
WKG are given.

Dataset Properties WKG
|S| |D| |M | minsup

Adult-SD 48842 105 1 -
Credit-G 1000 20 1 -
Mushroom 8124 22 1 -

Adult-EMM 48842 6 99 10%
Emotions 593 72 6 1%
Mammals 2221 67 124 -
Yeast 2417 103 14 1%

Datasets. To evaluate the
proposed methods, we perform ex-
periments on the datasets listed in
Table 1. The upper three datasets,
taken from the UCI repository1,
contain a single target (SD), the
lower four datasets have multi-
ple model attributes (EMM). Two
variants of the UCI Adult dataset
are used: Adult-SD is the com-
monly used variant, with the bi-
nary class label as single target, in
Adult-EMM all numeric attributes
are considered as description at-
tributes, and all binary attributes
as model attributes (except for
class, which is not used). Furthermore, we take the Emotions and Yeast datasets
from the ‘Mulan’ repository2, and we use the Mammals dataset [5] (each of these
has numeric description attributes and binary model attributes).

Methods for comparison. Depth-first search (DFS) is used, with WRAcc in
combination with tight optimistic estimate [3]. With DFS, only a single condition
per attribute is allowed and all attributes are considered in a fixed order. This
is necessary to limit the size of the search space and thus computation time, but
also means that beam search can potentially reach better solutions.

1 http://archive.ics.uci.edu/ml/
2 http://mulan.sourceforge.net/datasets.html

http://archive.ics.uci.edu/ml/
http://mulan.sourceforge.net/datasets.html
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Fig. 2. Two beam selection strategies in action: description-based and cover-based. For
each level in the beam search, it is shown which candidate subgroups are selected for
inclusion in the beam (black) and which are ignored (white). Candidates are ordered
descending on quality. On the right, the total number of candidate subgroups for each
level is shown (candidates not shown are not selected). Credit-G with WRAcc.

An often adopted approach to mining pattern sets is the 2-step approach,
where 1) all patterns are mined and 2) a subset of these patterns is selected
as post-processing step. We test this approach by first using DFS or standard
beam search to mine the top-N subgroups, and then use cover-based selection
to select S subgroups from this (denoted ‘+PS’, for post-selection).

Search parameters. In all experiments, N = 10, 000 subgroups are mined,
from which S = 100 are selected for the final subgroup set. A maximum depth
maxdepth = 5, minimum coverage mincov = 10, and beam width w = 100 are
used. Preliminary experiments showed that changing these parameters has the
same effect on all search strategies, keeping their differences intact. Since our aim
is to compare the different strategies, we keep these fixed. Weight parameter α for
cover-based beam selection is set to 0.9, since preliminary experiments indicated
that this gives a good balance between quality and cover diversity.

6.1 A Characteristic Experiment in Detail

To study the effects of the proposed beam selection strategies and dominance-
based pruning in detail, we focus on a single dataset. For ease of presentation,
we choose the (relatively small) Credit-G dataset, and we use WRAcc as quality
measure. We choose a classical Subgroup Discovery setting because it is studied
and used by so many people, but this means that we cannot apply compression-
based selection. In Figure 1 we have already seen that redundancy is a tremen-
dous problem with DFS top-k subgroup discovery. Hence, we will now apply the
proposed beam selection strategies to see if this improves diversity.

Figure 2 shows which subgroups are selected for refinement on each level in
the beam search. Clearly, the description-based and cover-based strategies select
subgroups from a much wider range than the standard top-100, which is likely
to result in a more diverse beam. As expected, a higher degree of redundancy
elimination results in more (high-quality but similar) candidates being skipped.
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Fig. 3. Subgroup covers obtained with 4 beam search strategies: standard, standard
with cover-based post-selection, description-based, and cover-based. Shown are the
covers (in black) of the top-100 subgroups obtained on Credit-G with WRAcc. Cover
Redundancies (CR) computed from the subgroup sets are shown on the right.

Our hypothesis, of course, is that this more diverse beam selection also results
in a more diverse set of results. To assess this, consider the subgroup covers of
the 100 subgroups that are obtained after post-selection, in Figure 3. The plots
confirm that diversity increases as higher degree redundancy is eliminated: sub-
group covers become more and more scattered over all tuples, and CR decreases
with each new strategy (from top to bottom). Post-selection seems to perform
well at first with Standard+PS, but after choosing about 40 subgroups there are
no diverse and high-quality candidates left in the remaining 9,960 subgroups,
and homogeneity is the end result.

The goal we stated in Section 3 is to find a non-redundant set of high-quality
subgroups. It is therefore important that the maximum quality of a subgroup

Maximum

Minimum
Average and standard deviation

DFS Standard Standard+PS Description Cover

Q
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Fig. 4. Qualities of 100 subgroups obtained
with different search strategies

set, the highest quality obtained
by any subgroup, does not de-
crease when using our beam se-
lection strategies.

To assess this, consider the
qualities of the 100 subgroups
that are obtained after post-
selection, in Figure 4. The maxi-
mum obtained quality is (almost)
the same for all settings, indicat-
ing that exploitation does not suf-
fer from beam diversity; a good
result. The lower average qualities
and larger standard deviations are
natural consequences of the diversity enforced by subgroup set selection.
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6.2 Quantitative Results

We now present results obtained on a large set of experiments, to show that the
proposed beam selection strategies have a positive effect in the large majority of
cases. That is, resulting subgroup sets are more diverse (and thus less redundant),
while not giving in on maximum quality.

For the SD setting, we performed experiments with 3 datasets (Adult-SD,
Credit-G and Mushroom), quality measures WRAcc and WKL and 6 search
strategies. These were depth-first search with cover-based post-selection, beam
search with a standard beam with and without cover-based post-selection, and
beam search with the three proposed selection strategies. The compression-based
strategy does not work with WRAcc, and DFS with Adult-SD and WKL was ex-
cluded due to a very long runtime (> 2 weeks). Taking this into account, the
setup resulted in a total of 26 experiments.

Aggregated results obtained for these experiments are shown in Table 2. A search
strategy is better than others if it more often achieves 1) a higher maximum qual-
ity, and 2) a lower cover redundancy. This is represented by the average rank re-
sults. For each combination of dataset and quality measure, experiments with all
search strategies were performed and ranked with respect to 1) maximum quality
obtained (ϕmax, descending), and 2) cover redundancy of the attained subgroup
set (CR, ascending). Tied ranks are assigned the average of the ranks for the range
they cover. Finally, all ranks for a specific search strategy are averaged.

The results in Table 2 show that DFS with cover-based post-selection needs
many candidates and considerable computation time to obtain subgroup sets
that are hardly diverse and do not attain the highest maximum quality. The
latter is partly due to the restrictions we had to impose on the hypothesis space;
multiple conditions on a single attribute (often beneficial) were banned.

The slightly higher average rankings (with respect to maximum quality) of the
description-based and cover-based strategies show that diverse beam selection
has a modest positive impact on beam search’s capability of finding high-quality
solutions. A standard beam search with cover-based post-selection gives more
diverse results than the description-based strategy, but the latter is faster and
it is evidently more diverse than beam search without any post-processing.

Table 2. Subgroup Discovery results, aggregated over 3 datasets and 2 quality mea-
sures. Shown are the average number of candidates, time per experiment, subgroup
description sizes (#conditions), subgroup sizes and cover redundancies. On the right,
average ranks are given as obtained by ranking experiments stratified by strategy.

Search strategy Experiment avg Subgroup set avg Rank avg

|Cands| time (min) descr. size CR ϕmax CR

DFS + PS 403801872 1553 3.5 5712 1.10 3.4 3.8
Standard 88641 0.3 4.7 6535 1.23 3.2 4.0
Standard + PS 88641 4.2 3.6 7494 0.80 3.2 2.5
Description 88508 1.0 4.3 6591 0.98 2.8 3.7
Cover 89116 49 4.4 8758 0.37 2.8 1.0
Compression 87304 16 2.7 3296 1.12 3.3 3.0
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Table 3. Exceptional Model Mining results, aggregated over 4 datasets and 2 quality
measures. Shown are the average number of candidates, time per experiment, subgroup
description sizes (#conditions), subgroup sizes and cover redundancies. On the right,
average ranks are given as obtained by ranking experiments stratified by strategy.

Search strategy Experiment avg Subgroup set avg Rank avg

|Cands| time (min) descr. size CR ϕmax CR

Standard 244830 8 4.8 4840 1.53 3.1 4.6
Standard + PS 244830 52 3.4 5397 1.07 2.6 2.5
Description 244659 49 3.8 5163 1.36 1.9 3.5
Cover 244830 62 3.4 5493 0.48 3.2 1.2
Compression 255992 143 2.1 653 1.07 3.8 2.4

When the cover-based strategy is incorporated within the search, however, the
results stand out with respect to cover diversity. The downside is that it needs
more time, but it is still very fast when compared to DFS. Compression-based
selection does not seem to work well in the SD setting, which is not unexpected
since only a very limited number of distributions can be distinguished with a
single binary model attribute.

We performed EMM experiments on 4 datasets (Adult-EMM, Emotions, Mam-
mals, and Yeast), with quality measures WKL and WKG and 5 beam search
strategies. WKG was not used in combination with Mammals, since the induc-
tion of Krimp code tables takes too long on this dataset; WKL is a good and
fast alternative. We chose to apply the combination of WKG and compression-
based selection only to Emotions, as all models can be cached in memory for
this dataset. The results of the 26 experiments are presented in Table 3.

The results for EMM are slightly different from those for SD. Description-
based selection finds better overall solutions than the other strategies. It performs
better than Standard in terms of cover redundancy, but not better than the 2-step
Standard+PS approach. For fast mining of high-quality results, the description-
based strategy seems a good choice. Dominance-based pruning is not applied
with Standard, resulting in lower maximum qualities than with Standard+PS.

As expected from its basic principle, cover-based selection is again the clear
winner with respect to cover diversity: it achieves the lowest cover redundancies.
The compression-based scheme gives slightly lower maximum qualities, but the
subgroups are quite diverse, smaller and have shorter descriptions.

We performed a Friedman test on 8 rankings obtained with the compression-
based quality measures, to be able to include the compression-based strategy in
the comparison. For each of the 7 datasets, a ranking was obtained with WKL, 1
ranking came from Emotions with WKG. Between the ϕmax rankings, no signifi-
cant differences were found; the 5 strategies exhibit no significant differences with
respect to exploitation. In the CR rankings, significant differences were found (p-
value =0.00004), and wedid a post-hoc Wilcoxon-Nemenyi-McDonald-Thompson
test.Standard+PS,CoverandCompressionhave significantlybetter rankings than
Standard, and Cover is also significantly better than Description.
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All in all, incorporating subgroup selection within beam search yields clearly
better results than applying it as post-processing step. Employing the
description-based selection scheme comes at little computational cost, but does
give higher-quality and more diverse results than without using any subgroup se-
lection techniques. At the expense of some more computation time, cover-based
selection eliminates more redundancy and results in a much more diverse sub-
group set. The compression-based method does not always work well, but should
be employed for datasets where many underlying distributions are present in the
model data, such as it is the case for e.g. Mammals.

Finally, we consider the effect of dominance-based pruning on the subgroup
sets. In the SD experiments, the average number of conditions per subgroup
description decreases from 4.5 to 3.4 and average subgroup quality increases
with 4% on average. For EMM, the effect is even larger and the average number
of conditions decreases from 4.9 to 3.0, an average decrease of 1.9 conditions
per description! Meanwhile, average subgroup quality increases with 20.3% on
average. Note that these changes are due to both the pruning of individual
descriptions and the removal of syntactically identical subgroups.

7 Related Work

To the best of our knowledge, we are the first to combine pattern selection tech-
niques and beam search to achieve non-redundant Generalised Subgroup Dis-
covery. Kocev et al. [8] previously proposed to incorporate similarity constraints
in a beam search to improve the induction of predictive clustering trees.

Several methods have been proposed to address the redundancy problem in
SD/EMM. Garriga et al. [2] proposed closed sets for labeled data, but similar to
closed frequent itemsets, this only eliminates a limited part of redundancy as only
individual patterns are considered. An advantage is that ‘relevant’ subgroups
can be efficiently mined [12]. A downside is that it does not apply to the EMM
setting. We previously proposed the EMDM algorithm [10], but this method
does not apply to the SD setting and for the EMM setting, it is dependent on
the initial candidates and it finds more complex subgroup descriptions.

The beam selection strategies we propose are clearly inspired by pattern set
selection methods such as those proposed by Bringmann & Zimmerman [1] and
Peng et al. [15]. The key difference is that we perform pattern selection within
a discovery algorithm to improve the end result.

8 Conclusions

Effective and efficient heuristics are crucial for performing discovery tasks in large
and complex data. In addition to that, the incredible amount of redundancy in
hypothesis spaces renders straightforward top-k mining useless. We address these
problems by incorporating heuristic pattern set selection methods within a beam
search, thereby improving the balance between exploration and exploitation.

We described three degrees of redundancy and introduced a subgroup set
selection strategy for each degree. Experiments with both Subgroup Discovery
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and Exceptional Model Mining show that the proposed methods for subgroup
set mining return high-quality yet diverse results. The three methods offer the
data miner a trade-off between redundancy elimination and computation time.
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Abstract. Recently, there have been considerable advances in fast infer-
ence for latent Dirichlet allocation (LDA). In particular, stochastic opti-
mization of the variational Bayes (VB) objective function with a natural
gradient step was proved to converge and able to process massive docu-
ment collections. To reduce noise in the gradient estimation, it considers
multiple documents chosen uniformly at random. While it is widely rec-
ognized that the scheduling of documents in stochastic optimization may
have significant consequences, this issue remains largely unexplored. In
this work, we address this issue. Specifically, we propose residual LDA, a
novel, easy-to-implement, LDA approach that schedules documents in an
informed way. Intuitively, in each iteration, residual LDA actively selects
documents that exert a disproportionately large influence on the current
residual to compute the next update. On several real-world datasets, in-
cluding 3M articles from Wikipedia, we demonstrate that residual LDA
can handily analyze massive document collections and find topic mod-
els as good or better than those found with batch VB and randomly
scheduled VB, and significantly faster.

1 Introduction

Latent Dirichlet allocation (LDA) has recently become very popular due to its
effectiveness at extracting low-dimensional representations from sparse high-
dimensional data, with numerous applications in areas such as text analysis
and computer vision [1]. Unfortunately, fitting a LDA topic model given a set
of training documents requires approximate inference techniques that are com-
putationally expensive. This makes it challenging to apply LDA to large-scale
document collections that nowadays become increasingly common. Such datasets
originate for example from online books at Google or image collections at Flickr.
And as storage capacity continues to expand, today’s ”large” is certainly tomor-
row’s ”medium” and next week’s ”small”. For instance International Data Cor-
poration1 (IDC), a consultancy, has estimated that in August 2010 the amount
of information available on the Internet did surpass the barrier of 1ZB = 1021B.

� Both authors contributed equally.
1 Mar 2011, http://www.idc.com/getdoc.jsp?containerId=prUS22723811

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 475–490, 2011.
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According to Eric Schmidt, CEO of Google, this amount currently grows at a
rate of 2.5EB = 2.5 · 1018B per day. Most of these data consist of user gener-
ated content such as videos, photos, blogs, or reviews. Apparently, processing
such large-scale document collections opens up completely new and interesting
applications for machine learning techniques in general and LDA in particular.

A promising approach to scaling LDA to large data sets are online variants,
see e.g. [23,2,11,16] and references in there, that incrementally build topic models
when a new document (or a set of documents) appears. For instance, Hoffman
et al. [11] presented an online variational Bayes (VB) algorithm for LDA based
on online stochastic optimization with a natural gradient step that can easily
analyze massive document collections. In addition to providing a solution to
the problem of growing document collections, online algorithms also open up
different avenues for parallelization of inference from batch algorithms, provid-
ing ways to draw on the enhanced computing power of multiprocessor systems,
and different tradeoffs in runtime and performance from other algorithms; an-
other common approach to scaling LDA, see e.g. [18,15,22] and reference in
there. Here, we explore another avenue opened up by online LDA algorithms,
namely, to revisit batch LDA and ask the question whether we can improve it
by viewing it as a quasi-online approach that processes documents respectively
mini-batches one at a time? Somewhat surprisingly, there has been virtually no
attempt to study the question of determining a good order for documents to
be processed. While it is widely recognized that the scheduling of documents in
stochastic optimization of LDA topic models may have significant consequences,
this issue remains largely unexplored. Instead, practitioners schedule documents
essentially uniformly at random, perhaps due to ease of implementation, and
to the lack of clear guidelines on scheduling the documents. In this work, we
address the question of how to schedule documents and show that convergence
can be reached faster.

Specifically, triggered by recent results on randomized low-rank matrix factor-
ization approaches [7,5,19,14] — they essentially randomly sample columns, i.e.,
documents according to a probability distribution that depends on the Euclidean
norms of those documents — it was recently proposed to schedule documents
that exert a disproportionately large influence on the topics of the corpus before
less influential documents. Naively instantiating this idea results in a fix sched-
ule: sort documents randomly biased towards those ones with higher norms.
Then, we simply run online LDA following this fix schedule. In fact, this influ-
ence scheduled LDA (isLDA) can already result in considerable efficiency gains.
However, as we will show in this paper, we can do considerably better. While
isLDA is indeed a valid approach, it suffers from one drawback. Since it starts
optimizing long before having seen the entire document collection even once,
it tends to overfit on documents with many words; they are seen much earlier
than documents with few words. Consequently, isLDA has to repair for this bias
by several passes over the entire dataset. We therefore propose a novel schedule
that overcomes this drawback. Intuitively, we schedule documents dynamically
in each pass over the entire document collection according to a probability dis-
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Fig. 1. Residual LDA can handily analyze massive document collections and finds top-
ics better than those found with batch LDA and online LDA, and significantly faster:
(Top) Held-out perplexity (the lower, the better) results on 3M Wikipedia articles as a
function of full passes through the dataset. (Bottom) Evolution of the topic ”university
research” (bottom) after having seen 10K, 100K, and 250K (residual and online LDA)
respectively 250K, 2.5m, 5m articles (batch LDA) on 250K Wikipedia. The 50 most
likely words are shown as word cloud. The word size is proportional to the probability.
Residual LDA is qualitatively more similar to batch LDA than online LDA is, univer-
sity, professor and research prominently appear in both of them. This is also supported
by smaller Hellinger distance. (Best viewed in color)

tribution that depends on the Euclidean norms of the current residuals of the
documents. As we will show, this dynamic schedule can actually be turned into
an active schedule: in each iteration we only consider a small, informative subset
of the documents sampled according to the residual distribution. This is sensible
because, if we overfit on the current active set of documents, the residuals of
the currently inactive documents will get larger. Moreover, it establishes a novel
link between LDA and active learning, see [17] for an overview. Whereas our
active schedule is unsupervised, most active learning approaches make use of
label information. Even recent active clustering approaches, see e.g. [21], typi-
cally provide semi-supervision in terms of must-link and cannot-link constraints.
Closest in spirit is probably early work on active data sampling [13]. Actually,
as we will point out in the conclusions, there is also a close connection to search
distributions for optimization [24].



478 M. Wahabzada and K. Kersting

We evaluated the resulting LDA, called residual LDA, both qualitatively and
quantitatively using several benchmark datasets, including 3M articles from
Wikipedia. The experimental results demonstrate that — as can also be seen
in Fig. 1 — residual LDA can handily analyze massive document collections
and find topic models as good or better than those found with randomly and
informatively scheduled LDA, and significantly faster. In other words ”larger
residuals, less work”, which also explains the title of the paper.

We proceed as follows. After reviewing LDA based on variational Bayes, we
motivate residual LDA by drawing connections between LDA and low-rank ma-
trix factorization. Based on this connection, we then introduce residual LDA
and devise a active schedule that prefers documents with high influence on the
gradient over less influence ones. Before concluding, we present our experimental
evaluation.

2 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a Bayesian probabilistic model of collections
of text documents [1]. It assumes a fixed number of K underlying topics in
a document collection D. Topics are assumed to be drawn from a Dirichlet
distribution, βk ∼ Dir(η), which is a convenient conjugate to the multinomial
distribution of words appearing in documents. According to LDA, documents are
generated by first drawing topic proportions according to θd ∼ Dir(α), where α
is the parameter of the Dirichlet prior on the per-document topic distributions.
Then for each word i a topic is chosen according to zdi ∼ Mult(θd) and the
observed word wdi is drawn from the selected topic, wdi ∼ Mult(βzdi

). We
assume symmetric priors for θ and β but asymmetric ones are possible, see
e.g. [20]. The true posterior distribution can not be computed directly and is
usually approximated using Markov chain monte carlo (MCMC) or variational
inference. In this paper, we focus on variational Bayesian (VB) inference. Here,
the true posterior is approximated using a simpler, fully factorized distribution
q. Following Blei et al. and Hoffman et al. [1,11], we choose q(z, θ, β) of the form
q(zdi = k) = φdwdik, q(θd) = Dir(θd, γd), and q(βk) = Dir(βk, λk). The posterior
over the per-word topic assignments z is parameterized by φ, the posterior over
the per-document topic weights θ is parameterized by γ, and the posterior over
the topics β is parameterized by λ. These variational parameters are optimized to
maximize the Evidence Lower BOund (ELBO) log p(w | α, η) ≥ L (w, φ, γ, λ) �

Eq [log p(w, z, θ, β | α, η)] − Eq [log q(z, θ, β)] , (1)

which is equivalent to minimizing the Kullback-Leiber divergence between
q(z, θ, β) and the true posterior p(z, θ, β | w,α, η). It can be shown that Eq. (1)
factorizes to a summation over documents d:

L (w, φ, γ, λ) =
∑

d

{
Eq [log p(wd | θd, zd, β)] + Eq [log p(zd | θd)] − Eq [log q(zd)]

+Eq [log p(θd | α)] − Eq [log q(θd)] + (Eq [log p(β | η)] − Eq [log q(β)]) /D
}
.
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Algorithm 1. A single iteration of Variatonal Bayes for LDA (vbLDA).
Setting ρt = 1 and D = D̃ corresponds to running batch LDA

Input: D̃, ρt

Output: λλλ,γγγD̃

foreach document d in D̃ do1

Initialize γdk = 1;2

/* The const. is arbitrary */

repeat3

Set φdwk ∝ exp {Eq [log θdk] + Eq [log βkw]};4

Set γdk = α +
∑

w φswkndw ;5

until 1
K

∑
k |change in γdk| < 0.00001 ;6

/* Compute M step */7

Compute λ̃kw = η + D

|D̃|
∑

d∈D̃ ndwφdwk;8

Set λλλ = (1− ρt)λλλ + ρtλ̃λλ;9

When using VB (as opposed to MCMC) documents can be summarized by their
word counts, i.e., L (w, φ, γ, λ) �

∑D
d=1 � (nd, φd, γd, λ), where D denotes the

number of documents, nd the word count vector and � (nd, φd, γd, λ) the contri-
bution of document d to the ELBO. Now, L can be optimized using coordinate
ascent over the variational parameters φ, γ, λ (see [1,11] for more details),

φdwk ∝ exp {Eq [log θdk] + Eq [log βkw ]} ,

γdk = α+
∑

w
ndwφdwk, and λkw = η +

∑
d
ndwφdwk, (2)

iteratively optimizing each variational parameter to increase the objective. The
conditional expectations under q of log θ and log β are

Eq [log θdk] = Ψ (γdk) − Ψ
(

K∑
i=1

γki

)
and Eq [log βkw ] = Ψ (λkw) − Ψ

(
W∑
i=1

λdi

)
,

whereW is the size of the vocabulary, and Ψ denotes the digamma function. The
updates in (2) are guaranteed to converge to a stationary point of the ELBO.
By analogy to the EM algorithm, we can partition these updates into an E-step
- iteratively updating γ and φ until convergence, holding λ fixed - and an M-step
- updating λ given φ. In practice, this algorithm converges to a better solution
if we reinitialize γ and φ before each E-step.

Based on VB, Hoffman et al. [11] have introduced an online variant that
we here present for the batch case running over mini-batches (chunks of mul-
tiple observations) as summarized in Alg. 2. That is, we assume that the cor-
pus of documents has been sorted according to some schedule, i.e. permuta-
tion π(i) and chunked into l mini-batches B1, B2, . . . , Bl of size S with Bi =
d(i−1)·S+1, d(i−1)·S+2, . . . , di·S} (w.l.o.g, we assume n = l ·S). That is, the ELBO
L is set to maximize L (w, φ, γ, λ) �

∑
Bi

∑
d∈Bi

� (nd, φd(nd, λ), γd(nd, λ), λ) .
For each mini-batch, we perform an E step to find locally optimal values of γt
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Algorithm 2. Online LDA (oLDA)
Input: D (documents), S (batchsize)
Define ρt � (τ0 + t)−κ with κ ∈ (0.5, 1];1

Initialize λλλ randomly and set t = 0;2

repeat3

Select S documents randomly forming the mini-batch D̃;4

Compute (λλλ,γγγD̃) = vbLDA(D̃,λλλ, ρt) using Alg. 1;5

Increment t := t + 1;6

until converged ;7

and φt, holding λ fixed. In the following M step, we compute λ̃, the setting of
λ that would be optimal (given φt) if the entire corpus consisted only of repeti-
tions of the batch Bi. λ is updated through a weighted average of its previous
value and λ̃ computed in the current M step. The rate of change ρt is set to
ρt � (τ0 + t)−κ. Here, τ0 ≥ 0 slows down early iterations of the algorithm, and
κ ∈ (0.5, 1] controls the influence of old values of λ̃ and ensures convergence.

As Hoffman et al. [11] have shown this mini-batch VB-LDA corresponds to a
stochastic natural gradient algorithm on the variational objective L. Using mini-
batches reduces the noise in the stochastic gradient estimation as we consider
multiple observations per update, i.e., λ̃kw = η+D/S

∑
s∈Bi

nswφskw where nsw

is the s-th document in the i-th mini-batch. The variational parameters φts and
γts for this document are fit with a normal E step. Note that we recover batch
VB when we set π(i) = i, the batch size to S = D, and κ = 0. The benefits of
this LDA approach are manifold, see [11]. It empirically converges faster than
batch collapsed Gibbs sampling. It does not require a full pass through the entire
corpus in order to compute an update. Instead, it makes an update per mini-
batch and in turn can be quite fast when applying to large datasets. Furthermore,
it converges as long as the expected number of times we see each document is
the same for each document.

3 isLDA ≈ Random Matrix Factorization

It is known that LDA and its precursor probabilistic latent semantic analysis
(pLSA) [12] are closely related. In particular, one can show that pLSA is tan-
tamount to LDA with a uniform prior [10]. Given this connection, one can also
establish a relation between LDA and certain settings of low-rank matrix fac-
torization. Specifically, Gaussier and Goutte [8] and Ding et al. [4] have noted
that pLSA correspond to specific instances of the problem of non-negative ma-
trix factorization. pLSA can thus be reduced to a low-rank matrix factorization
problem. Consequently, LDA topic models can be determined using algorithmic
approaches that differ from the conventional idea of expectation maximization,
MCMC, and VB. In particular, randomized matrix factorization approaches be-
come applicable to LDA as well. For instance, Frieze et al. [7] introduced a
sampling approach, in which the rows of a matrix are picked with probabili-
ties proportional to their squared lengths. This and similar randomized matrix
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Fig. 2. More influence, lower perplexity; lowest perplexity when using the full training
set: Held-out perplexity results (the lower, the better) for different proportions of the
original dataset. We selected 40%, 50%, . . . , 100% documents and ran LDA for K = 100.
Results are averaged over five reruns. (Best viewed in color)

factorization approaches have been proved to approximately minimize the re-
construction error in terms of the Frobenius norm and be successful in several
tasks and applications, see also e.g [5,19,14].

Given the link between low-rank matrix factorization and LDA, it is natu-
ral to ask ”Can we improve LDA by adapting techniques developed for matrix
factorization?” Recently, we and colleagues have shown that this is indeed the
case. A common randomized matrix factorization approach, see e.g. [5,19], is to
approximate a given matrix A by S rescaled rows/columns sampled from A. To
do so, we compute an importance score for each row, and sample rows using that
score as an importance sampling probability distribution. A common score for
matrix factorization is

p(i) =
∑

j
n2

ij/
∑

i,j
n2

ij , (3)

and the rescaling factor is 1/
√
p(i) · S. Thus, this importance score depends on

the whole corpus and intuitively captures the ”influence” of a given document
on the LDA topic model. By preferentially choosing documents that exert a
disproportionately large influence on the topic model, we expect to capture the
important part of a given corpus at hand. Fig. 2 illustrates that this is actually
the case. Using the probability (3) as importance score yields significantly lower
perplexities than selecting documents uniformly at random when selecting only
40%, 50%, . . . , 100% documents of the original corpus. In other words, the way
we schedule documents (and in turn the way we build mini-batches) can make
a crucial difference on how well and long mini-batch LDA takes to converge.

Based on this insight, we can devise a naive ”fix” schedule for LDA that is
easy-to-implement. Essentially, we apply the importance sampling procedure to
LDA. However, whereas the randomized matrix factorization approaches sam-
ple a subset of documents with replacement, we keep all documents exactly
once. Consequently, we compute a schedule by sampling all documents without
replacement biased towards those ones with higher norms. In other words, the
documents with higher importance score will have higher chance to be processed
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Fig. 3. Residual LDA avoids overfitting on large documents. Held-out perplexity results
(for K = 100) as a function of passes through training set on Wikipedia (from left to
right 50K, 250K, and 3M documents). The dashed line denotes the performance of
isLDA, the solid lines that of residual LDA. (Best viewed in color)

earlier. We and colleaguescalled the resulting LDA — compute p(i) as in Eq. (3),
rescale and shuffle the documents according to π, build mini-batches as described
earlier, and run Alg. 1 — influence scheduled LDA (isLDA).

However, while isLDA is indeed a valid approach and provably converges,
it suffers from one major drawback. Since isLDA starts optimizing long before
having seen the entire document collection even once, it tends to overfit on
documents with many words. They are seen much earlier than the documents
with few words only. Consequently, isLDA has to repair for this bias by several
passes over the entire dataset. This is illustrated in Fig. 3. As one can see, the
held-out perplexity drops after each full pass over the entire document collection.
During one pass over the entire document collection, however, influence LDA
overfits on the large documents. One is tempted to simply use the first half of
the data set only since the minimal held-out perplexity per pass is achieved at
this point. This, however, is not sensible. Recall the results presented in Fig. 2.
They illustrate that omitting least important documents actually decreases the
overall performance. Only when the entire document collection is potentially
considered for training, the best overall performance is achieved.

In other words, isLDA is simply too static. The fix schedule does not allow to
change the order of documents processed during learning, although the impact of
a document on the LDA topic model is indeed constantly changing. A dynamic
schedule would be more sensible. How do we realize this? Intuitively, we sched-
ule documents in each pass over the entire document collection according to a
probability distribution that depends on the Euclidean norms of the residuals of
those documents. This is not only sensible but actually can also be turned into
an active schedule: in each iteration we only consider a small, informative sub-
set of the documents sampled according to the residual distribution. Indeed, we
may overfit on the current active documents. However, their importance score
will drop, and the residuals of the currently inactive documents will increase.
That is, their importance score increases and so does the probability of selecting
an inactive document and making it active. This is the basic idea underlying
residual LDA that we will now introduce.
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4 Residual Latent Dirichlet Allocation

Intuitively, we want to select documents which are most informative with respect
to the variational bound. So, what is the impact of a single document on the
current variational bound? How do we compute this per document influence?

Recall that VB uses coordinate ascent to maximize the objective function.
That is, each variational parameter γγγ, φφφ, respectively λλλ is varied while all others
are held constant. Since we are only interested in the influence of a single doc-
ument d on the variational bound, however, it is sufficient to consider φφφ only.
That is, we view the ”per document d influence” as the change of the variational
parameter φφφ for each word w in d ∇̃t

d :=
∑

k

∑
w ndw | φt

dwk − φt−1
dwk |. Here, φt

wk

is the optimized parameter at iteration t representing the probability that w is
generated by topic k, and ndw represents the number of times w appears in d.

This importance measure essentially needs O(U · K · D) storage effort with
U = maxd |wd|. We have to store the values φφφ of all unique words in document d
times the number of topics K. This is essentially intractable for large document
collections. To restrict the overall complexity, we therefore summarize φφφ for each
topic in a document. More formally, using the partial derivative of the Eq. (1)
w.r.t. γdk it is shown that it yields a maximum at γdk = α +

∑
w ndwφdwk (see

e.g. [1]). Additionally applying the triangle inequality, we arrive at

∇̃t
d =

∑
k

∑
w

| ndwφ
t
dwk − ndwφ

t−1
dwk |≥

∑
k

|
∑
w

ndwφ
t
dwk −

∑
w

ndwφ
t−1
dwk |

=
∑

k

| α+
∑
w

ndwφ
t
dwk − (α+

∑
w

ndwφ
t−1
dwk) |=

∑
k

| γt
dk − γt−1

dk |=: ∇t
d . (4)

This measure is intuitive for finding high impact documents, since the documents
that have the highest ∇t

d are the ones we are most uncertain about. Unfortu-
nately, it does not consider the expected reduction or growth in uncertainty.
Therefore, we instead search for highly informative documents by maximizing
the information gained about ∇t

d. More formally, the influence ξ(d) of a docu-
ment d is ξ(d) = max{c ,∇t

d − ∇t−1
d } . Here, c > 0 ∈ R is some small constant

that prevents the influence to become too small or even zero. Now, following
Eq. 3, the importance score p(d) of the document d is: p(d) = ξ(d)2/

∑
i ξ(i)

2

Proceeding as for LDA — run Alg. 1 computing p(i) using this new influence
score, rescaling, and shuffling the documents according to π in each pass over
the entire document collection — essentially yields residual LDA.

However, we can do better. The dynamic schedule can actually be turned into
an active schedule: in each iteration we only consider a small, informative subset
of the documents sampled according to the residual distribution. This is sensible
because, if we overfit on the current active set of documents, the residuals of
the currently inactive documents will get larger. In turn, the probability that
they will be selected and become active in the next iteration increases. However,
how should we initialize respectively update the values ξξξ for previously unseen
documents? Assuming that the expected variational parameters are uniform for
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Algorithm 3. Residual LDA
Input: D (documents), S (batchsize)
Define ρt � (τ0 + t)−κ with κ ∈ (0.5, 1];1

Initialize λλλ randomly, set t := 0 and σ = 0;2

foreach d ∈ D do3

ξ2(d) := (
∑

w ndw)2;4

σ := σ + ξ2(d);5

Set c = min{ξ(d)};6

repeat7

/* Update document importance scores */

foreach d ∈ D do8

p(d) := σ−1 · ξ2(d);9

Sample S active documents D̃ according to p;10

/* Run one iteration of variational inference (Alg. 1) */

(λλλ,γγγD̃) := vbLDA(D̃,λλλ, ρt);11

/* Update document influence for the active documents in D̃ */

foreach d̃ ∈ D̃ do12

∇t
d̃

:=
∑

k | γt
d̃k
− γt−1

d̃k
|;13

σ := σ − ξ2(d̃);14

ξ2(d̃) := (max(c,∇t
d̃
−∇t−1

d̃
))2;15

σ := σ + ξ2(d̃);16

Increment t := t + 1;17

until converged ;18

documents not seen yet, i.e., φdwk = K−1, Eq. (4) simplifies as follows: ξ(d)init =∑
k
| γdk − 0 | −0 =

∑
k
γdk =

∑
k
(α+

∑
w
ndwφdwk) = Kα+

∑
w
ndw .

Thus, ξ(d)init can essentially be set to the number of words in d, i.e.
∑

w ndw.
The overall approach is summarized in Alg. 3. We start off by initializing the

influence scores of all documents (lines 3-5). Then, in each iteration, we com-
pute p(d) (lines 8-9), sample S documents according to p(d) (line 10), run one
iteration of variational inference to the active mini-batch (line 11), update the in-
fluence scores of the active documents (line 12-16), and iterate until convergence.
For efficiency reasons, we can switch to online LDA in later iterations, i.e., we
avoid computing any schedule. We can do so because the gradients will eventu-
ally get very similar. When this happens, residual LDA essentially mimics online
LDA. To decide when to switch, we can simply check whether the entropy of im-
portance scores drops below some threshold ε. If ε ≥|

∑
d p(d) log p(d)− log 1

D |,
we switch to online LDA.

5 Experimental Evaluation

Our intention here is to investigate the following questions: (Q1) Can residual
LDA be faster than batch LDA, online LDA and isLDA? (Q2) If so, does residual
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LDA find solutions that are as good as batch LDA? (Q3) Does residual LDA
scale better than online LDA and isLDA in terms of number of documents resp.
the size of the vocabulary?

To this aim, we implemented residual LDA, batch LDA and isLDA in Python
based on Hoffman et al.’s [11] Python code2 for online LDA. We evaluated the
performance of the methods on several datasets where D denotes the number of
documents, W the number of unique words, and N the number of terms. The
WebKB dataset consists of webpages of various universities with four different
categories (student, course, faculty, project). We used the dataset provided by
Ana Cardoso-Cachopo3 with D = 3869 and N = 217671. We chose a vocabulary
of W = 3000 unique words consisting of the terms with the highest TFIDF
(term frequency inverse document frequency). The Reuters dataset R8, a classic
corpus for text classification algorithms, contains newswire articles. We used the
version provided by Ana Cardoso-Cachopo3 with D = 5378 and N = 234650.
As for WebKB, we chose a vocabulary of W = 3000 unique words consisting
of the terms with the highest TFIDF. Finally, we also used the 20-newsgroups
dataset 20N as in [9]4 with D = 18576, N = 1847456, and W = 10000. From
all corpora, we removed documents with less than six words.

For evaluation we computed perplexity on the held-out test sets to measure a
model’s ability to generalize to unseen data. Perplexity is a common criterion of
clustering quality that does not require a priori categorizations and thus often
used in the context of topic modelling. For a corpus of test documents Dtest =
{wwwd}, perplexity is the reciprocal geometric mean of the likelihood of this corpus
given the model:

perplexity
(
Dtest

)
= exp

{
−
∑

d log p(wwwd)∑
dNd

}
.

Additionally, we evaluated all approaches in a classification setting for WebKB,
R8, and N20 . Specifically, we used the 7 first-level classes for N20, and all
classes for WebKB and R8. Then, we used a multi-class linear support vector
machine5 to predict the class labels merely using the topic distributions of the
documents as estimated by the learned LDA models. We report on the average
accuracy achieved in a 5-fold cross-validation.

For the scaling experiment (Q3), we crawled our own Wikipedia (english)
corpus of D = 2914700 randomly selected documents with N = 292941239 and
a fixed vocabulary of W = 7686 words. We processed the crawled Wikipedia
articles as done in [11] removing alls words from their vocabulary that did not
appear in our articles. Additionally, we used a subset of Grolier encyclopedia
articles, provided by Sam Roweis6 with D = 30991 documents, N = 3484393
and a vocabulary of W = 15276 most common words, and the NYTimes news

2 http://www.cs.princeton.edu/~mdhoffma
3 http://web.ist.utl.pt/~acardoso/datasets/
4 http://www.kyb.tuebingen.mpg.de/bs/people/pgehler/rap/
5 We used PyML http://pyml.sourceforge.net/ with the default settings.
6 http://www.cs.nyu.edu/~roweis/data.html

http://www.cs.princeton.edu/~mdhoffma
http://web.ist.utl.pt/~acardoso/datasets/
http://www.kyb.tuebingen.mpg.de/bs/people/pgehler/rap/
http://pyml.sourceforge.net/
http://www.cs.nyu.edu/~roweis/data.html
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Fig. 4. Small and medium scale experiments: Residual LDA outperforms batch and
online LDA and is comparable to influence LDA. (a-c) Held-out perplexity (the lower,
the better) as a function of CPU time (for K = 100). (d-e) Classification accuracy
(the higher the better) as a function of CPU time taken to learn the low dimensional
representation using different methods. (Best viewed in color)

articles provided by [6] with D = 300000 documents with N = 99542125 and a
vocabulary of W = 102660 words. For NYTimes, after stoppword removal the
vocabulary was reduced by keeping just words which appeared more than ten
times, and additionally we excluded all multi token phrases. Again, we removed
all articles with less than six words.

For all perplexity experiments we used 1000 documents as held-out test set
for Wikipedia and NYTimes, and 500 documents for the remaining datasets.
For all experiments, we set κ close to 0.5 as suggested in [11] and τ0 = 4 (deter-
mined by cross-validation on the training set of a subset of 25K webpages from
Wikipedia and N20 but used for all experiments). To set the batch size we
used the following heuristic: B = D·‖D‖2∑

i‖di‖2
, where ‖ di ‖2 resp. ‖ D ‖2 denotes the

Frobenius norm of document i resp. the whole corpus. Intuitively, it measures
how many documents are required to capture the important part of a corpus.
We used fixed symmetric hyperparameters α = 0.01 and η = 0.01 in all our
experiments.

Q1, Q2: Small and Medium Datasets: The perplexity results for the small
and medium datasets are summarized in Fig. 4 (a-c). In each experiment we
computed perplexity after each time D documents were seen. Here, residual
LDA finds sollutions in the range of influence scheduled LDA, and batch LDA’s
solution but with much less computation. Compared to online LDA on those
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Fig. 5. Stability analysis: Hinton diagrams of held-out perplexity for different set-
tings of the parameters τ0 ∈ {1, 4, 16, 64, 25}, κ ∈ {0.5, 0.6, . . . , 0.9} and B ∈
{100, 250, 500, 1000} for a subset of 25K Wiki articles on a validation set of 1000 arti-
cles. Residual and online LDA were ran for 30 minutes. The achieved perplexity results
were averaged over 5 reruns. The size of markers denote the difference in perplexity.
Red squares indicate that residual LDA achieved lower perplexity, green circles that
online LDA was the winner. The numbers are the absolute perplexities of the winners.
Residual LDA is the winner in 98 of 100 parameter settings. (Best viewed in color)

datasets, residual LDA produces lower perplexity, i.e. it achieves significantly
better performance. Here, we compared also residual LDA against online LDA
on a subset of 25K Wikipedia articles for different parameter settings, as shown
in Fig. 5 (we used 100 different parameter settings, for a total number of 500
runs). As one can see, the performance of residual LDA is more stable, and in
98% of cases better (red squares) than online LDA’s perplexity (green circles).

Another point is, there is some question as to the meaningfulness of perplexity
as a metric for comparing different topic models [3]. The accuracies of the clas-
sification experiments as summarized in Fig. 4 (d-e) provide a different metric.
The results clearly show that residual LDA and isLDA yield predictive accura-
cies in the range of the batch model’s with much less computation. They even
outperform online LDA.

Q3: Scaling Experiments on Wikipedia: The results on the small datasets
suggest that residual LDA and influence scheduled LDA are faster than batch
LDA. To further investigate how they scale, we ran experiments on several
Wikipedia corpora ranging from 250K to 1M documents. The results are sum-
marized in Fig. 6. As one can see, isLDA indeed takes longer to converge than
residual LDA. In contrast, residual LDA can handily analyze massive datasets
and it can find topic models as good or better than those found with batch LDA
or online LDA, and it converges much faster than isLDA. It is essentially al-
ways converged after the kink, which happens after about 2 ·D documents were
seen (again, here we measured the perplexity after each time D documents were
seen). Also on the 3M Wikipedia dataset, see Fig. 1 (top), it produced better
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Fig. 6. Large scale experiments: Residual LDA outperforms all other methods. Held-
out perplexity (the lower, the better) as a function of CPU time (for K = 100) for
subsets of Wikipedia with different numbers D of articles. Results are averaged over
five reruns. Residual LDA is essentially converged after the kink in its curve, which
happens after about 2 ·D documents were seen. (Best viewed in color)

topics (in terms of perplexity) as those found by online LDA and batch LDA,
and significantly faster. The topic evolution is shown in Fig. 1 (bottom) and il-
lustrates that residual LDA’s topic ”university research” is qualitatively as good
as the one found by batch LDA, but with a fraction of documents seen. Online
LDA only starts to get similar to batch LDA. This is also supported by a smaller
Hellinger distance to the batch LDA topic: residual LDA 0.12 vs. online LDA
0.53. Finally, to test the scaling behaviour with respect to both the vocabulary
and dataset size, we ran experiments on Grolier and NYTimes. The results
are summarized in Fig. 7. As one can see, residual LDA can handily analyse
large corpora with large vocabulary size. For the smaller Grolier, residual LDA
outperforms online LDA and is comparable to influence LDA. For the larger
NYTimes, it outperforms online and influence LDA.

Thus, putting all experimental results together, we can clearly answer ques-
tions Q1-Q3 affirmatively.

6 Conclusions

Triggered by the recent success stories of online LDA approach for the prob-
lem of inferring topics in growing document collections, we revisited batch LDA.
We turned batch LDA into a quasi-online LDA approach that actively forms
mini-batches of highly influential documents, called residual LDA. Specifically,
residual LDA actively selects a subset of documents that exert a disproportion-
ately large influence on the current residual to compute the next update. On
several real-world datasets, including 3M articles from Wikipedia, we demon-
strated that residual LDA can handily analyze massive document collections
and find topic models as good or better than those found with batch VB and
randomly scheduled VB, and significantly faster. In other words, large residual
means less work.

Indeed, much remains to be done. One interesting avenue for future work is
to employ influence schedules in parallel LDA approaches. Another is to discard
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Fig. 7. Residual LDA can handily analyse large corpora with large vocabulary size.
Held-out perplexity (the lower, the better) as a function of CPU time (for K = 100)
for Grolier and NYTimes datasets. Results are averaged over five reruns. For the
smaller dataset residual LDA outperforms online LDA and is comparable to influence
LDA. For the larger dataset, residual LDA outperforms both. (Best viewed in color)

documents during learning (based on inference). Most interesting, however, is
to develop strong theoretical guarantees for residual LDA and to transfer them
to the general stochastic optimization case. That this is possible shows a con-
nection to the recent work of Yi et al. [24]. We assume a fitness function and
want to maximize the expected fitness under the search distribution. Following
Yi et al., we assume that gradient entries are Gaussian distributed and compute
the covariance over all gradients. Assuming a uniform fitness over gradients and
computing the gradient with the steepest ascent of the expected fitness, Yi et
al.’s results show that the gradient of the likelihood of the search direction is
the most influential one. This measure, however, depends on the norm of the
corresponding gradient, which is exactly what residual LDA employs.
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Abstract. A social network consists of people (or other social entities)
connected by a set of social relationships. Awareness of the relationship
types is very helpful for us to understand the structure and the char-
acteristics of the social network. Traditional classifiers are not accurate
enough for relationship labeling since they assume that all the labels are
independent and identically distributed. A relational probabilistic model,
relational Markov networks (RMNs), is introduced to labeling relation-
ships, but the inefficient parameter estimation makes it difficult to deploy
in large-scale social networks. In this paper, we propose a community-
based pseudolikelihood (CBPL) approach for relationship labeling. The
community structure of a social network is used to assist in constructing
the conditional random field, and this makes our approach reasonable
and accurate. In addition, the computational simplicity of pseudolikeli-
hood effectively resolves the time complexity problem which RMNs are
suffering. We apply our approach on two real-world social networks, one
is a terrorist relation network and the other is a phone call network
we collected from encrypted call detail records. In our experiments, for
avoiding losing links while splitting a closely connected social network
into separate training and test subsets, we split the datasets according
to the links rather than the individuals. The experimental results show
that our approach performs well in terms of accuracy and efficiency.

Keywords: Social networks, Relationship labeling, Community
structure, Pseudolikelihood, Conditional random fields.

1 Introduction

Social networks are a ubiquitous paradigm of human interactions in real world.
People in social networks are connected to each other by different types of re-
lationships, such as family, friendship, co-working, collaboration, contact, etc.
Given a snapshot of a social network with content and link structure, can we
infer the types of the relationships between the individuals? This question can
be formalized as the relationship labeling problem. Labeling relationships is one
of the most significant problems in the research of social networks. For instance,
� Corresponding authors.
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in a criminal network, the labels of the relationships between the criminals can
help the police to discover regular patterns about the organization and oper-
ation of the criminal group. Considering another example of a social network
which consists of all the mobile users in a particular region, knowing the type of
the relationship between each pair of communicated users can greatly help the
mobile service providers to develop targeted marketing strategies.

In many real world applications, a common situation of the relationship la-
beling task is that, some small part of the relationships in a social network can
be directly labeled in some way, while the others cannot be labeled directly
and inference is needed. This is so-called within-network learning. For exam-
ple, in a criminal network, some relationships between the criminals can be la-
beled through the police investigation, while the others must be labeled in other
ways. Similarly, in a mobile phone call network, a few relationships between the
communicated users can be labeled through the service packages (i.e., family
packages or group packages) ordered by the users, but more other relationships
cannot be labeled in this way.

The basic idea for classifying the relationships is employing traditional classi-
fiers in the flat setting by using the content attributes of the relationships, where
all the labels are assumed to be independent and identically distributed (IID).
However, this completely ignores the rich information of the link structure, which
generally reflects the common patterns of interactions among the individuals in
a social network. Therefore, Taskar et al. [1] and Zhao et al. [2] adopt rela-
tional Markov networks (RMNs) [3], a statistical relational learning framework,
to classify the relationship labels in webpage networks and terrorist networks
respectively, but the inefficient parameter estimation makes it very difficult to
deploy this model in large-scale social networks. In addition, the definition of the
relational clique templates will greatly affect the prediction accuracy of RMNs
in practice.

In this paper, we propose a community-based pseudolikelihood (CBPL) ap-
proach to labeling relationships in social networks. In our approach, we use the
community structure of a social network to assist in constructing the conditional
random field (CRF). As we know, community structure is one of the most im-
portant properties of complex networks [4]. According to the notion of “birds
of a feather flock together”, individuals in the same community tend to have
the same type, and thus relationships starting from the same individual and
terminating in the same community tend to have the same label. Fig. 1 depicts
an example fragment of a terrorist social network [2] from the Profiles in Terror
(PIT) knowledge base. A dashed ellipse indicates a community, and the vari-
ous relationship types are distinguished by different line styles and colors. This
figure clearly illustrates the correlation between the relationship labels and the
community structure of the network.

As an efficient alternative of likelihood, the pseudolikelihood measure [5] is
often employed to approximate the joint probability distribution of a collection
of random variables with a set of conditional probability distributions (CPDs).
This technique effectively resolves the time complexity problem which the RMN
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Colleague Congregate
Family Contact

Fig. 1. An example fragment of a terrorist social network

model is suffering and makes our approach more efficient for handling large-scale
social networks.

We present experiments using our approach on two real-world social networks,
one is a terrorist social network [2] and the other is a phone call network we col-
lected from encrypted call detail records (CDRs). A problem we often encounter
in the experiments on within-networks is that splitting a closely connected net-
work into separate training and test subsets will lose the information of the
links that go from one subset to another. In our experiments, for avoiding losing
such information, we split the datasets according to the links (i.e., relationships)
rather than the individuals. This ensures that each link will appear in either a
training subset or a test subset. The experimental results show that our pro-
posed approach is much more accurate and efficient than the RMN approach on
the task of relationship labeling in social networks.

The rest of the paper is organized as follows. The next section provides a brief
discussion of related work. Section 3 presents our approach in detail, followed
by the experimental evaluations in section 4. Finally, we give the conclusion and
future work in section 5.

2 Related Work

As discussed earlier, it is not accurate enough for relationship labeling in social
networks by only using the content attributes, since the rich information of link
structures is completely ignored. Taskar et al. [1] treat the relationship labeling
problem as a task of link prediction and use RMNs to predict the labels of the
links between the Computer Science department webpages from three universi-
ties in American. RMNs [3,6] are a joint probabilistic modeling framework for
an entire collection of related entities building on undirected graph models, and
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provide a form of collective classification in which we can simultaneously decide
on the class labels of all the relationships together rather than classify each re-
lationship separately. Zhao et al. [2] pay their attention to the counter-terrorism
domain. They extract a terrorist social network from the PIT knowledge base
(http://profilesinterror.mindswap.org/) and try to predict the types of the rela-
tionships between the terrorists. RMNs are also employed for their experiments.
Since two terrorists can be related in multiple relationships, multi-label classifi-
cation is considered.

There are two problems with using RMNs for labeling relationships in social
networks:

– The computational complexity of learning RMNs is very high. That is be-
cause multiple rounds of approximate inference (e.g., loopy belief propa-
gation) are required over the entire dataset. Especially in our relationship
labeling task, the number of relationships is the squared magnitude of the
number of individuals in a social network. So the training time is usually
unacceptable if the scale of the social network is too large. In addition, nu-
merous short, closed loops in large-scale RMNs usually cause the belief prop-
agation algorithm to return a poor approximation and even not to converge
to a stationary state.

– The prediction accuracy of the RMN model directly depends on the defini-
tion of relational clique templates. For relationship labeling, the most direct
method is to construct dyad cliques for any pair of relationships which have
a common individual and triad cliques for any triple of relationships which
connected end to end. However, this will not always be correct in case the
individuals in the same clique are not of the same type. So the labeling
accuracy will be affected to some extent.

In this work, we propose to use the pseudolikelihood technique to estimate the
labels of relationships in social networks. Since pseudolikelihood can only cap-
ture the local dependencies and ignores the indirect effects between the non-
neighboring variables, it may lose some accuracy in practice. However, we must
consider a tradeoff between the prediction accuracy and the computational com-
plexity in relational learning, especially in case the scale of a social network is
very large. Actually, as an efficient alternative measure of likelihood, pseudo-
likelihood has been successfully used in the relational learning field. Richardson
and Domingos [7] proposed optimizing a pseudolikelihood measure to learning
an Markov logic network (MLN) [8], where the full joint distribution is approx-
imated as a product of each variable’s probability conditioned on its Markov
blanket. Relational dependency networks (RDNs) [9], an undirected graphical
model for relational data introduced by Neville and Jensen, approximate the full
joint distribution of an entire dataset with a set of CPDs based pseudolikelihood
techniques. Xiang and Neville [10] developed a semi-supervised pseudolikelihood
expectation maximization (PL-EM) algorithm, which has been demonstrated to
be effective in within-network learning.

Community structure is used in our proposed approach to assist in construct-
ing the CRF of a social network, and we believe that this will amend the limi-
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tation of the pseudolikelihood measure and make our approach more reasonable
and accurate. The property of community structure has been successfully used
to describe the dependencies between the variables in relational data. Neville
and Jensen [11] proposed latent group model (LGM), which posits that the
class labels of the objects in a relational dataset are related to their group (or
community) types. Within each group, the class labels are conditionally inde-
pendent given the group type. Another relational model similar to LGM is the
latent social dimension (LSD) model [12], which extracts latent social dimen-
sions of objects from a modularity matrix defined on the modularity measure
[13] and then considers these dimensions as normal features of objects for pre-
diction tasks. The above two models demonstrate that the community structure
is really very helpful for relational learning.

Wang et al. [14] studied the mining of advisor-advisee relationship from re-
search publication networks and proposed a time-constrained probabilistic factor
graph (TPFG) model, which is an unsupervised approach and suitable for the sit-
uation that not any labeled relationships can be used as supervised information.

3 Approach

We use a graph G = (V,E) to represent a social network, where V is the set of
individuals, and E is the set of links (i.e., relationships) between the individuals.
Suppose that the content attributes of the individuals and the link structure are
known, and some relationship labels are observed, then our task is to predict the
remaining unobserved labels.

In relationship labeling, we need to make relationships the first-class citizens.
Given an instantiation I of our schema, the pseudolikelihood PL(I) is the prod-
uct of the conditional probability of each variable Yi(i ≤ |E|) given its Markov
blanket MB(Yi). So we need to specify the neighboring relationships for each
relationship e ∈ E, i.e., to construct a Conditional random field (CRF) for all
the relationships over the entire social network. CRFs are undirected graphical
models that were developed for labeling sequence data [15], and are well suited
for discriminative training, which generally provides significant improvements in
classification accuracy over generative training given sufficient training exam-
ples [16]. As discussed in section 2, simply letting two relationships which have
a common individual be the neighboring nodes in the CRF will not always be
appropriate. Consequently, we resort to using the community structure of the
social network to assist in constructing the CRF. For maintaining the structural
integrity of the social network, we detect its communities over the entire dataset,
rather than on the training and test subsets respectively. After the construction
of the CRF, the pseudolikelihood model is trained and tested on the training
and test subsets respectively. The detailed steps of our approach are as follows.

3.1 Step 1: Community Detection

We first run a community detection algorithm on the graph G of the social
network instantiation I. According to whether intersecting communities are



496 H. Wan et al.

generated, community detection algorithms can be divided into non-overlapping
and overlapping algorithms. Non-overlapping community detection supposes that
every individual only belongs to a single community, while overlapping commu-
nity detection considers the natural phenomenon that one person may belong to
multiple groups in real world, thus allows an individual to belong to more than
one communities. Many sophisticated community detection algorithms have been
developed in recent years and Fortunato [17] provides a detailed summary.

People can select non-overlapping or overlapping community detection al-
gorithms according to the overlapping property of a social network, i.e., if an
individual can belong to multiple communities. In this paper, for comparing
the performance of different community detection algorithms, we use both non-
overlapping and overlapping algorithms. It is noted that, a community detection
algorithm is needed to be executed only once for a social network instantiation,
no matter how to split the training and test subsets subsequently.

3.2 Step 2: Conditional Random Field Construction

We construct the CRF based on both the original social network and the com-
munity results obtained in Step 1. The principle is very simple: we treat the
relationships in the original social network as the nodes in the CRF, and then
establish a link between any pair of relationships if they start from the same
individual and terminate in the same community. Fig. 2 lists all the possible
community structures of any two neighboring relationships, in which (c) and (f)
are overlapping communities. Concretely, we establish a link between any pair
of relationships with a community structure like (a), (b), or (c) in the figure,
while the situations like (d), (e), and (f) are ignored. Finally, we add the content
attributes into the CRF as the evidence for each relationship.

We use F = (Y,x, r) to denote the CRF of the instantiation I, where Y is
the set of label variables and x is the set of content attributes and r is the set of
links between the relationships. After the construction of the CRF, the Markov
blanket of each label variable is determined.

(a) (b) (c)

(d) (e) (f)

Fig. 2. All the possible community structures of two neighboring relationships
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3.3 Step 3: The Pseudolikelihood Model

Given the CRF F = (Y,x, r), for each label Yi, pseudolikelihood models use a
local CPD P (yi|MB(yi)) to represent the conditional probability of the label
value yi, where MB(yi) is the state of the Markov blanket of Yi in the data.
It is noted that, for simplifying the representation, we let the Markov blanket
MB(Yi) contain not only the neighboring label variables but also the content
attributes of Yi. We maximize the following pseudolikelihood

P (y|x, r) =
n∏

i=1

P (yi|MB(yi)), (1)

where n is the number of label variables in F .
Let each pair of neighboring nodes in F to be a clique with a potential φ,

according to the fundamental theorem of Markov random fields [18], the condi-
tional probability P (yi|MB(yi)) can be factorized over all of the cliques:

P (yi|MB(yi)) =
1

Zi(xi, ri)

∏
vj∈MB(yi)

φ(yi, vj), (2)

where Zi is the local partition function (or normalization constant) given by

Zi(xi, ri) =
∑
y′

i

∏
vj∈MB(y′

i)

φ(y′i, vj). (3)

Therefore, computing pseudolikelihood is very efficient because the local parti-
tion function is simply a sum over a single variable.

The potential is often represented by a log linear combination of a set of
features:

φ(yi, vj) = exp{
∑

k

wkfk(yi, vj)}

= exp{w · f(yi, vj)}, (4)

where wk is the weight of the feature fk.

Parameter Learning. The goal of parameter learning is to determine the
weights of the features in the pseudolikelihood model. Maximum a posterior
(MAP) training is used to learn the pseudolikelihood model. To avoid overfitting,
we assume the prior of the weights w is a zero-mean Gaussian. The log of the
MAP objective function is as follows:

PL(I,w) = log
(
P (y|x, r)

∏
k

P (wk)
)

= logP (y|x, r) +
∑

k

−w2
k

2σ2
− log

√
2πσ2

=
n∑

i=1

( ∑
vj∈MB(yi)

w · f(yi, vj) − logZi

)
− ||w||22

2σ2
+ C. (5)
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PL(I,w) is a concave function and we can estimate the parameters w by
maximizing the log-pseudolikelihood by using a variety of gradient-based opti-
mization algorithms, such as conjugate gradient or quasi-Newton. For computing
the gradient, the derivative of PL(I,w) with respect to wm is given by

∂PL(I,w)
∂wk

=
n∑

i=1

∑
vj∈MB(yi)

{
fk(yi, vj) − EPw

[
fk(yi, vj)

]}
− wk

σ2
, (6)

where the expected feature values is related to Pw:

EPw

[
fk(yi, vj)

]
=

∑
y′

i

{
fk(y′i, vj)Pw(y′i, vj)

}
. (7)

The time complexity of computing the gradient in equation (6) is O(n∗r), where
n is the number of label variables and r is the number of links in the CRF F .
Comparatively, the complexity of learning an RMN model is much higher because
approximate inference is required, and generally the complexities of approximate
inference algorithms are very high. For example, the complexity of loopy belief
propagation is O(m ∗ n ∗ r2), where m is the number of iterations. Furthermore,
the use of community structure also reduces some computational cost, since the
removal of some unreasonable links among the relationships makes the CRF a
little sparser. In conclusion, our CBPL model is much more efficient then the
RMN model in terms of computational complexity.

Inference. Given the observed content attributes x and the parameters w, the
task of inference is to determine the relationship labels. As we know, loopy belief
propagation (LBP) [19,20] is often used to inference CRFs. Our inference algo-
rithm is very similar to LBP, which estimates the marginal distribution of each
label variable approximately by sending local messages through the graph struc-
ture of the model. We initialize the marginals and values of the label variables
by using only the content attributes, and then update them iteratively with the
state of their Markov blankets at the previous time, until each of the variables
does not change any more. The detailed procedures of the inference algorithm
are presented in Algorithm 1.

4 Experiments

In this section, we present a set of experiments to evaluate our CBPL approach.
We performed relationship labeling on two real-world datasets, and compared
the performance of our approach with that of the RMN model. The results of
the content-only relationship labeling were taken as our baseline.

4.1 Datasets

TerroristRel1. It is a public dataset contributed by Zhao et al. [2] and collected
from the PIT knowledge base. The dataset contains information about terrorists
1 http://www.cs.umd.edu/projects/linqs/projects/lbc/
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Algorithm 1. CBPL-Inference

Input: content attributes x, links r, parameters w
Output: labels Y
// initiation:1

foreach label variable Yi do2

foreach value yi do3

// initialize the local CPD by using only the content attributes4

P (0)(yi|MB(yi))← ∏
xj∈MB(yi)

φ(yi, xj)/Zi(xi, ri);5

end6

Y
(0)

i ← arg maxyi P (0)(yi|MB(yi));7

end8

// iteration:9

repeat10

foreach label variable Yi do11

foreach value yi do12

// update the local CPD by using the state of MB(yi) at t-113

P (t)(yi|MB(yi))← ∏
v
(t−1)
j ∈MB(yi)

φ(yi, v
(t−1)
j )/Zi(xi, ri);14

end15

Y
(t)

i ← arg maxyi P (t)(yi|MB(yi));16

end17

until each variable Yi satisfies Y
(t)

i = Y
(t−1)

i ;18

and their relationships and was designed for labeling the relationships between
the terrorists. It consists of 244 terrorists and 840 relationships between them.
Each relationship is described by a 0/1-valued vector where each component
indicates the absence/presence of one of the total of 1224 distinct features. Each
relationship can be assigned one or more labels within the labels of Family
(16.0%), Colleague (54.2%), Congregate (12.4%), and Contact (17.4%).

PhoneCallNet. We collected a phone call network from the encrypted CDRs
of the mobile users in an area in northern China obtained from one of the largest
mobile service providers in China. The CDRs recorded all the phone call and
short message (SM) events occurred within about 15 days in July 2010. We
extracted 1623 mobile users and 4295 distinct relationships between them. For
each relationship, we derived 9 statistical properties (as listed in table 1) from the
CDRs and took them as the content attributes. All these statistical properties
were normalized by being divided by the total call count, the total call duration,
and the total SM count, respectively.

Manually labeling the relationships in this dataset for testing was not an easy
task. We used the service packages provided by the mobile service provider to
label the relationships. Actually, all the instances in our dataset were collected
among the users who ordered at least one family or group package. Then the
relationships between the users who ordered the same family package were la-
beled with Family (22.0%), and the relationships between the users who ordered
the same group package were labeled with Group (63.3%), and the remaining
relationships were labeled with Common (14.7%).
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Table 1. The statistical properties of the relationships in the PhoneCallNet dataset

Feature Description

call busy count the call count between 08:30 and 17:30 h on weekdays

call free count the call count between 17:30 and 08:30 h on weekdays

call weekend count the call count on weekend

call busy duration the call duration between 08:30 and 17:30 h on weekdays

call free duration the call duration between 17:30 and 08:30 h on weekdays

call weekend duration the call duration on weekend

sm busy count the SM count between 08:30 and 17:30 h on weekdays

sm free count the SM count between 17:30 and 08:30 h on weekdays

sm weekend count the SM count on weekend

4.2 Experimental Setup

Baseline. Our approach is a link-based classification method in the relational
learning field, so we focused on the comparison of our method with a repre-
sentational relational learning model (i.e., RMNs). However, for achieving more
information, we take the results of the content-only relationship labeling as our
baseline. Traditional classifiers, such as näıve Bayes, logistic regression or SVM,
can be used to perform content-only relationship labeling. In our experiments,
we chose to use the conditional Markov Networks [3] in the flat setting as a
representative.

Community Detection Algorithms. In our CBPL approach, we respectively
employed the Infomap algorithm2 [21] as the non-overlapping community detec-
tion algorithm and the Greedy Clique Expansion (GCE) algorithm3 [22] as the
overlapping one. The Infomap algorithm, proposed by Rosvall and Bergstrom,
finds the best cluster structure of a graph by optimally compressing the informa-
tion describing the probability flow of random walk and has a complexity that is
essentially linear in the size of the graph (i.e., O(|E|)). It is considered as one of
the best community detection algorithms so far [23]. The GCE algorithm is one
of the newest overlapping community detection algorithms to detect the inter-
secting communities in social networks. It identifies distinct cliques as seeds and
expands these seeds by greedily optimizing a local community fitness function,
and then finally accepts only those communities that are not near-duplicates of
communities that have already been accepted.

Relational Clique Templates. For the RMN model, we defined two relational
clique templates as follows: 1) dyad cliques for any pair of relationships which
have a common individual; and 2) triad cliques for any triple of relationships
which connected end to end.

2 http://www.tp.umu.se/˜rosvall/code.html
3 http://sites.google.com/site/greedycliqueexpansion/
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Feature Functions. Feature functions are needed to be defined for both our
CBPL approach and the RMN model. All the cliques can be divided into two cat-
egories: the cliques which consist of one label variable and one content attribute
belong to the category of evidence cliques, while the cliques which contain only
label variables belong to the category of compatibility cliques. For the evidence
cliques, we defined a feature with the form of f(yi, xj) = yixj , where yi = ±1,
and xj ∈ {1, 0} for the TerroristRel dataset and xj ∈ [0, 1] for the PhoneCall-
Net dataset. For a compatibility clique, we simply use a single feature to track
whether all of its labels are the same.

Multi-label Classification. For the TerroristRel dataset, since two terrorists
can be related in multiple relationships, multi-label classification was considered.
We used a simple way that learned and tested a binary (one-against-rest) clas-
sifier for each of the four labels respectively, and then computed their average
performance.

Dataset Splitting. A problem we often encounter in within-network learning
is that directly splitting a closely connected network into separate training and
test subsets would lose a lot of links which go from one subset to another.
Consequently, we split our datasets according to the relationships rather than
the individuals. Specifically, we put each relationship into the training or test
subset with a certain probability, and in this case an individual might be in both
the two subsets simultaneously. For evaluating the performance of our approach
in different proportions of the observed labels, we randomly chose 10%, 20%,
30%, 40%, and 50% relationships, respectively, as the observed data for training,
and the remaining relationships were used for testing.

4.3 Results and Discussions

The relationship labeling accuracies of the various approaches for the two datasets
are shown in Fig. 3 and Fig. 4 respectively. Each experiment in this study was
repeated 10 times and the results were averaged. From the two figures we can see:

1) The prediction accuracies of the relational approaches (whether the RMN
model or our CBPL approach) are much better than that of the content-only
approach. This demonstrates that the link structure is a very important
source of information, and the relational approaches are able to learning
social networks effectively by integrating information from content attributes
of individuals as well as the links between them.

2) Our CBPL approach outperforms the RMN model (increases the labeling
accuracies by around 2-4% for the TerroristRel dataset and 3-5% for the
PhoneCallNet dataset respectively). And this demonstrates that the com-
munity structure is really very helpful for relationship labeling in social
networks. Although the pseudolikelihood technique ignores the indirect de-
pendencies and may lose some accuracy, the use of community structures
makes up for this deficiency to a large extent by describing the local direct
dependencies more reasonable and more accurate.
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Fig. 3. Average classification accuracies for the TerroristRel dataset
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Fig. 4. Average prediction accuracies for the PhoneCallNet dataset

3) For the TerroristRel dataset, the CBPL approach based on overlapping com-
munity detection slightly outperforms the one based on non-overlapping
community detection. The situation is just the opposite for the PhoneCall-
Net dataset. We believe this is due to the different community structure
properties of the two datasets. That is, the overlapping nature of the com-
munities in the TerroristRel dataset is quite strong so the CBPL approach
based on the GCE algorithm performs better, and on the contrary, the over-
lapping nature of the PhoneCallNet dataset is weak so the CBPL approach
based on the Infomap algorithm performs better.

4) Because the number of content attributes of the PhoneCallNet dataset is
fewer (just 9 statistical properties), the increases of the labeling accuracies
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along with the proportion of observed labels are not obvious for the vari-
ous approaches. Therefore, if more features about the relationships between
the communicated users were observed, the prediction accuracies could be
higher.

The average training times of the various approaches along the proportion of
observed labels for the two datasets are shown in Table 2 and Table 3. From the
tables we see that: 1) our CBPL approach, whose training speeds are almost of
the same order of magnitude as those of the flat model, is much more efficient
than RMNs; and 2) the increasing rates of the training times of RMNs become
much higher along with the growth of the proportion of observed labels, while
those of CBPL are almost nearly linear.

Table 2. Average Training Times (Seconds) for the TerroristRel Dataset. All the
results were computed on a PC with CPU 3.0 GHz and 2 GB RAM. Note that the
time of community detection was not contained in the training times of our CBPL
approach, since it is only in several milliseconds and very short comparing with the
time of learning the pseudolikelihood model.

Proportion of Observed Labels
Approach

10% 20% 30% 40% 50%

Flat Model 0.81 2.06 3.64 7.79 11.83

RMNs 4.49 25.86 96.41 289.05 820.60

CBPL (Infomap) 2.01 6.02 15.48 34.85 51.27

CBPL (GCE) 2.53 7.91 18.96 39.58 58.73

Table 3. Average Training Times (Seconds) for the PhoneCallNet Dataset

Proportion of Observed Labels
Approach

10% 20% 30% 40% 50%

Flat Model 0.79 1.64 2.45 3.31 5.87

RMNs 6.53 33.62 133.84 437.76 1362.54

CBPL (Infomap) 1.26 4.92 12.85 27.41 46.05

CBPL (GCE) 1.67 5.63 15.39 32.27 53.72

5 Conclusion and Future Work

In this paper we studied the problem of relationship labeling in social networks
and proposed a community-based pseudolikelihood approach. In our approach
we use the community structure, one of the most important properties of com-
plex networks, to assist us in constructing the conditional random field and the
pseudolikelihood measure is employed to approximate the joint probability dis-
tribution of a collection of relationship label variables. The use of community
structures makes our approach more reasonable and more accurate to describe
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the dependencies between the variables in relational data, while the pseudolike-
lihood technique effectively resolves time complexity problem which the RMN
model is suffering and makes our approach much easier to deploy in large-scale
social networks.

We applied our CBPL approach to the task of relationship labeling on some
real-world social networks, including a terrorist relation network and a mobile
user phone call network. The experimental results showed that our approach
performs well in terms of accuracy and efficiency.

There are still some works can be improved in the future. Firstly, this paper
first proposes using community structure to improve link-based classification and
the experiments show that the community information is really useful in prac-
tice, but the quantification of the community information should be researched
further. Secondly, since our proposed approach is a supervised learning tech-
nique, fully-labeled data is needed for training the model and we must split en-
tire social networks into separate training and test subsets in practice. Actually,
semi-supervised learning may be more suitable for such partially labeled within-
networks. Therefore, the development of semi-supervised community-based rela-
tionship labeling methods will be one of our future research topics. Lastly, this
paper is focused on the relationship labeling problem of ordinary social networks
which consist of individuals as well as the relationships between them. The gen-
eralization of our approach to multipartite or even multimode networks could
also be one of our future works.
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Abstract. It is difficult to directly apply conventional significance tests
to compare the performance of network classification models because
network data instances are not independent and identically distributed.
Recent work [6] has shown that paired t-tests applied to overlapping net-
work samples will result in unacceptably high levels (e.g., up to 50%) of
Type I error (i.e., the tests lead to incorrect conclusions that models are
different, when they are not). Thus, we need new strategies to accurately
evaluate network classifiers. In this paper, we analyze the sources of bias
(e.g. dependencies among network data instances) theoretically and pro-
pose analytical corrections to standard significance tests to reduce the
Type I error rate to more acceptable levels, while maintaining reason-
able levels of statistical power to detect true performance differences. We
validate the effectiveness of the proposed corrections empirically on both
synthetic and real networks.

Keywords: Social network analysis, Network classification.

1 Introduction

A central methodological issue in machine learning research is to compare the
empirical performance of two learning algorithms and assess the significance of
observed performance differences. Generally, to compare two classification algo-
rithms, the available data is repeatedly partitioned (i.e., sampled) into disjoint
training and test sets (e.g., using cross-validation). Then the algorithms are used
to (1) learn a model from each training set, and (2) apply the learned models
to the appropriate test set for prediction. Evaluation of the test set predictions
(e.g., using accuracy) results in a set of performance measurements, one for each
training/test split, for each algorithm. A hypothesis test is often used to assess
whether the set of observed scores (for each of the two algorithms) are signif-
icantly different—by comparing them to the distribution of scores that would
be expected if both sets were drawn from the same underlying distribution (i.e.,
the null hypothesis that the algorithms perform equivalently).
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Past work on methodology for accurate algorithm evaluation has mainly fo-
cused on data with independent and identically distributed (i.i.d.) instances.
Dietterich [2] showed that some statistical tests, in widespread use at the time,
had a high probability of Type I error due to sampling procedures that resulted
in dependencies among test sets (i.e., they are likely to conclude a significant
difference between algorithms when there is none). Owen [7] observed that de-
pendencies among the hypothesis tests greatly affect the variance of the number
of false discoveries in which a true null hypothesis was rejected. Other work
has shown that the choice of training/test sets can lead to underestimation of
variance in the cross-validation estimator of the generalization error [5,1].

However, standard approaches to algorithm evaluation become more challeng-
ing in relational learning where the data instances are not independent. In par-
ticular, two characteristics of relational learning and collective classification [8]
can complicate the application of conventional statistical tests for comparing
classification performance: (1) dependence between related instances leads to
correlated errors and (2) network structure results in dependence between train-
ing and test set samples, which leads to correlated test sets.

Recently Neville et. al [6] conducted an empirical investigation of evaluation
bias when learning from non-i.i.d. observations and proposed a novel sampling
method called network cross-validation (NCV) that can correct for elevated lev-
els of Type I error in network data—but at the expense of decreased statistical
power (i.e., legitimate performance differences may not be detected as signifi-
cant). Note that if a statistical test has biased levels of Type I error, that means
many algorithms which appear to be “significantly different” may in fact have
equivalent performance; if a statistical test has low statistical power, that means
legitimate performance differences between algorithms may not be detected as
significant.

In this paper, we consider the problem of within-network relational learning,
where there are dependencies among data instances and the goal is transductive
network learning—models are learned on a partially labeled network and then
applied to collectively predict the class labels in the remainder of the network
(i.e., the unlabeled portion). Within this setting, we demonstrate how the afore-
mentioned network data characteristics contribute to increased Type I error in
conventional statistical tests. Our analysis shows that both error correlation and
overlapping samples lead to misestimation of the variance that is used in sta-
tistical tests. Based on our analysis, we propose an analytical correction to the
observed variance which can be used to adjust for the bias and reduce Type I
error rates, while maintaining reasonable statistical power. We demonstrate the
effectiveness of the correction on both synthetic and real world data, with sim-
ulated and real classifiers. Although we evaluate the properties of the corrected
significance tests for within-network classification, the findings are also appli-
cable to other learning tasks, where evaluation is conducted with overlapping
samples.



508 T. Wang et al.

2 Network Classifier Evaluation

When comparing the empirical performance of machine learning algorithms,
there are two primary methodological decisions: First, the sampling procedure
dictates how the available data is partitioned into training and test sets for
estimation of algorithm performance. Second, the significance test takes a set of
performance measurements (e.g., accuracy) from the various sampling trials and
makes a determination as to whether observed differences reflect a true difference
in classifier performance or whether it is likely to have occurred by chance alone.

Sampling procedures: Given a single, fully labeled network S of size m, we
consider two sampling procedures to generate training (labeled SL) and test
(unlabeled SU ) sets to evaluate within-network classification algorithms.

The first method is random resampling (RS). It involves random draws without
replacement from the sample population (i.e., S) to generate a training/test split
(SL∪SU = S;SL∩SU = ∅). To produce multiple training/test splits, the method
samples repeatedly from the single network S, which results in overlapping test
sets (i.e., |SUi ∩ SUj | ≥ 0). This method has been used extensively in past work
on relational learning algorithms (see the survey in [6] for more detail).

The second method is NCV, a new sampling approach proposed by [6]. NCV
samples for k disjoint test sets that will be used for evaluation (SU1 ∪ ...∪SUk

=
S;SU1 ∩ ... ∩ SUk

= ∅). For each test set, the training set is selected from the
complement of the network (i.e., SLi ⊆ S − SUi). When the target training set
size is less than the size of the complement, this will leave a set of unlabeled
nodes that are neither in the test set nor the training set. Since these unlabeled
instances will likely be connected to nodes in the test set, collective inference is
run over the full set of unlabeled nodes (i.e., S − SLi), but model performance
is only evaluated on the nodes assigned to the test set (SUi). Since NCV only
evaluates model performance using disjoint test set instances, it eliminates much
of the dependency due to overlapping test sets and will not suffer the same level
of bias as RS [6].

Significance tests: In within-network learning, after a sampling procedure has
been chosen to create training/test splits within a network, models are learned
from each training set and the learned models are applied for collective inference
over the appropriate test set (i.e., unlabeled portion of the network). The pre-
dictions on the test set nodes are evaluated to estimate algorithm performance
(e.g., accuracy). This results in a set of performance measurements, one for each
training/test split, for each algorithm. A significance test is then used to de-
termine whether the observed performance differences are significantly different
than would be expected if the performance measures were drawn from the same
underlying distribution (i.e., the null hypothesis H0 : the algorithms perform
equivalently).

In this work, we considered both paired and unpaired t-tests for assessments
of significance. We are interested in two characteristics of these tests: (1) Type
I error : the probability of rejecting a true null hypothesis, and (2) Power : the
probability of rejecting a false null hypothesis (i.e., 1-Type II error). Ideally
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the Type I error of a significance test is equal to the chosen significance level
α. If a statistical test has biased levels of Type I error (i.e., greater than the
significance level α), that implies that many of the conclusions drawn from the
test may be incorrect (e.g., algorithms that appear to be different may in fact
have equivalent performance). In contrast, if a statistical test has low statistical
power, that implies that legitimate performance differences may not be detected
as significant.

3 Theoretical Analysis

Here we show theoretically how error correlation and random sampling (i.e.,
without replacement) from a network affects the variance of average network
classification error. To do this, we model the node-level classification errors as
Bernoulli random variables and analytically calculate the mean and variance of
the average error over repeated samples from the same network. Specifically:

– The input population is a set ofm random variablesX (i.e., network size=m).
– The population consists of two types of random variables. There are pm ran-

dom variables of type 1 (i.e., likely errors), which are Bernoulli distributed:
X1

i ∼Bernoulli(q). There are (1−p)m instances of type 0 (i.e., likely correct),
which again are Bernoulli distributed: X0

i ∼Bernoulli( p
(1−p) (1 − q) ).

– In the population, there are |L| pairs of “linked” random variables that
are correlated. Let ρ be the average correlation between the linked pairs
((Xi, Xj) ∈ L), otherwise we assume that the Xi are independent.

– We sample n random variables {Xi}n
i=1 without replacement from the popu-

lation. Since the sampling is without replacement, the random variables Xis
are not independent.

– Let Zk = 1
n

∑n
i=1Xi be the average value of the r.v.’s in sample k. We

are then interested in the mean and variance of the random variable Zk, as
this corresponds to the estimated error rate of algorithms that is used in
statistical tests.

We note that this setup makes two primary assumptions in order to simplify the
subsequent analysis. First, we assume that the variance in classification errors
throughout the network, across multiple samples, can be represented by the two
types of Bernoulli random variables described above. We designed the parameters
of the Bernoulli variables to keep the expected value of Zk equal to p (i.e.,
the average error), while allowing individual variation of the random variables
across multiple samples: E(Zk) = E

(
1
n

∑n
i=1Xi

)
= E

(
pX1

i + (1 − p)X0
i

)
=

pq+ (1− p) p
(1−p) (1− q) = p. Note that if q = 1, then the random variables have

exactly the same values across all samples (if selected) so this would correspond
to sampling from a hypergeometric distribution with pm 1s.

Second, we consider a limited correlation structure in the above model. In
particular, we assume (1) uniform correlation among all the linked nodes, and
(2) independence among all unlinked nodes in the network. This is a first approx-
imation of the assumptions typical in relational classification models, where the
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parameters of directly linked nodes are tied and unlinked nodes are considered
conditionally independent.

Since we have assumed independence among unlinked nodes, rather than con-
ditional independence, the validity of our proposed model depends on whether
the specified covariance matrix is positive definite. Let σi be the standard devi-
ation of Xi, then the entries of the covariance matrix will be:

Cov(Xi, Xj) =

⎧⎪⎨⎪⎩
σ2

i i = j

ρ · σiσj (Xi, Xj) ∈ L

0 otherwise

(1)

In the appendix, we specify the conditions under which this matrix will be pos-
itive definite, and thus a valid covariance matrix. In practice, we find that even
when the matrix is not positive definite, it is reasonable to use for the purposes
of correcting evaluation bias.

Given this setup, we can now show the effect of correlation and sampling
without replacement on the variance of Zk. We state the theorems and their
interpretations below and include the proofs in the appendix.

Theorem 1. Correlated variables increase the variance of Zk

Let X be a population of Bernoulli(p) random variables. Assume that a sample
of n variables are drawn randomly from the population. Let ρ be the average
correlation between the Xi that are “linked”, where the probability of linkage is

|L|
n(n−1)

1, and assume that otherwise the Xi are independent. Then the variance
of Zk is:

V ar(Zk) =
1

n
p(1− p)

[
1 + ρ

|L|
n

]
(2)

We refer to this variance of the average error, when there is error correlation,
as V arcorr(Zk). Note that, other than for very specific graph structures (e.g.,
bipartite graphs), if relational data are correlated, autocorrelation is positive and
ρ will be greater than zero. Thus, as ρ or |L| (i.e., number of correlated pairs)
increase, V arcorr(Zk) also increases.

Theorem 2. Sampling without replacement decreases the variance
of Zk

Let X be a population of m Bernoulli random variables as described above, with
pm X1 variables (i.e., type 1) and (1−p)m X0 variables (i.e., type 0), where all
the Xi are independent. Assume that a sample of n variables are drawn randomly
from the population. Then the variance of Zk is:

V ar(Zk) =
1

n
p(1− p)

[
1− (n− 1)

(m− 1)

(
q − p

1− p

)2
]

(3)

1 Note that n(n− 1) is the number of possible directed edges in a network of n nodes.
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We refer to this variance of the average error, when there is overlap between
samples due to resampling, as V arrs(Zk). Note that when q = p, the variables
correspond to independent Bernoullis across samples and the overall variance re-
duces to the case when each sample is independent: V ar(Zk) = 1

np(1−p). When
q = 1, the random variables have exactly the same value across different samples
and the variance corresponds to sampling from a Hypergeometric distribution:
V ar(Zk) = 1

np(1 − p)
[

m−n
m−1

]
.

We can now extend the results of Theorem 2, to show the joint effect of
correlation and sampling without replacement on the variance of Zk.

Theorem 3. Variance of Zk with variable correlation and sampling
without replacement

Let X be a population of m Bernoulli random variables as described above, with
pm X1 variables (i.e., type 1) and (1− p)m X0 variables (i.e., type 0). Let ρ be
the average correlation between the Xi that are “linked”, where the probability of
linkage is |L|

n(n−1) , and assume otherwise the Xi are independent. Assume a sam-
ple of n variables are drawn randomly from the population. Let c =

√
1− 2p + pq.

Then the variance of Zk is:

V ar(Zk) =
1

n
p(1− p)

[
1− (n− 1)

(m− 1)

(
q − p

1− p

)2

+

|L|ρ
n(m− 1)

(
1− q

1− p

) [
pmq − q + 2mc

√
pq + mc2 − c2

(1− p)

]]
(4)

We refer to this variance of the average error, when there is both overlap be-
tween samples and error correlation, as V arobs(Zk). This is the variance that is
observed in networks domains when random sampling is used. Finally, we can
use these results to show these two effects combine together to bias conventional
statistical tests for network domains.

Theorem 4. Sampling without replacement and error correlation in-
crease Type I error

Let algorithm A and algorithm B have equal error rates of p on network datasets
drawn from the same domain D. Let Xi be the classification error for node i and
assume that Xi.A and Xi.B (the error made by algorithm A and B respectively)
are Bernoulli distributed as described above, i.e., with probability p, Xi.A/B is
of type 1 and with probability (1 − p), Xi.A/B is of type 0. Let ρ be the average
correlation between the Xi, Xj that are linked (i.e., eij ∈ L) and assume that
otherwise the Xi are independent. Assume that k test sets, each of size n, are
drawn from the network of m nodes.

Let ZA = {ZA
1 , Z

A
2 , . . . , Z

A
k } and ZB = {ZB

1 , Z
B
2 , . . . , Z

B
k } be the set of aver-

age test set errors (Zj = 1
n

∑
iXi) for test set j = [1, k]. Let c =

√
1− 2p + pq.

Then an unpaired t-test over ZA and ZB will underestimate the variance of the



512 T. Wang et al.

null distribution by: Δ = 1
n
p(1− p)

[
(n−1)
(m−1)

(
q−p
1−p

)2

+ ρ |L|
n

[
1− 1

(m−1)

(
1−q
1−p

)
[
pmq − q + 2mc

√
pq + mc2 − c2

(1−p)

]]]
.

As ρ (the amount of error correlation) or q (the correlation of node error across
samples) increases, the amount of underestimation (i.e., Δ) increases. This in-
creases the probability of a Type I error in the following way. For unpaired tests,
the t-statistic is: t̂ = Z̄A−Z̄B√

V ar(ZA/B)·
√

2
k

. where Z̄A = 1
k

∑
j Z

A
j is the average of

Zjs in ZA (averaging the average test set errors made by algorithm A over k
tet sets) , Z̄B = 1

k

∑
j Z

B
j is the average of Zjs in ZB, and V ar(ZA/B) is the

pooled sample variance. Since V arobs(Zk) < V arcorr(Zk), the result will be that
t̂obs > t̂corr and thus P (t̂obs|T ) < P (t̂corr|T ), where T is the appropriate t dis-
tribution with dof = 2k−2. Thus using V arobs(Zk) instead of V arcorr(Zk), it is
more likely that the null hypothesis will be rejected even when it holds, and as
such Type I error will increase. This effect will impact paired t-tests in a similar
way, as the decrease in observed variance of ZA

j and ZB
j will also result in an

underestimate of the difference variance V ar(ZA
j − ZB

j ), which is used instead
of the pooled sample variance.

4 Analytical Correction for Bias

Based on the theoretical analysis in Section 3, we propose an analytical adjust-
ment to correct for the bias due to repeated sampling without replacement. We
would like to remove the effects of resampling, and adjust the observed variance
V arobs(Zk) to make it equal to the variance we would expect just due to corre-
lation: V arcorr(Zk) = 1

np(1− p)[1 + ρ |L|
n ]. To achieve this, we simply add in the

correction factor Δ from Theorem 4 above: V arnew(Zk) = V arobs(Zk) + Δ =
V arcorr(Zk).

Correction for unpaired t-test: The correction can be used in an unpaired
t-test in the following manner. We estimate model error (for each model) in
the conventional manner, recording average performance over multiple test sets.
After computing the variance of the average performances for a particular model
(i.e., V arobs(Zk)), we compute the appropriate Δ from above and use it to scale
the observed variance. Then the corrected variance V arnew(Zk) is used in place
of the observed variance in the standard formulation of the unpaired t-test.

Correction for paired t-test: For the paired t-test, we can use the correction
to rescale each observed value before computing the differences and variance. The
idea is to compute the standardized value with the original variance (V arobs)
and then unstandardize using the corrected variance (V arnew). Let xA be an
observed error value for algorithm A. Let μA be the mean (observed) error for
algorithm A. Let σA

obs = (V arAobs)
1
2 be the observed standard deviation of the

average performance of algorithm A. Let σA
new = (V arAnew)

1
2 be the corrected

standard deviation of algorithm A. Then the adjustment for each measured
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performance value xA is the following: xA
c =

[(
xA−μA

σA
obs

)
· σA

new

]
+μA =

(
σA

new

σA
obs

)
xA+(

1− σA
new

σA
obs

)
μA The same adjustment is then applied to errors for algorithm B,

with appropriate mean and variances. Once all the observed errors are adjusted,
we can then compute the paired t-test in the standard way.

The correction Δ requires values for the parameters: n,m, p, q, ρ, |L|. We can
easily calculate n,m, |L| from the properties of the training/test networks used in
a particular evaluation. Also, p, q, ρ can be estimated from the training/test net-
work evaluations. For the experiments below, we use the average misclassification
over all instances in a test set for p, the average misclassification for each instance
across multiple test sets for q, and for ρ we use the φ coefficient to measure the
correlation of errors for linked instances in the network (i.e., calculate φ coefficient
from a contingency table that shows the association of prediction errors of a pair of
linked instances). In the following sections we report results for paired tests only.
Experiments with unpaired tests yielded qualitatively similar results.

5 Experimental Results

To investigate the effectiveness of our proposed correction with random resam-
pling (RS-C), for significance tests of network classifiers, we conducted exper-
iments with both simulated and real relational classifiers under varying data
characteristics, using synthetic data and data from the Internet Movie Database
(imdb.com).

We compare the Type I error rates and statistical power of RS, NCV, and
RS-C using paired t-tests. In all the experiments, both Type I error rates and
statistical power rates were averaged over 500 (simulated) or 50 (synthetic/real)
trials. For a given dataset, in each trial we sample from the network, either us-
ing random sampling (RS) or using network cross-validation (NCV), to create
10 training/test splits (subnetworks). Then we learn classifiers (using two com-
peting algorithms A and B) on the training subnetwork and apply the learned
classifiers on its corresponding test subnetwork to measure its performance (e.g.
average error rate). To compare performance, we conducted significant tests
(α = 0.05) to either accept or reject the null hypothesis that the performance
of algorithm A and B are equivalent. When the experiments are designed so
that two learned classifiers have equivalent error rates, any rejection of the null
hypothesis corresponds to a Type I error (i.e., false positive identification of a
difference when it does not exist). However, when the two classifiers perform dif-
ferently, a rejection of the null hypothesis represents the statistical power of the
test (i.e., true positive identification of a difference when it exists). We calculate
and report the proportion of trials for which the null hypothesis was rejected
(i.e. Type I error or power in its corresponding experimental setup).

5.1 Experiments with Simulated Classifiers

Here we replicate the experiments of [6] to analyze test characteristics with sim-
ulated classifiers. We simulate the correlated errors observed in real network
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classifiers by dividing data instances into disjoint groups and assigning “clas-
sification errors” such that errors are correlated among the instances within a
group. We simulate two group-based classifiers A and B, ensuring that A and B
have the same error rate (p) while still making different kinds of errors (i.e., A
misclassifies different groups from B). Each trial utilizes datasets with default
parameters m = 300, p = 0.1, and q = 0.9.

Figure 1(a) shows the effects of varying the proportion of labeled data for
training. In these experiments, algorithms A and B have equal error rates of
p = 0.1 so rejecting the null hypothesis corresponds to a Type I error. For RS,
the Type I error rate increases as propLabeled decreases. This result is expected
since the degree of overlap between test sets increases as the number of unlabeled
instances increases. Since NCV disallows overlapping test sets by design, it is
not susceptible to this problem, achieving uniformly low Type I error rates. The
corrected test, RS-C, exhibits a further reduction in type I error over NCV since
it accounts for error correlation as well as test set overlap.

Figure 1(b) shows the statistical power of the tests when the difference in error
rates between A and B is varied (propLabeled = 0.3). In this case, since the algo-
rithm error rates are different, a rejection of the null hypothesis corresponds to a
true positive. RS has the highest statistical power overall, but when its high Type I
error rates are taken into account, RS has little practical utility. RS-C, on the other
hand, is able to maintain low Type I error while achieving a reasonable amount of
statistical power. For example when there is a 4% difference in error rates, RS-C
will be able to detect it 80% of the time. NCV has substantially lower statistical
power—it will only be able to detect a 4% difference 20% of the time.
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Fig. 1. Type I error and power experiments on synthetic data with simulated classifiers.
(Left) Type I error as proportion of labeled data increases. (Right) Statistical power
as the difference between classifiers increases.
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5.2 Experiments with Real Classifiers

To further investigate RS-C, we compare the collective classification models used
in [6]: weighted-vote relational neighbor (wvRN) [4] and network-only Bayes
classifier (nBC) [4]. For both models, we use relaxation labeling for collective
inference. To estimate Type I error, we handicap the better performing model
(wvRN) until the performance difference between the models is negligible (i.e.,
≤ 0.005). This is achieved by randomly selecting b% of the wvRN’s predictions
and perturbing those probabilities toward the opposite class. We searched for
a value of b that resulted in a performance difference of ≤ 0.005 between the
two models on a separate set of calibration networks. To estimate statistical
power, we handicap the worse performing model (nBC) to increase the perfor-
mance difference between the two models. We used b = [0.025, 0.075, 0.15, 0.3]
and measured the resulting performance difference, which is reported in Fig-
ure 2(b) and 3(b).

Results on synthetic data: In this set of experiments, we use synthetic
datasets as described in [6]. The generated networks have size m = 300 with
average autocorrelation= 0.40 and class prior P (+) = 0.70. The data is de-
signed so that wvRN and nBC will make classification errors on different nodes.
To measure Type I error rates and power of the statistical tests, we used four
synthetic networks (in addition a set of 50 calibration networks).

Figure 2(a) plots the Type I error rates for three statistical tests. Notably,
the level of Type I error exhibited by RS-C is significantly lower than that of
RS (> 50% reduction in error). RS-C Type I error is also slightly lower than
that of NCV. Figure 2(b) plots the power of each statistical test on networks
with 30% labeled nodes. Here we observe, that RS-C again achieves much higher
power than NCV. This is due to its use of larger test sets sizes—after correcting
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Fig. 2. Type I error and power experiments on synthetic data with real classifiers.
(Left) Type I error as proportion of labeled data increases. (Right) Statistical power
as the difference between classifiers increases.
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for overlap, the effective sample size is still larger than the disjoint sets used in
NCV. For example, on a network of 300 nodes with 30% labeled nodes, RS-C
uses test set sample of 210 nodes while NCV only use a test set of 30 nodes
(because of 10 cross validation). Note that the test set of 210 nodes in RS-C
are not independent sample. The overlap correction will adjust its sample size
downward, but the effective sample size of RS-C will still be larger than 30.

Results on real data: In the second set of experiments, we use data from the
Internet Movie Database (IMDB). We collected a sample of 1,543 movies released
in the United States between 2003 and 2007, with their associated producers
and studios. We create six disjoint network samples using stratified sampling by
studios. Within each partition, we created links among movies with a common
producer. The resulting networks have an average size of 257 nodes and the
movies have average degree of 16. The classification task is to predict whether
the movie will make more than $60mil in total box office receipts. The average
autocorrelation in these networks is 0.35.

Figure 3(a) and 3(b) show the Type I error and statistical power for each test
respectively. The relative performance of the statistical tests is similar across
the synthetic data and the real network data. RS-C has Type I error rates
comparable to NCV and significantly lower than RS. Again RS-C has much
higher power than NCV for detecting the algorithm differences in real network
data.
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Fig. 3. Type I error and power experiments on real data (IMDB) with real classifiers.
(Left) Type I error as proportion of labeled data increases. (Right) Statistical power
as the difference between classifiers increases.

6 Conclusion

We investigated two biases present in statistical tests for within-network classifi-
cation algorithms: (1) correlated errors among related instances and (2) overlap
between samples. These biases increase the Type I error to unacceptably high-
levels. To adjust for these biases, we developed analytical corrections to the
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empirical estimates of variance. Experiments on real and synthetic data, using
real and simulated classifiers demonstrate that our corrections reduce the Type I
error while maintaining good statistical power. Compared to the network cross-
validation, our corrections result in a significant increase in statistical power.
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Appendix

Conditions for Covariance Matrix Validity

The covariance matrix, denoted as Σ, can be specified in matrix form as:

Σ := ρ(σσT ). ∗ A + diag(σ. ∗ σ) (5)

where σ = [σ1, . . . , σi, . . . , σn], Aij = 1 if instance i and j are linked and 0
otherwise, diag has the usual semantics, and .∗ is the pointwise product.

To show the conditions under which the specified covariance matrix is valid,
it is enough to show when Σ is positive definite.

Lemma 1. Let νmin denote the minimum eigenvalue of matrix H = (σσT ). ∗
A, and ψmin denote the minimum eigenvalue of matrix P = diag(σ. ∗ σ). If ρ
satisfies:

ρ

{
< −ψmin

νmin
if νmin > 0

> −ψmin
νmin

if νmin < 0,
(6)

then the covariance matrix Σ defined above is positive definite.
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Proof. To ensure that Σ is positive definite it is sufficient to show that λmin > 0,
where λmin denotes the minimum eigenvalue of Σ. By Weyl’s inequality [3] we
have ρνmin +ψmin ≤ λmin, from which it directly follows that λmin > 0 whenever
(6) is satisfied.

Even though Lemma 1 gives admissible values of ρ to ensure that the covariance
matrix is positive definite, we observe empirically that other values of ρ also yield
good analytical corrections in practice. In other words, even if the covariance
matrix underlying the correction is not positive definite, our adjustment method
is still able to correct for the evaluation bias and correctly assess significant
algorithm differences.

Proof of Theorem 1

Proof.

V ar(Zk) = V ar

(
1

n

n∑
i=1

Xi

)
(7)

=
1

n2

⎛⎝ n∑
i=1

V ar(Xi) +
n∑

i=1

n∑
j 	=i

Cov(Xi, Xj)

⎞⎠ (8)

=
1

n2
(n · p(1− p) + |L|ρ · p(1− p)) (9)

=
1

n
p(1− p)

[
1 + ρ

|L|
n

]
(10)

Proof of Theorem 2

Proof. First we consider the joint probability of two instances, based on sampling
without replacement:

P (Xi =1∧Xj =1)

= P (Xi ∈ X1 ∧Xi = 1)P (Xj ∈ X1 ∧Xj = 1|Xi ∈ X1)+

P (Xi ∈ X1 ∧Xi = 1)P (Xj ∈ X0 ∧Xj = 1|Xi ∈ X1)+

P (Xi ∈ X0 ∧Xi = 1)P (Xj ∈ X1 ∧Xj = 1|Xi ∈ X0)+

P (Xi ∈ X0 ∧Xi = 1)P (Xj ∈ X0 ∧Xj = 1|Xi ∈ X0) (11)

=

[(pm

m
q
)( pm− 1

m− 1
q

)]
+[(pm

m
q
)( (1− p)m

m− 1

p

1− p
(1− q)

)]
+[(

(1− p)m

m

p

1− p
(1− q)

)(
pm

m− 1
q

)]
+[(

(1− p)m

m

p

1− p
(1− q)

)(
(1− p)m− 1

m− 1

p

1− p
(1− q)

)]
(12)
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=
p

(m− 1)

[
pm− q2 − p(1− q)2

(1− p)

]
(13)

Now consider the covariance of two instances, based on sampling without re-
placement:

Cov(Xi, Xj)

= E(XiXj)− E(Xi)E(Xj) (14)

= P (Xi = 1 ∧Xj = 1)− p · p (15)

=
p

(m− 1)

[
pm− q2 − p(1− q)2

(1− p)

]
− p2 (16)

= −p(1− p)

(m− 1)

[
(q − p)2

(1− p)2

]
(17)

With the covariance, we can compute the overall variance based on sampling
without replacement:

V ar(Zk) = V ar

(
1

n

n∑
i=1

Xi

)
(18)

=
1

n2

⎡⎣ n∑
i=1

V ar (Xi) +

n∑
i=1

n∑
j=1,j 	=i

Cov(Xi, Xj)

⎤⎦ (19)

=
1

n

[
p(1− p)− (n− 1)

p(1− p)

(m− 1)

[
(q − p)2

(1− p)2

]]
(20)

=
1

n
p(1− p)

[
1− (n− 1)

(m− 1)

(
q − p

1− p

)2
]

(21)

Proof of Theorem 3

Proof. To combine the covariance based on error correlation with the covariance
based on overlap, we need to determine the effect of the correlation on the
conditional probability of a linked instance, i.e., P (Xj = 1|Xi = 1, eij ∈ L). We
can derive this from the relationship between correlation and covariance:

Cov(Xi, Xj |eij ∈ L) = Corr(Xi, Xj |eij)V ar(Xi)
1
2 V ar(Xj)

1
2 (22)

E(XiXj |eij ∈ L)− E(Xi)E(Xj) = ρ · V ar(Xi)
1
2 V ar(Xj)

1
2 (23)

P (Xj |Xi, eij ∈ L) = E(Xj) +
ρ · V ar(Xi)

1
2 V ar(Xj)

1
2

E(Xi)
(24)

We can then enumerate the conditional probabilities for each of the four possible
worlds for (Xi, Xj):

P (X1
j |X1

i ) = E(X1
j ) +

ρV ar(X1
i )

1
2 V ar(X1

j )
1
2

E(X1
i )

= q + ρ(1− q) (25)
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P (X0
j |X1

i ) = E(X0
j ) +

ρV ar(X1
i )

1
2 V ar(X0

j )
1
2

E(X1
i )

(26)

=
p(1− q)

1− p
+ ρ

(1− q)

(1− p)

√
p(1− 2p + pq)

q
(27)

P (X1
j |X0

i ) = E(X1
j ) +

ρV ar(X0
i )

1
2 V ar(X1

j )
1
2

E(X0
i )

(28)

= q + ρ

√
q(1− 2p + pq)

p
(29)

P (X0
j |X0

i ) = E(X0
j ) +

ρV ar(X0
i )

1
2 V ar(X0

j )
1
2

E(X0
i )

(30)

=
p(1− q)

1− p
+ ρ

(
1− 2p + pq

1− p

)
(31)

Now we can incorporate these conditional probabilities into the calculation of
P (Xi, Xj) and Cov(Xi, Xj), incorporating both correlation and sampling with-
out replacement. Let c =

√
1 − 2p+ pq, then:

P (Xi =1∧Xj =1) (32)

=

[(pm

m
q
)( pm− 1

m− 1
[q +

|L|
n(n− 1)

ρ(1− q)]

)]
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m
q
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m− 1
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n(n− 1)

ρ
(1− q)
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√
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=
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(
pq(1− q)ρ
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√
p

q
+

mc2

q
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]
(34)

Cov(Xi, Xj) = E(XiXj)−E(Xi)E(Xj) (35)

= P (Xi = 1 ∧Xj = 1) − p · p (36)

=
p
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[
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]
− p2+

|L|
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√
pq + mc2 − c2
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]]

Now we can compute the overall variance of Zk, with correlation as well as sam-
pling without replacement:
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V ar(Zk) = V ar
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(40)

Proof of Theorem 4

Proof. The unpaired t-test uses the average (i.e., pooled) variance of ZA and ZB

for the null distribution. Since the error distribution of A and B are equal, the
average is equal to the variance of a single algorithm. When the nodes are repeat-
edly sampled without replacement, we know from Theorem 3 that the observed

variance of Zk will be the following: V arobs(Zk) = 1
np(1−p)

[
1 − (n−1)

(m−1)
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q−p
1−p

)2

+
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) [
pmq − q + 2mc

√
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(1−p)

]
, where c =

√
1 − 2p+ pq.

However, when there is error correlation ρ among the instances in the data,
from Theorem 1 we know that the variance of Zk with independent samples
is the following: V arcorr(Zk) = 1

np(1 − p)
[
1 + ρ |L|

n

]
. Since the t-test assumes

independent samples, the variance of the null distribution should correspond to
the variance without repeated sampling V arcorr(Zk). If the observed variance
V arobs(Zk) is used in the t-test, it will result in an underestimate of Δ:
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(43)
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Abstract. Robust, static disassembly is an important part of achieving
high coverage for many binary code analyses, such as reverse engineering,
malware analysis, reference monitor in-lining, and software fault isola-
tion. However, one of the major difficulties current disassemblers face
is differentiating code from data when they are interleaved. This paper
presents a machine learning-based disassembly algorithm that segments
an x86 binary into subsequences of bytes and then classifies each subse-
quence as code or data. The algorithm builds a language model from a
set of pre-tagged binaries using a statistical data compression technique.
It sequentially scans a new binary executable and sets a breaking point
at each potential code-to-code and code-to-data/data-to-code transition.
The classification of each segment as code or data is based on the min-
imum cross-entropy. Experimental results are presented to demonstrate
the effectiveness of the algorithm.
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1 Introduction

Disassemblers transform machine code into human-readable assembly code. For
some x86 executables, this can be a daunting task in practice. Unlike Java byte-
code and RISC binary formats, which separate code and data into separate
sections or use fixed-length instruction encodings, x86 permits interleaving of
code and static data within a section and uses variable-length, unaligned in-
struction encodings. This trades simplicity for brevity and speed, since more
common instructions can be assigned shorter encodings by architecture design-
ers. An unfortunate consequence, however, is that hidden instructions can be
concealed within x86 binaries by including jump instructions that target the
interior of another instruction’s encoding, or that target bytes that resemble
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data. This causes these bytes to be interpreted as code at runtime, executing
code that does not appear in the disassembly. Malicious code is therefore much
easier to conceal in x86 binaries than in other formats. To detect and identify
potential attacks or vulnerabilities in software programs, it is important to have
a comprehensive disassembly for analyzing and debugging the executable code.

In software development contexts, robust disassembly is generally achieved
by appealing to binary debugging information (e.g., symbol/relocation tables)
that is generated by most compilers during the compilation process. However,
such information is typically withheld from consumers of proprietary software
in order to discourage reverse engineering and to protect intellectual property.
Thus, debugging information is not available for the vast majority of COTS
binaries and other untrusted mobile code to which reverse engineering is typically
applied.

Modern disassemblers for x86 binaries therefore employ a variety of heuristic
techniques to accurately differentiate bytes that comprise instructions from those
that comprise static data. The techniques are heuristic because fully correct
x86 disassembly is provably undecidable: Bytes are code if and only if they are
reachable at runtime—a decision that reduces to the halting problem.

IDA Pro [9] is widely acknowledged as the best x86 static disassembly tool
currently available for distinguishing code from data in arbitrary binaries (cf.,
[1,6,12]). It combines straight-line, heuristic, and execution emulation-based dis-
assembly while also providing an extensive GUI interface and multiple powerful
APIs for interacting with the disassembly data. Recent work has applied model-
checking and abstract interpretation to improve upon IDA Pro’s analysis [12,13],
but application of these technologies is currently limited to relatively small bina-
ries, such as device drivers, for which these aggressive analyses remain tractable.
All other widely available disassemblers to our knowledge take a comparatively
simplistic approach that relies mainly upon straight-line disassembly, and that
therefore requires the user to manually separate code from data during binary
analysis. Our tests therefore focus on comparing the accuracy of our algorithm
to that of IDA Pro.

Disassembly heuristics employed by IDA Pro include the following:

– Code entry point. The starting point for analyzing an executable is the ad-
dress listed in the header as the code entry point. That address must hold an
instruction, and will hopefully lead to successfully analyzing a large portion
of the executable.

– Function prologues and epilogues. Many function bodies compiled by main-
stream compilers begin with a recognizable sequence of instructions that im-
plement one of the standard x86 calling conventions. These byte sequences
are assumed by IDA Pro to be the beginnings of reachable code blocks.

– Direct jumps and calls. The destination address operand of any static jump
instruction that has already been classified as reachable code is also classified
as reachable code.

– Unconditional jumps and returns. Bytes immediately following a reachable,
unconditional jump or return instruction are considered as potential data
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bytes. These often contain static data such as jump tables, padding bytes,
or strings.

However, despite a decade of development and tuning, IDA Pro nevertheless
fails to reliably distinguish code from data even in many non-malicious, non-
obfuscated x86 binaries. Some common mistakes include the following:

– Misclassifying data as returns. IDA Pro frequently misclassifies isolated data
bytes within data blocks as return instructions. Return instructions have a
one-byte x86 encoding and are potential targets of computed jumps whose
destinations are not statically decidable. This makes them extremely difficult
to distinguish from data. IDA Pro therefore often misidentifies data bytes
that happen to match the encoding of a return instruction.

– 16-bit legacy instructions. The x86 instruction set supports legacy 16-bit
addressing modes, mainly for reasons of backward compatibility. The vast
majority of genuinely reachable instructions in modern binaries are 32- or
64-bit. However, many data bytes or misaligned code bytes can be misinter-
preted as 16-bit instructions, leading to flawed disassemblies.

– Mislabeled padding bytes. Many compilers generate padding bytes between
consecutive blocks of code for alignment purposes. These bytes are not
reached by typical runs, nor accessed as data, so their proper classification
is ambiguous. IDA Pro typically classifies them as data, but this can compli-
cate some code analyses by introducing many spurious code-data boundaries
in the disassembly. In addition, these bytes can later become reachable if the
binary undergoes hotpatching [10]. We therefore argue that these bytes are
more properly classified as code.

– Flows from code to data. IDA Pro disassemblies frequently contain data
bytes immediately preceded by non-branching or conditionally branching
instructions. This is almost always an error; either the code is not actually
reachable (and is therefore data misidentified as code) or the data is reachable
(and is therefore code misidentified as data). The only exception to this
that we have observed in practice is when a call instruction targets a non-
returning procedure, such as an exception handler or the system’s process-
abort function. Such call instructions can be immediately followed by data.

To provide a rough estimate of the classification accuracy of IDA Pro, we wrote
scripts in IDAPython [7] that detect obvious errors made by IDA Pro in its
disassemblies. Table 1 gives a list of the executables we tested and counts of the
errors we identified for IDA Pro 5.5. The main heuristic we used to identify errors
is the existence of a control-flow from code to data. Certain other errors were
identified via manual inspection. It is interesting to note that most programs
compiled using the Gnu family of compilers have little to no errors in their IDA
Pro disassemblies. This is probably because Gnu compilers tend to yield binaries
in which code and data are less interleaved, and they perform fewer aggressive
binary-level optimizations that can result in code that is difficult to disassemble.

In this paper, we present a disassembly algorithm that combines the heuristics
manually applied by experts during reverse engineering and a language model
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Table 1. Statistics of IDA Pro 5.5 disassembly errors

File Name Instructions Mistakes

Mfc42.dll 355906 1216
Mplayerc.exe 830407 474
RevelationClient.exe 66447 36
Vmware.exe 364421 183

that can capture both short-range and long-range correlations between byte
sequences. Experimental results demonstrate that our algorithm can identify
and successfully label a large number of code sequences that are missed by
IDA Pro.

2 A Language Model for Disassembling x86 Executables

Without any debugging information at our disposal, we treat any given x86
executable as a string of arbitrary unsigned bytes. Our first task is to segment
the single string into consecutive subsequences that are either code or data.
A code-to-code, code-to-data, or data-to-code transition event occurs at each
boundary between different instructions or between code and data.

The Intel architecture manual [11] specifies the decoding of each x86 instruc-
tion if the starting point for the instruction is known. Unfortunately, when code
and data are interleaved it is not obvious whether a byte is the start of an
instruction, the interior of an instruction, or a non-instruction (i.e., data). To
tackle this problem we first decide whether a sequence of bytes is more likely to
be code or data. The executable is then segmented using the opcodes defined in
the Intel instruction encoding specification. Since we are unable to ensure a per-
fect segmentation, our next task is to classify each subsequence as code or data.
Both tasks involve a context-based language model. We next formally describe
each task and discuss the language model used in our disassembly algorithm.

2.1 Code Segmentation

In this section we first briefly review the x86 machine instruction set. We then
define the code segmentation problem and present our algorithm to solve the
problem.

Instruction Encodings. Figure 1 shows the x86 machine instruction binary
format [11]. Instructions begin with 1–3 opcode bytes that identify the instruc-
tion. Instructions with operands are then followed by an addressing form specifier
(ModR/M) byte that identifies register or memory operands for the instruction.
Some addressing forms require a second scale-index-base (SIB) byte that speci-
fies a memory addressing mode. The addressing mode essentially encodes a short
formula that dynamically computes the memory operand at runtime. For exam-
ple, addressing mode [eax*4]+disp32 references a memory address obtained
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7–6 5–3 2–0 7–6 5–3 2–0

Opcode Mod Reg∗ R/M Scale Index Base Displacement Immediate

1–3 bytes ModR/M byte SIB byte address data︸ ︷︷ ︸ operand operand

register/address mode specifier (0–4 bytes) (0–4 bytes)

∗The Reg field is sometimes used as an opcode extension field.

Fig. 1. The x86 machine instruction format

by multiplying the contents of the eax register by 4 and then adding a 32-bit
displacement constant. The displacement, if present, comes after the SIB byte.
Finally, immediate operands (constants) are encoded last and have a width of
up to 4 bytes (on 32-bit architectures).

In addition to this complicated instruction format, there are a number of
prefix bytes that may precede the opcode bytes, all eleven of which may be used
in combination. Some of these prefix bytes, if present, affect the length of the
succeeding instruction’s encoding by temporarily changing the default operand
widths.

A few x86 machine instructions have multiple different correct representations
at the assembly level. Most notable is the floating point WAIT instruction, which
can either be interpreted as an opcode prefix for the instruction it precedes, or
as a separate instruction in its own right. We adopt the former interpretation in
our treatment, since it makes for a more compact assembly representation.

Problem Definition. We define the tagging problem as follows: Given a non-
empty input string X over an alphabet Σ, find a set of transition events T ∗ =
{$1, . . . , $M} such that T ∗ = argmaxT f(X, T ), where $i at position i < |X |
marks a transition event e in X , T denotes any possible set of transition events,
and f is a function that measures the likelihood that X is tagged correctly.

The tagging problem resembles the word segmentation problem in some natural
languageswhere no clear separations exist betweendifferentwords [15]. In theword
segmentation problem, the task is to find correct separations between sequences of
characters to form words. In the tagging problem, our objective is to find separa-
tions between different instructions, and often between instructions and data as
well. In both problems, resolving ambiguities is the major challenge. For example,
a byte sequence E8 F9 33 6A 00 can be a 5-byte call instruction (opcode E8), or three
bytes of data followed by a push instruction (opcode 6A). Ambiguities can only be
resolved through investigating their surrounding context.

Solutions to the tagging problem must also successfully identify and ignore
“noise” in the form of padding bytes. Padding bytes are neither executed as
code nor accessed as data on any run of the executable, so their classification is
ambiguous. However, reliably distinguishing these padding sequences from true
code and data is highly non-trivial because the same sequence of bytes often
appears as both code and padding within the same executable. For example, the
instruction



Differentiating Code from Data in x86 Binaries 527

8D A4 24 00 00 00 00 lea esp, [esp+0x0]

is semantically a no-operation (NOP), and is therefore used as padding within
some instruction streams to align subsequent bytes to a cache line boundary,
but is used in other instruction streams as a genuinely reachable instruction.
Another common use of semantic NOPs is to introduce obfuscation to hide what
the program is doing.

In general, code and data bytes may differ only in their locations in the se-
quence, not in their values. Any byte sequence that is code could appear as data
in an executable, even though it should statistically appear much more often as
code than data. Not every data sequence can be code, however, since not all byte
sequences are legitimate instruction encodings.

The Tagging Algorithm. There are two components in our tagging algorithm:
an instruction reference array and a utility function. The reference array stores
the length of an instruction given the bytes of an opcode (and the existence
of length-relevant prefix bytes). The utility function estimates the probability
that a byte sequence is code. We estimate the probability using a context-based
language model built from pre-tagged x86 executables.

Instruction Reference Array. From the x86 instruction decoding specification we
derive a mapping from the bytes of an opcode to the length of the instruction.
This is helpful in two respects: First, it marks a definite ending of an instruction
that allows us to move directly to the next instruction or data. Second, it tells us
when a series of bytes is undefined in the x86 instruction set, which means that
the current byte cannot be the beginning of an instruction. We tested our code
against more than ten million instructions in the IDA Pro disassembler and had
100% accurate instruction lengths.

Utility Function. The utility function helps predict whether a byte sequence is
code or data in the current context. If the current byte sequence is unlikely to
be code, our tagging algorithm moves to the next byte sequence. If we predict
that the byte sequence is code, we look up the length of the instruction in the
instruction reference array and move to the next byte sequence. The following
two properties express the desired relationship between the utility function and
its input byte sequence.

Property 1. A byte sequence bordered by transitions is tagged as code (resp.,
data) if its utility as code (resp., data) is greater than its utility as data (resp.,
code).

Property 2. A transition between two byte sequences SA and SB entails a seman-
tic ordering in machine code: f(SB|SA) ≥ f(SB|S∗), where S∗ is any subsequence
but SA in a given binary, and f is the utility function.

Our utility function estimates the likelihood of a transition event using context-
based analysis. We collect context statistics from a set of pre-tagged binaries
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in the training set. In a pre-tagged binary, code-code and code-data/data-code
transitions are given. Two important forms of information are yielded by pre-
tagged binaries. First, they provide semantic groupings of byte sequences that are
either code or data; and second, they provide a semantic ordering between two
subsequences, which predicts how likely a subsequence is followed by another.
To correctly tag an input hex string, both pieces of information are important.
This calls for a language model that

– can capture local coherence in a byte sequence, and
– can capture long-range correlations between two adjacent subsequences—i.e.,

subsequences separated by a code-code or code-data/data-code transition.

Several modern statistical data compression models [14] are known for their
context-based analysis. These data models can work directly on any raw input
regardless of source and type. We use the current state of the art data compres-
sion model as our language model. Before we discuss the details of the language
model, we give the tagging algorithm in Algorithm 1.

Algorithm 1. Tagging
Input: x0 . . . xi . . . xn−1 // input string of bytes

Mc // language model

Output: x0 . . . xi|xi+1 . . . xj | · · · |xk . . . xn−1 // segmented string

t← 0
while t < n do

�← 0
if xt ∈Mc then

�← codeLength(xt . . . xmin{t+4,n−1}) // lookup instruction length

if (� = 0) ∨ (t + � > n) then �← 1 // tag as possible data

print xt . . . xt+�−1 // output the segment

t← t + �

2.2 Context-Based Data Compression Model

The compression model we use to store context statistics is predication by partial
matching (PPM) [4,5,3]. The theoretical foundation of the PPM algorithm is
the kth order Markov model, where k constrains the maximum order context
based on which a symbol probability is predicted. PPM models both short-
range and long-range correlations among subsequences by using dynamic context
match. The context of the ith symbol xi in an input string is the previous
i − 1 symbols. Its kth order context cki includes only the k prior symbols. To
predict the probability of seeing xi in the current location of the input, the PPM
algorithm first searches for a match of cki in the context tree. If a match is found,
p(xi|cki ) is returned as the symbol probability. If such a match does not exist
in the context tree, an escape event is recorded and the model falls back to a
lower-order context ck−1

i . If a match is found, the following symbol probability
is returned:

p(xi|cki ) = p(Esc|cki ) · p(xi|ck−1
i )
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where p(Esc|cki ) is the escape probability conditioned on context cki . The escape
probability models the probability that xi will be found in the lower-order con-
text. This process is repeated whenever a match is not found until an order-0
context has been reached. If xi appears in the input string for the first time,
a uniform probability of distinct symbols that have been observed so far will
be returned. Therefore, the probability of xi in a string of input is modeled as
follows:

p(xi|cki ) =

{(∏k
j=k′+1 p(Esc|cji )

)
· p(xi|ck

′

i ) if k ≥ 0
1
|A| if k = −1

where k′ ≤ k is the context order when the first match is found for xi, and |A|
is the number of distinct symbols seen so far in the input. If the symbol is not
predicted by the order-0 model, a probability defined for the order −1 context
is predicted.

The PPM model predicts symbol probabilities. To estimate the probability of
a sequence of symbols, we compute the product of the symbol probabilities in
the sequence. Thus, given a data sequence X = x1x2 . . . xd of length d, where xi

is a symbol in the alphabet, the probability of seeing the entire sequence given
a compression model M can be estimated as

p(X |M) =
d∏

i=1

p(xi|xi−1
i−k)

where xj
i = xixi+1xi+2 . . . xj for i < j.

We use the above probability estimate as our utility function. We build two
compression models Mc andMd from the pre-tagged binaries in the training set:
Mc is built from tagged instructions and Md is built from tagged data. Given a
new binary executable e and a subsequence ei in e,

Mc = {ei | p(ei|Mc) > p(ei|Md)}

2.3 Classification

After tagging the transitions in the executable, we have segments of bytes. Even
though the tagging algorithm outputs each segment either as code or data, we
cannot assume this preliminary classification is correct because some data bytes
may match legitimate opcodes for which a valid instruction length exists in the
reference array. The tagging algorithm will output this segment as code even
though it is data. Therefore, we need to reclassify each segment as data or code.

Our classification algorithm makes use of the aforementioned language model
and several well known semantic heuristics. The language models are also used
in the tagging algorithm. The heuristics are adapted from those used by human
experts for debugging disassembly errors. We first discuss the language model-
based classification module followed by the semantic heuristics.
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Classification Using Language Model. Classifying byte sequences is a bi-
nary classification problem. We reuse the two compression models built for tag-
ging. Recall that model Mc is built from pre-tagged code and model Md is built
from the pre-tagged data in the training set. To classify a byte sequence B, we
compute a log likelihood of B using each data model α ∈ {c, d}:

p(B|Mα) = − log
|B|∏
i=1

p(bi|bi−1
i−k,Mα)

where Mα is the compression model associated with class α, |B| is the length
of byte sequence B, sequence bi−k, . . . , bi is a subsequence in B, and k is the
length of the context. The class membership α of B is predicted by minimizing
the cross entropy [16,2]:

α = argmin
α∈{c,d}

− 1
|B|p(B|Mα)

Classification Using Heuristics. In addition to our context-based language
models, certain semantic heuristics are helpful in determining an accurate class
membership of an x86 byte sequence. Reverse engineers rely heavily upon such
heuristics when manually correcting flawed disassemblies.

Word data tables. Many static data blocks in code sections store tables of 4-
byte integers. Often the majority of 4-byte integers in these tables have similar
values, such as when the table is a method dispatch or jump table consisting of
code addresses that mostly lie within a limited virtual address range. One way
to quickly identify such tables is to examine the distribution of byte values at
addresses that are 1 less than a multiple of 4. When these high-order bytes have
low variance, the section is likely to be a data table rather than code, and is
classified accordingly.

16-bit addressing modes. When classifying a byte sequence as code yields a disas-
sembly densely populated by instructions with 16-bit operands (and the binary
is a 32-bit executable), this indicates that the sequence may actually be data
misclassified as code. Modern x86 architectures support the full 16-bit instruc-
tion set of earlier processor generations for backward compatability reasons, but
these legacy instructions appear only occasionally in most modern 32-bit appli-
cations. The 16-bit instructions often have short binary encodings, causing them
to appear with higher frequency in randomly generated byte sequences than they
do in actual code.

Data after unconditional jumps. Control-flows from code to data are almost
always disassembly errors; either the data is reachable and is therefore code,
or the code is actually unreachable and is therefore data. Thus, data inside of
a code section can only occur at the very beginning of the section or after a
branch instruction—usually an unconditional jump or return instruction. It can
occasionally also appear after a call instruction if the call never returns (e.g.,
the call targets an exception handler or process-abort function). This observation
gives rise to the following heuristics:
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– If an instruction is a non-jump, non-return surrounded by data, it is reclas-
sified as data.

– If a byte sequence classified as data encodes an instruction known to be a
semantic NOP, it is reclassified as code.

3 Experimental Results

We tested our disassembly algorithm on the 11 real-world programs listed in
Table 2. In each experiment, we used 10 of the programs to build the language
models and the remaining one for testing. All the executables are pre-tagged us-
ing IDA Pro; however, IDA Pro yields imperfect disassemblies for all 11 executa-
bles. Some instructions it consistently labels as data, while others—particularly
those that are semantic NOPs—it labels as data or code depending on the con-
text. This leads to a noisy training set.

Table 2. Software programs for testing

File Name File Size (K) Code (K) Data (K) Transitions

7zFM.exe 379 271 3.3 1379
notepad.exe 68 23 8.6 182
DosBox.exe 3640 2947 67.2 15355
WinRAR.exe 1059 718 31.6 5171
Mulberry.exe 9276 4632 148.2 36435
scummvm.exe 11823 9798 49.2 47757
emule.exe 5624 3145 119.5 24297
Mfc42.dll 1110 751 265.5 15706
Mplayerc.exe 5858 4044 126.1 28760
RevelationClient.exe 382 252 18.4 1493
Vmware.exe 2675 1158 87.3 18259

Since we lack perfect disassemblies of any of these programs, evaluation of
the classification accuracy of each algorithm is necessarily based on a manual
comparison of the disassembly results. When the number of classification dis-
agreements is large, this can quickly exceed the human processing limit. However,
disagreements in which one algorithm identifies a large, contiguous code section
missed by the other are relatively easy to verify by manual inspection. These
constituted the majority of the disagreements, keeping the evaluation tractable.

3.1 Tagging Results

We first report the accuracy of our tagging algorithm. Inaccuracies can take the
form of code misclassified as data (false negatives) and data misclassified as code
(false positives). Both can have potentially severe consequences in the context
of reverse engineering for malware defense. False negatives withhold potentially
malicious code sequences from expert analysis, allowing attacks to succeed; false
positives increase the volume of code that experts must examine, exacerbating
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the difficulty of separating potentially dangerous code from benign code. We
therefore compute the tagging accuracy as

accuracy = 1 − false negatives + false positives
total number of instructions

where false positives count the number of instructions erroneously disassembled
from data bytes.

As can be seen in Table 3 we were able to tag 6 of the 11 binaries with 100%
accuracy. For the remaining 5, the tagging errors were mainly caused by misclas-
sification of small word data tables (see §2.3) consisting of 12 or fewer bytes. Our
heuristic for detecting such tables avoids matching such small tables in order to
avoid misclassifying short semantic NOP sequences that frequently pad instruc-
tion sequences. Such padding often consists of 3 identical 4-byte instructions,
which collectively resemble a very short word data table.

Table 3. Tagging accuracy

File Name Errors Total Tagging Accuracy

7zFM.exe 0 88164 100%
notepad.exe 0 6984 100%
DosBox.exe 0 768768 100%
WinRAR.exe 39 215832 99.982%
Mulberry.exe 0 1437950 100%
scummvm.exe 0 2669967 100%
emule.exe 117 993159 99.988%
Mfc42.dll 0 355906 100%
Mplayerc.exe 307 830407 99.963%
RevelationClient.exe 71 66447 99.893%
Vmware.exe 16 364421 99.998%

3.2 Classification Results

To evaluate the classification accuracy we took the output of our tagging algo-
rithm and ran each segment through the language model to get its class member-
ship. Table 4 shows the classification results of our disassembly algorithm. False
positives (FP), false negatives (FN), and overall classification accuracy is listed
for each disassembler. False positives are subsequences that are data misclassi-
fied as code and false negatives are those that are code misclassified as data. As
can be seen in Table 4 we were able to classify five of the 11 binaries with 100%
accuracy.

3.3 eMule Case Study

To show some of the specific differences between decisions made by IDA Pro’s
disassembler and our approach, we here present a detailed case study of eMule,
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Table 4. A comparison of mistakes made by IDA Pro and by our disassembler

IDA Pro 5.5 Ours

File Name FP FN Accuracy FP FN Accuracy

7zFM.exe 0 1 99.999% 0 0 100%
notepad.exe 4 0 99.943% 0 0 100%
DosBox.exe 0 26 99.997% 0 0 100%
WinRAR.exe 0 23 99.989% 0 39 99.982%
Mulberry.exe 0 202 99.986% 0 0 100%
scummvm.exe 0 65 99.998% 0 0 100%
emule.exe 0 681 99.931% 0 117 99.988%
Mfc42.dll 0 1216 99.658% 0 47 99.987%
Mplayerc.exe 0 2065 99.751% 0 307 99.963%
RevelationClient.exe 0 1781 97.320% 0 71 99.893%
Vmware.exe 0 183 99.950% 0 45 99.988%

a popular peer-to-peer file sharing program. Case studies for other executables
in our test suite are similar to that presented here. Table 5 illustrates examples
in which IDA Pro classified bytes were code but our disassembler determined
that they were data, or vice versa. In the table, db is an assembly directive com-
monly used to mark data bytes in a code listing. To identify all discrepancies,
we stored all instructions from both disassemblies to text files with code/data
distinguishers before every instruction. We then used sdiff to find the differ-
ences. The cases in Table 5 summarize all of the different kinds of discrepancies
we discovered.

IDA Pro makes heavy use of heuristic control-flow analysis to infer instruction
start points in a sea of unclassified bytes. Thus, its classification of bytes imme-
diately following a call instruction depends on its estimate of whether the called
method could return. For example, Case 1 of Table 5 shows a non-returning call
to an exception handler. The call is immediately followed by padding bytes that
serve to align the body of the next function. These bytes are also legitimate (but
unreachable) instructions, so could be classified as data or code (though we argue
in §1 that a code classification is preferable). However, this control-flow analysis
strategy leads to a classification error in Case 2 of the table, wherein IDA Pro
incorrectly identifies method GetDLGItem as non-returning and therefore fails to
disassemble the bytes that follow the call. Our disassembler correctly identifies
both byte sequences as code. Such scenarios account for about 20 of IDA Pro’s
disassembly errors for eMule.

Case 3 of Table 5 illustrates a repetitive instruction sequence that is difficult
to distinguish from a table of static data. IDA Pro therefore misidentifies some
of the bytes in this sequence as data, whereas our algorithm correctly identifies
all as code based on the surrounding context.

Many instruction sequences in x86 binaries are only reachable at runtime via
dynamically computed jumps. These sequences are difficult to identify by control-
flowanalysis alone since thedestinations ofdynamic jumps cannotbe staticallypre-
dicted in general. Case 4 is an example where IDA Pro fails to identify a
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Table 5. Disassembly discrepancies between IDA Pro and our disassembler for eMule

Example Disassemblies

Case Description IDA Pro 5.5 Ours

1 padding after a
non-returning call

call ExceptionHandler call ExceptionHandler

db (1–9 bytes) code (1–9 bytes)
function start function start

2 calls misidentified as
non-returning

call GetDLGItem call GetDLGItem

db 88h 50h mov edx, [eax+1Ch]

sbb al, 8Bh

3 repetitive instruction
sequences

db (4 bytes) push 0

push 0

push 0 push 0

push 0 push 0

call 429dd0h call 429dd0h

4 missed computed
jump targets

db (12 bytes) mov eax, large fs:0

mov edx, [esp+8]

push FFFFFFFFh

push offset 41CC30h push offset 41CC30h

5 false computed jump
targets

push ecx push ecx

db FFh call 7DFAB4h

adc eax, 7DFAB4h

mov ebp, eax mov ebp, eax

db 8Bh mov eax, [ebx+0DCh]

sbb esp, 0 mov ecx, [eax+4]

db (13 bytes) cmp ecx, esi

jle loc 524D61

test esi, esi test esi, esi

6 missed opcode
prefixes

push offset 701268h push offset 701268h

db 64h mov eax, large fs:0

mov eax, large ds:0

7 code following
unconditional
branches

jmp 526396h jmp 526396h

db 8Bh mov ecx, 9CAF08h

or eax, 9CAF08h

8 code following
returns

retn retn

db C4h 83h add esp, 2Ch

sub al, CDh int 6

push es

9 code following
conditional branches

jz 52518Fh jz 52518F

db 8Bh mov ecx, 9CAF04h

or eax, 9CAF04h
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computed jump target and therefore fails to classify the bytes at that address as
code; however, our disassembler finds and correctly disassembles the instructions.

Misidentifying non-jump targets as possible targets leads to a different form of
disassembly error. Case 5 illustrates an example in which an early phase of IDA
Pro’s analysis incorrectly identifies the interior byte of an instruction as a possi-
ble computed jump destination (probably because some bytes in a data section
happened to encode that address). The bytes at that address disassemble to an
adc instruction that turns out to be misaligned with respect to the surrounding
sequence. This leads to an inconsistent mix of code and data that IDA Pro can-
not reconcile because it cannot determine which interpretation of the bytes is
correct. In contrast, our algorithm infers the correct instruction sequence, given
in the rightmost column of the table.

Some instructions include prefix bytes, as discussed in §2.1. The suffix without
the prefix bytes is itself a valid instruction encoding. IDA Pro’s analysis sometimes
misses these prefix bytes because it discovers the suffix encoding first and treats
it as a self-contained instruction. This leads to the disassembly error depicted in
Case 6 of the table. Our approach avoids this kind of error in all cases.

Cases 7–8 of the table illustrate disassembly errors in which IDA Pro fails
to identify code bytes immediately following unconditional jumps and returns.
These too are a consequence of relying too heavily on control-flow analysis to dis-
cover code bytes. Occasionally these errors even appear after conditional jumps,
as shown in Case 9. It is unclear why IDA Pro makes this final kind of mis-
take, though we speculate that it may be the result of a dataflow analysis that
incorrectly infers that certain conditional branches are always taken and there-
fore never fall through. Use of conditional branches as unconditional jumps is a
common malware obfuscation technique that this analysis may be intended to
counter. However, in this case it backfires and leads to an incorrect disassembly.
Our method yields the correct disassembly on the right.

4 Conclusion

We developed and evaluated an automated disassembler using context-aware
language models to separate instructions from instructions and code from data.
Each segment in the resulting byte sequence is then separately classified as code
or data. Evaluation of the technique demonstrates that our algorithm consis-
tently yields more accurate disassemblies than the IDA Pro disassembler, which
is widely regarded as the best commercial disassembly tool currently available.

Future work includes blending more sophisticated heuristics into our learning
model, and trying block entropy approaches to better estimate the boundary
between code and data.

In addition, larger-scale evaluation of our results could be facilitated by au-
tomating more of the evaluation process. One possible approach is to generate
test binaries with perfect labels by using compiler options that artificially sepa-
rate code from data, or that yield binary debugging information that can be used
to infer correct labels. Unfortunately, most compilers and compiler modes that
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yield binaries for which the disassembly task is non-trivial are specifically those
compilers that are not easy to modify (e.g., non-open source compilers) and those
modes that do not support debugging (e.g., highly optimizing release modes).
Pursuing this approach therefore requires identifying a suitable compiler.

We also plan to apply our disassembly technique to support more effective
and reliable analysis and instrumentation of x86 binaries without source code
for security purposes [8].
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Abstract. Matrix factorization is a popular method for collaborative
prediction, where unknown ratings are predicted by user and item fac-
tor matrices which are determined to approximate a user-item matrix
as their product. Bayesian matrix factorization is preferred over other
methods for collaborative filtering, since Bayesian approach alleviates
overfitting, integrating out all model parameters using variational infer-
ence or sampling methods. However, Bayesian matrix factorization still
suffers from the cold-start problem where predictions of ratings for new
items or of new users’ preferences are required. In this paper we present
Bayesian matrix co-factorization as an approach to exploiting side infor-
mation such as content information and demographic user data, where
multiple data matrices are jointly decomposed, i.e., each Bayesian decom-
position is coupled by sharing some factor matrices. We derive variational
inference algorithm for Bayesian matrix co-factorization. In addition, we
compute Bayesian Cramér-Rao bound in the case of Gaussian likelihood,
showing that Bayesian matrix co-factorization indeed improves the re-
construction over Bayesian factorization of single data matrix. Numer-
ical experiments demonstrate the useful behavior of Bayesian matrix
co-factorization in the case of cold-start problems.

1 Introduction

Matrix factorization is a method for seeking a low-rank latent structure of data,
approximating the data matrix as a product of two or more factor matrices.
Matrix factorization is popular for collaborative prediction, where unknown rat-
ings are predicted by user and item factor matrices which are determined to
approximate a user-item matrix as their product [6,8,4,5,11,2]. Probabilistic ma-
trix factorization was introduced in [8], in which a linear model with Gaussian
observations was considered to learn user-specific and term-specific latent fea-
tures, which became equivalent to the minimization of sum-of-squared errors
with quadratic regularization terms. Bayesian approaches to matrix factoriza-
tion are proposed based on the approximate inference such as the variational
inference [4] or sampling [7], since the exact inference for the probabilistic model
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is intractable. Bayesian matrix factorization is preferred over other methods for
collaborative filtering, since Bayesian approach alleviates overfitting by integrat-
ing out all model parameters.

Collaborative prediction algorithms suffer from the cold-start problem, where
the users or items do not have sufficient number of given ratings. The cold-start
problem commonly occurs in applying collaborative prediction in the practical
problems because new users and new items, which has no previously given rat-
ings, are continuously added to the system. Moreover, the users do not have
high intention to rate the items remain in the system with small number of
ratings of their own. The prediction accuracy of the collaborative prediction al-
gorithm is seriously degraded because the algorithm only exploits the ratings
given by the target users or items. To remedy the cold-start problem, efficient
use of side information, such as item content information and user demographic
information is crucial. Constrained probabilistic matrix factorization [8] is a rep-
resentative method to incorporate side information into collaborative prediction
based on matrix factorization, but it does not have clear relationship between
the entity-relationship model of the whole data, so exploiting various kind of
side information is not straight-forward.

Matrix co-factorization provides a way to systematically exploit the side in-
formation from the additional matrices. Matrix co-factorization jointly decom-
poses multiple data matrices, where each decomposition is coupled by sharing
some factor matrices. Matrix co-factorization has been used to improve the per-
formance of matrix factorization by incorporating knowledge in the additional
matrices, such as label information [16], link information [17], and inter-subject
variations [3]. One of the advantages of the matrix co-factorization is that it
can be applied for the general entity-relationship models of the target data and
the additional data [9,14], where the factor matrices correspond to the entities
and the input matrices correspond to the relationships of the model. Since the
entity-relationship model is a fundamental tool to model the relational data, this
simple mapping between the entity-relationship model and the co-factorization
model enables the straight-forward use of various kind of side information, es-
pecially for the cold-start problems where both the user side information and
the item side information are required. Recently, Cramér-Rao bound (CRB) was
computed for matix co-factorization with Gaussian likelihood on compressed
sensing, showing that CRB is improved over matrix factorization, in the sense of
reconstruction error when side information is incorporated into co-factorization
[15].

We present a Bayesian matrix co-factorization (BMCF) to exploit side infor-
mation, such as content information and user demographic data, into collabora-
tive prediction problem to remedy the cold-start problems. We derive variational
inference algorithm for BMCF. Sampling method is another possible approach
for the BMCF [10], however the posterior computation requires storing multiple
number of samples which is not appropriate for the large-scale collaborative pre-
diction problems. A variational Bayesian approach for matrix co-factorization
was mentioned in [13] without any details, so in this paper we provide the
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descriptions of the specific probabilistic model and the computation of varia-
tional posteriors, hyperparameters, and the predictive distributions.

In addition, we compute Bayesian Cramér-Rao bound (BCRB) for the BMCF
model. BCRB provides a lower bound on the variance of any parametric esti-
mators, even for the unbiased ones [12]. We compute the bound for the recon-
struction error based on the BCRB, to show that BMCF indeed improves the
reconstruction over Bayesian matrix factorization (BMF) of single data matrix.
Numerical experiments confirm the improvements of the theoretical performance
from BCRB, and demonstrate the useful behavior of BMCF in cold-start cases.

2 Bayesian Matrix Co-Factorization

The simplest case of matrix co-factorization deals with two input matrices,
namely, the user-item rating matrix X ∈ RI×J and the user-demographic infor-
mation matrix Y ∈ RI×K . The input matrices are decomposed into the products
of the following form,

X ≈ U
V ,

Y ≈ U
W ,

where U ∈ RD×I is the user factor matrix, V ∈ RD×J is the item factor matrix,
and W ∈ RD×K is the demographic factor matrix. The user factor matrix U
is shared in both decompositions, which makes it to be learned from the side
information Y as well as the target ratings X. The use of information in Y makes
possible to predict meaningful ratings where X has extremely small number of
given ratings.

To set up the probabilistic model for the co-factorizations, each element of
the input matrices is modeled with the additive Gaussian noises, such as

xij = u

i vj + ε(x)

ij , for all (i, j) ∈ O(x),

yik = u

i wk + ε(y)

ik , for all (i, j) ∈ O(y),

where ui represents the i-th column of U , vj represents the j-th column of V ,
and wk represents the k-th column of W . O(x) and O(y) denote the set of all
indices of observed elements in X and Y , respectively. The additive noise ε(x)

ij

and ε(y)
ik are modeled with the Gaussian distribution, such as

ε
(x)
ij ∼ N (ε(x)

ij |0, ρ(x)),

ε
(y)
ik ∼ N (ε(y)

ik |0, ρ(y)),

where N (x|μ, ρ) represents the Gaussian distribution with mean μ and the vari-
ance ρ, and ρ(x) and ρ(y) represent the noise variances for X and Y , respectively.
Then, the likelihood of the co-factorization is modeled as

p(X,Y |U ,V ,W ) = p(X|U ,V )p(Y |U ,W )

=
∏

(i,j)∈O(x)

N (xij |u

i vj , ρ

(x))
∏

(i,k)∈O(y)

N (yik|u

i wk, ρ

(y)).
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Fig. 1. The graphical model representation of the Bayesian matrix co-factorizations,
where a side information matrix Y is available with the target matrix X

The prior probabilities for the factor matrices are modeled with Gaussian,

p(U) =
∏

i

N (ui|0,Σ(u)) =
∏
d

∏
i

N (udi|0, ρ(u)
d ),

p(V ) =
∏
j

N (vj |0,Σ(v)) =
∏
d

∏
j

N (vdj |0, ρ(v)
d ),

p(W ) =
∏
k

N (wk|0,Σ(w)) =
∏
d

∏
k

N (wdk|0, ρ(w)
d ),

where Σ(u), Σ(v) and Σ(w) are the diagonal covariance matrices with the d-th
diagonal element ρ(u)

d , ρ(v)
d , and ρ(w)

d , respectively. Fig. 1 shows the graphical
model representation of the probabilistic model.

We use the variational Bayesian approach to compute the posterior probability
of each factor matrix. The lower-bound of the log of the marginal likelihood is
computed by the Jensen’s inequality with the functional F(q) of the auxiliary
function q(U ,V ,W ), such as

log p(X,Y ) = log
∫ ∫ ∫

q(U ,V ,W )
p(X,Y ,U ,V ,W )
q(U ,V ,W )

dUdV dW

≥
∫ ∫ ∫

q(U ,V ,W ) log
p(X,Y ,U ,V ,W )
q(U ,V ,W )

dUdV dW

≡ F(q).

In the variational Bayesian framework, we assume that the auxiliary function is
further factorized into

q(U ,V ,W ) = qu(U )qv(V )qw(W ),

leading to

F(qu, qv, qw) =
∫ ∫ ∫

qu(U )qv(V )qw(W ) log
p(X,Y ,U ,V ,W )
qu(U)qv(V )qw(W )

dUdV dW ,

and −F(qu, qv, qw) is referred to as variational free energy.
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2.1 Updating Factor Matrices

In the variational Bayesian framework, the variational posteriors of the factor
matrices U , V and W are computed with the following iterative updates,

qu(U ) =
1
Zu

exp [EV,W {log p(X,Y ,U ,V ,W )}] , (1)

qv(V ) =
1
Zv

exp [EU,W {log p(X,Y ,U ,V ,W )}] , (2)

qw(W ) =
1
Zw

exp [EU,V {log p(X,Y ,U ,V ,W )}] . (3)

To compute the variational posterior qu(U ), the expectation over V and W is
computed for the terms related to U , which is written by

EV,W {log p(X,Y ,U ,V ,W )}

= −1
2

∑
i

⎡⎢⎢⎣u

i

⎛⎜⎜⎝(
Σ(u)

)−1

+
1
ρ(x)

∑
j|(i,j)
∈O(x)

〈
vjv



j

〉
+

1
ρ(y)

∑
k|(i,k)

∈O(y)

〈
wkw


k

〉⎞⎟⎟⎠ui

⎤⎥⎥⎦

−1
2

∑
i

⎡⎢⎢⎣−2

⎛⎜⎜⎝ 1
ρ(x)

∑
j|(i,j)
∈O(x)

xij 〈vj〉
 +
1
ρ(y)

∑
k|(i,k)

∈O(y)

yik 〈wk〉


⎞⎟⎟⎠ui

⎤⎥⎥⎦ + C,

where 〈·〉 represents the expectation. From (1), the derivation leads to the vari-
ational posterior of U in the following form,

qu(U) ∼
∏

i

N
(
ui|μ(u)

i ,Φ
(u)
i

)
,

where

μ
(u)
i = Φ

(u)
i

⎛⎝ 1
ρ(x)

∑
j|(i,j)∈O(x)

xij 〈vj〉 +
1
ρ(y)

∑
k|(i,k)∈O(y)

yik 〈wk〉

⎞⎠ ,
(
Φ

(u)
i

)−1

=
(
Σ(u)

)−1

+
1
ρ(x)

∑
j|(i,j)∈O(x)

〈
vjv



j

〉
+

1
ρ(y)

∑
k|(i,k)∈O(y)

〈
wkw


k

〉
.

As stated before, the user factor matrix is updated by using the side information
matrix Y , as well as the rating matrix X, which enables the learning in the cold-
start situation where X has no given ratings for some users.

The variational posteriors for the factor matrices V is computed from (2),
which becomes

qv(V ) =
∏
j

N (vj |μ(v)
j ,Φ

(v)
j ),
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where

μ
(v)
j = Φ

(v)
j

⎛⎝ 1
ρ(x)

∑
i|(i,j)∈O(x)

xij 〈ui〉

⎞⎠ ,
(
Φ

(v)
j

)−1

=
(
Σ(v)

)−1

+
1
ρ(x)

∑
i|(i,j)∈O(x)

〈
uiu



i

〉
.

Similarly from (3), the variational posterior of W is computed by

qw(W ) =
∏
k

N (wk|μ(w)
k ,Φ

(w)
k ),

where

μ
(w)
k = Φ

(w)
k

⎛⎝ 1
ρ(y)

∑
i|(i,k)∈O(y)

yik 〈ui〉

⎞⎠ ,
(
Φ

(w)
k

)−1

=
(
Σ(w)

)−1

+
1
ρ(y)

∑
i|(i,k)∈O(y)

〈
uiu



i

〉
.

The sufficient statistics for the above posteriors are easily computed by using
the properties of the Gaussian distribution. The sufficient statistics for ui are
computed as

〈ui〉 = μ
(u)
i ,〈

uiu


i

〉
= Σ

(u)

i + μ
(u)
i μ

(u)

i ,

and the sufficient statistics for vj and wk are computed in the similar forms.

2.2 Learning Hyperparameters

We use the empirical Bayes estimation to update hyperparameters ρ(x), ρ(y),
Σ(u), Σ(v) and Σ(w). The variational free energy F(qu, qv, qw) is used to compute
the point estimate of the hyperparameters.

Taking derivative of the variational free energy with respect to ρ(x) leads

∂F(qu, qv, qw)
∂ρ(x)

= −N
(x)

2
1
ρ(x)

+
1

2(ρ(x))2
∑

(i,j)∈O(x)

〈
(xij − u


i vj)2
〉
,

where N (x) represents the total number of observed entries in the matrix X.
Then, ρ(x) is computed by

ρ(x) =
1
N (x)

∑
(i,j)∈O(x)

{
x2

ij − 2xij 〈ui〉
 〈vj〉 + tr
(〈

uiu


i

〉 〈
vjv



j

〉)}
,
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where tr(·) represents the trace of the matrix. The update for ρ(y) is computed
in the same way.

Taking derivative of F(qu, qv, qw) with respect to ρ(u)
d , which is the d-th diag-

onal element of Σ(u), leads

∂F(qu, qv, qw)

∂ρ
(u)
d

= −I
2

1

ρ
(u)
d

+
1

2
(
ρ
(u)
d

)2

[∑
i

〈
uiu



i

〉]
dd

,

and set this to be zero leads the update

ρ
(u)
d =

1
I

[∑
i

〈
uiu



i

〉]
dd

.

The above update is re-written for Σ(u) in the following form,

Σ(u) =
1
I
ddiag

(∑
i

〈
uiu



i

〉)
,

where ddiag(A) represents the diagonal matrix consisting of the diagonal ele-
ments of the matrix A. The update for Σ(v) and Σ(w) are derived in the similar
way.

2.3 Predictive Distribution

There are two kinds of prediction tasks in the collaborative prediction problem:
the hold-out prediction and the fold-in prediction. In the hold-out prediction,
we want to predict a missing entry xi∗j∗ in the input rating matrix X, where
(i∗, j∗) /∈ O(x). Then, the predictive distribution is calculated as

p(xi∗j∗ |X) =
∫
p(xi∗j∗ |U ,V )q∗u(U)q∗v(V )dUdV

= N (xi∗j∗ | 〈ui∗〉
 〈vj∗〉 , ρ(x)).

Therefore, the prediction becomes the product of corresponding columns of fac-
tor matrices, which is x̂i∗j∗ = 〈ui∗〉
 〈vj∗〉.

In the fold-in prediction, we want to predict the rating value of new users or
items. If we want to predict the rating xi+j∗ for the new user i+, the predictive
distribution is computed by

p(xi+j∗ |X,xi+ ,Y ,yi+) =
∫ ∫ ∫

p(xi+j∗ |ui+ ,vj∗)p(ui+ |V ,xi+ ,W ,yi+)

p(U ,V ,W |X,Y )dUdV dW dui+ .

The predictive distribution depends on the posterior distribution of the new
factor, which is computed by using the Bayes’ rule,

log p(ui+ |V ,xi+ ,W ,yi+)
= log p(xi+ |V ,ui+) + log p(yi+ |W ,ui+) + log p(ui+) + C

= logN (ui+ |μ(u)
i+ ,Φ

(u)
i+ ),
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where(
Φ

(u)
i+

)−1

=
(
Σ(u)

)−1

+
1
ρ(x)

∑
j|(i+,j)∈O(x)

〈
vjv



j

〉
+

1
ρ(y)

∑
k|(i+,k)∈O(y)

〈
wkw


k

〉
,

μ
(u)
i+ = Φ

(u)
i+

⎛⎝ 1
ρ(x)

∑
j|(i+,j)∈O(x)

xi+j 〈vj〉 +
1
ρ(y)

∑
k|(i+,k)∈O(y)

yi+k 〈wk〉

⎞⎠ .
This posterior indicates that the prediction is computed based on the observed
ratings in xi+ and the additional information yi+ , which makes the prediction
in the cold-start situation possible. The unknown ranking in the fold-in case is
predicted with the posterior distribution by xi+j∗ = 〈ui+〉
 〈vj∗〉, where 〈ui+〉 =
μ

(u)
i+ .

2.4 BMCF for General Cases

So far we considered the simplest example of the co-factorization, which has three
entities: user, item, and user demographic information, and two relationships:
user-item ratings and user-demographic information. We generalize the results
for the arbitrary entity-relationship model by mapping the entities to the factor
matrices and relationships to the input matrices. In this way, co-factorization
model is directly induced from the entity-relationship model of data, which en-
ables straight-forward use of various kinds of side-information.

The entity-relationship model consists of entities, attributes for the entities,
and relationships between the entities. For the one-to-one correspondence be-
tween the entity-relationship model and the co-factorization model, we eliminate
the use of attributes by modeling them as a separate entity having relationship
with the corresponding entity. Then, we use the entity-relationship model con-
sists of the set of entities E and the set of relationships R. The co-factorization
model is built with the input matrices X(a,b) for all relationships (a, b) ∈ R and

a ai I∈ b bi I∈
( , )a b ∈R

( )
a

a
iu

( )
b

b
iu

( , )
a b

a b
i ix

( )aΣ ( )bΣ

( , )a bρ

Fig. 2. The graphical model representation of the Bayesian matrix co-factorizations in
the general case
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Table 1. Model and the algorithms for the BMCF in general cases. We denote set of
all input matrices as X and set of all factor matrices as U . I(a) represents the number
of columns in the factor matrix U (a), and N (a,b) represents the number of observed
entries in the input matrix X (a,b).

Likelihood p(X|U) =
∏

(a,b)∈R
∏

(ia,ib)∈O(a,b) N (x
(a,b)
iaib
|u(a)


ia
u

(b)
ib

, ρ(a,b))

Prior p(U (a)) =
∏

ia
N (u

(a)
ia
|0, Σ(a)) =

∏
d

∏
iN (udia |0, ρ

(a)
d )

Posterior qa(U (a)) ∼ ∏
ia
N

(
u

(a)
ia
|μ(a)

ia
, Φ

(a)
ia

)
, where

μ
(a)
ia

= Φ
(a)
ia

(∑
b|(a,b)∈R

∑
ib|(ia,ib)∈O(a,b)

1

ρ(a,b) x
(a,b)
iaib

〈
u

(b)
ib

〉)
(
Φ

(a)
ia

)−1

=
(
Σ(a)

)−1

+
∑

b|(a,b)∈R
∑

ib|(ia,ib)∈O(a,b)
1

ρ(a,b)

〈
u

(b)
ib

u
(b)

ib

〉
Sufficient

〈
u

(a)
ia

〉
= μ

(a)
ia

statistics
〈
u

(a)
ia

u
(a)

ia

〉
= Φ

(a)
ia

+ μ
(a)
ia

μ
(a)

ia

Parameters ρ(a,b) = 1

N(a,b)

∑
(ia,ib)∈O(a,b)

{(
x

(a,b)
iaib

)2

− 2x
(a,b)
iaib

〈
u

(a)
ia

〉
 〈
u

(b)
ib

〉}
+ 1

N(a,b)

∑
(ia,ib)∈O(a,b)

{
tr
(〈

u
(a)
ia

u
(a)

ia

〉〈
u

(b)
ib

u
(b)

ib

〉)}
Σ(a) = 1

I(a) ddiag
(∑

ia

〈
u

(a)
ia

u
(a)

ia

〉)
Prediction xi∗ai∗

b
=

〈
u

(a)
i∗a

〉
 〈
u

(b)
i∗
b

〉
In the fold-in case, using〈

u
(a)
i∗a

〉
= Φ

(a)−1
i∗a

(∑
c|(a,c)∈R

(
1

ρ(a,c)

∑
ic|(i∗a,ic)∈O(a,c) xi∗aic 〈uic〉

))
(
Φ

(a)
i∗a

)−1

=
(
Σ(a)

)−1

+
∑

c|(a,c)∈R
(

1

ρ(a,c)

∑
ic|(i∗a,ic)∈O(a,c)

〈
u

(c)
ic

u
(c)

ic

〉)

and the factor matrix U (a) for all entities a ∈ E . If we use the indices for a-th
entity as ia, the matrix co-factorization model is written by

x
(a,b)
iaib

= u
(a)

ia

u
(b)
ib

+ ε(a,b)
iaib

for all (a, b) ∈ R, (ia, ib) ∈ O(a,b),

where O(a,b) represents the set of all observed entries in X(a,b), and we used the
additive Gaussian noise ε(a,b)

iaib
having distribution

ε
(a,b)
iaib

∼ N (ε(a,b)
iaib

|0, ρ(a,b)),

where ρ(a,b) represents the noise variance, which leads the Gaussian likelihood.
The prior for each factor matrix U (a) is modeled as Gaussian with zero mean
and the variance ρ(a)

d . The graphical model representation of the general matrix
co-factorization is shown in the Fig. 2. The probabilistic model, update of factor
matrices and hyperparameters, and the predictive distributions are summarized
in Table 1.
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3 Bayesian Cramér-Rao Bounds for Bayesian Matrix
Co-Factorization

The Cramér-Rao Bound (CRB) places a lower bound on the variance of unbi-
ased estimator for the deterministic parameters [1], as the inverse of the Fisher
information matrix F , which is written by,

E
{
(θ − θ̂)(θ − θ̂)


}
≥ F−1,

where θ is the estimated parameter and θ̂ is the true value for it. Each element
of the Fisher information matrix is computed by

Fij = Ex

{
−∂

2 log p(x|θ)
∂θi∂θj

}
.

The computation of Fisher information matrix mainly depends on the likelihood
of the model.

On the other hand, the Bayesian Cramer-Rao bound (BCRB) or Posterior
Cramer-Rao Bound [12] uses a different form of the Fisher information matrix,
which depends on the joint probability of the observation and the parameters,

Fij = Ex,θ

{
−∂

2 log p(x,θ)
∂θi∂θj

}
. (4)

In this case we use the prior probability, as well as the likelihood, to compute
the Fisher information matrix, and the expectation is also taken over the pa-
rameters. The benefit of using BCRB over CRB is that the BCRB is known to
provide a lower bound on the variance of any parametric estimators, even for the
unbiased ones [12]. In this section we use the BCRB to show the improvement
of theoretical bounds of the proposed co-factorization model over the standard
matrix factorization model.

3.1 Computation of Fisher Information Matrix

To compute the BCRB for the matrix co-factorization model, we rearrange the
factor matrices to be a parameter vector. For example, if we have two factor
matrices U (a) and U (b), the parameter vector θ becomes

θ = [u(a)

1 · · ·u(a)


I(a) u
(b)

1 · · ·u(b)


I(b) ]
,

where I(a) represents the number of columns in the factor matrix U (a). Then,
each element of the Fisher information matrix is computed as (4). The log joint
probability of BMCF is computed as the sum of log-likelihood and log priors
(Table 1).
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Case I
(

∂2 log p(X ,U)
∂U(a)∂U(b)

)
: In this case, we take the first derivative of the log joint

probability with respect to a parameter u(a)
d∗i∗a

in the factor matrix U (a), which
becomes,

∂ log p(X ,U)

∂u
(a)
d∗i∗a

=
∑

c|(a,c)∈R
ic|(i∗a,ic)∈O(a,c)

[
1

ρ(a,c)
x

(a,c)
i∗aic

u
(c)
d∗ic

− 1
ρ(a,c)

u
(c)
d∗ic

(∑
d

u
(a)
di∗a
u

(c)
dic

)]
− 1

ρ
(a)
d∗

u
(a)
d∗i∗a

,

where X is the set of all input matrices and U is the set of all factor matrices. If
we take the second derivative with respect to the parameter from the different
factor matrix U (b), which is u(b)

d+i+b
, it is written as

∂2 log p(X ,U)

∂u
(a)
d∗i∗a

∂u
(b)

d+i+b

=
∑

(i∗a,i+b )∈O(a,b)

[
− 1
ρ(a,b)

u
(a)
d∗i∗a

u
(b)

d+i+b

]
,

for d+ �= d∗. If d+ = d∗, the second derivative is written as

∂2 log p(X ,U)

∂u
(a)
d∗i∗a

∂u
(b)

d∗i+b

=
∑

(i∗a,i+b )

∈O(a,b)

[
1

ρ(a,b)

(
x

(a,b)

i∗ai+b
−
∑

d

u
(a)
di∗a
u

(b)

di+b

)
− 1
ρ(a,b)

u
(a)
d∗i∗a

u
(b)

d∗i+b

]
.

The expectations of above second derivatives vanish, so the elements of Fisher
information matrix corresponding to the part also become zero.

Case II
(

∂2 log p(X ,U)
∂U(a)∂U(a)

)
: The second derivative with respect to the element

u
(a)

d+i+a
from the same factor matrix U (a) vanishes if i+a �= i∗a. If i+a = i∗a and

d+ �= d∗,

∂2 log p(X ,U)

∂u
(a)
d∗i∗a

∂u
(a)

d+i∗a

= −
∑

c|(a,c)∈R

1
ρ(a,c)

∑
ic|(i∗a,ic)∈O(a,c)

u
(c)
d∗ic
u

(c)
d+ic

,

but the expectation of it vanishes.
The only nonzero second-derivative value is arisen if we differentiate with the

same element from the same matrix, that is, in the case of i+a = i∗a and d+ = d∗,
which becomes

∂2 log p(X ,U)

∂u
(a)
d∗i∗a

∂u
(a)
d∗i∗a

= −
∑

c|(a,c)∈R

1
ρ(a,c)

∑
ic|(i∗a,ic)∈O(a,c)

(
u

(c)
d∗ic

)2

− 1

ρ
(a)
d∗

.

The Fisher information matrix is computed as

EX,U

⎧⎨⎩−∂
2 log p(X ,U)

∂u
(a)
d∗i∗a

∂u
(a)
d∗i∗a

⎫⎬⎭ =
∑

c|(a,c)∈R

N
(a,c)
i∗a

ρ
(c)
d∗

ρ(a,c)
+

1

ρ
(a)
d∗

, (5)
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where N (a,c)
i∗a

represents the number of observed entries in the i∗a-th column of

the matrix X(a,c). Because the only nonzero values come from the differentiating
with the same parameter, the Fisher information matrix becomes a diagonal
matrix.

If we use the standard matrix factorization, where there exist only two entities
{a, c} and one relationship, the diagonal elements of Fisher information matrix
is computed as

EX,U

⎧⎨⎩−∂
2 log p(X ,U)

∂u
(a)
i∗ad∗∂u

(a)
i∗ad∗

⎫⎬⎭ =
N

(a,c)
i∗a

ρ
(c)
d∗

ρ(a,c)
+

1

ρ
(a)
d∗

,

which is obviously smaller than the Fisher information matrix of the matrix
co-factorizations. Exploiting additional matrices in the co-factorization model
increases the Fisher information matrix as the number of observed entries grows
larger, which lowers the CRB (the inverse of the Fisher information matrix).

3.2 Computing Reconstruction Error

The major difficulty regarding BCRB in matrix factorization is the non-
uniqueness of the matrix decomposition. Instead of directly using the BCRB,
we consider the reconstruction error Eij , which is written as

Eij = E
{
(xij − x̂ij)2

}
= E

{
(u


i vj − û

i v̂j)2

}
,

where x̂ij , ûi, and v̂j are the ground-truth values, and xij is the predicted value
from the estimated parameters ui and vj . Although the matrix decomposition
is not uniquely determined, the reconstruction error is the same for the decom-
positions having the same likelihood. The reconstruction error is lower-bounded
by using the BCRB, in a way that

Eij = E
{
(u


i vj − û

i vj + û


i vj − û

i v̂j)2

}
= E

{
v


j (ui − û

i )(ui − û


i )
vj

}
+ E

{
û


i (vj − v̂j)(vj − v̂j)
ûi

}
+2E

{
v


j (ui − ûi)(vj − v̂j)
û

i

}
≥ E

{
v


j

[
F−1

]
ui

vj

}
+ û


i

[
F−1

]
vj

ûi + 2E
{
v


j (ui − ûi)(vj − v̂j)
û

i

}
= v̂


j

[
F−1

]
ui

v̂j + tr
([

F−1
]
ui

[
F−1

]
vj

)
+ û


i

[
F−1

]
vj

ûi,

where
[
F−1

]
ui

represents the part of the inverse of the Fisher information matrix
corresponding to the parameter ui, which is a diagonal matrix whose elements
consists of the negative second derivatives of the joint probability with respect
to ui.
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4 Numerical Experiments

We performed two experiments with BMCF. First experiment computed the
BCRB for the matrix co-factorization model and matrix factorization model, and
compared them with the actual performance of the BMCF and BMF algorithms.
Second experiment ran the BMCF and BMF algorithm for the collaborative
prediction problem, where the number of given ratings were adjusted to simulate
the cold-start situations.

4.1 BCRB Comparison on Synthetic Data

For the experiment comparing the reconstruction error computed from BCRB
and the actual performance of the algorithm, we generated synthetic data with
four entities E = {1, 2, 3, 4} and three relationships R = {(1, 2), (2, 3), (3, 4)}.
The ground-truth factor matrices U (a) ∈ R5×100 were generated from the Gaus-
sian distribution with variance 1. The relationship matrices were built from the
factor matrices with additional Gaussian noise with variance 0.01. We chose the
relation (2, 3) as the target matrix, where half of columns have 50% of observed
entries, and the remaining columns have varying ratio of observed entries from
0% to 90%. The other relation matrices had 50% of observed entries. To show
the benefit of the co-factorization, we compared the BCRB of the matrix co-
factorization model with BCRB of matrix factorization model which used the
target relationship matrix only. The actual performance was measured using
the proposed BMCF algorithm and BMF algorithm. We used the Root Mean
Squared Error (RMSE) for the performance measure, which is computed by

RMSE =

√√√√ 1
N

N∑
i=1

|ri − ri|2,

where ri represents the predicted value for the i-th test rating, ri represents the
true value, and N is the total number of test data points. Fig. 3 summarizes
the result of the experiments. RMSE got better as the number of given ratings
increases, both for the BCRB and the actual performance of the algorithm.
BMCF had lower bound and performance compared to the BMF, and in this
case the performance of BMCF was even lower than the theoretical lower-bound
of BMF.

4.2 Collaborative Prediction in the Cold-Start Situation

We applied the proposed BMCF for the collaborative prediction problem in the
cold-start situations, and compared the performance with that of the BMF to
show the benefit of the BMCF. We used MovieLens data, which consists of the
ratings of 943 users for the 1682 movies for the test. The ratings are given by
the integer score from 1 to 5. MovieLens data is packed with the additional user
and movie information, which were used in the matrix co-factorization.
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Fig. 3. Comparison of the BCRB and the performance of the BMCF and BMF, aver-
aged over 10 different trials

We constructed the additional information matrices of users and items in the
following manner. User information consists of the age, gender, and occupation.
The ages are partitioned into 5 groups, which are: under 20, 21 to 30, 31 to
40, 41 to 50, and over 51. The corresponding entry for the user was marked as
the indicating value 1. The gender and occupations were coded in the similar
way, indicating the user’s gender and occupations by using the value 1. Movie
information, which consists of the 18 category of the movie genres, was also
marked in the similar way. In the experiments, we used the user information
matrix and the item information matrix, as well as the user-movie rating matrix.

To simulate the cold-start situations for the users, we randomly chose 200
users in the dataset for the test users and generated the training data with
different number of given ratings. Along with RMSE, we also computed the
Mean Absolute Error (MAE) which is computed by

MAE =
1
N

N∑
i=1

|ri − ri|.

For each case, we randomly generated 10 different datasets, and ran the algo-
rithm 10 times for each dataset with different initial values, so performance was
measured 100 times for each case. Table 2(a) summarizes the averaged results
for the experiments. BMF failed to predict the ratings when the test users have
no ratings at all, however BMCF predicted fairly meaningful ratings for the case.
The performance got better and better as the number of given ratings increases,
but in all the cases, BMCF showed better performance than BMF, which showed
the benefit of using side-information.

Another experiment was performed for the cases where some movies does not
have any ratings at all. We randomly selected 100 movies from the dataset and
eliminate all the ratings given for the movies. The averaged MAE and RMSE are
summarized in Table 2(b). In this more severe condition, the performance of BMF
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Table 2. Average MAE and RMSE results for different number of given ratings for
each test user. (a) Simulation of user cold-start case. (b) Simulation of user and item
cold-start case. We eliminate all ratings for 100 randomly chosen items to simulate
item cold-start case.

(a) BMF BMCF

MAE RMSE MAE RMSE

0 2.5403 2.7767 0.8238 1.0140
5 0.8281 1.0618 0.7895 0.9941
10 0.8032 1.0205 0.7446 0.9424
15 0.7474 0.9558 0.7426 0.9314
20 0.7421 0.9496 0.7348 0.9254

(b) BMF BMCF

MAE RMSE MAE RMSE

0 2.5098 2.7584 0.8843 1.0857
5 0.9333 1.2412 0.8332 1.0550
10 0.8956 1.1863 0.7778 0.9857
15 0.8991 1.1948 0.7716 0.9789
20 0.8618 1.1535 0.7527 0.9555

was seriously degraded from the performance for the previous experiment. How-
ever, BMCF showed much better performance than BMF for all cases, slightly less
than the results of the previous experiment. The use of the additional item informa-
tion by using BMCF greatly helped the performance of the prediction, especially
in this kind of item cold-start (as well as user cold-start) cases.

5 Conclusions

We have presented Bayesian matrix co-factorization (BMCF) as an approach to
incorporating side information into collaborative prediction, where multiple data
matrices are jointlydecomposed,with some factormatrices sharedover inter-related
factorizations, in Bayesian setting. We have presented variational inference algo-
rithm for updating factor matrices, in which variational posterior means and vari-
ances for factormatrices are iteratively updated. Hyperparameters are determined
by maximizing the marginal likelihood. We have calculated Bayesian Cramér-Rao
bound for the matrix co-factorization model, stressing that the co-factorization
actually lowers the theoretical bound of the reconstruction error. Numerical ex-
periments demonstrated that Bayesian matrix co-factorization yielded the lower
BCRB and improved the performance in collaborative prediction, compared to
Bayesianmatrix factorization.Especially in the case of cold startproblems,Bayesian
matrix co-factorization led to the satisfactory performance, while Bayesian matrix
factorization failed to make proper predictions.
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Abstract. Supervised learning from multiple annotators is an increasingly im-
portant problem in machine leaning and data mining. This paper develops a 
probabilistic approach to this problem when annotators are not only unreliable, 
but also have varying performance depending on the data. The proposed  
approach uses a Gaussian mixture model (GMM) and Bayesian information  
criterion (BIC) to find the fittest model to approximate the distribution of the 
instances. Then the maximum a posterior (MAP) estimation of the hidden true 
labels and the maximum-likelihood (ML) estimation of quality of multiple  
annotators are provided alternately. Experiments on emotional speech classifi-
cation and CASP9 protein disorder prediction tasks show performance  
improvement of the proposed approach as compared to the majority voting 
baseline and a previous data-independent approach. Moreover, the approach 
also provides more accurate estimates of individual annotators performance for 
each Gaussian component, thus paving the way for understanding the behaviors 
of each annotator. 

Keywords: multiple noisy experts, data-dependent experts, Gaussian mixture 
model, Bayesian information criterion. 

1   Introduction 

In supervised learning, it is usually assumed that true labels are readily available from 
a single annotator or source. However, recent advances in corroborative technology 
have given rise to situations where the true label of the target is unknown. In such 
problems, multiple sources or annotators are often available that provide noisy labels 
of the targets. For example, in the area of computer-aided diagnosis (CAD) the actual 
gold standard (whether the suspicious region is malignant or not) can only be obtained 
from a biopsy of the tissue. Since it is an expensive, invasive, and potentially danger-
ous process, often CAD systems are built from labels assigned by multiple radiolo-
gists who provide subjective and possibly noisy version of the gold standard. Very 
often there is a lot of disagreement among the labels. Another example is Amazon 
Mechanical Turk (AMT) [1] which allows the requesters to publish any Human  
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Intelligence Tasks (HIT) on the website, such as writing essays, filling out certain 
questionnaires, or just collecting and labeling data. Any user of AMT can finish the 
tasks he is interested in and get paid. Therefore, acquiring non-expert labels is now 
easy, fast and inexpensive. On the other hand, since there is little control for the anno-
tators, there is no guarantee for labeling quality: there could be careless, fallible, irre-
sponsible or even malicious annotators. 

In these multi-annotator problems, building a classifier in the traditional single an-
notator manner, without regard for the annotator properties may not be effective in 
general. The reasons for this include: some annotators may be more reliable than 
others, some may be malicious, some may be correlated with others, and in particular 
annotator effectiveness may vary depending on the data instance presented. In recent 
years, how to make the best use of the labeling information provided by multiple 
annotators to approximate the hidden true concept has drawn the attention of re-
searchers in machine learning and data mining. 

There has already been some literature for dealing with the multi-annotator setting. 
One popular strategy is to assign each sample to multiple annotators for labeling [2-
6]. This repeated labeling strategy relies on the identification of what labels should be 
reacquired in order to improve classification performance or data quality. This form 
of active learning can be well suited when we can control assignments of samples to 
labelers. However, there are many cases that we have no access in doing so. Even we 
have, getting multiple labels for one sample could be a great waste of resources. As a 
result, research is conducted on the methods without using repeated labeling. These 
include techniques where labeler similarities are used to identify what samples should 
be used to estimate classification models for each labeler [7], and where low-quality 
annotators are pruned out by using the model trained from the entire dataset with all 
annotators as a ground truth [8]. Application areas for multi-annotator learning vary 
widely. These include natural language processing [9], computer-aided diagnosis [10, 
11], computer vision [12, 13], speech technology [14] and bioinformatics [15, 16]. 

Among these papers, an elegant probabilistic framework of iteratively evaluating 
the different annotators and giving an estimate of the hidden true labels is developed 
[11]. However, the approach assumes the error rate of each annotator is consistent 
across all the input data. This is an impractical assumption in many cases since anno-
tator knowledge can fluctuate considerably depending on the groups of input in-
stances. For example, radiologists specialized in heart images will be better at label-
ing lesions of the heart compared to radiologists with lung expertise, who on the other 
hand would label instances of lung diseases better. In this paper, our proposed ap-
proach follows prior work [11] but relaxes the data-independent assumption, i.e., we 
assume an annotator may not be consistently accurate across the entire feature space. 
A very recent paper [17] also developed a data-dependent probabilistic model by 
assuming each annotator provides a Bernoulli noisy version or Gaussian distorted 
version of the true label. Compared to [17] our proposed approach first uses GMM 
and BIC to find a fittest model to approximate the distribution of the instances. Then, 
it alternately provides the maximum a posterior (MAP) estimation of the hidden true 
labels and the maximum-likelihood (ML) estimation of quality of multiple annotators 
at each mixture component. 
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The remaining part of this paper consists of the background on GMM and BIC, fol-
lowed by a description of the approach, the summary of experimental results, conclu-
sions and discussions of future work. 

2   Background 

In this section, we introduce the way of using GMM to approximate the distribution 
of the instances and using BIC to find the fittest GMM, and summarize the back-
ground information into Algorithm 1 and Algorithm 2. Our proposed approach (in 
Section 3) used these two algorithms to build a data-dependent probabilistic model of 
multiple noisy annotators. 

2.1   The Gaussian Mixture Model 

Given observations
1

( , ..., )
N

=x x x , in a Gaussian mixture each component is mod-

eled by a multivariate normal distribution. The parameters of component k comprise 

the mean vector
k

μ , the covariance matrix
k

∑ , and the probability density function  

1

/ 2 1/ 2

1
exp{ ( ) ( )}

2( | , )
(2 ) | |
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i k k i k
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Σ
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Let K be the number of components in the mixture, and let
k

π  be mixing propor-

tions:
1

0 1, 1
K

k kk
π π

=
< < =∑ . We wish to estimate the parame-

ters
1 1 1
, ..., , , ..., , , ...,

K K K
θ π π μ μ= ∑ ∑ . Then the log likelihood of the mixture is 

                                
1

1 1

( | , ..., ) ln{ ( | , )}
N K

N k k i k k

i k

L fθ π μ
= =

= ∑∑ ∑x x x .                       (1) 

Here, k∑ determines the geometric properties of component k. In [18] a general 

framework is proposed for exploiting the representation of the covariance matrix in 
terms of its eigenvalue decomposition T

k k k k kD A Dλ∑ = , where Dk is the orthogonal 

matrix of eigenvectors, Ak is a diagonal matrix whose elements are proportional to the 
eigenvalues of k∑ , and kλ is a scalar. The matrix Dk determines the orientation of the 

component, Ak determines its shape, and kλ determines its volume. Allowing some 

but not all of the parameters in the decomposition to vary results in a set of models 
within this general framework. Such an approach is sufficiently flexible to accommo-
date data with widely varying characteristics. In this paper, by following the discus-
sion of [19] we used 9 parameterizations which have a closed form update for the 
covariance matrix. 

To estimate the parameters of the Gaussian mixture we used the Expectation-
Maximization (EM) algorithm [20] which is introduced in Algorithm 1. 
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Algorithm 1 (EM for Gaussian mixtures). 

Input: Observed data
1

( , ..., )
N

=x x x , the number of Gaussian components K, and 

the form of the covariance matrix. 

Output: The model parameters
1 1 1
, ..., , , ..., , , ...,

K K K
θ π π μ μ= ∑ ∑ , the responsibilities 

ikτ which are the probabilities that ix is generated by component k, 

1,..., , 1,...,i N k K= =  

Step 1. Use K-means algorithm to initialize the means kμ , covariances k∑ and mixing 

coefficients kπ , and evaluate the initial value of the log likelihood by equation (1). 

Step 2. (E-step) Evaluate the responsibility of the current model parameters, i.e. the 
probability that an observation ix belongs to component k as 

1

( | , )

( | , )

k k i k k

ik K

j j i j j
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Σ
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Σ∑

x

x

 

Step 3. (M-step) Re-estimate the parameters using the current estimated probability as 
follows 

1

1
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N
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Step 4. Evaluate the log likelihood by (1) using the updated parameters and check for 
convergence of either parameters or the log likelihood. If the convergence criterion is 
not satisfied return to Step 2. 

2.2   Bayesian Model Selection 

Each combination of a different specification of covariance matrices and a different 
number of components corresponds to a separate probability model. One advantage of 
the Gaussian mixture model is that it allows the use of approximate Bayes factors to 
compare models. This gives a systematic means of selecting not only the parameteri-
zation of the model, but also the number of components. 

Let X be the observed data, M1 and M2 be two models with parameters 1θ and 

2θ respectively. The integrated likelihood is defined as ( | )gp M =X  

                                                           
1 The update for covariance matrix is only for the unconstrained case. See [19] for a complete 

description of the update equations for all 9 models. 
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( | , ) ( | )g g g g gp M p M dθ θ θ∫ X where 1,2g = and ( | )g gp Mθ is the prior distribution 

of gθ . The integrated likelihood represents the probability that data X is observed 

given that the underlying model is Mg. The Bayes factor is defined as the ratio of the 
integrated likelihoods of the two models, i.e. 12 1 2( | ) / ( | )B P M P M= X X . In other 

words, the Bayes factor B12 represents the posterior odds that the data were distributed 
according to M1 against model M2 assuming that neither model is favored a priori. 
If 12 1B > , model M1 is favored over M2. The method can be generalized to more than 

two models. The main difficulty in using the Bayes factor is the evaluation of the 
integrated likelihood. By following the discussion of [21], we used an approximation 
called the Bayesian Information Criterion (BIC), given by 

                          ( | ) 2 log( | , ) log( )g g g g gp M BIC M m Nθ≈ = −X X                         (2) 

where mg is the number of independent parameters that must be estimated for model 

Mg, and gθ is the maximum-likelihood estimate for parameter gθ . A large BIC score 

indicates strong evidence for the corresponding model. Hence, the BIC score can be 
used to compare models with different covariance matrix parameterizations and dif-
ferent numbers of components. 

Here, we summarize the procedure of selecting the best Gaussian mixture model in 
Algorithm 2. 

Algorithm 2 (Bayesian Model Selection for Gaussian mixtures). 

Input: Observed data
1

( , ..., )
N

=x x x . 

Output: The optimal number of components, the optimal form of the component 
densities, and the corresponding model parameters and components responsibilities 
for each instance. 
Step 1. Choose a form of model M from the 9 candidate models [19]. 
Step 2. Choose a number of components k. Here check from 1 to 6 (the maximum 
number of components).  
Step 3. Use Algorithm 1 to obtain model parameters and log likelihood for this M  
and k. 
Step 4. Calculate the value of BIC for this M and k by using equation (2). 
Step 5. Go to Step 2 to choose another value of k. 
Step 6. Go to Step 1 to choose another form of model M. 
Step 7. Choose the optimal configuration (number of components and form of the 
covariance matrices) that corresponds to the highest BIC. 

3   Method 

Given a dataset 1
1{ , ,..., }R N

i i i iD y y == x containing N instances, where ix is an instance 

(typically a d-dimensional feature vector), {0,1}j
iy ∈ is the corresponding binary label 

assigned to the instance ix by the j-th annotator and R is the number of annotators.  
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Based on the intuition that real world annotators have different sensitivity and 
specificity for different regions of the entire feature space, we introduced a new data-
dependent model in this paper. By using Algorithm 2, a fittest K-mixture-component 
GMM is used to approximate the distribution of the instances. To model the data-
dependent behavior of annotators, we hypothesize that each annotator has its own 
sensitivity and specificity for each mixture component. The sensitivity j

kα  and speci-

ficity j
kβ  are defined as follows: 

      Pr( 1| 1j j
k i iy yα = = = , k-th Gaussian mixture component generates )ix            (3) 

      Pr( 0 | 0j j
k i iy yβ = = = , k-th Gaussian mixture component generates )ix          (4) 

where 1,...,j R= ; 1,...,k K= . We hypothesize that annotators generate labels as fol-

lows: given an instance ix to label, the annotators find the mixture component which 

most possible generates that instance. Then the annotators generate labels with their 
sensitivities and specificities at that most possible component. 

Our task is not only to get an estimation of the unknown true labels 1,..., Ny y , but 

also to estimate the sensitivity (i.e. true positive rate) 1
1[ ,..., ,..., ]j R

k Kα α α=α  and the 

specificity (i.e. true negative rate) 1
1[ ,..., ,..., ]j R

k Kβ β β=β of the R annotators at K 

Gaussian mixture components.  
To fulfill the task defined before, we propose an iterative algorithm that we will 

call GMM-MAPML. Given dataset D , we use Algorithm 2 to get parameters of the 
fittest GMM and its mixture components' responsibilities for each instance. Also, we 
use majority voting to initialize the probabilistic labels iz (i.e., the probability when 

the hidden true label is 1). Then, the algorithm alternately carries out the ML estima-
tion and the MAP estimation which described in details in the following subsections. 
Given the current estimates of probabilistic labels iz , the ML estimation measures 

annotators' performance (i.e., their sensitivity α and specificity β ) at each mixture 

component and learns a classifier with parameter w . Given the estimated sensitiv-
ityα , specificity β , and the prior probability which is provided by the learned classi-

fier, the MAP estimation gets the updated probabilistic labels iz based on the Bayesian 

rule. After the two estimations converge, we get the algorithm outputs which include 
both the probabilistic labels iz and the model parameters { , , }φ = w α β . 

3.1   ML Estimation of the Model Parameters 

Given a dataset D and the current estimates of iz , we estimate the model parameters 

{ , , }φ = w α β by maximizing the conditional likelihood. 

Denote ik i ikz z τ= , where ikτ is the probability that ix is generated by component k, 

according to (3) and (4) we can get the sensitivity of j-th annotator at k-th component 
and the specificity of j-th annotator at k-th component as 
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                                        1 1

1 1

( )(1 ) ( )

N N
j j

k ik i ik
i i

N N
j j

k ik ik i ik ik
i i

z y z

z y z

α

β τ τ

= =

= =

=

= − − −

∑ ∑

∑ ∑
                            (5) 

Given probabilistic labels iz , we can learn any classifier using ML estimation. How-

ever, in this section for convenience, we will explain it with a logistic regression clas-
sifier. By using that classifier, the probability for the positive class is modeled as a 
sigmoid acting on the linear discriminating function, that is, 

                                             Pr[ 1 | , ] ( )Ty σ= =x w w x                                          (6) 

where the logistic sigmoid function is defined as ( ) 1/ (1 )xx eσ −= + . To estimate the 

classifier’s parameter w , we use a gradient descent method, that is, the Newton-
Raphson method [22] 

                                                1 1t t η+ −= −w w H g                                                  (7) 

where g is the gradient vector, H is the Hessian matrix, andη is the step length. The 

gradient vector is given by
1

( ) [ ( )]
N

T

i i i

i

z σ
=

= −∑g w w x x , and the Hessian matrix is 

given by
1

( ) [ ( )][1 ( )]
N

T T T

i i i i

i

σ σ
=

= − −∑H w w x w x x x . 

3.2   MAP Estimation of the Unknown True Labels 

Given a dataset D and the model parameters { , , }φ = w α β , the probabilistic labels 

are 1Pr[ 1 | , ..., , , ]R

i i i i i
z y y y φ= = x . Using the Bayesian rule we have 

                                
1

1

Pr[ , ..., | 1, ] Pr[ 1 | , ]

Pr[ , ..., | ]

R

i i i i i

i R

i i

y y y y
z

y y

φ φ
φ

= ⋅ =
=

x
                           (8) 

which is a MAP estimation problem. 
Conditioning on the true label {1,0}iy ∈ , the denominator of formula (8) is decom-

posed as 

                                    

1

1

1

Pr[ , ..., | ]

Pr[ , ..., | 1, ] Pr[ 1 | , ]

Pr[ , ..., | 0, ]Pr[ 0 | , ]

R

i i

R

i i i i i

M

i i i i i

y y

y y y y

y y y y

φ =

= =

+ = =

x w

x w

α

β

                         (9) 
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In our data-dependent model, given an instance ix to label, the j-th annotator finds the 

q-th mixture component which most possible generates that instance. Then the anno-
tator generates a label with the sensitivity j

qα  and specificity j
qβ . Therefore, 

                         1 1 1Pr[ ,..., | 1, ] Pr[ ,..., | 1, ,..., ]R R R
i i i i i i q qy y y y y y α α= = =α                 (10) 

where
1,...,

arg max( )ik
k K

q τ
=

= . At each component, given the true label iy we assume that 

1,..., R
i iy y are independent, that is, the annotators label the instances independently. 

Hence, 

                            

1 1

1

1

1

Pr[ ,..., | 1, ,..., ] Pr[ | 1, ]

[ ] [1 ]
j j

i i

R
R R j j

i i i q q i i q
j

R
y yj j

q q
j

y y y y yα α α

α α

=

−

=

= = =

= −

∏

∏
                (11) 

Similarly, we have 

                                   11

1

Pr[ ,..., | 0, ] [1 ] [ ]
j j

i i

R
y yR j j

i i i q q
j

y y y β β −

=

= = −∏β                      (12) 

From (6), (8), (9), (10), (11) and (12), the posterior probability iz which is a soft prob-

abilistic estimate of the hidden true label is computed as 

                                                
(1 )

i i

i

i i i i

a p
z

a p b p
=

+ −
                                         (13) 

where 

1

1

1

1

1,...,

Pr[ 1 | , ] ( )

[ ] [1 ]

[1 ] [ ]

arg max( )

j j

i i

j j

i i

T

i i i i

R
y yj j

i q q

j

R
y yj j

q q

j

ik
k K

i

p y

a

b

q

σ

α α

β β

τ

−

=

−

=

=

= = =

= −

= −

=

∏

∏

x w w x

. 

3.3   The GMM-MAPML Algorithm 

We summarize the iterative approach in Algorithm 3. 

Algorithm 3 (Iterative GMM-MAPML Algorithm). 

Input: Dataset 1
1{ , ,..., }R N

i i i iD y y == x containing N instances. Each instance has binary 

labels from R annotators.  
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Output: The fittest K-mixture-component GMM for the instances; the estimated 
sensitivity and specificity of each annotator at each mixture component; the weight 
parameter of a classifier; the probabilistic labels iz ; the estimation of the hidden true 

label iy . 

Step 1. Find the fittest K-mixture-component GMM for the instances, and get the 
corresponding GMM parameters and components responsibilities for each instance by 
Algorithm 2.  

Step 2. Use majority voting to initialize
1

R
j

i i
j

z y R
=

=∑ . 

Step 3. Iterative optimization. 
(a) ML estimation – Estimate the model parameters { , , }φ = w α β based on current 

probabilistic labels iz using (5) and (7). 

(b) MAP estimation – Given the model parametersφ , update iz using (13). 

Step 4. Ifφ and iz do not change between two successive iterations or the maximum 

number of iterations is reached, go to the Step 5; otherwise, go back to the Step 3. 
Step 5. Estimate the hidden true label iy by applying a threshold γ on iz , that is, iy =1 

if iz γ> and iy =0 otherwise.  

3.4   Analysis of the Model 

To explain how the model works, we apply the logit function to the posterior prob-
ability iz . From equation (13), the logit of iz is written as 

                          

1

1

1

Pr[ 1 | ,..., , , ]
logit( ) ln ln

1 Pr[ 0 | ,..., , , ]

[logit( ) logit( )]

R
i i i i i

i R
i i i i i

R
T j j j

i i q q
j

z y y y
z

z y y y

w y c

φ
φ

α β
=

=
= =

− =

= + + +∑

x

x

x

                        (14) 

where
1

ln[(1 ) ]
R

j j
q q

j

c α β
=

= −∑ , and
1,...,

arg max( )ik
k K

q τ
=

= . The first term of (14) is a linear 

combination (provided by the learned classifier) of features of instance ix . The  

second term of (14) is a weighted linear combination of the labels from all annotators. 
The weight of each annotator is the sum of the logit of the estimated sensitivity and 
specificity at the q-th component, i.e., the most possible component for generating ix . 

Therefore, our proposed model is data-dependent. Also, from equation (14) we can 
infer that the estimates of the hidden true labels depend both on observations and on 
the labels from all annotators. 

4   Experimental Results 

In this section we experimentally validate the proposed approach on two real-life 
datasets. 
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4.1   Emotional Speech Classification Experiment 

Emotion recognition is an area which attracts interest from the speech research com-
munity. A wide area of applications such as interface optimization and expressive 
voice synthesis are related to the classification of speech into emotional states. In this 
experiment, we used a publicly available dataset from the EMA database [23]. This 
dataset has 3 speakers: a male native speaker read 14 sentences, and two female na-
tive speakers read 10 sentences. Each sentence was produced five times for four acted 
emotions, i.e., neutral, angry, sad, and happy. In this dataset, each utterance was 
evaluated by at least 3 expert listeners and 568 utterances were chosen as best emo-
tion utterances. In our experiment, we used these 568 utterances as instances and their 
experts verified target emotions as the ground truth labels. Following the experiments 
in [14], {happy, neutral} were assigned to class 0 as positive emotion, and {sad, an-
gry} were assigned to class 1 as negative emotion. To get the labels from multiple 
annotators, we sent the raw audio files (in WAV format) to 5 inexperienced listeners 
and asked them to provide binary labels (0 for positive emotion, 1 for negative emo-
tion) for each instance. The 5 annotators have different academic backgrounds, and 
most of them are non-native speakers. By using VOICEBOX [24], we extracted 13 
static features (12 MFCCs computed from 24 filter banks and log energy), 13 delta 
coefficients (first derivatives of static features) and 13 delta-delta coefficients (second 
derivatives of static features) from the speech signal over 25 ms frames with 10 ms 
overlap. The feature-wise mean is computed over the entire utterance, resulting in a 
39-element feature vector for each instance. 

In our comparisons, we considered three multiple-annotator methods: (1) Majority 
Voting that uses the average of annotators’ votes as the estimation of the hidden true 
label; (2) MAP-ML that estimates the hidden true labels and annotators' constant 
accuracy across all the input data using a data-independent model [11, 16]; and (3) 
GMM-MAPML that uses our proposed data-dependent model as described in Section 
3. For further comparisons, we also learned two additional logistic regression classifi-
ers: (4) LR Concatenation that concatenates all annotators’ labels as a training set, and 
(5) LR Ground Truth that uses the actual ground truth as a training set. For both LR 
Concatenation and LR Ground Truth, we randomly divided the whole dataset into five 
equally sized folds (20% of the dataset each). We repeated five times the logistic 
regression model training where we used four of the folds (80% of the dataset) for 
training and one fold for testing. 

The ROC comparisons for three multiple-annotator methods and two additional lo-
gistic regression classifiers are shown in Fig. 1. The figure demonstrates the power of 
our proposed GMM-MAPML approach: GMM-MAPML significantly outperforms 
baseline methods (Majority Voting and MAP-ML) where information from all annota-
tors is taken into account in a more naïve way. In addition, GMM-MAPML successfully 
approximates the LR Ground Truth classifier which is trained by the actual true labels. 
The Fig. 1 also shows that building a classifier in the traditional single annotator manner 
(simply concatenates all annotators’ labels as LR Concatenation) without regard for the 
annotator properties may not be effective for the multi-annotator problems. 

As an output of our proposed GMM-MAPML method, a two-Gaussian-component 
model with an unconstrained covariance matrix has been selected for the emotional 
speech data. For each component, estimated sensitivity and specificity of 5 listeners 
using GMM-MAPML are shown in Table 1. The table shows that the 5 listeners have 
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different sensitivity and specificity at the two components. Taking a closer look at the 
emotional speech data, we found that 75.35% of the utterances produced by the male 
speaker have the first Gaussian component as their principle component (i.e., the most 
possible component) and 64.31% of the utterances produced by the female speakers 
have the second Gaussian component as their principle component. It seems like some 
listeners (e.g., Listener 2 and Listener 4 in our experiment) are good at labeling one 
gender's utterance, but not at other gender's. The analysis shows that our proposed 
GMM-MAPML approach can be used for selecting the best annotators for instances at 
different components (or in different regions) of the feature space and for the training of 
annotators by informing them about the set of examples which they labeled unreliably. 

 

Fig. 1. The ROC comparisons for three multiple-annotator methods and two logistic regression 
classifiers on the emotional speech classification task. Methods are sorted in legend of the 
figure according to their AUC value. 

Table 1. GMM-MAPML based estimates of 5 listeners’ accuracy in emotional speech data 
(first and second component) without using golden ground truth 

  First Component Second Component 

Listeners 
Estimated 
Sensitivity 

Estimated 
Specificity 

Estimated 
Sensitivity 

Estimated 
Specificity 

Listener 1 0.902 0.891 0.925 0.951 

Listener 2 0.843 0.862 0.814 0.799 

Listener 3 0.784 0.802 0.779 0.792 

Listener 4 0.756 0.744 0.877 0.861 

Listener 5 0.719 0.698 0.728 0.736 
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4.2   CASP92 Protein Disorder Prediction Experiment 

Computational characterization of disorder in proteins is appealing due to the difficul-
ties and high cost involved in experimental characterization of disorders. Treating an 
individual predictor as an annotator, the multiple-annotator methods can be used to 
build meta-predictors for protein disorder prediction. Recently, a data-independent 
model based on the idea of the MAP-ML method discussed in section 4.1 is used to 
integrate the prediction labels from multiple predictors [16]. This is shown to improve 
accuracy in performed experiments as compared to using individual component pre-
dictors. Following the experiments in [16], to characterize the method proposed in our 
study we used CASP9 data [25] consisting of 117 protein sequences with 26,083 
amino-acid residues. For each residue, the golden ground truth (i.e. the residue is 
either in ordered state or in disordered state) was obtained by either X-ray or NMR 
experimental characterization. We have also obtained prediction labels (1 represents a 
disordered state while 0 represents an ordered state) with disorder probabilities (val-
ues in the range of 0–1) of all predictors which participated in CASP9 from the con-
test’s official website [25]. We selected 15 predictors developed by groups at different 
institutions assuming that their errors are independent. By following the method pro-
posed in [16], we extracted a 20-dimensional feature vector (19 amino acid composi-
tion features and 1 sequence complexity feature) for each residue. 

In the experiment, as the input of our GMM-MAPML algorithm we used the 
26,083 amino-acid instances and the prediction labels from the 15 individual predic-
tors. After the algorithm had converged, we used the estimation of the hidden true 
labels iy (given the threshold of 0.5) produced by GMM-MAPML as the binary dis-

order/order predictions and the probabilistic labels iz from GMM-MAPML outputs as 

the disorder probability. As alternatives we also used the other two multiple-annotator 
methods, i.e., MAP-ML and Majority Voting to integrate the individual predictors, so 
that we can compare those methods with the GMM-MAPML to see which one is 
more effective. Following the regulation of CASPs, performance of the methods was 
evaluated by three criteria [26]: (1) the average of sensitivity and specificity (ACC), 
(2) a weighted score (Sw) that considers the rates of ordered and disordered residues in 
the data; (3) and the area under the ROC curve (AUC). 

Comparisons of 15 individual predictors, the MAP-ML method, the Majority Vot-
ing method, and our GMM-MAPML method on CASP9 data is shown in Table 2. 
Our proposed GMM-MAPML method significantly outperforms the two baseline 
methods (Majority Voting and MAP-ML) and each individual predictor in all three 
criteria. 

Using the BIC, our GMM-MAPML method also finds that the fittest GMM for 
CASP9 data is three Gaussian components with the covariance matrix in the form of 

k kλ B (B is a diagonal matrix). For each component, estimated sensitivity and specific-

ity of 15 individual predictors using GMM-MAPML without relying on golden 
ground truth are shown in Fig. 2. The obtained estimates are sorted according to the 
average of their estimated sensitivity and specificity. The Fig. 2 clearly shows that the 
individual CASP9 disorder predictors have different sensitivity and specificity at 
                                                           
2 CASP9 is the abbreviation of the 9th Biannual Community Wide Experiment on the Critical 

Assessment of Techniques for Protein Structure Prediction held in year 2010. 
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different components. The figure also demonstrates that the rankings of individual 
predictors are different at different components.  

For further analysis, the relationship between amino-acid residue positions and the 
three Gaussian components are shown in Fig. 3. We found that the principal (most 
likely) component at the N-terminus (defined here as 20% of residues at the start of a 
protein sequence) was the first Gaussian component. In particular, about 56% of the 
amino-acid residues from this region belong to this component. The principal compo-
nent for the C-terminus consisting of 20% of residues at the end of each protein was 
the third component (59% of residues from this region belong to this component).  
The internal 60% of residues were most likely to belong to the second Gaussian com-
ponent (54% of these residues belong to this component). The results well agree with 
previous protein disorder work where amino-acid residues at different regions (i.e., N-
terminal, C-terminal and internal) have different compositions and different tenden-
cies for disorder [27]. 

The experiment on CASP9 data shows that our proposed GMM-MAPML method 
can potentially be used to improve prediction of protein disorder and to provide help-
ful suggestion on choosing the suitable disorder predictors for each region of un-
known protein sequences. 

Table 2. Comparisons of GMM-MAPML vs. alternative protein disorder meta-predictors 
(MAP-ML and MAJORITY VOTING) and individual CASP9 predictors according to CASP9 
evaluation measures using CASP9 data 

Predictor Name ACC Sw AUC 

GMM-MAPML 0.785 0.527 0.874 

MAP-ML 0.764 0.513 0.859 

MAJORITY VOTING 0.735 0.496 0.776 

PRDOS2 0.754 0.509 0.855 

MULTICOM-REFINE 0.750 0.500 0.822 

BIOMINE_DR_PDB 0.741 0.483 0.821 

GSMETADISORDERMD 0.738 0.476 0.816 

MASON 0.736 0.473 0.743 

ZHOU-SPINE-D 0.731 0.462 0.832 

DISTILL-PUNCH1 0.726 0.453 0.800 

OND-CRF 0.706 0.412 0.737 

UNITED3D 0.704 0.412 0.781 

CBRC_POODLE 0.694 0.405 0.830 

MCGUFFIN 0.688 0.402 0.817 

ISUNSTRUCT 0.679 0.396 0.742 

DISOPRED3C 0.670 0.391 0.853 

ULG-GIGA 0.585 0.341 0.726 

MEDOR 0.579 0.338 0.688 
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Fig. 2. Analysis of CASP9 disorder predictors at three principal components of CASP9 data 
identified by GMM-MAPML. In panels a, b, and c the predictors are sorted in descending order 
of the average of the estimated sensitivity and specificity on the corresponding component of 
CASP9 data. 
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Fig. 3. Distribution of residues at N-terminus, internal-regions and at C-terminus with respect 
to three principal components identified by GMM-MAPML 

5   Conclusion 

In this paper we proposed a data-dependent probabilistic model for classification 
when given labels obtained by multiple noisy annotators but without any gold stan-
dard annotation. The proposed GMM-MAPML method uses a Gaussian mixture 
model (GMM) and Bayesian information criterion (BIC) to find the fittest model to 
approximate the distribution of the instances. Then the maximum a posterior (MAP) 
estimation of the hidden true labels and the maximum-likelihood (ML) estimation of 
quality of multiple annotators at each Gaussian component are provided alternately. 
Emotional speech classification and CASP9 protein disorder prediction experiments 
show a significant performance improvement of the proposed GMM-MAPML 
method as compared to the majority voting baseline and a previous data-independent 
method (MAP-ML). Moreover, GMM-MAPML also provides more accurate esti-
mates of individual annotator performance for each Gaussian component, which can 
be used for active learning, feedback, and annotator selection. 

The proposed method assumed that the annotators make their errors independently. 
We emphasize that in practice the independence assumption might not be always true 
which is the limitation of the proposed algorithm. To relax the independence assump-
tion and to develop a more realistic model for the multiple-annotator problems, our 
research in progress includes additional parameters such as the degree of correlation 
among the annotators. 
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Abstract. Multi-document summarization is a fundamental tool for understand-
ing documents. Given a collection of documents, most of existing multi-
document summarization methods automatically generate a static summary for
all the users using unsupervised learning techniques such as sentence ranking
and clustering. However, these methods almost exclude human from the summa-
rization process. They do not allow for user interaction and do not consider users’
feedback which delivers valuable information and can be used as the guidance for
summarization. Another limitation is that the generated summaries are displayed
in textual format without visual representation. To address the above limitations,
in this paper, we develop iDVS, a visualization-enabled multi-document sum-
marization system with users’ interaction, to improve the summarization perfor-
mance using users’ feedback and to assist users in document understanding using
visualization techniques. In particular, iDVS uses a new semi-supervised docu-
ment summarization method to dynamically select sentences based on users’ in-
teraction. To this regard, iDVS tightly integrates semi-supervised learning with
interactive visualization for document summarization. Comprehensive experi-
ments on multi-document summarization using benchmark datasets demonstrate
the effectiveness of iDVS, and a user study is conducted to evaluate the users’
satisfaction.

Keywords: interactive multi-document summarization, visualization.

1 Introduction

Multi-document summarization aims to generate a compressed summary by extracting
information from a collection of documents sharing the same or similar topics. Since the
Internet faces the data overload threat with the explosive increase of the documents, au-
tomatic multi-document summarization has attracted much attention and various sum-
marization applications have emerged in recent years.

Current research on multi-document summarization often treats it as an unsupervised
learning problem. Existing summarization methods usually involve sentence clustering
and ranking to extract the most important sentences from the document collection to
form the summaries automatically. Although these methods can efficiently generate
short summaries of the documents, they have two major limitations:
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– Lack of User Participation: Summarization is a subjective task, i.e., different
users may have different understanding and opinions on the same set of documents.
However, most existing summarization methods exclude human from the summa-
rization process, which is efficient in terms of reducing users’ workload, but it is
not desired since the generated summaries is user-independent, contradicting to the
subjective nature of summarization. These methods do not allow for user interac-
tion and do not consider users’ feedback which delivers valuable information and
can be used as the guidance for summarization.

– Homogeneous Result Presentation: Current document summarization systems
present their results in textual format. As the size of the document collection in-
creases, it becomes time-consuming, cumbersome, and labor-intensive for users to
quickly locate important information or glean insights from the summary.

To address the above limitations, we develop iDVS, a visualization-enabled multi-
document summarization system with users’ interaction, to improve the summariza-
tion performance using users’ feedback and to assist users in document understand-
ing using visualization techniques. As an interactive document visual summarization
system, iDVS lays out the sentence relationships in the documents visually, and itera-
tively selects sentences to create a summary incorporating users’ feedback. In partic-
ular, an energy-based layout algorithm is used for sentence visualization, and a new
semi-supervised document summarization method is proposed to dynamically select
sentences based on users’ interaction.

Note that visualization plays a vital role in iDVS. First, visualization facilitates user
interaction. In iDVS, visualization techniques are used to display the sentence relation-
ships and to help users locate critical information in a large text collection. Second,
visual presentation and navigation of summary results can assist users in understanding
large documents efficiently. Unlike existing work in visual text analysis, which focuses
either on developing new text analytic algorithms and/or novel visualization techniques,
iDVS aims to tightly integrate semi-supervised learning (for dynamic sentence selec-
tion) with interactive visualization (for user exploration) for supporting effective doc-
ument summarization. We conduct extensive experiments on the benchmark datasets
to demonstrate the effectiveness of iDVS on multi-document summarization and also
perform user studies to evaluate the users’ satisfaction.

The rest of this paper is organized as follows. Section 2 discusses the related work
on multi-document summarization, semi-supervised learning and document visualiza-
tion techniques. Section 3 introduces the framework of iDVS. Methods used in iDVS
including the layout algorithms, paragraph selection, and semi-supervised document
summarization are described in Section 4. Section 5 illustrates an example summariza-
tion process of iDVS. Section 6 demonstrates and discusses the experimental results
comprehensively. A user study is conducted in Section 7. Finally, Section 8 concludes.

2 Related Work

2.1 Multi-document Summarization

Various multi-document summarization methods have been studied recently. Our dis-
cussion here focuses on extractive methods. The most commonly used methods are
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centroid based, which usually rank sentences in the document collection according
to their scores calculated by a set of predefined features, such as term frequency-
inverse sentence frequency (TF-ISF), sentence or term position, and number of key-
words [37,29,23]. Another type of methods use sentence graph representation and se-
lect sentences based on the votes from their neighbors using ideas similar to PageR-
ank [11]. Other methods include Latent semantic analysis (LSA) based summariza-
tion [13], Non-negative matrix factorization (NMF) based summarization [33], Con-
ditional Random Field (CRF) based summarization [31], and hidden Markov model
(HMM) based method [8]. Some query-based summarization systems are also
proposed [12].

Most of the existing document summarization methods are unsupervised as described
above. There are also a few studies applying supervised and semi-supervised methods
to document summarization. Wong et al. [35] first extracted and combined various sen-
tence features, and then applied supervised and semi-supervised classifiers to obtain
the labels for all the sentences. Although some work considers users’ opinions by an-
alyzing user comments [19], few work has been reported on iteratively making use of
users’ feedback to improve the quality of the generated summaries. Most of current
document summarization systems deliver results in textual format only, and there are
limited attempts on document summarization to present the relationships among sen-
tences visually.

2.2 Visual Text Analysis

The work on visual text analysis can be broadly divided into five different categories:
1) Meta-data visualization methods which focus on visualizing the meta data of text
documents. For example, many techniques have been developed to visualize the re-
lationships between the email senders and receivers in email corpora [28,26,21], and
TileBars is used to visualize document length and query term frequency [16]. 2) Doc-
ument visualization methods which focus on displaying document relationships. Typ-
ical systems for document visualization include the Galaxy of News [30], Jigsaw [32],
and ThemeRiver [15]. 3) Word visualization methods which mainly show the text in-
formation at the text level. Typical systems for word visualization include TextArc
(www.textarc.org), WordTree [34], and FeatureLens [10]. 4) Text Visual analytic meth-
ods which typically integrate visualization with some text analytic methods. For exam-
ple, Ando et al. [3] developed a visualization-enabled multi-document summarization
by iterative residual rescaling, Allan et al. [2] used the cluster visualization to help a
user rapidly identify relevant documents, Liu et al. [25] presented an interactive, visual
text analysis tool to support both top-down and bottom-up text analysis. 5) Visual Sum-
marization methods which present a document summary using representative images.
Google has released the “Image from the page” feature in its web search system using
the images in a page to summarize the page. Jiao et al. [20] propose a visual summa-
rization system using external images (which are not the images in the page) for search
and re-finding tasks.

Our iDVS can be viewed as a text visual analytic method by integrating summariza-
tion and visualization and its focus is on generating better summary results with user
interaction and feedbacks. Compared with existing text visualization systems, iDVS
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tightly combines semi-supervised learning techniques with interactive visualization to
support user-centric document summarization. On one hand, iDVS uses visualizations
to display summarization results and facilitates user interaction. On the other hand, it
employs semi-supervised learning for users to perform dynamic sentence selection.

2.3 General Visualization Analytic

In general information visualization, researchers have developed a number of methods
for visual analytics. For example, HD-Eye [18] and n23Tool [36] integrate visualiza-
tion and clustering algorithms by representing the possible clusters and the relationship
between clusters in each projection of any interactive system to visualize and analyze
clusters. A visual framework VISTA is developed in [6] to visualize multi-dimensional
datasets in a 2D star-coordinate space and to validate and refine the cluster structure.
Chen and Liu [7] extended VISTA to an interactive visualization-based framework for
clustering large datasets. More visualization techniques can be found in [14]. In our
work, we focus on visualizing text data especially summary results. In addition, iDVS
provides users with visual interactions tools to dynamic select sentences from multiple
perspective.

2.4 Semi-Supervised Learning

In this paper, we treat document summarization given users’ guidance as a problem of
semi-supervised learning. Semi-supervised learning [5] learns from a set of partially
labeled data points, including both labeled and unlabeled data, to predict the labels of
the unlabeled data. For the document summarization task, we ask users to read and label
a small portion of the documents, thus a semi-supervised algorithm can be developed
to proceed document summarization with only a small portion of prior knowledge.

3 System Framework

Figure 1 shows the framework of iDVS. The system creates short summaries by se-
lecting sentences iteratively based on the results of the semi-supervised document sum-
marization engine and the feedback provided by users. Each iteration of the sentence
selection includes the following steps.

– (1) The system generates a 2-D view graph of current sentence set of the given
documents, in which each node represents a sentence, and the location and color of
the sentence are determined by the layout and clustering algorithms respectively.
Here, the initial “current sentence set” contains all the sentences in the documents.

– (2) Based on the layout results, the system picks out the most important sentence
and asks a user to read the paragraph where the sentence locates.

– (3) The user partially orders the sentences contained in the paragraph based on their
understanding of the content in the paragraph.

– (4) A semi-supervised sentence ranking algorithm by making use of the sentence
preferences from the user is then performed to rank all the sentences in the doc-
uments. Top n sentences are then selected as candidates and recommended to the
user. The number n is determined by the difference between the required summary
length and the length of sentences already in the summary.
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Fig. 1. The system overview

– (5) The user selects the candidate sentences which he/she is satisfied with, then
these sentences are included in the summary. The selected sentences and the clus-
ters that they belong to are then removed from current sentence set.

– (6) A new iteration starts until the required length of the summary is reached. One
thing worth mentioning is that the number of sentence clusters and the number of
sentences in a summary are small in general, so the involved amount of user efforts
is acceptable in practice.

4 Methodology

In this section, we introduce the key techniques used in iDVS for sentence cluster lay-
out, semi-supervised document summarization, and user interaction.

4.1 Sentence Cluster Layout

Sentence Graph Representation. Given a collection of documents, we first decom-
pose them into sentences. An undirected graph G = (V , E) is then constructed to repre-
sent the relationships among the sentences, where V is the vertex set and E is the edge
set. Each vertex in V is a sentence, and each edge in E is associated with the cosine
similarity between two sentences (vertices). Two vertices are connected if their cosine
similarity is greater than 0.

Linlog Layout Algorithm. Here, we use Linlog, a popular energy-based layout
algorithm[27], to display the sentence relationships and present the clusters in the sep-
arated shapes. The energy function in Linlog is

E(p) =
∑

{u,v}:u�=v

(ω{u,v}‖pu − pv‖ − dvduln‖pu − pv‖),
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where ω{u,v} is the weight of the edge connecting vertices u and v, and du and dv

are the degrees of u and v respectively. The optimal positions p of all the vertices are
obtained by minimizing E .

Clustering with Maximum Modularity. The positions of nodes (sentences) displayed
by the energy-based layout algorithm are consistent with the clustering results obtained
by maximizing graph modularity.

Modularity [27,1] can be defined as

∑
c∈C∈

[
wc

wC
− (

d(c)2

d(C)2
)],

where wc, wC are the sum of edge weights in cluster c and cluster set C respectively,
and d(c) and d(C) are the sum of node degrees for all the nodes in cluster c and cluster
set C.

The clustering results can be easily obtained by a bottom-up algorithm, in which
each sentence is treated as a singleton cluster at the outset and then successively merge
pairs of clusters until the maximum modularity is reached.

4.2 Paragraph Selection and Users’ Annotation

The visualization in iDVS clearly illustrates the following information for users. (1)
The radius of each node is determined by the sentence’s degree. The larger the node,
the more important the corresponding sentence. In other words, the largest node in a
cluster corresponds to the most important sentence in that cluster. (2) Large nodes in the
overlapping area of two clusters may be the transition sentences between the clusters.
(3) The larger the distance between two clusters, the dissimilar the two topics. Based
on the visualization of sentence relationships, the user finds the largest nodes in each
cluster, then picks any one of them, and the system returns its corresponding sentence
with the paragraph that the sentence belongs to for the user to read and annotate.

In the annotation, the user is asked to read the selected paragraph and provide the
comparable sentence pairs in the paragraph and their preferences of the two sentences
based on their understanding of the content in the paragraph. The user finally provides
all the comparable sentence pairs and label their preference of the two sentences for
each sentence pair in the paragraph. Here the “comparable sentence pair” means that
two sentences share similar topics. Thus, we have a number of sentence pairs and their
preference, e.g.(si, sj) and their relationship ri ≥ rj representing sentence i is pre-
ferred to be included in the summary comparing to sentence j. We treat the sentence
pair (si, sj) with their preference ri ≥ rj as a “sentence preference pair”.

4.3 Semi-Supervised Document Summarization

For the summarization task, we are given a set of sentences S = {si}m
i=1 associated

with their importance {ri}m
i=1. Through users’ interactions, we know some pairwise

relationships
C = {(ski , skj )}K

k=1,
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such that if (ski , skj ) ∈ C, then rki ≥ rkj , where k is the index of the constraint andK
is the total number of constraints. To apply the semi-supervised summarization method,
we should first have a sentence graph G = 〈V , E〉constructed as in Section 4.1. Then
our semi-supervised model assumes that the estimated sentences preferences {ri} should
vary sufficiently smooth with respect to G. Usually such smoothness can be calculated by

δ =
∑

si∼sj

wij

(
ri√
di

− rj√
dj

)2

. (1)

Here di =
∑

j wij is the degree of sentence si, and si ∼ sj denotes that si and sj are
adjacent (i.e., there is an edge linking them). Written in its matrix form, Eq.(1) can be
transformed to

δ = rT Lr, (2)

where
L = I − D−1/2WD−1/2, (3)

is the normalized Laplacian matrix [38], and I is anm×m identity matrix. Some theoret-
ical research [4][17] showed that if we assume the sentences in S are sampled from some
continuous “sentence manifold”MS , then when the number of sampled sentences tends
to infinity, the normalized Laplacian will converge to the Laplace-Beltrami operator on
MS , which is strongly related to the functional smoothness defined on MS .

In our semi-supervised summarization scenario, we assume that we have an “ini-
tial” preference vector r0 which is estimated via some unsupervised methods, and our
method can be viewed as a way to “improve” such initial guess r0 by (1) the sentence-
sentence geometric structure; (2) prior knowledge on sentence preferences. For simplic-
ity, we use Euclidean distance to measure the discordance of the final preference vector
r and initial r0 whose objective is to solve the following optimization problem

min
r

‖r − r0‖2 + λrT Lr, rki ≥ rkj , ∀ (ski , skj ) ∈ C, (4)

where r = [r1, r2, · · · , rm]T and has been normalized to 1, and λ > 0 is the regular-
ization parameter to tradeoff the loss and smoothness terms. If we denote eki ∈ Rm×1

as an all-zero vector with only its ki-th element being 1, then we can rewrite problem
(4) in its standard form as

min
r

‖r − r0‖2 + λrT Lr, rT (eki − ekj ) ≥ 0, ∀ (ski , skj ) ∈ C. (5)

Clearly, the objective of the above problem is quadratic in r and the constraints are
linear in r, which makes it a convex quadratic programming problem whose global
optimum can be easily found by some mature numerical methods.

The objective of problem (5) can also be understood from a probabilistic perspective,
where we have the initial guess r0, the sentences S, and we want to learn the true
sentence preferences r. In general, the optimal r can be obtained as the one with the
maximum posterior probability

P (r|S, r0) =
1
Z
P (r|S)P (r|r0),
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where

P (r|S) =
1
Z1

exp(−rT Lr),

is the prior probability of r given the sentence set S,

P (r|r0) =
1
Z2

exp(−α‖r − r0‖2)

is the likelihood of r given the initial guess r0, and Z1, Z2, Z, α are constants. If we
define the energy E as

E = rT Lr + α‖r − r0‖2.

Then maximizing the posterior P (r|X , r0) is equivalent to minimizing the energy E.
Let λ = 1

α , we can get the objective in problem (5). Then we sort r in descending order
to get the ranking of the sentences in the document collection, and the top sentences are
selected as the candidate sentences and returned to the user.

5 An Illustrative Example

Figure 2 illustrates an example of the visualization results in each iteration of the sum-
mary generation process. Some key features of iDVS can be demonstrated in this ex-
ample as follows.

Fig. 2. An illustrative example
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– Given a set of 25 news articles, the system demonstrates the sentence clusters using
the layout and clustering algorithms described in Section 4.1. The layout results
of the original sentence set are shown in the upper left part of Figure 2. The most
important sentences (nodes) in each cluster are of large size and labeled with their
sentence IDs. In this example, there exist six clusters in the original sentence set,
each of which is associated with a unique color.

– As the sizes of nodes and clusters indicate the importance of a sentence and a
sentence cluster, users select one node from the graph, the system returns the cor-
responding sentence and the paragraph it belongs to, each sentence in the graph is
displayed in a panel as shown in the lower right part in Figure 2. Note that sentences
in the same paragraph are not necessary to be in the same cluster, thus different col-
ors in the panel indicate the sentence clusters. For the space limit, only partial of the
sentences are displayed, and if users are interested in any sentences, they can move
the mouse over the sentence, and a tip will pop up to show the entire sentence.
Users can read and rank the sentences and then submit their preferences through
the system to the semi-supervised document summarization engine.

– In each iteration, the summarization engine will generate candidate sentences using
the proposed semi-supervised document summarization method (as described in
Section 4.3). Users can pick their interested sentences to include in the summary.

– Then the system will remove those sentences and their clusters which have been
added into the summary, and a new iteration starts. Note that if the user is not sat-
isfied with any candidate sentence, no nodes will be removed and the layout won’t
change. However, the user can either re-rank the sentences in the most important
paragraph or the system can select the second important paragraph for users to
annotate. In this example, there are three iterations, and from the figure, we clear
observe the reduction of number of sentences in each iteration.

6 Experiments

6.1 Data Description

To evaluate the summarization results empirically, we use the DUC2002 and DUC2004
data sets, both of which are open benchmark data sets from Document Understanding
Conference (DUC) for generic automatic summarization evaluation. Table 1 gives a
brief description of the data sets.

Table 1. Description of the data sets for multi-document summarization

DUC2002 DUC2004

number of
document collections 59 50
number of documents ∼10 10

in each collection
data source TREC TDT

summary length 200 words 665bytes
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6.2 Implemented Summarization Systems

We implement the following unsupervised and supervised document summarization
methods as the baseline systems to examine the quality of the summaries generated by
our proposed method: 1) Random: selects sentences randomly for each document col-
lection. (2) Centroid: applies MEAD algorithm proposed in [29] using centroid value,
positional value, and first-sentence overlap as features. (3) LexPageRank: a graph-
based summarization method recommending sentences by the voting of their neigh-
bors [11]. (4) LSA: conducts latent semantic analysis on terms by sentences matrix as
proposed in [13]. (5) NMF: performs NMF on terms by sentences matrix and ranks the
sentences by their weighted scores [22]. (6) KM: performs K-means algorithm to clus-
tering the sentences and chooses the center sentences in each clusters. (7) Supervised:
transfers the document summarization problem to a two-class sentence classification
problem (i.e. one class represents the sentences included in the summary, while the
other class represents the rest of the sentences). Then Naive Bayesian classifier (NBC)
is used as the learning approach. The class label information comes from one human
summary in DUC for evaluation [35]. (8) iDVS: our proposed semi-supervised docu-
ment summarization method as described in Section 4.

Table 2. Overall performance comparison on DUC2002 data using ROUGE evaluation methods

Systems ROUGE-1 ROUGE-2 ROUGE-L ROUGE-W ROUGE-SU

DUC Best 0.49869 0.25229 0.46803 0.20071 0.28406

Random 0.38475 0.11692 0.37218 0.15941 0.18057
Centroid 0.45379 0.19181 0.43237 0.17971 0.23629

LexPageRank 0.47963 0.22949 0.44332 0.18978 0.26198
LSA 0.43078 0.15022 0.40507 0.15220 0.20226
NMF 0.44587 0.16280 0.41513 0.16072 0.21687
KM 0.43156 0.15135 0.40376 0.15038 0.20144

Consistency Method 0.46449 0.22173 0.44514 0.18311 0.25670
Variant Consistency 1 0.49990 0.26461 0.47233 0.20118 0.28745
Variant Consistency 2 0.47121 0.23322 0.42578 0.17266 0.23007

Homonic-CMN 0.46809 0.23039 0.41759 0.17556 0.22876
Green’s Function 0.46591 0.22788 0.41113 0.16092 0.22227

Supervised 0.51243 0.26538 0.47731 0.20827 0.29634
iDVS 0.50612 0.25981 0.47535 0.20279 0.28863

Five Semi-supervised Summarization Systems: In addition to the above systems, we
also compare our interactive semi-supervised document summarization system (iDVS)
with the following baseline summarization systems which directly make use of semi-
supervised learning methods. In these baseline systems, the most important sentence
from each sentence cluster obtained using clustering with maximum modularity (as de-
scribed in Section 4.2) is labeled as summary sentence. Then semi-supervised learning
approaches are used to generate a cluster C with size nC whose elements are the can-
didate summary sentences. Finally, a sentence subset K with size nK is selected from
C to form the final summary using Eq.( 6):
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min
γ

nC × nK

∑
si∈K

[
∑
sj∈C

Sim(si, sj)] −
1 − γ

nK × nK

∑
si,sj∈K

Sim(si, sj), (6)

where the first term is the average similarity between the selected sentence and the rest
sentences and the second term is the average pairwise sentence similarity in K , both
are calculated using cosine similarity. γ is a weight parameter, and is set to 0.6 empir-
ically. In other words, the final sentence selection aims to choose sentences that have
high similarity values with all other sentences in C and low similarity values with the
selected sentences. Five popular semi-supervised learning approaches are used in the
baseline systems: (1-3) the algorithm proposed in [35] which conducts semi-supervised
learning with local and global consistency (Consistency Method), and two of its vari-
ants (Variant Consistency 1 and Variant Consistency 2); (4) Harmonic Gaussian
field method coupled with the Class Mass Normalization (Harmonic-CMN) [39]; (5)
Green’s function learning algorithm (Green’s Function) Proposed in [9].

6.3 Evaluation Method

We use ROUGE [24] toolkit (version 1.5.5) to measure the summarization performance,
which is widely applied by DUC for performance evaluation. It measures the quality of
a summary by counting the unit overlaps between the candidate summary and a set
of reference summaries. Intuitively, the higher the scores, the more similar between
the two summaries. As we have similar conclusions for different scores, for simplicity,
in this paper, we only report the average F-measure scores generated by ROUGE-1,
ROUGE-2, ROUGE-L, ROUGE-W and ROUGE-SU to compare the implemented sys-
tems. One thing worth mentioning is that since different users might have different
perceptions of which sentence is more important, the results of iDVS reported in the
experiments are the average scores obtained from three users.

6.4 Experimental Results

Overall Performance. First of all, we compare the overall performance of our pro-
posed semi-supervised document summarization method with other most widely used
unsupervised and supervised summarization methods. Table 2 and Table 3 show the
ROUGE evaluation results on DUC2002 and DUC2004 data sets respectively. We set
λ to be 0.6 empirically. From the results, we have the following observations: (1) Our
iDVS method outperforms all the unsupervised summarization methods. This benefits
from the guidance of the preference and feedback provided by users and our proposed
semi-supervised learning method which makes use of the user interaction. (2) We com-
pare our method with the best team from DUC competition. Although the advanced
natural language processing techniques are used by the best team, our semi-supervised
method still outperforms it, which demonstrates the effectiveness of our method utiliz-
ing a small amount of labeled data. (3) Compared with the baseline summarization
systems which directly make use of semi-supervised learning, our iDVS method is
able to utilize user interactions and achieves the best performance. The performance
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improvement clearly demonstrate the advantage of user participation in our system.
(4) Our method maintains the comparable performance with the supervised summa-
rization approach which makes use of the human generated summaries. Although the
results from supervised learning method are encouraging, a fully labeled training data
is too expensive and usually infeasible to obtain.

To better demonstrate the results, Figure 3 visually illustrate the comparison. As we
have similar conclusion on different ROUGE scores, due to the space limit, we only
show the ROUGE-1 results in these figures.

Table 3. Overall performance comparison on DUC2004 data using ROUGE evaluation methods

Systems ROUGE-1 ROUGE-2 ROUGE-L ROUGE-W ROUGE-SU

DUC Best 0.38224 0.09216 0.38687 0.13325 0.13233

Random 0.31865 0.06377 0.34521 0.11734 0.11779
Centroid 0.36728 0.07379 0.36182 0.12439 0.12511

LexPageRank 0.37842 0.08572 0.37531 0.13121 0.13097
LSA 0.34145 0.06538 0.34973 0.12042 0.11946
NMF 0.36747 0.07261 0.36749 0.12961 0.12918
KM 0.34872 0.06937 0.35882 0.12339 0.12115

Consistency Method 0.37565 0.09776 0.37781 0.12765 0.13000
Variant Consistency 1 0.39225 0.10477 0.39547 0.13762 0.13651
Variant Consistency 2 0.37740 0.09803 0.38006 0.12812 0.13091

Homonic-CMN 0.37211 0.09466 0.37094 0.12233 0.12997
Green’s Function 0.36411 0.07215 0.36645 0.12470 0.12261

Supervised 0.39622 0.10973 0.39956 0.14221 0.14095
iDVS 0.39227 0.10524 0.39633 0.13816 0.13751

Paragraph Selection. In the experiments, we select paragraphs based on users’ feed-
back and the visualized structure of sentences. In this set of experiments, we examine
this paragraph selection method and compare it with the following selection solutions:
(a) RandomSel: randomly selects paragraphs of the documents; and (b) IdealSel: se-
lects paragraphs containing the sentences in the human summaries used for evaluation.
Figure 4 demonstrates the comparison results. From the results, we can see that our
paragraph selection method is more effective than the random selection. Although the
ideal selection performs the best, in real application the human summaries are infeasible
to obtain, while our selection method is simple and cost efficient.

Parameter Tuning. In Figure 5, we gradually tune the parameter λ in our method to
adjust the weights between the two parts of the objective function in 5. We vary λ from
0.1 to 0.9 in every 0.1 interval. From the results, we can see that when λ is 0.6, the
generated summaries achieve the highest performance.

7 A User Survey

To better evaluate the results of iDVS, we conduct a user survey. The subjects of the
survey are fifteen students at different levels and from various majors of a university.



iDVS: Interactive Multi-document Visual Summarization 581

DUCB Ran Cen LPR LSA NMF KM CM V1 V2 HCMN GF Sup iDVS
0.3

0.35

0.4

0.45

0.5

0.55

R
O

U
G

E
−

1 
S

co
re

DUC 2002

DUCB Ran Cen LPR LSA NMF KM CM V1 V2 HCMN GF Sup iDVS
0.3

0.32

0.34

0.36

0.38

0.4

R
O

U
G

E
−

1 
S

co
re

DUC 2006

Fig. 3. Overall summarization performance on DUC2002 data (Top), DUC2006 data (Bottom)
using ROUGE-1. DUCB, Ran, Cen, LPR, LSA, NMF, CM, V1, V2, HCMN, GF, Sup are cor-
responding to the summarization methods named DUC Best, Random, Centroid, LexPageRank,
LSA, NMF, Consistency Method, Variant Consistency 1, Variant Consistency 2, Homonic-CMN,
Green’s Function and Supervised respectively.
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Fig. 5. iDVS parameter tuning using DUC2002 data

Table 4. User satisfaction comparison

Systems Scores
iDVS 4.07

Random 1.47
Centroid 2.53

LexPageRank 2.80
Supervised 3.47

Each participant randomly selects a set of news documents, and use iDVS to form a
summary. Then they are asked to assign a score of 1 (least satisfaction) to 5 (highest
satisfaction), according to their satisfaction of the use of iDVS. We compare iDVS with
some typical summarization systems including Random, Centroid, LexPageRank, and
Supervised. The first three methods are unsupervised methods, and the last one is su-
pervised method. And all of these systems do not support visualization of the sentence
relationships. Table 4 demonstrate the satisfaction scores for each system, and the re-
sults show the effectiveness and high usability of iDVS. From the results, we have the
following observations: (1) Generally, users’ satisfaction scores are consistent with the
performance of the summarization systems. (2) Users are highly satisfied with iDVS
because (1) the generated summaries are based on the guidance and feedback through
users’ interaction, i.e., it supports personalized opinions; (2) iDVS provides visualiza-
tion to illustrate the latent relationships among sentences.

8 Conclusion

In this paper, we develop iDVS, an interactive document visual summarization system,
to visualize the structure of sentences contained in a document collection, and generate
a short summary based on users’ opinions iteratively. The main contributions of iDVS
are that (1) the visual system can help users better understand the latent relationships
in the documents/sentences easily; (2) the summarization process incorporates users’
feedback including some domain knowledge and personalized opinions, which can val-
idate and refine the summarization results effectively. Comprehensive experiments and
a user study demonstrate the effectiveness of iDVS.
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Abstract. Since labeling data is often both laborious and costly, the labeled data
available in many applications is rather limited. Active learning is a learning ap-
proach which actively selects unlabeled data points to label as a way to alleviate
the labeled data deficiency problem. In this paper, we extend a previous active
learning method called transductive experimental design (TED) by proposing a
new unlabeled data selection criterion. Our method, called discriminative experi-
mental design (DED), incorporates both margin-based discriminative information
and data distribution information and hence it can be seen as a discriminative ex-
tension of TED. We report experiments conducted on some benchmark data sets
to demonstrate the effectiveness of DED.

1 Introduction

It is not uncommon that the labeled data available in many machine learning appli-
cations is rather limited because the labeling process is both laborious and costly. We
refer to this as the labeled data deficiency problem. However, even though labeled data
is scarce, abundant unlabeled data may be available in some applications at very low
cost. There exist some learning approaches which exploit unlabeled data to boost the
generalization performance. One of them is semi-supervised learning [1] which ex-
ploits information contained in the unlabeled data such as the geometric structure of the
data. Another approach is active learning [2,3] which expands the labeled data set while
keeping the labeling cost low by selecting only the most representative unlabeled data
points to label.

Unlike many conventional machine learning methods which wait passively for la-
beled data to be provided in order to start the learning process, active learning takes a
more active approach by selecting unlabeled data points to query some oracle or do-
main expert. As a result, the expanded labeled data set can help the system learn a
better, more accurate model. The typical learning procedure of the active learning ap-
proach is depicted in Table 1. Most existing active learning methods, such as support
vector machine (SVM) active learning [4,5,6], select only one data point in each active
learning iteration, i.e., the set S in Table 1 is a singleton set. To select multiple data
points, multiple iterations are needed and hence the learning model has to be re-trained
multiple times, incurring high computational cost. In recent years, a few active learning
methods have been proposed to select multiple data points in each iteration to reduce
the total computational cost. Some examples include batch mode active learning [7,8]
and transductive experimental design (TED) [9,10].

TED has been demonstrated to be an effective method for active learning. How-
ever, it can only utilize information about the data distribution. We propose here an

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 585–596, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Table 1. Typical Active Learning Procedure

Input: Labeled data set L; Unlabeled data set U
Output: Learning model
Step 1: Train a learning model based on L;
Step 2:
For t = 1, . . . , tmax

2.1: Select an unlabeled data set S from U based
on some unlabeled data selection criterion;

2.2: Query an oracle to label S ;
2.3: L ← L ∪ S , U ← U \S ;
2.4: Re-train the learning model based on L;

extension of TED, called discriminative experimental design (DED), which combines
the strengths of both SVM active learning and TED. In particular, the data selection
criterion of DED incorporates both margin-based discriminative information and data
distribution information. Under the DED framework, we will show that TED can be
seen as a special case by treating all data points as equally important. To solve the DED
learning problem, we propose a new optimization procedure which exhibits some inter-
esting properties. We will report experiments conducted on some benchmark data sets
to demonstrate the effectiveness of DED.

In the next section, we will briefly review active learning and TED. We then present
DED in section 3 as a discriminative extension of TED. Section 4 presents our experi-
mental results and then the final section concludes the paper.

2 Active Learning and TED

Among the most important elements of active learning is the unlabeled data selection
criterion which has attracted a lot of attention in the machine learning research com-
munity. The most commonly used selection criteria include uncertainty sampling [11],
query-by-committee [12], representative sampling [13] and Bayesian error reduction
[14]. Among these criteria, uncertainty sampling is the most widely studied one. A
representative method that uses this criterion is SVM active learning which uses the de-
cision function value as the uncertainty measure for guiding the selection of unlabeled
data points. Although SVM active learning performs well in many applications, it does
have some limitations. Since it only considers data points lying near the decision bound-
ary of the current classifier, it ignores information about the whole data distribution but
such information has been shown to be effective for active learning in representative
sampling and TED. Moreover, since labeled data points are often scarce during the early
stage of learning, estimation of the margin is not very accurate and hence SVM active
learning may select atypical data points or even outliers. Furthermore, since SVM ac-
tive learning selects only one data point in each iteration, the model has to be re-trained
multiple times during the active learning procedure.

TED, which has its origin in experimental design [15] from the statistics community,
is used for active learning in [9]. The learning procedure of TED is somewhat different
from that of conventional active learning in that it does not assume the existence of
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labeled data before active learning begins and hence its data selection criterion does
not rely on discriminative information provided by the current classifier. By utilizing
the data distribution information, TED can choose multiple representative data points
in each iteration of the active learning procedure.

It appears that both conventional active learning methods and TED have advantages
that are complementary to each other. In the next section, we will propose a new method
that combines the strengths of conventional active learning and TED. In particular, the
new data selection criterion will incorporate both margin-based discriminative informa-
tion and data distribution information.

3 Discriminative Experimental Design

Suppose we are given a training set D which contains both labeled and unlabeled data.
The labeled part of D consists of l labeled data points (xi, yi), i = 1, . . . , l, where
xi ∈ Rd and its corresponding class label yi ∈ {−1, 1}. The unlabeled part of D
consists of u unlabeled data points xj ∈ Rd, j = l+1, . . . , l+u. Usually l � u because
labeling data is laborious and costly. We assume that the data points are centered and the
classification function is defined as f(x) = wT φ(x), where φ(·) denotes the feature
map corresponding to some kernel function k(·, ·). In general, φ(·) may have no explicit
form but is only defined implicitly.

3.1 Objective Function

As discussed in the previous section, the goal of this paper is to exploit the advantages of
both SVM active learning and TED in defining DED. This property should be reflected
by the objective function of DED which is what we will look at in this subsection.

The learning setting of DED is similar to that of conventional active learning as de-
picted in Table 1, which has both labeled and unlabeled data before active learning be-
gins. We hope to define a better data selection criterion which, on one hand, incorporates
discriminative information from the labeled data and, on the other hand, incorporates
data distribution information from the unlabeled data.

Let us first review the least squares SVM [16] which is used, though in different
ways, by both TED and DED. The optimization problem can be stated as follows:

min
w

l∑
i=1

(wT φ(xi) − yi)2 + λ‖w‖2
2, (1)

where λ > 0 is the regularization parameter and ‖·‖2 denotes the 2-norm for vectors.
Since yi ∈ {−1, 1}, (1) is equivalent to the following problem:

min
w
J(w) =

l∑
i=1

(1 − yiwT φ(xi))2 + λ‖w‖2
2. (2)

We use the objective function J(w) in (2) to learn the model parameters w for the
classifier. Here we use the squared loss L(s, t) = (1 − st)2 which is similar to the
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squared hinge loss L′(s, t) = max(0, 1 − st)2 used for SVM [17]. Similar to the
squared hinge loss, the squared loss used here enforces the prediction of the classi-
fier and the ground truth to have the same sign and that there is a large margin between
the positive and negative classes. Moreover, it is equivalent to the conventional squared
loss L(s, t) = (s − t)2 for binary classification problems and it is a convex loss. The
function score for a test data point is defined as:

y =
1

wT φ(x)
, (3)

and the final classification decision is based on the sign of the function score. When the
denominator is very close to 0, we can add a small value to it to make it numerically
more stable.

Let V = (v1, . . . ,vn) ∈ Rd×n denote the matrix for the unlabeled data currently
available and the matrix X ∈ Rd×t denote the selected subset of unlabeled data for
the oracle to label. So when no action has been taken, n is just equal to u which is the
number of unlabeled data points to start with. On the other hand, while conventional
active learning methods assume that l > 0, TED assumes that l = 0 and hence it is not
designed to make use of discriminative information.

Problems (1) and (2) are equivalent as far as binary classification problems are con-
cerned. From the derivation of TED, the covariance matrix of the estimation error of
w − w�, where w� is the ground truth of w, is proportional to the inverted Hessian
matrix of J(w):

cov(w − w�) ∝ Cw =
( ∂2J(w)
∂w∂wT

)−1

=
(
φ(X)Y2

Xφ(X)T + λId′
)−1
,

where YX denotes a diagonal matrix whose diagonal elements are the function scores
of the corresponding data points, Id denotes the d × d identity matrix, φ(X) denotes
the data matrix of X after applying the feature map, and d′ is the dimensionality of the
data points after feature mapping. Then the predictive error on the whole unlabeled data
set V has its covariance matrix proportional to Cf :

Cf =YVφ(V)T Cwφ(V)YV

=YVφ(V)T
(
φ(X)Y2

Xφ(X)T + λId′

)−1

φ(V)YV

= − 1
λ
YVφ(V)T φ(X)YX(λIt + YXφ(X)T φ(X)YX)−1YXφ(X)T φ(V)YV

= − 1
λ
YVKVXYX(λIt + YXKXYX)−1YXKXVYV +

1
λ
YVKVYV,

where YV is a diagonal matrix recording the function scores of the data points in V,
KX denotes the kernel matrix on X, KV denotes the kernel matrix on V, KVX denotes
the kernel matrix between V and X, and KXV = KT

VX. The last equality above holds
as a result of the Woodbury identity.
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We minimize the predictive variance by using the A-optimal design [15], which min-
imizes tr(Cf ), the trace of Cf , by treating tr(Cf ) as a surrogate of the predictive vari-
ance. Since λ and YVKV YV are constants, we define the optimization problem for
DED as follows.

Definition 1. Discriminative Experimental Design:

max
X,YX

tr
[
YVKVXYX(λIt + YXKXYX)−1YXKXVYV

]
s.t. X ⊂ V, |X| = t,YX ⊂ YV. (4)

Here X ⊂ V means the set of the columns in X is a subset of that in V and |X| denotes
the number of data points in X which is just the number of columns in X. Moreover,
for diagonal matrices YX and YV, YX ⊂ YV means the set of the diagonal elements
in YX is a subset of that in YV.

Before we discuss how to solve problem (4) in the next subsection, let us first exam-
ine the relationship between DED and TED. We consider the linear case where

KVX = VT X, KX = XT X, KXV = XTV.

Then the optimization problem for linear DED is

max
X,YX

tr
[
YVVT XYX(λIt + YXXT XYX)−1YXXT VYV

]
s.t. X ⊂ V, |X| = t,YX ⊂ YV.

If we define X̃ = XYX and Ṽ = VYV, then the optimization problem for linear DED
becomes

max
X̃

tr
[
ṼT X̃(λIt + X̃T X̃)−1X̃T Ṽ

]
s.t. X̃ ⊂ Ṽ, |X̃| = t,

which is exactly the same as TED. So TED can be seen as a special case of DED with
YV = In. Alternatively, we may regard DED as a weighted version of TED where the
weights are related to the function scores of the data points. It is easy to see that both
tr(Cf ) and the objective function value of problem (4) do not depend on the signs of
the function scores for all data points. So from the definition of function score given
in (3), if a data point lies close to the decision boundary, its weight will be much larger
than that of another point far from the boundary. A point which lies right at the decision
boundary will have the largest weight. This is in line with the design criteria behind
SVM active learning and batch mode active learning which use the decision function
value as the uncertainty sampling criterion.

Similar to TED, linear DED also has a regularized least squares regression
interpretation.

Theorem 1. Linear Discriminative Experimental Design is equivalent to

min
X,YX,A

n∑
i=1

[
‖yivi − XYXai‖2

2 + λ‖ai‖2
2

]
s.t. X ⊂ V, |X| = t,YX ⊂ YV

A = (a1, . . . ,an) ∈ Rt×n.
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The proof is similar to that of TED and hence we omit it here. From Theorem 1, we
can find that, similar to TED, DED works by selecting representative data points after
weighting them with the function scores. Thus DED can utilize both discriminative
information and data distribution information to select the most informative data points
to label.

3.2 Optimization Procedure

Even though the objective function of DED is similar to that of TED and so, in principle,
we may use an optimization method similar to that in [9] to solve problem (4), here we
choose to use a different optimization method which gives more insight into the nature
of DED and TED.

Let φ(X) and φ(V) denote the data matrices after applying the feature map to each
data point in X and V, respectively. From these we get

KXV = φ(X)T φ(V), KX = φ(X)T φ(X), KV = φ(V)T φ(V).

Since φ(X) and YX are submatrices of φ(V) and YV respectively, we can define a
selection indicator matrix S ∈ {0, 1}n×t such that φ(X)YX = φ(V)YVS. Because
each column of φ(X)YX is from the column of φ(V)YV, the (i, j)th element sij of
S can be computed as

sij =
{

1 if (φ(X)YX),j is from (φ(V)YV),i

0 otherwise

where M,i denotes the ith column of matrix M. Since we need to select t data points
from V, one and only one element in each column of S is equal to 1. Moreover, since
we want to select t distinct data points from V, at most one element in each row of S is
equal to 1. In other words, S consists of t distinct columns of the n×n identity matrix.
So the columns of S consist of an orthogonal basis such that ST S = It. The constraint
set for S can be defined as

CS =
{
S |S ∈ {0, 1}n×t,ST 1n = 1t,S1t ≤ 1n

}
,

or equivalently
CS =

{
S |S ∈ {0, 1}n×t,ST S = It

}
,

where 1m denotes anm× 1 vector of all ones and ≤ refers to the elementwise compar-
ison between two vectors. Then we can get

YVKVXYX = YVφ(V)T φ(X)YX

= YVφ(V)T φ(V)YVS

= YVKVYVS
YXKXYX = YXφ(X)T φ(X)YX

= STYVφ(V)T φ(V)YVS

= STYVKVYVS.
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Thus the objective function in (4) becomes

max
S

tr
[
(λIt + ST K̃VS)−1ST K̃2

VS
]

s.t. S ∈ CS , (5)

where K̃V = YVKVYV. By imposing a constraint on S such that ST S = It, (5) can
be rewritten as

max
S

tr
[(

ST (λIn + K̃V)S
)−1

ST K̃2
VS

]
s.t. S ∈ CS . (6)

The formulation of the objective function in (6) is identical to that of linear discriminant
analysis (LDA) [18], so the optimal solution can be obtained by solving a generalized
eigenvalue problem if there exist no constraints on S.

Here we use a projection method to solve problem (6). That is, we first find the
optimal solution of problem (6) while ignoring the constraints and then project the
optimal solution found to the constraint set CS .

We first solve the problem

max
S

f(S) =
[(

ST (λIn + K̃V)S
)−1

ST K̃2
VS

]
. (7)

According to the analysis in [18], the optimal solution S� consists of the top t eigenvec-
tors of (λIn + K̃V)−1K̃2

V. Let Q = [q1, . . . ,qn] and Π = diag(π1, . . . , πn) denote
the eigenvectors and eigenvalues, respectively, of the matrix K̃V where π1 ≥ . . . ≥ πn.
Then, by using the fact that Q is an n × n orthogonal matrix because Q is the eigen-
vector matrix of a symmetric matrix K̃V, we can get

(λIn + K̃V)−1K̃2
V = (λIn + QT ΠQ)−1QT Π2Q

= (λQTQ + QT ΠQ)−1QT Π2Q

= QT (λIn + Π)−1QQT Π2Q
= QT (λIn + Π)−1Π2Q.

So qi is an eigenvector of (λIn + K̃V)−1K̃2
V with the corresponding eigenvalue as

π′i = h(πi) = π2
i /(λ+ πi).

Then S� consists of t eigenvectors with the t largest eigenvalues in {π′i}. We find that
h(x) is monotonically increasing for x ≥ 0 since h′(x) = x2+2λx

(x+λ)2 ≥ 0 given λ > 0,
and h(x) is strictly increasing when x > 0. So we have π′i > π

′
j when πi > πj ≥ 0 and

S� consists of the top t eigenvectors of K̃V.
We next project S� to the set CS . Note that S� is not a unique optimal solution of

problem (7) since for any orthogonal matrix P ∈ Rt×t we have f(S�P) = f(S�). So
we define the objective function for the projection as

min
P,Q

‖S�P − Q‖2
F

s.t. Q ∈ CS , PPT = It, (8)
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where ‖ · ‖F denotes the Frobenius matrix norm. We simplify the objective function as

‖S�P − Q‖2
F = tr

(
(S�P − Q)T (S�P − Q)

)
= tr(QTQ) + tr(PT (S�)TS�P) − 2tr(QTS�P)
= 2t− 2 tr(QTS�P).

Note that the last equality holds because QTQ = It, (S�)T S� = It and PT P = It. So
minimizing ‖S�P−Q‖2

F is equivalent to maximizing tr(QTS�P) and so problem (8)
is equivalent to the following problem

max
P,Q

tr(QTS�P)

s.t. Q ∈ CS , PPT = It. (9)

However, problem (9) is not convex. Here we use an alternating method to solve it.
Specifically, we first find the optimal solution with respect to Q when P is fixed and
then find the optimal solution with respect to P when Q is fixed.

When P is fixed, the optimization problem with respect to Q is

max
Q

tr(QT S�P)

s.t. Q ∈ {0, 1}n×t,QT1n = 1t,Q1t ≤ 1n. (10)

This problem is to find the t largest elements in S�P where no two elements can be
in the same column or the same row. This is an integer programming problem with
no efficient solution. Based on our observation that the largest elements of different
columns in S� usually lie in different rows, we propose a greedy algorithm for the
problem: we first find the largest element in S�P (if there exist multiple elements that
are the largest, we can choose any one of them) and mark its row and column; then from
the unmarked columns and rows we find the largest one and also mark it; this procedure
is repeated until we find t elements.

When Q is fixed, the optimization problem with respect to P is

max
P

tr(QTS�P)

s.t. PPT = It. (11)

We define a Lagrangian using a symmetric matrix multiplier Λ as

L(P,Λ) = tr(QTS�P) − 1
2
tr(Λ(PPT − It)).

Then the optimal solution (P�,Λ�) satisfies

∂L

∂P
= (S�)TQ − Λ�P� = 0

which leads to Λ� = (S�)T Q(P�)T by right-multiplying (P�)T . Utilizing the fact that
P� is a t× t orthogonal matrix, we get

Λ�(Λ�)T = (S�)T QQTS�.
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Let (S�)T Q = UΣRT be the singular value decomposition (SVD) where U,Σ,R ∈
Rt×t. So

Λ�(Λ�)T = UΣ2UT

and
Λ� = UΣUT

since Λ� is symmetric. Then we can get the optimal P� as

P� = (Λ�)−1(S�)T Q = URT .

The main computational cost includes computing the eigenvectors of K̃ corresponding
to the largest t eigenvalues only one time which costs O(n2t) and SVD for (S�)T Q
which costs O(t3). So the computational cost of our method is O(n2t), which is more
efficient than that of [9] withO(n3) complexity. Moreover, our method provides a better
characterization of the nature of DED. The regularization parameter λ has significant
effect on the optimization procedure of TED in [9] but DED seems to be insensitive to
it. This property is desirable because DED is robust against λ.

4 Experiments

In this section, we study DED empirically and compare its performance with several
active learning methods, which include TED, SVM active learning and batch mode
active learning [19].

We conduct experiments on two public benchmark data sets. The first one is a subset
of the Newsgroups corpus [20], which consists of 3970 documents with TFIDF features
of 8014 dimensions. Each document belongs to exactly one of four categories: autos,
motorcycles, baseball and hockey. The other one is the Reuters data set, which is a
subset of the RCV1-v2 data set [21]. Each document in the Reuters data set belongs to
at least one of four categories: CCAT, ECAT, GCAT and MCAT.

In the experiments, we simply treat the multi-class/label classification problem as
a set of binary classification problems by using the one-versus-all scheme, i.e., doc-
uments from the target category are labeled as positive examples and those from the
other categories are labeled as negative examples. We use area under the ROC curve
(AUC) as the performance measure to measure the overall classification performance,
because in our setting, each binary classification task is unbalanced (only about 25%
of the documents in the Newsgroups data set and about 30% of the documents in the
Reuters data set are positive).

In our experiments, t is set to 5 and all the regularization parameters in DED, TED
and SVM active learning are set to 0.01. We initially have five labeled data points for
each class before active learning starts.

We first test our method on the Newsgroups data set. The AUC values over the four
binary classification tasks are reported in Figure 1(a) to 1(d). From the results, we can
see that on Autos, Motorcycles and Baseball, DED outperforms the other methods in the
early stage. This observation validates the contribution of data distribution information.
When the labeled data is scarce, data distribution information may be more important
than discriminative information since the estimated decision boundary in this stage is
not very accurate.
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Fig. 1. Learning curves for four binary classification tasks on Newsgroups data
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Fig. 2. Learning curves for four binary classification tasks on Reuters data
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Fig. 3. Comparison of two optimization methods for DED on the two data sets. DED(new) uses
the optimization procedure proposed in our paper and DED(alternating) utilizes the alternating
optimization method proposed in [9].

We now compare the four methods on the Reuters data set. The AUC values over
the four tasks are reported in Figure 2(a) to 2(d). For the four categories, DED con-
sistently outperforms the second best by a large margin. This observation validates the
contribution of discriminative information to experimental design.

Moreover, to see the effect of the optimization method proposed in section 3.2, we
compare the performance of DED when using our proposed optimization method and
the one proposed in [9]. The AUC values averaged over four binary classification tasks
of the two data sets are reported in Fig. 3(a) and Fig. 3(b). We can see that the perfor-
mance of our proposed method is better than the one proposed in [9].

5 Conclusion

We have proposed in this paper a novel active learning method which integrates margin-
based discriminative information and data distribution information to define the unla-
beled data selection criterion. As the next step to extend this work further, we will
investigate the integration of active learning and semi-supervised learning to further
improve the performance by exploiting unlabeled data.
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Abstract. In learning to classify streaming data, obtaining the true la-
bels may require major effort and may incur excessive cost. Active learn-
ing focuses on learning an accurate model with as few labels as possible.
Streaming data poses additional challenges for active learning, since the
data distribution may change over time (concept drift) and classifiers
need to adapt. Conventional active learning strategies concentrate on
querying the most uncertain instances, which are typically concentrated
around the decision boundary. If changes do not occur close to the bound-
ary, they will be missed and classifiers will fail to adapt. In this paper we
develop two active learning strategies for streaming data that explicitly
handle concept drift. They are based on uncertainty, dynamic allocation
of labeling efforts over time and randomization of the search space. We
empirically demonstrate that these strategies react well to changes that
can occur anywhere in the instance space and unexpectedly.

1 Introduction

Supervised learning models the relationship between the observed variables of
an instance and the target variable (label). To build a predictor we need to
know the true labels of the training data. Often unlabeled data is abundant
but labeling is expensive. Labels can be costly to obtain due to required human
input (labor cost). Consider, for example, textual news arriving as a stream. The
goal is to predict if a news item will be interesting to a given user at a given
time. The interests of the user may change. To obtain training data the historical
news needs to be read and labeled as interesting or not interesting. This requires
human labor. For instance, Amazon Mechanical Turk1 provides a marketplace
for intelligent human labeling. Labeling can also be costly due to a required
expensive, intrusive or destructive laboratory test. Consider a production process
in a chemical plant where the goal is to predict the quality of production output.
The relationship between input and output quality might change over time due to
constant manual tuning, complementary ingredients or replacement of physical
sensors. In order to know the quality of the output (the true label) a laboratory
test needs to be performed which is costly. Under such conditions it may be
unreasonable to require true labels for all incoming instances.
1 https://www.mturk.com
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Active learning studies how to label selectively instead of asking for all true
labels. It has been extensively studied in pool-based [14] and online settings [6].
In pool-based settings the decision concerning which instances to label is made
from all historical data. In this paper we explore active learning in data stream
settings, where this decision needs to be made immediately for every incoming
instance, as there is no re-access to it. The main difference between online active
learning and active learning in data streams is in expectations around changes.
Online active learning typically fixes a threshold (e.g. an uncertainty threshold)
and asks for the true label if the threshold is exceeded. In data streams the re-
lationship between the input data and the label may change (concept drift) and
these changes can happen anywhere in the instance space. Thus, existing active
learning strategies may never query instances from some regions and thus may
never know that changes are happening and therefore never adapt. Moreover,
in data streams we cannot keep the decision threshold or a region of uncer-
tainty fixed, as eventually the system would stop learning and fail to react to
changes. Finally, active learning with data streams must preserve the incoming
data distribution to the extent that changes could be detected as they happen.

We study active learning strategies specifically for data streams. In brief, the
setting is as follows. Data arrives in a stream, and predictions need to be made
in real time. Concept drift is expected, thus learning needs to be adaptive. The
true label can be requested immediately or never, as the instances are regularly
discarded from memory. Our goal is to maximize prediction accuracy over time,
while keeping the labeling costs fixed within an allocated budget. After scanning
an instance and outputting the prediction for it, we need a strategy to decide,
whether or not to query for the true label so that our model could train itself
with this new instance. Regular retraining is needed due to changes in data
distribution. Active learning strategies in data streams in addition to being able
to learn an accurate classifier in stationary situations, need to be able to

– balance the labeling budget over time;

– notice changes happening anywhere in the instance space;

– preserve the distribution of the incoming data for detecting changes;

In this paper we develop two such strategies, assuming that the adaptive learn-
ing technique is externally given. Experimental evaluation on real data streams
demonstrates that the proposed approaches effectively handle concept drift while
saving labeling costs as we do not need to label every instance. To the best of
our knowledge this study is the first to address active learning for instance-
incremental streaming data (we preclude methods that learn from a stream in
batches) where historical data cannot be stored in memory.

The paper is organized as follows. Section 2 discusses related work. Section
3 presents our active learning strategies for data streams. In Section 4 we ana-
lytically investigate the properties of the proposed strategies. Section 5 presents
experimental evaluation with real streaming data. Section 6 concludes the study.
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2 Related Work

Online active learning has been a subject of a number of studies, where the
data distribution is assumed to be static [2, 6, 10, 19]. As discussed in the
introduction, static online active learning is not designed to handle changes. As
we will demonstrate in our analysis and experiments, existing strategies are able
to handle drifts if changes happen to be gradual and close to the current decision
boundary; however, the reaction to change might be slow. When changes happen
far from the decision boundary, such methods fail completely. Those situations
require advanced strategies, we develop several such strategies in this study.

The problem of label availability in data streams with concept drift has been
acknowledged in several recent works [11, 13, 21, 22]. Most convert a stationary
active learning or a semi-supervised learning method to an online setting by
partitioning a stream into batches and applying stationary strategies within
each batch. These works differ from our study in two major aspects. First, their
strategies require to inspect a batch of instances at a time, thus they need to
assume that limited re-access to data is possible. In contrast, our stream setting
requires to make labeling decisions online at the time of scanning each instance.

Moreover, the existing active learning or semi-supervised learning strategies
only complement concept drift handling strategies, they are not tailored to han-
dle concept drift directly. It is assumed, that the data within a batch is stationary
and the goal is to train an accurate classifier, while minimizing labeling costs.
Adaptation and drift detection is separate. Thus, these techniques help to learn
an accurate current model with fewer labels, but they are not designed to adapt
to changes faster or with fewer labels. If changes happen far from the decision
boundary, they are likely to be missed. In contrast, we tailor active learning to
handle concept drift directly online and search the instance space explicitly.

Parts of some of the literature are conceptually related to our approach. We
highlight these in the remaining part of this section.

The first group uses active learning strategies [16, 17, 24] with batches. Zhu
et al. [24] build a classifier on a small portion of data within a batch at random
and use uncertainty sampling to label more instances within this batch. A new
classifier in each batch is needed to take into account concept drift. Similarly,
Masud et al. [17] use uncertainty sampling within a batch to request labels. In
addition, they use the unlabeled instances with their predicted labels for training.
Lindstrom et al. [16] use uncertainty sampling to label the most representative
instances within each new batch. They do not explicitly detect changes, instead
they use a sliding window approach, which discards the oldest instances. In
summary, these approaches apply static active learning to batches, which is not
possible in data streams where historical instances cannot be stored in memory.

Note that typically (a real) concept drift refers to changes in the posterior dis-
tributions of data p(y|X), where X contains the observed variables and y is the
corresponding target variable. In other words, real concept drift means that the
unlabeled data distribution does not change, only the class conditional distribu-
tions change. In contrast, data evolution refers to changes in the unconditional
distribution of data p(X).
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A few works integrate active learning and change detection [7, 11] in the
sense that they first detect change and only if change is detected do they ask for
representative true labels. However, only a change in p(X) can be handled this
way. We address real concept drift, which means that p(y|X) changes and these
changes cannot be detected without labels. Thus, these works are not solving the
same problem as our approaches. Additionally, they use pool-based strategies.

Another group of works uses semi-supervised learning approaches to label
some of the unlabeled data automatically [13, 21, 22]. Klinkenberg [13] separates
changes in p(X) from changes in p(y|X) and uses existing semi-supervised tech-
niques to label when p(X) drifts, while a separate non active learning strategy
handles changes in p(y|X). Widyantoro and Yen [21] first verify that a concept
is stable and only then apply semi-supervised techniques for labeling. Woolam et
al. [22] first label some instances within a batch at random and then propagate
those labels to other instances using micro clustering. In both works automated
labeling concerns only the subsets of the learning problem, which are assumed to
be stationary (no real concept drift), which does not correspond to data stream
settings we are addressing, thus they are not directly comparable.

Two related studies [4, 23] address a slightly different problem, they assume
that only a part of the data in a stream is labeled and propose a method to learn
from both labeled and unlabeled data. The problem setting is also different from
that of this paper, as they do not perform active learning (active labeling).

A few works are related to the aspect of variable active learning criterion,
which we introduce as a part of our strategies. Attenberg and Provost [2] in-
troduce active inference as an additional aspect of online active learning. They
maintain a budget per time period in a stream setting, while instead of uncer-
tainty they estimate the utility of labeling an instance, which also takes into
account the expected frequency of seeing a particular instance again. It assumes
a possibility of repeated examples. The labeling threshold is fixed, but it depends
on more than just uncertainty. This work is limited to the stationary setting.

Cesa-Bianchi et al [5] develop an online active learning method for a percep-
tron based on selective sampling using a variable labeling threshold b/(b+ |p|),
where b is a parameter and p is the prediction of the perceptron. The threshold
itself is based on certainty expectations, while the labels are queried at ran-
dom. This mechanism could allow adaptation to changes, although they did not
explicitly consider concept drift.

3 Strategies

In this Section we present active learning strategies for data streams. We start
with two basic techniques and discuss their drawbacks. Then we introduce our
strategies in two steps, where each step aims to overcome a challenge posed by
the data stream setting. We start with a formal definition of our setting.
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3.1 Setting

Let Xt be an instance, yt its true label, where t indicates the time when an
instance arrives. X1, X2, . . . , Xt, . . . is then a data stream. The labeling cost is
the same for any instance. We impose a budget B to obtain the true labels,
which is expressed as a fraction of the number of incoming instances. B = 1
means that all arriving instances are labeled, whereas B = 0.2 means that 20%
of the arriving instances are labeled.

Figure 1 shows our framework, that combines active learning strategies with
adaptive learning. In this work we use the change detection technique of [8]:
when the accuracy of the classifier begins to decrease a new classifier is built
and trained with new incoming instances. When a change is detected, the old
classifier is replaced by the new one.

Active Learning Framework

Input: labeling budget B and strategy parameters

1 for each Xt - incoming instance,
2 do if Active Learning Strategy(Xt, B, . . .) = true
3 then request the true label yt of instance Xt

4 train classifier L with (Xt, yt)
5 if Ln exists then train classifier Ln with (Xt, yt)
6 if change warning is signaled
7 then start a new classifier Ln

8 if change is detected
9 then replace classifier L with Ln

Fig. 1. Strategy framework

3.2 Random Strategy

The first (baseline) strategy is naive in the sense that it labels the incoming
instances at random instead of actively deciding which label would be more rel-
evant. For every incoming instance the true label is requested with a probability
B, where B is the budget. See Figure 2 for a formal description.

3.3 Fixed Uncertainty Strategy

Uncertainty sampling is perhaps the simplest and the most common active learn-
ing strategy [20]. The idea is to label the instances for which the current classifier
is the least confident. In an online setting it corresponds to labeling the instances
for which the certainty is below some fixed threshold. A simple way to measure
uncertainty is to use the posterior probability estimates, output by a classifier.
The uncertainty strategy with a fixed threshold is presented in Figure 3.
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Random(Xt, B)

Input: Xt - incoming instance, B -labeling budget.
Output: label ∈ {true, false} indicates whether to request the true label yt.

1 generate a uniform random variable ξt ∈ [0, 1]
2 return ξt < B

Fig. 2. Random strategy

FixedUncertainty(Xt, θ, L)

Input: Xt - incoming instance , θ - labeling threshold, L - trained classifier.
Output: label ∈ {true, false} indicates whether to request the true label yt.

1 ŷt = arg maxy PL(y|Xt), where y ∈ {1, . . . , c} is one of the class labels.
2 return PL(ŷt|Xt) < θ

Fig. 3. Fixed uncertainty strategy

3.4 Variable Uncertainty Strategy

One of the challenges with the uncertainty strategy in a streaming data setting is
how to distribute the labeling effort over time. If we use a fixed threshold after
some time a classifier would either exhaust its budget or reach the threshold
certainty. In both cases it will stop learning and thus fail to adapt to changes.

Instead of labeling the instances that are less certain than the threshold we
would like to label the least certain instances within a time interval. Thus we in-
troduce a variable threshold, which adjusts itself depending on the incoming data
to align with the budget. If a classifier becomes more certain (stable situations),
the threshold expands to be able to capture the most uncertain instances. If a
change happens and suddenly a lot of labeling requests appear, then the thresh-
old is contracted to query the most uncertain instances first.

It may seem counter intuitive that we are asking for more labels at certain
situations and fewer labels at changes. In fact, our dynamic threshold assures
that we are asking for the same number of labels in all situations. This is how
we balance the budget as we do not know when or how often changes will be
happening, so we aim to spend the budget uniformly over time.

The uncertainty strategy with a variable threshold is described in Figure 4.

3.5 Uncertainty Strategy with Randomization

The uncertainty strategy always labels the instances that are close to the decision
boundary of the classifier. In data streams changes may happen anywhere in
the instance space. When concept drift happens in labels the classifier will not
notice it without the true labels. In order not to miss concept drift we would
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VariableUncertainty(Xt, L, B, s)

Input: Xt - incoming instance , L trained classifier, B - budget, s - adjusting step.
Output: label ∈ {true, false} indicates whether to request the true label yt.
Starting defaults: total labeling cost u = 0, initial labeling threshold θ = 1.

1 if (u/t < B)
2 then budget is not exceeded,
3 ŷt = arg maxy PL(y|Xt), where y ∈ {1, . . . , c} is one of the class labels.
4 if (PL(ŷt|Xt) < θ)
5 then uncertainty below the threshold
6 u = u + 1 labeling costs increase,
7 θ = θ(1− s) the threshold decreases,
8 return true
9 else certainty is good

10 θ = θ(1 + s) make the uncertainty region wider.
11 return false
12 else budget is exceeded
13 return false

Fig. 4. Uncertainty strategy with a dynamic threshold

VariableRandomizedUncertainty(Xt, L, B, s, δ)

Input: Xt - incoming instance , L trained classifier, B - budget, s - adjusting step,
δ - variance of the threshold randomization.

Output: label ∈ {true, false} indicates whether to request the true label yt.
Starting defaults: total labeling cost u = 0, initial labeling threshold θ = 1.

1 if (u/t < B)
2 then budget is not exceeded,
3 ŷt = arg maxy PL(y|Xt), where y ∈ {1, . . . , c} is one of the class labels.
4 θrandomized = θ × η, where η ∈ N (1, δ) is a random multiplier,
5 if (PL(ŷt|Xt) < θrandomized)
6 then uncertainty below the threshold
7 u = u + 1 labeling costs increase,
8 θ = θ(1− s) the threshold decreases,
9 return true

10 else certainty is good
11 θ = θ(1 + s) make the uncertainty region wider
12 return false
13 else budget is exceeded
14 return false

Fig. 5. Uncertainty strategy with randomization

like, from time to time, to label the instances about which the classifier is very
certain. For that purpose for every instance we randomize the labeling threshold
by multiplying by a normally distributed random variable that follows N (1, δ).
This way we will label the instances that are close to the decision boundary more
often, but occasionally we will also label some distant instances.
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Table 1. Summary of strategies

Controlling Instance space Labeled Data
Budget Coverage Distribution

Random present full iid
Fixed uncertainty no fragment biased
Variable uncertainty handled fragment biased
Randomized uncertainty handled full biased

This strategy trades off labeling some very uncertain instances for labeling
very certain instances, in order not to miss changes. Thus, in stationary situa-
tions this strategy is expected to perform worse than the uncertainty strategy,
but in changing situations it is expected to adapt faster. The uncertainty strategy
with randomization is presented in Figure 5.

Table 1 summarizes the four strategies with respect to the requirements indi-
cated in the introduction. The random strategy satisfies all three requirements.
Randomized uncertainty satisfies budget and coverage, but it produces biased
labeled data. The variable uncertainty satisfies only budget and the fixed uncer-
tainty satisfies none.

4 Analysis of How the Labeling Strategies Learn

In this section we explore the main learning aspects of the strategies: the abil-
ity to notice changes in dynamic situations and to learn accurate classifiers in
stationary situations. In order to demonstrate the behavior of the strategies in
controlled settings we employ synthetic data in 2D. The data is distributed uni-
formly at random in a square, the distribution p(X) does not change over time,
p(y|X) changes. This data represents a binary classification problem. The initial
decision boundary is set at x1 = x2, as illustrated in Figure 6 (left).

Figure 7 shows how the strategies work on the hyperplane problem. The in-
stances that would be labeled by different strategies are visualized. Each strat-
egy labels the same number of instances. The random strategy labels uniformly
from the instance space, while the uncertainty strategy concentrates around the
decision boundary. The randomized uncertainty infuses randomization into the
uncertainty sampling to cover the full instance space.

change

change

original close change remote change

Fig. 6. Data with changes close and far
from the decision boundary

random fixed unc. rand. unc.

Fig. 7. 20% of the true labels queried
with different labeling strategies
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4.1 Ability to Learn Changes

Let us look at how concept drift is handled by our strategies. We investigate
two situations: a change happening close to the decision boundary, and a re-
mote change. Figure 6 (center and right) presents in black the regions in the
instance space that are affected by a change. The center plot illustrates a change
that happens close to the decision boundary. The right plot illustrates a remote
change. In both examples the number of instances that change is the same.

We analyze how well our strategies would notice those changes. Figure 8 (left
and center) plots the proportion of the changed (black) instances queried by each
strategy. The plots can be interpreted as recall of changes, which is computed
as H = qch/Q, where Q is the total number of queried instances and qch is the
number of queried instances that have their labels changed. In this evaluation we
aim to establish a point in time evaluation thus we do not retrain the classifier
after each instance. The fixed uncertainty strategy is omitted, because it does
not have a mechanism to control the labeling budget. Besides, the fixed uncer-
tainty strategy handles the changes in the same way as the variable uncertainty
strategy, only the budget is handled differently.

Comparing the close and the remote change plots we can see, as expected,
that the random strategy performs equally well independently of where changes
occur. On the other hand, the uncertainty strategy is very sensitive to where
changes occur. If changes occur far from the decision boundary, the uncertainty
strategy completely misses them and it will never know that the classifier contin-
ues making mistakes there. However, the uncertainty strategy captures changes
perfectly well if they occur close to the decision boundary, it scores the best of
all (100%). The randomized uncertainty reacts to the close changes worse than
the uncertainty, but it does not miss the remote changes.

4.2 Learning in Stationary Situations

Active learning strategies in data streams need not only handle changes but also
aid the learning to be more accurate. We compare the strategies in terms of
queried uncertainty, assuming that the most informative instances in station-
ary situations lie closest to the decision boundary. Figure 8 (right) plots the
queried uncertainty by each strategy against the labeling budget. The plot can
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Table 2. Summary of the datasets

instances attributes (nominal + numeric) classes labels

Electricity 45312 8 (1+7) 2 original
Cover Type 581012 54 (44+10) 7 original
Airlines 539383 7 (5+2) 2 original

IMDB-E 120919 1000 2 assigned
IMDB-D 120919 1000 2 assigned
Reuters 15564 47236 2 assigned

be interpreted as recall of uncertainty, the higher the better. We measure it as
U = 1 − uq−minu

max u−minu , where uq =
∑

Xqueried p̂(y|X) is the sum of the posterior
probabilities of all the queried instances, minu and maxu are the minimum and
the maximum possible uq from our dataset.

The plot confirms that the variable uncertainty always queries the most un-
certain instances, thus it is expected to perform well in stationary situations.
The random strategy recalls the least, except for very small budgets, where the
variable randomized uncertainty strategy recalls even less. This happens because
at small budgets the threshold is very small, therefore nearly all randomization
attempts override the threshold and query further away from the decision bound-
ary than random. The variable randomized uncertainty strategy becomes more
effective as the budget increases. Notice, that the higher the budget, the more
similar the performance, since many of the queried instances overlap.

5 Experimental Evaluation

After analyzing our strategies we empirically evaluate their performance along
with the baselines. We compare five techniques: random (baseline), fixed un-
certainty (baseline), variable uncertainty, variable randomized uncertainty, and
Selective Sampling. Our implementation of Selective Sampling is based on [5],
and uses a variable labeling threshold b/(b+ |p|), where b is a parameter and p is
the prediction of the classifier. The threshold is based on certainty expectations,
the labels are queried at random. As they did not explicitly consider concept
drift, we add change detection to the base classifier to improve its performance.

We evaluate the performance on real streaming classification problems. We
use as default parameters s = 0.01 and δ = 1. All our experiments are performed
using the MOA data stream software suite [3]. MOA is an open source software
framework in Java designed for on-line settings as data streams. We use in our
experiments an evaluation setting based on prequential evaluation: each time we
get an instance, first we test it, and if we decide to pay the cost of its label then
we use it to train the classifier.

5.1 Datasets

We use six classification datasets as presented in Table 2. Electricity data [9] is
a popular benchmark in evaluating streaming classifiers. The task is to predict
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a rise or a fall in electricity price (demand) in New South Wales (Australia),
given recent consumption and prices in the same and neighboring regions. Cover
Type data [1] is also often used as a benchmark for evaluating stream classifiers.
The task is to predict forest cover type from cartographic variables. As the
original coordinates were not available, we ordered the dataset using the elevation
feature. Inspired by [12] we constructed an Airlines dataset2 using the raw data
from US flight control. The task is to predict whether a given flight will be
delayed, given the information of the scheduled departure.

IMDB data originates from the MEKA repository3. The instances are TF-IDF
representations of movie annotations. Originally the data had multiple labels
that represent categories of movies. We construct binary labels in the following
way. At a given time we select categories of interest to an imaginary user, the
movies of that category get a positive label. After some time the interest changes.
We introduce three changes in the data stream (after 25, 50 and 75 thousand
instances). We construct two labelings: for IMDB-E (easy) only one category is
interesting at a time; for IMDB-D (difficult) five related categories are interesting
at a time, for instance: crime, war, documentary, history and biography are
interesting at the same time.

The Reuters data is from [15]. We formed labels from the original categories
of the news articles in the following way. In the first half of the data stream
legal/judicial is considered to be relevant (+). In the second half the share listings
category was considered to be relevant. The categories were selected to make a
large enough positive class (nearly 20% of instances had a positive label).

The first three datasets (prediction datasets) have original labels. We do ex-
pect concept drift, but it is not known with certainty when and if changes take
place. The other three datasets (textual datasets) represent recommendation
tasks with streaming data. Every instance is a document in TF-IDF representa-
tion. We form the labels of interest from the categories of the documents.

5.2 Results on Prediction Datasets

We use Naive Bayes as the base classifier for the three prediction datasets. Fig-
ure 9 plots the accuracy of a given strategy as a function of the labeling budget.
Fixed uncertainty is not included in this figure, since it fails by a large margin. In
the data stream scenario it gives around 50%−60% accuracy, which is equivalent
to predicting that all labels are negative.

Our strategies (variable and randomized uncertainty) outperform the baseline
strategies (random in the plots and the fixed uncertainty not in the plots) and
selective sampling as follows. We observe that the variable uncertainty strategy is
the most accurate on the Airlines data and on a large part of the Electricity data.
In stationary situations or when changes happen close to the decision boundary
we expect the variable uncertainty to perform the best. For the Electricity data
the randomized uncertainty and the selective sampling perform well at small

2 Our dataset is available at http://www.cs.waikato.ac.nz/~abifet/active
3 http://meka.sourceforge.net/

http://www.cs.waikato.ac.nz/~abifet/active
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Fig. 9. Accuracies given a budget on prediction datasets

budgets. That is explainable, as at small budgets variable uncertainty samples
only a few instances that are very close to the decision boundary. In such a
case randomized uncertainty helps to capture changes better. But as soon as the
budget increases, variable uncertainty labels more instances and those include
the changes. All the plots exhibit rising accuracy as the budget increases, which
is to be expected. If there was no upward tendency, then we would conclude that
we have excess data and we should be able to achieve a sufficient accuracy by a
simple random subsampling.

On the forest cover dataset, randomized uncertainty outperforms the other
methods. This learning problem is complex (seven classes), and changes may
not happen sufficiently close to the decision boundary, so randomization based
methods are best. At small budgets, selective sampling performs well, and when
budgets get larger its performance is similar to the random strategy. The variable
uncertainty strategy performs well for Airlines, as apparently the data is not
changing. The dataset covers only one month, which is a short period for changes
to become manifest. Thus randomization of querying strategies does not pay off
in this case. Even though more than the minimum number of labels needed, is
requested, randomized uncertainty still outperforms the baselines (random and
fixed uncertainty). This performance is consistent with our expectations.

5.3 Results on Textual Datasets

For textual datasets we use the Multinomial Naive Bayes classifier [18]. The
classification tasks in these textual datasets are hard and often the results are
close to the majority vote, which would mean no recommendation is given by
a classifier. Therefore we are interested in balanced accuracy of the classifiers,
which is given by the geometric mean GA = (A1 × A2 × . . . Ac)1/c, where Ai

is the testing accuracy on class i and c is the number of classes. Note that the
geometric accuracy of the majority vote classifier would be zero, as accuracy on
the classes other than the majority would be zero. The accuracy of a perfectly
correct classifier would be one. If the accuracies of a classifier are balanced across
the classes, then the geometric accuracy would be equal to the normal accuracy.

Figure 10 presents the geometric accuracies of the three textual datasets.
There are several implications following from these results. First, the strategies
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that use a variable threshold (selective sampling, variable uncertainty, and ran-
domized uncertainty strategy) outperform the fixed threshold strategies (fixed
uncertainty), as expected in the data stream setting. Second, the strategies with
randomization mostly outperform the strategies without randomization, which
suggests that the changes that occur are far from the decision boundaries and
there is a justified need for querying tailored to data streams rather than con-
ventional uncertainty sampling. That supports our strategies. Note that as the
selective sampling strategy is implemented in our experiments using change de-
tection, it shows good performance on these datasets. However, there is always
at least one of the new strategies that outperforms it.

On IMDB-E the random strategy performs the best, while on IMDB-D our
randomized uncertainty is the best. This different performance can be explained
by the nature of the labels. In IMDB-E one category forms the positive label.
These categories do not overlap much, as, for instance, science fiction and sports
may have little in common. Thus, the decision boundary changes completely
and the change occurs far from the decision boundary. Therefore the random
strategy is optimal. That is consistent with our simulation findings. In IMDB-D
five categories make a positive label at a time. With a larger space for positive
labels it is also likely that there is shared vocabulary in the interests before and
after the drift. Thus, the drift happens closer to the decision boundary and thus
our randomized uncertainty strategy performs better than the fully random one,
which is also in line with our reasoning behind the strategies. The randomized
uncertainty strategy performs best on the Reuters data as well, while variable
uncertainty comes second. The changes that are happening may not be that far
from each other, the concepts before and after the drift may be related.

In the textual datasets we know exactly where the concept drift points are.
The progress of the accuracies (prequential) of our strategies and their behavior
around the change points Figures 11 and 12. In this active learning experiment
we use a fixed 20% budget.

From Figure 11 we can clearly see that when more changes happen, the base-
line fixed uncertainty fails to react. The variable uncertainty eventually reacts,
but slowly. That demonstrates the need for labeling across all the instance space.

In Figure 12 we closely inspect the behavior with Reuters data. At the start
of learning (left) the strategies that use randomization (random and randomized
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uncertainty) learn faster. This happens because simple uncertainty strategies
learn a classifier from a few points and this classifier becomes very confident
about its own predictions and does not require to learn further. At the stable
situation (middle) the strategies without randomization perform better than the
strategies with randomization, as expected. There are no changes, thus random-
ization can be seen as a waste of labeling effort. Fixed uncertainty performs well
in stable situations, provided its threshold is set appropriately. At change we see
that the strategies with randomization react faster than expected. We also see
that the fixed uncertainty strategy fails to adapt. The results at change justifies
the need for variable thresholds and randomization of labeling efforts.
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5.4 Efficiency

These active strategies reduce the time and space needed for learning, as the
classifiers are trained with a smaller number of instances. We can see these active
learning strategies as a way to speed up the training of classifiers: only using
30% or 40 % of the instances we may get only a small decrease on accuracy. For
example, in our experiments, labeling all instances (B = 1), we see an increase of
5% for the Electricity dataset, 12% for the Cover Type dataset and no increase
for the Airlines dataset. On textual data, we obtain an increase of 12% points
on the Reuters data set and no change on the IMDB datasets. These results
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show that these strategies may be a good way to speed up the training process
of classifiers.

We introduced new strategies for active learning tailored to data streams
when concept drift is expected. Different strategies perform best in different
situations. Our recommendation is to use the variable uncertainty strategy if
mild to moderate concept drifts are expected. If significant drifts are expected
then we recommend using randomized uncertainty. In practice we find that drifts
can be captured reliably even though the assumption of i.i.d. data is violated.

6 Conclusion

We proposed active learning strategies for streaming data when changes in the
data distribution are expected. Our strategies are equipped with mechanisms to
control and distribute the labeling budget over time, to balance the labeling for
learning more accurate classifiers and to detect changes.

Experimental results demonstrate that the new techniques are especially effec-
tive when the labeling budget is small. The best performing technique depends
on what changes are expected. Variable uncertainty performs well in many real
cases where the drift is not that strongly expressed. If more significant drift is ex-
pected (as in the textual experiments) then the randomized uncertainty prevails,
since it is able to query over all the instance space.

This work can be considered as the first step in active learning in the data
stream setting. An immediate extension would be to place a grid on the instance
space and maintain individual budgets for each region. In such a case it should
be possible to dynamically redistribute the labeling budget to the regions where
changes are suspected.
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Abstract. Celebrity Watch is an automatically-generated website that
presents up-to-date entertainment news from around the world. It demon-
strates the application of many pattern analysis methods that allow us to
autonomously monitor millions of news articles and hundreds of millions
of references to people mentioned in them. We apply statistical methods
to merge references into people, track their association to various topics
of news, and generate social networks of their co-occurrences in articles.
From this sea of data we select the forty most-relevant people and dis-
play them on the website, offering users a highly condensed view of the
latest in entertainment news. The site updates itself throughout the day
and is the final step in a large, fully-autonomous system that monitors
online news media.

Keywords: news mining, statistical inference, trend detection, social
networks, entertainment news.

1 Introduction

In this paper we present Celebrity Watch, which is a website that delivers the
latest entertainment news from the perspective of the people who appear in it.
It is an entirely automated system that updates itself many times per day and is
able to detect people who are currently ‘trending’.1 Figure 1 shows the website,
which is accessible online at http://celebwatch.enm.bris.ac.uk/.

The website has sections dedicated to those people who are trending today,
as well as to those who are trending this month. In the first case we see people
who are mentioned in breaking entertainment news, while in the second we see
the most popular celebrities of the moment.

Associated with each person are a selection of timeline views depicting their
media activity in recent history. Each person also has an automatically inferred
social network, which allows users to browse those who are most connected to
them, as seen in online news.

1 The term ‘trending’ is taken from Twitter (http://www.twitter.com), and refers to
a sudden increase in usage of a term on their website.
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Fig. 1. An image of the main page of Celebrity Watch, centred on Kate Middleton’s
social network (taken on 2nd May 2011)

Celebrity Watch is the result of an autonomous software pipeline that collects
articles from over one thousand online news outlets. The pipeline extracts and
resolves references to people mentioned in these articles using statistical methods
and multiple sources of information. Our system currently monitors over 15
million English-language articles and tracks over 36 thousand people. A key
challenge of building such a system is extracting a meaningful signal of sufficient
quality from a large volume of data, while allowing fast and easy access to the
latest changes in the world.

News articles are collected for a whole range of topics, and their statistical
association to each person is automatically monitored. This allows us to detect
interesting people—those whose association to entertainment news is suddenly
increasing—and report them to the world immediately. Note that ‘entertain-
ment’ is just a parameter in the construction of this website; in actual fact we
could change this to ‘sport’ or ‘business’ to generate a similar site with a different
focus.

We should reiterate that the entire pipeline is automated. It collects and la-
bels articles by their topic, extracts and resolves references to people, monitors
their association to entertainment news, detects interesting changes in their as-
sociation, generates social networks, and updates itself throughout the day. All
of this without human intervention.

This paper briefly outlines the components of our software pipeline that con-
tribute to the operation of Celebrity Watch. It is updated at regular intervals
every day and can be accessed online at http://celebwatch.enm.bris.ac.uk/.

http://celebwatch.enm.bris.ac.uk/
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2 Methods

Celebrity Watch is generated as a result of many software modules that interact
via a number of databases. Online news websites are monitored by a multi-
threaded spider, which downloads and parses news feeds in order to populate
a database of articles. Much of our data-collection system is already described
elsewhere [5], so we omit full details here.

References to named entities are extracted using GATE [3], prior to applying
large-scale entity matching using multiple sources of information [1].

The result of these steps is a set of over 36 thousand people linked to over 15
million articles, all of which is automatically processed. In the following section
we outline how we infer the topic of a person and how we track their association
to entertainment news such that we can immediately detect changes in it. We
then explain how social networks are generated, before briefly explaining how
we rank articles and geo-locate them.

Topic Tracking: We track the statistical association between named entities the
topics of news with which they are associated. This is measured using the odds
ratio [2]. All entity–topic associations are tracked using a set of exponentially
weighted moving averages. Each of these decays with half-lives of one day, one
week, one month, or one year; the fast-decaying averages reflect media activity
of a person at the present moment, while the slow-decay ones reflect long-term
trends in any media topic. Large increases in association of a person to any topic
is typically evidence of a new story about them. We detect such increases, or
trends, by comparing moving averages.

Celebrity Watch is generated many times each day and its focus is dedicated
to only 40 people: the top 20 movers today as compared to this week, and the
top 20 movers this month as compared to this year. Our infrastructure allows
us to generate a list of the biggest movers within any topic of news, within a
few seconds. The remaining steps collect other information from our systems to
bring this information together to form Celebrity Watch.

Social Networks: Social networks are generated based on co-occurrences be-
tween people seen in entertainment articles. We first construct a master network
that considers co-occurrences between people mentioned in entertainment arti-
cles seen in the past 30 days. This network is filtered using the χ2 test of in-
dependence, so that only the most significant connections are maintained. This
step takes under 10 minutes and is run once per day.

We further filter this network to include only the 40 people of interest at
present, as well as those who are within two steps of them in the network. This
step takes a few seconds and ensures that the site remains focused on the most
interesting people of the moment.

Assembly and Presentation: Final steps in the production of Celebrity Watch
include the addition of the most recent articles that mention each person. These
are ranked according to where in the article a person is mentioned. Only the
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title and summary of each article is displayed, along with a link to the source
web page. In addition, we use extracted locations from the text of each article
to geo-locate them, to display on the site map.

3 Discussion and Conclusions

The barrage of information delivered on the web is unlikely to slow down, so we
need ways to reduce this data overload and focus our attention on that which
is most interesting to us. In this case we have presented a digest of the most
interesting news by presenting a handful of people of interest, discovered among
millions of possibilities.

It demonstrates what can be achieved by integrating multiple machine learn-
ing and text mining technologies into a unified, autonomous system. Our ap-
proach contrasts with existing systems, [4], [6], in that it presents news stories
by detecting the people who are most interesting in the world at present.

Further steps could leverage our natural tendency to process emotions asso-
ciated to news and social relations. We intend to add to the social aspect of the
site, so that users may browse the news from a social perspective, and better
map to our socially-orientated brains.

Acknowledgements. We would like to thank Simon Price and Ben Joyner of
the University of Bristol Institute for Learning and Research Technology, for
their work on the web site front-end.
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Abstract. Massive Online Analysis (MOA) is a software environment
for implementing algorithms and running experiments for online learning
from evolving data streams. MOA is designed to deal with the challeng-
ing problems of scaling up the implementation of state of the art algo-
rithms to real world dataset sizes and of making algorithms comparable
in benchmark streaming settings. It contains a collection of offline and
online algorithms for classification, clustering and graph mining as well
as tools for evaluation. For researchers the framework yields insights into
advantages and disadvantages of different approaches and allows for the
creation of benchmark streaming data sets through stored, shared and
repeatable settings for the data feeds. Practitioners can use the frame-
work to easily compare algorithms and apply them to real world data
sets and settings. MOA supports bi-directional interaction with WEKA,
the Waikato Environment for Knowledge Analysis. Besides providing al-
gorithms and measures for evaluation and comparison, MOA is easily
extensible with new contributions and allows for the creation of bench-
mark scenarios.

1 Introduction

In data stream scenarios data arrives at high speed strictly constraining pro-
cessing algorithms in space and time. To adhere to these constraints, specific
requirements have to be fulfilled by the stream processing algorithms, that are
different from traditional batch processing settings. The most significant require-
ments are the following: process an example at a time, and inspect it at most
once; use a limited amount of memory; work in a limited amount of time; and
be ready to predict at any time.

Stream learning algorithms are an important type of stream processing algo-
rithm: in a repeated cycle, the learned model is constantly updated to reflect the
incoming examples from the stream. They do so without exceeding their mem-
ory and time bounds. After processing an incoming example, the algorithms are
always able to output a model. Typical learning tasks in stream scenarios are
classification, regression, clustering, and frequent pattern mining.
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MOA is an open-source framework for dealing with massive evolving data
streams. It is the first data mining software designed specifically for data streams
to include multi-label classification and graph mining methods, in addition to
regular classification and clustering methods [3].

Our stream learning framework provides a set of data generators, algorithms
and evaluation measures. Practitioners can benefit from this by comparing sev-
eral algorithms in real world scenarios and choosing the best solution. For re-
searchers our framework yields insights into advantages and disadvantages of dif-
ferent approaches and allows the the creation of benchmark streaming data sets
through stored, shared and repeatable settings for the data feeds. The sources
are publicly available and are released under the GNU GPL license.

Only two other open-source data streaming packages exist: VFML and a
RapidMiner plugin. The VFML (Very Fast Machine Learning) [4] toolkit was the
first open-source framework for mining high-speed data streams and very large
data sets. It was developed until 2003. VFML is written mainly in standard C,
and contains tools for learning decision trees (VFDT and CVFDT), for learning
Bayesian networks, and for clustering.

The data stream plugin (formerly: concept drift plugin) [5] for RapidMiner
(formerly: YALE (Yet Another Learning Environment)), is an extension to Rapid-
Miner implementing operators for handling real and simulated concept drift in
evolving streams.

MOA is built on experience with both WEKA and VFML. The main advan-
tage of MOA is that it provides many of the recently developed data stream
algorithms, including learners for multi-label classification and graph mining. It
also contains a graphical interface, and the software is built using object-oriented
techniques. Generally, it is straightforward to use or to extend MOA.

2 Experimental Framework

MOA is written in Java. The main benefits of Java are portability, where ap-
plications can be run on any platform with an appropriate Java virtual ma-
chine, and the strong and well-developed support libraries. Use of the language
is widespread, and features such as automatic garbage collection help to reduce
programmer burden and error.

MOA contains stream generators, learners and evaluation methods. Figure 1
shows the MOA graphical user interface. However, a command line interface is
also available. Considering data streams as data generated from pure distribu-
tions, MOA models a concept drift event as a weighted combination, or mixture
distribution, of two pure distributions that characterize the target concept be-
fore and after the drift. The mixing proportion for the “after” concept smoothly
increases from zero to one inside a user-defined window around the time point
of change. The increase follows a sigmoid function, an elegant and practical
solution [2].

MOA streams can be built using generators, reading ARFF files, joining sev-
eral streams, or filtering streams. Most of the data generators commonly found
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Fig. 1. MOA Graphical User Interface

in the literature, are provided: Random Tree Generator, SEA Concepts Gen-
erator, STAGGER Concepts Generator, Rotating Hyperplane, Random RBF
Generator, LED Generator, Waveform Generator, and Function Generator.

MOA contains a range of classification methods such as: Naive Bayes, Stochas-
tic Gradient Descent, Perceptron, Hoeffding Tree, Adaptive Hoeffding Tree, Ho-
effding Option Tree, Bagging, Boosting, Bagging, and Leveraging Bagging.

For clustering [6], MOA contains several stream clustering methods such as
StreamKM++, CluStream, ClusTree, Den-Stream, and CobWeb. Dynamic vi-
sualization of cluster evolution is available, as depicted in Figure 2.

Fig. 2. Visualization tab of the clustering MOA graphical user interface
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Two recent extensions to MOA are multi-label classification and graph min-
ing. In multi-label classification, instead of a single class-label, each example can
be associated with multiple labels. Multi-label classification has seen consider-
able development in recent years, but so far most of this work has been carried
out in the context of batch learning where train-then-test or cross-fold valida-
tion evaluations are typical. MOA implements multi-label stream generators and
several state of the art methods: ECC Ensembles of classifier-chains, and EPS
Ensembles of Pruning Sets, Multi-label Hoeffding Trees, and multi-label adaptive
bagging methods.

MOA also contains a framework for studying graph pattern mining on
time-varying streams [1]. All methods work on coresets of closed subgraphs,
compressed representations of graph sets, and maintain these sets in a batch-
incremental manner, but use different approaches to address potential concept
drift. MOA implements IncGraphMiner, WinGraphMiner and AdaGraph-
Miner.

2.1 Website, Tutorials, and Documentation

MOA can be found at: http://moa.cs.waikato.ac.nz/ The website includes
a tutorial, an API reference, a user manual, and a manual about mining data
streams. Several examples of how the software can be used are available. We are
currently working on extending the framework to include data stream regression,
and frequent pattern learning.

Acknowledgments. This work has been supported by the UMIC Research
Centre, RWTH Aachen University, Germany.
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Abstract. We present L-SME, a system to efficiently identify loosely structured
motifs in genome-wide applications. L-SME is innovative in three aspects. Firstly,
it handles wider classes of motifs than earlier motif discovery systems, by sup-
porting boxes swaps and skips in the motifs structure as well as various kinds of
similarity functions. Secondly, in addition to the standard exact search, it supports
search via randomization in which guarantees on the quality of the results can be
given a-priori based on user-definable resource (time and space) constraints. Fi-
nally, L-SME comes equipped with an intuitive graphical interface through which
the structure for the motifs of interest can be defined, the discovery method can
be selected, and results can be visualized. The tool is flexible and scalable, by al-
lowing genome-wide searches for very complex motifs and is freely accessible at
http://siloe.deis.unical.it/l-sme. A detailed description of the
algorithms underlying L-SME is available in [1].

1 Introduction

Transcriptional control is a crucial mechanism for gene regulation, in which certain
proteins, called transcription factors, bind near genes to activate or inhibit the tran-
scription of genetic information from DNA to RNA. Transcription factors are known
to have special affinity for short DNA regions called binding sites, which occur several
times in the same genome and which are conserved in evolution over different organ-
isms [5]. Thus, singling out the regions that are over-represented in suitably selected
sets of DNA sequences provides us with insights on the biological functions played by
the corresponding macromolecules [3]. These regions are called motifs in the literature.

Several discovery methods and tools have already been conceived to identify motifs
conforming to some model templates that capture the similarities of diverse binding
sites, and which are fixed by the biologist who is willing to corroborate his hypothesis
on the co-regulation of some given genes. In its basic form, a model template is just
the specification of a length l for sequences of DNA basis (called boxes); thus, a motif
conforming to such a template is precisely a sequence of l basis that is frequently re-
peated over the genome at hand. More complex model templates, instead, are supported
in a few state-of-the-art systems—see, e.g., the comparative analysis by [1]—in order
to look for motifs (i) that are made of several boxes at a given distance over the gene
(called gap) from one another [2,6,3], and (ii) that may be partially conserved in the
repetitions, since mismatches are allowed.

In this paper, the L-SME motif discovery tool is presented. In addition to support-
ing classical model templates, the tool allows to specify box swaps and skips as well
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Fig. 1. Illustration of model templates and instances

as various similarity functions to handle mismatches, all of them being variabilities of
interest in the context of analyzing eukaryotic transcription [4,7]. In order to handle
wider classes of model templates than existing systems while still guaranteeing scala-
bility over genome-wide applications, L-SME is founded on specialized data-structures
and advanced computational methods supporting both exact and randomized searches.

2 Motif Discovery Problem

In state-of-the-art discovery tools, a motif template p̂ can be viewed as a tuple 〈l1, d1, l2,
d2, ..., dr−1, lr〉, where li indicates the length of the i-th box, dj indicates the length of
the gap separating the j-th and the (j + 1)-th boxes, and r is the number of boxes—
actually, both li and dj can be (possibly degenerating) intervals of the form li =
[min li : max li] and dj = [min dj : max dj ]. A pattern instance p for p̂ is a
string p = bl1 X(d1) bl2 X(d2)...X(dr−1) blr , where bli are strings, the length of bli
is in the range [min li : max li], andX(dj) is a sequence of dj special (“don’t care”)
symbols X with length in the interval [min dj : max dj ]. We say that the instance p
occurs in a DNA sequence s if there is a substring s′ of s that matches with p, i.e., such
that the Hamming or Levenshtein distance between each box in p and the corresponding
sequence of symbols in s′ is below a given threshold (denoting the number of allowed
mismatches). Eventually, the motif discovery problem over a set of DNA sequences is
to find all the instances for p̂ that occur in at least Q of them, where Q is the quorum
considered appropriate by the biologist for the application at hand.

As an example, over the sequences depicted in Figure 1(a), AAG is the only solution
for Q=2, for a model template made by one box of exactly three symbols, and when no
mismatches are allowed. As a further example, a more complex template composed of
two boxes separated by one irrelevant symbol is shown in Figure 1(b) together with an
instance for it occurring in s3.

3 System Functionalities

L-SME is a tool for motif discovery supporting various innovative functionalities, under
various different perspectives.

(1) Supported-Templates Perspective: The tool deals with a wider class of model tem-
plates than those discussed in Section 2. Indeed, in addition to those elements, L-SME
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Fig. 2. Screenshots of L-SME

supports two further variabilities clearly emerged from recent studies [4,7]. Specifically,
L-SME allows patterns to be matched with some given strings even though:

[Box skips] up to a certain user-definable number of boxes is not preserved at all. E.g.,
Figure 1(c) shows a pattern instance with three boxes matching with s2 provided
one box skip is allowed.

[Box swaps] the relative positions of two consecutive boxes is inverted, where users
may specify the maximum number of allowed inversions. E.g., Figure 1(d) shows
a pattern instance matching with s1 provided one box swap.

Moreover, differently from current systems, which are designed to deal with one fixed
similarity function only (either Hamming or Levenshtein distance), the similarity func-
tion to be used with L-SME can be freely selected by the biologist.

(2) Algorithmic Perspective. Given the need to handle wide classes of templates while
guaranteeing scalability over genome-wide applications, L-SME supports search via
randomization, in which a-priori guarantees on the quality of the results can be given
based on user-definable resource (time and space) constraints. Randomization is based
on using sketches to store pattern occurrences. Specifically, users can trim two normal-
ized coefficients δ and ε to indicate the amount of space to be used for each sketch
and the range of tolerance admitted over the accuracy of the solutions, respectively.
Higher values reduce time/space requirements but also results quality guarantees. For
δ = ε = 0, the randomized approach degenerates to the exact search.

(3) Interfacing Perspective. Given the wide range of parameters handled by L-SME, its
user interface is carefully designed so as to simplify the setting-up phases of biologi-
cal experimentations. In fact, differently from most of the other tools in the literature,
L-SME is equipped with a web-based interface where both the process of specifying
the model template with the parameters of interest, and the navigation of results can be
carried out in a visual and interactive manner. In particular, for each motif that is dis-
covered, L-SME allows the user to visualize its occurrences over the input sequences,
which is often very helpful for the biologist.
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Table 1. Binding sites information for UASH and URS1H in Saccharomyces cerevisiae. Here
ORF stands for Open Reading Frame.

Gene # ORF Gene ID Mapped Site for UASH Gap Mapped Site for URS1H

1 YDR285W ZIP1 GATTCGGAAGTAAAA 5 TCGGCGGCTAAAT
2 YER044C-A MEI4 TCTTTCGGAGTCATA 8 TGGGCGGCTAAAT
3 YER179W DMC1 TTGTGTGGAGAGATA 17 AAATAGCCGCCCA
4 YHR014W SPO13 TAATTAGGAGTATAT 4 AAATAGCCGCCGA
5 YNL210W MER1 GGTTTTGTAGTTCTA 22 TTTTAGCCGCCGA
6 YHR153C SPO16 CATTGTGATGTATTT 96 TGGGCGGCTAAAA
7 YHR157W REC104 CAATTTGGAGTAGGC 74 TTGGCGGCTATTT
8 YLR263W RED1 ATTTCTGGAGATATC 173 TCAGCGGCTAAAT
9 YMR133W REC114 GATTTTGTAGGAATA 179 TGGGCGGCTAACT
10 YOR351C MEK1 TCATTTGTAGTTTAT 179 ATGGCGGCTAAAT
11 YIL072W HOP1 TGTGAAGT -323 ATGGCGGCTAAAT

(4) Computation Perspective. Finally, since motif discovery is a computationally inten-
sive task, L-SME is designed to incrementally produce results. In fact, each request is
immediately answered with an url where discovered results are visualized as soon as
they are discovered by internal algorithms, and remain available for some days.

Example Usage. As an example of the results that can be obtained with our system,
coupled with a Z-score analysis, we consider here the Saccharomyces cerevisiae, for
which several (single) transcription factors are well-known, with some of them being
recognized to cooperatively regulate the corresponding genes. For instance, the tran-
scription factors URS1H and UASH are involved in early meiotic expression during
sporulation and are known to cooperate for the expression of 11 genes. Table 1 sum-
marizes the genes involved, the transcription factors and the relative positions, which
were annotated by biologists and confirmed by our system. The negative gap reported
for HOP1 indicates that, in this gene, the relative positions of the two factors are actu-
ally swapped w.r.t. all the other genes; this occurrence would not be derived without the
support of box swaps and, hence, in current systems available in the literature.
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Abstract. It has been demonstrated repeatedly that combining multiple
types of image features improves the performance of learning-based classi-
fication and regression. However, no tools exist to facilitate the creation of
large pools of feature extractors by extended teams of contributors.

The MASH project aims at creating such tools. It is organized around
the development of a collaborative web platform where participants can
contribute feature extractors, browse a repository of existing ones, run
image classification and goal-planning experiments, and participate in
public large-scale experiments and contests.

The tools provided on the platform facilitate the analysis of experi-
mental results. In particular, they rank the feature extractors according
to their efficiency, and help to identify the failure mode of the prediction
system.

Keywords: pattern recognition, image features, collaborative design.

1 Introduction

Research in Artificial Intelligence has historically focused on two diverse ap-
proaches each with their own advantages: Symbolic methods which allow the
hand-design of rich prior knowledge under the form of large sets of formal rules,
and statistical methods which can cope with the unpredictability and the ran-
domness of real-world situations.

At a crossroads between these two approaches, it has systematically been
shown that increasing the complexity of learning systems, for instance by com-
bining algorithms developed independently by different groups of experts is a
successful strategy. The Netflix challenge was ultimately won by combining mul-
tiple predictors, developed by different teams [1]. In object recognition, state-of-
the-art performances are attained by combining multiple feature extractors, with
simple learning techniques, e.g. [2]. Our own experiments on the INRIA pedes-
trian data set show that using a Boosting learning scheme in conjunction with
multiple feature extractors, as opposed to solely the best, leads to a reduction
in error rate from 0 1% to 0 0.3%.

Despite this evidence and the admitted long-term goal of machine learning to
produce systems dealing with versatile real-world challenges, no tools have been
invented for the design of complex learning architectures by extended teams
of people. Though tools such as version control systems or general modeling
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methods facilitate some classical aspects of development, for which modular and
deterministic specifications can be drafted, the heart of a learning system re-
quires a statistical and redundant approach. While it may be possible to predict
from the formal definition of a learning method some crude aspects of its be-
havior, such as convergence or robustness to over-fitting, it is extremely difficult
to foresee its performance on real data. This fog of machine learning requires a
systematic experimental evaluation to an extent which is not handled properly
by existing software development tools and methodologies.

2 The MASH Platform

In order to address this structural complexity, we have developed a framework,
centered around a web platform, to study the collaborative design of very large
families of feature extractors (see figures 1 and 2).

We call “heuristic” an algorithm that computes a feature vector at any scale
and location in an image, and possesses a persistent state (see figure 3). This
definition is general enough to allow classical pre-processing from the computer
vision world, such as edge detectors, color histograms, SIFT, HOG, LBP, etc.
and leads to a clear and simple specification as a C++ class implementing a few
methods. The persistent state is irrelevant to image classification, but is used
for goal-planning with POMDP, one of the target applications of the project.

Participants to the project may download a multi-platform Software Devel-
opment Kit (SDK) which allows them to develop and test MASH heuristics on
their Linux, Microsoft Windows, or Mac OSX machine. The platform gives users
access to documentation, including screen-cast tutorials, regarding the function-
ality of the web platform itself as well as the development of the heuristics. The
platform is further equipped with a forum and private messaging which allow
user interaction and communication.

Registered users are able to upload heuristics to the platform which are then
stored in those users’ “private spaces” and are accessible only by them. The plat-
form allows these contributors to run experiments which provide an evaluation

Fig. 1. The MASH platform at http://mash-project.eu

http://mash-project.eu
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Input image
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Heuristic
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Predictor "Racoon"

Fig. 2. Feature extraction and processing of the resulting signal

...

Sequence

Fig. 3. A heuristic is an image feature extractor with a persistent state

of the quality of a contribution without public exposure; these experiments are
run remotely on the platform’s servers, thus freeing the users’ personal compu-
tational resources.

A contributor can at any moment move heuristics to the public space, in which
case they become visible, are included in the large-scale public experiments which
aim to develop complex state-of-the-art systems, and can also be re-used by
any other contributor under an open-source license. Feature extractors already
public include well-known methods (e.g. HoG, LBP), as well as novel methods
developed on the framework. The source code of all public heuristics is available
under the GPL v2 license.

The system tests performances on three families of applications : image clas-
sification, object detection, and goal-planning in a simulated environment (remi-
niscent of modern 3D video-games) and with a real robotic arm. Experiments are
run concurrently on multiple machines and the platform aggregates the results in
a synthetic manner. It highlights the strengths and weaknesses of the up-to-date
resulting trained predictors, and returns to the user a number of quantitative
and qualitative evaluations of the results, such as the raw accuracy of a trained
classifier, or samples of the worst mistakes on the test data-set (see Fig. 1, right).
The standard interaction between a contributor and the platform is to alternate
between private experiments to try “new ideas”, and public experiments in which
their heuristics aid machine learning modules in their identified shortcomings.
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3 Contests

In addition to the usual tasks the platform addresses, the web platform also
periodically holds contests where registered users can compete on a specific task
and data-set.

At the moment, the website is running a three-track contest on image classi-
fication based on the CIFAR data-set [3]. We have for each track trained with
Boosting a strong predictor composed of N stumps – the tracks corresponding to
N = 0, N = 100 and N = 10, 000 respectively – using all the heuristics we have
already implemented. For each new heuristic participating in the contest, the
system runs 100 additional iterations of Boosting, and computes the gain in test
error, which is used as the performance measure for that contesting heuristic.

The best heuristic in each track will be selected every month, and added to the
pool of heuristics used to train the strong classifiers, which will be subsequently
re-trained. Beyond competing with fellow users and aiming to win a prize which
will be offered to the “best” feature extractor, users have the opportunity to
contribute to the ongoing development of a sophisticated state-of-the-art classi-
fication system. The system’s current trained classifier for the CIFAR data-set
already attains state-of-the-art performance and aims to surpass this with the
contributors’ help.

4 Conclusion

We advocate the need for a new research domain investigating complex learning
systems. In order to develop a unified and centralized artificial intelligence, able
to deal with the real world’s versatility and complexity, we will first have to
develop the requisite, and novel, tools for hand-designing such architectures by
hundreds or even thousands of contributors.

The MASH platform is a first initiative in this direction. It targets architec-
tures combining large sets of feature extractors with standard learning proce-
dures. It allows multiple contributors to combine their efforts, it hosts multiple
algorithms and runs multiple experiments transparently to assess performance
continuously on multiple tasks.
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Abstract. Our demonstration consists of a working activity and gait recognition
system, implemented on a commercial smartphone. The activity recognition fea-
ture allows participants to train various activities, such as running, walking, or
jumping, on the phone; the system can then identify when those activities are
performed. The gait recognition feature learns particular characteristics of how
participants walk, allowing the phone to identify the person carrying it.

1 Overview

We implemented a system for activity and gait recognition for the Google Android
OS c©, which runs on smartphones from a variety of manufacturers. During our demon-
stration, we will allow participants to try out the various features, either demonstrating
the phone’s ability to recognize a pre-programmed set of activities (running, jogging,
jumping, or walking), or the phone’s ability to learn the characteristics of a participants’
gait, or style of walking, and showing that the phone can later recognize that partici-
pant. Activity and gait recognition using wearable sensors are active research topics [see
8, 1, 9, for example]. Unlike previous work, we do not require specialized wearable sen-
sors or careful placement of the phone on the participant’s body. Our application works
when the phone is simply placed in a trouser pocket. Additionally, the computation re-
quirements for training these systems are prohibitive for real-time demonstrations, and
in many cases even the classification requires more computation that can be afforded
on a mobile device such as a smartphone. Our system was designed with computational
efficiency in mind, and can both learn classifiers and perform classification in real-time
on a low-powered mobile device.

The demonstration will be interactive, and participants will be asked to perform dif-
ferent activities, with the classification results displayed on a separate monitor for ev-
eryone to see.

2 Background

The activity and gait recognition systems are based on an algorithm called geometric
template matching (GTM) [5] for comparing segments of time series. GTM operates
by first building models, or templates, from short segments of labeled univariate time
series, such as that collected by accelerometer sensors. These models are constructed
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Fig. 1. An example of a time-delay embedding for a sequence of data collected from an ac-
celerometer while a subject was riding a bicycle. The colours are purely for illustrative purposes
and show that similar-looking segments of time series appear in similar regions of the embedded
model.

using a technique called time-delay embedding, which is an approach developed in the
nonlinear dynamical systems community for reconstructing dynamical models from
measurements of some latent nonlinear system [6]. To compute the time-delay embed-
ding for a sequence of measurements o1, . . . , oN , one choses a lag parameter τ and a
reconstruction dimensionm, and then constructs the sequence ofm-dimensional points:

xi = (oi, oi+τ , oi+2τ , . . . , oi+(m−1)τ ),

for i = 1, . . . , N − (m − 1)τ . The model, then, consists of points, each composed of
m τ -lagged samples of the data. The choice of m and τ are important, and while there
are heuristics for choosing these values [3, 7], we have found that standard machine-
learning approaches to parameter tuning, such as cross-validation and grid search are
most effective. In addition, GTM is fairly robust with respect to the parameters, and
values that work well for one problem (identifying running, for example), tend to work
well for other problems (identifying biking or walking, for example). Figure 1 depicts
the process of time-delay embedding for a segment of accelerometer data collected from
an accelerometer sensor while a subject rode a stationary bicycle. It is clear from the
embedding that, although the data is nonstationary, the periodic element is captured,
and regions in the time-series that appear qualitatively similar are mapped to nearby
points in the embedding.

The second step of GTM is to compare a new segment of time series to existing
models. To do this, the new time series is projected into the embedding space and then
a measure of similarity is computed by considering pairs of subsequent points as vectors
and then computing a measure of similarity between the vectors representing the new
time series and their nearest neighbours in the model. As a result, GTM computes a
measure of similarity between the new time series and each of the models, and these
similarity scores can be used to find the model that most closely matches the new time
series, or as features for a more complex classifier. We have used these features to train
an SVM [4] for classifying activities, and used the model with the highest similarity
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score for gait recognition [5]. In both cases, we achieve accuracies that exceed the
performance of state-of-the art systems at a lower computational cost.

The advantages of GTM over other approaches for comparing segments of time se-
ries, such as dynamic time warping (DTW) [2] include its computational efficiency
(O(n logn) to compute each similarity score, as opposed to O(n2) for DTW), and the
fact that it can compare segments of different lengths.

3 Implementation

We have implemented a system for building models and performing classification for
accelerometer data collected on mobile phones that run the Google Android OS c©.
Due to the efficiency of the GTM algorithm, our system is able to build new models
and perform classification in real-time on the phone without drastically reducing the
battery life of the phone. The application that we will demonstrate provides an interface
for collecting labeled training data from subjects, and for sending live classification
results to a separate laptop for visualisation. The phone does not need to be affixed in
a special way to the body of the subject, and can be placed in a trouser pocket. We
intend to demonstrate two systems, one for recognizing particular activities, and one
for recognizing individuals based on their gait1.

For activity recognition, we will pretrain the phone with a number of activities that
can be safely performed indoors without additional equipment, such as running, walk-
ing, jogging, and jumping up and down. Participants will then be asked to perform these
activities, one at a time, while carrying the phone in their pocket. The classification will
be performed on the phone, but to allow other participants to view the results, we will
stream them wirelessly from the phone to a separate laptop that will display the results.
In the event that participants come up with activities that we haven’t thought to pretrain
the phone with, the participants will be able to demonstrate the new activity while car-
rying the phone, and the phone will learn the new activity. Then, this new activity will
be included in the set of activities that the phone can recognize.

For gait recognition, participants will be asked to walk with the phone for approx-
imately 15 seconds, while the phone builds a model of their gait. The phone will be
pretrained with the gait from 4 other subjects. The participant will be asked to walk
again with the phone, and the phone will attempt to classify the particular person that
is carrying it from the 5 current models. As with the activity recognition, the results
will be streamed to a laptop, allowing others to view the results. As more participants
perform the task, we will use their stored gaits, rather than the pretrained gaits.

4 Conclusion

We propose to demonstrate a state of the art activity and gait recognition system. The
demonstration will be interactive, allowing participants to try out the systems, and the

1 Given the nature of the data that the phone will be collecting, participants will be asked to
sign a consent form. This demonstration will be performed in accordance with the McGill
University Research Ethics Board, and our Certificate of Ethical Acceptability of Research
Involving Humans will be clearly displayed. Any data that is collected will be anonymous,
and will not be associated with any personally identifying information.
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results will be displayed in real-time for other to see. These types of systems are typ-
ically evaluated in controlled environments, using special-purpose sensors, and often
the processing is computationally expensive and done offline at a later time. This demo
is interesting in that it uses consumer-grade mobile phones, does not require them to
be carefully placed on a participant, and the processing is all done in real-time on the
phone. There are many industrial applications for these types of systems, such as health-
care monitoring, fitness, and biometric security, making this demonstration appealing
to both academic researchers and industry practitioners.

Additionally, the software is open-source and publicly available2, and so participants
that are interested in evaluating the system on their own can install the software on their
own phones.
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Abstract. We present a framework for interactive visual pattern min-
ing. Our system enables the user to browse through the data and pat-
terns easily and intuitively, using a toolbox consisting of interestingness
measures, mining algorithms and post-processing algorithms to assist in
identifying interesting patterns. By mining interactively, we enable the
user to combine their subjective interestingness measure and background
knowledge with a wide variety of objective measures to easily and quickly
mine the most important and interesting patterns. Basically, we enable
the user to become an essential part of the mining algorithm. Our demo
currently applies to mining interesting itemsets and association rules,
and its extension to episodes and decision trees is ongoing research.

Keywords: MIME, Pattern Exploration, Interactive Visual Mining.

1 Introduction

Data mining is an inherently iterative process; the results of one analysis often
lead to new questions, requiring more analysis. In an ideal world, this process
is streamlined. That is, data mining is not only iterative, but also interactive:
the user can give such feedback immediately, and easily browse the results. In
traditional pattern mining, however, algorithms typically produce large amounts
of patterns, many of which are not interesting to the user [8], and the results are
typically only given in a flat text file, making it hard to analyze the results. By
instead providing an iterative and interactive process, the user would be able to
explore and refine the discovered patterns on the fly.

In this demo, we present a framework in which we allow the user to interac-
tively mine a database for interesting itemsets and association rules. Our system
visualizes all patterns discovered so far, yet, importantly lets the user interac-
tively explore and dynamically modify these in an intuitive manner [2,9]. By
the visualization, users can browse through the mined data more easily and so
quickly discover important information. Essentially, in our framework visualiza-
tion strengthens the interactive mining process, and vice versa.

Basically, our framework, MIME (Making Interactive Mining Easy), draws
from user knowledge and interest to improve the collection of patterns discov-
ered by the mining algorithms, by letting the user take control during the mining
process, and allowing to adapt the results and so create useful collections of pat-
terns. To assist the user, MIME offers an extensive toolbox of interestingness
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measures, mining techniques and visualizations. Using these, the user can eas-
ily identify and remove uninteresting or redundant patterns, extend or reduce
existing patterns, or apply various post-processing techniques. As such, in our
framework the user becomes an essential part of the mining algorithm.

2 Description of the System

We consider transactional (supermarket) databases where a transaction contains
a number of items. Here, a pattern is an itemset or an association rule [7].

Most pattern mining techniques produce an amount of output that due to
size is difficult to post-process. One could try to reduce the number of results by
making the quality thresholds more strict. Unfortunately this does not guarantee
the usefulness of the produced patterns. To this end, more is required.

MIME combines the knowledge of the expert and the computational strength
of a computer to increase the probability of finding interesting patterns. This
is achieved in a visual framework where the expert can create his own pattern
collection. In order to evaluate the created/mined patterns, MIME implements
many interestingness measures. This way the user can select a number of mea-
sures that are important for his purpose/domain. These measures improve the
knowledge of the user. Our tool also contains a number of standard mining and
post-processing algorithms such as Eclat and Apriori. The mining algorithms
can be used to construct a starting set of patterns a user can play with and can
further construct his collection of useful patterns from.

Fig. 1. MIME Workflow

The overall workflow of MIME is shown in Figure 1. Data is read from a
database file and can be used by a user or by mining algorithms to create rules
and itemsets. From the created patterns a user can make a decision which pat-
terns are useful, based on the provided interestingness measures. The user may
also apply post-processing algorithms to the created collection of patterns.
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An important aspect of MIME is the way in which the user interacts with the
current state of the system. All interactions made by the user have a direct im-
pact on its current state (i.e. the items, itemsets and association rules). Thereto
MIME contains 4 different panes a user can interact with: the source dock, the
work dock (or workspaces), a toolbox and the global overview. The source dock
visualizes items in the dataset. All items are ranked in decreasing order based on
an active interestingness measure. The work dock shows mined patterns. Pat-
terns can be altered, deleted, expanded, etc. The toolbox contains measures,
mining algorithms and post-processing algorithms which can be applied. The
global overview provides more general information about the workspaces.

All information provided by MIME is computed on-the-fly. When selecting
new measures from the toolbox, it computes the corresponding ranks of the dis-
covered patterns and shows them as soon as they are available. Extending or
reducing patterns also reflects in an immediate recalculation of the applied mea-
sures. The nature of any-time algorithms applies to our framework in the sense
that partial information is shown when available. Therefore, we have made exten-
sive use of caching and threading in our system. Using caching, MIME minimizes
the number of computations that are made by reusing previously computed in-
formation. Threading is used to compute information in the background.

An important feature is the Best Pattern Extension. This feature allows the
user to immediately see the individual impact of remaining items on an exist-
ing pattern, i.e. a pattern is repeatedly extended by one of the remaining items
in the dataset and the ranks (based on the active measure) are computed and
shown in the source dock, again using rank decreasing order. Other functionali-
ties for generating patterns based on existing patterns, are the generation of all
subsets, subsets of given size, closed supersets, etc. Mining algorithms can also
use discovered patterns to filter the mining output. All these features (including
mining and post-processing algorithms) provide the user with a toolbox for easy
and fast generation of possibly useful patterns.

From the workflow notice the External nodes indicating the use of exter-
nal/plugin functionality in the tool. In order to provide a widely applicable and
easily extensible tool, we have equipped our tool with a plugin system, such
that existing mining and post-processing algorithms can be used. The produced
patterns are automatically loaded into the MIME framework.

A demonstration video introducing the basic functionalities of MIME can be
found on the webpage of our research group1.

3 Related Work

A lot of work has been done comparing and evaluating different objective inter-
estingness measures [6,10]. In our tool several objective interestingness measures
have been incorporated, but it is the combination of user-knowledge and objec-
tive measures enabling subjective interestingness criteria to be applied.

1 http://adrem.ua.ac.be/mime
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Also in the context of Inductive Databases several interactive constraint-based
mining frameworks have been studied [3]. Our framework could be built on top
of such an inductive database implementation.

Most similar to the system presented here, Ankerst et al. proposed a frame-
work for mining decision trees [1]. The user and computer work together in
this process such that in each step either the user can make the decision for a
new split or the computer can make this decision. The computer also provides
extra computational power by showing the best split, look-ahead information,
purity measures etc. Our approach is similar, but applies to frequent itemsets
and association rules, instead of decision trees.

Some methods for visualizing patterns exist [4,5]. These visualizers present
the output of mining algorithms in a compact and graphical format, and allow
to further filter the output using queries. They do not provide means to mine the
database interactively using subjective criteria and also do not allow to further
explore existing patterns.
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Abstract. In this work we present InFeRno, an intelligent web pornog-
raphy elimination system, classifying web pages based solely on their
visual content. The main characteristics of our system include: (i) a
powerful vector space with a small but sufficient number of features that
manage to improve the discriminative ability of the SVM classifier; (ii)
an extra class (bikini) that strengthens the performance of the classi-
fier; (iii) an overall classification scheme that achieves high accuracy at
considerably lower runtime costs compared to current state-of-the-art
systems; and (iv) a full-fledged implementation of the proposed system
capable of being integrated with ICAP-aware web proxy cache servers.

1 Introduction

Despite the usefulness and ease-of-access to a plethora of information scattered
on the web, the Internet has become a hostile environment for unprotected people
like children. Pornography is considered as sensitive information that is believed
to be harmful for some groups of people. In the course of autonomously discrim-
inating and blocking access to such content, Forsyth et al [1] was the first to
implement a system comprising a figure grouper that inferred the existence of
nude human figures. However, a disadvantage of this method is its high process-
ing time; typically it takes about 6 minutes to process a suspect image [2], that
makes it impractical in real-world applications. Wang et al. [3] proposed another
pornography elimination system called WIPETM, which employed Daubechies
wavelet analysis and extraction of invariant central moments.

Pornography filtering has also recently been applied to web searching upon
user queries request. For instance, Rowley et al [4] have proposed a method for
identifying nude images which has been part of GoogleTM safe search. Also, Hu
et al. [5] proposed a system to recognize pornographic web pages by using both
text and images information. It employs a combination of discrete and continuous
text classifiers, a nearest-neighbor image classifier, as well as a method for fusing
both kind of information. Similarly, the POESIA project [2] is an open-source
system for blocking pornography, which applies a combination of image and
harmful-symbol filtering and also text classification via NLP techniques.

In this work we present InFeRno, an intelligent web pornography elimination
system, classifying web pages based solely on their visual content. The main
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Fig. 1. InFeRno architecture

characteristics of our system include: (i) a powerful vector space with a small
but sufficient number of features that manage to improve the discriminative
ability of the SVM classifier; (ii) an extra class (bikini) that strengthens the
performance of the classifier; (iii) an overall classification scheme that achieves
high accuracy at considerably lower runtime costs compared to current state-of-
the-art systems; and (iv) a full-fledged implementation of the proposed system
capable of being integrated with any ICAP1-aware web proxy cache server.

2 System Architecture

The InFeRno core is implemented as an ICAP module, capable of communicating
with any ICAP-enabled HTTP proxy software (see Fig 1). Client requests for web
objects (pages or images) are forwarded to the proxy infrastructure which then
delegates them to the InFeRno module. The latter first checks its local cache for
an existing classification result. If one is found, it is returned to the client via the
HTTP proxy; in the opposite case, InFeRno needs to fetch the requested object
from the remote web server and classify it. For individual images, the result is
returned to the client once the classification is over. In the case of web (html)
pages, InFeRno further prefetches and classifies in parallel all (or a sample of)
images referenced in the page code, then fuses the individual results to produce
an overall classification for the web page. As image fetching and classification is
done in parallel, the time required to classify a web page is very close to the time
required to classify the “hardest” of its images (the overhead of the subsequent
fusion step is in the order of a few milliseconds). Along with the caching of
fetched objects and classification results, our system adds a slight overhead (of
on average no more than 2”) in user-perceived web page loading times.

InFeRno can classify and filter content at various levels, at the discretion of
its administrator: (i) at the web page level, it produces assessments for complete
web pages (including all referenced images) and can deny access if the page is
deemed pornographic (returning an appropriate error page to the client), and
(ii) at the image level, it can allow web pages to be rendered at the client, but
deny access to individual images if they are deemed pornographic (returning
a blurred out version of the image). The administrator can further tweak the

1 ICAP stands for Internet Content Adaptation Protocol and is described in RFC 3507
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acceptance thresholds for the amount of pornographic content being permitted
per web page, thus allowing for an even more flexible configuration. The system
core can also be integrated with other services, such as email scanner daemons,
network firewalls, etc., providing image classification and porn filtering to a
diverse array of end-user applications. Last, InFeRno can be configured either to
not log client info so as to achieve a certain level of anonymization and privacy,
or for full logging as an extra deterrent against illicit content access.

3 Classification System

Skin detection. InFeRno employs a simple rule-based skin color detection
technique which uses deterministic rules imposing relations between the R, G
and B color channels [6]. As experiments have shown, this technique provides
a satisfactory performance. However, it provides many false positives in the
presence of either excessive illumination or of objects with skin-like color. For
this reason, we have used an adaptive Gamma correction method, that eliminates
the effect of this phenomenon and further improves the overall performance.

Contour extraction. In order to extract the contour of human nudes, we
have followed a geometric approach, presented in [7], that uses a region splitting
scheme. Initially, the image plane is partitioned into four equal quadrants. Sub-
sequently, the corresponding skin and non-skin pixel intensity histograms in each
quadrant are first found, and then two measurements are calculated: the skin to
non-skin ratio and the kurtosis. Next, we decide to further split a region if both
of the above measures exceed two predefined thresholds, estimated via extensive
experimentation with diverse datasets. The outer corners of the last constructed
connected split-regions are regarded as control points which are finally used to
establish the convex hull and localize the Region of Interest (ROI) in the image.

Feature extraction and Classifier. The next step is to extract a set of fea-
tures regarding the size, orientation, and content of the contour that has been
estimated previously. We have selected to calculate 15 such features, which are:
– Mean values and variances of the RGB color channels of all non-skin pixels.
– Ratio of the total skin and non-skin pixels delimited by the contour.
– 7 invariant spatial Hu moments of the surface.
– The angle of the diameter of the convex hull.
The above features are combined to form a feature vector space, which is

used next for classifying images. We have selected the Support Vector Ma-
chine (SVM) as a classifier, using an one-against all scheme and simple lin-
ear kernels, thus avoiding any free parameters. An innovation of our classifica-
tion scheme is that we have considered one more class apart from pornographic
and non-pornographic: the bikini class of people wearing bikinis, swimsuits, and
so forth. Experiments have shown that introducing this third class manages
to significantly not only increase the total performance of the classifier, but
also strengthen its decision. Furthermore, the bikini class can optionally act as
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Fig. 2. Operation and performance of InFeRno

an extra level of nudity (a softer version of “porn”) recognized by the system.
Fig 2(a) shows an example of the basic processing steps of our system.

For training the multi-class SVM, we have created a dataset of 5680 images
(660 pornographic, 700 bikini and 4320 assorted benign images), that have been
manually labeled. Using 10-fold cross validation we tested our classifier and
received an accuracy of 98 %, 97 % and 98.8 % for our three classes, respectively.
Last, Fig 2(b) depicts the time required to classify single images by both our
system and the POESIA image classifier. Due to our system architecture and
selected feature set, InFeRno achieves an equally high accuracy classification,
but at a portion (more than a 4× speedup) of the time required by POESIA.
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Abstract. MetaData Retrieval (MDR) is a software module for the enrichment
of geo-referenced maps with metadata. Metadata are annotations on spatial lo-
cations that are taken from the Volunteered Graphical Information projects like
OpenStreetMap and GeoNames.

The MDR user acts with a user-friendly GUI, a Query By Example in which
the user specifies in a multi-dimensional data model the spatial objects for which
new information are searched for. The request is translated into SQL queries for
the database and in web service requests for OpenStreetMap and GeoNames.
Downloaded annotations are checked and compared with the history for dupli-
cate elimination. Annotations are presented to the user in the context of an in-
teractive, geo-referenced map and in a hierarchical, ontological structure, that is
a facility for indexing and browsing. On demand, an annotation is stored in the
system history. Finally, the user can filter the annotations that characterize a spec-
ified area by a statistical filter that compares the annotation frequency with the
neighborhood.

1 Introduction to MDR and Comparison with Related Works

The natural disasters require territory monitoring. SMAT is a distributed system for ter-
ritory monitoring by means of Unmanned Aircraft Vehicles (UAVs). A UAV is equipped
with payload sensors that download video of the target territory in the system.

The system should support the work of multiple operators. The operators can pro-
vide additional maps with annotations, metadata and accompanying files extracted from
external sources (such as the web).

The software prototype that we describe in this paper is MetaData Retrieval (MDR).
It is a geo-spatial web service integrated in the SOA architecture of the SMAT sys-
tem. The main focus of MDR is to provide additional information on the locations
included in cartographic maps, referred to as metadata. The availability of up-to-date
cartographic maps is one of the main motivations of MDR because the maps get soon
outdated. In addition, cartographic maps are often thematic and do not contain all the
information that is needed by any user. On the contrary, there exists on the web a large
amount of information on the geographical areas generated by Volunteered Graphic In-
formation (VGI) projects by the everyday experience of people and by the integration of
different cartographic databases: OpenStreetMap [3] (a free editable map of the whole
world) and GeoNames [2] (the description and definition of over eight million named
locations).
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From this viewpoint, MDR is an innovative work because it integrates the infor-
mation from VGI in a territory surveillance project by means of UAVs. For territory
monitoring there is the need to retrieve and present the history of the annotations on a
certain area of interest, to interactively explore the annotations by category, time, spatial
object and compare them with the current status of the area. This exploratory interaction
makes emerge easily the differences between the current geographical area and the past.
This procedure is not present in VGI projects like LinkedGeoData [1] which work on
the ontology for the annotations but do not provide a temporal view of the annotations
in a selected area.

The information on locations is checked by MDR to be in a well-formed format and
not redundant w.r.t. the history (i.e., containing no duplicates). In addition, annotations
can be filtered by the user with a statistical filter that is based on the assumption of
spatial auto-correlation. Significant annotations are those ones whose frequency in the
area is an anomaly w.r.t. the frequency distribution in the neighborhood. In this way,
it gives a characterization of the selected area and guarantees an increased level of
reliability against noise and users errors. In this respect MDR is again a novelty w.r.t.
the state of the art. For instance, [4] searches for frequent patterns in annotations but it
does not filter annotations by outlier detection. [5] characterizes an area with a selection
of the spatial features but it is much more difficult to tune because it considers three
nested areas and user defined thresholds.

2 MDR Description

MDR is based on the annotations present in OpenStreetMap (OSM) and GeoNames.
OSM maps are made up of three basic elements that form an ontological description:
nodes, ways and relations. Each element has an arbitrary number of properties (tags)
which are key-value pairs: ’key’ represents a broad concept; ’value’ is a specialization
(like in key=historic; value=monument). A node represents a map feature or a stan-
dalone entity: it consists of the latitude and longitude of the location in the geocentric
coordinate system, the user name who provided the data, a time-stamp and of additional
feature attributes specified by key-value pairs.

GeoNames provides location descriptions which consist in the official name, a gen-
eral description, demographic data, images, etc. Similarly to OSM, it provides a set of
web services that provide an XML file with the annotations of the selected area.

Figure 1 is a screen-shot of MDR with its main output: an annotated, interactive car-
tographic map. The left-hand side of the window displays a tree-like arrangement that
helps the user to index and browse the annotations. They are ordered first by location,
then by retrieval time and finally by category (key). Each annotation on the left corre-
sponds to an icon that can be correctly geo-referenced in the map on the right. The tree
is navigable: the user can choose a specific spatial object, a point in time and a specific
annotation category in the tree. As a consequence the relative annotations are correctly
positioned on the map. If the user chooses a specific annotation from the list, a message
box opens showing descriptive information on the location.
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Fig. 1. Interactive map with annotations from the
historical database

Fig. 2. Software architecture for MDR

2.1 Architecture Description

In order to accomplish the SMAT project goals, SOA is the suitable architectural choice
because it allows the integration of different independent systems and services. Proba-
bly the best known spatial web services are Google Maps/Earth. In MDR, however, we
chose to use open source software components (like Geoserver, OpenLayers for map
visualization and development and PostGIS for the spatial database) that adopt open
standards. Figure 2 shows the software architecture.

Any user’s request to MDR searches for the metadata of some specified spatial ob-
jects. The spatial objects are involved in some of the facts contained in the system,
general-purpose, multi-dimensional data model. In the case of the demo, the data model
represents UAVs missions that are stored in the SMAT system database. The missions
facts are described by the following, independent dimensions: UAV, sensor, target, air-
port, mission execution time, metadata time, space (spatial coordinates).

In MDR a user-friendly GUI allows the user to specify for which spatial objects
involved in missions the annotations are requested. It is a sort of Query By Example
which shows each dimension and allows the selection of any combination of dimensions
values that allows the identification of the spatial objects of interest. The value selection
is performed in a smart way because a drop-down list is presented with meaningful
values. As regards the output annotations, the user can specify by a drop-down list the
maximum distance (in Km) allowed between the spatial objects and the nearby locations
whose annotations will be displayed. The dimension constraints generate a specification
in an Abstract Specification Language (ASL) whose meaning is: Retrieve the metadata
associated to the specified spatial objects involved in the missions satisfying all the
constraints.

The MDR compiler translates the ASL query into a set of SQL queries for the
database: the first type of SQL query retrieves the spatial objects satisfying the mission
constraints and returns the spatial coordinates of the locations necessary to perform a
web service request to OSM and GeoNames. The second query returns the metadata
already stored in the system database for the same spatial objects. The complexity of
the generation of a SQL query is linear in the number of constrained dimensions, being
them independent as dimensions of a data warehouse star schema.
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The answer of OSM and GeoNames is constituted by an XML file for each spa-
tial object. Each file is parsed and the identified tags are presented in the output page
grouped by category and ordered by time. Figure 1 presents the results for a query ask-
ing the annotations around the bridges over the river Po in Torino. Annotations show
the historic monuments as well as other categories (railway, highway) and the categories
corresponding to public services (like parkings, shops, amenities).

3 Geographic Characterization

We describe here how we obtain the content characterization of a geographical area. The
characterization occurs in terms of the concepts corresponding to the tag categories pro-
vided as annotations. The filter consists in the extraction of the tags that are significant
by a statistical validation method. It compares the frequency of each tag encountered in
the given area, with the frequency distribution of the tags of the same category in the
surrounding geographical areas.

We sketch the way in which we draw the sample from which we generated the fre-
quency distribution. We build a regular grid composed of a total of 49 cells, surrounding
the central area. All the cells of the grid have equal surface area of the central, target
cell: thus in any cell each tag category has the same probability to appear. The frequency
of each tag category appearing in the central cell is collected also in all the neighbor-
hood areas: their distribution in the neighborhood is generated and compared with the
frequency in the central cell. We perform a standard, statistical test on the frequency
of each category with a very low significance level (α = 0.001). The frequencies of
the tag categories in the central area that are outliers of the frequency distribution in
the surrounding areas are highlighted as the interesting ones because surprising. In fact,
given the property of spatial auto-correlation of the features, most of the tag categories
are expected to occur also in the neighborhood with a frequency similar to the central
cell. The tags that are selected are: (i) the tags on which the majority of the users agree;
(ii) the tags that characterize the area because discriminate it with the surroundings.
As an example for the central area of Torino, significant tags result the fountains, the
restaurants, the tram stops, the bicycle rental sites which confirm the characterization
of the touristic area in contrast with the residential neighbourhood.
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Abstract. Due to the nature of textual data the application of association rule
mining in text corpora has attracted the focus of the research scientific commu-
nity for years. In this paper we demonstrate a system that can efficiently mine
association rules from text. The system annotates terms using several annotators,
and extracts text association rules between terms or categories of terms. An addi-
tional contribution of this work is the inclusion of novel unsupervised evaluation
measures for weighting and ranking the importance of the text rules. We demon-
strate the functionalities of our system with two text collections, a set of Wikileaks
documents, and one from TREC-7.

1 Introduction

Association Rule Mining (ARM) is a well-researched field of data mining. Rules can
help to uncover hidden or previously unknown associations. A rule in the form of
A => B, denotes an implication of element or item B by item A. Association rules
have successfully been used in a wide range of domains, e.g., market basket analysis,
law enforcement, biotechnology.

Lately, the benefits of applying ARM to text have appeared in query refinement and
applications in text search and has become an objective of vital interest to the area of
text mining and the practitioners of the field. Text Association Rule Mining (TARM)
faces new challenges with respect to the volume of the data and the number of distinct
items. Another major challenge is the interpretation of the rules as well as the evaluation
and ranking of these rules according to their importance.

In this paper we address those issues, and we present the text rule mining testbench
(TRUMIT). Our system implements all the stages of TARM, namely pre-processing, the
actual mining of rules, and thorough analysis and visualization of the generated rules.
We give a special focus on the pre-processing, and more precisely on the annotation
step. We integrate a range of different annotation types including simple tokenization
and matching, part-of-speech (POS) tagging, named entity recognition (NER), or more
advanced types of semantic annotation based on the WordNet1 and the OpenCalais2 cat-

1 http://wordnet.princeton.edu/
2 http://www.opencalais.com/
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egories. The input text may be filtered according to the different annotation types. After
pre-processing, the system allows for Frequent Pattern Mining (FPM) via the Hadoop
Map Reduce framework before we extract the actual rules. Finally, we integrate exis-
tent, but also new, evaluation metrics for the extracted text rules. The system provides
an easy-to-use interface for inspecting the generated rules, which may also function as
a search interface for the respective collection.

2 Text Association Rule Mining

In its original form, association rule mining discovers regularities in data [1]. We con-
sider a set of transactions D = {d1, d2, ..., dn}, each transaction di ∈ D comprises a
set of items, i.e., di = {i1, i2, ..., im}. We also denote with I the set of all distinct items
ij that may occur in any transaction di ∈ D. Any subset Im ⊆ I is called an itemset.

In our context we denote a text document as Ti which belongs to a document col-
lection T ; we define as D the set of all text sentences. The set of all possible items
of a transaction is the set of distinct terms T . Additionally, we create a second level
of items, comprising all of the annotations A of all terms tj ∈ Ti. Examples of such
annotations may be Person, Date, or Company, which generates category rules of the
form Person => Company, or Company => Date. Extraction of such rules unfolds
the meaning of Bill Gates => Microsoft, or Google => 1998. We include annotations
provided by OpenCalais and we consult the WordNet thesaurus to annotate nouns with
their respective domain terms. However, the system’s architecture allows for easy inte-
gration of new annotation plug-ins. An example category rule, by including WordNet
domain terms, could be Animal => Company, which might denote the information that
Company conducts animal experiments in the life sciences domain.

With regards to related work, an approach for activity and emotion rule mining is
presented in [3]. The authors mine simplified rules from a large collection of blog en-
tries based on multiple minimum support. A tool to mine maximal association rules is
introduced in [2]. A limited set of named entities is used for association rule mining.
Experiments are performed on collections up to 10.000 documents. Another toolkit for
TARM is presented in [4]. The authors worked on ARM in temporal document collec-
tions, and extended previous work by performing mining based on semantics, as well
as by studying appropriate evaluation techniques. The focus was on the temporal aspect
of the extracted rules. Scalability issues were not taken into account to a satisfactory
extent.

To the best of our knowledge there does not exist a tool that includes all of the main
TARM stages, shown in Fig. 1, which are included in our system. Existing tools are
either not focused on text, or lack a capable user interface, or they cannot offer generic
annotation integration, or are not competitive in terms of scalability. We aim to satisfy
all of these requirements.

3 TRUMIT: Text Rule Mining Testbench

TRUMIT comprises four distinct processing stages, shown in Fig. 1. All intermediate
results are stored on disk making it easier to work with large scale collections. In the
following we will describe the processing stages of TRUMIT.
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Fig. 1. Overview of the system including its four processing stages

Text annotation: This stage integrates a wide range of annotation plugins based on
Apache UIMA. Currently, the following annotator types are supported: language anno-
tator, open calais annotator, POS annotator, Stanford NER annotator, Wordnet domain
annotator3, maui keyword annotator4, lexical emotion annotator, and Wikipedia miner
annotator5. For reasons of simplicity in the figure we only demonstrate two of the used
annotators (WordNet and OpenCalais). The system architecture at this stage is general
enough to host any other annotator for the pre-processing step, through Apache UIMA.

Annotation filtering: At this second stage, we allow for flexible filtering of annotations
by the user. Filtering is possible according to certain POS tags, entities, keywords or any
other annotation technique used in the pre-processing step.

Frequent pattern mining and rule generation: The output of the filtering stage can
subsequently be used for frequent itemset generation. To this end, a Hadoop job for
the fp-growth implementation of the Apache Mahout6 library is started and, either com-
puted locally or sent to a map reduce cluster. In this way we can guarantee the com-
putation without being restricted to the hardware configuration of the client machine.
From the result of the map reduce job we generate rules and assign scores based on rule
interestingness or evaluation criteria that our system supports. Currently, the system
includes confidence, support, semantic relatedness, and similarity variance.

Rule evaluation: Once the text association rules are computed and scored, in this fi-
nal stage we provide an interactive way to the user of browsing and analysing them.
Through component, the rules can be sorted according to the evaluation criteria de-
scribed previously. We also provide means to easily search for documents matching
certain rules. We show an example of how category rules can be mapped to rules based
on text only in Fig. 2.

3 http://nlp.stanford.edu/software/CRF-NER.shtml
4 http://code.google.com/p/maui-indexer
5 http://wikipedia-miner.sourceforge.net/
6 http://mahout.apache.org
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Fig. 2. TRUMIT user interface

4 Demonstration

In this demo we will show the full workflow by the example of the cablegate collection
which is currently released by wikileaks. To this end we will illustrate how annotation
can be performed with a range of plugins. Further we show the integration of both
local rule generation and the map reduce framework for frequent pattern mining. We
will show the benefits of additional evaluation measures for text association rules by
example. Additionally, we will show analysis of rules which were computed offline for
the 500.000 document TREC7 ad-hoc collection. The demonstration shows that our
testbench offers a helpful tool integrating state-of-the-art libraries and technologies in
its back-end.
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1 Introduction

The widespread use of GPS devices on cars enables the collection of time-dependent
positions of vehicles and, hence, of their movements on the road network. It is possible
to analyze such huge collection of data to look for critical situation on the traffic flow.
The offline analysis of traffic congestions represents a challenging task for urban mo-
bility managers. This kind of analysis can be used by the traffic planner to predict future
areas of traffic congestions, or to improve the accessibility to specific attraction points
in a city. Many traffic systems adopt ad-hoc sensors like cameras, induction loops, mag-
netic sensors to monitor the status of the traffic flows: these systems are very expensive
for installation and maintenance, and they are restricted to the local monitoring of the
road arcs where they are installed. On the contrary, the use of GPS data to check the traf-
fic conditions requires low installation costs (a part for the installation on the vehicle)
and it enables to virtually monitoring the entire road network.

In this demo we present an innovative tool that exploits the data collected from GPS-
enabled cars to detect the occurrences of traffic jams on the road network. The detection
of potential traffic jams is based on the discovery of slowly moving flock patterns, i.e.
a set of objects slowly moving together for a minimum amount of time [2,1,5]. The
tool has been integrated in the M-Atlas system [4,7] exploiting the implementation
of the T-Flock algorithm provided by the system. To the best of our knowledge this
is the first system that uses GPS data, combined with flock mining, to detect traffic
congestions. Most of the approaches available in the literature for traffic analysis are
based on aggregation of spatial or temporal data focusing on predefined areas [3]. It is
important to point out that this tool does not provide real time analysis, but instead it
allows the analysis of the historical data. We will sketch here a case study on a dataset
of around 40,000 GPS-tracked cars in the surrounding of Pisa in Italy. The demo will
highlight the tight integration of the spatio-temporal and data mining tools of the M-
Atlas system and the graphical user interface that assists the DM analyst in driving
his/her analysis.

2 Problem Definition

We define a traffic jam as a group of vehicles moving close and slowly for a minimum
period. Following the definition given in [6], a T-Flock is formally described as:

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 650–653, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Traffic Jams Detection Using Flock Mining 651

Definition 1 (T-Flock). Given a set of n trajectories where each trajectory consists of
τ line segments a flock in a time interval [ti, tj ], where j− i+1 � k consists of at least
m entities such that for every discrete time step tl, i � l � j, there is a disk of radius r
that contains all the m entities.

According to Definition 1, a T-Flock represents a generic movement of different entities
moving together. For the objectives of our analysis, we enrich the T-Flock definition
with a speed threshold, ensuring that the discovered patterns do not move more quickly
w.r.t. the given threshold.

Definition 2 (T-Flock Jam). Given a speed threshold s, a T-Flock T is a T-Flock Jam
if its speed is lower than s.

We propose a new method for traffic jam detection based on the combination of the
(1) data mining query language and T-Flock algorithm implementation provided by M-
Atlas, and (2) a graphical user interface to refine and interpret the results. Initially, the
M-Atlas system is used to extract the T-Flock patterns from a dataset. The extracted
patterns are rendered on the screen by means of visual metaphors to highlight relevant
properties of the flocks, like support, velocity, duration. The visual interface allows also
the definition and the combination of constraints on the patterns, in order to select the
subset of T-Flocks patterns that satisfy the T-Flock Jam definition. The integration of
the methodology within the M-Atlas system allows the transparent integration of the
analytical process with the other tools provided by the system.

3 The Case Study

We briefly sketch here an analytical case study performed on a set of GPS-tracked
vehicles in the Pisa surroundings.

The Dataset. The Pisa dataset contains a set of timestamped points of the form (id, lat,
long, t) from around 40,000 cars, which represents 2% of registered cars in the coastal
areas of Tuscany. These points were tracked using GPS receivers with a sampling rate
of ≈ 30s and a positioning system error of 10-20m in normal conditions over a pe-
riod 5 weeks. As deeply discussed in [7], this sample of data indicates strong evidence
to the validity and coherence of GPS data and its representativeness power. We have
concentrated on the points observed during a one week period from June 14, 2010 to
June 20, 2010, consiting of ≈ 4,000 cars per day. To avoid the extraction of stopping
T-Flocks (e.g. groups of cars parked in the same area), the traces of the vehicles have
been preprocessed by cutting each trajectory in smaller trips: a stop longer than two
hours determines the end of the current trip and the start of a new one.

Flock Discovery. According with the T-Flock definition, the traces of the vehicles have
been divided into line segments with a time interval of 30s. The T-Flock patterns are ex-
tracted considering a disk radius of 200m, at least 6 line segments –i.e. vehicles moving
together for at least 180 seconds– and a minimum flock support of at least 3 vehi-
cles.The discovered flocks on the June 14 data are shown in Figure 1.

Traffic jam detection. To distinguish the traffic jams from all the flocking vehicles, the
analyst can apply a set of constraints based on the T-Flock attributes: duration, length,
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Fig. 1. The complete set of flocks extracted in the Pisa and surrounding area

speed, and support. In particular, the flock speed constraint can be used to select all the
patterns within the given threshold. Figure 2 shows the whole set of flocks discovered,
and how it is possible, using the interactive constrains, filter the flocks taking only the
slow ones.

Dynamic Speed Constraint. A different approach to detect traffic jams from the set
of discovered flocks consists of computing the ration of the speed of a flock with the
average speed of all the cars passing through the same area. Actual traffic jams can be
identified through their low speed ratio, which means that the involved cars have a con-
siderably lower speed compared to the average speed of passing cars in the considered
area at a specific period of time. Figure 3 shows how previously detected traffic jams in
Pisa urban area can further be classified with respect to the dynamic speed constraint.
It is important to notice that this new constraint is useful to detect events during the day
which do not follow the typical mobility behavior in that area. The system is also open
to consider different ways to compute the typical speed, which can be for example the
using of a map matching algorithm between the flocks and the road network.

Fig. 2. Detecting traffic jams candidates using the static speed constraint: greater then 5km/h and
less than 30 km/h
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Fig. 3. Applying the dynamic speed constraint on selected candidates highlights how this con-
straint distinguishes between real traffic jams (red/yellow gradient) and usual congested areas
(blue/green gradient). (Left) All the selected flocks in Pisa urban area. without applying any
threshold. (Right) Applying a threshold corresponding to a decrement of 60% of average speed.

4 Additional Analyses

During the demo, the case study presented in the previous section will be extended
with further analyses: (i) we will show how supplementary information (e.g. points of
interest, city gates, meteorological conditions, etc.) can be exploited to add semantics
to the models, and (ii) how the traffic jams can be temporally characterized.
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Abstract. We explore the potential of applying graph theory measures
of centrality to the network of movements extracted from sequences of
georeferenced photo captures in order to identify interesting places and
explore city structure. We adopt a systematic procedure composed of a
series of stages involving the combination of computational methods and
interactive visual analytics techniques. The approach is demonstrated
using a collection of Flickr photos from the Seattle metropolitan area.

1 Introduction

Photo sharing websites, such as Panoramio (www.panoramio.com) and Flickr
(www.flickr.com), are a popular means of communicating tourist experiences.
The posted photographs are freely available, composing a large, rich data source
with broad analysis opportunities. Furthermore, they are associated with geo-
graphical coordinates and capturing times (geo- and time-referenced), making
it possible to regard users’ postings as sequences of visited places over time and
treat them as trajectories describing their movement. The vast size and multi-
faceted nature of such data makes their analysis both challenging and interesting.

We explore the potential of applying graph theory measures of centrality
to the network of movements extracted from georeferenced photo sequences in
order to identify interesting places and explore city structure. To accomplish
this we have defined a procedure composed of a series of stages and involving
the combination of computational and interactive visual analytics techniques,
including clustering, graph analysis, and aggregation.

The analysis of people’s activities and movement using georeferenced pho-
tographs has been the subject of previous research [5,4,7,6]. The combination of
several algorithmic and visual techniques into a concretely defined procedure is
what makes this approach unique. The entire procedure is incorporated into a
powerful visual analytics framework which allows a user to interactively investi-
gate the results, alter parameters, re-run the process and make refinements.

2 Visual Analytics Approach

The approach we propose involves the retrieval of a graph of movements from
a collection of georeferenced photographs captured across a city, and the appli-
cation of graph theory methods in order to analyse the structural connectivity

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part III, LNAI 6913, pp. 654–657, 2011.
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of this graph and extract information about the structure of the city itself. The
procedure we have defined for accomplishing this is composed of four stages,
each of which involves several steps performed systematically:

1. Pre-processing. Trajectories are extracted from georeferenced photos.
2. Aggregation of trajectories. The extracted trajectories are aggregated into

moves between generalized places.
3. Graph of moves and place centrality. The graph of aggregated moves is con-

sidered and its connectivity is assessed by computing centrality scores.
4. Analysis of results. The structural connectivity of the graph is interactively

analysed using both visual and algorithmic methods.

2.1 Pre-processing

The collection of photographs is first transformed into a set of trajectories. Pho-
tographs entered to a photo sharing website by the same person are ordered
chronologically forming a sequence of photographed places representing the tra-
jectory of this person in geographical space. Entries that are not properly georef-
erenced or do not include a time-stamp, and single entry sequences are ignored.
Trajectory analysis methods can also be applied for separating trajectories of
tourists and locals in order to reveal different characteristics of a city.

2.2 Aggregation of Trajectories

The extracted trajectories are aggregated into flows between generalized places
using the method presented in [2] which is performed through the following steps:

1. Characteristic points are extracted from the trajectories.
2. Spatially-bounded density based clustering is applied to group the points by

their spatial proximity.
3. The centroids of the retrieved clusters are used as seeds for generating

Voronoi polygons.
4. The polygons define the set of places that the explored area is divided into

and reflect the spatial density of the trajectories.
5. The trajectories are aggregated into moves between pairs of places by defin-

ing transitions between them, and counting the number of transitions present.

Clustering parameters, such as the minimum number of elements and the desired
radius of spatial clusters, can be interactively adjusted and thus influence the
size and number of extracted places.

2.3 Graph of Moves and Place Centrality

The aggregation results of the photographers’ trajectories can be represented
using a directed, weighted graph, G = (V, E), where vertex set, V , is the set of
extracted places, and edge set, E, is the set of directed edges (i, j) corresponding
to moves from place i to place j, each one weighted by the number of moves
present. The structural importance of the vertices in the graph, and hence of the
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extracted places, can be studied by examining their centrality. Several measures
of centrality exist for describing different aspects of this structure. We compute
and use the following measures (refer to [3] for details):

1. Degree centrality of a vertex is defined by the number of its connecting edges.
Given our directed, weighted graph we consider four measures of degree
centrality: (1) in- and (2) out-degree are the number of edges connecting
into and out of a vertex respectively, and (3) weighted in- and (4) weighted
out-degree are the sum of weights connecting into and out of a vertex.

2. Closeness centrality is based on the distance, measured as the size of the
shortest path, of a vertex to all other vertices. Closeness centrality of vertex
v is defined as the inverse of the total distance of v to all other vertices.

3. Betweenness centrality measures centrality by considering the number of
shortest paths that pass through a vertex, v, and is defined as the proportion
of shortest paths between vertices u and s that pass through v.

4. The clustering coefficient represents the likeliness that two neighbours of a
vertex v are connected and measures in a sense the importance of a vertex in
its immediate neighbourhood. The clustering coefficient of vertex v is defined
as the fraction of v’s neighbours that are also neighbours of each other.

2.4 Analysis of Results

The analysis of the computed centrality is performed through a number of in-
teractive visual analytics tools [1]. Centrality scores are explored, separately or
simultaneously, using different visual representations:

– Classified choropleth maps are used to display the scores separately.
– Diagrams are overlaid on a map to make relative comparisons between the

centrality scores of places.
– Parallel coordinate plots are used to explore and compare scores of places.
– Clustering of places with respect to their scores is performed to study the

spatial distribution of nodes with similar characteristics.
– Dynamic filtering of places and moves based on centrality is applied to dis-

cover interesting places on the map.
– Time graphs and animated maps are used to display time intervals of arbi-

trary length in order to explore the behaviour of the graph over time.

3 Demonstration: Seattle Metropolitan Area Photos

We apply the presented visual analytics procedure to a collection of Flickr photos
from the Puget Sound metropolitan area, Washington State, USA. The data were
pre-processed and a dataset was retrieved of 577,053 photos captured by 9,324
photographers, between January 1, 2005 and August 31, 2009.

During the aggregation stage a radius of 500 meters was used for clustering
the photos by spatial proximity resulting in the extraction of 2,899 places. Places
visited less than 5 times were not considered, resulting in a graph consisting of
1,446 vertices (places) and 40,627 edges, each of them weighted by the number
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(a) Closeness centrality (b) Clustering of scores (c) Parallel coordinates

Fig. 1. Representation examples from the exploratory analysis of the Seattle metropoli-
tan area. (a) Closeness centrality in a classified choropleth map. (b) Results of clustering
places with respect to centrality scores in a choropleth map. (c) Parallel coordinates
plot of centrality scores of four clusters coloured by their corresponding cluster colour.

moves between connecting places. Centrality scores were computed for each of
the places in the graph.

Several interesting observations were made during the exploratory analysis of
this Seattle dataset, these will be demonstrated in their entirety at the conference
(a sample is available at http://geoanalytics.net/and/slides/pkdd11.pdf).
Examples include the interesting picture of the core and periphery of well con-
nected locations revealed by the high closeness values (fig. 1(a)), the identi-
fication of the most well connected places through clustering with respect to
centrality scores (fig. 1(b)), and the exploration of the centrality score values
themselves using different representations and filtering tools (fig. 1(c)).
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Günnemann, Stephan I-565
Gutmann, Bernd I-581
Guzmán-Mart́ınez, Roberto I-597
Gwadera, Robert I-613

Habrard, Amaury I-188
Halkidi, Maria I-629
Hamlen, Kevin W. III-522
Hamprecht, Fred A. II-453
Han, Jiawei I-549, II-177
Hara, Satoshi II-1
Hayashi, Kohei II-501
He, Dan II-17
Heess, Nicolas M.O. III-81
Heinrich, Gregor II-32
Hidasi, Balázs II-48
Hijazi, Mohd Hanafi Ahmad II-65
Hindawi, Mohammed I-204
Holec, Matěj II-277
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Mesnil, Grégoire II-645

Mikolajczyk, Krystian I-140
Moens, Sandy III-634
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