

Lecture Notes in Computer Science 6903
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Ivica Crnkovic Volker Gruhn
Matthias Book (Eds.)

Software
Architecture

5th European Conference, ECSA 2011
Essen, Germany, September 13-16, 2011
Proceedings

13

Volume Editors

Ivica Crnkovic
Mälardalen University, IDT
P.O. Box 883, 721 23 Västerås, Sweden
E-mail: ivica.crnkovic@mdh.se

Volker Gruhn
University of Duisburg-Essen
paluno - The Ruhr Institute for Software Technology
Gerlingstraße 16, 45127 Essen, Germany
E-mail: volker.gruhn@paluno.uni-due.de

Matthias Book
University of Duisburg-Essen
paluno - The Ruhr Institute for Software Technology
Gerlingstraße 16, 45127 Essen, Germany
E-mail: matthias.book@paluno.uni-due.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23797-3 e-ISBN 978-3-642-23798-0
DOI 10.1007/978-3-642-23798-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011935337

CR Subject Classification (1998): D.2, D.3, F.3, H.4, C.2, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 5th European Conference on Software Architecture (ECSA 2011) provided
researchers and practitioners with a unique platform to present and discuss the
most recent, innovative, and significant advances, findings and experiences in
the field of software architecture research and practice. This edition of ECSA
built upon a history of a successful series of European workshops on software
architecture held from 2004 through 2006, and a series of European software
architecture conferences from 2007 through 2010.

We received more than 90 submissions in the three main categories: full re-
search and experience papers (60 papers), emerging research papers (30 papers),
and research challenge papers (4 papers). The conference attracted papers co-
authored by researchers, practitioners, and academics from 32 countries. Each
paper, independently of the category, was peer-reviewed by at least three review-
ers, and discussed by the Program Committee. Based on the recommendations
and the discussions, we accepted 13 full papers out of 60 full papers submitted.
The acceptance rate for the full papers is 21.37%. In the Emerging Research
category, we accepted a total of 24 papers, 8 of which were originally submitted
in this category, and 16 were submitted as full papers. Finally, we accepted 7
papers as Research Challenge (Poster) papers.

In addition to the technical program consisting of academic and industrial
keynote talks, a main research track, and a poster session, the scope of ECSA
2011 was broadened by two workshops on related topics: the Workshop on Trace-
ability, Dependencies and Software Architecture (TDSA 2011), and the First
International Workshop on Software Architecture Variability (SAVA 2011).

It was a great pleasure to have six eminent keynote speakers at ECSA 2011,
three from academia and three from industry. On the academic side, Albrecht
Schmidt from the Institute for Visualisation and Interactive Systems (VIS) at
the University of Stuttgart presented trends and visions of interactive ubiqui-
tous computing systems; Harald Gall, Director of the Software Evolution and
Architecture Lab (s.e.a.l.) at University of Zurich, talked about software anal-
ysis as a service; and Raffaela Mirandola from the Dipartimento di Elettronica
e Informazione (DEI) at Politecnico di Milano discussed software performance
engineering in and for dynamic environments. On the industrial side, Eberhard
Wolff, Architecture & Technology Manager at adesso AG, pondered what it re-
ally means to be an architect; Jörg Koletzki, Member of the Management Board
of E.ON IT GmbH, talked about enterprise architecture management; and Mag-
nus Larsson, Software Manager at ABB Corporate Research, shared insights on
balancing long-term research and industrial applicability.

We are grateful to the members of the Program Committee for helping
us to seek submissions and provide valuable and timely reviews. Their efforts
enabled us to put together a high-quality technical program for ECSA 2011.

VI Preface

We are indebted to the local arrangements team at The Ruhr Institute for Soft-
ware Technology (paluno) for the successful organization of all conference, social
and co-located events. We also thank Workshops Chair Wilhelm Hasselbring,
who made a significant contribution to the success of an extended version of
ECSA. The ECSA 2011 submission, review and proceedings process was exten-
sively supported by the EasyChair Conference Management System. We also
acknowledge the prompt and professional support from Springer, who published
these proceedings in printed and electronic volumes as part of the Lecture Notes
in Computer Science series. Finally, we would like to thank our platinum spon-
sors adesso AG and E.ON IT GmbH for their generous support of this conference.

Most importantly, we would like to thank all authors and participants of
ECSA 2011 for their insightful works and discussions!

July 2011 Volker Gruhn, General Chair
Ivica Crnkovic, Program Chair

Matthias Book, Proceedings Editor

Organization

Program Committee

Muhammad Ali Babar IT University of Copenhagen, Denmark
Jesper Andersson University of Växjö, Sweden
Paris Avgeriou University of Groningen, The Netherlands
Thais Batista Federal University of Rio Grande do Norte,

Brazil
Steffen Becker University of Paderborn, Germany
Tomas Bures Charles University in Prague, Czech Republic
Ivica Crnkovic Mälardalen University, Sweden
Carlos Cuesta Rey Juan Carlos University, Spain
Paulo De Figueiredo Pires Federal University of Rio Grande do Norte,

Brazil
Rogerio De Lemos University of Kent, UK
Khalil Drira LAAS-CNRS, France
Laurence Duchien INRIA - University of Lille, France
Roberto E. Lopez-Herrejon Johannes Kepler University, Austria
Katrina Falkner University of Adelaide, Australia
Ian Gorton PNNL, USA
Darko Huljenic Ericsson Nikola Tesla, Croatia
Rick Kazman Carnegie Mellon University, University of

Hawaii, USA
Gerald Kononya Lancaster University, UK
Kai Koskimies Tampere University of Technology, Finland
Philippe Kruchten University of British Columbia, Canada
Patricia Lago VU University Amsterdam, The Netherlands
Nicole Levy Cédric Laboratory, CNAM, France
Grace Lewis Carnegie Mellon University, USA
Anna Liu NICTA/UNSW, Australia
Sam Malek George Mason University, USA
Raffaela Mirandola Politecnico di Milano, Italy
Henry Muccini University of L’Aquila, Italy
Robert Nord Carnegie Mellon University, USA
Flavio Oquendo European University of Brittany -

UBS/VALORIA, France
Mourad Oussalah University of Nantes, France
Eila Ovaska VTT, Finland
Claus Pahl Dublin City University, Ireland
George Papadopoulos University of Cyprus
Hongyu Pei-Breivold ABB Corporate Research, Sweden

VIII Organization

Jennifer Perez Benedi Technical University of Madrid (UPM), Spain
T.V. Prabhakar Indian Institute of Technology Kanpur, India
Claudia Raibulet University of Milano-Bicocca, Italy
Alexander Romanovsky Newcastle University, UK
Cecilia Rubira Unicamp, Brazil
Eduardo Santana de

Almeida Federal University of Bahia and RiSE, Brazil
Juha Savolainen Nokia, Finland
Bradley Schmerl Carnegie Mellon University, USA
Clemens Schäfer it factum GmbH, Germany
Bedir Tekinerdoğan Bilkent University, Turkey
Christelle Urtado LGI2P / Ecole des Mines d’Alès, France
Danny Weyns Katholieke Universiteit Leuven, Belgium
Semih Çetin Cybersoft Information Technologies, Turkey

Additional Reviewers

Achilleos, Achilleas
Agrawal, Ashish
Amirat, Abdelkrim
Aoussat, Fadila
Ben Alaya, Mahdi
Ben Halima, Riadh
Bouassida, Ismail
Brenner, Christian
Brondum, John
Delicato, Flavia
Desnos, Nicolas
Feugas, Alexandre
Galster, Matthias
Garbajosa, Juan
Grondin, Guillaume
Guabtni, Adnene
Hannachi, Mohamed-Amine
Hock-Koon, Anthony
Holtmann, Jörg
Iliasov, Alexei
Kakousis, Konstantinos
Kamoun, Aymen
Kapitsaki, Georgia
Keznikl, Jaroslav
Le Goaer, Olivier
Leite, Jair
Liu, Jenny
Liu, Yan
Loiret, Frédéric

Malavolta, Ivano
Malohlava, Michal
Merle, Philippe
Michalik, Bartosz
Mosser, Sébastien
Parra, Carlos
Paspallis, Nearchos
Payne, Richard
Pop, Tomas
Priesterjahn, Claudia
Ramanathan, Sakkaravarthi
Razavian, Maryam
Romay, M. Pilar
Simko, Viliam
Stol, Klaas-Jan
Suleiman, Basem
Tamburri, Damian Andrew
Tamura, Gabriel
Tang, Antony
Tell, Paolo
Tibermacine, Chouki
Tofan, Dan
Travkin, Dietrich
V, Kiran Kumar
Vajja, Kiran Kumar
Van Heesch, Uwe
Vauttier, Sylvain
Venkatasubramanian, Smrithi Rekha
Von Detten, Markus

Organization IX

Sponsors

Table of Contents

Requirements and Software Architectures

Supervising the Evolution of Web Service Orchestrations Using Quality
Requirements . 1

Chouki Tibermacine and Tarek Zernadji

Towards Systematic Integration of Quality Requirements into Software
Architecture . 17

Azadeh Alebrahim, Denis Hatebur, and Maritta Heisel

Defining Architectural Viewpoints for Quality Concerns 26
Bedir Tekinerdogan and Hasan Sözer

A Question-Based Method for Deriving Software Architectures 35
Marco Müller, Benjamin Kersten, and Michael Goedicke

Software Architecture, Components, and
Compositions

Performance Simulation of Runtime Reconfigurable Component-Based
Software Architectures . 43

Robert von Massow, André van Hoorn, and Wilhelm Hasselbring

Aspect-Connectors to Support the Evolution of Component-Based
Product Line Architectures: A Comparative Study 59

Leonardo P. Tizzei and Cećılia M.F. Rubira

Verifying Composite Service Transactional Behavior with EVENT-B . . . 67
Lazhar Hamel, Mohamed Graiet, Mourad Kmimech,
Mohamed Tahar Bhiri, and Walid Gaaloul

A Constructive Approach to Compositional Architecture Design 75
Constanze Deiters and Andreas Rausch

Quality Attributes and Software Architectures

Capturing Architecture Evolution with Maps of Architectural Decisions
2.0 . 83

Andrzej Zalewski, Szymon Kijas, and Dorota Soko�lowska

Resource Management in the Air Traffic Domain . 97
Guglielmo Lulli, Raffaela Mirandola, Pasqualina Potena, and
Claudia Raibulet

XII Table of Contents

An Architecture-Based Verification Technique for AADL
Specifications . 105

Andreas Johnsen, Paul Pettersson, and Kristina Lundqvist

Software Product Line Architectures

Change Impact Analysis in Product-Line Architectures 114
Jessica Dı́az, Jennifer Pérez, Juan Garbajosa, and Alexander L. Wolf

Extending UML Components to Develop Software Product-Line
Architectures: Lessons Learned . 130

Antonio C. Contieri Junior, Guilherme G. Correia,
Thelma E. Colanzi, Itana M.S. Gimenes, Edson A. Oliveira Junior,
Sandra Ferrari, Paulo C. Masiero, and Alessandro F. Garcia

PL-AspectualACME: An Aspect-Oriented Architectural Description
Language for Software Product Lines . 139

Eiji Adachi Barbosa, Thais Batista, Alessandro Garcia, and
Eduardo Silva

Architectural Models, Patterns and Styles

Design and Evaluation of a Process for Identifying Architecture
Patterns in Open Source Software . 147

Klaas-Jan Stol, Paris Avgeriou, and Muhammad Ali Babar

Autonomic Computing Driven by Feature Models and Architecture in
FamiWare . 164

Nadia Gamez, Lidia Fuentes, and Miguel A. Aragüez

An Architecture Analysis Approach for Supporting Black-Box Software
Development . 180

Novia Admodisastro and Gerald Kotonya

Short Papers

Web-Scale Human Task Management . 190
Daniel Schulte

Enhancing Architecture Design Methods for Improved Flexibility in
Long-Living Information Systems . 194

Matthias Naab

On How to Deal with Uncertainty When Architecting Embedded
Software and Systems . 199

Jakob Axelsson

Table of Contents XIII

Runtime Performance Management of Information Broker-Based
Adaptive Applications . 203

Anu Purhonen and Sakari Stenudd

Reference Architecture and Product Line Architecture: A Subtle But
Critical Difference . 207

Elisa Yumi Nakagawa, Pablo Oliveira Antonino, and Martin Becker

Dynamically Reconfigurable Resource-Aware Component Framework:
Architecture and Concepts . 212

Bojan Orlic, Ionut David, Rudolf H. Mak, and Johan J. Lukkien

A Reusable Business Tier Component with a Single Wide Range Static
Interface . 216

Oscar M. Pereira, Rui L. Aguiar, and Maribel Yasmina Santos

Process and Management of Architectural Decisions

Reverse Engineering Architectural Feature Models 220
Mathieu Acher, Anthony Cleve, Philippe Collet, Philippe Merle,
Laurence Duchien, and Philippe Lahire

Supporting Communication and Cooperation in Global Software
Development with Agile Service Networks . 236

Damian Andrew Tamburri and Patricia Lago

Reducing Architectural Knowledge Vaporization by Applying the
Repertory Grid Technique . 244

Dan Tofan, Matthias Galster, and Paris Avgeriou

Guiding Architects in Selecting Architectural Evolution Alternatives 252
Selim Ciraci, Hasan Sözer, and Mehmet Aksit

Software Architecture Run-Time Aspects

Architecture-Based Run-Time Fault Diagnosis . 261
Paulo Casanova, Bradley Schmerl, David Garlan, and Rui Abreu

A Self-adaptive Monitoring Framework for Component-Based Software
Systems . 278

Jens Ehlers and Wilhelm Hasselbring

Towards Real-Time Monitoring and Controlling of Enterprise
Architectures Using Business Software Control Centers 287

Tobias Brückmann, Volker Gruhn, and Max Pfeiffer

XIV Table of Contents

Towards a Model-Based Approach for Reconfigurable DRE Systems 295
Fatma Krichen, Brahim Hamid, Bechir Zalila, and Mohamed Jmaiel

ADLs and Metamodels

An Enhanced Architectural Knowledge Metamodel Linking
Architectural Design Decisions to Other Artifacts in the Software
Engineering Lifecycle . 303

Rafael Capilla, Olaf Zimmermann, Uwe Zdun, Paris Avgeriou, and
Jochen M. Küster

A Model for Specifying Rationale Using an Architecture Description
Language . 319

Lakshitha de Silva and Dharini Balasubramaniam

From EAST-ADL to AUTOSAR Software Architecture: A Mapping
Scheme . 328

Tahir Naseer Qureshi, DeJiu Chen, Henrik Lönn, and
Martin Törngren

Software Language Engineering of Architectural Viewpoints 336
Elif Demirli and Bedir Tekinerdogan

Services and Software Architectures

ReflexML: UML-Based Architecture-to-Code Traceability and
Consistency Checking . 344

Josef Adersberger and Michael Philippsen

Software Is a Directed Multigraph . 360
Robert Da̧browski, Krzysztof Stencel, and Grzegorz Timoszuk

An Architectural Approach to End User Orchestrations 370
Vishal Dwivedi, Perla Velasco-Elizondo, Jose Maria Fernandes,
David Garlan, and Bradley Schmerl

Using Model Transformation Techniques for the Superimposition of
Architectural Styles . 379

Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, and
Cristina Roda

DAMASCo: A Framework for the Automatic Composition of
Component-Based and Service-Oriented Architectures 388

Javier Cubo and Ernesto Pimentel

A Service-Oriented Reference Architecture for Software Testing Tools . . . 405
Lucas Bueno Ruas Oliveira and Elisa Yumi Nakagawa

Table of Contents XV

Decouplink: Dynamic Links for Java . 422
Martin Rytter and Bo Nørregaard Jørgensen

Software Packaging Approaches—A Comparison Framework 438
Shouki A. Ebad and Moataz Ahmed

Author Index . 447

Supervising the Evolution of Web Service

Orchestrations Using Quality Requirements

Chouki Tibermacine1 and Tarek Zernadji2

1 LIRMM, CNRS and Montpellier-II University, France
2 Computer Science Department, University of Biskra, Algeria

Chouki.Tibermacine@lirmm.fr, zernadji@yahoo.fr

Abstract. Since many years, Web services have confirmed their sta-
tus of one of the most pertinent solutions for a given service provider,
like Google, Amazon or FedEx, to open its solutions for third party
software development. New business logic can be implemented through
orchestrations of existing Web services. This helps development teams in
capitalizing resources held by the providers of these services. Nonethe-
less, these service-oriented software architectures, like any other software
artifact, are subject to changes during their lifecycle, and thus can un-
dergo an evolution phenomenon. In this phenomenon, it is argued that
quality can be weakened after successive changes (Lehman’s 7th law of
software evolution), and this is mainly due to the lack of architecture
documentation and tool support to supervise architecture changes. In
this paper, we present an approach to supervise the evolution of Web
service orchestrations, with quality requirements considered as a sup-
port documentation. First, we show how important design decisions, like
the choice of a service-oriented architecture pattern can be formalized as
a documentation for the quality they implement. Then, we detail how
this documentation can be used to supervise architecture changes. In this
way, the impact of changes made on a software architecture are analyzed
on-the-fly to determine which quality is affected.

1 Introduction: Context and Motivation

Building distributed software by orchestrating existing Web services is a new
paradigm, which has been proposed as a possible implementation for the service-
oriented architecture specification. It has been greatly influenced by the well-
known business process engineering field, where processes can be designed as
collaborations between a set of services published by some providers. New busi-
ness logic can thus be implemented, as an extension of existing Web services,
through these orchestrations. This helps development teams in capitalizing re-
sources held by the providers of these services. Indeed, Web service providers,
which hold some precious resources (like large databases of products to retail of
Amazon, or weather forecast data of Meteo France), offer third party developers
the opportunity (for free or not) to build new applications by extending their
public services, and thus capitalize on these resources.

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 1–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 C. Tibermacine and T. Zernadji

Nonetheless, these service-oriented software architectures, like any other soft-
ware artifact, are subject to changes during their lifecycle, and thus can be
affected by the consequences of an evolution phenomenon [14]. In this phe-
nomenon, it is argued that quality can be weakened after successive changes
(Lehman’s 7th law of software evolution [14]). This is mainly due to: i) the lack
of architecture documentation that can be used by developers to better under-
stand the design decisions made on the system, and ii) the lack of tool support
to supervise architecture changes.

In this paper, we present an approach to supervise the evolution of Web
service orchestrations, with quality requirements considered as a support docu-
mentation. First, we show how important design decisions, like the choice of a
service-oriented architecture pattern can be formalized as a documentation for
the quality they implement. Then, we detail how this documentation can be
used to supervise architecture changes. In this way, the impact of changes made
on a software architecture are analyzed on-the-fly to determine which quality is
affected.

In the following section, we show an example that illustrates the problems
which we tackle in this paper. In Section 3, we expose the overall approach
that we propose in this paper to solve the identified problems. Then, in Sec-
tion 4, we detail how the quality documentation is specified in our approach.
This documentation is used by an evolution assistance algorithm, which is de-
scribed in Section 5. Section 6 illustrates the use of our approach through an
example. Before concluding this paper, we present in Section 7 the related
work.

2 Illustrative Example

In this section we show, through an example of a Web service orchestration – a
BPEL (Business Process Execution Language [17]) process, how some evolution
scenarios can have consequences on quality requirements. Let us suppose that
we have an Appealed Assessments System [9] built using Web services. This
system is responsible for managing and enforcing policies that pertain to private
companies involved with the forestry and lumber trade. Briefly, this service is
dedicated to producing a range of reports related to already assessed claims that
have been successfully or unsuccessfully appealed.

The decisions made by the architects to design this service-oriented architec-
ture involved the use of a Data Controler service. This one provides all the
logic required to fulfill the capabilities of the assessment reports service. It al-
lows access up to six different repositories in order to gather all of the required
data depending on the requested reports.

Furthermore, the architects observe that they may have to access additional
databases in the future and therefore the Data Controler service have to
undergo some changes. This results in a portability problem in the service
architecture design. Consequently, the architects decide to design a facade service

Supervising the Evolution of Web Service Orchestrations 3

(architecture decision AD1) using the service facade pattern [9], to ensure the
portability requirement (quality attribute QA1) into the service architecture.

The facade service is named Data Relayer, and its role is to receive service
consumer requests, relay them to the Data Controler service, and then relay the
responses back to the service consumer. The facade service ensures the adapta-
tion between the message format used by the Appealed Assessments Service and
the data format managed by the Data Controler service. Also, it validates the
reports received from the Data Controler service. The facade service decouples
then the consumers of the Appealed Assements Service from the changes that
may occur on the Data Controler, and compensates its behavior modifications
so that the consumers are not impacted.

Preventing from unauthorised access to the ressources of the Appealed Assess-
ments service, the architects decide to establish a service account (based on the
Trusted Subsystem Pattern [9] (AD2)) to secure the service from direct access to
the databases. The security requirement (QA2) is thus defined and implemented
inside the whole service orchestration.

Let us assume now, that the maintenance team receives two changes requests.
The first concerns the performance enhancement of the overall service (Appealed
Assessments Service). So, the developer team proceeds by short-circuiting the
authentication service account in the orchestration (removing simply the invoke
activity). The architect performing this change, ignore that the usefulness of
that service was also (as imposed by the Trusted Subsystem pattern) to pre-
vent direct access to the service resources from malicious attackers. Therefore,
this change breaks AD2 and thus the quality requirement that it implements
(QA2).

Over the years, the company providing these services has significantly ex-
panded, and consequently more users requested the Appealed Assessment Ser-
vice. In such a highly concurrent environment, the service may manage a large
amount of data and thus increasing resources consumption which may compro-
mise the overall service performance and availability. The architects realize that
the service-oriented architecture has to adapt to this scalability requirement
problem keeping the performance of the service unaffected. Hence, they examine
different kinds of data used by the service and find out that, the policy data re-
mains frequently unchanged during the working days. Therefore, the architects
decide (AD3) to use the Partial State Deferral Pattern [9] to temporarily hold a
copy of data on a local database server increasing the performance of the service
(QA3). This scenario implies some architectural changes: first, invoking directly
the Data Controler after an authentication through the service account service;
second, designing a new standardized contract for an archival service that takes
the responsibility of populating the data in the database server; finally, for per-
formance optimization purpose, moving the functionality of the Data Relayer
service into the Archival service which results in removing the later from the
architecture. This breaks the facade design pattern (AD1) and causes the loose
of the portability quality requirement.

4 C. Tibermacine and T. Zernadji

Request for architecture evolution

Identification of architecture changes

New Business
Requirements Bug Reports

Quality Enhancement

Application of architecture changes

Quality-Related Regression testing

New Service-Oriented
Architecture

Failed
Tests

Architecture comprehension

Fig. 1. A Micro-Process of Architecture Evolution

3 Proposed Approach

Figure 1 shows a simple micro-process of service-oriented architecture
evolution1. In this process, the triggers for requesting architecture evolution can
be either new business requirements (for perfective evolution), bug reports (for
corrective evolution) or quality enhancement (for perfective, adaptive or preven-
tive evolution). Then the developer has to go through multiple steps, ranging
from architecture comprehension to the proposition of a new architecture.

Among these steps, the developer performs some testing to check if there is
a “clean” progression (verify if the additional services, operations or activities
work correctly) and no regression (existing features are not negatively impacted
by the additions). In this paper, we address exclusively quality-related regression
testing. In practice there are few works that dealt with this aspect by proposing
some automatic support. Even with the existence of such approaches, if some
tests fail, the developer iterates (eventually many times) to fix the problems.
She/He is asked to look for the architecture changes to be applied, and sometimes
she/he is led to the step of “Architecture comprehension”.

The proposed approach aims at assisting this process by notifying the devel-
oper on-the-fly if there are some architecture changes that affect quality require-
ments. This is illustrated in Figure 2.

1 This micro-process addresses software evolution in general, and not service-oriented
architectures in particular. Adaptations to this specific context are detailed later.

Supervising the Evolution of Web Service Orchestrations 5

Request for architecture evolution

Identification of architecture changes

New Business
Requirements Bug Reports

Quality Enhancement

Application of architecture changes

New Service-Oriented
Architecture

Architecture comprehension

Documentation of new decisions

Architecture
Documentation

Undo changesValidate changes

Validate changes

Assistance
Algorithm

Fig. 2. The Proposed Micro-Process of Architecture Evolution

The approach introduces two concepts: an architecture documentation (bot-
tom left of Figure 2) and an assistance algorithm. The assistance algorithm is
used when developers apply changes on an architecture to notify them with
the possible impact of their changes on quality requirements. Then, it is the
developer’s responsibility to validate or undo changes. If changes are validated
the developer is asked to document the new decisions taken while evolving the
service-oriented architecture. These two concepts are detailed in the following
two sections.

4 Architecture Decision Documentation

The concept of architecture decision documentation has been firstly introduced
in [19]. In this paper, we present an improvement to the old version of this docu-
mentation. It defines in a formal way the links between architecture decisions and
quality attributes implemented by these decisions. We consider thus architecture
decisions, which are entities that can be formalized, as a way to indirectly check
automatically quality requirements, which are properties that cannot generally
be formalized directly (or are very difficult to formalize2).

An architecture decision documentation abstracts the links between a given
quality attribute and an architecture decision associated to this attribute.
Figure 3 shows how these links are organized. We associate to a link a degree

2 By “formalization”, we simply mean here the specification of a given artifact in an
unambiguous and structured or semi-structured way using a language that can be
processed by tools (not using the natural language).

6 C. Tibermacine and T. Zernadji

+ id
+ name
+ description
+ degreeOfCriticality:CriticalityDegree

ArchitectureDecision

+ id
+ name

« enumeration »
CriticalityDegree

+ veryHigh
+ high
+ medium
+ low
+ veryLow

ArchitectureConstraint

+ language
+ description
+ body

Satisficing

+ degreeOfSatisficing : int

Formalizing

+ degreeOfFormalizing : int

QualityAttribute

enhances collidesWith

1..* *

1..*

Fig. 3. Links between Architecture Decisions and Quality Attributes

of satisfaction. An architecture decision in collaboration with other decisions
contribute to the satisfaction of a given quality attribute. Each degree of sat-
isfaction represents a percentage. In the ideal situation (where the developers
are confident in the pertinence of their design decisions), the sum of all degrees
associated to the same quality attribute (within the same architectural element)
would be equal to 100%. For example, a portability quality attribute can be
concretized by three different architecture decisions: the choice of the facade ser-
vice pattern [9]3, the choice of the MVC pattern [3] and the use of an API. If
the developers consider that the two first decisions contribute more, in the con-
cretization of the portability quality attribute, than the third one, because they
are critical, they can associate to them high scores (for example 40 % to each
decision) and the last architecture decision a lower score (20 % for example).
This is done in the same manner as in software requirements engineering where
the project manager assigns values like high, medium or low for the technical
difficulty of the realization of each requirement or for their functional priority.
In our case, we chose to give them numerical values voluntarily because of the
complementarity which exists between architecture decisions to reach a quality
goal, as illustrated in the example above.

We voluntarily simplify, in this documentation, the specification of architec-
ture decisions. An architecture decision is thus formalized by an architecture
constraint (see the “Related Work” section for richer specifications of architec-
ture decisions). Here again, a formalization degree is a percentage associated to
the link between an architecture decision and an architecture constraint. This
score represents the extent to which the constraint formalizes the design decision.
If we consider that several constraints formalize the same architecture decision,
it is possible for the developer to state how the different constraints share the

3 This pattern is originally inspired from [10].

Supervising the Evolution of Web Service Orchestrations 7

formalization of the design decision. In some cases, a given constraint may have
a degree of formalization more important than others. In the ideal situation
(where the developers are sure of the completeness of their formalization), the
sum of all degrees associated to the same architecture decision would be equal
to 100%. The constraints written in a given documentation are defined with a
predefined constraint language.

A quality attribute in this documentation is a non-functional property repre-
senting an ISO 91264 characteristic or sub-characteristic (Reliability, Maintain-
ability, Portability, ...). It has a degree of criticality (inspired from Kazman’s
quality attribute scores and Clements’ quality attribute priorities [7]) which is
specified by developers and represents the importance of this quality attribute
in the architecture. Its possible values are: very high, high, medium, low and
very low.

Associated to a given architecture decision, a quality attribute can enhance
(affect positively) other quality attributes. For example, the choice of the pipeline
architecture style targets the maintainability quality attribute, which enhances
in this case the efficiency attribute of the system. Contrarily, a given quality at-
tribute can collide with (affect negatively) other quality attributes. For example,
the security quality attribute collides generally with the efficiency attribute. This
depends of course on the documented architecture decision and the application
context. It is on the responsibility of developers, fully aware of the application’s
context and the architecture decisions they made, to document these optional
parts (the other quality attributes that collide-with or enhance the documented
quality attribute) of an architecture decision documentation.

A given quality attribute can be tightly- or weakly-coupled to another one.
In the first case, if a quality attribute A affects positively another attribute B, if
we enhance A, B will B enhanced; and if A is weakened, B will be weakened too.
In the second case (weakly-coupled attributes), if A affects positively another
attribute B, if we enhance A, B will be enhanced; and if A is weakened, B will not
be affected. Inversely, the same thing can be considered, if A affects negatively
B. This is illustrated in Figure 4.

For example, in a service orchestration, adding an invocation to an encryption
service before transmitting information to a remote server is a simple architecture
decision taken to enhance the security quality attribute. This makes less efficient
the whole orchestration (affects negatively the efficiency attribute). If we decide
in another context, to remove a binding to an authentication service which is
invoked before a given business service, this will obviously affect positively the
efficiency quality attribute (there is less time to execute the business service).
We conclude here that the two quality attributes, in the two contexts, are tightly
coupled.

4 Software engineering – Product quality – Part 1: Quality model. The International
Organization for Standardization Website:
http://www.iso.org/iso/iso catalogue/catalogue tc/

catalogue detail.htm?csnumber=22749

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749

8 C. Tibermacine and T. Zernadji

A B

A B

A B

A B

"Enhancing" Relationship "Colliding with" Relationship

Tightly related QAs

A B

A B =

A B

A B

"Enhancing" Relationship "Colliding with" Relationship

Weakly related QAs

=

A B

A B

= A B

A B

"Enhancing" Relationship "Colliding with" Relationship

=

Positive influence

Negative influence

Fig. 4. Relationships between Quality Attributes

In another illustrative example, designing a system using the facade service
design pattern aiming to enhance its portability affects negatively the reliability
quality characteristic (more precisely, the availability sub-characteristic). Indeed,
in the presence of a single service providing the business service to clients, if this
service crashes, the provided functionality will not be anymore available. Let
us suppose now that a given service is provided by a component within a web
application in order to abstract details of the different Internet browsers in which
the application is executed at the client side (portability purpose). The removal
of such a service will not affect in any way the reliability attribute. This is an
example of two quality attributes which are weakly coupled.

Between weakly coupled quality attributes, we identified two kinds of relation-
ships. There can be a positive or a negative influence. In the first case (positive
influence), it is the enhancement of the first attribute which has an influence on
the second one; however in the other case, it is its weakness which produces an
effect on the second attribute. This is shown on Figure 4

In the current implementation of architecture decision documentation, archi-
tecture constraints are specified using a modified version of OMG’s OCL [18].
An architecture constraint in this language navigates in a metamodel of BPEL
Web service orchestrations, but apply to only one instance of that metamodel
(a model which represents a BPEL process). The evaluation of a given con-
straint tells the developer whether the architecture description conforms to the
constraint or not.

In addition to architecture decision documentation, we propose (as an optional
feature) to build a catalog of quality attribute relationships. Designing such a
catalog consists in:

1. Identifying the quality attributes defined in the quality model of the company
2. Identifying the attributes defined in the quality plan of the software project

Supervising the Evolution of Web Service Orchestrations 9

3. Building a bi-dimensional table with all the quality attributes (one per line
and one per column)

4. Completing progressively the correlation between the quality attributes (on
the basis of information gathered from previous projects and the experience
of developers)

5. Each time, adapting the table to the service-oriented architecture context

Once this table validated by the project manager, the assistance algorithm can
exploit it in accompanying developers in the architecture change step.

5 Change Assistance Algorithm

During architecture change, the information encapsulated in the architecture
documentation is exploited by an assistance algorithm in order to assist devel-
opers. The main purpose is to drive software architecture evolution to a situation
where the initially required quality is minimally affected. This algorithm is pre-
sented throughout this section as several functions.

(01) algorithm ArchitectureChangeAssistance {

(02) let AE := Architectural Element

(03) and AD := Architectural Decision

(04) and AC := Architectural Constraint

(05) and QA := Quality Attribute

(06) and AT := Architecture Tactic //a couple composed of a QA and an AD

(07) and Doc := architecture documentation associated to changed AE

(08) and affectedQAs := { } //an empty set

(09) function main() {

(10) on RequestForAssistance {// an event listener

(11) for-each (AT in Doc) {

(12) QA := QA in AT

(13) AD := AD in AT

(14) checkArchitecturalConstraint (AD)

(15) }

(16) let newAD := ask for AD associated to the new architecture, if any

(17) if(newAD != null) let newQA := ask for the QA associated to newAD

(18) addNewArchitecturalTactic (newAD,newQA)

(19) }

(20) checkAffectedQAs ()

(21) }

(22) }

During the step of architecture change application (Figure 2) the developer
can ask for an assistance. This triggers the listener on Line 10 in the algorithm
above. The algorithm starts first by looking for the architecture documentation
associated to the architectural element (the orchestration or the Web service de-
scription) which has been changed. Then, the algorithm checks each constraint
in the documentation (by calling a function which is detailed in the following
paragraphs). After that, the developer is asked to pinpoint the architecture deci-
sion and the quality attribute associated to the changes, if any (Lines 16 and 17).

10 C. Tibermacine and T. Zernadji

At last, if the changes generate a new architecture decision, the algorithm try to
add, to the documentation, the couple composed of this new decision associated
to its quality attribute, which is called in this work an architectural tactic (Line
18). In addition the algorithm tries to infer the quality attributes affected by
this new tactic (Line 20).

The function detailed in the listing below, checks the constraints associated to
a given architecture decision received as an argument. It starts by checking the
constraint expressions associated to the decision. If the checking does not succeed
for a given constraint, a set of warnings are displayed to the developer. The
displayed information includes the architecture decision, the precise architectural
element impacted by the change, the degree of formalization of the decision, the
quality attribute, its degree of satisficing and its criticality degree (Lines 11 to 14
in the algorithm below). In addition this function shows to the developer the list
of quality attributes which are eventually impacted by this change (Lines 15 and
16). For doing so, it uses the table of relationships between quality attributes
presented in the previous section. It limits the selected quality attributes to the
ones which are tightly coupled with an “enhacing” relationship. This ensures the
selection of the most pertinent quality attributes in this situation.

(01) function checkArchitecturalConstraint (AD) {

(02) for-each(AC associated to AD)

(03) let result := check AC

(04) if (result == false) {

(05) AE := AE in the context of AC

(06) QA := QA associated to AD

(07) warn "The following architecture decision " +AD+" is affected."

(08) warn "This concerns the architectural element: "+AE

(09) warn "The affected architecture decision is formalized

(10) by the constraint up to " + degreeOfFormalization (AD,AC)+ "%"

(11) warn "The affected architecture decision is satisficing "+QA

(12) + " up to " +degreeOfSatisficing(AD,QA)+"%"

(13) warn "The degree of criticality of this QA is: "

(14) + degreeOfCriticality(QA)

(15) warn "Other QAs may be affected. This concerns: " +

(16) QA_Relationships (QA,"enhances", "tight")

(17) ask to validate the new architecture or undo changes

(18) according to the warnings above

(19) if(new architecture maintained) {

(20) affectedQAs := affectedQAs + QA

(21) + QA_Relationships(QA, "enhances", "tight")

(22) warn "Architecture documentation will be changed ..."

(23) Doc := Doc - AT(AD,QA)

(24) ask to review satisficing degrees of ATs related to

(25) QA_Relationships(QA, "enhances", "tight")

(26) ask to review Non-Functional Requirements specification

(27) }

(28) }

(29) }

(30) }

Supervising the Evolution of Web Service Orchestrations 11

Then, the developer is asked to validate the new architecture fully aware with
the possible consequences of her/his changes, or to undo changes. In this last
case, the architecture documentation should be updated by the algorithm (this
is the second important role of this assistance algorithm). The affected decisions
and their associated quality attributes are removed from the documentation
(Line 23 in the algorithm above). The developer is at last asked to review the
degrees in the documentation, as some tactics are removed. In addition, she/he
is invited to review the non-functional (or quality) requirements specification.

The function addNewArchitecturalTactic(...) creates a new architectural
tactic and adds it to the documentation. Before that, if the quality attribute has
been voluntarily added by the developer, it is removed from the set of affected
quality attributes (Line 04 in the listing below). Else this attribute is considered
as a new quality and a checking is performed to alert the developer of the other
qualities that are possibly affected by this attribute (Lines 06 – 07). At last, the
algorithm asks the developer to change the quality requirements specification.

(01) function addNewArchitecturalTactic (AD,QA) {

(02) newAT := new AT(AD,QA)

(03) if (QA is in affectedQAs)

(04) affectedQAs := affectedQAs - QA

(05) else {

(06) warn "Other QAs may be in conflict with "+QA+": "

(07) + QA_Relationships (QA,"collidesWith","both")

(08) }

(09) warn "Architecture documentation will be changed ..."

(10) Doc := Doc + newAT

(11) ask to change Non-Functional Requirements specification

(12) }

The last function (see below) just recalls to the developer that there still
remain some affected quality attributes, if any. The developer is asked to review
the architecture documentation and the quality requirements specification.

(01) function checkAffectedQAs () {

(02) if (affectedQAs <> {}) {

(03) for-each (QA in affectedQAs) {

(04) warn QA + "is still affected by your changes"

(05) ask to review satisficing degrees of ATs implying QA

(06) }

(07) ask to change Non-Functional Requirements specification

(08) }

(09) }

The overall goal of this algorithm is twofold. First, it assists developers dur-
ing architecture evolution with information about the impact of their changes on
architecture design decisions and on quality attributes. Second, it helps to main-
tain the documentation of non-functional (or quality) requirements up-to-date

12 C. Tibermacine and T. Zernadji

in a semi-automatic fashion. This can be observed in updates made automati-
cally on the documentation, requests to review satisficing degrees of the affected
quality attributes, and requests to change or review NFRs specification.

6 The Proposed Approach in Practice

In this section, we show an example of an architecture documentation and its
use by the evolution assistance algorithm. Let us take the example of Section 2.
Its architecture documentation is presented in a synthetic way (in order to not
be too verbose with its original XML-based description) in the listing below:

Architecture-Documentation :

1. Architecture-Tactic :

This tactic guarantees the Portability quality requirement by using

a Service facade pattern

- Quality-Attribute name="Portability" degreeOfCriticality="high"

- Related-Quality name="Performance" relationship="CollidesWith"

relationType="tight"

- Architecture-Decision name="Service facade pattern"

degreeOfSatisficing="90"

- Architecture-Constraint profile="BPEL" degreeOfFormalizing="80"

2. Architecture-Tactic :

This tactic ensures the Security quality requirement by using

a Trusted subsystem pattern

- Quality-Attribute name="Security" degreeOfCriticality="very high"

- Related-Quality name="Availability" relationship="Enhances"

relationType="weak" influence="negative"

- Architecture-Decision name="Trusted subsystem pattern"

degreeOfSatisficing="70"

- Architecture-Constraint profile="BPEL" degreeOfFormalizing="90"

3. Architecture-Tactic :

This tactic ensures the Performance quality requirement by using

a Partial state deferral pattern

- Quality-Attribute name="Performance" degreeOfCriticality="high"

- Related-Quality name="Security" relationship="CollidesWith"

relationType="tight"

- Architecture-Decision name="Trusted subsystem pattern"

degreeOfSatisficing="60"

- Architecture-Constraint profile="BPEL" degreeOfFormalizing="70"

The architecture documentation contains three architectural tactics5. They
document the links between architectural decisions (AD1, AD2, AD3) presented
in Section 2 and their corresponding quality attributes (QA1, QA2, QA3). In
this documentation we can see among others the different relations between
5 We recall that a tactic is the couple composed of an architecture decision and its

quality attribute.

Supervising the Evolution of Web Service Orchestrations 13

quality attributes (Related-Quality element in the listing above). For example,
in the first tactic, the Related-Quality element shows that the portability and
performance quality attributes are colliding and are tightly coupled.

Let us see now the use of the assistance algorithm, given the evolution scenario
described in the example of Section 2: short-circuiting the authentication service.
The assistance algorithm checks the constraints6 formalizing the architectural
decisions for each architectural tactic, and detects that the constraint formal-
izing the decision AD2 (The Authentication service implementing the Trusted
subsystem pattern) was violated. Therefore, the security quality attribute (QA2)
is affected. It then notifies the developer that the violated constraint formalizes
AD2 up to 90% (an important constraint in the formalization of this decision),
the affected architecture decision satisfies Security up to 70% with a very high
degree of criticality, and that the security is weakly coupled to the availability
quality attribute by an enhancement relation with a negative effect. This means
that the availability quality attribute is directly affected by this change. Based on
this notification, the developer decides to abort the change she/he made, aware
that short-circuiting the authentication service makes the service not secured.

The second change to the orchestration consists of adding a new functional-
ity service namely the Archival service which leads to remove the Data Relayer
service. This change aims to improve the performance and the availability of the
service. The algorithm detects that the constraint representing the decision AD1
(service facade pattern) does not hold anymore, which means that the portability
quality attribute (QA1) is affected. Hence, it informs the developer that the vi-
olated constraint formalizes AD1 with a degree of 80%, satisfies QA1 up to 90%
which has a high degree of criticality, and that QA1 and QA3 (performance) are
colliding but tightly coupled. The developer concludes that if she/he wants to
improve the performance of the service she/he will probably affect the portabil-
ity quality attribute, and therefore, decides that performance is more important
than portability and validates the change. The corresponding tactic of the af-
fected decision is removed from the documentation and a new tactic is added.
The developer is invited to update the NFRs specification and to review the
satisficing degrees for the affected qualities. This information serves for possible
changes that may occur on the service architecture in the future.

7 Related Work

In the literature, there are many works on the documentation of architeure design
decisions. Clements et al. in [6] present an approach which provides a framework
for documenting different views of a software architecture. The authors pro-
pose a template for architecture description encompassing the documentation of
architectural decisions. In [20], Tyree and Akerman discuss the importance of
documenting architecture decisions and their specification as first-class entities
in an architecture description. They present a template specifically designed for
6 For reasons of space limitations, constraints are not presented here. They are defined

using a modified version of OCL and navigate in a metamodel of BPEL.

14 C. Tibermacine and T. Zernadji

architecture decision documentation, which embeds interesting information char-
acterizing architecture design decisions (status, assumptions, implications,
related artifacts, constraints, ...). Philippe Kruchten introduced a taxon-
omy of design decisions [13]. He presents a model for describing architecture de-
cisions, including rationale, scope, state, history of changes, categories,
cost and risk. He identifies in this ontlogy the different possible relationships
between design decisions and links between design decisions and design artifacts.
In [11], Jansen and Bosch present a new way of building software architectures.
They propose to define these design models as a composition of architecture
design decisions. The authors introduce a model for architecture design deci-
sions, including a description, the rationale, the design rules, the design
constraints, the consequences, the pros and cons. In [4], the authors pro-
posed a way to characterize architectural decisions. They defined attributes to
describe architectural decisions by separating mandatory and optional attributes
according to their degree of importance. The first class introduces information
associated to architectural decisions that must be defined throughout the sys-
tem life cycle, including a decision name and description, the constraints,
the dependencies, the status, the rationale, the design patterns, the
architectural solution, and the requirements. The second class provides
additional information that can be choosen according to user preferences such
as, the alternative decisions, assumptions, pros and cons, category of
decision, or quality attributes. In addition to these attributes, they have
defined attributes to support the evolution of architectural decisions, includ-
ing the date and version, the obsolete decision, the validity, the reuse
times and rating, and the trace links.

As in these approaches, our work proposed a new way to document ar-
chitecture decisions. But contrarily to these works, we focused on the use of
this documentation in the architecture change assistance. These works can
complement our proposed documentation in order to make it richer.

Many works have been proposed on Non-Functional Requirements capture and
specification. One of the major works in the literature is that of Mylopoulos et
al. [16]. Following a process-oriented approach the authors propose a framework
for the representation and use of Non-functional requirements during the devel-
opment process. The framework includes five components allowing, following a
goal-oriented process, to justify and argue design choices made to satisfy certain
software quality requirements. The authors consider non-functional requirements
as goals to be achieved by validating the right design decisions and their ratio-
nale, considered in turn as goals. In [8] Cyneirios et al. propose an approach based
on Mylopoulos’s framework for capturing and representing NFRs and their in-
terdependencies. Their approach shows the integration of NFRs in functional re-
quirements models. The authors were interested in conceptual models expressed
in UML by incorporating NFRs descriptions in class, sequence, and collabora-
tion diagrams. Bass et al. [1], proposed ADD method (Attribute-Driven Design)
that follows an architectural design process guided by quality requirements. It
uses the concept of attribute primitives, which are collections of components and

Supervising the Evolution of Web Service Orchestrations 15

connectors collaborating to satisfy some quality attributes. These attributes are
documented as general scenarios. In [2], the authors proposed architectural tac-
tics, in the same spirit as the primitive attributes to guarantee quality character-
istics in software architectural design. Kim et al. [12] presented an approach for
representing NFRs in software architecture using architectural tactics as reusable
architectural building blocks. The later and their relationship are represented as
Feature Models and their semantics is defined with the RBML language (Role-
Based Metamodeling Language). Architectural tactics satisfying quality attributes
are selected and composed into one tactic encompassing all the desired qualities.
The resulting tactic is then instantiated to create a software architecture that in-
corporates NFRs for the system under development. In [15], the authors present
an approach inspired from [16,5]. It aims at integrating NFRs handling in analy-
sis and design phases as with functional requirements to fill the gap between the
elicitation and implementation of NFRs.

All these approaches focus on the design stage of software development. Our
work is complementary to these approaches, since it addresses a stage which is
situated downstream in the development process, the evolution stage.

8 Conclusion and Future Work

Since some years, architecture decision and design rationale are two topics which
received a lot of attention from the software architecture research community. In
this paper, we proposed an approach which provides: i) a language to document a
basic form of architecture decisions as architecture constraints, and the rationale
of these decisions, which are quality attributes, together with some fine-grained
information about the relationships between these two concepts; ii) a method
which makes operational this documentation through its use during architecture
evolution; and iii) an algorithm which implements the supervision of architecture
evolution. This supervision aims at deducing on-the-fly the possible impact of
a given architectural change on design decisions and consequently identify the
affected quality requirements.

Our approach has been applied on a specific kind of software architectures,
which are service-oriented ones. A concrete implementation of this kind of soft-
ware architectures has been considered in our work, which are Web service or-
chestrations.

On the conceptual aspect, we plan in the near future to separate functional
from non-functional evolution in the assistance algorithm. Indeed, these two
imply different considerations. Non-functional (or quality) evolution have direct
impact on existing decisions and quality, and the developer has some knowledge
about the existing quality requirements. In the case of functional evolution, the
developer has a different profile, and should be assisted differently.

On the tool and experimental aspect, we will conduct the creation of a catalog
of predefined service-oriented architecture design decisions in order to help the
developers in the initial documentation of their architectures. This will be based
on existing works on patterns or quality models for service-oriented architectures,
among others.

16 C. Tibermacine and T. Zernadji

References

1. Bass, L., Bachmann, F., Klein, M.: Quality attribute design primitives and the
attribute driven design method. In: Proceedings of the 4th International Conference
on Product Family Engineering, pp. 169–186. Springer, Heidelberg (2001)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley, Reading (2003)

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, Chichester (1996)

4. Capilla, R., Nava, F., Duenas, J.C.: Modeling and documenting the evolution of
architectural design decisions. In: Proceeding of the Second Workshop on SHAring
and Reusing Architectural Knowledge Architecture, Rationale, and Design Intent
(SHARK-ADI 2007). IEEE Computer Society, Los Alamitos (2007)

5. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, Dordrecht (1999)

6. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,
Stafford, J.: Documenting Software Architectures, Views and Beyond. Addison-
Wesley, Reading (2003)

7. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures, Methods
and Case Studies. Addison-Wesley, Reading (2002)

8. Cysneiros, L.M., Sampaio do Prado Leite, J.C.: Nonfunctional requirements: From
elicitation to conceptual models. IEEE TSE 30(5), 328–350 (2004)

9. Erl, T.: SOA Design Patterns. Prentice Hall, Englewood Cliffs (2009)
10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Sofware. Addison-Wesley Professional Computing Se-
ries. Addison Wesley Longman, Inc., Reading (1995)

11. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-
sions. In: Proceedings of of the 5th IEEE/IFIP WICSA 2005 (2005)

12. Kim, S., Kim, D.-K., Lu, L., Park, S.: Quality-driven architecture development
using architectural tactics. Elsevier JSS, 82(8), 211–1231 (2009)

13. Kruchten, P.: An ontology of architectural design decisions in software intensive
systems. In: Proceedings of the 2nd Groningen Workshop Software Variability, pp.
54–61 (2004)

14. Lehman, M., Ramil, J.F.: Software evolution. In: Marciniak, J. (ed.) Encyclopedia
of Software Engineering, 2nd edn. Wiley, Chichester (2002)

15. Marew, T., Lee, J.-S., Bae, D.-H.: Tactics based approach for integrating non-
functional requirements in object-oriented analysis and design. Journal of Systems
and Software 82(10), 1642–1656 (2009)

16. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional re-
quirements: A process-oriented approach. IEEE TSE 18(6), 483–497 (1992)

17. OASIS. Web services business process execution language version 2.0. Website of
the Organization for the Advancement of Structured Information Standards (2006),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html

18. OMG. Objectconstraint language specification, version 2.0, document formal/2006-
05-01. Object Management Group Web Site (2006),
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf

19. Tibermacine, C., Fleurquin, R., Sadou, S.: Nfrs-aware architectural evolution of
component-based software. In: Proceedings of the 20th IEEE/ACM ASE 2005,
Long Beach, California, USA, pp. 388–391. ACM Press, New York (2005)

20. Tyree, J., Akerman, A.: Architecture decisions: Demystifying architecture. IEEE
Software 22(2), 19–27 (2005)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf

Towards Systematic Integration of Quality
Requirements into Software Architecture�

Azadeh Alebrahim, Denis Hatebur, and Maritta Heisel

University Duisburg-Essen, Germany
{azadeh.alebrahim,denis.hatebur,maritta.heisel}@uni-duisburg-essen.de

Abstract. We present a model- and pattern-based approach that allows
software engineers to take quality requirements into account right from
the beginning of the software development process. The approach com-
prises requirements analysis as well as the software architecture design,
in which quality requirements are reflected explicitly.

1 Introduction

Taking quality (or non-functional) requirements into account when developing
a software architecture is a demanding task, for which satisfactory solutions are
still sought for. In this paper, we want to contribute to improve this situation.
We present a model- and pattern-based approach for architectural design that
explicitly takes quality requirements (in particular, security and performance
requirements) into account.

As a basis for requirements analysis, we use Jackson’s problem frame approach
[6]. We have carried over problem frames to UML [11] by defining a specific
UML profile, and we have implemented a tool, called UML4PF 1 supporting
requirements analysis and architectural design based on problem frames [4]. As
a basis for architectural design, we use an method that we developed for deriving
architectures based on functional requirements [2].

In the present paper, we extend our previous requirements analysis and archi-
tectural design methods by explicitly taking into account quality requirements.
The analysis documents are extended by quality requirements that complement
functional ones. For this purpose, we have extended the UML profile [5]. The
so enhanced problem descriptions form the starting point for architectural de-
sign. To design the architecture, we apply appropriate security or performance
patterns and mechanisms and define quality stereotypes that serve as hints for
implementers.

The rest of the paper is organized as follows. We present the basics on which
our approach builds in Sect. 2, namely problem frames and security and per-
formance patterns and mechanisms. In Sect. 3, we present the UML profile we
defined to carry over the problem frame approach to UML. Section 4 is devoted
to describing our approach in more detail. Related work is discussed in Sect. 5,
and conclusions and future work are given in Sect. 6.

� Part of this work is funded by the German Research Foundation (Deutsche
Forschungsgemeinschaft - DFG) under grant number HE3322/4-1.

1 Available under http://swe.uni-duisburg-essen.de/en/research/tool/

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 17–25, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://swe.uni-duisburg-essen.de/en/research/tool/

18 A. Alebrahim, D. Hatebur, and M. Heisel

2 Basic Concepts

In this section, we introduce the basic concepts our approach relies on.

2.1 Requirements Description Using Problem Frames

Problem frames are patterns to describe software development problems. They
were proposed by Michael Jackson [6]. A problem frame basically consists of
domains, interfaces between them, and a requirement. The task is to construct a
machine (i.e., software) that improves the behavior of the environment (in which
it is integrated) in accordance with the requirements.

Software development with problem frames proceeds as follows: first the envi-
ronment in which the machine will operate is represented by a context diagram.
A context diagram consists of machines, domains and interfaces. Then, the prob-
lem is decomposed into subproblems, which are represented by problem diagrams
that can be instances of problem frames. A problem diagram consists of a sub-
machine of the machine given in the context diagram, the relevant domains, the
interfaces between these domains, and a requirement. Figure 1 shows a problem
diagram in UML notation.

Fig. 1. Problem diagram for the requirement Communicate

2.2 Mechanisms and Patterns for Performance and Security

To satisfy performance and security requirements, different mechanisms – also
called patterns – are available [3,10]. Load Balancing is such a mechanism that
is used to distribute computational load evenly over two or more hardware com-
ponents. The load balancing pattern consists of a component, which is called
Load Balancer, and multiple hardware components that implement the same
functionality. Encryption is an important means to achieve confidentiality. A
plaintext is encrypted using a secret key and decrypted either using the same
key (symmetric encryption) or a different key (asymmetric encryption).

Integration Quality Requirements into Software Architecture 19

3 Requirements Engineering

It is important that the results of the requirements analysis with problem frames
can be easily re-used in later phases of the development process. Since UML
is a widely used notation to express analysis and design artifacts in a soft-
ware development process, we defined a new UML profile [4,2] that extends the
UML meta-model to support problem-frame-based requirements analysis with
UML. This profile can be used to create the diagrams for the problem frame
approach. To address quality requirements in the requirement engineering pro-
cess we enhance our UML profile with annotations for quality requirements as
stereotypes.

3.1 UML Profile for Problem Frames

Using specialized stereotypes, our UML profile allows us to express the different
diagrams occurring in the problem frame approach using UML diagrams.

A class with the stereotype �machine� represents the software to
be developed (possibly complemented by some hardware). Jackson distin-
guishes the domain types biddable domains (represented by the stereotype
�BiddableDomain�) that are usually people, causal domains (represented by
the stereotype �CausalDomain�) that comply with some physical laws, and
lexical domains (represented by the stereotype �LexicalDomain�) that are
data representations.

In problem diagrams, interfaces connect domains, and they contain shared
phenomena. Shared phenomena may be events, operation calls, messages, and
the like. They are observable by at least two domains, but controlled by only one
domain, as indicated by an exclamation mark. For example, in Fig. 1 the notation
U!sendTM (between CA communicate and User) means that the phenomenon
sendTM is controlled by the domain User. The interfaces are marked with spe-
cializations of the stereotype �connection�, e.g., a user interface (�ui�)
between User and CA communicate machine in Fig. 1.

The stereotype �requirement� represents a functional or quality require-
ment. When we state a requirement we want to change something in the world
with the machine to be developed. Therefore, each requirement constrains at
least one domain. This is expressed by a dependency from the requirement to a
domain with the stereotype �constrains�. A requirement may refer to several
domains in the environment of the machine. This is expressed by a dependency
from the requirement to a domain with the stereotype �refersTo�.

The problem diagram in Fig. 1 considers a chat application introduced in more
detail in Sect. 4. It describes the requirement Communicate, e.g., it states that
the CA communicate machine can show to the User the CurrentChatSession on
its Display (CAC!{displayCCS}). The requirement constrains the CurrentChat-
Session of the User and its Display. The requirement refers to the users and the
text messages.

The problem frame approach substantially supports developers in analyzing
problems to be solved. It points out what domains have to be considered, and
what knowledge must be described and reasoned about when analyzing a prob-
lem in depth. Developers must elicit, examine, and describe the relevant proper-
ties of each domain. These descriptions form the domain knowledge are specified
in domain knowledge diagrams.

20 A. Alebrahim, D. Hatebur, and M. Heisel

3.2 Annotating Problem Descriptions with Quality Requirements

The problem frame approach proposed by Jackson provides a method that
addresses functional requirements only. Quality requirements are not consid-
ered. We extended our UML profile for problem frames to complement func-
tional requirements with security requirements [5]. Classes with stereotypes
such as �confidentiality�, �integrity� and corresponding attributes
such as attacker or stakeholder address security requirements. The dependency
from a quality requirement to a requirement is expressed with the stereotype
�complements� (see Fig. 1). To provide support for annotating problem de-
scriptions with performance requirements, we use the UML profile MARTE
(Modeling and Analysis of Real-time and Embedded Systems) [12]. We focused
on the GQAM package (Generic Quantitative Analysis Modeling) that contains
basic concepts for modeling and analysis of domains based on software behavior,
in particular performance. To define workload and behavior concerns we make
use of the GQAM Workload package by instantiating the appropriate attributes
of this package. Each BehaviorScenario is composed of Steps, each of which
can be refined as another BehaviorScenario. A behavior scenario is triggered by
the WorkloadEvent, which may be generated by a stated ArrivalPattern such
as the ClosedPattern that allows us to model a number of concurrent user and
a think time (the time that the user waits between two requests) by instan-
tiating the attributes population and extDelay. We define a BehaviorScenario
composed of one Step for the requirement Communicate RT (see Sect. 4.2),
which is refined in three BehaviorScenario instances, each of which is composed
of a single Step. The Step instances represent the requirements Send RT, For-
ward RT and Receive RT that stand in the precedence relationship Sequence
[12, p. 289].

4 Deriving Quality-Based Architectures

We now present our approach to derive software architectures, taking quality
requirements into account. It comprises requirements analysis as well as the
software architecture design. We illustrate our approach by a chat application,
which allows a text-message-based communication via private I/O devices. Users
should be able to communicate with other chat participants in a same chat
room. We consider the Communicate functional requirement with the descrip-
tion ”Users can send text messages to a chat room, which should be shown to
the users in that chat room in the current chat session in the correct tempo-
ral order on their displays” and its corresponding quality requirement Response
Time with the description ”The sent text message should be shown on the re-
ceiver’s display in 1500 ms maximum”. Moreover, Confidentiality of the text
messages should be preserved. Note that in order to specify performance and
confidentiality requirements properly, more details have to be given.

4.1 Problem Diagrams

As described in Sect. 2.1, the first step in the software development process based
on problem frames is to create a context diagram (not shown). We decompose

Integration Quality Requirements into Software Architecture 21

the overall problem into subproblems represented by problem diagrams. Each
problem diagram describes one subproblem with the corresponding requirement.
We focus on the requirement Communicate. The corresponding problem diagram
using our UML profile for problem frames is depicted in Fig. 1. It consists of the
domains User, TextMessage, CurrentChatSession and Display. The requirement
Communicate refers to the domains User and TextMessage, expressed by the
stereotype �refersTo� and constrains the domains CurrentChatSession and
Display, expressed by the stereotype �constrains�.

4.2 Annotate Problem Diagrams with Quality Requirements

In this step, we address quality requirements by annotating problem diagrams
with suitable stereotypes. The requirement Communicate is complemented by
the confidentiality requirement Communicate Conf that requires confidentiality
of data transmission for TextMessage and the response time requirement Com-
municate RT representing one BehaviorScenario composed of one Step described
with the stereotype �gaStep� (see Fig. 1). The response time requirement is
modeled by instantiating the relevant attributes of the Step class in the MARTE
GQAM Workload package described in Sect. 3.2. The cause attribute represents
the triggered event, which is in our case a ClosedPattern with 100 concurrent
users (population), each of which needs a think time of 1000 ms (extDelay). The
respT attribute states that the required response time for sending text messages
should be 1500 ms maximum. The msgSize attribute states that the sending text
messages should be 5 KB maximum.

4.3 Choose Design Alternative and Create Architecture

We first create an initial architecture, where each machine domain in a problem
diagram is mapped to a component. The initial architecture for the chat appli-
cation (not shown) contains – among others – a component CA communicate
corresponding to the machine domain CA communicate of Fig. 1.

The software architect then needs to take a design decision concerning the kind
of distribution, e.g., client-server, peer-to-peer, or standalone. In the following,
we describe the approach for a client-server architecture in more detail.

After having chosen a client-server architecture, we go back to the require-
ments description and split the problem diagrams in such a way that each
subproblem is allocated to only one of the distributed components. This may
lead us to introduce connection domains2, e.g., networks. In our example, the
problem diagram depicted in Fig. 1 is split into three problem diagrams, which
address the problems of sending text messages to the server that belongs to the
client (Send), forwarding text messages from the server to the receivers that
belongs to the server (Forward), and receiving text messages that belongs to
the client (Receive). For each of these three subproblems, we introduced the
connection domain Network to achieve the distribution.

Analogously to splitting the problem diagrams, we also have to split the
corresponding quality requirements. In case of a response time requirement,
the response time should be divided so that all subproblems together satisfy the

2 These are domains needed to establish a connection between other domains [6].

22 A. Alebrahim, D. Hatebur, and M. Heisel

desired response time. The Communicate requirement states a response time of
1500 ms maximum. This must be achieved through the three subproblems Send,
Forward, Receive and the time for data transmission over the network. We cannot
meet the performance and specifically response time requirements, if we have no
knowledge about the real circumstances in the environment. Therefore we specify
knowledge about the network and the computational power of clients and server
in a domain knowledge diagram. It contains specific knowledge about client
and server, e.g., the number of processor cores, processor speed and memory.
Additionally, we assume that the response time to transmit data over a network
with 64 kb/s minimum is 400 ms.

To fulfill the confidentiality requirement for the problem PD communicate
(Fig. 1), we require confidentiality for each subproblem. Therefore, we annotate
each subproblem with a corresponding refined confidentiality requirement. This
requirement contains a stakeholder that is interested in preserving the confiden-
tiality of data, and an attacker that the chat application should be protected
against. The stakeholder in our case is the User, and the attacker is a NetworkAt-
tacker who is able to attack the data transported over the network.

Concretized Quality Problem Diagrams describe solution approaches in
terms of mechanisms and patterns. We elaborate the problem diagrams anno-
tated with quality requirements from the previous step by introducing domains
reflecting specific solution approaches.

For example, the problem diagram for the Send problem describes the prob-
lem of sending text messages with two additional quality requirements for secu-
rity and performance, respectively. The requirement for performance states that
sending a text message should be performed within 200 ms (allocated part of the
1500 ms). However, this requirement cannot be achieved by architectural means.
Instead, it must be taken care of in the implementation. In such a case, we anno-
tate the corresponding machine with a stereotype that serves as a hint to develop
a particularly efficient implementation (�gaStep�) or an implementation that
does not leak information (�confidentiality�).

The security requirement describes that a text message should be transmit-
ted confidentially over an insecure network. To take this quality requirement
into account, we specify the concretized quality problem diagram including an
Encryption machine and domains for keys used for asymmetric encryption. This
decision necessitates to also introduce new components on the receiver side,
namely a new machine Decryption and a domain ReceiverUserPrivateKey.

In order to address the response time requirement in the Forward problem
even under high load, we introduce a new machine LoadBalancer (see Fig. 2). It
distributes the load from the network across several server components.

By now we have provided a suitable basis for quality-aware architectural
design in the requirements analysis phase. To design an architecture that
achieves the required level of performance and security, we make use of the split
problem diagrams to allocate components to the client and to the server. Each
machine in the split problem diagrams belongs to a component in the client or
in the server according to functionality of that submachine. To design the ar-
chitecture, we merge related components, apply design patterns (e.g., Facades),
and use the solution domains for quality requirements (e.g.,LoadBalancer). The
resulting software architecture for the chat application – represented as a UML
composite structure diagram – is shown in Fig. 3.

Integration Quality Requirements into Software Architecture 23

Fig. 2. Concretized quality problem diagram for the quality requirement Forward RT

Fig. 3. Client-server architecture for the chat application

5 Related Work

Previous work often considers only one type of quality requirements during the
software development process, e.g., security.

An approach to transform security requirements to design is provided by
Mouratidis and Jürjens [9]. It starts with the goal-oriented security requirements
engineering approach Secure Tropos [8], and connects it with a model-based
security engineering approach, namely UMLsec [7].

Yskout et al. [14] present a semi-automated approach to support the transition
from security requirements to architecture. They focus on delegation, authoriza-
tion and auditing as security requirements. They presuppose an architecture
that fulfills the functional requirements, and they apply security solutions to the
functional architecture by transforming security requirements.

24 A. Alebrahim, D. Hatebur, and M. Heisel

Attribute Driven Design (ADD) [13] is a method to design a conceptual ar-
chitecture. It focuses on the high-level design of an architecture, and hence does
not support detailed design. Identifying mechanisms to achieve quality attributes
relies on the architect’s expertise.

Q-ImPrESS [1] is a project that focuses on the generation and evaluation
of architectures according to quality properties, in particular performance. The
phases design and implementation of the software development process are par-
ticularly in focus. In contrast to our contribution, it does not use requirements
descriptions as a starting point.

6 Conclusion

In this paper, we have presented a UML-based approach to design software archi-
tectures from requirements, taking quality requirements into account. We provide
means to specify quality requirements thoroughly with problem diagrams, and we
incorporate mechanisms or patterns addressing these requirements explicitly in
the software architecture.

Our approach builds on established techniques such as problem frames, se-
curity and performance patterns. Its novelty lies in the fact that the different
approaches are integrated and intertwined explicitly by an underlying methodol-
ogy and a common notation. The notation as well as the methodology are open
and can be developed further to enhance the power and breadth of the approach.

In the present work, we have not investigated possible conflicts between
different quality requirements. We strive for a more systematic treatment of con-
flicting quality requirements. Moreover, we have concentrated on structural de-
scriptions of software architectures. In the future, we will extend our approach to
also support deriving behavioral descriptions for the developed architectures and
automatically checking their coherence with the structural descriptions.

References

1. Becker, S., Dešić, S., Doppelhamer, J., Huljenić, D., Koziolek, H., Kruse, E.,
Masetti, M., Safonov, W., Skuliber, I., Stammel, J., Trifu, M., Tysiak, J., Weiss,
R.: Q-ImPrESS Project Deliverable D1.1 – Requirements document. final version,
Q-ImPrESS Consortium (2009)

2. Choppy, C., Hatebur, D., Heisel, M.: Systematic architectural design based on
problem patterns. In: Avgeriou, P., Grundy, J., Hall, J., Lago, P., Mistrik, I. (eds.)
Relating Software Requirements and Architectures, ch. 9. Springer, Heidelberg (to
appear, 2011)

3. Ford, C., Gileadi, I., Purba, S., Moerman, M.: Patterns for Performance and Op-
erability. Auerbach Publications (2008)

4. Hatebur, D., Heisel, M.: Making Pattern- and Model-Based Software Development
More Rigorous. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp.
253–269. Springer, Heidelberg (2010)

5. Hatebur, D., Heisel, M.: A UML profile for requirements analysis of dependable
software. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 317–331.
Springer, Heidelberg (2010)

6. Jackson, M.: Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, Reading (2001)

7. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2005)

Integration Quality Requirements into Software Architecture 25

8. Mouratidis, H.: A Security Oriented Approach in the Development of Multiagent
Systems: Applied to the Management of the Health and Social Care Needs of Older
People in England. PhD thesis, University of Sheffield, U.K (2004)

9. Mouratidis, H., Jürjens, J.: From goal-driven security requirements engineering to
secure design. Int. J. Intell. Syst. 25, 813–840 (2010)

10. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommer-
lad, P.: Security Patterns: Integrating Security and Systems Engineering. Wiley &
Sons, Chichester (2005)

11. UML Revision Task Force. OMG Unified Modeling Language (UML), Superstruc-
ture, http://www.omg.org/spec/UML/2.3/Superstructure/PDF

12. UML Revision Task Force. UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded Systems, http://www.omg.org/spec/MARTE/1.0/PDF

13. Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., Wood,
B.: Attribute-Driven Design (ADD). Version 2.0, Software Engineering Institute
(2006)

14. Yskout, K., Scandariato, R., Win, B.D., Joosen, W.: Transforming security require-
ments into architecture. In: Proc. of the 3rd Int. Conf. on Availability, Reliability
and Security, pp. 1421–1428. IEEE Computer Society, Los Alamitos (2008)

http://www.omg.org/spec/UML/2.3/Superstructure/PDF
http://www.omg.org/spec/MARTE/1.0/PDF

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 26–34, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Defining Architectural Viewpoints for Quality Concerns

Bedir Tekinerdogan1 and Hasan Sözer2

1 Bilkent University, Department of Computer Engineering
Bilkent 06800 Ankara, Turkey

bedir@cs.bilkent.edu.tr
2 Ozyegin University, Department of Computer Engineering

Istanbul, Turkey
hasan.sozer@ozyegin.edu.tr

Abstract. A common practice in software architecture design is to apply
architectural views to model the design decisions for the various stakeholder
concerns. When dealing with quality concerns, however, it is more difficult to
address these explicitly in the architectural views. This is because quality
concerns do not easily match the architectural elements that seem to be primarily
functional in nature. As a result, the communication and analysis of these quality
concerns becomes more problematic in practice. We introduce a general and
practical approach for supporting architects to model quality concerns by
extending the architectural viewpoints of the so-called V&B approach. We
illustrate the approach for defining recoverability and adaptability viewpoints for
an open source software architecture.

Keywords: Software Architecture Modeling, Architectural Views, Quality
Concerns.

1 Introduction

An architectural view is a representation of a set of system elements and relations
associated with them to support a particular concern [2]. Having multiple views helps to
separate the concerns and as such support the modeling, understanding, communication
and analysis of the software architecture for different stakeholders. Architectural views
conform to viewpoints that represent the conventions for constructing and using a view.
Because of the different concerns that need to be addressed for different systems, the
current trend recognizes that the set of views should not be fixed but multiple viewpoints
might be introduced instead. Certainly, existing multi-view approaches are important for
representing the structure and functionality of the system and are necessary to document
the architecture systematically. Yet, an analysis of the existing multi-view approaches
reveals that they still appear to be incomplete when considering quality concerns. The
ISO/IEC 42010 [4] standard intentionally does not define particular viewpoints to
address the different concerns. In the V&B approach, quality concerns appear to be
implicit in the different views but no specific viewpoints have been proposed to represent
quality concerns. One could argue that for addressing quality concerns software
architecture analysis approaches have been introduced. The difficulty here is that these

 Defining Architectural Viewpoints for Quality Concerns 27

approaches usually apply a separate quality model, such as queuing networks or process
algebra, to analyze the quality properties. Although these models represent precise
calculations they do not depict the decomposition of the architecture and an additional
translation from the evaluation of the quality model needs to be performed. To represent
quality concerns more explicitly, preferably an architectural view is required to model the
decomposition of the architecture based on the required quality concern. In this context,
we introduce an approach for defining architectural viewpoints for modeling quality
concerns. We illustrate the approach for two different quality concerns; recoverability
and adaptability. The approach is applied to the open source media player application,
MPlayer.

The remainder of this paper is organized as follows. Section 2 introduces the case
study and the problem statement in which we describe the need for architectural
decomposition for quality concerns. Section 3 describes the concepts for modeling
architectural viewpoints for quality concerns. Section 4 provides the related work.
Finally, section 5 provides the conclusions.

2 Problem Statement

2.1 Case Study: MPlayer

MPlayer [6] is a media player, which supports many input formats, codecs and output
drivers. It is available under the GNU General Public License. Figure 1 presents a
simplified module view of the MPlayer software architecture with basic
implementation units and direct dependencies among them.

Here Stream represents the module that reads the input media and provides
buffering, seek and skip functions. Demuxer demultiplexes (separates) the input to
audio and video channels, and reads them from buffered packages. Mplayer connects
all the other modules, and maintains the synchronization of audio and video.
Libmpcodecs embodies the set of available codecs. Libvo displays video frames.
Libao controls the playing of audio. Gui provides the graphical user interface (GUI)
of MPlayer.

Fig. 1. Module View of the MPlayer Software Architecture

28 B. Tekinerdogan and H. Sözer

2.2 Architectural Decomposition for Quality Concerns

When designing the architecture for the MPlayer besides of the functional concerns
also non- functional concerns have to be taken in to account. In the following, we will
consider the recoverability and adaptability concerns for MPlayer.

Recoverability refers to the ability to recover from errors [1]. Recoverability has a
separate impact on the system and is usually not always aligned with the individual
components in the system. Figure 2a represents an example of the required
decomposition of the architecture for recoverability in the MPlayer case. Here, a
decomposition unit is called recoverable unit (RU). Each RU should be independently
recoverable. As we can see in Figure 2a, three recoverable units have been defined:
RU AUDIO, RU MPCORE, and RU GUI. In fact, Figure 2a provides two views on
top of each other, the module view and the view related to recoverability, which
overlays the module view. Obviously many different decomposition alternatives are
possible. Each design alternative will require a different impact on the system.
Unfortunately, the architectural decomposition in Figure 1 is not sufficient to
communicate design decisions about the recoverability. On the other hand, although
Figure 2a provides the impact of recoverability it models two concerns at the same
time and likewise it violates the separation of concerns principle. A more complicated
decomposition for recovery would be harder to model, and in case more than one
concern needs to be modeled the model becomes less useful for communication about
the concerns. Both figures are also less suitable to support the analysis of
recoverability and/or to guide the implementation of the system based on the
architecture.

a) b)

Fig. 2. Required decomposition for MPlayer architecture for Recoverability (a) and Adaptability (b)

Adaptability is defined as the ease with which a system can change [5]. There are
several types of adaptation techniques applied in practice. These techniques are applied at
different phases (i.e., compile-time, run-time) and at different abstraction levels (e.g.,

 Defining Architectural Viewpoints for Quality Concerns 29

source code, architecture description). Knowing the adaptability properties of
architectural components early on is important to communicate and guide the system
development. In addition, similar to recoverability, one may define different architecture
design alternatives that behave differently with respect to adaptability properties. Figure
2b shows an example decomposition of the architecture that might be required for
adaptability. Here, the decomposition unit is called adaptability unit (AU). Each AU
shows whether the unit is adaptable or fixed, and should define the adaptability
properties. As we can see in Figure 2b five adaptability units have been defined: AU
INPUT, AU OUTPUT, AU GUI, AU CODEC, and FXU MPCORE (fixed unit). Again
this provides two views on top of each other, the module view and the view related to
adaptability which actually overlays the module view. Unfortunately, the architectural
decomposition of Figure 1 alone is not suitable to support the communication, analysis
and guidance of the implementation for adaptability.

When we consider other quality concerns the situation does not seem to be
different than in the case for recoverability and adaptability. Reusability will require a
different view on the architecture in which, for example, the reusable components
need to be depicted. Performance will require, for example to view the elements of
the system based on their influence on the performance, etc. We could try to visualize
these quality concerns on the base view that we are working on (dominant
decomposition), however this will clutter the module view and eventually will
decrease the understandability of the architectural description. In fact, this would also
not be in alignment with the overall strategy in architectural view modeling, i.e.
define an architectural view for the relevant concerns. As such, we believe that the
relevant quality concern should also be represented using the corresponding views.

3 Quality Viewpoints

In this section, we provide an approach for defining architectural viewpoints for
quality concerns. The overall process is shown in Figure 3. The process starts with
defining the stakeholders of the concerns. For each stakeholder the concerns are
defined which are categorized as functional concerns and quality concerns.

Fig. 3. General Approach for Architectural View Modeling

30 B. Tekinerdogan and H. Sözer

The stakeholder concerns form an input for the architecture view modeling
process. Hereby the architectural view that represents the functional view is described.
On the other hand, quality concerns are modeled using quality views. For different
quality concerns the architect might need to define a different architectural view.
Similar to functional views, quality views will be based on architectural viewpoints.
Defining a new architectural viewpoint implies writing a viewpoint guide. This is
similar to the notion of style guide as defined in [2]. The viewpoint guide defines the
vocabulary of the architectural element and relation types, and defines the rules for
how that vocabulary can be used. For defining a viewpoint guide for a particular
quality concern we apply the template as defined in Table 1. The viewpoint guide for
quality concerns is largely the same as for the viewpoints that address functional
concerns. The important difference here is that the architectural elements now are
used to explicitly represent quality concerns in the architectural decomposition.
Further, the quality view is applied to a functional view.

In the template of Table 1, this is defined by the field Base View, representing the
view on which the quality view is applied. The base view could be for example the
module view, component and connector view or deployment view. To make a
distinction among these, the name of the viewpoint should be described accordingly,
e.g. Recoverability:Decomposition, Recoverability:Deployment, Adaptability:
Process etc. Here the symbol : refers to the mapping of the quality view on the
functional view. In the following, we will give two distinct examples of the
application of the viewpoint guide for quality concerns.

Table 1. Viewpoint Guide Template for Quality Concerns

Viewpoint Element Description
Name Unique name for the viewpoint concatenated with the view it

overlays
Element Types The architectural element types native to the viewpoint
Relation Types The relation types among architectural elements
Properties of Elements Additional information on the element types
Properties of Relations Additional information on the relation types
Topology Constraints The rules of composition of the elements and relations.
Notation The adopted notation for the element types and relation types.

The notation can be textual or visual.
Base View The view that can be overlaid
Relation to other views/viewpoints The relation to other viewpoints other than the base viewpoint

3.1 Example – Recoverability

Similar to the case where we separate the views for different concerns (e.g.
deployment view separate from module view), we also provide a separate view for
recoverability. To define the template for the recoverability view we introduce the
recoverability viewpoint (Table 2) as an explicit viewpoint for depicting the
architecture from the recoverability viewpoint. Unlike conventional analysis
techniques that require different models, recoverability views directly represent the
decomposition of the architecture and as such help to understand the structure of the
system related to the recoverability concern. In essence, the recoverability viewpoint

 Defining Architectural Viewpoints for Quality Concerns 31

considers RUs as first class elements and represents the units of isolation, error
containment and recovery control. The relation types define the relations for
coordination and application of recovery actions.

Table 2. Recoverability Viewpoint (left) and Adaptability Viewpoint Guide (right)

Viewpoint
Element

Description

Name Recoverability Viewpoint:Module View Adaptability Viewpoint:Module View
Element Types • Recovery Unit (RU) – represents a set

of modules that can be recovered
together, independently from other
elements it is connected to.

• Non-Recovery Unit (NRU) – an
element that cannot be recovered
independent of other RUs and NRUs.

• Adaptable Unit (AU): a set of modules
that can be adapted independently
from other modules of the system.

• Fixed Unit (FXU): a set of modules
that cannot be adapted.

• Adapter Unit (ADU): an entity, which
implements an adaptation mechanism.

Relation Types • applies-recovery-action-to
• conveys-information-to

• adapts

Properties of
Elements

• RU: set of system modules, criticality,
reliability, types of errors that can be
detected, supported recovery actions,
type of isolation.

• NRU: types of errors that can be
detected.

• AU: the set of modules, adapted
properties

• FXU: the set of modules
• ADU: adaptation time, type of

adaptation

Properties of
Relations

• applies-recovery-action-to: type of
communication, timing constraints.

• conveys-information-to: type of
communication, timing constraints.

• adapts: the type of mechanism used for
adaptation.

Topology
Constraints

• The target of an applies-action-to
relation can only be a RU.

• the adapts relation can only be defined
from an ADU to AU.

Notation

-adaptation time
-adaptation type

adaptable unit

fixed unit

<< mechanism >>

adapter unit

adapts

Base view Module View Module View
Relation to other
views/viewpoints

• Dynamic views for depicting recovery
scenarios.

• Deployment view for relating
platform-specific adaptations.

We can document the viewpoint by using the viewpoint guide as defined in
Table 1. An example application of the viewpoint guide to the MPlayer case is shown
in Figure 4 (left). The figure represents the case as defined in Figure 2 but now we
view the system solely from a recoverability concern perspective. The view includes
three RUs and two non-recoverable units (NRUs) as first class abstractions. The

32 B. Tekinerdogan and H. Sözer

relations represent the specific recovery mechanisms among the recovery units.
Typically, this view can be used by reliability engineers to communicate about the
reliability and fault tolerance of the system, to use this for guiding the implementation
of recovery mechanisms in the corresponding units, and to analyze the different
decompositions for recoverability.

3.2 Example – Adaptability

The adaptability viewpoint guide that we have defined is shown in the right column of
Table 2. Here, we have identified three units and one relation. We have defined an
adaptable unit and a fixed unit to differentiate software modules that are considered
for adaptation from the ones that are not. We have defined an additional unit, adapter
unit, which represents the implementer of the adaptation mechanism. This can be a
part of the system or an external entity. Its attributes identify the time (compile-time
or run-time) and type (manual or automatic) of adaptation implemented. The only
relation defined is the adapts relation, which is defined from an adapter unit to an
adaptable unit, emphasizing the mechanism used for adaptation. Focusing on this
property of the system led us to define a decomposition (Figure 4) that comprises
fixed and adaptable units and additional modules to support adaptability.

Fig. 4. Recoverability View (left) and Adaptability View (right) for MPlayer case

4 Related Work

Architectural Perspectives [8] are a collection of activities, tactics and guidelines to
modify a set of existing views to document and analyze quality properties.
Architectural perspectives as such are basically guidelines that work on multiple
views together. An analysis of the Architectural Perspectives and our approach shows
that the crosscutting nature of quality concerns can be both observed within an
architectural view and across architectural views. Both approaches focus on providing
a solution to the crosscutting problem. We have chosen for providing separate

 Defining Architectural Viewpoints for Quality Concerns 33

architectural viewpoints for quality concerns. It might be interesting to look at
integrating the guidelines provided by the Architectural Perspectives and the
definition/usage of the viewpoints developed by our approach. In that sense the
approaches can also be considered as complimentary to each other.

Architectural tactics [1] aim at identifying architectural decisions related to a
quality attribute requirement and composing these into an architecture design.
Defining explicit viewpoints for quality concerns can help to model and reason about
the application of architectural tactics.

Several software architecture analysis approaches have been introduced for
addressing quality properties. The goal of these approaches is to assess whether or not
a given architecture design satisfies desired concerns including quality requirements.
The main aim of the viewpoint definitions in our approach, on the other hand, is to
communicate and support the architectural design with respect to quality concerns. As
such our work can directly support the architectural analysis to select feasible design
alternatives.

5 Conclusion

The evolution of architectural view modeling can be characterized as a gradual shift
from defining fixed set of multiple views to an understanding in which the set of views
for architecture description is not bounded but open, dependent on the stakeholder
concerns. Yet another step in the evolution of architectural view modeling is the focus
on quality concerns in architectural views. From both our research activities and
practical experiences in an industrial context [7] we can observe that quality concerns
cannot be easily represented in current architectural views and tend to crosscut
elements within an architectural view. We have proposed a solution to this problem by
providing an approach for defining architectural viewpoints for quality concerns. From
our experience, the explicit modeling of architectural viewpoint for quality concerns
seemed to be a practical instrument [7]. Explicit viewpoints for quality concerns do not
only improve the understanding and communication of the architecture but also
support the analysis of these concerns. Our future work will include the analysis of
quality concerns based on the architectural viewpoints that we have developed.

References

[1] Avizienis, A., et al.: Basic concepts and taxonomy of dependable and secure computing.
IEEE Trans. Dependable Secur. Comput. 1(1), 11–33 (2004)

[2] Clements, P., et al.: Documenting Software Architectures: Views and Beyond. Addison-
Wesley, Reading (2002)

[3] Garlan, D., Barnes, J.M., Schmerl, B.R., Celiku, O.: Evolution styles: Foundations and
tool support for software architecture evolution. In: Proc. of the 7th Working IEEE/IFIP
Conference on Software Architecture (WICSA 2009), pp. 131–140 (2009)

[4] [ISO/IEC 42010:2007] Recommended practice for architectural description of software-
intensive systems (ISO/IEC 42010) (identical to ANSI/IEEE Std1471–2000) (July 2007)

34 B. Tekinerdogan and H. Sözer

[5] Kell, S.: A Survey of Practical Software Adaptation Techniques. Journal of Universal
Computer Science 14(13), 2110–2157 (2008)

[6] MPlayer official website,
http://www.mplayerhq.hu/ (accessed March 2010)

[7] Sözer, H., Tekinerdogan, B., Akşit, M.: FLORA: A Framework for Decomposing
Software Architecture to Introduce Local Recovery. Wiley Software Practice and
Experience Journal 39(10), 869–889 (2009)

[8] Rozanski, N., Woods, E.: Software Systems Architecture – Working with Stakeholders
using Viewpoints and Perspectives. Addison-Wesley, Reading (2005)

A Question-Based Method for Deriving Software
Architectures�

Marco Müller, Benjamin Kersten, and Michael Goedicke

paluno - The Ruhr Institute for Software Technology, University of Duisburg–Essen
Gerlingstraße 16, 45127 Essen, Germany

{marco.mueller,benjamin.kersten,michael.goedicke}@paluno.uni-due.de

Abstract. Although several approaches exist for deriving architectures
from requirements and environmental constraints, most solutions rely on
experienced architects for proposing and choosing feasible architectural
solutions. It is critical to develop architecture systematically and without
strong dependencies on experienced architects, because the architecture
has a deep impact on the quality of a system. This paper presents a
question-based approach for efficiently finding architecture candidates
using annotated pattern and style catalogues. Following this approach
allows for a systematic development of architecture, that provides docu-
mented common experience.

1 Motivation

The development of software architecture is a challenge, even when requirements,
environmental constraints, and the domain of a software system are clear. This is
especially true, when a development team includes no experienced architect. For
building upon common knowledge and best practices, the usage of catalogues
containing architectural patterns and styles (e.g. [1, 2]) has shown to be valuable.
These catalogues are subject to architectural design methods, that aim to be a
guide for deriving architectures from requirements (e.g. [3–6]). In these meth-
ods, the catalogues are used as a reference to find solutions for an architectural
problem by choosing applicable patterns and styles (called solution candidates
in this document) from the catalogue.

Trying to find an applicable solution candidate is, however, not enough. Sev-
eral questions should be answered during that selection: E.g. What are the cri-
teria for a candidate to be applicable? Are there constraints (e.g. business or
technical)? Is the candidate a good choice to meet the quality requirements?
When quality requirements are contradictory, is the candidate a good trade-
off? These questions target the selection of candidates from a catalogue. Most
existing approaches are imprecise or don’t provide any aid for choosing good
candidates from catalogues [7].

� The work reported herein was funded by the German Research Foundation under
the grant no. GO 774/5-1.

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 35–42, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

36 M. Müller, B. Kersten, and M. Goedicke

given

possible reference

definition

precondition

**

*

1

0 .. 1

1
1

1..*
1

*
*

Fig. 1. Elements of the question-based method and their references

Sequentially evaluating the candidates of a catalogue for given requirements
and constraints in a given domain (called problem in the remainder of this doc-
ument) is not efficient. In this paper, we propose a process providing aid in
this selection, by relating a specific problem to common experience. We extend
the solution candidates in catalogues with rated questions. By answering these
questions regarding a specific problem, a small set of candidates can quickly be
identified as promising for that problem. The presented approach aims at help-
ing to derive architectures that also meet quality requirements. To achieve this
goal, the presented approach does not aim to elicit a single solution. Instead,
it suggests solution candidates that are promising to meet the quality require-
ments. Before actually choosing a candidate, the proposed process provides for
iteratively evaluating the most-promising candidates.

The remainder of this paper is structured as follows: Section 2 explains the
extension of meta data for solution candidate catalogues. Section 3 describes
the process using this meta data for efficiently selecting solutions. The provided
tool support is introduced in section 4. Section 5 describes the current state of
evaluation of the approach. Section 6 presents related work, before we conclude
and present future work in section 7.

2 Annotating Architecture Patterns with Questions

In order to efficiently find solution candidates for problems, we annotate each
candidate in a catalogue with questions and rated answers. The questions’ goal
is to find out how the solution candidates relate to a specific problem. Thus the
question may target functional requirements, quality requirements, environmen-
tal constraints, and domain constraints.

The meta data for solution candidates is structured as shown in figure 1.
Questions define a set of possible answers. These questions are referenced by the
candidates. Thus different candidates can share the same questions. For each
solution, a different rating may be defined for an answer. The rating describes
whether a solution contributes positively (0, 1.0] or negatively [−1.0, 0] to a prob-
lem. The rating may also be excludes, which means that the solution candidate
contradicts the problem, and is thus excluded. If a question is not answered (yet),
its rating is 0 by default. In addition, specific answers can be preconditions for
other questions to be asked. The elements are formally defined as follows:

A Question-Based Method for Deriving Software Architectures 37

– p is a problem definition,
– Q is a set of questions,
– ap

q is an answer given to question q regarding problem p,
– Aq, q ∈ Q is a set of possible answers for a question,
– Ap the set of given answers ap

q for all questions q ∈ Q,
– S is a set of solution candidates,
– rs(a) ∈ [−1.0, +1.0] ∪ {excludes} is the rating for the answer a ∈ Aq of

question q ∈ Q for the solution candidate s ∈ S.

A solution candidate is a pattern description as found in pattern catalogues.
For our purpose we define a solution candidate to be s = 〈Qs, pres〉, with Qs ⊆
Q questions referenced by the solution candidate and pres : Qs → 2Aqs , qs ∈
Qs being a function stating the answers that are preconditions for a question
reference. The set of answers given for the questions referenced by s is As. A
question reference qs is called enabled for the problem p if: (1) it has not been
answered for the problem in focus and, (2) it has either no precondition or (3)
any precondition is a given answer:

enabledp,s(qs) :=
 ∃ap
q ∧ (pres(qs) = ∅ ∨ ∃a(a ∈ pres(qs) ∧ a ∈ Ap))

Otherwise the reference is called disabled. A question is called enabled if it
has any enabled question reference: enabledp(q) = ∃s(s ∈ S ∧ enabledp,s(q)).
Analogously, a question is called disabled otherwise. At last, the rating rs for a
solution candidate s regarding all given answers Ap is the average of the single
ratings or excludes if any rating is excludes:

rs(Ap) :=

⎧
⎨

⎩

excludes , if ∃a(a ∈ Ap ∧ rs(a) = excludes)
∑

a∈Ap
rs(a)

|As| , else

3 A Process for Identifying Architectural Candidates
from Requirements and Context

The elements described in section 2 can be used for efficiently identifying promis-
ing solution candidates for problems. In this section, we introduce the process
for systematically deriving architecture candidates in an iterative top-down ap-
proach. This process is schematically depicted in figure 2. In each iteration
promising candidates are found for the architecture. During the first iteration,
the considered problem is the overall system, while in later iterations, the can-
didates are refined. Each iteration builds upon the results of the preceding it-
erations. Thus a tree of architecture candidates is spanned. The candidates are
evaluated after each iteration. Due to this evaluation, branches of candidates
that cannot fulfill the quality requirements are excluded early. The result of the
process is a set of promising architecture candidates. The process is supposed
to be executed by a person knowing the requirements, the context, and the do-
main of the system. This person is the reference for the process to the concrete
problem.

38 M. Müller, B. Kersten, and M. Goedicke

candidates
remaining?

more questions
available?

no
yes

yes no

Promising
Candidates
(Patterns)

Requirements
Constraints

Domain

Promising
Candidates
(Instances)

solution
satisfying?

no

yes

1. get promising candidates

Solution Candidates
(with Questions)

Requirements
Constraints

Domain

Promising
Candidates
(Patterns)

Given
Answers

Solution Candidates
(with Questions)

rating
sufficient?

yes

no

for each
candidate

and
subsystem

Fig. 2. An overview of the process

In the following, the process is described in detail. Step (1) is to get promising
candidates for the problem. The promising candidates is an ordered set (SAp ,≥).
SAp is the set of candidates which have not been excluded by one of the given
answers Ap:

SAp = {s|s ∈ S ∧ ∀a(a ∈ Ap ∧ rs(a)
= excludes)}.
The candidates are ordered by the ratings of the given answers:

s ≥ s′ ⇔ rs(Ap) ≥ rs′(Ap).

To find these candidates, the first substep ask most-referenced question (1.1)
is executed. In this substep, one of the questions that are referenced by the
most remaining candidates are asked to the person knowing the problem p. The
number of enabled references to a question is identified by

ref(q) =
∑

s∈S

|{q|q ∈ Q ∧ enabledp,s(q)}|.

Using this, the ordered set of enabled questions can be defined as (enabledp(q),≥
), with q ≥ q′ ⇔ |ref(q)| ≥ |ref(q′)|. In the next substep (1.2), the ratings are
evaluated. Due to the definition of enabledp,s(q), the recently answered question
is removed from the set of enabled questions. Analogously, solution candidates

A Question-Based Method for Deriving Software Architectures 39

with rs(ap
q) = excludes are removed from the set of promising candidates. Their

question references are thus disabled.
At this point, no more candidates might be available. In this case, the cata-

logue of solution candidates does not provide an applicable solution candidate. If
more questions are enabled, substep (1.1) is repeated with these questions. Oth-
erwise step (1) is finished. The result is a set of patterns that represent promising
candidates. The candidates with the highest rating are the most promising. Step
(1) can be stopped after each evaluation, because the process does not require
all questions to be answered. The rating is more specific with more answered
questions.

The process aims at proposing candidates based on common knowledge. Thus
the resulting candidates still need to be evaluated to confirm their feasibility and
applicability. In the next step instantiate & evaluate promising candidates (2),
the patterns resulting from step (1) are instantiated to model an architecture
that fulfills the functional requirements and the constraints. The instantiated
architectures are then evaluated e.g. using tradeoff analysis techniques. The pro-
cess does not constrain the choice of methods or tools for evaluating architec-
tures. When the evaluation shows that a candidate will most likely not meet
the quality requirements, or is excluded due to a tradeoff analysis, it is removed
from the list of candidates for the given process interation. If the instantiated
architecture is detailed enough, the process can be stopped. Otherwise, for each
candidate, each subsystem is taken as problem p for a next iteration. The set
of questions and candidates are reset and the process starts a next iteration.
Eventually, the iterations result in an architecture on the desired level of detail,
or the process shows that no solution candidates are applicable. In the latter
case, more patterns are necessary, or the requirements have to be adapted.

4 Tool Support

To support the approach, a tool was developed to store the description of solution
candidates, including questions and ratings. The tool allows for easily modifying
and querying the catalogue of solution candidates. We implemented this cat-
alogue using a Semantic Media Wiki (SMW), a semantic extension for Media
Wiki. The wiki allows for easily creating and modifying informal descriptions
of candidates, that define relationships to each other for an easy understanding
of the candidates and their environment (e.g. related patterns). The semantic
extensions allow for defining typed relationships between pages, as well as prop-
erties for pages. Using these properties, relationships and pages are enriched
with semantic information. The structure of the semantic properties is used as a
meta model. Semantic wikis allow for defining complex queries over the modeled
data.

In the semantic wiki used as solution candidate catalogue, the meta model was
designed to define the structure necessary for the presented approach, as shown
in figure 1. The elements in this figure represent data types (boxes) for wiki
pages and their relationship types (arrows). The rating for an answer regarding

40 M. Müller, B. Kersten, and M. Goedicke

a specific solution was realized using complex property types (the record type in
SMW).

Furthermore, to support the structured description of solution candidates, we
used semantic forms. They provide forms to guide editors of the wiki to reuse
questions that are already defined, and to provide further semantic information,
e.g. related patterns.

5 Example

The process was evaluated in internal software development projects. In this
section, we show an excerpt of the process execution for designing a chat ap-
plication, as it was used by students in a seminar. In this evaluation, a pattern
catalogue with 10 patterns referencing 25 questions was used. The ratings were
defined by experience. The functional and quality requirements for the appli-
cation were given, as well as technical constraints: the framework to use was
predefined due to the environment the software should be run.

In the first iteration, in step (1) of the process, the most-referenced questions
were asked. An excerpt of the questions and given answers in this iteration
is shown in table 1. The tables shows only the ratings for the given answers.
As a result of step (1), the candidates Client/Server and Simple Peer-to-Peer
were identified to be the most-promising candidates. The other candidates were
excluded or had a significantly lower rating. In step (2), both candidates were
instantiated. I.e. the styles were used as alternative designs for the application
on the top-most abstraction level. In step (3), the instantiated architectures
were evaluated by a performance-test, as the performance was one of the most
important requirements. Both candidates passed the evaluation. Thus in the
next iterations, each candidate was considered further when the architecture was
refined. After five iterations, one solution (client/server-based) was considered
detailed enough and satisfying.

Table 1. Rated answers for the first iteration of the chat application

Candidate \ Question (1) (2) (3) . . . Average
Client/Server 1 0.5 0.9

. . .

0.19
Simple Peer-to-Peer 1 0 -0.1 0.22
Standalone excludes x x 0.03
Shared State -0.5 x -0.8 0.07
Batch-Sequential 0.2 0 x 0.02
Pipes & Filters 0.2 0 x 0.0
Publish-Subscribe 0.2 0.4 -0.1 0.14
Event-Based 0.1 0.2 -0.3 0.13
Blackboard x 0.6 -0.8 0.04
Layered x x 0.3 0.11

(1) Is the system necessarily distributed? → Yes
(2) Are there more clients expected than can be handled by a single node? → No
(3) Does the system conduct sensible / confidential data? → Yes

A Question-Based Method for Deriving Software Architectures 41

6 Related Work

Hofmeister et al. [8] compared five industrial software architecture design meth-
ods to extract a general design model from them. In their model, our approach
can be used as the the Architectural Synthesis activity.

Related work is first of all found in different architecture derivation methods.
These methods vary in their abstraction level and the development phases that
are considered. For instance, Rational Unified Process (RUP)[9] is dealing with
any software development process phase from early requirements to production
and evolution. When it comes to the selection of patterns as solutions for a
problem, RUP allows to integrate different architecture methods. It thus does
not provide any guidance for this task.

Methods that are more specific in this point emphasize the design phase and
describe how to select certain architecture styles and patterns for a given prob-
lem. For example, Attribute Driven Design (ADD) [3] is a method approximating
this task. It defines a process to derive an architecture from requirements using
patterns. However, ADD does not describe how to elicit a matching pattern from
a large pattern catalogue, except for sequentially evaluating each element in the
catalogue (cf. [10]). There are more architecture methods that are imprecise at
this point such as Object Oriented Modeling and Design [4], Siemens 4 Views [5]
or Architectural Separation of Concerns [6]. Therefore, our approach bridges the
gap of pattern elicitation found in related work. Our approach is not designed
to complement these methods, but it can be integrated to enrich them.

Zdun uses questions to select architecture patterns in [11]. In this approach,
questions are directed to key characteristics of a group of patterns (e.g. “How
to realize asynchronous result handling? ”). The answers are patterns, which are
related to criteria supporting the decision process. We believe that our approach
is more suitable for less experienced teams, because of the are related to the
system’s requirements and context. This is, however, subject to validation.

Bode and Riebisch [7] relate solutions to quality requirements. Their work
focuses on rating the impact of patterns (called solution instruments in this
context) on quality goals. They first refine quality goals with subgoals. Then
they group patterns to solution principles, e.g. modularization. A experience-
based rating is then defined between solution principles and subgoals. In contrast
to our work, Bode and Riebisch develop context-independent ratings. We are
confident, that the specific requirements, the environmental constraints, and the
domain influence these ratings.

7 Conclusion and Future Work

In this paper we presented a question-based approach for systematically propos-
ing architecture candidates for software systems and subsystems. To select ap-
propriate architecture patterns and styles we annotated each of these candidates
within a catalogue with semantic meta data: questions, answers, and ratings.
A developer who is familiar with the requiremens answers questions within a

42 M. Müller, B. Kersten, and M. Goedicke

defined process to exclude irrelevant candidates and to guide the selection by
rating the candidate regarding the given answers. To evaluate our approach, we
evaluated the process in several internal software development processes.

As future work, we plan to further evaluate the process. For a deeper reflec-
tion, a larger base of solution candidates is necessary, as well as refined ratings
for answers. We thus plan to extend the evaluation to larger projects with stu-
dents and industrial partners. Furthermore, we are developing an interactive
application on top of the wiki as already provided tool, to guide users through
the process in a user-friendly way. We also plan to publish the semantic wiki as
catalogue for general usage and for using the common experience of practitioners
and researchers for extending the catalogue with more patterns and styles, and
for refining the ratings. We also plan to find methods for refining the ratings by
evaluating data collected from projects that use the presented process.

References

1. Taylor, R.N., Medvidovic, N., Dashofy, E.: Software Architecture: Foundations,
Theory, and Practice, 1st edn. John Wiley & Sons, Chichester (2009)

2. Gamma, E., Helm, R., Johnson, R.E.: Design Patterns. Elements of Reusable
Object-Oriented Software, 1st edn. Addison-Wesley Longman, Amsterdam (1994)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice (SEI Series
in Software Engineering), 2nd edn. Addison-Wesley Longman, Amsterdam (2003)

4. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorenson, W.: Object-
Oriented Modeling and Design, United states ed edn. Prentice-Hall, Englewood
Cliffs (1991)

5. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture: A Practi-
cal Guide for Software Designers (Addison-Wesley Object Technology). Addison-
Wesley Longman, Amsterdam (1999)

6. Jazayeri, M., Ran, A., van der Linden, F.: Software Architecture for Product Fam-
ilies. Addison-Wesley Longman, Amsterdam (2000)

7. Bode, S., Riebisch, M.: Impact Evaluation for Quality-Oriented Architectural De-
cisions regarding Evolvability. In: Babar, M., Gorton, I. (eds.) ECSA 2010. LNCS,
vol. 6285, pp. 182–197. Springer, Heidelberg (2010)

8. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, J.H., Ran, A., America, P.: Gen-
eralizing a model of software architecture design from five industrial approaches.
In: WICSA, pp. 77–88 (2005)

9. Kruchten, P.: The Rational Unified Process: An Introduction (Addison-Wesley
Object Technology), 2nd sub edn. Addison-Wesley Longman, Amsterdam (2000)

10. Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., Wood, B.:
Attribute-driven design (add), version 2.0. Technical report, Software Engineering
Institute (2007)

11. Zdun, U.: Systematic Pattern Selection using Pattern Language Grammars and
Design Space Analysis. Software: Practice and Experience 37(9), 983–1016 (2007)

Performance Simulation of Runtime

Reconfigurable Component-Based Software
Architectures

Robert von Massow, André van Hoorn, and Wilhelm Hasselbring

Software Engineering Group, University of Kiel, D-24098 Kiel, Germany

Abstract. Architectural runtime reconfiguration is a promising means
for controlling the quality of service (QoS) of distributed software
systems. Particularly self-adaptation approaches rely on runtime recon-
figuration capabilities provided by the systems under control. For exam-
ple, our online capacity management approach SLAstic employs
changing component deployments and server allocations to control the
performance and resource efficiency of component-based (C-B) software
systems at runtime.

In this context, we developed a performance simulator for runtime
configurable C-B software systems, called SLAstic.SIM. The system ar-
chitectures to be simulated are specified as instances of the Palladio
Component Model (PCM). The simulation is driven by external workload
traces and reconfiguration plans which can be requested during simula-
tion, based on continuously accessible monitoring data of the simulated
systems. This paper demonstrates SLAstic.SIM including a quantitative
evaluation of its performance.

1 Introduction

Self-adaptation approaches for software systems [1] rely on runtime reconfigura-
tion capabilities provided by the controlled system. For example, our SLAstic [2,3]
approach for increased resource efficiency of distributed component-based (C-B)
software architectures changes the deployment of software components and the
allocation of execution containers to control the system capacity in an elas-
tic manner. For systems conforming to this architectural style, we developed
the performance simulator SLAstic.SIM. SLAstic.SIM simulates instances of the
Palladio Component Model (PCM) [4] and supports PCM-specific implementa-
tions of the runtime configuration operations employed by our SLAstic approach.
Simulations can be driven by external workload traces which may have been
generated or recorded prior to the simulation.

SLAstic.SIM is used for studying the performance impact of reconfiguration
operations, as well as evaluating adaptation strategies and tactics based on re-
alistic workload profiles—online and offline. This paper describes SLAstic.SIM
and provides an evaluation of its features and performance.

The remainder of this paper is structured as follows. Sections 2 and 3 describe
the underlying concepts of the Palladio Component Model and our SLAstic

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 43–58, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

44 R. von Massow, A. van Hoorn, and W. Hasselbring

framework. SLAstic.SIM is described in Section 4 and its evaluation follows in
Section 5. Related work is discussed in Section 6 before the conclusions are drawn
in Section 7.

2 Palladio Component Model

The Palladio Component Model (PCM) [4] is a modeling language for architec-
ture-based performance prediction of C-B software systems. A PCM instance
consists of four complementary models providing architectural views to struc-
tural as well as performance-relevant behavioral aspects of a C-B software sys-
tem: (1) a repository model, (2) a system model, (3) a resource environment
model, and an (4) allocation model. Additionally, usage models allow to specify
corresponding workloads. Transformations from PCM instances to analytic per-
formance models and simulation models exist, allowing to derive performance
indices of interest—e.g., statistical distributions of operation response times and
resource utilization. The remainder of this section describes PCM’s modeling
concepts and related terminology required to understand the remaining parts of
this paper. For further details, we refer to the publications on PCM, e.g. [4].

Repository. A PCM repository model contains the type-level specification of
available interfaces and components. An interface constitutes a named set of
service signatures, as known from object-oriented modeling. Components pro-
vide or require these interfaces. Figure 1(a) illustrates the PCM repository of a
Bookstore application which is also used in the evaluation section of this paper.

(a) Repository diagram of the Bookstore (b) RDSEFF of the searchBook service

Fig. 1. PCM repository contents of the Bookstore example application

In order to use a PCM instance for performance prediction, the performance-
relevant behavior of each service implementation provided by the components
must be specified. In this paper, we will limit ourselves to one supported formal-
ism—the Resource Demanding Service Effect Specification (RDSEFF). Similar to
activity modeling employing the Unified Modeling Language (UML) [5], an RD-
SEFF specifies a service implementation as a control-flow of actions. PCM dis-
tinguishes between internal actions and external call actions—the former being a
quantitative specification of the hardware and software resources used by the ser-
vice; the latter denoting calls to required services. RDSEFFs provide additional
features like probabilistic and guarded branches, loops, and operations on vari-
ables. Figure 1(b) illustrates the RDSEFF of the Bookstore’s searchBook service.

Performance Simulation of Runtime Reconfigurable 45

System. A PCM system model provides a deployment-independent component-
connector view of the system assembly. Components defined in the repository
can be (potentially multiply) instantiated as so-called assembly contexts and
inter-connected using so-called assembly connectors—constrained by the inter-
face providing/requiring specification. The services provided and required by
the system are delegated to/from the implementing assembly contexts. Figure 2
illustrates the Bookstore’s system model.

Fig. 2. PCM system diagram of the Bookstore application

Resource Environment. A PCM resource environment model specifies the
available resource infrastructure and its performance-relevant characteristics.
Resource containers, e.g., physical servers, are inter-connected by linking re-
sources, e.g., network links. Each resource container is associated with the con-
tained processing resources (e.g., CPU and HDD) which can be demanded in the
RDSEFFs. For each resource, the resource environment model contains a spec-
ification of the performance-relevant properties of the resources—e.g., capacity,
processing rates, throughput, and scheduling disciplines.

Allocation. A PCM allocation model specifies the deployment of the system’s
assembly contexts to resource containers. Each of these mappings is modeled as
an allocation context.

Usage model. A PCM usage model allows to specify closed and open work-
loads. Probabilistic user behavior is described in an RDSEFF-like formalism
including branches, loops, and calls to system-provided services. Closed work-
loads include the definition of population size and think time; open workloads
include the definition of inter-arrival times.

3 SLAstic Approach

As a measure of a system’s resource usage economy, resource efficiency is an im-
portant quality attribute of software systems. The capacity of software systems is
often managed in a static and pessimistic way, causing temporarily underutilized
resources, e.g., application servers, during medium or low workload periods.

Our SLAstic [2,3] self-adaptation approach for online capacity management
aims to increase the resource efficiency of distributed C-B software systems em-
ploying architectural runtime reconfiguration. Architectural models specify the
system assembly, deployment, instrumentation, reconfiguration capabilities, per-
formance properties, etc. At runtime, these models are continuously updated and
used for online quality-of-service evaluation, e.g., workload forecasting and per-
formance prediction, in order to determine required adaptations and to select

46 R. von Massow, A. van Hoorn, and W. Hasselbring

Replication (→) & de-replication (←)

Migration (�)

De-allocation (→) & allocation (←)

(a) Reconfiguration operations (b) Framework overview

Fig. 3. SLAstic reconfiguration operations (a) and self-adaptation framework (b)

appropriate reconfiguration plans. Architectural system modeling in SLAstic is
based on the hierarchical modeling approach of PCM, as described in the previ-
ous Section 2—with a slightly different terminology. For this paper, we assume
that assembly components are equivalent to the assembly contexts of PCM;
deployment components to allocation contexts; and execution containers to re-
source containers. The following Sections 3.1 and 3.2 describe the supported
architectural reconfiguration operations and the framework architecture.

3.1 Architectural Reconfiguration Operations

In principle, the SLAstic framework, which will be described in Section 3.2,
allows arbitrary reconfiguration operations which are defined based on the ar-
chitectural entities from the SLAstic meta-model. In this paper, we focus on the
following five runtime reconfiguration operations that allow to control a system’s
performance and efficiency properties at runtime in an elastic way. Figure 3(a)
illustrates these operations.

1./2. Replication & de-replication of software components. The replication op-
eration creates an additional instance of a deployment component on an-
other allocated execution container. Future requests to the services provided
by the corresponding assembly component are distributed among the avail-
able deployment components. The inverse de-replication operation removes
an existing deployment component; newly incoming requests are no longer
dispatched to this deployment component instance.

3. Migration of software components. The migration operation removes a de-
ployment component instance and creates a new instance of the same as-
sembly component on an allocated execution container—possibly requiring
a migration of state.

Performance Simulation of Runtime Reconfigurable 47

4./5. De-allocation & allocation of execution containers. The allocation opera-
tion makes an execution container available for component deployment. The
reverse de-allocation operation removes an execution container from the set
of allocated containers.

The replication and migration operations both allow to increase system capacity
by deploying components to allocated but underutilized execution containers.
The de-replication and migration operation can be used to shrink the system
capacity by (re)moving deployment components. Operating costs—e.g., caused
by power consumption or usage fees in cloud environments—can be saved by
de-allocating execution containers.

3.2 Framework Architecture

Figure 3(b) depicts how the concurrently executing SLAstic components for mon-
itoring (SLAstic.Monitoring), reconfiguration (SLAstic.Reconfiguration), as well
as adaptation control (SLAstic.Control) are integrated and how they interact with
the monitored software system.

The system is instrumented with monitoring probes which continuously collect
measurement data from the running system [6]. The SLAstic.Monitoring compo-
nent provides the monitoring infrastructure and passes the monitoring data to the
SLAstic.Control component. The SLAstic.Control component analyzes the cur-
rent architectural configuration with respect to the monitoring data and, if re-
quired, determines an adaptation plan consisting of a sequence of reconfiguration
operations. The adaptation plan is communicated to the SLAstic.Reconfiguration
component which is responsible for executing the actual reconfiguration
operations.

Note, that the SLAstic.Control component takes an architectural, technology-
independent view on the software system. The components SLAstic.Monitoring
and SLAstic.Reconfiguration translate between architecture and technology.
Thus, the SLAstic runtime reconfiguration operations described in the previous
Section 3.1 are defined on the architectural entities. In Section 4.2, we present a
PCM-specific implementation of these operations.

4 SLAstic.SIM

Section 4.1 gives an overview of SLAstic.SIM’s architecture and its integration
into the SLAstic framework described in the previous Section 3. In Section 4.2,
we describe how the SLAstic reconfiguration operations (Section 3.1) are imple-
mented within SLAstic.SIM using PCM. The execution of the simulation model
is described in Section 4.3. Further details on the aspects presented in this section
can be found in [7].

4.1 SLAstic.SIM Architecture and Framework Integration

SLAstic.SIM’s conceptual architecture and its integration into the SLAstic frame-
work are depicted in Figure 4. For the SLAstic.Control component, SLAstic.SIM

48 R. von Massow, A. van Hoorn, and W. Hasselbring

Fig. 4. High-level architecture and framework integration of SLAstic.SIM

emulates a real software system with runtime reconfiguration capabilities. The
SimulationController is responsible for the simulation life-cycle and for handling
external events. Initially, the input PCM instance is transformed into an inter-
nal representation used during simulation and maintained by the ModelManager.
The ModelManager includes a ReconfigurationController and a controller for each
PCM model, e.g., an AllocationController. The SimulationCore executes the simula-
tion including the generation and execution of internal simulation events. SLAs-
tic.SIM employs the Java-based discrete-event simulation framework Desmo-
J1 [8]. Communication with SLAstic.SIM is possible via the workload, monitoring,
and reconfiguration ports. These ports allow to 1) input the workload driving the
simulation, 2) receive the performance data generated during simulation, and
3) request reconfigurations to be executed by the simulator, as detailed below.
Our monitoring and analysis framework Kieker2 [6] is used for reading the work-
load traces and monitoring the simulation data.

Workload. Workload is received from a Kieker.LogReplayer component which
reads workload traces from a monitoring log and passes them to registered plug-
ins which implement the IMonitoringRecordReceiver interface—in this case SLAs-
tic.SIM. As these logs typically contain complete control-flow traces and not just
the top-level entry calls, the SimulationController filters the incoming workload and
delegates it to the SimulationCore.

Monitoring. Currently, SLAstic.SIM includes probes for collecting the follow-
ing information during simulation:

– Executions. Each simulated execution of external calls is monitored with the
associated information on the service and assembly context, the resource
container, the entry and exit times, as well as the control flow information.

1 Desmo-J: http://desmoj.sourceforge.net/
2 Kieker: http://kieker.sourceforge.net/

Performance Simulation of Runtime Reconfigurable 49

– CPU utilization. For each CPU of allocated resource containers, the utiliza-
tion is measured in intervals of 0.5 simulated time units.

– Active users. If a call from outside of the system occurs, we increment the
user count and write a monitoring record. Upon the return of a call the user
count is decremented again and another record is written.

In each case, we defined a Kieker monitoring record type which allows to mon-
itor, analyze, and visualize this data. The monitoring records are passed to the
SLAstic.Monitoring component via Kieker’s MonitoringController. The monitoring
probes are injected using the Google Guice3 dependency injection framework.
This gives the possibility to enable or disable probes between different simulation
runs by simply replacing a class’s implementation. It is also possible to disable
each of these probes separately or to add additional ones.

Reconfiguration. The IReconfigurationPlanReceiver interface makes it possible to
send reconfiguration plans (see Figure 5) to the simulator. The plans will be re-
ceived and checked by the SimulationController and then sent to the ModelManager,
which translates them into reconfiguration events. These events will then be
simulated by the SimulationCore. A reconfiguration plan consists of one or more
reconfiguration operations. These operations are successively applied to the sim-
ulation model by the ReconfigurationController. Each operation of a reconfiguration
plan is transformed into one or more events, which are scheduled and executed
consecutively. If an event fails to execute, the current plan is aborted. The fol-
lowing Section 4.2 details the PCM-specific implementation and execution of the
runtime reconfiguration operations.

4.2 PCM-Specific Runtime Reconfiguration Operations

Figure 5 shows the meta-model including the PCM-specific reconfiguration plan
and operations.

Fig. 5. PCM-specific reconfiguration plan and operations (cf. Figure 3(a))

1. Component replication. For the given assembly context, a new allocation
context located on the destination container is created and added to the
model. The destination container must be allocated prior to the call and
must not contain an allocation context for this assembly context.

3 Google Guice: http://code.google.com/p/google-guice/

50 R. von Massow, A. van Hoorn, and W. Hasselbring

Fig. 6. Activity diagram for the component de-replication operation

2. Component de-replication. The existing allocation context is blocked, which
means that no new calls are dispatched to this instance. As soon as all
running transactions handled by the component are finished, the alloca-
tion context is removed from the model. Prior to the request, at least two
allocation contexts must exist for the assembly context. The activity dia-
gram in Figure 6 depicts the execution of a de-replication operation within
SLAstic.SIM.

3. Component migration. The migration is implemented by executing a replica-
tion followed by a de-replication operation. Hence, the new allocation context
immediately handles new calls while the old allocation context exists until
all executing calls are finished.

4. Container de-allocation. The container is marked unavailable which means
that it cannot be the target of migration or replication operations until
it is allocated again. Prior to the request, the resource container to be
de-allocated must be allocated and empty—i.e., it must not contain any
allocation context.

5. Container allocation. The container is marked available which means that
it can be the target of migration or replication operations. The operation
can be executed if the resource container exists in the simulation model
and is not allocated at that time. Upon completion, components can be
replicated or migrated to it. Initially, exactly those resource containers from
the resource environment being associated with at least one deployment
context are marked as allocated.

4.3 Simulation

Desmo-J offers two styles of modeling [8]: process-based and event-based. We
chose to use the event-based model as all our state changes in the simulation
model are instantaneous and there would be no real life-cycle. Below, we give a
brief overview of the generation and execution of control-flows.

Performance Simulation of Runtime Reconfigurable 51

Control-Flow Generation. On each external call from the input workload,
the complete control-flow chain is generated. This is done by traversing and eval-
uating the corresponding RDSEFF. Call enter and return events are generated
for each ExternalCallAction.4 For each InternalAction, an internal action event is pro-
duced, containing the resource demands of the input InternalAction. BranchActions

are evaluated by deciding which transition to take and traversing the transition’s
body. LoopActions are evaluated similarly by determining the iterations and then
traversing the body for each iteration. The result is a list of Desmo-J events
which are scheduled consecutively.

Execution of Control-Flow Chains. On occurrence of an external call, the
allocation contexts for the corresponding assembly contexts are determined and
one of these is selected based on the uniform probability distribution. The re-
source demands of internal actions are mapped to the corresponding resources
of the current resource container. Each of these resources has a scheduler. Cur-
rently, we support hard drives scheduled by a first-come/first-served strategy
and CPU usage by processor sharing. These components are also replaceable by
implementing the corresponding interface.

5 Evaluation

Employing an example application, the evaluation in this section demonstrates
SLAstic.SIM’s performance and features by comparing the duration of simu-
lation runs with the default PCM simulator SimuCom [9], as well as by two
additional scenarios under varying workload intensity with and without the ex-
ecution of reconfigurations. Section 5.1 describes the evaluation methodology.
The evaluation scenarios follow in Sections 5.2–5.4. Details on SimuCom can be
found in Section 6 (related work).

5.1 Methodology

The following Sections 5.1–5.1 describe the example system, the workload trace
generation, and the hardware and software setup.

Example System. The Bookstore application, used in all evaluation scenarios,
provides a single searchBook service which allows to search for books in a catalog
(see also Section 2). The application consists of three software components—a
front-end (Bookstore), a catalog (Catalog), and a customer-relationship manage-
ment (CRM) component. A call to the searchBook service results in a single de-
terministic trace shown in the sequence diagram in Figure 7. The diagram was
created employing Kieker, based on monitoring data from a simulation run. We
created a PCM instance for the Bookstore application with the following models:

4
ExternalCallAction, InternalAction, BranchActions, and LoopAction are classes in the PCM meta-
model (see Figure 1(b)).

52 R. von Massow, A. van Hoorn, and W. Hasselbring

Server2::

bookstore <Bookstore>

Server2::

catalog <Catalog>

Server2::

crm <CRM>

searchBook()
getBook()

getOffers()

getBook()

Fig. 7. Reconstructed sequence diagram of a Bookstore trace

1. Repository. The PCM repository model of the Bookstore and the RDSEFF
describing the searchBook have already been shown in Figures 1(a) and 1(b).
For each of the three components, we defined a corresponding interface in
the repository. The RDSEFF of searchBook consists of external calls to the
getBook and getOffers services, followed by a resource demand of 50 CPU
units. The service getOffers consists of an external call to getBook, followed
by a resource demand of 20 CPU units. The service getBook simply contains
a resource demand of 15 CPU units. The resource demands have been chosen
to yield a response time of 100 time units for a call to searchBook without
resource contention.

2. System. The Bookstore system consists of three assembly contexts (see
Figure 2)—one for each repository component. The only externally provided
interface is the IBookstore interface. So the only service that is visible to users
is searchBook.

3. Resource environment. The resource environment consists of two resource
containers: Server1 and Server2. Each of them has a single CPU. The CPU’s
processing rate varies between the evaluation scenarios, as detailed in the
respective sections.

4. Allocation. Initially, each assembly context is mapped to resource container
Server 2. Server 1 is empty.

Generation of Workload Traces. For the scenarios, it was required to gen-
erate workload traces with constant and varying workload:

– Constant Workload. Constant workload was generated by a script writing
Kieker monitoring logs in comma-separated value (CSV) file format based
on a constant inter-arrival time.

– Varying Workload. Varying workload was generated using Apache JMeter.5

We implemented a timer6 that takes a function of time as its input. This
allows to modulate inter-arrival times. The data was written to a CSV file
and converted into a Kieker monitoring log in CSV format.

5 Apache JMeter: http://jakarta.apache.org/jmeter/
6 JMeter Function Timer: http://code.google.com/p/delayfunction/

Performance Simulation of Runtime Reconfigurable 53

Table 1. Hardware and software setup used to run the evaluation

CPU Intel Core i5, hyper-threading enabled

RAM 4 GB

OS Ubuntu Generic Linux kernel 2.6.32-22 SMP

Java Sun Java Version 1.6.0 20

Heap space 1GB for SLAstic.SIM, 2GB for SimuCom 3.0

Hardware and Software Setup. The simulations were executed in the hard-
ware and software environment listed in Table 1.

5.2 Scenario 1: Constant Workload Intensity

This scenario compares the duration of simulation runs executed with SLAs-
tic.SIM and SimuCom.

Setting. The input workload for SimuCom was specified using the PCM work-
load specification. It was modeled as an open workload with an inter-arrival
time of 0.1 units. The maximum simulation time was set to 1000 time units.
The aim was to provide a workload which does not overload the system with
an increasing number of running transactions. In order to produce a reasonable
CPU utilization, the CPUs’ processing rate was set to 1000 ticks per simulated
time unit.

We only measured the duration of the simulation. Particularly, for SimuCom
we excluded the time required for code generation and compilation, and for
SLAstic.SIM we omitted the static initialization overhead.

Results. As expected, the simulated response time of the system was 0.1 for
both, SLAstic.SIM and SimuCom.

Table 2 lists statistics for the duration in (milliseconds) of 50 simulation runs
executed with SimuCom and SLAstic.SIM. Given this PCM instance, we can see
that SLAstic.SIM and SimuCom are comparable regarding the overall duration
of the simulation (SLAstic.SIM being slightly faster).

Table 2. Statistics for the duration (ms) of 50 simulation runs

Min. Median Mean Max. Dev.

SimuCom 6434 7179 7199 7873 287.24

SLAstic.SIM 4864 5325 5333 5833 161.25

5.3 Scenario 2: Varying Workload without Reconfiguration

This scenario demonstrates the performance simulation driven by a trace of
varying workload intensity without executing runtime reconfigurations.

54 R. von Massow, A. van Hoorn, and W. Hasselbring

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350
 0

 5000

 10000

 15000

 20000

 25000

 30000

Tue Wed Thu Fri Sat Sun Mon

In
te

r-
ar

riv
al

 ti
m

e
[m

s]

A
rr

iv
al

 r
at

e
[r

eq
ue

st
s/

se
c]

Experiment time [s]

Emulated day of week

Inter-arrival time (per thread)
Arrival rate (90 threads)

Fig. 8. Workload intensity (Scenarios 2&3)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

R
es

po
ns

e
tim

e
[x

 1
/1

00
0]

C
P

U
 u

til
iz

at
io

n

Simulation time

Response time (searchBook)
CPU utilization (Server 2)

(a) Scenario 2 (no reconfiguration)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

R
es

po
ns

e
tim

e
[x

 1
/1

00
0]

C
P

U
 u

til
iz

at
io

n

Simulation time

Response time (searchBook)
CPU utilization (Server 2)
CPU utilization (Server 1)
Reconfiguration requests

(b) Scenario 3 (reconfiguration)

Fig. 9. Response times and CPU utilization (Scenarios 2 and 3)

Setting. The input workload function for this scenario was modeled to resem-
ble one week of workload—with a peak intensity on the weekend. Such workload
patterns can be observed in many real-world web-based systems. The function
was sampled over 360 seconds by 90 JMeter threads, producing 68,653 calls.
Figure 8 shows the inter-arrival time function (and the corresponding arrival
rates) used as input. Opposed to the previous scenario we set the CPUs’ pro-
cessing rate to 100,000 ticks per simulated time unit.

Results. The simulated system behaved as expected. A plot of the simulation
results is given in Figure 9(a). During periods with low workload intensity, the
CPU utilization is between five and ten percent, and the response times are
below 0.002 simulated time units. Increasing the CPU load also increases the
response times of the service requests. A peak was reached at a simulation time

Performance Simulation of Runtime Reconfigurable 55

of approximately 270 with a CPU load of 70% and a response time of nearly
0.018 time units. The average duration of 10 simulation runs was 18.6 seconds.

5.4 Scenario 3: Varying Workload with Reconfiguration

This scenario demonstrates the performance simulation driven by a trace of
varying workload intensity including runtime reconfigurations.

Setting. We used the varying workload trace from Scenario 2 (see Section 5.3).
During the time period with high workload intensity, we requested runtime re-
configurations in order to increase system capacity and improve responsiveness.
We implemented SLAstic.Control components that requested the following two
runtime reconfiguration plans at fixed simulation times:

1. The reconfiguration plan requested after 200 time units consists of: An allo-
cation of Server1 followed by a subsequent replication and migration of the
components CRM and Catalog respectively. Both the replication and migra-
tion have the newly allocated resource container Server1 as its destination.

2. The inverse reconfiguration plan requested after 300 time units consists of
the migration of component Catalog back to Server2, the de-replication of
component CRM, and the subsequent de-allocation of Server1.

The SLAstic.Control component maintains a runtime model of the PCM instance
during the simulation run which is updated according to the executed system
reconfigurations.

Results. A plot of the response times and CPU utilizations is shown in
Figure 9(b). We can see that due to the reconfiguration both, response times and
CPU utilizations, can be reduced on the simulated weekend. The dependency
graph in Figure 10, which was generated from the monitoring data collected
during the complete simulation run, shows that the calls are distributed among
the two resource containers. The average duration of 10 simulation runs was
18.1 seconds.

Fig. 10. Operation dependency graph with calling frequencies (Scenario 3)

56 R. von Massow, A. van Hoorn, and W. Hasselbring

6 Related Work

Performance evaluation of computer systems is a classical and well-studied do-
main for simulation, e.g., based on queueing (network) models [10,11,8]. For
example, Java Modeling Tools (JMT) [12] is a tool suite for modeling and an-
alyzing extended queueing networks. JMT includes the discrete-event simulator
JSIMengine. In addition to probabilistic (multi-class) open and closed work-
loads, simulations can be driven by workload traces provided as log files. Like
SLAstic.SIM, it is possible to use JSIMengine within external applications.

In our work, we focus on the performance simulation of software systems us-
ing performance meta-models. Simulation approaches exist for different kinds of
architectural styles and corresponding models. Examples of approaches based
on the UML SPT [13] profile for Schedulability, Performance, and Time are Ar-
goSPE [14], CB-SPE [15]. Cortellessa et al. [16] proposed an approach for the
simulation-based performance analysis of UML 2 models. Bause et al. [17] pro-
posed an approach for simulating models of service-oriented architectures (SOAs)
using process chain models and the OMNeT++7 network simulation framework.

Comparison to SimuCom. The work most related to SLAstic.SIM is SimuCom,
the simulator for PCM instances of C-B software architectures without runtime
reconfiguration capabilities. SimuCom is integrated into the PCM modeling en-
vironment SimuBench [4], developed as part of the Palladio research project8.
In terms of simulation correctness and simulator performance—for simulations
without reconfiguration and restricted to the PCM modeling features supported
by SLAstic.SIM—we consider SimuCom the reference implementation. Simula-
tions with SimuCom are driven by PCM usage models of closed or open work-
loads, as described in Section 2. SLAstic.SIM could be easily extended to allow
these kinds of workload models. In Section 5.2, we have used a generated work-
load trace equivalent to a PCM open workload usage model. Currently, SLAs-
tic.SIM does not support the following PCM features: Stochastic expressions
(except for constants) and middleware models, as implemented by SimuCom.

Like SLAstic.SIM, SimuCom is implemented employing Desmo-J. The simula-
tion code is completely generated from a PCM instance employing model-to-code
(M2C) transformation prior to simulation start. This approach is well-suited for
software architectures, which are not reconfigured during simulation. However,
it is not trivial to extend SimuCom’s M2C transformation by simulation support
of runtime reconfigurable PCM instances. This was one of the main reasons for
us to develop a new simulator for PCM models with runtime reconfiguration
support, following an interpretive simulation approach. Another reason was that
the SimuCom simulations are only executable in an OSGi9 environment like
Eclipse.

7 OMNeT++ web site: http://www.omnetpp.org/
8 Palladio project: http://sdq.ipd.kit.edu/research/
palladio research project/

9 OSGi: http://www.osgi.org

http://sdq.ipd.kit.edu/research/palladio_research_project/
http://sdq.ipd.kit.edu/research/palladio_research_project/

Performance Simulation of Runtime Reconfigurable 57

7 Conclusions

This paper presented SLAstic.SIM, a performance simulator for runtime recon-
figurable, C-B software architectures. SLAstic.SIM is able to simulate instances
of the Palladio Component Model (PCM) driven by external workload traces
which may have been generated or recorded prior to the simulation. Additionally,
it supports the proposed PCM-specific implementation of the SLAstic runtime
reconfiguration operations aiming for increased resource efficiency: migration
and (de-)replication of software components, as well as (de-)allocation of execu-
tion containers. The evaluation demonstrated SLAstic.SIM’s performance and
features employing a small sample application. In a simulation scenario under
constant workload and without reconfiguration, SLAstic.SIM was slightly faster
than SimuCom. Two additional scenarios showed the capability to drive simu-
lations by varying workload intensity profiles and the possibility to simulate the
afore-mentioned runtime reconfigurations.

In our future work, we will continue to improve and extend SLAstic.SIM’s
features and performance. The most important PCM feature to be implemented
is support for the stochastic expressions allowing to model parametric resource
demands, loops etc. Also, SLAstic.SIM currently implements an idealized view
on the execution of reconfiguration operations: when executed, they consume no
simulation time. For example, execution containers and replicated component
instances are available without simulating delays. We plan to add the interpre-
tation of corresponding model completions. Likewise, other QoS properties, such
as the reliability of execution containers, may be modeled and simulated. We
plan to implement alternative strategies for dispatching requests among repli-
cated components, as well as additional runtime reconfiguration operations, e.g.,
replacing the implementation of component types. Moreover, we will use SLAs-
tic.SIM to simulate more complex PCM instances with workloads derived from
monitoring data of production systems. Also, the use of SLAstic.SIM for online
simulation will be further investigated.

References

1. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4(2),
1–42 (2009)

2. van Hoorn, A., Rohr, M., Gul, A., Hasselbring, W.: An adaptation framework en-
abling resource-efficient operation of software systems. In: Proc. Warm-Up Work-
shop for ACM/IEEE ICSE 2010 (WUP 2009), pp. 41–44. ACM, New York (2009)

3. van Hoorn, A.: Online Capacity Management for Increased Resource Efficiency of
Software Systems. PhD thesis, Dept. Comp. Sc., Univ. Oldenburg, Germany (2011)
(work in progress)

4. Becker, S., Koziolek, H., Reussner, R.: The Palladio Component Model for model-
driven performance prediction. Journal of Systems and Software 82(1), 3–22 (2009)

5. Object Management Group: UML 2.3 Superstructure Specification (May 2010)

58 R. von Massow, A. van Hoorn, and W. Hasselbring

6. van Hoorn, A., Rohr, M., Hasselbring, W., Waller, J., Ehlers, J., Frey, S., Kiesel-
horst, D.: Continuous monitoring of software services: Design and application of
the Kieker framework. Technical Report TR-0921, Dept. Comp. Sc., Univ. Kiel,
Germany (November 2009)

7. von Massow, R.: Performance simulation of runtime reconfigurable software archi-
tectures, Diploma Thesis, Univ. Oldenburg, Germany (April 2010)

8. Page, B., Kreutzer, W. (eds.): The Java Simulation Handbook: Simulating Discrete
Event Systems with UML and Java, 1st edn. Shaker Verlag, Aachen (2005)

9. Becker, S.: Coupled Model Transformations for QoS Enabled Component-Based
Software Design. PhD thesis, Dept. Comp. Sc., Univ. Oldenburg, Germany (2008)

10. Jain, R.: The Art of Computer Systems Performance Analysis. Wiley & Sons,
Chichester (1991)

11. Banks, J. (ed.): Handbook of Simulation: Modelling, Estimation and Control. Wi-
ley & Sons, Chichester (1998)

12. Bertoli, M., Casale, G., Serazzi, G.: JMT: Performance engineering tools for system
modeling. SIGMETRICS Perform. Eval. Rev. 36(4), 10–15 (2009)

13. Object Management Group: UML Profile for Schedulability, Performance, and
Time (January 2005)

14. Gomez-Martinez, E., Merseguer, J.: A software performance engineering tool based
on the UML-SPT. In: Proc. Int. Conf. on Quantitative Evaluation of Systems
(QEST 2005), p. 247. IEEE, Los Alamitos (2005)

15. Bertolino, A., Mirandola, R.: CB-SPE tool: Putting component-based performance
engineering into practice. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau,
K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 233–248. Springer, Heidelberg (2004)

16. Cortellessa, V., Pierini, P., Spalazzese, R., Vianale, A.: MOSES: MOdeling software
and platform architEcture in UML 2 for simulation-based performance analysis.
In: Becker, S., Plasil, F., Reussner, R. (eds.) QoSA 2008. LNCS, vol. 5281, pp.
86–102. Springer, Heidelberg (2008)

17. Bause, F., Buchholz, P., Kriege, J., Vastag, S.: A framework for simulation models
of service-oriented architectures. In: Kounev, S., Gorton, I., Sachs, K. (eds.) SIPEW
2008. LNCS, vol. 5119, pp. 208–227. Springer, Heidelberg (2008)

Aspect-Connectors to Support the Evolution of

Component-Based Product Line Architectures:
A Comparative Study

Leonardo P. Tizzei� and Cećılia M.F. Rubira��

University of Campinas, Campinas, SP, Brazil
{tizzei,cmrubira}@ic.unicamp.br

Abstract. Software Product Line architects are concerned not only with
traditional software architecture issues, but also with variation mecha-
nisms that support diversity of products. A variation point may be scat-
tered over various implementation elements (i.e. components and connec-
tors) undermining product line architecture evolution. Aspect-connectors
support the modularization of variation points by integrating aspects
and components concepts. This work quantitatively evaluates to what
extent aspect-connectors supports evolution of component-based prod-
uct line architectures by means of a comparative study against a pure
object-oriented component model. This study considered five evolution
measures: scattering of variation points, scattering of features, tangling of
features, change impact on components, and efferent coupling between
components. The results have shown evidences that aspect-connectors
can provide effective support for product line architecture evolution.

1 Introduction

Product Line Architectures (PLAs) are key assets to support Software Product
Line (SPL) evolution [16]. A PLA should explicitly provide variation mechanisms
to support software variability among software products. Software variability
can be modeled using features, which are distinctive end-user-visible qualities or
characteristics [10]. Ideally, feature variabilities should be explicitly mapped to
PLA variabilities [16] thus achieving traceability between both models.

Software components (components for short) are a common way to design
and implement PLAs [15]. Components promote encapsulation and explicit their
services and dependencies thus supporting PLA evolution. However, they have
limited capacity to handle variability. The integration of conditional compila-
tion and software components increases support for variability, but it can lead
to the scattering of architectural variation points which harms PLA evolution.
The combined use of aspects and components arguably enhance separation of
concerns in PLAs and, consequently, its evolvability. Dias et al. [7] proposed the
use of aspect-connectors for coping with variability evolution. As variation points
� L.P. Tizzei is supported by Capes - Brazil.

�� C.M.F. Rubira is partially supported by CNPQ - Brazil.

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 59–66, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

60 L.P. Tizzei and C.M.F. Rubira

can be a crosscutting concern on PLAs, aspect-connectors uses aspect-oriented
design mechanisms with the aim of modularizing variation points.

It is interesting for organizations to know which design and implementation
technique supports PLA evolution, but to the best of our knowledge there is
a lack of comparative studies. This work provides a comparative study that
quantitatively assesses the effective support for evolution of PLAs of two design
and implementation techniques: the integration of aspect-connectors and com-
ponents against a pure (i.e. non-aspect-oriented) component approach. In order
to perform this comparative study, we have adopted a representative component
model, called COSMOS* [6], and its extension to support aspect-connectors,
called COSMOS*-VP [7]. The support for evolution of both approaches were
evaluated considering five measures: (i) scattering of variation points, (ii) scat-
tering of features, (iii) tangling of features, (iv) change impact on components,
and (iv) coupling between components. The results have shown evidences that
the use of aspect-connectors can provide effective support for PLA evolution.

The remainder of this paper is organized as follows: Section 2 presents the two
component models involved in this study, namely COSMOS* and COSMOS*-
VP. Section 3 describes the empirical settings of our study, and Section 4 presents
the analysis for all measures and points out study limitations. Section 5 presents
some works related to this one. Finally, in Section 6 we draw the conclusions.

2 Background

COSMOS* Component Implementation Model. COSMOS* component
implementation model [6] (COSMOS* model for short) specifies explicit provided
and required interfaces, it can also be deployed independently, and is subject to
composition by third parties. Thus, the COSMOS* model is compliant with
Szyperski’s definition of software component [15].

COSMOS* defines five sub-models, which address different perspectives of
component-based systems: (i) the specification model specifies the external be-
havior of a component and is composed by required and provided interfaces;
(ii) the implementation model explicitly separates the provided and required in-
terfaces from the implementation; (iii) the connector model specifies the link be-
tween components using connectors; (iv) composite components model specifies
high-granularity components; and (v) system model defines a software compo-
nent which can be straightforwardly executed.

COSMOS*-VP Model. COSMOS*-VP model uses aspects to extend COS-
MOS* model. Aspect-Oriented Programming [11] is an approach that aims to
modularize the crosscutting concerns. These concerns are widely-scoped proper-
ties and usually crosscut several modules in the software system. Aspects are the
abstractions used to encapsulate otherwise crosscutting concerns. In this paper,
the notion of concern is considered equivalent to feature.

The COSMOS*-VP model extends COSMOS* model in order to support
separation of concerns and encapsulation of variation points. Components im-
plemented using COSMOS*-VP are separated into two categories: base-level

Aspect-Connectors to Support the Evolution 61

components and aspect-level components. Base-level components are similar to
COSMOS* components, but they also expose joinpoints using crosscutting pro-
gramming interfaces (XPIs) [9]. By means of XPIs, it is possible for an aspect-
level component to change the behavior of a base-level component. Aspect-level
components encapsulate crosscutting concerns and modify the behavior of at
least one base-level component. Aspect-level components do not specify which
base-level components they advise, because it would strongly couple them to the
base-level components. Instead, aspect-connectors bind aspect-level and base-
level components. An aspect-connector provides mechanisms to mediate the
binding of aspect-level components to the XPIs of base-level. This binding is
necessary in order to provide the non-mandatory features of aspect-level com-
ponents to base-level components. We refer to Dias et al. [7] for more details on
COSMOS*-VP.

3 Empirical Settings

The objective of this comparative study is to assess quantitatively to what extent
aspect-connectors support PLA evolution. In this study, we compare two design
and implementation techniques: (i) a pure component-based model; and (ii) the
use aspect-connectors, a hybrid approach using components and aspects.

Based on this objective, we state the hypothesis we need to evaluate:

H0: there is no difference in PLA evolution with respect to the design
and implementation technique.
H1: the aspect-component approach supports PLA evolution better than
the pure-component technique.

In order to evaluate these hypotheses, we have analyzed a target SPL during
evolution and collected five measures of evolution [4]: (i) scattering of varia-
tion points [13], (ii) scattering of features [13], (iii) tangling of features [13],
(iv) change impact on components [17], and (v) efferent coupling between compo-
nents [5]. If one technique has significant better results than the other for at least
one metric, then it will be possible to reject H0. However, if aspect-component
approach does not succeed in achieving the best results for all metrics, then it
will not be possible to accept H1. Regarding the design of this study, as we
intended to compare two techniques, pure-component and aspect-component, in
a pair-wise way, thus the Wilcoxon signed rank test [14] was suitable.

The original OO and AO implementations of the target SPL were the input for
our study. The pure-component implementation was refactored from the original
OO implementation, and aspect-component implementation was refactored from
the original AO implementation. We refer to the hybrid approach that uses com-
ponents, aspects, and aspect-connectors as aspect-component for short, and we
refer to component-based approach that does not use aspects as pure-component.
We have adopted COSMOS* model to implement the pure-component SPL and
COSMOS*-VP model to implement aspect-component SPL.

After refactoring the original implementations, the following steps were
executed:

62 L.P. Tizzei and C.M.F. Rubira

– Step 1. Evolve the refactored pure-component and aspect-component imple-
mentations according to evolution scenarios (source code available on [1]).

– Step 2. Collect evolution metrics, namely scattering of variation points, scat-
tering of feature, feature tangling, change impact, and efferent coupling be-
tween components, for eight pure-component and aspect-component releases;

– Step 3. Compare the results of aspect-component against pure-component
implementation.

In order to exemplify and evaluate our solution, we present a software applica-
tion, called MobileMedia [8], which is a SPL for mobile applications that manip-
ulates photo, music, and video on mobile devices, such as mobile phones. The
system uses various technologies based on the Java ME platform. It has two
implementations with the same functionalities, but implemented with different
approaches: one uses AO programming and has approximately 12 KLOC and
the other uses only OO programming and has 11 KLOC. MobileMedia endured
seven evolution scenarios, which led to eight releases. The scenarios comprise dif-
ferent types of changes involving mandatory, optional, and alternative features,
as well as non-functional concerns. We refer to MobileMedia study webpage [1]
for more details on the evolution scenarios.

During the execution of this study, some design and implementation decisions
may have influenced the results. For instance, all SPLs (i.e. pure-component and
aspect-component MobileMedia) follow the same architecture pattern, namely
the Model-View-Controller (MVC). Regarding the feature implementation of the
aspect-component SPL, optional and alternative features are encapsulated by a
component and its implementation relies on aspects and auxiliary classes. Thus,
every time an optional or an alternative feature is included, at least one compo-
nent is created in the aspect-component implementation. The implementation of
mandatory features in the aspect-component does not use aspects and is realized
by multiple modules. In pure-component SPLs, the implementation of all types
of features is realized by multiple modules.

Regarding variability programming mechanisms, we have used conditional
compilation and aspects. On pure-component implementations, conditional com-
pilation defined which parts of code should be compiled or not, based on the value
of preprocessor variables. All the above-mentioned design and implementation
decisions were made following the original MobileMedia study [8].

During the execution of Step 2, data collection was supported by tools and the
execution of Step 3 was supported by a statistical analysis tool to double-check
the correctness of our calculations.

4 MobileMedia Study

Scattering of Features. Concerns are considered equivalent to features in this
study. Figure 1(a) presents the scattering of feature on aspect-component and
pure-component implementations. Aspect-component approach has the best re-
sults for scattering of features, because AOP provides mechanisms to modify the
behavior of components without changing them. The main difference regarding

Aspect-Connectors to Support the Evolution 63

Fig. 1. Number of affected modules during PLA evolution

scattering of feature of aspect-component and pure-component implementations
is how non-mandatory features were implemented, because mandatory features
were implemented likewise in both implementations. On aspect-component im-
plementation, non-mandatory features were implemented in separate aspect-level
components, which encapsulate feature implementation. On pure-component im-
plementation, non-mandatory features were implemented in multiple compo-
nents and connectors by means of conditional compilation.

Tangling of Features. Figure 1(b) shows the tangling of feature on aspect-
component and pure-component implementations. Aspect-component approach
achieved to untangle features better than pure-component, because, on aspect-
component implementation, non-mandatory features were implemented by sep-
arated aspect-level components, whereas on pure-component implementation
these features were implemented on existing components.

Scattering of Variation Points. Figure 1(c) shows the scattering of variation
points for each release of both aspect-component and pure-component implemen-
tations of MobileMedia SPL. The overall results show that aspect-component
achieved to minimize the scattering of variation points when compared to pure-
component approach. All variation points on aspect-component PLAs were im-
plemented on aspect-connectors, because aspect mechanisms, such as XPIs, allow
to intercept decision points on components and encapsulate the implementation
of these decisions on aspect-connectors. On pure-component PLAs these deci-
sions were implemented on multiple components and connectors.

Change Impact Analysis. The greater the number of modules affected (i.e.
changed, added or removed), the greater is the impact on the architecture. The
change impact metrics were collected comparing each release to its previous one
(e.g. comparing R2 to R1).

Figure 1(d) shows the results for total change impact on modules. The inclu-
sion of mandatory features (R2 and R3) and the inclusion of optional features
(R4-R6) on aspect-component PLAs caused the addition of new modules that

64 L.P. Tizzei and C.M.F. Rubira

Table 1. Results from the Wilcoxon paired test for all metrics

Metric N W+ p-value Best approach Statistically
significant

Scattering of variation points 6 21 0.03 aspect-component yes
Scattering of feature 7 28 0.02 aspect-component yes
Tangling of feature 7 28 0.02 aspect-component yes

Change impact on components 6 11 0.28 aspect-component no
Efferent coupling between components 7 2 0.05 pure-component no

were added to implement the included features. On pure-component PLAs the
change impact was mostly due to modifications on existing modules to implement
the included features. In the last two releases (R7 and R8), aspect-component ap-
proach achieved a much lower number of modules impacted. Aspect-connectors
facilitated the evolution of aspect-component PLA by isolating from compo-
nents the implementation that supports the variability decisions of the variation
points.

Efferent Coupling Analysis. Figure 1(e) illustrates the results for efferent
coupling between modules (just coupling, for short). The use of XPIs helped to
decouple aspect-components, but it was not enough to support loosely coupled
modules as pure-component approach. In this study, an aspect-component imple-
ments a non-mandatory feature by creating a new component which encapsulates
the implementation of this feature and then, via aspect-connectors, it changes
the behavior of other components. As it has to change the behavior of other
components, the semantic dependency between components is strong and may
become a syntactical dependency. On pure-component implementation, although
features are implemented in multiple components, each component has its role
in the implementation of feature (for instance, PresentationMgr component
displays functions to end user, PersistenceMgr component persists metadata
related to media) and the dependency among them is not strong.

Testing Hypothesis. Table 1 describes the results of the Wilcoxon test for all
metrics. Due to limitations of space, we refer to MobileMedia study webpage [1]
for details on the calculations. Based on results presented in Table 1, we can test
the null hypothesis (H0). Three out five measures show statistically significant
differences between aspect-component and pure-component approaches, which
provide us evidence to reject the null hypothesis. As two out five metrics are not
statistically significant, and one of them suggests that pure-component approach
is better than aspect-component approach, we do not have enough evidence to
either accept or reject H1. Further studies are necessary to test H1.

Study Limitations. We have identified the following threats to validity: (i)
bias while refactoring the original MobileMedia and evolving them;(ii) Mobile-
Media might not be representative of industrial SPLs. Regarding risk (i), we were
strict in following exactly the same design and implementation decisions of the
original MobileMedia study [8]. In addition, all MobileMedia implementations
provide the same functionalities and were similarly tested. Regarding risk (ii),
even though MobileMedia is a small SPL, it is heavily-based on industry-strength

Aspect-Connectors to Support the Evolution 65

technologies, and it is a complex SPL as it can derive 200 products. Furthermore,
it has been extensively used and evaluated in previous research (e.g. [7,8]).

5 Related Work

Figueiredo et al. [8] presented a case study which quantitatively compares the pos-
itive and negative impact of using AOP to support SPL evolution. Two SPLs were
involved in their study: MobileMedia and BestLap. Both were implemented using
OO and AOP. The authors evaluate the support for evolution of OO and AOP
considering cohesion, coupling, change impact, and feature dependency metrics.
They conclude that AOP supports the implementation of optional and alternative
features. However, AOP also increases coupling and cohesion. In contrast to their
study, we evaluated two component-based approaches. Furthermore, we have used
a different metric suite.

Apel et al. [2] compared two aspect-oriented approaches, namely aspect lan-
guages (e.g. AspectJ, AspectC++) and collaboration languages (e.g. Classbox/J,
Jiazzi) and their impact on crosscutting modularity. The authors quantitatively
compared the use of each approach and based on this comparison, they estab-
lished guidelines for programmers on when to use each approach. In contrast to
our study, the authors do not focus on PLA evolution.

Kvale et al. [12] presented a case study that investigated if AOP could help to
build more easy-to-change COTS-based systems than OO. They compare how
much effort is necessary to: (i) integrate a COTS-based system; and (ii) replace
COTS after integration. They concluded that fewer classes need to be changed
when adding and replacing COTS using AOP. They evaluated the benefits of
using aspects to implement the glue-code between COTS and the system, while
we evaluated the application of AOP in a SPL context.

Baniassad et al. [3] presented an inquisitive study in which they identified
kinds of crosscutting concerns that impact on software developers the strategies
developers use to cope with these concerns. Furthermore, the study compared
whether the use aspect-oriented approaches enable developers to better work
with crosscutting concerns. In order to perform this study, the authors tracked
eight software developers from academia and industry which were developing a
software system. Each developer was evolving a different software system.

6 Conclusions and Future Work

The main contribution of this paper is a study which compares an aspect-
component approach against a pure component-based approach. The results
have shown evidences that the aspect-component approach has positive influ-
ence in supporting PLA evolution. The aspect-component approach achieved
significant better measures for scattering of variation points, feature scattering,
and tangling of feature. It also achieved better measures for change impact,
not statistically significant though. Results for coupling metrics were similar to
pure-component approach, but slightly worse.

66 L.P. Tizzei and C.M.F. Rubira

References

1. MobileMedia comparative study webpage,
http://www.ic.unicamp.br/~tizzei/mobilemedia/ecsa2011/ecsa2011.html

2. Apel, S., Kästner, C., Kuhlemann, M., Leich, T.: Pointcuts, advice, refinements,
and collaborations: similarities, differences, and synergies. Innovations in System
and Software Engineering 3, 281–289 (2007)

3. Baniassad, E.L.A., Murphy, G.C., Schwanninger, C., Kircher, M.: Managing cross-
cutting concerns during software evolution tasks: an inquisitive study. In: AOSD
2002: Proc. of the 1st Intl. Conf. on Aspect-Oriented Software Development, pp.
120–126. ACM, New York (2002)

4. Brcina, R., Bode, S., Riebisch, M.: Optimisation process for maintaining evolvabil-
ity during software evolution. In: ECBS 2009: Proc. of the IEEE Intl. Conf. and
Workshop on the Engineering of Computer Based Systems, pp. 196–205. IEEE
Computer Society, Los Alamitos (2009)

5. Chidamber, S., Kemerer, C.: A metrics suite for OO design. IEEE Transactions on
Software Engineering 20(6), 476–493 (1994)

6. da Silva Jr., M.C., de Castro Guerra, P.A., Rubira, C.M.F.: A java component
model for evolving software systems. In: Intl. Conf. on Automated Software Engi-
neering, p. 327. IEEE Computer Society, Los Alamitos (2003)

7. Dias, M., Tizzei, L., Rubira, C.M.F., Garcia, A., Lee, J.: Leveraging aspect-
connectors to improve stability of product line variabilities. In: 4th Intl. Workshop
on Variability Modelling of Software-Intensive Systems, pp. 21–28 (2010)

8. Figueiredo, E., Camacho, N., Monteiro, C.S.M., Kulesza, U., Garcia, A., Soares,
S., Ferrari, F., Khan, S., Filho, F., Dantas, F.: Evolving software product lines
with aspects: an empirical study on design stability. In: Proc. of the Intl. Conf. of
Software Engineering (2008)

9. Griswold, W.G., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai, Y., Rajan, H.:
Modular software design with crosscutting interfaces. IEEE Softw. 23(1), 51–60
(2006)

10. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain
analysis. Technical Report CMU/SEI-90-TR-21, CMU/SEI (1990)

11. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Auletta, V. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

12. Kvale, A.A., Li, J., Conradi, R.: A case study on building cots-based system using
aspect-oriented programming. In: Proc. of the 2005 ACM Symposium on Applied
Computing, pp. 1491–1498. ACM, NY (2005)

13. Riebisch, M., Brcina, R.: Optimizing design for variability using traceability links.
In: ECBS 2008: Proc. of the 15th Annual IEEE Intl. Conf. and Workshop on the
Engineering of Computer Based Systems, pp. 235–244. IEEE Computer Society,
Washington, DC, USA (2008)

14. Siegel, S., Castellan Jr., N.J.: Nonparametric statistics for the behavioral sciences,
2nd edn. McGraw-Hill, New York (1988)

15. Szyperski, C.: Component Software. Addison-Wesley, Reading (2002)
16. Thiel, S., Hein, A.: Systematic integration of variability into product line archi-

tecture design. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 130–153.
Springer, Heidelberg (2002)

17. Yau, S., Collofello, J.: Design stability measures for software maintenance. IEEE
TSE 11(9), 849–856 (1985)

http://www.ic.unicamp.br/~tizzei/mobilemedia/ecsa2011/ecsa2011.html

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 67–74, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Verifying Composite Service Transactional Behavior
with EVENT-B

Lazhar Hamel1, Mohamed Graiet1, Mourad Kmimech1,
Mohamed Tahar Bhiri1, and Walid Gaaloul2

1 MIRACL, ISIMS, TUNISIA
lazhar.hamel@gmail.com, mohamed.graiet@imag.fr,

mkmimech@gmail.com, Tahar_bhiri@yahoo.fr
2 Computer Science Department Télécom SudParis

walid.gaaloul@it-sudparis.eu

Abstract. A key challenge of Web Service (WS) composition is how to ensure
reliable execution. Due to their inherent autonomy and heterogeneity, it is
difficult to reason about the behavior of service compositions especially in case
of failures. Therefore, there is a growing interest for verification techniques
which help to prevent service composition execution failures. In this paper, we
present a proof and refinement based approach for the formal representation,
verification and validation of Web Services transactional compositions using
the Event-B method.

Keywords: web service composition, Event-B, transactional web service,
proof, refinement, verification.

1 Introduction

Web services are emergent and promising technologies for the development,
deployment and integration of applications on the internet. One interesting feature is
the possibility to dynamically create a new added value service by composing existing
web services, eventually offered by several companies. Due to the inherent autonomy
and heterogeneity of web services, the guarantee of correct composite services
executions remains a fundamental problem issue. An execution is correct if it reaches
its objectives or fails properly according to the designer’s requirement or users needs.
The problem, which we are interested in, is how to ensure reliable Web services
compositions. By reliable, we mean a composition which all executions are correct.

Our work deal with the formal verification of the transactional behavior of web
services composition. In this paper, we propose to address this issue using proof and
refinement based techniques, in particular the Event-B method [1] used in the RODIN
platform [2]. Our approach consists on a formalism based on Event-B for specifying
composite service (CS) failure handling policies. This formal specification is used to
formally validate the consistency of the transactional behavior of the composite
service model at design time, according to users’ needs. We propose to formally
specify with Event-B the transactional service patterns. These patterns formally

68 L. Hamel et al.

specified as events and invariants rule to check and ensure the transactional
consistency of composite service at design time. Most previous work is based on the
model checking technique and does not support the full description of transactional
web services. Refinement and proof techniques offered by Event-B method are used
to explore it and in section 5 we discuss this approach.

This paper is organized as follows. In Section 2 we introduce a motivating
example. Section 3 presents the Event B method, its formal semantics and its proof
procedure and introduces our transactional CS model. In Section 4, we present how
we specify a pattern-based of the transactional behavior using the Event-B. An
overview of the validation methodology is given in Section 5.

2 Motivating Example

In this section, we present a scenario to illustrate our approach we consider a travel
agency scenario (Fig.1).the client specifies its requirement in terms of destinations
and hotels via the activity “Specification of Client Needs” (SCN). After SCN
termination, the application launches simultaneously two tasks “Flight Booking” (FB)
and “Hotel Reservation” (HR) according to customer's choice. Once booked, the
“Online Payment” (OP) allows customers to make payments. Finally travel
documents (air ticket and hotel reservations are sent to the client via one of the
services “Sending Document by Fedex” (SDF) ,”Sending Document by DHL” (SDD)
or “ Sending Document by TNT” (SDT).

SCN SDD

SDT

SDF

OP

HR

FB

ActivateSDD
when SDF fail

Cancel or
compensateFB
when HR fail

Fig. 1. Motivating example

To guarantee outstanding reliability of the service the designers specify that services
FB, OP and SDT will terminate with success. Whereas on failure of the HR service, we
must cancel or compensate the FB service (according to his current state) and in case of
failure of the SDF, we have to activate the SDD service as an alternative. The problem
that arises at this level is how to check / ensure that the specification of a composite
service ensures reliable execution in accordance with the designer’s requirements.

3 Formalizing Transactional Composite Service Using Event-B

To better express the behavior of web services we have enriched the description of
web services with transactional properties. Then we developed a model of Web

 Verifying Composite Service Transactional Behavior with EVENT-B 69

services composition. In our model, a service describes both a coordination aspect and
a transactional aspect. On the one hand it can be considered as a workflow services.
On the other hand, it can be considered as a structured transaction when the services
components are sub-transactions and interactions are transactional dependencies. The
originality of our approach is the flexibility that we provide to the designers to specify
their requirements in terms of structure of control and correction. We show how we
combine a set of transactional service to formally specify the transactional CS model
in EVENT-B.

3.1 Event-B

B is a formal method based on he theory of sets, enabling incremental development of
software through sequential refinement. Event-B is a variant of B method introduced
by Abrial to deal with reactive system. An event-B model contains the complete
mathematical development of a discrete system. A model uses two types of entities to
describe a system: machines and contexts. A machine represents the dynamic parts of
a model. Machine may contain variables, invariants, theorems, variants and events
whereas contexts represent the static parts of a model .It may contain carrier sets,
constants, axioms and theorems.

The concept of refinement is the main feature of Event-B. it allows incremental
design of systems. In any level of abstraction we introduce a detail of the system
modeled. Correctness of Event-B machines is ensured by proving proof obligations
(POs); they are generated by RODIN to check the consistency of the model. For
example: the initialization should establish the invariant, each event should be
feasible (FIS), each given event should maintain the invariant of its machine (INV),
and the system should ensure deadlock freeness (DLKF). Proof obligations are
produced from events in order to state that the invariant condition is preserved.

3.2 Transactional Web Service Model

By Web service we mean a self-contained modular program that can be discovered
and invoked across the Internet. Each service can be associated to a life cycle or a
statechart. A set of states (initial, active, cancelled, failed, compensated, completed)
and a set of transitions (activate(), cancel (), fail(), compensate (), complete()) are
used to describe the service status and the service behavior. A service ts is said to be
retriable(r) if it is sure to complete after finite number of activations. ts is said to be
compensatable(cp) if it offers compensation policies to semantically undo its effects.
ts is said to be pivot(p) if once it successfully completes, its effects remain and cannot
be semantically undone. Naturally, a service can combine properties, and the set of all
possible combinations is {r; cp; p; (r; cp); (r; p)}[3].

The initial model includes the context ServiceContext and the machine
ServiceMachine. The context ServiceContext describes the concepts SWT which

CONTEXT ServiceContext
SETS
SWT
STATES

AXIOMS
Axm1: STATES= {active, initial, aborted, cancelled, failed,
completed, compensated}

70 L. Hamel et al.

represents all transactional web services and STATES represents all the states of a
given SWT. These states are expressed as constants.

The service state which is represented by a functional relation service_state defined
in VARIABLES clause gives the current state of such a service. The transactional
behavior of a transactional web service is modeled by a machine. Inv1 specifies that
service_state is a total function, and that each service has a state. In our model,
transitions are described by the event. For instance the event compensate enables to
compensate semantically the work of a service and pass it from completed status to
compensate.

3.3 Transactional Composite Service Model

A composite service is a conglomeration of existing Web services working in tandem
to offer a new value-added service [4]. It orchestrates a set of services, as a composite
service to achieve a common goal. A transactional composite (Web) service (TCS) is
a composite service composed of transactional services. Such a service takes
advantage of the transactional properties of component services to specify failure
handling and recovery mechanisms. Concretely, a TCS implies several transactional
services and describes the order of their invocation, and the conditions under which
these services are invoked. To formally specify in Event-B the orchestration we
introduced a new context CompositionContext which extends the context
ServiceContext that we have previously introduced. The first refinement includes the
context CompositionContext and the machine CompositionMachine which refine the
machine introduced at the initial model. In this section we show how formally the
interactions between CS are modeled. We introduce the concept of dependencies.
Dependencies are specified using Relations concept. It is simply a set of couples of
services. For example, depA (depA∈SWT↔SWT) represents the set of couples of
services that have an activation dependency. These dependencies express how
services are coupled and how the behavior of certain services influences the behavior
of other services. We distinguish between "normal" execution dependencies and
"exceptional" or "transactional" execution dependencies which express the control
flow and the transactional flow respectively. The control flow defines a partial
services activations order within a composite service instance where all services are

MACHINE ServiceMachine
SEES ServiceContext
VARIABLES
Service_state
SWT_C
SWT_P
SWT_R
INVARIANTS

Inv1: service_state∈SWT→STATES

Inv2: SWT_C ⊆ SWT

Inv3: SWT_R ⊆ SWT

Inv4: SWT_P ⊆ SWT

Activate � ANY s WHERE

grd1 : s∈SWT

grd2 : service_state (s) =initial

THEN

act1 : service_state (s):=active

END

Compensate � ANY s WHERE

grd1 : s∈SWT_C

grd2 : service_state (s) =completed

THEN

act1 : service_state (s):=compensated

END

 Verifying Composite Service Transactional Behavior with EVENT-B 71

executed without failing cancelled or suspended. Activation dependencies express a
succession relationship between two services s1and s2. At this level the refinement of
the compensate event is a strengthening of the event guard to take into consideration
the condition of compensation of a service when a service will be compensated.

The guard grd4 in the compensate event in expresses that the compensation of a
service s is triggered when a service S0 failed or was compensated and there is a
compensation dependency from s to S0. Therefore compensate allows to compensate
the work of a service after its termination, the dependency defines the mechanism for
backward recovery by compensation, the condition added as a guard specifies when
the service will be compensated.

4 Transactional Service Patterns

The use The use of workflow patterns [5] appears to be an interesting idea to compose
Web services. However, current workflow patterns do not take into account the
transactional properties (except the very simple cancellation patterns category). It is
now well established that the transactional management is needed for both
composition and coordination of Web services. That is the reason why the original
workflow patterns were augmented with transactional dependencies, in order to
provide a reliable composition [6]. In this section, we use workflow patterns to
describe TCS’s control flow model as a composition pattern. Afterwards, we extend
them in order to specify TCS’s transactional flow, in addition to the control flow they
are considering by default. Indeed, the transactional flow is tightly related to the
control flow. The recovery mechanisms (defined by the transactional flow) depend on
the execution process logic (defined by the control flow). The use of the recovery
mechanisms described throw the transactional behavior varies from one pattern to
another. Thus, the transactional behavior flow should respect some consistency
rules(INVARIANT) given a pattern. These rules describe the appropriate way to
apply the recovery mechanisms within the specified patterns. In the following we
formally specify these patterns and related transactional consistency rules using
Event-B. To extend these patterns we introduce new events that can describe them.
For example, to extend the pattern AND-split the machine introduces a new event
AND-split which defines the pattern AND-split. Due to the lack of space, we put
emphasis on the following patterns AND-split and XOR-split to explain and illustrate
our approach, but the concepts presented here can be applied to other patterns.

Compensate � REFINES Compensate

…

grd4:∃S0·S0∈SWT∧S0↦s∈depCOMP⇒((service_state(S0)=failed)∨

(service_state(S0)=compensated))

THEN act1 : service_state (s) ≔compensated

END

72 L. Hamel et al.

s0

sn

…….

s2

s1

AND-split

s0

sn

…….

s2

s1

XOR-split

Fig. 2. Studied patterns

An AND-split pattern defines a point in the process where a single thread of
control splits into multiple threads of control which can be executed in parallel, thus
allowing services to be executed simultaneously or in any order. To verify the
transactional consistency of these patterns we add predicates in the INVARIANTS
clauses. These invariants ensure transactional consistency according to the context of
use. These rules are inspired from [7] which specifies and proves the potential
transactional dependencies of workflow patterns. Our example illustrates the
application of AND-split pattern to the set of services (SCN, HR, FB) and specifies
that exist a dependency of compensation from HR to FB and a cancellation
dependency also from HR to FB. The transactional consistency rules of the AND-split
pattern support only compensation dependencies from SWToutside (Inv23). The
compensation dependencies can be applied only over already activated services. The
transactional consistency rules supports only cancellation dependencies between only
the concurrent services. Any other cancellation or alternative or compensation
dependencies between the pattern’s services (Inv 11, 12) are forbidden.

• Inv 23: ∀s.s∈SWToutside⇒sAS↦s∉depCOMP
• Inv 11: ∀s.s∈SWT_AS⇒s↦sAS∉depANL
• Inv12:∀s, s1.s∈SWT_AS∧s1∈SWT_AS⇒s↦s1∉depAL

An XOR-split pattern defines a point in the process where, based on a decision or
control data, one of several branches is chosen. To extend the pattern XOR-split, the
machine introduces a new event XOR-split which defines the pattern XOR-split. Our
example illustrates the application of XOR-split pattern to the set of services (OP,
SDD, SDF, SDF) and specifies that exist an alternative dependency from HR to FB.
The XOR-split pattern supports alternative dependencies between only the services
SWToutside, as the alternative dependencies can exist only between parallel and non

AND-split ≙ ANY S0 SWToutside

WHERE

grd1 : SWToutside⊆SWT_AS

grd2 : S0∈ SWT_AS∖SWToutside

grd3 : service_state(S0)=complete

THEN

 act1 : etatSWTout≔activated

END

XOR-split ≙ ANY S0 SWToutside sw

WHERE

 grd1 : SWToutside⊆SWT_XS

grd2 : S0∈SWT_XS∖SWToutside

grd3 : service_state(S0)=complete

grd4 : sw∈SWToutside

THEN

 act1 : service_state(sw)≔active

END

 Verifying Composite Service Transactional Behavior with EVENT-B 73

concurrent flows. The XOR-split pattern support also compensation dependencies
from SWToutside to sXS. Any other cancellation or alternative or compensation
dependencies between the pattern’s services are forbidden.

• Inv18:∀s.s∈SWT_XS∖{sXS}⇒s↦sXS∈depCOMP
• Inv15: ∀s.s∈SWT_XS⇒s↦sXS∉depAL
• Inv22:∀s.s∈SWT_XS∖{sXS}⇒sXS↦s∉depCOMP

5 Validation

In the previous section, we showed how to formally specify a TCS using Event-B.
The objective of this section is to show how we verify and validate our model using
proof and ProB animator. We find many proof obligations. Each of them has got a
compound name for example, "evt / inv / INV" . A green logo situated on the left of
the proof obligation name states that it has been proved (an A means it has been
proved automatically). In our case shown in Fig.3 RODIN generates the following
proof obligations "compensate / inv1 / INV" . This proof obligation rule ensures that
the invariant inv1 in the CompositionMachine is preserved by the compensate event.

Fig. 3. Proof Obligations

Our work is proof oriented and covers the transactional web services. All the
Event-B models presented in this paper have been checked within the RODIN
platform. The proof based approaches do not suffer from the growing number of
explored states. However, the proof obligations produced by the Event-B provers
could require an interactive proof instead of automatic proofs. The Event-B
formalization of our motivating example defines a cancellation dependency and
compensation dependency from HR to FB. For example, by checking the
compensation dependency between SCN and HR RODIN mentioned that the proof
obligations has not been discharged (Fig. 3). As HR is executed after, it can not exist
a compensation dependency from SCN to HR. A red logo with a ”?” appear in the
proof tree and it means that is not discharged. To repair this error we can refer to the
initialization of the machine and verify the compensation dependencies.

In the development of our model some proof obligations are not discharged but the
specifications is correct according to our work in [8] which is specified and validated
using Event Calculus. To do so, we use ProB animator [9] to verify our specification
of transactional web services. This case study has shown that the animation and
model-checking are complementary to the proof, essential to the validation of Event-

74 L. Hamel et al.

B models. In other case, many proved models (proof obligations are discharged) still
contain behavioral faults, which are identified with the animators. The main
advantage of Event-B develop that can repair errors during the development. It allows
the backward to correct specification.

6 Conclusion

The paper addresses the formal specification, verification and validation of the
transactional behavior of services compositions within a refinement and proof based
approach. The described work uses Event-B method, refinement for establishing
proprieties. This paper presents our model of web service enriched by transactional
properties to better express the transactional behavior of web services and to ensure
reliable compositions. Then we describe how we combine a set of services to
establish transactional composite service by specifying the order of execution of
composed services and recovery mechanisms in case of failure. Finally we introduced
the concept of composition pattern and how we uses it to specify a transactional
composite service.

In our future works we are considering the following perspective:

• Using automation approach of MDE type to verify transactional behavior
of services compositions.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environment for
event-B. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605.
Springer, Heidelberg (2006)

3. Mehrotra, S., Rastogi, R., Korth, H.F., Silberschatz, A.: A transaction model for
multidatabase systems. In: ICDCS, pp. 56–63 (1992)

4. Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A.H.H., Elmagarmid, A.K.: Business-
to-business interactions: issues and enabling technologies. The VLDB Journal 12(1), 59–85
(2003)

5. Van Der Aalst, W.M.P., Barros, A.P., Ter Hofstede, A.H.M., Kiepuszewski, B.: Advanced
Workflow Patterns. In: Etzionand, O., Scheuermann, P. (eds.) 5th IFCIS Int. Conf. on
Cooperative Information Systems (CoopIS 2000). LNCS, vol. 1901, pp. 18–29. Springer,
Eilat (2000)

6. Bhiri, S., Godart, C., Perrin, O.: Transactional patterns for reliable web services
compositions. In: Wolber, D., Calder, N., Brooks, C., Ginige, A. (eds.) ICWE, pp. 137–144.
ACM, New York (2006)

7. Bhiri, S., Perrin, O., Godart, C.: Extending workflow patterns with transactional
dependencies to define reliable composite web services. In: AICT/ICIW, p. 145. IEEE
Computer Society, Los Alamitos (2006)

8. Gaaloul, W., Bhiri, S., Rouached, M.: Event-Based Design and Runtime Verification of
Composite Service Transactional Behavior. IEEE Transactions on Services Computing
(February 02, 2010)

9. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S., Mandrioli, D.
(eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003)

A Constructive Approach to

Compositional Architecture Design

Constanze Deiters and Andreas Rausch

Department of Informatics – Software Systems Engineering
Clausthal University of Technology

Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany
{constanze.deiters,andreas.rausch}@tu-clausthal.de

http://sse.in.tu-clausthal.de

Abstract. Most of today’s software systems are large-scaled and have
to manage manifold demands. To ease their development, reusable and
proven architectural building blocks, for example architectural patterns,
are often composed to the desired architecture. Building blocks are spec-
ified by their structure and behaviour. Additionally, each architectural
building block has specific properties which are interpreted as assurances.
Keeping assurances also valid during composition of different architec-
tural building blocks is essential for software quality.

This paper introduces an approach which constructs software architec-
tures by composing architectural building blocks and which also assures
architectural properties of these compositions. Aiming at a sound ap-
proach, a proper description of the different architectural building blocks
and their properties is required. Furthermore, this paper presents how to
compose architectural building blocks and how to check their assurances.

Keywords: Software Architecture, Architecture Composition,
Architectural Building Blocks, Architectural Patterns.

1 Introduction

A software architecture defines the basic organization of a system by structur-
ing different architectural elements and relationships between them [1]. With
increasing size of a software system also its architecture’s size and complexity
increase. To handle this complexity, software architectures are composed of ar-
chitectural building blocks (ABBs), which summarize related architectural
elements and their relationships under abstract entities [2]. Such ABBs are ap-
proved templates like architectural patterns [3], architectural principles [4] and
reference architectures [1].

Each ABB has properties, for example the absence of cycles in the case of
the layers pattern. According to how well their properties suite to the needs of
the intended architecture, ABBs are chosen from the set of different ABBs [5].
But selected ABBs could be in conflict, for example, if they have contradictory
properties, and thus could lead to defects in the resulting architecture. To avoid

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 75–82, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://sse.in.tu-clausthal.de

76 C. Deiters and A. Rausch

(a) (b)

Fig. 1. Concept of an architectural building block (ABB) with description separation
into structure, behaviour and assurance (a); concept of an architecture description with
separation into structure and behaviour (b)

defective architectures, resulting compositions need to be checked against used
ABBs and their properties. Thereby, it can be assured that ABB properties are
preserved within the desired architecture.

Hence, the aim of this work is to provide a seamless approach for composing
software architectures from ABBs, which assures the preservation of properties
owned by used ABBs. One step towards this approach is a description technique
to formalize ABBs and software architectures. Additionally, it has to be defined
what it means to use an ABB and how to perform the composition of ABBs.

The remaining paper is structured as follows: Section 2 introduces the ap-
proach of composing ABBs with assuring their properties. Structure, behaviour
and assurances of ABBs are described based on a simple metamodel, which is
exemplified in Section 3. The problem described above and its solution touch
different fields of related work over which Section 4 gives an overview. Section 5
concludes this paper and gives an outlook on further work.

2 The Overall Approach

In this approach, an ABB is represented by a formalised tripartite description:
Structure description and behaviour description specify structure and be-
haviour of an ABB, respectively, and an assurance description details proper-
ties the ABB guarantees (see Fig. 1a). To describe these parts the basic notation
elements ABB role and ABB relationship are used. For example, consider-
ing the ABB Layers Pattern the two layers named upperLayer and lowerLayer
are ABB roles and the use relationship from upperLayer to lowerLayer is an

A Constructive Approach to Compositional Architecture Design 77

Fig. 2. Instance composition of ABBs and examination of assurances

ABB relationship. A conceivable assurance of this ABB is the property absence
of cycles between layers.

A concrete architecture is represented by a formalised structure description
as well as a formalised behaviour description . Similar to an ABB description
an architecture description consists of different notation elements: archi-
tecture entities (e.g., the layers a, b and c) and architecture dependencies
(e.g., between the layers a and b or b and c) (see Fig. 1b). Software architectures
are now created stepwise by applying ABB by ABB. ABB roles and relationships
are assumed by architecture entities and dependencies, respectively. During this
process, called ABB instantiation , the structure and behaviour an ABB de-
fines is mapped to the corresponding architecture. An architecture entity can at
the same time assume roles from different ABBs and thus belongs to different
ABB instances. As a result, the affected ABBs are not only instantiated but also
composed (instance composition). Figure 1b shows the result of instantiat-
ing ABB Layers Pattern twice in such a way that the architecture entity b is
instance of the ABB roles lowerLayer as well as upperLayer.

ABBs can also be used to describe architectures at different levels of detail by
applying hierarchical composition . This means, that an instance of one ABB
or an instance composition of several ABBs specifies the interior of an already
existing architecture entity.

Composing ABBs could lead to conflicts in the resulting architecture, for ex-
ample, because of contradictory properties of applied ABBs. In our approach [6],
we consider ABB properties as assurances. To discover conflicts, assurances of
all applied ABBs are examined after each composition step (see Fig. 2). These

78 C. Deiters and A. Rausch

Fig. 3. A description metamodel to formalize ABBs (left part), architectures (right
part) and instance relations (middle part) between ABBs and the resulting architecture

examinations exploit the formalised descriptions of ABBs, their instantiations
and their assurances. Detected violations of assurances can be presented to the
architect, who can now decide how to handle them.

3 Describing ABBs and Architectures

3.1 Description Metamodel

Textual and informal descriptions of ABBs (e.g., in pattern collections [3]) could
lead to inexactnesses and ambiguous interpretations of their usage. A concise
and uniform formalization of ABBs is thus necessary for a sound approach.
Such a formalization needs to be powerful enough to describe the elements of
ABBs as well as of architecture descriptions and, according to the approach
introduced in this paper, needs to offer notation elements to relate ABB elements
to architecture elements.

The metamodel in Figure 3 shows the different notation elements as already
introduced in Section 2. An ABB contains at least one ABB role and one ABB
relationship. An ABB relationship connects two ABB roles, and each ABB role
has to be connected to at least one other ABB role. Additionally, ABBs can
be constrained by ABB assurances which are defined over ABB roles and ABB
relationships. Architecture descriptions contain at least one Architecture Entity and
one Architecture Dependency, which are connected with each other similar to roles
and relationships of ABB descriptions. During instantiation, ABB roles and ABB
relationships are bound to Architecture Entities and Architecture Dependencies,
respectively. These bindings are represented by Role Bindings and Dependency
Bindings with every binding being part of exactly one Composition Instance.

To check the defined assurances, ABB as well as architecture descriptions
based on this metamodel are formally represented by first-order logic. Elements
and associations of the metamodel are mapped to logical predicates with equal or
abbreviated names. Unary predicates represent instances of the metamodel ele-
ments (Fig. 5, left column), like ABB/1 stating that an element used as parameter

A Constructive Approach to Compositional Architecture Design 79

Fig. 4. Applying the ABB Layers Pattern twice so that it results in a cycle between
the two layers a and b (architecture structure in the lower left corner)

is an ABB. Associations between elements are represented by n-ary predicates
(Fig. 5, middle column), like ABBrelFromTo/3 defined with appropriate param-
eters expresses that an ABB relation connects two ABB roles.

3.2 Applying the Description Metamodel - Example

Exemplary, the ABB Layers Pattern and its instance composition are considered.
The object diagram in Figure 4 illustrates the ABB and architecture descriptions
and the bindings created during two instance compositions. A logical fact base
represents the elements of this diagram using the defined predicates (Fig. 5, right
column); for the sake of brevity, some statements are omitted in comparison to
the object diagram.

In the upper left part of the diagram ABB Layers Pattern is represented.
Its two roles UpperLayer and LowerLayer are typed as ABBrole and its rela-
tionship UpperToLowerLayer connecting both roles is typed as ABBrelationship.
Additionally, this ABB owns an assurance AbsenceOfCycles typed as ABBassur-
ance. The ABB description is similarly mapped to logical facts. For example,
ABB(layersPattern) and ABBrole(upperLayer) defines that layersPattern
is an ABB and upperLayer is an ABB role, respectively. The logical fact ABBrel-
FromTo(upperToLowerLayer,upperLayer,lowerLayer) expresses that upper-
ToLowerLayer connects upperLayer and lowerLayer.

In the same way, the architecture description is represented in the right part
of the object diagram and as logical facts in Figure 5. For example, a is typed as
ArchitectureEntity in the diagram and expressed as logical fact ArchEntity(a).

Instance compositions create bindings from ABB roles and relationships to
architecture entities and dependencies, respectively. These bindings and their
corresponding composition instances are depicted in the middle part of the object
diagram. For example, the binding element B1 typed as RoleBinding binds ABB

80 C. Deiters and A. Rausch

Fig. 5. Expressing the different descriptions with first-order logic

role UpperLayer to architecture entity a. Formalised as logical fact, this binding
is expressed as BindingFromTo(b1,upperLayer,a), whereas RoleBinding(b1)
states that b1 is a role binding.

ABB Layers Pattern owns the assurance Absence of Cycles. This assurance
is expressed by the following logical rule using the defined predicates:

� X : ArchDep(X) ∧ BindingFromTo(DB,upperToLowerLayer,X)
∧ DepBinding(DB) ∧ ArchDepFromTo(X,A,B) ∧ ArchDepFromTo+(,B,A)

The rule expresses that no element X with the following properties exists: X is an
architecture dependency and bounded via a dependency binding represented by
DB to the ABB relationship upperToLowerLayer, and X connects two architecture
entities represented by A and B (see ArchDepFromTo(X,A,B)). A cycle occurs,
if there exists also a transitive closure of architecture dependencies from B to A
(see ArchDepFromTo+(,B,A)).

Instance compositions applied as depicted in Figure 4 and Figure 5 result in
a cycle between architecture entities. The above defined logical rule can be used
to detect this assurance violation. Executing the negated rule as query on the
logical fact base provides architecture dependencies causing the violation.

4 Related Work

An architecture is characterised by its structural elements and also by the be-
haviour of its parts. Therefore, an adequate description language needs to handle
both. Common architecture description languages (ADLs) usually define at least
the three primary concepts component, connector and configuration to describe
structure as well as behaviour [7]. But ADLs vary in their intended purpose, for
example, focusing on distinct system categories or following certain program-
ming languages and their paradigms [8,7,9].

Important for the approach introduced in this paper is the ability to describe
an ABB as a kind of template and to instantiate these templates. But, most
ADLs do not explicit support template mechanisms or even support only dis-
tinct architectural patterns [10,11]. Only few ADLs, like WRIGHT [12] or Alloy
[13], offer an explicit template mechanisms but with the limitation that an ar-
chitecture can base on only one template. This requires combining ABBs first on

A Constructive Approach to Compositional Architecture Design 81

an abstract level, for example, by defining new merged ABB elements. Then, the
new ABBs can be instantiated. The same procedure is followed by [14]. Other ap-
proaches treat applied ABBs as separate parts of an architecture whose elements
are coupled by connectors beyond the parts’ borders [15,16,14]. Considering only
this kind of composition does not allow overlapping ABB elements, which does
not seem to represent reality in software architectures. Comparably restrictive
as the aforementioned strategy it is to compose ABBs by handling them as own
subsystems [15,16]. This leads to unnecessary architectural decomposition levels,
where an overlapping of ABB elements is impossible and architecture entities
are not connected directly. Description approaches considering ABB elements
as roles [17,18] prevent the mentioned shortcomings. They allow architectural
entities to belong to instances of different ABBs by assuming roles and allow
instantiated ABBs to be intertwined.

Furthermore, ABBs also specify assurances which constrain their usage. An
appropriate formalism has to include structure and behaviour elements and has
to provide sufficient expressive power. ADL constraints are usually focused on be-
havioural aspects like a kind of communication protocol [7,11]. Other approaches
use constraints to limit the entity types that can bound to a role [14].

5 Conclusion and Further Work

In this paper, we introduced an approach to construct software architectures
from architectural building blocks (ABBs) assuring architectural properties of
composed ABBs. For this purpose, we divided the descriptions of ABBs and
architectures into the three parts structure, behaviour and assurances. Instance
bindings relate ABB elements to architecture elements.

The presented metamodel, used to express ABBs and architecture descrip-
tions, also provides facilities to represent the bindings of ABB compositions.
Properties, ABBs own in addition to structure and behaviour, are expressed
as assurances using first-order logic, which provides high expressive power and
flexibility. Formalising ABB and architecture descriptions also using first-order
logic enables to check the ABB assurances against them.

In our approach, ABB entities are represented as roles. This allows to relate
roles of different ABBs to one and the same architecture entity, which hence
assumes all duties the several roles specify.

We exemplified the approach as well as the metamodel using only one specific
ABB, namely the Layers Pattern. It is undenied that there exist more ABBs
that must be considered to prove the practicability of this approach. They need
to be summarised, analysed for their elements and properties and formalised.
Then, it is possible to build and study larger examples of composed ABBs.

Furthermore, an extension of the metamodel is planned to detail descriptions
and to support hierarchical composition of ABBs. For example, adjacent layers
could contain other architecture entities, which are interconnected over the layer
boundaries and reverse to the relationship the layers pattern implies. Since this
structure results in a cycle the ABB assurance Absence of cycles is violated.

82 C. Deiters and A. Rausch

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley Longman, Amsterdam (2003)

2. The Open Group, (ed.): The Open Group Architecture Framework (TOGAF), 8th
edn. Van Haren Publishing (2007)

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns, 1st edn. Software Design
Patterns, vol. 1. Wiley & Sons, Chichester (1996)

4. Bergner, K., Rausch, A., Sihling, M., Vilbig, A.: Putting the Parts Together -
Concepts, Description Techniques,and Development Process for Componentware.
In: Proceedings of the 33rd Hawaii International Conference on System Sciences
(HICSS 2000). IEEE Computer Society, Washington DC, USA (2000)

5. Herold, S., Metzger, A., Rausch, A., Stallbaum, H.: Towards Bridging the Gap
between Goal-Oriented Requirements Engineering and Compositional Architecture
Development. In: Proceedings of the 2nd SHARK-ADI Workshop at ICSE 2007,
IEEE Computer Society, Washington DC, USA (2007)

6. Deiters, C., Rausch, A.: Assuring architectural properties during compositional
architecture design. In: Apel, S., Jackson, E. (eds.) SC 2011. LNCS, vol. 6708, pp.
141–148. Springer, Heidelberg (2011)

7. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for Soft-
ware Architecture Description Languages. IEEE Trans. Softw. Eng. 26(1), 70–93
(2000)

8. Kamal, A.W., Avgeriou, P.: An Evaluation of ADLs on Modeling Patterns for
Software Architecture. In: Proceedings of the 4th International Workshop on Rapid
Integration of Software Engineering Techniques (RISE 2007). LNCS. Springer, Hei-
delberg (2007)

9. Vestal, S.: A Cursory Overview and Comparison of Four Architecture Description
Languages. Technical Report, Honeywell Technology Center (1993)

10. Clements, P.C.: A Survey of Architecture Description Languages. In: Proceedings
of the 8th International Workshop on Software Specification and Design (IWSSD
1996). IEEE Computer Society, Los Alamitos (1996)

11. Di Nitto, E., Rosenblum, D.: Exploiting ADLs to Specify Architectural Styles In-
duced by Middleware Infrastructures. In: Proceedings of the 21st ICSE, pp. 13–22.
ACM, Los Angeles (1999)

12. Allen, R.J.: A Formal Approach to Software Architecture. Ph.D. Thesis, Carnegie
Mellon University (May 1997)

13. Kim, J.S., Garlan, D.: Analyzing Architectural Styles. Journal of Systems and
Software 83, 1216–1235 (2010)

14. Hammouda, I., Koskimies, K.: An approach for structural pattern composition.
In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp. 252–265.
Springer, Heidelberg (2007)

15. Abd-Allah, A.A.: Composing Heterogeneous Software Architectures. Ph.D. Thesis,
University of Southern California (1996)

16. Gacek, C.: Detecting Architectural Mismatches During Systems Composition.
Ph.D. thesis, University of Southern California (1998)

17. Riehle, D.: Describing and Composing Patterns Using Role Diagrams. In: Proceed-
ings of the 1996 Ubilab Conference, pp. 137–152. Universitätsverlag Konstanz (1996)

18. Zdun, U., Avgeriou, P.: Modeling Architectural Patterns Using Architectural Prim-
itives. In: Proceedings of the 20th Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA 2005), vol. 40, pp. 133–146. ACM, New York
(2005)

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 83–96, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Capturing Architecture Evolution with Maps of
Architectural Decisions 2.0

Andrzej Zalewski, Szymon Kijas, and Dorota Sokołowska

Warsaw University of Technology,
Institute of Automatic Control and Computational Engineering

a.zalewski@ia.pw.edu.pl, s.kijas@elka.pw.edu.pl

Abstract. Modern IT systems evolve being re-architected throughout their
entire lifetime. Existing architecture decision-making approaches are oriented
towards systems design, rather than systems evolution. However, real-life
architecture evolution is substantially different to initial architectural design. It
is a disorderly process, in most cases unrepeatable, and therefore difficult to be
put into a predefined rut as most approaches try to do. MAD 2.0 model has been
developed to support architect-practitioners working on systems evolution. It
does not impose any predefined classification or hierarchy of architectural
decisions and assumes a limited number of kinds of relations between
architectural decisions. This makes a model of the decision process intuitive
and easy to comprehend. To explain the choices made and capture their
rationale, the entire decision situation is presented, including: the decision topic,
considered design options, relevant requirements, and the advantages and
disadvantages of every considered option. The proposed models and approach,
supported by an appropriate modelling tool, has been validated in the real life
conditions of one of the telecom companies.

Keywords: architectural decisions, architectural knowledge, diagrammatic
representation.

1 Introduction

Recent developments in systems architectures, especially service-oriented architectures,
concepts of business process management or enterprise service bus promote transition
from design-oriented to evolution-oriented engineering. Evolution is an intensive process
nowadays, dominating a system’s lifetime.

We argue in section 2 that re-architecting substantially differs from initial design, and
so it requires an approach to architecture decision-making tailored to its specificity. The
purpose of this paper is to present an approach to support and capture architecture
decision making during system evolution, which has been validated in practice.

The notation MAD 2.0, used here as a model of architecture decisions and decision
making process, is an extension of our former work [9]. MAD 2.0 was inspired by the
outcomes of a workshop held with architects-practitioners – see section 2.

84 A. Zalewski, S. Kijas, and D. Sokołowska

The rest of the paper is organised as follows: the MAD 2.0 model and its
components are presented in section 3, tool supporting the notation is characterised in
section 4, the practical application of MAD 2.0 is shown in section 5, the results are
widely discussed in section 6 against the background of existing architecture decision-
making models and approaches, with a paper summary and further research prospects
comprising section 7.

2 Inspiration

The development of the MAD 2.0 notation and modelling approach was directly
inspired by observations made during a workshop held with 22 IT architects working
for one of the largest telecom firms in Poland. Architects focus mainly on the
evolution of this entire complex system-of-systems, consisting of more than 100
systems integrated with a BPM solution based on SOA. The workshop was aimed at
developing architects’ skills by teaching and practicing concepts from the area of
architecture decision-making, e.g. architecture decision modelling, with text records
[3], decisions classifications [4], [5], identifying and classifying relations between the
architectural decisions as well as architecture decision-making approach presented in
[4].

The survey performed at the end of the workshop showed that:

• almost 80% of architects found the presented concepts and models as
overcomplicated,

• about 65% found them not adequate to their everyday jobs,
• about 90% stated they always work under time pressure and have very little time to

document architectural knowledge,
• almost 75% assessed the repeatability of their work as low, and another 15% saw

their work as unrepeatable,
• almost 80% lack important architectural knowledge on existing systems.

These results confirm the concerns as to whether architecture decision-making really
helps to manage complexity, as presented in [10]. However, there are also deeper,
fundamental reasons for such perception. Telecoms belong to the class of “emergent
organisations”, whose systems are “subject to constant urgent change” (comp. [12]).
Their evolution is rather a random than a highly predictable, carefully deliberated
process following an earlier established path as in [13].

We analysed 25 cases of changes made to the systems. All of them were driven by
an unexpected and unforeseeable change or emergence of business needs (e.g.
changes to tariffs, development of new tariffs or new product support, esp. support for
product bundles). In such conditions architects make architectural decisions rather
disorderly, trying to achieve solutions based on reuse and adaptation of existing
systems as well as purchase of new ones. Such decisions do not match any particular
predefined abstraction levels or classifications like [4], [5]. They usually cannot be
reapplied as a predefined solution to other problems. Existing architecture decision
making models and methods are more oriented on well-structured architecture
development than on its rapid, chaotic changes.

 Capturing Architecture Evolution with Maps of Architectural Decisions 2.0 85

The survey and subsequent analysis of change cases indicated that to extend the
architect’s everyday practice with architectural knowledge capturing and
documenting [1]:

• architectural knowledge has to be captured as it emerges – together with the
resolution of architectural problems;

• the overhang connected with capturing architectural knowledge has to be
minimised;

• decision-making concepts have to be easy to comprehend.

This led us back to the idea of mind-mapping architectural decisions sketched in our
earlier paper [9]. The Maps of Architectural Decisions notation was redesigned with
consultation with architect-practitioners and tool supporting architecture decision-
making was developed to validate the whole concept in practice.

3 MAD 2.0 Notation and Modelling Approach

MAD 2.0 was crafted to assist architects in architecture decision-making, without
enforcing any particular architecting approach or decision-making order. MAD 2.0
works similarly to popular mind maps used to graphically present a problem structure.
The model consists of two diagrams Architecture Decision Relationship Diagrams
(ADRD) – section 3.1, and Architecture Decision Problem Maps (ADPM) – section
3.2). ADRD represents the logic of the decision-making process – the diagram can be
developed gradually, while ADPM models the internal structure of a single
decision problem. The notation’s syntax and validity rules have been presented in
section 3.3.

3.1 Architecture Decisions Relationship Diagram (ADRD)

The Architecture Decisions Relationship Diagram is built out of just two basic
elements (fig. 1):

• Decision problem – represents the architectural issue being considered;

Attributes: problem name, problem description, status, creation date, resolution
date, extended solution rationale.

States: defined – indicates a newly defined project, being solved – an ADPM for
the problem has been created, but the problem has not been resolved yet, resolved,
requires reassessment – indicates that solution, or the occurrence of other problem,
requires reconsidering an already resolved problem.

• Connector – in its basic form shows just that one problem led architect to the one
indicated by an arrow, in the form with a hexagon it indicates that the solution of a
given problem constrains the possible solutions of the pointed problem (“constrains
relation”). Two Decision problems can be connected only once.

86 A. Zalewski, S. Kijas, and D. Sokołowska

Symbols representing Decision Problems and their possible states:

Connector symbols:

Simple dependency Constrains relationship

Fig. 1. The Elements of an Architectural Decisions Relationship Diagram

Problems can group on the ADRD by surrounding some of them with a solid line –
compare fig. 5. Such a group is treated like a single problem. This way architects can
indicate that problems concern a closely-related issue (e.g. define domain solution).

3.2 Architecture Decision Problem Map (ADPM)

The Architecture Decision Problem Map is where architectural decisions are actually
captured. The diagram was constructed to show the structure of a given architectural
problem (issue) consisting of: Decision-maker, set of relevant Requirements, considered
Solutions together with their Pros and Cons. If a given solution meets certain
requirements, it is considered as a Pro, otherwise it is a Con. The latter is a key change
made to the diagram in comparison with its version presented in [9].

The elements of the ADPM diagram have been summarised in fig. 2. The central
element of a diagram is a single decision problem symbol (as in fig. 1) representing
the architectural issue (problem) being analysed. The other symbols are:

• Solution – represents a single solution to the architectural problem considered

Attributes: name, state, description, generated problems.
States: defined – assigned immediately after creating an element; feasible – indicates

a solution meeting all the requirements, infeasible – indicates a solution that does not
meet one of the requirements (the two former states are assigned automatically), chosen –
indicates the finally selected solution (assigned by the decision-maker).

• Requirements – represents a requirement relevant to a given architectural problem

Attributes: name, description

• Decision-maker – represents a person or a group of people responsible for the
resolution of a related architectural problem.

Attributes: name, remarks

• Pro or Con – represents a single advantage or disadvantage of a given solution

Attributes: name, description, state, related requirement (met or unmet requirement if
the given element represents such a case)

 Capturing Architecture Evolution with Maps of Architectural Decisions 2.0 87

State: defined – assigned immediately after creating a given Pro or Con element;
minor, medium, major – declares the importance of a given advantage or disadvantage of
a given solution.

Symbols representing Solutions to the problem and their different statuses:

Symbols representing Cons of a given Solution:

Symbols representing Pros of a given Solution:

Decision
maker:

Relevant
requirement:

Fig. 2. The Elements of ADPM Diagram

3.3 Model Syntax and Validity Rules

The syntax of the MAD 2.0 model is quite intuitive; here is a summary of the rules:

• Rule 1. Two decisions represented on ADRD may be unconnected or connected
with just a single connector.

• Rule 2. Decision-maker, Requirement and Solution symbol on ADPM can only be
attached to a Decision problem symbol.

• Rule 3. Pros and Cons symbols on ADPM can only be attached to a solution symbol.

Although, MAD 2.0 models are semiformal by nature, the syntax imposes a certain
structure of the information representing architectural decisions enhancing the potential
of model analysis.

• Rule 1. Every decision problem has to be resolved, i.e. one of the solutions chosen.
• Rule 2. Every solution has to be assessed in the context of every requirement

relevant to the given problem. All these requirements have to be finally classified
as either Pros (requirement met) or Cons (requirement not met) of a given solution.

88 A. Zalewski, S. Kijas, and D. Sokołowska

• Rule 3. Every Pro (Advantage) or Con (Disadvantage) may be attached to a given
solution only once.

• Rule 4. Only a single solution to a given problem can be in the “Chosen” state.
• Rule 5. Pros and Cons connected with a given solution cannot be mutually

contradictory.
• Rule 6. Two solutions to a problem cannot designate virtually the same resolution

to the same architectural problem.

Rules 1-4 can be verified automatically, while rules 5-6 can be verified with a model
walkthrough.

4 A Modelling Tool for MAD 2.0

We developed a software tool supporting MAD 2.0 to validate its concepts in
practice. The tool is designed as a diagram editor being an extension to MS Word.
Architects and analysts often create documentation with MS Word (despite the
availability of more advanced specification and modelling tools). Therefore, to
capture the knowledge as it emerges, it seems to be a good idea to bring the
architecture decision modelling tool as close as possible to the general documentation
tool. This makes it possible to connect decisions to the relevant fragments of system
documentation.

Fig. 3. Example – creating a new decision problem

 Capturing Architecture Evolution with Maps of Architectural Decisions 2.0 89

The tool provides a diagram editor for ADRD and ADPM, which can be invoked
from the MS Word menu. It imposes model syntax and provides for
model verification as described in section 3.3. Some screenshots are shown in fig. 3
and 4.

Fig. 4. Editing ADRD diagram

5 A Case Study

MAD 2.0 was validated on a real world system evolution case study. This was done
with the same telecom company we had a workshop with a couple of months earlier.
This company offers various telecommunication services (called products). The
dealers use a set of various specialised applications to serve their clients. These are
mainly CRM applications supporting the selling process at all its stages: client
registration or identification, product offer, product support and modification.

The company wants to offer a new product composed of the installation and
maintenance of fibre optic networks services and the delivery of IT equipment being
sold together as a product bundle. The product can be sold by two subsidiaries of the
telecom company under their own brand. There are various financing options planned
for such a product: wire transfer, credit instalment payments or even leasing.

The product components will be provided by two independent external
subcontractors: “subcontractor A” will deliver IT equipment, “subcontractor B” will
install fibre-optic networks in the clients’ premises and will configure the delivered
equipment so that both elements operate together.

90 A. Zalewski, S. Kijas, and D. Sokołowska

The overall structure of the architecting task has been depicted in fig. 5 with
ADRD, which comprises the following architectural decisions:

1. CRM system selection – product sales are supposed to be supported with a CRM
system. However, as a result of a number of mergers/acquisitions there are a
number of CRM systems used originally by the merged companies. None of them
contains a complete client database; they support different product business
models.

2. Selection of the billing system – There are two such systems, though each of them
contains only a part of the entire client dataset. Moreover, these parts overlap
substantially.

3. Selection of the help desk system – as such services have not been offered to clients
yet, the help desk system used so far for internal purposes is one option, and the
development of a newer system is another one.

4. Selection of subcontractor B – This is both a technical and business decision.
5. Selection of subcontractor A – This is both a technical and business decision
6. Which subsidiary will offer the product? – there are two subsidiaries of the telecom

company that can offer the product under their own brands; however, they differ
a lot in terms of their own IT systems and IT infrastructure, while it is necessary
to interface appropriate systems of telecom company with those used by
subsidiary or at least to enable subsidiary to access some systems of mother
company.

7. Should lease and loan options be processed separately? – the accounting
department uses different systems for these two options, while from the vendor’s
point of view it is sensible to use a single system for both.

8. Where to store product offer model – The product list of the company should be
accessible to other systems, so they have to support the same product business
model. It is supposed to be synchronised with the product list of subcontractor A.

9. Scope of data needed for client verification – describes the set of data needed to
assess a client’s financial credibility;

10. Selection of credit rating system – there are a number of systems (internal and
external) that can be used to assess the client’s financial credibility;

11. Allocation of instalment calculator – the question is where to allocate the
calculator’s functionality – should it be extending one of the applications used by
product sellers, or should it be a separate system;

12. Communication mechanism between company and subcontractor A? – the
communications necessary to keep the vendor’s data (product list, warehouse,
client order processing support etc.) up to date;

13. Selection of product list exchange mechanism – the product lists of
subcontractor A and the telecom company have to be periodically synchronised;

14. Frequency of product list exchange – to achieve this, various database
synchronisation mechanisms may be needed.

Fig. 5 shows that the resolution of problem No 6 leads to problems Nos 1, 2, 3; the
resolution of issue No 8 leads to a group of problems concerning organising systems
interaction necessary to support product delivery.

 Capturing Architecture Evolution with Maps of Architectural Decisions 2.0 91

Fig. 5. ADPM developed for the case study

Fig. 6. ADPM for the problem of CRM selection

ADPMs were developed for all the architectural problems shown in fig. 5. We
show only two out of fourteen diagrams modelling architectural problems and
decision-making. Fig. 6 shows the structure of problem No 1 concerning the selection

92 A. Zalewski, S. Kijas, and D. Sokołowska

of an appropriate CRM system to support the new offer. The CRM system should be
developable or customisable in a short time, it should support: all the customers
(complete client database), frequent offer changes, provide client data and support full
product list including the new product. Four existing or developed CRM systems are
candidate solutions; the architect has to choose only one of them. In this case the
solution is very easy to identify – only CRM 2 meets all the requirements. Obviously
in many cases the situation will not be as clear cut as this time, and may require an
individual judgement.

Problem no. 3 concerning the selection of the helpdesk system has been presented
in fig. 7. ADPM shows that there are three possible choices here. In this case as well,
only one of the candidates meets the prescribed requirement of supporting the
hardware help desk.

Fig. 7. ADPM for the problem of service desk support system selection

6 Discussion: Related Work

Developing models supporting architectural decision-making, we face the classical
dilemma between model usability (i.e. simplicity, legibility, comprehensibility, etc.)
and its complexity defining its expressiveness (i.e. information capacity, level of
formalisation) and analysability. The more complicated the model, the less usable it
is, and vice versa: we can increase usability by decreasing model’s complexity, and
by the same its expressiveness and the range of analyses it enables. Over-complicated

 Capturing Architecture Evolution with Maps of Architectural Decisions 2.0 93

architecture decision-making models create complexity of their own, adding to the
complexity of the overall systems construction instead of supporting complexity
control [10].

In such a discussion we find semiformal diagrams a rational choice. Semiformal
diagrammatic modelling has turned out to provide the right balance between model
usability and complexity. For this reason, semiformal diagrams have been dominating
software engineering for at least the past thirty years, in the form of structured and
object-oriented methods.

MAD 2.0 models have been crafted to assist system architects similarly to create
mind maps. This helps to capture architectural knowledge as it gradually comes to
light while elaborating the architecture (i.e. decision-making). The model is certainly
not overloaded with information, though it is still possible to verify some
consistency/completeness rules (section 3.3). In terms of the level of formalism,
MAD 2.0 stands between text models e.g. [3], [11], and partially formalised models
[4]. An extended comparison of these models contains table 1. Although, the range of
information concerning architectural decisions and decision making process has been
limited, the most important components of architectural knowledge are still preserved,
i.e. decision’s rationale, considered solutions and their pros and cons.

ADPM is similar to the rationale model of [8]. An assessment of every possible
problem solution by indicating the pros and cons thereof seems intuitive and comes
from the early works of Bosch [2]. It can also be found in the most modern
developments like [7].

The classification of ADs and top-down decision-making as proposed in [4] is
perfectly suited to developing a system from scratch. It more closely resembles the
configuration of a predefined recurring solution rather than the resolution of a unique
problem that requires creative thinking.

It is difficult to apply categories defined in [4] or [5] to unstructured problems
resulting from the evolution of systems of systems. If one considers the architectural
problems listed in section 5, it will turn out that they are generally difficult to classify,
with most of them belonging to the executive problem category. Architecting systems
of systems mainly involves reusing existing systems, where the internal structure
usually remains unchanged. Therefore, lower level architectural decisions (e.g.
technology, vendor) play a less important role.

MAD 2.0 assumes no predefined classification of architectural decisions, which is
a reasonable decision in the above context. The other drawbacks of decision
classification have been investigated in [10].

Only two kinds of relations between ADs are available in MAD 2.0. This provides
for a smooth, uninterrupted flow of the architecting process, as architects do not need
to worry about which of at least several kinds of relations to chose, which often
becomes a separate challenge. This makes advanced analyses similar to that presented
in [4] impossible, which is the price for higher model usability.

The MAD 2.0 tool concept is similar to Knowledge Architect [6] – architectural
decision models are linked to appropriate parts of requirement specifications.

Although MAD 2.0 has been motivated by the rapid, random changes typical for
the evolution of systems supporting emergent organisations it can also be used as a
kind of light-weight architecture decision making model for the initial architecture
development.

94 A. Zalewski, S. Kijas, and D. Sokołowska

Table 1. Models supporting architectural decision making – a comparison

 Text models ([3],

[11])
MAD 2.0 Graph/text model

proposed in [4]

Model form Text records Diagrams, additional
information stored in
attributes of diagram
elements

Graphs, certain
elements accompanied
with text attributes.

Level of
formalism

Basic information
structuring (fields of
text records).

Syntax defined, simple
consistency /
completeness checking.

Syntax defined,
extended completeness
/ consistency checking,
decision-making
consistency based on
relations between ADs.

Information
content

Issue, Decision,
Status, Group,
Assumptions,
Constraints,
Positions, Argument,
Implications, Related
decisions, Related
requirements,
Notes [3]

Decisions, two kinds of
relations between ADs,
problems (issues),
possible solutions, pros
and cons of every
solution, chosen
solution indicated,
rationale.

Classification of
architectural problems,
possible solutions, pros
and cons of every
solution, chosen
solution indicated,
rationale.

Classifi-
cation of
ADs

No classification
assumed, decisions
can be put into groups
according to the
architects’ needs.

No classification
assumed; decisions can
be put into groups
according to the
architects’ needs.

Problems assigned to
one of the levels:
Executive, Conceptual,
Technology, Vendor
Asset. Each problem
classified with topic
groups mechanism.

Relations
between
ADs

Does not assume any
particular types
relations.

Only „lead to” and
“constraints” relations.

Influences, refined by,
decomposes into,
forces, is incompatible
with, is compatible
with, triggers, has
outcome.

Rationale
modelling

Textual. Diagrammatic, when
necessary supported by
additional textual
explanations.

Textual.

Model
analysis and
verification

Manual walkthroughs
only.

Limited to syntax
enforcement,
consistency /
completeness with
automated or manual
walkthroughs.

Automatic verification
of decision-making
consistency,
completeness and
consistency checking.

 Capturing Architecture Evolution with Maps of Architectural Decisions 2.0 95

7 Summary: Future Work

The presented architecture decisions model MAD 2.0 has been tailored to the specific
conditions of the evolution of systems of systems subject to constant urgent change
typical. In such conditions, evolution turns out to be a highly creative, disordered
process, performed under time pressure. MAD 2.0 can assist architecting activities,
which helps capture architectural knowledge when it is created. It eliminates, or at
least minimises, the need to document architectural decisions ex post. It also provides
for basic automated verification as well as for model walkthroughs.

MAD 2.0, together with modelling, has been validated in the real life conditions of
a large enterprise on the same group of architects. Their perception has changed
considerably: they were satisfied with such an evolution-oriented approach – the
survey indicated that about 85% found it easy to learn and use. About 70% found it
useful for their job.

Future work will include:

• Further empirical evaluation;
• Analysing a larger number of evolution cases to develop a deeper insight in the

architectural problems concerning the evolution of systems of systems;
• Developing a classification of architectural problems connected with systems

evolution;
• Extending the information content of MAD 2.0 to widen the range of possible

analyses;
• Providing a view mechanism for managing large sets of MAD 2.0 models, where

users define a subset of model components that should be presented to them
extending the concepts from [14] onto MAD 2.0;

• Integration of MAD 2.0 with other models of systems architecture, e.g. UML,
BPMN.

Acknowledgement. This work was sponsored by the Polish Ministry of Science and
Higher Education under grant number 5321/B/T02/2010/39.

References

1. Ali Babar, M., et al.: Architecture knowledge management. In: Theory and Practice.
Springer, Heidelberg (2009)

2. Bosch, J., Jansen, A.: Software Architecture as a Set of Architectural Design Decisions.
In: 5thWorking IEEE/IFIP Conference on Software Architecture (WICSA 2005), pp. 109–
120. IEEE Computer Society, Los Alamitos (2005)

3. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE
Software 22(2), 19–27 (2005)

4. Zimmermann, O., et al.: Managing architectural decision models with dependency
relations, integrity constraints, and production rules. Journal of Systems and
Software 82(8), 1249–1267 (2009)

5. Kruchten, P.: An Ontology of Architectural Design Decisions. In: 2nd Groningen
Workshop on Software Variability Management, pp. 54–61. Rijksuniversiteit Groningen
(October 2004)

96 A. Zalewski, S. Kijas, and D. Sokołowska

6. Jansen, A., Avgeriou, P., van der Ven, J.: Enriching Software Architecture
Documentation. Journal of Systems and Software 82(8), 1232–1248 (2009)

7. Zimmermann, O.: Architectural Decisions as Reusable Design Assets. IEEE
Software 28(1), 64–69 (2011)

8. Mojtaba Shahin, M., Liang, P., Reza Khayyambashi, M.: Improving understandability of
architecture design through visualization of architectural design decision. In: SHARK
2010 Proceedings of the 2010 ICSE Workshop on Sharing and Reusing Architectural
Knowledge. ACM, New York (2010)

9. Zalewski, A., Ludzia, M.: Diagrammatic Modeling of Architectural Decisions. In:
Morrison, R., Balasubramaniam, D., Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp.
350–353. Springer, Heidelberg (2008)

10. Zalewski, A., Kijas, S.: Architecture Decision-Making in Support of Complexity Control.
In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp. 501–504. Springer,
Heidelberg (2010)

11. Harrison, N.B., Avgeriou, P., Zdun, U.: Using Patterns to Capture Architectural Decisions.
IEEE Software 24(4), 38–45 (2007)

12. Bennett, K.H., Rajlich, V.T.: Software maintenance and evolution: a roadmap. In:
Proceedings of the Conference on The Future of Software Engineering (ICSE 2000), pp.
73–87. ACM, New York (2000)

13. Garlan, D., Barnes, J.M., Schmerl, B., Celiku, O.: Evolution styles: Foundations and tool
support for software architecture evolution. In: Joint Working IEEE/IFIP Conference on
Software Architecture, 2009 & European Conference on Software Architecture,
WICSA/ECSA 2009 September 14–17, pp.131–140 (2009)

14. Chen, L., Babar, M.A., Liang, H.: Model-Centered Customizable Architectural Design
Decisions Management. In: 2010 21st Australian Software Engineering Conference
(ASWEC), April 6-9, pp. 23–32 (2010)

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 97–104, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Resource Management in the Air Traffic Domain

Guglielmo Lulli1, Raffaela Mirandola2, Pasqualina Potena3, and Claudia Raibulet1

1 Università degli Studi di Milano-Bicocca, Dipartimento di Informatica, Sistemistica e
Comunicazione, Viale Sarca 336, Edificio U14, 20126, Milan, Italy

2 Politecnico di Milano, Dipartimento di Elettronica ed Informazione, Piazza Leonardo da
Vinci, 32, 20133, Milan, Italy

3 Università degli Studi di Bergamo, Dipartimento dell'Informazione e Metodi Matematici,
Viale Marconi, 5, 24024, Dalmine (BG), Italy

lulli@disco.unimib.it, mirandola@elet.polimi.it,
pasqualina.potena@unibg.it, raibulet@disco.unimib.it

Abstract. Nowadays, with the increasing need of traveling and flying, the air
traffic system is highly capacity constrained due to the limited availability of
resources. These resources are shared among the various domain actors. In this
paper, we propose an architectural perspective for resource management in the
aeronautic domain, which is based on resource allocation, trading, and
adaptation to reduce the congestion phenomenon in the air traffic system.

Keywords: Resource management, resource allocation, resource trading,
resource adaptation, air traffic domain.

1 Introduction

The air traffic system is facing congestion phenomena almost on a daily basis, due to
the availability of scarce resources both on the ground and in en-route airspace which
pose restricting capacity constraints. Capacity at airports is limited by the runway
systems and the terminal airspace around them. The capacity of en-route airspace
sectors is limited by the maximum workload acceptable for air traffic controllers
(measured as the average number of aircraft which are permitted to fly an en-route
sector in a specific period of time) [7]. Due to these capacity constraints, imbalances
between demand and capacity may occur at key times and points of the air
transportation network. These local overloads create delays which propagate to other
parts of the air network, amplifying congestion as increasing number of local capacity
constraints come into play. Last year, more than 20% of US flights were delayed or
cancelled (according to the US Bureau of Transportation Statistics). Similar statistics
have been reported by European authorities.

Complying with the SESAR JU Initiative in Europe and the NGATS in the US, we
are developing a research project named Enhancing the European Air Transportation
System whose goal is to design resource management schemes for the air traffic
system capacity at European level. Whenever there is competition for a limited
number of resources, the air traffic management has to take critical resource
allocation [12] decisions. In this context, our objective is to develop an architectural

98 G. Lulli et al.

solution which ensures the efficient allocation and use of resources. This solution
embodies mathematical models and procedures for air traffic management, which are
consistent with the philosophy of collaborative decision making (initiative aimed at
improving air traffic management through increased information exchange among the
various parties in the aviation community [3]). Approaches might vary from system-
wide optimization to market-based mechanisms.

The proposed solution aims to address the variability of resources through
architectural mechanisms, by defining appropriate components for the dynamic
allocation, trading, and adaption of resources [4]. Our resource management approach
aims to solve, as a downstream effect, the planning problem locally by the parties
involved (airlines) instead of centrally by a single decision maker (the Air Navigation
Service Provider (ANSP)). The management mechanisms enable a multi-step trading
process in order to satisfy all the capacity constraints, assuring the safety of flights
(claimed by the Eurocontrol, i.e., the European agency devoted to the air traffic
management) and minimizing delays (claimed by the airlines). In the proposed
approach we consider multiple adaptations. A first one is structural. It concerns the
ANSP and is achieved by airspace reconfiguration, see e.g., [6], in order to satisfy the
air traffic demand. A second one is a process adaptation which is achieved by
changing dynamically the optimization models and methods based on the current
external and internal conditions of the air traffic management system.

The proposed approach is new. In fact, currently, no resource trading scheme is
implemented in the considered application domain. Indeed, a simple exchange of
resources is only performed at the airport level based on the exchange of updated
information between airlines and the ANSP. Airlines release airport resources (arrival
time slots) in return of a priority on possibly new released resources which are treated
according to a first-in-first-served strategy. Furthermore, the research efforts have been
devoted either to support the air traffic flow management (e.g., [1]), airspace
configuration as a measure to alleviate air traffic congestion (e.g., [6]), or market based
mechanism to improve the efficiency of resource allocation [11]. However, to the best
of our knowledge, no integrated approach has been proposed for the application
domain herein considered.

The rest of the paper is organized as follows. Section 2 provides an overview on
the air traffic management domain. Section 3 introduces our solution to resource
management. Conclusions and further work are dealt in Section 4.

2 The Application Domain

The main actors of the aeronautical application domain herein considered are the
airlines, on one side, and the Air Navigation Service Provider (ANSP), on the other
side. ANSP performs the Air Traffic Flow Management (ATFM) and the Air Traffic
Control (ATC) functions. In execution the ATFM function, the ANSP requires a
global vision of the air traffic and its main task is to adjust the air traffic flows in
order to meet all the system capacity constraints. As a by-product of its functions, the
ANSP ensures that the available resources are used efficiently. At the European level
the ATFM function is carried out by Eurocontrol. ATC guarantees that aircraft are
separated to prevent collisions, and provides information and other support for pilots.

 Resource Management in the Air Traffic Domain 99

In the rest of the paper, we focus on the ATFM function. To fulfill this function the
ANSP gathers weather information and establishes the capacity of the system i.e., the
number of aircraft which can feasibly fly in each sector, and the allowed number of
departures and arrivals for each airport. Furthermore, ANSP receives as input,
information about the status of flights from the airlines, and tries to address airlines’
requests based on a first-in-first-served policy.

The main objective of airlines (besides the safety of the flights) is to be cost-
effective. Costs are directly influenced by delays of the airline flights. Airlines to
achieve their individual objectives try to collect the resources they need.

The current solution for resource management, which -at the moment- consists
exclusively of the allocation mechanism, (see Figure 1) has the following limitations:

• The airspace configuration and thus the capacity of the system is established
statically and it is independent of the system’s conditions. Our scope is to enable a
dynamic approach which reconfigure the airspace whenever the conditions of the
air traffic system change;

• The resource allocation is performed as follows: ANSP receives the requests from
airlines and tries to accommodate their request based on a first-in-first-served
strategy. However, this approach lacks of a complete knowledge of airlines
objectives. As opposed, the approach herein proposed enables a trading process
which involve actively airlines in the resource allocation process;

• Airlines may only “exchange” (airlines release resources (arrival time slots) in
return of a priority on possibly new available time slots) time slots only at a single
airport level. In our approach, we enable airlines to globally (e.g., European level –
entire air traffic system) trade resources (time slots for any flight phase, e.g., take
off, cruise and/or landing) among them.

Fig. 1. The Current Available Resource Management Solutions in the Air Traffic Domain

3 Our Solution

The architectural solution we propose for resource management in the air traffic
domain is displayed in Figure 2. It implements the following six main steps:

Step 0: ANSP retrieves the initial scheduling of flights, which is obtained by the
official timetable planned long time in advance.

100 G. Lulli et al.

Step 1: ANSP collects the current weather conditions of the airspace, and based on
this information establishes the capacity of the system (sectors and airports).

Step 2: Based on the current system capacity and the last updated schedule of flights,
the ANSP can either approve the schedule or suggest modifications to the schedule.
ANSP communicates the system capacity and possible schedule modifications to airlines.

Step 3: Airlines trade the available resources and communicate to the ANSP the
attained exchanges and modifications of the flight schedule.

Step 4: Based on the requests from the airlines (e.g., requests for new allocations or
the results of the trading process), the ANSP tries to adapt the resources in order to
meet the airlines’ requests.

Step 5: If a time interval greater then X has passed from the last weather condition
check, continue with Step 1; otherwise continue with Step 2.

Fig. 2. The Main Architectural Modules of Our Resource Management Solution

The details of the resource allocation, trading and adaptation modules are described
in the rest of this section.

3.1 The Air Traffic Resource Allocation Module

The Resource Allocation (RA) module assigns the available resources (e.g., time
slots) to the airlines based on global objectives (e.g., the efficient usage of the
resources, minimization of the total delay, safety). To execute this task, RA has to
know the system capacity to be allocated and the pool of airlines (see Figure 3). In
addition to this information, RA receives in input the current flight schedule, and the
capacity constraints. The RA module is equipped with a supervision capability on the
use of resources thus guaranteeing a feasible and efficient allocation of resources.
This functionality requires in input the results of the trading process and the new
requests for resource allocations, as well as the results of the adaptation process (e.g.,
system capacity modifications). To provide these functionalities, RA uses assignment
optimization models and methods [1, 5] customized for the air traffic domain.

 Resource Management in the Air Traffic Domain 101

Fig. 3. The Air Traffic Resource Allocation Module

3.2 The Air Traffic Resource Trading Module

The airlines receive from the ANSP the input for executing a new resource trading.
ANSP suggests an initial solution and the possible bottlenecks in the air traffic system
due to imbalances between available capacity and the airline requests (flights demand).

The Resource Trading (RT) module, depicted in Figure 4, is used by the airlines to
exchange resources with other airlines and to communicate with ANSP. Each airline
has an RT module. The communication with ANSP includes resource
allocation/modification/usage/cancellation requests, which may or may not be a result
of a trading process. The communication with the other airlines concern exchange
requests, thus implying a trading process. Each RT receives in input the current flights
schedule, if any, the capacity constraints, and the resource trading requests from other
airlines. The airline decides on exchanging resources with other airlines based on its
individual objectives (e.g., costs minimization) and exploiting customized
optimization models and methods, i.e., optimization models include specific
constraints and objectives of the airline. Therefore, different airlines may have
different optimization models [2, 13]. An exchange is performed if it is convenient for
both parties.

Airlines may be equipped with several optimization models and methods which
can be interchanged at runtime to trade resources, hence they can adapt themselves
dynamically according to the cost of their solution.

There are cases in which an airline does not find an appropriate solution. This
means that the costs generated by the expected delays are too high to be afforded and
the airline may decide to cancel one or more flights. Even if this solution does not
lead to the achievement of the individual target, it may be beneficial for the overall
target at the global level. Coherently with the collaborative decision making
philosophy, the airline which cancels one or more of its flights can get a priority on
new released resources.

102 G. Lulli et al.

Fig. 4. The Air Traffic Resource Trading Module

3.3 The Air Traffic Adaptivity Module

ANSP tries to accommodate the current schedule, verifying its feasibility by
estimating the use of available resources and the overall delays of the flights. If this
verification has a positive answer, then ANSP approves the schedule.

Otherwise, it may consider two possible alternatives determined by a distance
measure (d) between the current scheduled solution (S) and the current capacity of the
system (C). If this distance is lower than a given threshold d(S, C) < δ, then the ANSP
tries to structurally adapt itself (by airspace reconfiguration) to accommodate the
current solution which can be either the initial schedule or the outcome of the
resource trading process. If d(S, C) ≥ δ then the ANSP is not able to satisfy the current
schedule of flights by a structural adaptation. In this case, it requests to the airlines a
new trade of resources to reach a new feasible schedule of flights. The ANSP may
suggest a feasible schedule of flights according to a first-in-first-served strategy and
may highlight possible shortages of capacity. The adaptivity module is depicted in
Figure 5.

We here describe in more details what we mean for structural adaptivity. The
adaptation consists in the reconfiguration of the airspace. For example, if the
European airspace is structured as in Figure 6a, after the application of the adaptive
strategies, its structure may look like as in Figure 6b.

To better understand the possible benefits attainable by airspace reconfiguration,
let’s consider the following example. The capacity of each sector (air traffic controller
workload) is equal to 10 flights. Suppose sectors 1, 2, 4, and 5 have 5 flights equally
distributed in the sector, while sectors 3 and 6 have 20 flights per sector. Under
configuration 6a, we have an imbalance between capacity and demand, but
reconfiguring the airspace as in Figure 6b the demand of each sector meets the
available capacity of the sector by supervising 10 flights each. Sectors 1, 2, 4, and 5
have been extended to cover 10 flights, while sectors 3 and 6 have been reduced to
cover the same number of flights as the other sectors.

 Resource Management in the Air Traffic Domain 103

Fig. 5. The Air Traffic Adaptation Module

To achieve this structural adaptivity the ANSP has be enriched/equipped with
various optimization methods and models for example by combining existing
approaches as described in [6, 10]. We consider that the ANSP is equipped with
several models and optimization methods which differ for the computational time
required to compute the solution, and for the quality of the computed solution. The
ANSP should be able to decide dynamically which of these models and methods to
apply based on either the time available to propose a solution, the distance measure,
or both. This is translated into an adaptation process of the ANSP.

 a. b.

Fig. 6. Air-Space Adaptation Re-Configuration

4 Conclusions and Further Work

The solution described in this paper for the resource management in the air traffic
application domain is characterized by at least two main advantages. First, it actively
involves the various actors of the system. Hence, it becomes a collaborative and
distributed approach which enables each actor (airline) to achieve its own objectives.
As a consequence, through this approach we may reach a better performance of the air
traffic management system: it is not a minimization of the total delay, but it is a
minimization of the total delay cost, which depends on the costs structure and the
operations of each airline. Second, the solution is based both on a top-down approach
because of the global perspective of ANSP on the system, as well as a bottom-up
approach because of the individual perspective of the airline companies.

Our solution for resource management in the air traffic domain may be generalized
and applied to further application domains characterized by a limited number of
resources which should be exploited by different stakeholders.

One of the further developments is related to the extension of the resource
management process also to the ground-side resources. This extension introduces

104 G. Lulli et al.

further actors in the system (e.g., handling services providers), which have their own
objectives that may be considered orthogonal to the previous ones. Integrating also
the ground-side resources will enable us to have a uniform and complete solution for
the resource trading in the aeronautical application domain.

A prototype of the solution described in this paper is currently under development
at the University of Milano-Bicocca. It exploits adaptation mechanisms similar to the
ones we have developed for [8, 9].

Acknowledgments. This work is partially supported by the Enhancing the European
Air Transportation System (EATS) research project funded by the Italian Government
within the PRIN program.

References

1. Bertsimas, D., Lulli, G., Odoni, A.: An Integer Optimization Approach to Large-Scale Air
Traffic Flow management. Operations Research 59(1), 211–227 (2011)

2. Castelli, L., Pesenti, R.: Allocating Air Traffic Flow Management Slots. Department of
Applied Mathematics, University of Venice, Woking Paper No.191 (2009)

3. Chang, K., Howard, K., Oiesen, R., Shisler, L., Tanino, M., Wambsganss, M.C.:
Enhancements to the FAA Ground-Delay Program under Collaborative Decision Making.
Interfaces 31(1), 57–76 (2001)

4. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B.,
Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar, S., Finkelstein, A.,
Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J., Litoiu, M., Malek, S.,
Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., Whittle,
J.: Software engineering for self-adaptive systems: A research roadmap. In: Cheng, B.H.C.,
de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-
Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

5. Dell’Olmo, P., Lulli, G.: A Dynamic Programming Approach for the Airport Capacity
Allocation Problem. IMA Journal of Management Mathematics 14, 235–249 (2003)

6. Gianazza, D.: Forecasting Workload and Airspace Configuration with Neural Networks
and Tree Search Methods. Journal of Artificial Intelligence 174(7-8), 530–549 (2010)

7. Hansman, R.J., Odoni, A.: Air Traffic Control in the Global Airline Industry. In:
Belobaba, P., Odoni, A., Barnhart, C. (eds.), pp. 377–403. Wiley, Chichester (2009)

8. Raibulet, C., Arcelli, F., Mussino, S., Riva, M., Tisato, F., Ubezio, L.: Components in an
Adaptive and QoS-based Architecture. In: Proc. of the ICSE 2006 Workshop on Software
Engineering for Adaptive and Self-Managing Systems, pp. 65–71. IEEE Press, Los
Alamitos (2006)

9. Mirandola, R., Potena, P.: Self-Adaptation of Service based Systems based on
Cost/Quality Attributes Tradeoffs. In: Proc. of the 12th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, pp. 493–501 (2010)

10. Raibulet, C.: Facets of adaptivity. In: Morrison, R., Balasubramaniam, D., Falkner, K.
(eds.) ECSA 2008. LNCS, vol. 5292, pp. 342–345. Springer, Heidelberg (2008)

11. Waslander, S., Roy, K., Johari, R., Tomlin, C.: Lump-Sum Markets for Air Traffic Flow
Control with Competitive Airlines. Proc. of the IEEE 96(12), 2113–2130 (2008)

12. Webb, A., Sarkani, S., Mazzuchi, T.: Resource Allocation for Air Traffic Controllers
using Dynamic Airspace Configuration. In: Proceedings of the World Congress on
Engineering and Computer Science, vol. II (2009)

13. Vossen, T., Ball, M.O.: Slot Trading Opportunities in Collaborative Ground Delay
Programs. Transportation Science 40(1), 29–43 (2006)

An Architecture-Based Verification Technique

for AADL Specifications�

Andreas Johnsen, Paul Pettersson, and Kristina Lundqvist

School of Innovation, Design and Engineering
Mälardalen University

Väster̊as, Sweden
{andreas.johnsen,paul.pettersson,kristina.lundqvist}@mdh.se

Abstract. Quality assurance processes of software-intensive systems are
an increasing challenge as the complexity of these systems dramatically
increases. The use of Architecture Description Languages (ADLs) pro-
vide an important basis for evaluation. The Architecture Analysis and
Design Language (AADL) is an ADL developed for designing software-
intensive systems. In this paper, we propose an architecture-based veri-
fication technique covering the entire development process by adapting
a combination of model-checking and model-based testing approaches
to AADL specifications. The technique reveals inconsistencies of early
design decisions and ensures a system’s conformity with its AADL spec-
ification. The objective and criteria (test-selection) of the verification
technique is derived from traditional integration testing.

1 Introduction

The architecture design phase is one of the most critical phases in the develop-
ment process of software-intensive systems. The architecture specification is the
initial development artefact representing the earliest design decisions made on
the intended system’s structure, functional properties and quality attributes (also
known as non-functional properties or extra-functional properties). Design deci-
sions involve the allocation of functional properties – which are closely related to
a system’s behavior, capabilities and services – to certain structures to achieve
certain quality attributes. Furthermore, the architecture specification is used as a
mutual communication blueprint among stakeholders and guides the implementa-
tion phase of the system. Consequently, the developed system will heavily depend
on the architecture specification, which it ideally should conform to.

The design decisions established in the architecture design phase, or the
absence of some, may impose incorrect properties of the system and thereby cre-
ating challenges in quality assurance processes. These incorrect structural, func-
tional as well as non-functional properties may go unnoticed until later phases
of the development process where a correction is known to be significantly more
� This work was partially supported by the Swedish Research Council (VR), and

Mälardalen Real-Time Research Centre (MRTC)/Mälardalen University.

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 105–113, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

106 A. Johnsen, P. Pettersson, and K. Lundqvist

costly compared to a correction in the architecture design phase. Hence, evaluat-
ing the architecture specification is crucial in order to detect possible faults and
inconsistencies before the development process progresses, reducing a significant
amount of cost and time. Furthermore, in order to preserve the valuable effort
made at the architecture design phase, an implementation of the system must
be implemented in conformance with the architecture specification. The verifica-
tion techniques used to tackle these challenges, i.e. 1) to evaluate an architecture
specification and 2) to test the conformance of an implementation with respect to
its architecture specification, rely on what kind of properties and their relations
that may be described with the Architecture Description Language (ADL) used
to specify the system’s architecture.

Software-intensive systems are systems where software interacts with sensors,
actuators, devices, other systems and people. Examples of such systems are em-
bedded systems for aerospace, automotive and telecommunications. What these
systems have in common is that they often are operating in dynamic, time- and
safety-critical environments. One ADL that has been developed for this kind of
systems, is the Architecture Analysis and Design Language (AADL) [1], which is
widely used both within industry and the research community. In this paper we
propose an architecture-based verification technique, for software-intensive sys-
tems specified by AADL, addressing challenge 1) and 2) mentioned above. The
technique is based on formal constructs enabling automation of the verification
activities where challenge 1) and 2) are tackled by adapting model-checking
and model-based testing approaches to an architectural perspective. The ob-
jective of the technique is to evaluate the integration of components at both
the specification-level and the implementation-level. Automated simulation of
AADL specifications is not feasible directly from the artefact since AADL lacks
formal semantics and implemented semantics. Formal semantics of a subset of
AADL and an implementation thereof can be found in [2].

The rest of this paper presents an overview of AADL in Section 2. The
architecture-based verification technique is introduced in Section 3, defined ver-
ification criteria are presented in Section 4, followed by concluding remarks in
Section 5.

2 Preliminaries

AADL [3] was released and published as a Society of Automotive Engineers
(SAE) Standard AS5506 [1] in 2004. It is a textual and graphical language used
to model, specify and analyze software- and hardware-architectures of real-time
embedded systems. The AADL language is based on a component-connector
paradigm that describes components, component interfaces and the interactions
(connections) among components. Hence, the language captures functional prop-
erties of the system, such as input and output through component interfaces,
as well as structural properties through configurations of components and con-
nectors. Furthermore, means to describe quality attributes, such as timing and
reliability, are also provided. AADL defines ten types of component abstractions
which can be divided into three groups:

An Architecture-Based Verification Technique for AADL Specifications 107

– Application software: process, thread, thread group, data and subpro-
gram

– Hardware/Execution platform: processor, bus, memory and device
– Composite: system

3 The Architecture-Based Verification Technique

This section presents an overview of the automatable verification technique for
AADL specifications. The technique comprises both evaluation of specifications
and the systems’ conformity to them. It is depicted as a flowchart in Figure 1,
where initially a system’s intended architecture is specified using AADL. Such
an artefact is commonly specified through a translation from something cog-
nitive, an idea, a need or an informal/semi-formal requirement specification,
but since it is informal, it is not possible to formally prove that the AADL
specification correctly conforms to the informal one it is derived from [4]. Con-
sequently, making this type of evaluation far from possible to automate and
thus is out of scope in this technique. What is possible though is to formally
reason about a system solely through the AADL specification, to prove its con-
sistency and completeness, and later use it as a test model to perform model-
based testing on. The different steps of the verification technique are as follows:

Fig. 1. Flowchart of the technique

The first step is to use the map-
pings/transformation rules (described
in [2]) to transform an AADL spec-
ification to a timed automata model
upon which automated formal verifi-
cation can be performed.

The second step is to apply
the architecture-based verification
criteria (section 4) to the AADL
specification. They define the test
selection, i.e., what samples of the
specification to evaluate and how they
are extracted, and the coverage re-
quirement, i.e., how many samples
to evaluate. The samples generated
from the criteria are sequences of
component-integrations in terms of
control-flows and data-flows.

Sequences are transformed, in the third step, to the corresponding timed au-
tomata paths through a structural mapping between them.

The outcome, a set of timed automata paths are required in the fourth step
to be fully simulated by the Uppaal model-checker, by using temporal logics, in
order to satisfy the criteria. The verdict from the simulations reveals the con-
sistency and completeness of the AADL specification, where a correction of the
specification should be made if it is shown inconsistent or incomplete.

108 A. Johnsen, P. Pettersson, and K. Lundqvist

The paths are later used in the fifth step to generate test cases to the imple-
mentation (model-based testing), to test the conformance of the implementation
with respect to the architecture specification. Test paths are transformed to
concrete test cases through a mapping between the architecture specification
and its implementation (we assume identical name spaces between the AADL
specification and the system).

4 AADL Verification Criteria

Due to features of an ADL, the primary focus of evaluation at this level is the in-
tegration of components as described by Eickelmann and Richardson [5] in their
work about architecture-based defect prevention and detection. The idea of tak-
ing traditional data-flow and control-flow analysis criteria to the architectural-
level has been proposed by Jin and Offut in [6], where explicit data-flow and
control-flow properties through system architectures are defined. Based on these
properties, they define general architecture-based testing criteria applicable to
any ADL treating components and connectors as separate entities interconnected
through their interfaces. Since AADL connectors do not have interfaces, and are
dependent on the interfaces of the components they connect, the defined criteria
are not applicable to AADL specifications. From the definition of the general cri-
teria defined by Jin and Offut, we define architecture-based verification criteria
specific to AADL based on the possible bindings of data-flow and control-flow
properties (leading to sequences) described by AADL.

4.1 Verification Objectives

AADL specifications have explicit control-flows and data-flows through the ar-
chitecture described by the informal semantics of AADL. These flows are de-
pendent on how components transfer control and data through their interfaces
(AADL component features). The possible interactions among components are
represented by, and restricted to, four different types of connections: port con-
nections, data access connections, subprogram calls and parameter connections.

Component abstractions within the software group, except data components,
may have port interfaces for directional (in port, out port or inout port) interac-
tions of typed data and events. A port can either be a data port (for transfer of
data), a data event port (for transfer of data and associated control) or an event
port (for transfer of control). Port interfaces can be connected through Port
connections, which describe the transfer of control and data among/through
concurrently executing thread components, or between a thread component and
device component (threads and subprograms are used to represent functionality
executed with or by device components). The flow of data or control through a
port connection is determined by the directions of the connected ports.

Data components representing static data sharable among components are not
accessible though ports, they are accessible through data access interfaces that
may be declared with components of the software group. Data access connections
describe the transfer of data where the data flow is determined by the value (read
or write) of an Access Right property associated with the connection.

An Architecture-Based Verification Technique for AADL Specifications 109

Subprogram components are not declared as subcomponents, instead they are
called from thread or subprogram components through explicit subprogram calls
declarations, expressing a flow of control from the calling component to the called
subprogram. Call declarations may implicitly describe flows of data, where data
can be provided to or received from a subprogram through parameter or data
access connections. Parameters are interfaces of subprograms, similarly to data
ports, for directional data interactions, where a parameter can be connected to
a data port or another parameter through parameter connections describing the
transfer of data. The data flow through a parameter connection is determined
by the directions of the connected interfaces.

The runtime configuration of subcomponents and their interactions within a
component may change if it is specified with modes. For each mode, it is pos-
sible to set the active components and connections, mode-specific subprogram
calls and mode-specific properties. The transition from one mode to another is
triggered by events derived from event ports, which is specified in a mode state
machine. These modes can also be used to describe the internal logical execu-
tion (functional behavior) of thread and subprogram components. In addition to
modes, a behavioral annex (BA) [7] extending the expressiveness of mode state
machines has been developed to specify logical execution through automata syn-
tactically similar to mode state machines. Thereby, it is possible to refine logical
execution through state variables, states and transitions operating on a com-
ponent’s interfaces. Transitions can be specified with guards, such as boolean
expressions and events, as well as actions, such as assignments and subprogram
calls. Consequently, the control- and data-flows specified with the four different
connections (described above) are refined if a behavioral model operates on the
interfaces the connections connect.

The four different types of connections specify the architectural control-flows
and data-flows of an AADL specification. Architectural control-flows are the
different execution orders of architectural elements whereas architectural data-
flows are the relations between definitions of data elements in a source component
and uses of the corresponding data elements in a target component. These flows
may be dependent on mode state machines, refined by the BA and constrained by
associated properties where conflicts may occur between these constructs. The
objective of the verification criteria is to ensure consistency and completeness of
and between the flows, their refinements and their constraints through analysis
of control-flow reachability, data-flow reachability and concurrency among flows:

Control-flow reachability: Every architectural element in an execution order
should be able to reach the subsequent element to be executed in the order.
The subsequent element should be reached without conflicting properties (con-
straints) of the execution order.
Data-flow reachability: Every data element should be able to reach its target
component, where the data is used, from its source component, where the data is
defined. The target component should be reached without conflicting properties
of the data flow.

110 A. Johnsen, P. Pettersson, and K. Lundqvist

Concurrency among flows: Analysis of single interactions of data or control
is not enough since there are implicit relations between them that may cause
deadlocks in the system. The relations between the flows should not prevent
control-flow reachability or data-flow reachability, and where the system should
be free from deadlocks.

4.2 Verification Criteria

In order to extract control-flows and data-flows from an AADL specification, we
define the atomic bindings of control and data that generates the flows, where
we refer these atomic bindings to AADL relations. The relations are used to
define integration verification sequences of control-flow and data-flow upon the
verification criteria are defined.
In the definitions of AADL relations, an AADL Specification is represented as a
5-tuple:

AADLSPEC = 〈N, I, C, BAC, PAC〉
Where:
N is the set of Components = {n1, n2, ..., nn}

I is the set of component interfaces = {nx.i | nx.i is a port, data acess,
subprogram or parameter interface of nx and nx ∈ N}

C is the set of Connections = {c(s, d) | c(s, d) is a port-, a data access-, a
subprogram call- or a parameter-connection connecting the source interface
s ∈ I to the destination interface d ∈ I}

BAC is the set of BA Connections = {bac(s, d) | bac(s, d) is an automaton
path and the initial location in the path or a transition from the initial location
is labeled with s ∈ I and the last location in the path or a transition to the
last location is labeled with d ∈ I}

PAC is the set of Property Associated Constructs = {pac | pac ∈ I ∪ C ∪
BAC and is constrained by at least one associated property}

Based on this representation of an AADL specification, the defined relations
are:

1. Connection Transfer Relation: defines the data or control transfer that
is generated between two interfaces connected trough a connection.
CTR is the set of Connection Transfer Relations where CTR ⊆ I × I
such that 〈nx.i1, ny.i2〉 ∈ CTR iff c(nx.i1, ny.i2) ∈ C

2. Connection Property Relation: defines the constrained data or con-
trol transfer that is generated between two interfaces connected trough a
connection.

An Architecture-Based Verification Technique for AADL Specifications 111

CPR is the set of Connection Property Relations where CPR ⊆ I × I
such that 〈nx.i1, ny.i2〉 ∈ CPR iff c(nx.i1, ny.i2) ∈ C and nx.i1or ny.i2
or c(nx.i1, ny.i2) ∈ PAC

3. Component Internal Relation: defines the (possibly constrained) data
or control transfer that is generated between two interfaces of a component
that are connected through a connection or a BA.
CIR is the set of Component Internal Relations where CIR ⊆ I × I
such that 〈n1.i1, n1.i2〉 ∈ CIR iff 〈n1.i1, n1.i2〉 ∈ CTR ∪ CPR or
〈n1.i1, n1.i2〉 ∈ BAC

4. Direct Component to Component Relation: defines the (possibly con-
strained) data or control transfer that is generated between two components
that are directly connected through a connection.
DCCR is the set of Direct Component to Component Relations where
DCCR ⊆ I × I such that 〈n1.i1, n2.i2〉 ∈ DCCR iff 〈n1.i1, n2.i2〉 ∈ CTR ∪
CPR

5. Indirect Component to Component Relation: defines the (possibly
constrained) data or control transfer that is generated between two com-
ponents that are indirectly connected through one or several component(s).
The relation is recursive in order to cover any number of interconnected
components. The base case is:
ICCR is the set of Indirect Component to Component Relations where
ICCR ⊆ I × I × I∗ such that 〈n1.i1, n3.i4, t〉 ∈ ICCR iff 〈n1.i1, n2.i2〉 ∈
DCCR and 〈n2.i2, n2.i3〉 ∈ CIR and 〈n2.i3, n3.i4〉 ∈ DCCR and
t = 〈〈n1.i1, n2.i2〉, 〈n2.i2, n2.i3〉, 〈n2.i3, n3.i4〉〉
The recursive definition is:
ICCR is the set of Indirect Component to Component Relations where
ICCR ⊆ I × I × I∗ such that 〈n1.i1, nx.iy, t〉 ∈ ICCR iff 〈n1.i1, n2.i2〉 ∈
DCCR and 〈n2.i2, n2.i3〉 ∈ CIR and 〈n2.i3, nx.iy, t′〉 ∈ ICCR and
t = 〈〈n1.i1, n2.i2〉, 〈n2.i2, n2.i3〉, 〈t′〉〉

From these AADL relations three verification sequences are derived, which are
paths of the architecture specification:

1. Component Internal Transfer Path: If there exists a 〈n1.i1, n1.i2〉 ∈
CIR, there exists a path from n1.i1 to n1.i2. The path is constrained if
〈n1.i1, n1.i2〉
∈ CPR.

2. Direct Component to Component Path: If there exists a 〈n1.i1, n2.i2〉 ∈
DCCR, there exists a path from n1.i1 to n2.i2. The path is constrained if
〈n1.i1, n2.i2〉 ∈ CPR.

3. Indirect Component to Component Path: If there exists a
〈n1.i1, nx.iy, t〉 ∈ ICCR, there exist a path from n1.i1 to nx.iy via t. The
path is constrained if any pair in t ∈ CPR.

The AADL specification is consistent if each path is free from contradictory be-
havior, that is, each path does not contradict Control-flow reachability, Data-flow
reachability and Concurrency among flows. The AADL specification is complete

112 A. Johnsen, P. Pettersson, and K. Lundqvist

if each path not yielding an end-to-end flow (typically a sensor-to-actuator flow)
is subsumed in another path.

Upon the integration verification sequences, we define the three architecture-
based verification criteria, which specifies requirements for a set of simulations
or test cases to be adequate. Within following definitions, ”S” is either a set of
simulations of an AADL specification or a set of test cases for an implementation
implemented to conform an AADL specification.

– Component Internal Coverage: requires that S covers all Component
Internal Transfer Paths.

– Direct Component to Component Coverage: requires that S covers all
Direct Component to Component Paths.

– Indirect Component to Component Coverage: requires that S covers
all Indirect Component to Component Paths.

5 Conclusion

The AADL language is a formalism for development of safety-critical software-
intensive systems. In this paper we have presented a verification technique cov-
ering the entire development process of a system specified with this formalism.
The technique evaluates the consistency and completeness of an AADL specifi-
cation and tests a systems’ conformity to it. The entire development process is
covered by adapting a combination of model-checking and model-based testing
approaches to an architectural perspective. The adaption is performed through
the definition of AADL-specific verification criteria. We are currently validat-
ing the technique against a system developed by a major vehicle manufacturer.
The next step is to enrich the verification criteria with further details as well as
formally define consistency and completeness of AADL specifications.

References

1. As-2 Embedded Computing Systems Committee SAE. Architecture Analysis & De-
sign Language (AADL). SAE Standards no. AS5506 (November 2004)

2. Johnsen, A., Pettersson, P., Lundqvist, K.: An Architecture-based Verification Tech-
nique for AADL Specifications. Technical Report ISSN 1404-3041 ISRN MDH-
MRTC-253/2011-1-SE, Mälardalen University (May 2011)

3. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis and Design Lan-
guage (AADL): An Introduction. Technical report, Technical report (2006)

4. Stocks, P., Carrington, D.: A framework for specification-based testing. IEEE Trans.
Softw. Eng. 22(11), 777–793 (1996)

5. Eickelmann, N.S., Richardson, D.J.: What makes one software architecture more
testable than another? In: ISAW 1996: Joint Proceedings of the Second Interna-
tional Software Architecture Workshop (ISAW-2) and International Workshop on
Multiple Perspectives in Software Development (Viewpoints 1996) on SIGSOFT
1996 Workshops, pp. 65–67. ACM, New York (1996)

An Architecture-Based Verification Technique for AADL Specifications 113

6. Jin, Z., Offutt, J.: Deriving Tests From Software Architectures. In: ISSRE 2001: Pro-
ceedings of the 12th International Symposium on Software Reliability Engineering,
p. 308. IEEE Computer Society Press, Washington, DC, USA (2001)

7. Franca, R.B., Bodeveix, J.-P., Filali, M., Rolland, J.-F., Chemouil, D., Thomas,
D.: The AADL behaviour annex – experiments and roadmap. In: ICECCS 2007:
Proceedings of the 12th IEEE International Conference on Engineering Complex
Computer Systems, pp. 377–382. IEEE Computer Society Press, Washington, DC,
USA (2007)

Change Impact Analysis

in Product-Line Architectures

Jessica Dı́az1, Jennifer Pérez1, Juan Garbajosa1, and Alexander L. Wolf2

1 Technical University of Madrid (UPM) - Universidad Politécnica de Madrid
Systems & Software Technology Group (SYST), E.U. Informática, Madrid, Spain

yesica.diaz@upm.es, {jenifer.perez,jgs}@eui.upm.es
2 Department of Computing

Imperial College of London, London, UK
a.wolf@imperial.ac.uk

Abstract. Change impact analysis is fundamental in software evolution,
since it allows one to determine potential effects upon a system resulting
from changing requirements. While prior work has generically considered
change impact analysis at architectural level, there is a distinct lack of
support for the kinds of architectures used to realize software product
lines, so-called product-line architectures (PLAs). In particular, prior
approaches do not account for variability, a specific characteristic of
software product lines. This paper presents a new technique for change
impact analysis that targets product-line architectures. We propose to
join a traceability-based algorithm and a rule-based inference engine to
effectively traverse modeling artifacts that account for variability. In
contrast to prior approaches, our technique supports the mechanisms for
(i) specifying variability in PLAs, (ii) documenting PLA knowledge, and
(iii) tracing variability between requirements and PLAs. We demonstrate
our technique by applying it to the analysis of requirements changes in
the product-line architecture of a banking system.

Keywords: Product-line architectures, product-line evolution, change
impact analysis.

1 Introduction

Coping with changing requirements is an essential issue in the evolution of
software systems. The causes of requirements change range from those that
are technical, due to the changing market of technology platforms, to those
that are business, due to the inherent volatility of the business context. A deep
understanding of the software architecture in terms of structure, behavior, key
properties, and relationship with the execution environment helps us to address
software evolution. Also helpful is an understanding of the impact of change.
Change impact analysis (CIA) is fundamental in software evolution, since it
allows one to determine the potential effects upon a system resulting from a
proposed change [18]. CIA can be used to predict the effects of a change before

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 114–129, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Change Impact Analysis in Product-Line Architectures 115

it is implemented, as well as possibly giving an estimate of the effort/cost to
implement the change.

Most CIA approaches focus on source-code analysis [14,15], often limited to
the dependence (data and control flow) or call relationships, and therefore tied
to the coding technique and programming language. This restricts the kinds and
visibility of changes that can be analyzed, and makes it difficult to locate the
impacted code when the changes originate in higher-level abstractions, such as
requirements, rather than the low-level code abstraction.

As software architectures bridge the gap between requirements and imple-
mentation, reasoning about the architecture can provide the high-level insight
necessary to make better requirements-driven evolution decisions [3]. There-
fore, CIA techniques need to be adapted to assess architectural knowledge. This
knowledge should encompass not only the design of the solution, but also the
decisions driving the design, the rationale behind those design decisions [16,37],
and the dependencies among the design decisions. In recent years, researchers
have emphasized the need for documenting architectural knowledge of this sort to
maintain and evolve architectural artifacts [1,7,13,33] and to avoid architectural
erosion, drift, or aging [26].

Prior work has addressed CIA at architectural level by means of traceability
mechanisms [5,34]. Traceability connects development artifacts that contain the
information necessary to analyze change impact. At architectural level, the
traceability aim is to understand the relationship between requirements and their
architectural realization, in both forward (from requirements to architecture)
and backward (from architecture to requirements) directions. Traceability is
desirable in those software architectures that realize a software product line
(SPL), widely known as product-line architectures (PLAs). However, common
traceability approaches to aid CIA do not recognize variability, which is a specific
characteristic of SPLs, serving to link requirements with PLAs [20]. Correspond-
ingly, assessing change impact is still a challenge in the evolution of SPLs [6].
While SPL engineering helps to significantly reduce cost and time when products
of the same family or domain are developed, it also increases the complexity when
SPLs must evolve. Bosch [4] asserts that SPLs demand even more knowledge
of architecture and design decisions than that of general reuse-based software
engineering. This is due to the need to manage variability and dependencies
between product variants. As a result, variability must be considered as a critical
element in SPL change impact analysis.

This paper addresses change impact analysis in PLA evolution from the
structural point of view. Specifically, we propose to join a traceability-based
algorithm and a rule-based inference engine with the aim of traversing the PLA
models via a set of traceability links and propagation rules. To achieve this,
variability plays a key role, so that the models of PLA and traceability must
be able to completely support variability. This is why we consider mechanisms
for (i) specifying variability in PLAs, (ii) documenting PLA knowledge (PLAK),
and (iii) tracing variability between requirements and PLAs.

116 J. Dı́az et al.

Our work has previously formulated partial solutions for each of these mecha-
nisms: the Flexible-PLA metamodel [24,25], which addresses the problem of
specifying variability in PLAs; and the PLAK metamodel1, which supports
the documentation of design decisions associated with variability, the design
rationale behind the variability, the dependencies between design decision, and
the definition of the basic traceability linkage between requirements and PLAs.
Together these metamodels form a basis for identifying the architectural artifacts
that are impacted by changes in SPL requirements, as well as in product-specific
requirements. What remains is to define the technique for effectively traversing
the models to obtain a CIA method that can account for variability.

The structure of this paper is as follows: Section 2 reviews the Flexible-PLA
and PLAK metamodels. Section 3 presents our technique for CIA. Section 4 il-
lustrates the technique through an extended example. Section 5 discusses related
work. Finally, conclusions and further work are presented in Section 6.

2 Background

Variability is spread across several different development artifacts generated
during various phases of the SPL development life cycle. Design decisions related
to variability may affect other variability decisions. Because the introduction
of a change to the requirements could impact variability, it is necessary to
understand the relationship between design decisions and variability, and the
interdependencies between design decisions related to variability. The variability
model on its own, which defines variability independently of those models where
variability is realized (e.g. features or software architectures), is not sufficient
when information about those software artifacts is required [19]. The specifi-
cation of PLAs and the documentation of PLAK can provide more complete
support for variability to effectively aid CIA in PLAs. Below, we briefly describe
the concepts of the Flexible-PLA metamodel [25] for specifying PLAs and the
PLAK metamodel for documenting PLAs needed for the purposes of this paper.

2.1 Flexible-PLA Metamodel

The Flexible-PLA metamodel allows us to completely describe the structure of
PLAs by specifying not only variations in terms of adding or removing compo-
nents and connections to/from the PLA (external variation) [9,36], but also in
terms of variations inside components (internal variations). Internal variations
are specified using Plastic Partial Components (PPCs) [25]. The variability
mechanism underlying PPCs is based on the principles of Invasive Software
Composition [2]. The variability of a PPC is specified using variability points,
which hook fragments of code to the PPC known as variants. These variants, as
well as components and PPCs, realize the requirements that have been defined
by the domain engineering process at architectural level. Requirements can be re-
lated to concerns that crosscut the software architecture (crosscutting concerns)
1 The PLAK metamodel is the main contribution of a paper currently under review.

Change Impact Analysis in Product-Line Architectures 117

or not (non-crosscutting concerns). At architectural level, those variants that
realize crosscutting concerns are called aspects, and those that realize non-
crosscutting concerns are called features. Therefore, a PPC is completely defined
for a specific product by means of the selection of aspects and/or features through
the variability points. Section 3.1 provides an example by defining a model,
composed of multiple views, that conforms to the Flexible-PLA metamodel.

2.2 PLAK Metamodel

The PLAK metamodel defines the modeling primitives to capture variability
design rationale, as well as the traceability linkage between requirements and
PLAs (see Fig. 1). Overall, the aim is to completely document PLAs in a formal
way. The PLAK metamodel contains a set of interrelated metaclasses and the
services of metaclasses that allow us to manage instances by creating, destroying,
adding, or removing elements that are compliant with the constructors of the
metamodel. The primitive concepts provided by the metamodel are the following.

– Closed design decisions (Closed DDs) support the realization of the common
structure of SPLs, so called core assets. They are completely closed (or
bound) during the domain engineering process.

– Open design decisions (Open DDs) support the realization of the variability
of SPLs. They are intentionally left open (or delayed) during the domain
engineering process. Open DDs consist of a set of optional design decisions.

– Optional design decisions (Optional DDs) support each of the variants of an
Open DD. Open DDs are defined during the domain engineering process, and
bound to the appropriate Optional DD during the application engineering
process.

– Alternative design decisions (Alternative DDs) support the alternative real-
ization of Closed and Open DDs, respectively.

– Constraints, assumptions, rationale, design, and patterns are the major ele-
ments of design rationale models [32] and so adopted in our metamodel.

– Feature concepts are the concrete representation or expression of require-
ments in the metamodel. This follows Czarnecki’s feature metamodel [8] in
which solitary features represent optional or mandatory system’s characteris-
tics, and feature groups consist of a set of alternative system’s characteristics
—grouped features.

– PLA concepts are the concrete representation or expression of architectural
design in SPLs. This follow the Flexible-PLA metamodel.

– Linkage rules comprise the semantics that establish the bridge between
features and PLAs. Linkage rules define the logic to create links between
specific concepts of the feature metamodel and specific concepts of the
Flexible-PLA metamodel.

Product-Line Architectural Knowledge Metamodel (see A, Fig. 1). The
metaclass DesignDecision offers the primitives to create a design decision. A
design decision consists of Alternative DDs specified in the metamodel through

118 J. Dı́az et al.

Fig. 1. PLAK Metamodel

the relationship consistsOf between the metaclasses DesignDecision and Alter-
nativeDesignDecision. Open DDs and Closed DDs are specified in the metamodel
by means of the metaclasses OpenDesignDecision and ClosedDesignDecision,
respectively. An Open DD is composed of a set of Optional DDs, specified in
the metamodel through the aggregation isComposedOf between the metaclasses
OpenDesignDecision and OptionalDesignDecision. Since these three metaclasses
are describing design decisions, all of them inherit from the DesignDecision
metaclass. A design decision may have a relation dependsOn with other design
decisions. Finally, the metaclass DesignDecision is composed of the metaclasses
Constraint Assumption, Design, and Rationale. The metaclass Rationale defines
four properties: why, cost, risk, and tradeoffs used to justify the design decision.
The metaclass Design may apply a Pattern specified in the metamodel through
the relationship applies.

Traceability Metamodel (see B, Fig. 1). Design decisions act as traceability
links between features and PLA concepts, offering the primitives to define linkage
rules. The key concepts of the feature metamodel that are involved in the linkage
rules are solitary feature, feature group, and grouped feature. The key concepts of
the Flexible-PLA metamodel that are involved in the linkage rules are: compo-
nent, plastic partial component, connector, (aspect or feature) variability point,
and (aspect or feature) variant. The linkage rules are specified in the metamodel
through the following metaclasses: MandatorySolitaryFeature LinkageRule, Op-
tionalSolitaryFeature LinkageRule, FeatureGroup LinkageRule, and GroupedFea-
ture LinkageRule. The logics of the possible linkage rules between the feature and
Flexible-PLA metamodels are defined in Table 1.

3 CIA in PLAs

From the metamodels that have been introduced in Section 2, we define a CIA
technique to assess PLAs. Specifically, we propose to join a traceability-based
algorithm and a rule-based inference engine for analyzing change impact in PLAs
from the structural point of view. This involves the traversal of PLAK models

Change Impact Analysis in Product-Line Architectures 119

Table 1. Linkage Rules for Design Decisions Traceability Links

Linkage Rule Description

A SolitaryFeature whose cardinality attribute is 1..n can
trace with a Component

Mandatory SolitaryFeature A SolitaryFeature whose cardinality attribute is 1..n can
trace with a Connector
A SolitaryFeature whose cardinality attribute is 1..n can
trace with a PlasticPartialComponent

Optional SolitaryFeature A SolitaryFeature whose cardinality attribute is 0..n can
trace with a Component whose cardinality attribute is 0..n
A SolitaryFeature whose cardinality attribute is 0..n can
trace with a Connector whose cardinality attribute is 0..n

FeatureGroup A FeatureGroup can trace with a Variability Point or any
of its specializations (FeatureVP or AspectVP)
A GroupedFeature can trace with a Component whose
cardinality attribute is 0..n

GroupedFeature A GroupedFeature can trace with a Connector whose car-
dinality attribute is 0..n
A GroupedFeature can trace with a Variant or any of its
specializations (Feature or Aspect)

(which encompass all others: feature, PLA, and PLA knowledge models), based
on a set of traceability links and propagation rules, to determine he potential
impact of implementing a change.

Given a change in requirements, we have defined a traceability-based algorithm
that allows us to determine (i) the first-order design decisions that are involved
with the requirement to be changed, (ii) the n-order design decisions that depend
on the first-order design decisions, and (iii) the first-order architectural elements
that are involved in each (first and n-order) design decision. The algorithm
traverses the traceability links that bridge features and PLA elements, and the
dependency relationships between design decisions.

Given a change in the PLA that realizes the change in requirements, we have
defined a rule-based inference engine that fires propagation rules to obtain the
change propagation in the architecture. In other words, when a modification
over the PLA is applied, propagation rules are fired to simulate the effects on
the rest of the PLA. We thereby obtain the n-order architectural elements that
are impacted by the change.

The traceability-based algorithm, the rule-based inference engine, and types
of changes that they take into account are presented next.

3.1 Change Typology

Williams and Carver [39] have previously classified the change. We have extended
these classifications to deal with changes that affect the entire SPL (core compo-
nents and connectors), specific products (optional components and connectors),
and both (plastic partial components with common and variable functionality).
Basically, changes in requirements may affect the architectural structure or the
architectural behavior. Our solution focuses on the first one. Next, we detail

120 J. Dı́az et al.

Fig. 2. An Overview of a Flexible-PLA Model using FPLA

the type of changes which we have considered and illustrate them using several
snapshots of the tool FPLA2 (Fig. 2).

– Functional/non-functional changes, also known as interface evolution, affect
user-observable features. These changes affect the portion of the PLA that
is responsible for providing the functional/non-functional feature, and they
may not impact the architectural structure. The specific cases which we have
considered are additions/deletions of: (i) interfaces and (ii) services to/from
components, PPCs, and variants (Fig. 2b).

– Architectural changes, also known as structural evolution, affect only the
PLA structure. They may be unnoticeable to users and are implemented
by means of architecture refactoring and restructuring, enhancing quality
attributes. These changes can be classified into (i) kidnapping: movement of
an entire architectural element from one subsystem to another; (ii) splitting:
division of the functions of an architectural element into two or more distinct
elements; and (iii) relocating: movement of functionality from one architec-
tural element to another. They may affect the whole PLA structure, the
internal PPC structure, or just some variability points and variants (Fig. 2a,
2b, and 2c).

– Functional/non-functional and architectural changes mix the two previous
types of changes. The specific cases that have been considered are

2 https://syst.eui.upm.es/FPLA/home/

Change Impact Analysis in Product-Line Architectures 121

additions/deletions of: (i) components, PPCs, and connectors (Fig. 2a) and
(ii) variants that implement services that the PPC provides/requires to/from
other components or PPCs (Fig. 2c and 2d).

– Dependency changes consider change on dependencies between design deci-
sions. It may imply interdependencies between Open DDs (related to vari-
ability) and between certain variant selections. There are two forms: requires
and excludes.

3.2 Traceability-Based Algorithm

We have defined a traceability-based algorithm that is able to derive the effects
of changes in features. It returns the set of (first and n-order) design decisions,
as well as first-order architectural elements that are impacted by the change.
Since the change may impact many architectural elements, due to dependencies
between design decisions, we need to narrow the traversal of the traceability
model (see B in Fig. 1), as well as control the infinite loops. We studied several
techniques that address these issues and, finally, chose the one known as latent
semantic analysis (LSA) [17]. LSA infers the meaning of words from natural
text by statistical analysis of the context in which words are used. We apply
LSA to the assumptions, constraints, and rationale (see A in Fig. 1) of a design
decision and a set of key words related to the requirements to be changed. LSA
measures the similarity between design decisions and the requirements to be

Code 1
CONST LSAvalue; //stop condition to narrow the traversal

//Let foAE be first-order architectural elements
[vector] foAE traceabilityBasedAlgorithm (changedFeature, keywords) {

//Traversing of the PLAK model to get the DDs which are involved with a changed feature
[vector] DDs = traversalFromFeaturesToDDs (changedFeature);
For each designdecision in DDs do {

//Traversing of the PLAK model to get the AE which are involved with a designdecision
foAE += traversalFromDDsToAE (designdecision);
//Traversing of the dependencies of the designdecision with other design decisions
foAE += processDependencies (designdecision, DDs, keywords);

}
return foAE;

}

[vector] foAE processDependencies (designdecision, DDs, keywords) {

currentLSAvalue = LSA (keywords, designdecision);
if ((currentLSAvalue>LSAvalue) and (not DDs.contains(designdecision))) {

DDs.add(designdecision);
foAE = traversalFromDDsToAE (designdecision);
[vector] Dependencies = getDependencies (designdecision);
For each dependency in Dependencies do {

foAEaux = processDependencies (dependecy, DDs, keywords);
foAE += foAEaux;

}
return foAE;

}else return [vector] new foAE;
}

. Traceability-Based Algorithm

122 J. Dı́az et al.

changed. Code 3.1 describes the pseudo-code algorithm and explains each step
through comments.

3.3 Rule-Based Inference Engine

We present the rules to determine the propagation of changes in PLAs. Let:
C be a component; PPC be a plastic partial component; AVP be an aspect
variability point; FVP be a feature variability point; RI(C) be the required
interface of C ; RI(PPC) be the required interface of PPC ; PI(C) be the provided
interface of C ; PI(PPC) be the provided interface of PPC ; Hooks, Links, Weaves,
Pointcut, Advice, and Defines be the primitives to address variability inside
PPCs; UpdateC be the modification to the cardinality of a variability point;
and N be a neighbor of a component or a PPC. We define the propagation
rules in Table 2. These rules are a set of statements formulated following the
pattern Relation(element, subelement) in such a way that element is related to
subelement, and the addition/deletion of Relation implies the addition/deletion
of the subelement from the element. For instance, the deletion PI(C,s) consists
of deleting a service s that is provided by C through its provided interface; the
addition Hooks(FVP,feature) consists of adding the relation hooks from a feature
variability point to a feature.

Table 2. Propagation Rules

Type ID Rule Description

Intra- R1 deletion RI(C,s) may cause deletion PI(C,s)
Component R2 addition PI(C,s) may cause addition RI(C,s)
Intra-PPC R3 deletion RI(PPC,s) may cause deletion PI(PPC,s)

R4 addition PI(PPC,s) may cause addition RI(PPC,s)
R5 addition Hooks(FVP,feature) cause additions Weaves(FVP), Pointcut(PPC,w),

Advice(feature,w), UpdateC(FVP) and may cause addition PI(PPC) and/or
RI(PPC)

R6 addition Links(AVP,aspect) cause additions Weaves(AVP), Pointcut(PPC,w), Ad-
vice(aspect,w), UpdateC(FVP) and may cause addition PI(PPC) and/or RI(PPC)

R7 deletion Hooks(FVP,feature) cause deletions Weaves(FVP), Pointcut(PPC,w),
Advice(feature,w), UpdateC(FVP) and may cause deletion PI(PPC)

R8 deletion Links(AVP,aspect) cause deletions Weaves(AVP), Pointcut(PPC,w), Ad-
vice(aspect,w), UpdateC(FVP) and may cause deletion PI(PPC)

R9 deletion FVP cause deletion Defines(PPC,FVP) and Hooks(FVP,features)
R10 deletion AVP cause deletion Defines(PPC,AVP) and Links(AVP,aspects)
R11 deletion Defines(PPC,AVP) or Defines(PPC,FVP) may cause deletion PI(PPC)
R12 addition Defines(PPC,AVP) or Defines(PPC,FVP) may cause addition

PI/RI(PPC)
Inter- R13 deletion PI(C) or PI(PPC) cause deletion RI(N)
Component R14 addition RI(C) or RI(PPC) cause addition PI(N)

4 Example

This section describes a scenario to illustrate the use of our approach. It ex-
emplifies the SPL for banking systems. Banking systems typically consist of a
set of core components that offer their functionality to ATM machines. Among

Change Impact Analysis in Product-Line Architectures 123

all the functionality, we focus here on that of maintaining an account balance.
This functionality must fulfill the non-functional requirement of availability.
Some products of this SPL require strict 24/7 availability, while others permit
a weaker, non-strict availability. Therefore, the strictness of availability is a
variability point.

Various architectural tactics to realize availability have been proposed [31].
We have selected active redundancy and passive redundancy tactics to implement
strict and non-strict availability, respectively. The active redundancy tactic re-
quires a load balancer in order for a set of nodes to process identical inputs
(request load), and a synchronizer in order for the set of nodes to maintain
identical state. On the other hand, the passive redundancy tactic requires a
router in order to provide the active node processes with all the inputs as well
as change the route to the passive node when there is a fault, and a periodic
data monitoring in order to allow the active node and the redundant nodes to
maintain periodic state updates.

Fig. 3 shows a small portion of the PLAK model specified for our scenario. The
core functionality of banking systems is partially implemented by a component
(ATM), and a plastic partial component (balance), which means it has a part
that is common to all products of the SPL and a variable part that is specific to
the derived product. PPC balance defines two AVPs to implement availability
in its two variants: strict and non-strict. Active redundancy is supported by
the Synchronization and LoadBalancing aspects, while passive redundancy is
supported by the Routing and DataMonitoring aspects. The model of Fig. 3
also captures PLA knowledge as follows: a ClosedDesignDecision to store the
design rationale of realizing the feature AccountBalance (see A in Fig. 3); an
OpenDesignDecision to store the design rationale of realizing the feature avail-
ability (see B in Fig. 3); links between Features and VariabilityPoints to store
the set of architectural elements that realize the feature availability (see C in
Fig. 3); OptionalDesignDecisions to capture the design options to support the
variability of availability (see D and E in Fig. 3); links between Features and
Variants to store which set of architectural elements realize strict availability
or non-strict availability (see F and G in Fig. 3); and dependency between two
design decisions, shown as the relationship between ClosedDesignDecision 001
and OpenDesignDecision 002 in Fig. 3.

Consider what happens when a customer asks for their account balance to be
displayed on the screen of the ATM. In the current formulation of the banking
system, if there are too many such requests, the system rejects the request (see
the constraint in ClosedDesignDecision 001). In this overload status, the ATM
machine aborts the session with the customer and returns their card. Suppose an
engineer is given the task of improving the apparent reliability of the interaction
between banking systems and ATM machines when a customer asks for their
account balance to be displayed. Instead of simply a rejecting and aborting the
customer session, the SPL must be changed in such a way that banking systems
respond to an overload status by taking advantage of the retry functionality:
the system should wait some random amount of time before retrying. If some

124 J. Dı́az et al.

Fig. 3. Banking Product-Line Architectural Knowledge Model

number of retries are rejected, then the session is aborted. In essence, the protocol
between banking systems and ATM machines needs to be modified to decrease
the number of aborted sessions.

The engineer has decided to add a new functionality to the feature Account-
Balance that allows such a retry of a previously rejected request. This retry
functionality is optional, that is, it is specific to the bank system to be derived.
As a result, the engineer proposes its realization by adding a variability point that
stems from the PPC Balance. Following the typology described in Section 3.1,
this change is a functional/non-functional and architectural change because it
affects a user-observable feature and the PLA structure.

Given this change, we could start by selecting the features that are affected
by the change and trace forward to the design decisions and components that
are further impacted. In addition, we could start by selecting the components
that must be modified and trace backward through various design decisions and
features to validate that the changes will not violate some other design decisions.
Here we focus on the first of these actions.

The application of our technique in this scenario consists of first executing the
traceability-based algorithm on the PLAK model of Fig. 3, and then the rule-
based inference engine. The execution of Code 3.1 returns the set of first-order
architectural elements that are impacted by adding the new functionality retry,
which stems from the feature AcccountBalance. These architectural elements are
the PPC Balance and the AVPs RequestManager and Updating. The first one
directly results through ClosedDesignDecision 001, but the second one would
not have been detected if we had analyzed the change impact without taking

Change Impact Analysis in Product-Line Architectures 125

into account PLA knowledge—specifically, the dependencies between design de-
cisions. The dependency between ClosedDesignDecision 001 and OpenDesign-
Decision 002 causes the impact on the AVPs RequestManager and Updating.
This is important because the impacted architectural elements are variability
points, and this impact may be higher if their aspects were reused by other
PPCs. In fact, in our scenario, these aspects realize in different ways a non-
functional requirement, availability, that crosscuts the architecture and involves
other design decisions, rationale, and tradeoffs.

Once the algorithm returns the set of impacted elements, the engineer
can manually examine them. As OpenDesignDecision 002 is affected, their
options OptionalDesignDecision 003 (active redundancy) and OptionalDesign-
Decision 004 (passive redundancy) are also affected. The engineer is able to infer
at this point that the functionality retry must be implemented in a different way
in the cases of active and passive redundancy. In the first case the retry is
automatically directed to another active node, while in the second case the retry
requires explicit data synchronization, route change, and retry execution.

The execution of the propagation rules of Table 2 in the PLA returns the
following impacts: First, adding the new variability point (FPV) retry, stemming
from the PPC Balance, causes (by rule R12) the addition of a service that
provides the functionality retry through an interface of the PPC Balance to
the PPC ATM. Second, adding a new variant (feature) retry requires adding
a relation Hooks from the FVP retry to the feature retry. Third, adding a
relation Hooks causes (by rule R5) the additions of relations Weaves, Pointcut,
and Advice, and the update of Cardinality.

In essence, the purpose of automating the traversal of PLAK models is to
gather the set of nodes of potential interest to the engineer, and the possible ad-
ditions and deletions that could be automated. That includes detecting features
or design decisions that turn out to be in conflict with the proposed change. The
engineer would presumably then need to examine the nodes in that set manually
to validate the proposed change.

5 Related Work

Many approaches have been proposed to support CIA at the source-code level
[14,15], but few have addressed CIA at the architectural level [11,12,40]. It is
commonly agreed that traceability is key for identifying artifacts affected by a
change [27], from requirements to architecture and vice versa. In this sense, there
is a growing body of approaches that address traceability between requirements
and architecture [5,23,28], and more specifically variability traceability between
requirements and architecture in SPL engineering [21,22,30]. Moon et al. [22]
propose a variability trace metamodel that connects two metamodels, require-
ments and architecture, considering variability. Satyananda et al. [30] propose a
framework to formally identify traceability between the feature and architecture
models using formal concept analysis, functional decomposition, and a set of
mapping analysis rules. These approaches show potential and are promising but

126 J. Dı́az et al.

do not address change impact analysis. Moreover, these approaches only support
architectural variability by adding/removing components or connections, or re-
late to functionality that is provided by component interfaces. Correspondingly,
they define traceability links using high-level abstractions of variability, that
is, variability of coarse-grained elements. As a result of this, their traceability
schema does not describe variability traces at the same detail level than ours.

There are a few approaches that consider architectural design decisions and
design rationale to aid change impact analysis [20,29,34]. Moahn and Ramesch
[20,21] assert that both documentation of design decisions associated with varia-
tions and the capability to trace the life of these variations are key to effectively
aiding CIA in SPLs. Their work is very close to ours, but they admit that their
approach should be complemented by specialized design-modeling representa-
tions to model variation points.

Summing up, the novelty of our proposal relies on coping with all the key
elements that can effectively aid CIA in SPLs: what is the knowledge that
aids CIA, how this knowledge is modeled, and how this knowledge is utilized.
They are addressed in our proposal by: (i) Tracing variability between features
and PLAs. Our work differs from previous approaches [21,22,30] in the concept
of variability. The variability concept is fine grained, considering architectural
variability by adding components and connectors, but also variability inside
components by adding variability points, aspects and features. This is why we
rely on the Flexible-PLA metamodel to thoroughly specify variability in PLAs,
and the PLAK metamodel to define the linkage rules between features and
PLAs. (ii) Documenting architectural knowledge. Our work differs from previous
approaches [20,29,34] in the architectural knowledge that we have proposed. As
a result, conventional models for supporting architectural knowledge have been
adapted and extended to capture PLA knowledge. This is why we have defined
the PLAK metamodel. (iii) Joining a traceability-based algorithm and a rule-
based inference engine to take advantage of the two techniques. Most authors
only address one of them: a graph-based analysis (based on links) [34,40] or rule-
based systems [11,12,38]. Some others have incorporated additional techniques
to improve CIA by using Bayesian networks [35]. Instead of that, we use latent
semantic analysis over the documentation that is generated in the software devel-
opment cycle [10], which is showing promising results in architectural knowledge
discovery.

6 Conclusions and Further Work

Ineffective CIA complicates the decision-making process and seriously jeopar-
dizes the success of software evolution. The identification of the architectural
elements that are affected by changes in variability is critical to appropriately
evolve SPLs. Tracing and documenting the design rationale behind the variability
enables more effective CIA. Our approach joins traceability-based and rule-based
techniques for analyzing change impact in PLAs. It traverses and mines the
knowledge of two metamodels—Flexible-PLA and PLAK—that together provide

Change Impact Analysis in Product-Line Architectures 127

the basis for (i) specifying variability in PLAs, (ii) documenting PLA knowledge,
and (iii) tracing variability between features and PLAs. Currently, a tool for
specifying PLAs is available, as it is shown in Section 3.1, and soon, the view for
documenting PLAK will be available as well. At the moment, the inference engine
is at the theoretically designed stage but we plan to implement it to validate our
approach in a real case study and prove its scalability. In addition, our approach
provides the guidelines to be deployed in a model-driven development framework
compliant with the MOF four-level architecture. The MOF architecture provides
the facilities to construct models using the modeling primitives and guaranteeing
model correctness. These models are ready to be involved by transforming their
outputs into platform dependent models and/or into automatically generated
code. Hence, in future work, software evolution may be (semi-automatically)
assisted through model transformations among these models: Flexible-PLA and
PLAK models.

Acknowledgment. The work reported here has been partially sponsored by
the Spanish MEC (DSDM TIN2008-00889-E), MICINN (INNOSEP TIN2009-
13849), and by UPM (Researcher Training program).

References

1. Ali Babar, M., Dingsyr, T., Lago, P., van Vliet, H.: Software Architecture
Knowledge Management. Springer, Heidelberg (2009)

2. Assmann, U.: Invasive Software Composition. Springer-Verlag New York, Inc.,
Secaucus (2003)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edition,
2nd edn. Addison-Wesley Pearson Education, Reading (2003)

4. Bosch, J.: Product-line architectures in industry: a case study. In: Proceedings of
the 21st International Conference on Software Engineering, ICSE 1999, pp. 544–
554. ACM, New York (1999)

5. Chen, C.-Y., Chen, P.-C.: A holistic approach to managing software change impact.
J. Syst. Softw. 82(12), 2051–2067 (2009)

6. Cho, H., Gray, J., Cai, Y., Wong, S., Xie, T.: Model-Driven Impact Analysis
of Software Product Lines. In: Model-Driven Domain Analysis and Software
Development: Architectures and Functions, pp. 275–303. Information Science
Reference (2010)

7. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,
Stafford, J.A.: Documenting Software Architectures: Views and Beyond, 2nd edn.
Addison-Wesley Professional, Reading (2010)

8. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration through spe-
cialization and multilevel configuration of feature models. Software Process:
Improvement and Practice 10(2), 143–169 (2005)

9. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A comprehensive approach for the
development of modular software architecture description languages. ACM Trans.
Softw. Eng. Methodol. 14(2), 199–245 (2005)

10. de Boer, R.C., van Vliet, H.: Architectural knowledge discovery with latent
semantic analysis: Constructing a reading guide for software product audits. J.
Syst. Softw. 81, 1456–1469 (2008)

128 J. Dı́az et al.

11. Feng, T., Maletic, J.I.: Applying dynamic change impact analysis in component-
based architecture design. In: SNPD-SAWN 2006: Proceedings of the Seventh
ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, pp. 43–48. IEEE Computer
Society, Washington, DC, USA (2006)

12. Hassan, M.O., Deruelle, L., Basson, H.: A knowledge-based system for change
impact analysis on software architecture. In: Proceedings of Fourth International
Conference on Research Challenges in Information Science, pp. 545–556 (2010)

13. Jansen, A., Bosch, J.: Software architecture as a set of architectural design
decisions. In: Proceedings of 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2005), pp. 109–120 (2005)

14. Kagdi, H., Hammad, M., Maletic, J.: Who can help me with this source code
change? In: IEEE International Conference on Software Maintenance (ICSM 2008),
p. 157 (2008)

15. Kim, S., Whitehead, E., Zhang, Y.: Classifying software changes: Clean or buggy?
IEEE Transactions on Software Engineering 34(2), 181–196 (2008)

16. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural
knowledge. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 43–58. Springer, Heidelberg (2006)

17. Landauer, T., Foltz, P., Lahan, D.: An introduction to latent semantic analysis
(1998), http://lsa.colorado.edu/papers/dp1.LSAintro.pdf

18. Lee, M., Offutt, A.J., Alexander, R.T.: Algorithmic analysis of the impacts of
changes to object-oriented software. In: TOOLS 2000: Proceedings of the Tech-
nology of Object-Oriented Languages and Systems, pp. 61–70. IEEE Computer
Society, Washington, DC, USA (2000)

19. Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action. Springer,
Heidelberg (2007)

20. Mohan, K., Ramesh, B.: Managing variability with traceability in product and ser-
vice families. In: Proceedings of the 35th Annual Hawaii International Conference
on System Sciences, HICSS, pp. 1309–1317 (2002)

21. Mohan, K., Ramesh, B.: Tracing variations in software product families. Commun.
ACM 50, 68–73 (2007)

22. Moon, M., Chae, H.S., Nam, T., Yeom, K.: A metamodeling approach to tracing
variability between requirements and architecture in software product lines. In:
CIT 2007: Proceedings of the 7th IEEE International Conference on Computer
and Information Technology, pp. 927–933. IEEE Computer Society, Washington,
DC, USA (2007)

23. Olsen, G., Oldevik, J.: Scenarios of traceability in model to text transformations.
In: Akehurst, D., Vogel, R., Paige, R. (eds.) ECMDA-FA. LNCS, vol. 4530, pp.
144–156. Springer, Heidelberg (2007)

24. Pérez, J., Dı́az, J., Garbajosa, J., Alarcón, P.P.: Flexible working architectures:
Agile architecting using ppcs. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS,
vol. 6285, pp. 102–117. Springer, Heidelberg (2010)

25. Pérez, J., Dı́az, J., Soria, C.C., Garbajosa, J.: Plastic partial components: A
solution to support variability in architectural components. In: Proceedings of Joint
Working IEEE/IFIP Conference on Software Architecture 2009 and European Con-
ference on Software Architecture, WICSA/ECSA, pp. 221–230. IEEE Computer
Society Press, Los Alamitos (2009)

26. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture.
SIGSOFT Softw. Eng. Notes 17(4), 40–52 (1992)

http://lsa.colorado.edu/papers/dp1.LSAintro.pdf

Change Impact Analysis in Product-Line Architectures 129

27. Pohl, K., Brandenburg, M., Glich, A.: Integrating requirement and architecture
information: A scenario and meta-model approach. In: REFSQ 2001: Proceedings
of The Seventh International Workshop on Requirements Engineering: Foundation
for Software Quality, pp. 68–84 (2001)

28. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability.
IEEE Trans. Softw. Eng. 27(1), 58–93 (2001)

29. Riebisch, M., Wohlfarth, S.: Introducing impact analysis for architectural decisions.
In: Proceedings of the 14th Annual IEEE International Conference and Workshops
on the Engineering of Computer-Based Systems, pp. 381–392. IEEE Computer
Society, Washington, DC, USA (2007)

30. Satyananda, T.K., Lee, D., Kang, S., Hashmi, S.I.: Identifying traceability between
feature model and software architecture in software product line using formal
concept analysis. In: ICCSA 2007: Proceedings of the The 2007 International
Conference Computational Science and its Applications, pp. 380–388. IEEE
Computer Society, Washington, DC, USA (2007)

31. Scott, J., Kazman, R.: Realizing and refining architectural tactics: Availability.
Technical report, CMU/SEI-2009-TR-006 ESC-TR-2009-006 (2009)

32. M., Shahin, Liang, P., Khayyambashi, M.: Architectural design decision: Existing
models and tools. In: Joint Working IEEE/IFIP Conference on Software Architec-
ture, 2009 European Conference on Software Architecture, WICSA/ECSA 2009,
pp. 293–296 (2009)

33. Tang, A., Babar, M.A., Gorton, I., Han, J.: A survey of architecture design
rationale. J. Syst. Softw. 79, 1792–1804 (2006)

34. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design
traceability and reasoning. J. Syst. Softw. 80, 918–934 (2007)

35. Tang, A., Nicholson, A., Jin, Y., Han, J.: Using bayesian belief networks for change
impact analysis in architecture design. J. Syst. Softw. 80, 127–148 (2007)

36. van der Hoek, A., Mikic-Rakic, M., Roshandel, R., Medvidovic, N.: Taming
architectural evolution. In: Proceedings of the ESEC/FSE-9, pp. 1–10. ACM, New
York (2001)

37. van Vliet, H.: Software architecture knowledge management. In: 19th Australian
Conference on Software Engineering, 2008, ASWEC 2008, pp. 24–31 (2008)

38. Vora, U.: Change impact analysis and software evolution specification for con-
tinually evolving systems. In: Proceedings of Fifth International Conference on
Software Engineering Advances (ICSEA), pp. 238–243 (2010)

39. Williams, B.J., Carver, J.C.: Characterizing software architecture changes: A
systematic review. Inf. Softw. Technol. 52(1), 31–51 (2010)

40. Zhao, J., Yang, H., Xiang, L., Xu, B.: Change impact analysis to support
architectural evolution. Journal of Software Maintenance 14, 317–333 (2002)

Extending UML Components to Develop Software
Product-Line Architectures: Lessons Learned

Antonio C. Contieri Junior1, Guilherme G. Correia1, Thelma E. Colanzi1,
Itana M.S. Gimenes1, Edson A. Oliveira Junior1, Sandra Ferrari1,

Paulo C. Masiero2, and Alessandro F. Garcia3

1 State University of Maringá, Maringá-PR, Brazil
{contierijr,guilherme.tusso}@gmail.com,

{thelma,itana,sandra}@din.uem.br, edson@edsonjr.pro.br
2 University of São Paulo, São Carlos-SP, Brazil

masiero@icmc.usp.br
3 Pontificial Catholic University of Rio de Janeiro, Rio de Janeiro-RJ, Brazil

afgarcia@inf.puc-rio.br

Abstract. This paper presents an experience in extending and evalu-
ating UML Components for guiding the derivation of component-based
product-line architectures (PLAs). We present a quantitative and qual-
itative evaluation of such an extension when applied to the proactive
design of two PLAs. We have found that our approach supported an ag-
ile conception of architectural designs that are modular and likely to be
resilient to changes over time and good enough to serve as the basis for
more specific design decisions made by the architects.

Keywords: Software Product-Line Architectures, Component-based
Development Methods, Variability Management.

1 Introduction

Several adopters of component-based software engineering are increasingly em-
bracing software product lines (PL) [3]. Their goal is shifting from the reuse
of individual components to the large-scale reuse of a product-line architec-
ture (PLA) for a specific domain [1]. The proactive design of a PLA should
encompass the components realizing all the mandatory and varying features in
a domain [6]. A key condition for the successful early design of a PLA is the
identification of components and interfaces that modularize each individual PL
feature. Otherwise, the PLA is likely to be the target of early reviews and major
refactorings since the design outset, thereby delaying the development process.
A non-modular PLA will also suffer more changes when new features need to be
accommodated, making it difficult to sustain its design stability over time.

Unlike product-line development methods (e.g. [3,13]), UML Components [4]
is a consolidated and genuine component-based development method, which de-
fines practical, simple and concise directives for architectural design. It allows

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 130–138, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Extending UML Components to Develop Product-Line Architectures 131

components, interfaces and their relationships to be identified and specified di-
rectly from the system requirements. Therefore, UML Components could be ex-
tended to also support organizations in designing component-based PLAs. When
a proactive approach is adopted, a PLA needs to realize up front all the product
variations that are likely to be designed and implemented on the foreseeable
horizon [6]. The major decisions of the PLA design are made in initial stages of
the development to avoid design instabilities in later stages. UML Components
was not originally conceived to support the development of product lines. In fact,
there is a lack of more general approaches which take advantages of standard
notations, such as UML, and its profiling extension mechanism for a wide range
of PLA decomposition styles.

This paper presents an experience in extending and evaluating UML Compo-
nents for guiding the development of component-based PLAs. In particular, we
extend UML Components with an existing technique [7] to support variability
identification and representation in architectural design. This extension, called
SMarty Components, enables PLA developers to use well-known and consoli-
dated architectural design methods without significantly changing its original
component-based design practices. Our goal is to assess to what extent SMarty
Components would be effective on supporting agile architecture creation of a
PL. We consider that an architectural design is effective when it is considered
modular and stable according to a number of well-known software metrics and
when it entails an initial design that, according to architects, is good enough to
serve as the basis for more specific architectural decisions.

There are several comprehensive methods to develop PL using a component-
based approach such as Kobra [3] but in this research we are interested in meth-
ods that are easy to use, rely on the UML notation and allows an agile, early
definition of a PLA that can be used to assess properties of the architectural de-
sign and be later refined. In this paper we present main concepts of an approach
of variability management (Section 2); the application of SMarty Components
to develop PLs (Section 3); an analysis of the conceived PLAs (Section 4), and
conclusions (Section 5).

2 Stereotype-Based Management of Variability (SMarty)

The PL approach is focused on the design and implementation of a PLA, a com-
mon architectural design for its products. The degree of variability of a PL is
directly related to the abstraction capacity of the PLA and the number of prod-
ucts that can be conceived from it [1]. Variability management [7] encompasses
activities for identifying, representing, resolving, analyzing and controlling PLA
variabilities. There are several approaches for realizing such activities and sup-
port an accurate PL domain analysis [1] [13] [9]. They are limited to represent
variability in a specific language or notation, such as Architecture Description
Languages (ADLs) that are non-standard languages.

Stereotype-based Management of Variability (SMarty) [7] is composed of
a UML profile, named SMartyProfile, and a process for managing variability,
named SMartyProcess, to provide an alternative to variability identification and

132 A.C. Contieri Jr. et al.

representation by means of a well-defined process and a UML profile. SMarty
was proposed to enable generic software development approaches to be applied
in the context of UML-based PL engineering. It does not impose an entirely-
new method to component-based PL development, as it can be easily coupled to
component-based design practices. SMarty takes as inputs the PL development
outputs to realize the SMartyProcess activities. Based on such inputs, SMar-
tyProcess produces the PL variability models.

SMartyProfile contains a set of stereotypes and meta-attributes for represent-
ing variability in UML models. Such stereotypes are based on the concepts of:
variability, variation point, variant, and variant constraints. The SMartyPro-
cess supports the identification, delimitation, representation, and tracking of the
variabilities. Its realization is iterative and incremental, and occurs in paral-
lel with the product-line development process, by following specific guidelines.
Product-line activities progressively feed the SMartyProcess with inputs to re-
alize its respective activities. Thus, the variability degree tends to increase as
the SMartyProcess activities are carried out [7]. The activities of SMartyProcess
are not related to a specific development approach for PLs. Therefore, it can be
incorporated in any approach for UML-based PL design.

3 Applying SMarty Components

The activities of UML Components produces a Use Case and a Business Type
Model. According to the SMartyProcess, both models might be used to produce
variability models for a PL by following guidelines which suggest how to ap-
ply the SMartyProfile to manage variabilities. Therefore, the extension of UML
Components by means of SMarty is represented as follows [14]: (i) the Business
Type Model from UML Components is the input to the SMartyProcess to define
the Business Type Variability Model; and (ii) the Component Architecture from
UML Components is the input to define the Variability Implementation Model.

SMarty Components was applied to develop the proactive design of two PLs:
AGM (Arcade Game Maker) [10] and Mobile Media [12]. Due to space limi-
tation, results of the application of SMarty Components to the Mobile Media
were not included in this paper, but they can be found in [14]. AGM encom-
passes three arcade games: Brickles, Bowling, and Pong. Its main variations are:
(i) rules of the games; (ii) kind, number and behavior of elements; and (iii)
physical environment, where the games take place. There are some common
rules, such as: (i) each game has a set of Sprites; (ii) each game has a set of
rules; and (iii) every game involves movement [7]. There are four variabilities
in Figure 1: game, sprite, movable sprite, and stationary sprite, repre-
sented by UML notes. They are respectively related to the following business
types: Game, Sprite, MovableSprite and StationarySprite. Based on the Busi-
ness Type Variability Model for AGM, it was conceived a component-based PLA
(Figure 2). It has two system components: GameCtrl and GameBoardCtrl. They
use the provided interfaces for business components that run the AGM games.

Extending UML Components to Develop Product-Line Architectures 133

<<variationPoint>>
<<mandatory>>

Game

<<alternative_OR>>
BricklesGame

<<alternative_OR>>
BowlingGame

<<alternative_OR>>
PongGame

<<mandatory>>
GameBoard

<<alternative_OR>>
Puck

<<alternative_OR>>
Paddle

<<mandatory>>
Velocity

<<mandatory>>
<<variationPoint>>

Sprite

<<mandatory>>
Score

<<mandatory>>
Match

<<alternative_OR>>
<<variationPoint>>

MovableSprite

StationarySprite<<alternative_OR>>
Brickle

<<alternative_OR>>
BrickPile

<<alternative_OR>>
Ceiling

<<alternative_OR>>
Floor

<<alternative_OR>>
Wall

<<variability>>
name = "movable sprite"
minSelection = 1
maxSelection = 2
bindingTime =
DESIGN_TIME
allowAddingVar = true
variants = {puck, paddle}

<<variability>>
name = "sprite"
minSelection = 1
maxSelection = 2
bindingTime = DESIGN_TIME
allowAddingVar = true
variants = {stationarySprite,
movableSprite}

<<variability>>
name = "game"
minSelection = 1
maxSelection = 3
bindingTime = DESIGN_TIME
allowAddingVar = true
variants = {BrickesGame,
BowlingGame, PongGame}

<<variability>>
name = "stationary
sprite"
minSelection = 1
maxSelection = 4
bindingTime =
DESIGN_TIME
allowAddingVar = true
variants = {Ceiling, Floor,
Wall, BrickPile, Brickles}

Fig. 1. AGM Business Type Variability Model according to SMarty Components

Fig. 2. The AGM Component-based Architecture

The business types Game, BricklesGame, PongGame and BowlingGame belong to
the component GameMgr. All of the other business types belong to GameBoardMgr.

In Figure 2 we use the stereotypes �comp spec� from UML Components to
indicate an architectural component and �variable� from SMarty to indicate
a variability. Additionally, some components are also stereotyped with the name
of the concerns they encapsulate (e.g. Exception Handling and Persistence).
These stereotypes support the quantitative analysis process. Concerns related
to operations were supressed. Components with suffix Ctrl indicate managers
that use the services available in the business layer. These components provide
operations to the interface and dialog layers. Business components have the
Mgr suffix. These components represent application independent elements to be
developed. They can be further reused in several systems.

4 Analysis of the AGM Archictectures

To evaluate the effectiveness of the SMarty Components, we decided to an-
alyze its application in the context of PLAs following different architectural

134 A.C. Contieri Jr. et al.

Fig. 3. The Component-based AO Architecture of AGM

styles [2]. To accomplish this, an alternative aspect-oriented (AO) architecture
was also designed for the AGM. To support the design of AO elements, a method
called DSBC/A, was used [8]. DSBC/A is an extension of UML Components
that allows designing component-based AO architectures. This method follows
the UML Components process with additional activities to modularize cross-
cutting features. The use of DSBC/A guides the elaboration of functional and
non-functional models and the interaction between them; the goal is to identify
transversal and aspectual elements in the architectural design. Therefore, it en-
ables to identify crosscutting interfaces for the aspectual components in charge of
modularizing crosscutting features. SMarty Components must be applied to such
interfaces in order to produce corresponding variability implementation models.

Figure 3 presents the component-based AO architecture for AGM. The ma-
jor differences between the two alternative architectures for AGM are in the
inclusion of aspectual components represented by the stereotype �aspect comp
spec�. These components encapsulate operations that crosscut the whole sys-
tem to improve modularization. For instance, the component PersistDataMgr
encompasses the persistence operations which are required in several parts of the
architecture. The component ExceptionHandlingMgr is responsible for opera-
tions related to error handling and recovery and came from the crosscutting use
case of AGM. These components were scattered in several parts of the product-
line design and, according to DSBC/A, they are candidates to be implemented
as aspects.

An additional issue to observe in this architecture is the separation of oper-
ations into more than one interface of business components. This was done to
make them clear. The separation allows the isolation of operations to be crosscut
by ordinary ones. An example is the interface IInstallationMgt in the compo-
nent GameMgr that is crosscut by the component ExceptionHandlingMgr.

4.1 Quantitative Analysis

The objective of the metrics collected, as shown in Table 1, was to analyze if the
conceived architectures are likely to entail proper designs from the point of view

Extending UML Components to Develop Product-Line Architectures 135

of modularity and stability. The instability measure (I) [11] takes into account
the coupling represented in the relationships between components with the ob-
jective of predicting the difficulty of modifying a component. Tightly coupled
components are unstable and difficult to be reused. The values of I for the AGM
PLAs can be seen in Figure 4a. Some components were not shown in the graph-
ics due to lack of space although they have similar values. Overall, both PLAs
present medium values for I. This indicates that the components are not very
strict and are little stable. Thus they admit modifications but control must be in
place to reduce impacts and dissemination of changes for the whole architecture.

Table 1. Metrics Used

The cohesion measure (H) [5] supports designers to identify components which
have not strongly-related elements. This means that component cohesion is weak,
thus requiring redesign to improve the architecture. The H values for AGM’s
PLAs have indicated that the internal elements of components present a reason-
able number of relationships (Figure 4b), so these are cohesive.

b
ili

ty
d

eg
re

e
o

f
in

st
ab

(a) Instability (b) Cohesion

Fig. 4. Stability values for AGM architectures

In addition to these measures, Lack of Concern-Based Cohesion (LCC) and
Concern-Diffusion over Architectural Components (CDAC) metrics [12] have
also been collected. They evaluate the degree of modularization of an architecture
in terms of the architectural concerns being realized. They are relevant in the PL
design because if features are not neatly encapsulated in specific components,
the PLA may negatively impact reusability and maintainability of the PL.

LCC [12] indicates that a component that addresses many features is not sta-
ble as a modification in any of the associated features may impact the others.

136 A.C. Contieri Jr. et al.

The LCC values for the AGM’s PLAs show that the component-based PLAs
present a higher number of features implemented by each component than the
component-based AO PLAs (Figure 5a). As expected, the AO PLA contains only
one feature per component. This is due to the possibility of encapsulating cross-
cutting feature into aspectual components. CDAC [12] considers that a feature
scattered through a high number of elements has negative impact on modu-
larity. The component-based AO architecture presents low values to exception
handling and persistence whereas component-based PLA presents higher values
(Figure 5b). This reflects the scattering of those crosscutting features across sev-
eral components. These values are higher due to the same reasons that justify
the difference between the LCC values.

m
b

er
o

fC
o

m
p

o
n

en
ts

N
u

m

(a) LCC (b) CDAC

Fig. 5. Modularity values for AGM architectures

From the point of view of stability and modularity, SMarty Components led
to effective architectural solutions for AGM. Although the PLAs present differ-
ences in respect to feature modularization, the values of CDAC and LCC are
acceptable. These are good indicators that SMarty Components can lead to the
design of modular architectures. In addition, by using a PL variability man-
agement approach, it is possible to apply measures that reveal the differences
between PLAs versions. Thus, the best architecture can be chosen according to
the business drivers.

4.2 Qualitative Analysis

The goal of the qualitative evaluation was to gather additional insights that
complement the quantitative evaluation and enable us to better understand the
efficacy of using SMarty Components. Three specialists and architects who are
aware of the AGM requirements analyzed both AGM´s PLA. They also have
long-term experience on component-based and aspect-based architectural de-
signs. The architectural designs created have been considered by the specialists
as good first-cut architectures. They all agreed that the conceived component-
based and aspect-oriented decompositions were useful to enable them to con-
centrate in minor design enhancements. Therefore, the suggested improvements
concentrated on minor refactorings of the produced components and interfaces.
First, certain domain-specific variabilities could be factored out as aspects. Sec-
ond, the component in charge of error handling in the component-based AO

Extending UML Components to Develop Product-Line Architectures 137

architecture could be further decomposed into more specific components. The
goal is to avoid that information specific to each AGM layer is not propagated to
upper layers. This suggested that refactoring does not apply to the component-
based decomposition as it cannot segregate the crosscutting behavior of error
handling.

A final observation was that the GameCtrl component in both component-
based and component-based AO architectures was considered to accumulate too
many responsibilities. Therefore, this component was a candidate to manifest
an architectural design anomaly. In fact, this is confirmed by metrics for this
component (e.g. Figure 4). Coarse-grained components can make it difficult to
sustain the stability of PLAs if new variabilities need to be included.

5 Concluding Remarks

The experiment has shown that SMarty Components enables earlier identifi-
cation of components, interfaces and their relationship in the same way UML
Components does. Thus, major decisions of the design can be made in the initial
stages of the development. This supports both the PL development complexity
management and the identification of product alternatives that can be produced
from the designed PLA. SMarty Components was effective to design modular and
stable PLAs regardless of the architectural style employed (either component-
based or component-based AO architectures). Improvements were recommended
by the architects of AGM and Mobile Media; they consist of either minor refac-
torings or minor design decisions that would be revealed in later design stages.

The PLAs designed by using SMarty Components represent effective solutions
to the target PL domains. In particular, we observed, through the application of
measures, that the PL features showed good modularization. The measurement
results also point out that such modular PLAs were likely to remain stable over
time.

References

1. van der Linden, F.: Software Product Lines in Action - The Best Industrial Practice
in Product Line Engineering. Springer, Heidelberg (2007)

2. Clements, P., et al.: Documenting Software Architectures: Views and Beyond.
Addison-Wesley, Reading (2010)

3. Atkinson, C., et al.: Component-based Product Line Engineering with UML. Com-
ponent Series. Addison-Wesley, Reading (2002)

4. Cheesman, J., Daniels, J.: UML Components: A Simple Process for Specifying
Component-Based Software. Addison-Wesley, Boston (2001)

5. Martin, R.: Agile Software Development: Principles, Patterns, and Practices. Pren-
tice Hall, Englewood Cliffs (2003)

6. Krueger, C.: Eliminating the adoption barrier. IEEE Software - Special issue on
Initiating Software Product Lines 19(4), 28–31 (2002)

7. Junior, O., et al.: Systematic Management of Variability in UML-based Software
Product Lines. Journal of Universal Computer Science 16(17), 2374–2393 (2010)

138 A.C. Contieri Jr. et al.

8. Eler, M.M., Masiero, P.C.: Aspects as components. In: Morisio, M. (ed.) ICSR
2006. LNCS, vol. 4039, pp. 411–414. Springer, Heidelberg (2006)

9. Korherr, B., List, B.: A UML 2 Profile for Variability Models and their Dependency
to Business Processes. In: International Conference on Database and Expert Sys-
tems Applications, pp. 829–834. IEEE Computer Society, Washington, DC, USA
(2007)

10. SEI - Arcade Game Maker Product Line,
http://www.sei.cmu.edu/productlines/ppl

11. Martin, R.: Stability. C++ Report (1997)
12. Sant’Anna, C.N.: On the Modularity of Aspect-Oriented Design: A Concern-Driven

Measurement Approach. Doctoral Thesis. PUC-Rio, Brazil (2008)
13. Gomaa, H.: Designing Software Product Lines with UML: from Use Cases to

Pattern-based Software Architectures. Addison-Wesley, Reading (2005)
14. Mobile Media Web Site, http://www.din.uem.br/~teclopes/MMedia

http://www.sei.cmu.edu/productlines/ppl
http://www.din.uem.br/~teclopes/MMedia

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 139–146, 2011.
© Springer-Verlag Berlin Heidelberg 2011

PL-AspectualACME: An Aspect-Oriented Architectural
Description Language for Software Product Lines

Eiji Adachi Barbosa1, Thais Batista2, Alessandro Garcia1, and Eduardo Silva2

1 OPUS Research Group, Informatics Department, PUC-Rio, Rio de Janeiro, Brazil
2 Informatics Department, UFRN, Natal, Brazil

{ebarbosa,afgarcia}@inf.puc-rio.br, thais@ufrnet.br,
duh.ciencomp@gmail.com

Abstract. Software Product Line (SPL) development typically relies on feature
models to represent the commonalities and variabilities of a family of software
products. Although feature models play an important role in describing SPL
elements, they are limited to provide high-level feature decompositions that do
not explicitly represent the SPL architecture. To tackle this problem, we present
PL-AspectualACME, an extension of the ACME architecture description
language that enriches existing abstractions to express architectural variabilities.
They support the specification of product variations without forcing architects
to learn many new abstractions. We evaluate the applicability of our proposal in
the context of a real large-scale system, the Ginga SPL architecture.

Keywords: Software Product Line, ADL, PL-AspectualACME.

1 Introduction

Software product line (SPL) development [1] has become a mainstream technique to
the development of systems (or products) with shared features (commonalities) and
variabilities that distinguish them. The SPL development process typically uses
feature models [2] to represent commonalities, variabilities, and variation-related
constraints governing the set of features and their relationships. They are used in the
domain analysis and in product derivation of a SPL. While feature models are also
intended to structure the SPL features in a hierarchical fashion, they are disconnected
from component-based decompositions that are commonly used to structure and
implement SPL architectures.

In fact, SPL architects usually employ a component-based design approach in order
to promote a smooth mapping of their decisions to elements of the implementation
platform. These decisions encompass, for instance, the choice of mandatory or
variable architectural elements as well as the architectural styles being adopted. In this
context, this paper exploits a well-known architectural way of organizing components
in a product family, the architectural styles [3]; they define architectural elements for
domain-specific concepts that are further used to describe SPL architectures. The
potential of architectural styles for broader applicability are emphasized in [4].

Architectural description languages (ADLs) typically use architectural styles to define
vocabularies of types of components, connectors, properties, and sets of rules that specify

140 E.A. Barbosa et al.

how elements of those types may be legally composed in a reusable architectural domain.
In this paper, we ground this idea in PL-AspectualACME, a seamless extension of a
general-purpose aspect-oriented ADL, AspectualACME [5]. AspectualACME is an
aspect-oriented (AO) extension of ACME [6], a general-purpose ADL proposed as an
architectural interchange language. PL-AspectualACME promotes a natural blending of
SPL and aspect-oriented architectural abstractions. The philosophy of PL-
AspectualACME is to take advantage of ACME elements to model SPL architectures.
Thus, it relies on existing ACME abstractions to represent the variabilities of a SPL.

This paper is structured as follows. Section 2 presents the background of this work:
the Ginga middleware, the running example that we use along this paper (section 2.1),
and ACME and AspectualACME basic elements (section 2.2). In Section 3 we
present PL-AspectualACME. Finally, Section 4 presents the final remarks.

2 Background

2.1 Running Example: Ginga

Ginga, the Brazilian Terrestrial Digital TV System (SBTVD) middleware [7], was
refactored in a previous work [8] in order to provide a version built based on the SPL
approach. The goal was to increase the Ginga middleware configurability through the
automatic management of variabilities. Figure 1 illustrates a partial view of the
Gingafeature model. The Tuner feature is responsible for selecting the physical
channel of signal transmission. The Media Processing feature manages the processing
of multimedia data and makes them available to other components of the middleware.
Data Processing is the feature responsible for accessing, processing and providing
elementary data streams to other middleware components.

Although a SPL provides mechanisms to manage the variability of an application
domain, it is more difficult to support variabilities in the presence of crosscutting
concerns [9, 10]. Thus, AO development was applied at the SPL version of the Ginga
middleware to separate and compose crosscutting concerns in terms of features,
allowing to (un)plug these features of the SPL architecture, and providing the
architecture the ability for better modularization and adaptability.

Fig. 1. Ginga Partial Feature Model

 PL-AspectualACME: An Aspect-Oriented Architectural Description Language 141

2.2 ACME and AspectualACME

The basic elements of ACME are not enough to properly modularize and compose
crosscutting concerns (or features) with other system concerns. Crosscutting concerns
[11] are concerns that get scattered and tangled with other concerns realized by the
system components. AspectualACME [5] extends ACME in order to modularly
represent crosscutting concerns at the architectural level. It proposes modeling
crosscutting concerns as regular components, and enriching composition mechanisms
of ACME to support the definition of crosscutting relations.

AspectualACME introduces 2 main extensions: (i) the Aspectual Connector (AC),
a special connector that encapsulates the crosscutting component interactions; and (ii)
a quantification mechanism (the wildcard *), used within the Attachments section to
syntactically simplify the reference to a well-defined join points in the architecture.
Along with AC, two new interfaces – the Base Role and the Crosscutting Role – are
also defined in order to distinguish the roles of the elements that participate in a
crosscutting interaction. The Base Role is associated with the component affected by
the crosscutting interaction; the Crosscutting Role is associated with the component
that affects other components and, therefore, acts as an “aspectual component”. AC
has a Glue Clause that defines when (after, before, or around) those elements interact.

1.System Product:Ginga=new Ginga extended with {
2. ...
3. Component tuner: TunerT = new TunerT;
4. Component demuxer: DemuxT = new DemuxT;
5.
6. Connector ts_bus: InnerBusT = new InnerBusT;
7.
8. Component supervisor: AccessControlT = new
AccessControlT;
9.
10. AspectualConnector access_policy =
11. {BaseRole controllee1, controllee2;
12. CrosscuttingRole controller;
13. Glue controller around controllee;}
14.
15. Attachments {
16. ts_bus.consumer to demuxer.ts_filter;
17. ts_bus.provider to tuner.ts_deliver;
18.
19. access_policy.controllee1 to

 demuxer.ts_filter;
20. access_policy.controllee2 to
 tuner.ts_deliver;
21. access_policy.controller to
 supervisor.check_permission; }
22. ... }

(a)

(b)

Fig. 2. (a) AspectualACME textual description. (b) AspectualACME graphical representation

In Figure 2(a), the tuner component (line 3) abstracts the mechanism of selection and
recovery of the data flow transmitted by different data providers. The demuxer
component (line 4) abstracts the demultiplexer mechanism that transforms the data
stream received from the tunner component into more elementary data flows. The
supervisor component (line 8) abstracts the mechanism that controls the access to
restricted content transmitted to receivers. The access_policy aspectual connector (lines
10-13) abstracts the composition mechanism by which the supervisor component

142 E.A. Barbosa et al.

controls the content transmitted between the tuner and demuxer components. In the
attachment section, the controllee1 and controllee2 base roles are respectively attached to
the ts_filter port of the demuxer component and the ts_deliver port of the tuner
component (lines 16-17). Next, the controller crosscutting role is attached to the
check_permission port of the supervisor. The aspectual connector intercepts any
communication between tuner and demuxer components and deviates the data
transmitted to supervisor; the latter checks access credentials and retransmits the receiver
the data intercepted. Figure 2(b) graphically represents the example.

3 PL-AspectualACME

In software development is common to some requirements, when implemented, lead
to crosscutting concerns. In SPL development, the crosscutting concerns are critical,
since they usually have variation points and, thus, affect many different products.
Aspect-oriented programming has been frequently used to modularly implement some
kinds of variation points in SPL development, allowing developers to maintain more
easily a product configuration. Due to the inherent complexity when dealing with a
SPL development, especially when crosscutting concerns have variation points, the
sooner those crosscutting concerns can be identified the better, because they can be
treated properly in early stages of the development process, instead of demanding
changes in latter stages, such as implementation. For that reason, PL-AspectualACME
extends the aspect-oriented ADL AspectualACME in order to represent SPL
variability in aspect-oriented architectures.

PL-AspectualACME does not add new abstractions to the language; it semantically
enriches those that already exist. The core architecture of a SPL is described in PL-
AspectualACME in terms of a vocabulary of types of components, connectors and
ports within an ACME Family. Variabilities are modeled using the Representation
construct, which was originally proposed in ACME as a mechanism for more detailed
description of architectural elements. The Representation construct is typically used
for a more detailed hierarchical decomposition of components, ports or connectors
into subsystems. However, it is used in PL-AspectualACME also to modularize
architectural variabilities that are related to specific product variations, allowing
software architects to model SPL variabilities without being burdened with many new
abstractions. Thus, in PL-AspectualACME the commonalities of a product line are
modeled as regular elements and each Representation of an element identifies the
possibility of realizing a specific variability. The complete definition of an ACME
Family that represents the architecture of a SPL is basically divided into two parts: (i)
the definition of a vocabulary of architectural element types, which the architect later
uses to describe the SPL architecture; and (ii) the definition of the core SPL
architecture, i.e., the default architecture shared by all products of a SPL.

3.1 Specifying the SPL Architectural Vocabulary

ACME provides the Family construct to support the definition of architectural styles.
Architects can describe their architectural styles in ACME in terms of a vocabulary
of architectural element types, which are defined using the Type construct.

 PL-AspectualACME: An Aspect-Oriented Architectural Description Language 143

PL-AspectualACME exploits these mechanisms in order to define a vocabulary of
architectural element types that are closer to the SPL domain.

1.Family Ginga = {
2. Component Type TunerT = {
3. Port listen; }
4. Component Type DataProviderT = {
5. Port provide_data; }
6. Component Type IP extends DataProviderT
 with = {
7. Property variants = {IPTV, P2PTV,
 InternetTV}
8. Representation IPTV = {
9. System IPTV = {...} }
10. Representation P2PTV = {
11. System P2PTV = {...} }
12. Representation InternetTV = {
13. System InternetTV = {...} }
14. }
15. Connector Type INetworkT = {
16. Role provider;
17. Role consumer;
18. Representation Wired = {
19. System Wired = {...} }
20. Representation Wireless = {
21. System Wireless = {...}
22. } } }

Fig. 3. (a) The SPL Architectural Vocabulary. (b) Ginga vocabulary graphical representation

In Figure 3(a) specifies the Ginga Family. The TunerT component type (lines 2-3)
models the mechanism of selection and recovery of the data flow transmitted. The
DataProviderT component type (lines 4-5) models the abstract behavior of data
providers. The IP component type (lines 6-14) extends the DataProviderT type to
represent data providers based on IP networks. It has three different Representation
elements, each one modeling an alternative possibility of realization of the IP
component: IPTV (lines 8-9), P2PTV (lines 10-11) and InternetTV (lines 12-13). The
INetworkT connector type (lines 15-22) models the network interface via which data
providers connect to the mechanism of selection and recovery of data flow. It
provides alternatives: wired networks (lines 18-19) and wireless networks (lines 20-
21). Figure 3(b) graphically shows the Ginga architectural vocabulary.

3.2 Specifying the SPL Core Architecture

During the definition of an ACME Family, it is possible to define architectural
element types and also to instantiate elements within the Family. When elements are
instantiated within a Family, these elements are inherited by all systems that adhere to
that Family. PL-AspectualACME exploits this mechanism to describe the SPL core
architecture, i.e., the default architecture that is shared by all products of a SPL.
Hence, elements that represent SPL mandatory features are instantiated within the
Family, forcing that all systems that adhere to that Family inherit these elements.

The Ginga core architecture is based on five main abstract components.The Data
Provider component abstracts the sources of data provided to the Ginga middleware.
The Tuner component abstracts the mechanism of selection and recovery of the data
stream transmitted by data providers. The Demuxer component abstracts the

144 E.A. Barbosa et al.

demultiplexer mechanism that transforms the data stream received from Tunner
components into more elementary data flows. The Media Player component processes
the data flows transmitted by Demuxer components.

1. Family Ginga = {
2. ...
3. Component terrestrial:new
 TerrestrialT;
4. Connector i_net:INetworkT = new
 INetworkT extended with {
5. Property selected_variants=
 {Wired}}
6. Component tuner:TunerT = new TunerT;
7. Connector ts_bus:InnerBusT = new
 InnerBusT;
8. Component demuxer:DemuxT = new
 DemuxT;
9. Connector ds_bus1, ds_bus2:
 InnerBusT = new InnerBusT;
10. Component player : PlayerT = new
 PlayerT extended with = {
11. Port playAudio;
12. Port playVideo;
13. Representation = {
14. System PlayerSystem = {
15. Component audio : AudioT =
 new AudioT extended with= {
16. Property
 selected_variants={AAC}}

17.Component video:VideoT = new VideoT
 extended with = {
18. Property selected_variants=
 {H264}}}
19. Bindings {
20. player.play to audio.play;
21. player.play to video.play;} }
22. Attachments {
23. i_net.consumer to tuner.listen;
24. i_net.provider to
 terrestrial.provide_data;
25. ts_bus.consumer to
 demuxer.ts_filter;
26. ts_bus.provider to
 tuner.ts_deliver;
27. ds_bus1.consumer to
 player.playAudio;
28. ds_bus1.provider to
 demuxer.ts_transmitter;
29. ds_bus2.consumer to
 player.playVideo;
30. ds_bus2.provider to
 demuxer.ts_transmitter;} }

Fig. 4. Ginga abstract SPL Core Architecture

Figure 4 depicts the description of the Ginga SPL core architecture. Terrestrial (line
3) models the mandatory data provider, which transmits a terrestrial signal. The i_net
connector (lines 4-5) models the wired network interface by which the terrestrial and
tuner components (line 6) communicate. Demuxer (line 8) receives transport streams
from tunner through the ts_bus connector (line 7). Player (lines 10-16) encapsulates the
audio component (lines 15-16), which models the audio player that supports processing
audio files encoded by AAC coding schema, and also the video component (lines 17-18),
which models the video player that supports video files encoded by H264 coding schema.
In the bindings section (lines 19-21), the outer playAudio and playVideo ports (lines 20-
21) of the player component are respectively associated to the inner play port of both
audio and video components. Demuxer transmits data streams to the player component
via the ds_bus1 and de_bus2 connectors (line 27-30). Figure 5 graphically depicts the
Ginga SPL Core Architecture.

Fig. 5. Ginga Core SPL Architecture

3.3 Specifying SPL Products

The derivation process is basically the selection of which variable features will be
available in a product. In PL-AspectualACME the variable features are modularized

 PL-AspectualACME: An Aspect-Oriented Architectural Description Language 145

within Representation elements. Annotations in the Property elements are used to
specify which Representation elements are selected or not; a derivation tool interpret
the annotations, adding or removing the correct variant elements in the specification.
The instantiation process adopted by PL-AspectualACME consists in instantiating
members of the ACME family associated to the SPL. During the instantiation process,
it is necessary to: (i) instantiate architectural elements based on the types defined by
the family; and (ii) define which variants of each type must be selected.

Table 1. Features of Ginga Zapper product

Variation Point Mapped to Selected Variant
Variation
Point Mapped to

Selected
Variant

Tuner
tuner component
provider component

Data
Processing

processor
component

Software
Update

i_net connector Terrestrial Wired

Demultiplexer demux component Hardware
Input
Manager

input_mng
component

Remote
Control

Media
Processing

text component TXT
video component H.264 Platform platform ST
audio component AAC

Table 1 shows the configuration of the Ginga Zapper product. It is the simplest
product in the Ginga SPL. It provides only basic features to receive the TV signal.

Figure 6 shows the PL-AspectualACME textual description of the Ginga Zapper
instantiation. The Zapper product is an instance of the Ginga family (line 1). The
Tuner variation point is mapped to the tuner and provider components and the i_net
connector. Since the tuner component does not have any variation point (and it was
declared within the Ginga Family definition) there is no need to re-declare it within
the Zapper product definition. The same applies to the audio and video components.
For each variation point, the respective elements are instantiated, and the definition of
the selected variant is defined via the selected_variants property. Return Channel and
Conditional Access features are not mapped to any component in the Zapper system.

1. System Zapper:Ginga = new Ginga
 extended with = {
2. Component provider:TerrestrialT =
new TerrestrialT;
3. Connector i_net:NetworkInterfaceT=
 new NetworkInterfaceT extended
 with = {
4. Property selected_variants =
 {Wired}}
5. Component demux : DemuxT = new
 DemuxT extended with {
6. Property selected_variants =
 {Hardware} }
7. Component text : TextT = new TextT
 extended with = {

8. Property selected_variants =
 {TXT}}
9. Component processor:DataProcessingT
 =new DataProcessingT extend with={
10. Property selected_variants =
 {Update}}
11. Component input_mng : InputManagerT
 = new InputManagerT extend with= {
12. Property selected_variants =
 {Remote}}
13. Component platform : PlatformT =
 new PlatformT extend with = {
14. Property selected_variants = {ST}}
15. Attachments {...}
16. ...}

Fig. 6. Specifying the SPL Core Architecture

146 E.A. Barbosa et al.

4 Final Remarks

In this paper, we presented PL-AspectualACME, a flexible and extensible ADL for
modeling SPL architectures with AO abstractions. PL-AspectualACME seamlessly
adapts concepts of ACME to represent SPL variabilities at the architectural level. We
use the Representation element to represent products variants. In this manner, we
maintain the simplicity of the language, avoiding the addition of new abstractions,
even at the cost of burdening semantically the Representation element. The language
relies on typical architectural elements and provides mechanisms to specialize these
elements in new types defined by software architects. These types constitute the
architectural vocabulary by which software architects describe SPL architectures. We
also presented the SPL architectural description of Ginga.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley Longman Publishing Co., Inc., Boston (2001)

2. Kang, K., et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study, Technical
Report CMU/SEI-90-TR-21, Pittsburgh, PA, SEI, Carnegie Mellon University (1990)

3. Garlan, D., Shaw, M.: An Introduction to Software Architecture: Advances in Software
Engineering and Knowledge Engineering. World Scientific Publishing, Singapore (1993)

4. Medvidovic, N., Taylor, R.N.: Exploiting Architectural Style to Develop a Family of
Applications. In: IEEE Proc. on Software Engineering, vol. 144(5-6), pp. 237–248 (1997)

5. Batista, T., et al.: Reflections on Architectural Connection: Seven Issues on Aspects and
ADLs. In: Proceedings of the 5th International Workshop on Early Aspects at ICSE
(2006)

6. Garlan, D., et al.: ACME: An Architecture Description Interchange Language. In: Proc. of
the 1997 Conf. of the Centre for Ad. Studies on Collaborative Research. IBM Press (1997)

7. Ginga: The Brazilian Terrestrial Digital TV System Middleware,
http://www.ginga.org.br/

8. Saraiva, D., et al.: Architecting a Model-Driven Aspect-Oriented Product Line for a
Digital TV Middleware: A Refactoring Experience. In: Babar, M.A., Gorton, I. (eds.)
ECSA 2010. LNCS, vol. 6285, pp. 166–181. Springer, Heidelberg (2010)

9. Figueiredo, E., et al.: Evolving Software Product Lines with Aspects: an Empirical Study
on Design Stability. In: Proc. of ICSE, 261–270 (2008)

10. Loughran, N., et al.: Language Support for Managing Variability in Architectural Models.
In: Proc. of Software Composition, pp. 36–51 (2008)

11. Kiczales, G., et al.: Aspect-Oriented Programming. In: Proceedings of the 14th European
Conference on Object-Oriented Programming (1997)

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 147–163, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Design and Evaluation of a Process for Identifying
Architecture Patterns in Open Source Software

Klaas-Jan Stol1, Paris Avgeriou2, and Muhammad Ali Babar3

1 Lero—The Irish Software Engineering Research Centre, University of Limerick, Ireland
2 University of Groningen, The Netherlands

3 IT University of Copenhagen, Denmark
klaas-jan.stol@lero.ie, paris@cs.rug.nl, malibaba@itu.dk

Abstract. Architecture patterns have a direct effect (positive or negative) on a
system’s quality attributes (e.g., performance). Therefore, information about
patterns used in a product can provide valuable insights to, e.g., component in-
tegrators who wish to evaluate a software product. Unfortunately, this informa-
tion is often not readily available, in particular for Open Source Software (OSS)
products, which are increasingly used in component-based development. This
paper presents the design and evaluation of a process for Identifying Architec-
ture Patterns in OSS (“IDAPO”). The results of the evaluation suggest that
IDAPO is helpful to identify potentially present patterns, and that a process
framework may provide better opportunities for tailoring to the users’ needs.

Keywords: architecture patterns, quality attributes, open source software,
empirical evaluation, quasi-experiment.

1 Introduction

Architecture patterns (e.g., layers, model-view-controller) are generalized solutions to
recurring system-wide design problems, which describe the main roles of system parti-
tions and their interactions. It is widely recognized that architecture patterns have a
direct effect on a system’s quality attributes (QAs), such as performance and reliability
[1]. Integrating components into a system whose overall QAs are incompatible with
the component’s QAs will hinder the achievement of a system’s quality requirements.
Since architecture patterns are documented solutions with known properties [2], know-
ledge of architecture patterns used in a software component can provide valuable
insights to component integrators about which QAs are supported, and which are hin-
dered. Previously, the use of architecture patterns has been shown to be an effective
and lightweight complementary approach to traditional architecture review methods
(e.g., ATAM [3]) to perform architecture reviews [4].

Unfortunately, this information about architecture patterns used in a component is
often not readily available, in particular for Open Source Software (OSS) products.
OSS products are increasingly used in industry [5], but the quality of products varies
widely. Therefore, it is important that OSS integrators [6] thoroughly evaluate an OSS
product before it is integrated into a system [7]. Documentation of OSS products often

148 K. Stol, P. Avgeriou, and M. Ali Babar

lacks information about their design (including patterns that are used) [8]. The
literature provides little guidance to practitioners who would wish to identify architec-
ture patterns. Existing tools for pattern identification are limited to (object-oriented)
design patterns, such as documented in [9]. The varying granularity of components
(e.g., a class/object as a component versus an executable as a component) makes auto-
mated identification of architecture patterns inherently difficult. Reverse engineering
methods and tools may help to reverse-engineer the architecture, but do not typically
focus on identifying architecture patterns [10].

This lack of guidance on how and where to find architecture patterns in OSS prod-
ucts motivated us to investigate how this task can be supported. In our previous work
[11], we proposed a conceptual process to streamline the task of identifying architec-
ture patterns in OSS. This paper reports on two additional empirical studies that contri-
bute (a) a validation of the process steps and enhancement of our initial process, and
(b) an evaluation of the resulting process. The enhanced process was named IDAPO
(IDentifying Architecture Patterns in OSS, pronounced as “Idaho”).

This paper proceeds as follows. We present background and motivation in Section
2. Section 3 presents the design history as well as validation and enhancement of IDA-
PO. Section 4 presents the design and results of a quasi-experiment to evaluate the
usefulness of IDAPO. We discuss the findings of the experiment in Section 5. Section
6 concludes and provides an outlook to future work.

2 Background and Motivation

Software Architecture, Patterns and Quality Attributes. Software architecture has
been shown to be an important artifact in the software development process [1]. It
constitutes a set of architectural design decisions, such as the use of an architecture
style or pattern. Most software architectures apply one or more architecture patterns
[12]. For instance, architects speak of a ‘layered system’, or a ‘model-view-controller’
architecture. Architecture patterns have a documented effect (positive or negative) on a
system’s quality attributes (QAs) (e.g., performance, reliability) [1, 2, 13]. For in-
stance, a system with layers is likely to be modifiable, as it facilitates a clear separation
of concerns. However, passing large numbers of messages up and down the layer
‘stack’ may cause performance issues [13]. Therefore, one effective way to select OSS
products that support the achievement of the system’s QAs is to acquire sufficient
information of architecture patterns used in those products. Once this information is
available, OSS integrators can use the rich information in the pattern documentation (in
pattern languages such as [2]) about the potential impact of the pattern’s solution on
the system QAs [4].

Use and Evaluation of OSS. Over the last decade, an increasing number of software
developing organizations is integrating OSS products in component-based devel-
opment [5, 7]. However, selecting suitable OSS products is a key challenge [8]. To
address this, researchers and industry have proposed a variety of OSS evaluation and
selection approaches [14]. Typically, these approaches prescribe a list of criteria, such
as the level of activity of the OSS community and the number of open bugs, catego-
rized in some categories (e.g., product, community), on which an OSS product is eva-
luated. The output is a weighted average of the scores for the criteria. The goal of these

 Design and Evaluation of a Process for Identifying Architecture Patterns 149

approaches is to provide practitioners with some guidance on the process of evaluating
an OSS product. However, these approaches typically do not consider the architectural
aspects of a product to assess its impact on a system’s QAs. While the abovementioned
existing approaches may provide valuable information such as the potential support
provided by an OSS product’s community, we argue that those methods could be used
in tandem with appropriate approaches to identify and understand the architecture
patterns used, such as proposed by us. The former assess the maturity of an OSS prod-
uct, while the latter helps understand the impact on system QAs. While knowledge of
architecture patterns is equally important for closed (proprietary) software, we focus
our efforts on OSS, since it has become a viable alternative to commercial off-the-shelf
(COTS) components [15]. Furthermore, due to the closed nature of COTS components,
identifying architecture patterns is virtually impossible for such products.

Pattern Identification. A number of pattern identification techniques and tools have
been proposed [9]. However, these techniques and tools focus on the identification of
design patterns, which may not have a direct impact on the fundamental structure of a
software system [2]. Furthermore, design patterns such as those presented by the Gang of
Four [16], are object-oriented, which assumes that the software is written in an object-
oriented programming language. These techniques and tools, however, do not support
identifying architecture patterns. There are no techniques to automatically identify archi-
tecture patterns from source code, and there are a number of obstacles that prevent this.
Firstly, there are no commonly accepted formalisms for describing components and
connectors between them. Proposed formalisms such as Architecture Description Lan-
guages (ADLs) and the UML have several issues [17]: different ADLs focus on model-
ing different types of systems, and they vary greatly in their expressiveness of software
architecture concepts. These obstacles hinder the reverse engineering of source code into
a formalism that expresses patterns. The use of reverse engineering tools that could sup-
port pattern identification is associated with various challenges [11]. A second obstacle
that hinders automated pattern identification is that patterns may be implemented in ‘a
thousand different ways’ [2], and have to be implemented (and customized) according to
the specific needs at hand. Therefore, we argue that identifying architecture patterns
depends to a large extent on manual techniques. Our proposed process is designed to
support this task. In the remainder of this paper, we use the word ‘pattern’ to refer to
architecture pattern rather than design pattern.

3 Design of the Process

3.1 Design History of IDAPO

We are investigating how practitioners can be guided in the task of identifying archi-
tecture patterns. Fig. 1 shows the three empirical studies we have conducted so far.

Fig. 1. Overview of research activities and research output. Ovals represent research activities;
rectangles represent research outputs.

Initial
process

Enhanced
process

(“IDAPO”)

Identification of
approaches and

challenges

Validation of steps and
process enhancement

Evaluation of
usefulness of process

Presented in EASE 2010 Presented in this paper

Results of
experiment

150 K. Stol, P. Avgeriou, and M. Ali Babar

Previously, we have reported an initial study in which we identified approaches and
challenges of 23 master’s students that had performed a pattern-identification task in
the context of master’s courses on Software Architecture and Software Patterns [11].
Based on these findings, we suggested a systematic approach to identify patterns, and
presented an initial process definition to support practitioners in this task. As shown in
Fig. 1, the current paper reports two additional empirical studies that we conducted.
The first (presented in Section 3.2) aimed at validating the process steps and enhancing
the process; the second (presented in Section 4) aimed at empirically evaluating the
usefulness of our enhanced process (IDAPO) through a quasi-experiment.

3.2 Process Steps Validation and Process Enhancement

In [11] we presented an initial version of a process to support the task of identifying
architecture patterns in OSS. In order to validate the different steps of the initial
process and enhance the process, we invited all 12 enrolled students who had per-
formed a pattern identification assignment in the context of a master’s course on Soft-
ware Patterns (at the University of Groningen) for a semi-structured interview. Ten
students chose to participate. We did not show the participants our initial process in
order to prevent getting only confirmatory answers. Instead, we asked the students
about the steps taken, their usefulness, what information they had been looking for,
obstacles they had encountered, and their “lessons learned”, i.e., what steps they would
and would not take again.

We digitally recorded the interviews with the participants’ consent. Dutch students
were interviewed in their native language. The other students were interviewed in
English. The interviews lasted 60 minutes on average. All interviews were transcribed
verbatim by the interviewer. The Dutch transcriptions were translated into English to
allow the other researchers to participate in the data analysis. The data were analyzed
using qualitative data analysis techniques [18]. We systematically extracted informa-
tion about the steps that the students had taken and recorded them in a spreadsheet. We
compared the steps to the activities of our initial process presented in [11]. We focused
primarily on the steps that students had considered to be useful; for instance, many
students considered the use of reverse engineering tools to be a waste of time.

We found that the steps taken by the students mostly corroborated the activities of
our initial process. We also found reason to make a number of changes based on new
insights gathered from the 10 interviews. While Fig. 2 presents the enhanced process in
more detail, in this section we briefly summarize the changes made. We realized that
an incremental accumulation of information, such as type and domain of the product as
well as implementation technologies used, could be a useful way to identify potentially
used patterns, which we refer to as candidate patterns. Therefore, we swapped the
order of steps (4, 5) with steps (2, 3) in the initial version presented in [11]. A second
change we made was to enrich the process with a data flow between the steps, which
describes the different pieces of information that can be gathered as a user follows the
steps as well as which steps use this information. Thirdly, we used the Business
Process Modeling Language (BPMN) to define the process to replace the UML activity
diagram notation we used before. This allowed us to more clearly express the different
steps of the process. Section 3.3 presents the enhanced process that we named IDAPO.

 Design and Evaluation of a Process for Identifying Architecture Patterns 151

3.3 IDAPO: A Process for Identifying Architecture Patterns in OSS

A key feature of IDAPO is the idea of incremental accumulation of information. In each
step, information regarding the use of patterns in a product is acquired. By systematically
recording information about the product’s characteristics, a practitioner is encouraged to
make details of the product under investigation explicit, which helps the practitioner’s
analytical thought process. To formalize this idea in IDAPO, we added a ‘data flow’ to
the process, to suggest what information is generated and needed for each step. The re-
sulting definition of IDAPO is shown in Fig. 2 in BPMN. In BPMN, rounded rectangles
represent activities; normal lines represent control flow (sequence of steps), whereas
dotted lines represented data flow (which indicate input and output to the various activi-
ties). The OSS community is represented by a separate pool. In BPMN, a pool represents
an organization and is used to border process participants (the default pool is implicit).
For more details of BPMN, see [19]. The remainder of this section describes the process
steps in more detail; step numbers are enclosed in parentheses.

Fig. 2. IDAPO: a process for identifying architecture patterns in OSS

The first step is to (1) identify the type of software and its domain. Knowledge of
the type and domain of the software may provide hints about the use of certain pat-
terns. For instance, an instant messenger product is likely to use the client-server pat-
tern. Step two is to (2) identify technologies used for implementation. If, for instance,
CORBA (Common Object Request Broker Architecture) was used, it may be useful to
look for the broker pattern. If the process user has insufficient knowledge of technolo-
gies, it is advisable to (3) study those technologies, which may help in understanding
how the system under scrutiny was implemented. Based on the information gathered in
previous steps, (4) candidate patterns may be identified (i.e., potentially present
patterns) and listed. After identifying candidate patterns, (5) the patterns literature
(e.g. [2]) can be studied to learn more details about those patterns, which will help in
recognizing and asserting that the patterns are, in fact, present. The next step is to (6)
study project documentation, from which insights into the system’s architecture,

1. Identify
type and
domain

4. Identify
candidate
patterns

5. Read
patterns
literature

2. Identify
used

technologies

3. Study
used

technologies

6. Study
documentation

8. Study
components
& connectors

11. Get feedback
from community

9. Identify
patterns and

variants

12. Register
pattern
usage

10. Validate
identified
patterns

Community

Patterns
repository

Patterns literature
Identified
patterns

Yes

Used
technologies

Yes

No

No

Components
& connectors

Source code

Documentation

Type and
domain info

Candidate patterns

Sufficient
insight

into C&C?

Sufficient knowledge
of technologies?

No

No response/
time outYes

Feedback

Validated
patterns

Does community
agree?

List of patterns
and participants

List of main components

7. Study
source code

Exception:
Insufficient
Docum’ion
available

152 K. Stol, P. Avgeriou, and M. Ali Babar

components and connectors may be gathered (note that the documentation could also
be consulted in previous steps). After identifying candidate patterns and studying
project documentation, the next step is to (7) study the source code and crosscheck
with the findings of the documentation. It is important to gain insight into the various
(8) components and connectors in the system under investigation, since this will help
to identify which patterns have been used in the system. Once sufficient information is
gathered through studying documentation, source code and components and connec-
tors, the actual (9) pattern matching and identification activity starts. This involves
comparing the structure and behavior of the pattern to the product’s structure. After
identification, it is important to (10) validate the identified patterns to make sure
they have been correctly identified. One way to do this is through peer-review by oth-
ers (e.g., colleagues). Findings may also be presented to the community for feedback.
While the (11) community may be contacted earlier to ask for information, our expe-
rience has shown that providing some input is more likely to result in a reply. Once
identified patterns have been confirmed, the (12) patterns should be registered in a
patterns repository for later use by others. A few researchers have proposed such repo-
sitories for patterns [20] or architectures in general [21]. Over time, the patterns reposi-
tory will be populated with information of many systems, which we envisage to be a
valuable tool for others in understanding the architecture of OSS products.

4 Evaluation of the Process: A Quasi-Experiment

Following the call by Falessi et al. [22] to perform empirical evaluation of new tech-
niques to improve the state of practice in software architecture, we decided to empiri-
cally evaluate the usefulness of IDAPO by means of an experiment [23]. We measure
usefulness in terms of the number of patterns that are identified. This section is
structured following the reporting guidelines for experiments in [24].

4.1 Experiment Goals and Hypotheses

We defined three goals for this experiment. Firstly, we are interested in whether using
IDAPO helps to identify more patterns. We argue that the task of correctly identifying
architecture patterns depends on practitioners’ expertise and experience; if IDAPO
results in more identified patterns, this expertise is important to assess their correct-
ness. However, not all practitioners have extensive expertise to draw from. In order to
be able to more precisely evaluate the usefulness of IDAPO, our second goal was to
measure the output in terms of two standard measures: precision and recall [25].
Thirdly, we wanted to investigate to what extent IDAPO supports the identification of
candidate patterns based on information gathered in the first three steps. To investigate
these goals, we defined six hypotheses, which we discuss next.

To address the first goal, we decided to simply count the number of identified pat-
terns, disregarding whether the patterns are correct or not. IDAPO describes the steps
to take, and the information required to identify patterns. Hence the first hypothesis:

H01: Using IDAPO does not change the number of identified patterns.
For all hypotheses, we imply a comparison to the number of patterns identified

when not using IDAPO.

 Design and Evaluation of a Process for Identifying Architecture Patterns 153

Besides looking at the number of identified patterns tested in H01, it is also useful to
use standard measures based on a confusion matrix, namely precision and recall [25].
Precision is defined as the fraction of patterns correctly identified of the total number
of identified patterns, i.e., true positives ÷ (true positives + false positives). Recall is
defined as the fraction of correctly identified patterns of the total number of correct
patterns present, i.e., true positives ÷ (true positives + false negatives). Hence, we
defined hypotheses H02 and H03.

H02: Using IDAPO does not change the precision of identified patterns
H03: Using IDAPO does not change the recall of identified patterns.
As mentioned in Section 3.2, the process emphasizes a step-wise, incremental ap-

proach to gather information in a systematic way. In particular, we are interested in the
candidate patterns based on the first few steps of the process. In order to test this idea,
we defined hypothesis H04:

H04: Using IDAPO does not change the number of candidate patterns.
Likewise, we decided to also test precision and recall rates for the candidate

 patterns; Hence, we defined to H05 and H06:
H05: Using IDAPO does not change the precision of candidate patterns.
H06: Using IDAPO does not change the recall of candidate patterns.
For each hypothesis, we imply an alternative hypothesis Han (n=1 to 6) that states

that the use of IDAPO does result in a higher number of (candidate) patterns.

4.2 Participants and Training

We invited 24 master’s students who were enrolled in a course on Software Patterns at
the University of Groningen, to participate in our experiment. Participation was not
compulsory, but students were advised to participate, as one of the upcoming course
assignments would also be to identify patterns in an OSS product in order to perform a
pattern-based architecture review [4]; our embedded study with the students was there-
fore integrated with the course [26]. Fourteen students chose to participate. Table 1
presents demographic information of the participants.

Table 1. Participants of the experiment

Group ID Age Work experience Degrees Nationality
Control

P1 24 3½ years, developer B. (CS) Netherlands
P2 27 — B. (AIM) Greece
P3 28 ¼ year, developer B. (CS) Argentina
P4 28 — B. (BI, CS) Netherlands
P5 25 1 year, web developer B. (CS) Greece
P6 29 5 years, developer B. (CS); M. (Psy) Belgium
P7 25 — B. (BI) South Africa

Treat-
ment

P8 27 2 years, developer B. (CS) Netherlands
P9 25 1 year, web developer B. (CS) South Africa
P10 23 2 years, web developer B. (CS) Netherlands
P11 24 5 years, OSS developer B. (CS) Netherlands
P12 25 2 years, web developer B. (CS) Spain
P13 22 — — Netherlands
P14 21 — B. (CS) Netherlands

154 K. Stol, P. Avgeriou, and M. Ali Babar

Section 4.4 discusses the assignment procedure to the groups. The average age of
the control group was almost 24, whereas the average age of the treatment group was
approximately 26½. Note that work experience should be interpreted as part-time jobs.
One participant (P11) actively contributed to a small OSS project. All but one partici-
pant (P13) had finished a bachelor’s (B) degree in computer science (CS), bio-
informatics (BI) or applied informatics and multimedia (AIM). One participant (P6)
also had a master’s (M) degree in psychology (Psy). Most of them had varying levels
of expertise in different topics, as listed in Table 2, e.g., three participants assessed
themselves as having advanced knowledge of software engineering.

When we conducted the experiment, the students had attended six 2-hour lectures of
the 8-week course on Software Patterns. All students also had followed a course on
Software Architecture. The data presented in Tables 1 and 2 were gathered through a
pre-study questionnaire the day before the experiment.

Table 2. Participants’ self-assessed levels of expertise

Topic None Beginner Intermediate Advanced Expert
Software engineering 0 5 6 3 0
Software architecture 0 6 7 1 0
“Gang of Four” design patterns 3 5 5 1 0
Architectural patterns 0 10 4 0 0
Development process of OSS 5 5 4 0 0
Experience w. integrating COTS 4 3 4 2 1

4.3 Task and Materials

The task given to the participants was to identify as many architectural patterns in a
specified OSS project as possible: the JBoss application server. We selected JBoss for
three reasons. Firstly, it is an industry-strength system (no ‘toy’ project), which is
widely used in industry. Secondly, we expected that the participants would be able to
find sufficient information about this product in the limited available time, since it is
well known and extensive documentation is available. Thirdly, we already had insight
into the architectural patterns used in this product, which we would need as a marking
scheme for assessing the number of correctly identified patterns as well as the preci-
sion and recall. Participants in both groups were handed out the assignment form. The
treatment group was given two additional instruments: (1) our process as shown in Fig.
1 accompanied by a description of each step; and (2) a simple spreadsheet template to
record information found in each step. Additionally, the participants had access to the
five volumes of the Pattern-Oriented Software Architecture (POSA) series of books
(e.g., [2]), which list various software patterns.

4.4 Experiment Design

The experiment design was a between-subjects design, to compare results from a con-
trol group and a treatment group. Based on our previous experience in conducting
research with students, we expected that the participants would have varying levels of
experience and expertise. Since this would have constituted a threat to the outcome of
the experiment, we decided to non-randomly assign participants to the control and
treatment groups. Hence, this experiment was a quasi-experiment [27, 28]. Eight

 Design and Evaluation of a Process for Identifying Architecture Patterns 155

participants had indicated to have other course obligations in either the morning or
afternoon of the day of the experiment; based on this information, three participants
were assigned to the control group, and five were assigned to the treatment group.
Based on the information about work experience gathered in the pre-study question-
naire, we assigned the remaining six students, resulting in two equally sized and ap-
proximately equivalent groups (see Table 1).

The treatment, or independent variable manipulated by this study is the reference
process, with one treatment: IDAPO is provided, and one control: IDAPO is not pro-
vided. The dependent variable is the number of architecture patterns identified by the
participants using and not using the process.

4.5 Experiment Procedure

We conducted the experiment in two sessions. The control group performed the task in
the morning session, and the treatment group (provided with IDAPO) was invited for
the afternoon session. This order ensured that the control group did not see IDAPO (to
prevent the diffusion or imitation of treatment threat [29]). In both sessions, the re-
searcher gave a brief introduction (15 min) to explain the background and motivation
of identifying patterns. For the treatment group, the researcher also explained the dif-
ferent steps of IDAPO. Both groups were given two hours for this task. One participant
in the control group had to leave 30 minutes early due to other course obligations (P1).
After the two hours, participants were asked to fill out a post-study questionnaire; we
used separate post-questionnaires for the two groups, as only the treatment group could
be asked about their experiences with IDAPO.

4.6 Analysis and Results

4.6.1 Establishing a Set of Trusted Patterns
In order to be able to determine precision and recall measures, we need to compare the
findings to a certain set of “correct” patterns of which we are confident that they are
present in the product. In order to establish such a trusted subset of patterns, we used
three different sources. Firstly, we used a research report that presents an analysis of the
JBoss architecture (v.2.2.4, 2002) [30]. Secondly, we used a technical report (from 2005)
that reports on the architecture recovery of JBoss [31]. Thirdly, we used a report from a
previous group that had identified patterns in JBoss in the context of the 2009 edition of
the Software Patterns course (mentioned in [11]); one of its authors had extensive profes-
sional experience as an administrator of JBoss. Table 3 lists patterns identified
by the different sources, as well the patterns that we decided to include in the trusted
subset.

We made this selection based on the reports, which described the patterns and their
location in JBoss, as well as our level of confidence that we had in the presence of
these patterns. During our selection, we also considered that the different sources have
studied different versions of JBoss. We could not find sufficient justification to include
the Pipes-Filters and the Factory patterns. The column ‘Trusted’ indicates which pat-
terns are included in the trusted subset. We listed all patterns identified (for both con-
trol and treatment group) in a spreadsheet. In order to calculate precision and control
measures, we counted only those patterns that were listed in the trusted list (Table 3).

156 K. Stol, P. Avgeriou, and M. Ali Babar

Table 3. Derivation of a trusted subset of patterns

Pattern Liu Salehie et al. Report 2009 Trusted
Microkernel Yes Yes Yes Yes
Layers Yes Yes - Yes
Pipes & Filters Yes - - -
Broker Yes - Yes Yes
Dynamic proxy Yes - Yes Yes
Proxy Yes Yes - Yes
Interceptor Yes Yes Yes Yes
Client/server - - Yes Yes
Active repository - - Yes Yes
Factory - - Yes -

4.6.2 Descriptive Statistics
Table 4 presents the descriptive statistics of the results. We counted the number of
identified patterns of the control and treatment group as a whole. The first three col-
umns list the results when counting all patterns, disregarding their correctness; column
1 lists the total number of patterns of the control group (18); column 2 lists the total
number of candidate patterns identified by the treatment group (‘T. candid.’, 36), and
column 3 lists the total number of identified patterns (as output of step 9 in the process,
see Fig. 2) listed by the treatment group (‘T. final’, 16).

Table 4. Number of patterns per group, mean and standard deviation. Columns 1-3 consider all
patterns identified; columns 4-6 only consider the trusted patterns.

 Counting all patterns Counting trusted patterns only
(1) Contr. (2) T. candid. (3) T. final (4) Contr. (5) T. candid. (6) T. final

Total 18 36 16 10 21 10
Mean 2.6 5.1 2.3 1.4 3.0 1.4
Std. dev 2.1 2.3 2.4 0.9 1.1 1.8

Columns 4-6 show the results similarly as column 1-3, but only taking the trusted
patterns into account (resulting in 10, 21 and 10 patterns, respectively). When counting
trusted patterns only, there is no difference between the control group and the final
results of the treatment group. The treatment group as a whole identified 21 candidate
patterns, which suggests the treatment group was on the right track. Fig. 3 shows box-
plot diagrams for the results presented in columns 1-6.

Fig. 3. Distribution of numbers of identified patterns by the control group, treatment group
(candidate and final). Boxplots 1-3: counting all patterns, corresponding to columns 1-3 in
Table 9. Boxplots 4-6: trusted patterns only (corresponding to columns 4-6 in Table 4).

654321

N
u
m
b
e
r

o
f

p
a
t
t
e
r
n
s

10

8

6

4

2

0

 Design and Evaluation of a Process for Identifying Architecture Patterns 157

Table 5 presents the mean and standard deviation values of the precision and recall
rates, calculated for the control group and the treatment group. For the latter, we cal-
culated precision and recall both for the candidate results and the final results. Table 5
shows that the average precision of the control group is 0.56 with an average recall of
only 0.18. This suggests that about half of the control group’s patterns are correct, but
that (on average) less than 20% of the trusted patterns were identified. The candidate
results of the treatment group score better, with a precision of 0.62 at a recall rate of
0.37, suggesting that (on average) the treatment group identified more correct candi-
date patterns. However, when looking at the final results of the treatment group preci-
sion is only 0.30 at a recall of 0.18, worse than the control group. The relative high
values for the standard deviations of precision (0.35) and recall (0.23) for the treat-
ment group’s final results suggest a large variation among participants. We found that
three participants in the treatment group did not list any “final” patterns (as opposed
to one participant in the control group).

Table 5. Precision and recall for control, treatment candidate and treatment final results

 Control Treatment

Precision Recall
Candidate patterns Final

Precision Recall Precision Recall
Mean 0.56 0.18 0.62 0.38 0.30 0.18
Std. dev. 0.32 0.11 0.21 0.13 0.35 0.23

4.6.3 Results of Statistical Analysis
We performed statistical analyses on the number of identified patterns and the calcu-
lated precision and recall rates to test the six hypotheses. The assumptions underlying
parametric tests such as the t-test were not fulfilled [32], since the data contained out-
liers and we could not assume that the data have a normal distribution. Therefore, we
decided to use the Mann-Whitney U test, which is a non-parametric alternative to the t-
test for two independent samples [32]. Table 6 lists the p-values for each of the six
hypotheses. The columns ‘Candidate’ and ‘Trusted’ indicate whether the hypotheses
consider the candidate patterns (of the treatment group) and whether only trusted pat-
terns were counted, respectively. We reject a hypothesis if the p-value is less than the
significance level of α=0.05. We used SPSS version 18 for all statistical tests.

Table 6. Hypotheses and resulting p-values of the Mann-Whitney U test

Hyp. Variable Candidate Trusted P-value Decision
H01 Number of identified patterns No No 0.435 Retain H01
H02 Precision of identified patterns No Yes 0.324 Retain H02
H03 Recall of identified patterns No Yes 0.597 Retain H03
H04 Number of candidate patterns Yes No 0.051 Retain H04
H05 Precision of candidate patterns Yes Yes 0.555 Retain H05
H06 Recall of candidate patterns. Yes Yes 0.026 Reject H06

Table 6 shows that we could not find compelling evidence to reject hypotheses H01-
H05 (all p-values > α=0.05). In other words, there was not sufficient evidence to con-

158 K. Stol, P. Avgeriou, and M. Ali Babar

clude that using IDAPO resulted in a higher number of identified patterns (H01), a
higher precision of identified patterns (H02), a higher recall of identified patterns (H03),
a higher number of candidate patterns (H04), and a higher precision of candidate pat-
terns (H05). With respect to H04, we found that there is some evidence (p=0.051) that
using IDAPO results in a higher number of candidate patterns, but since the p-value is
smaller than our significance level (α=0.05) we do not reject H04. On the other hand,
we found evidence (p=0.026 < 0.05) to reject hypothesis H06 (‘using IDAPO does not
change the recall of candidate patterns’). Together, these results suggest that IDAPO
helps to improve the recall of candidate patterns.

4.6.4 Results of Post-study Questionnaires
The post-study questionnaire questions were rated using a five-point Likert scale, rang-
ing from Totally Disagree (TD), to Disagree (D), Neutral (N), Agree (A) and Totally
Agree (TA).

Results of Treatment Group. Table 7 presents the results for the treatment group.
Numbers indicate the number of participants that gave a certain rating, e.g., two sub-
jects answered ‘Neutral’ on question T1.

Table 7. Post-study questionnaire results for the treatment group. High scores are highlighted

ID Question TD D N A TA
T1 I followed the process step by step in the order prescribed. 1 1 2 1 2
T2 Identifying the type and domain of the software is helpful. 0 1 2 2 2
T3 Identifying the used technologies is helpful to identify patterns. 0 1 1 1 4
T4 The process helped me to identify patterns that I wouldn’t have

found otherwise.
0 4 2 1 0

T5 The suggested order of steps in the process made sense. 0 2 2 1 2
T6 Storing information per step in the spreadsheet was useful. 0 2 2 1 2

Table 7 shows that the degree to which the subjects followed IDAPO varied (T1).
This suggests that participants disliked the process rigid order of steps, and would like
to have more flexibility. The results for T2 suggest that most subjects agree that identi-
fying the type and domain of the software is helpful. The results show that identifying
used technologies (T3) was considered to be very helpful. Most participants did not
think that IDAPO helped to identify patterns that could not have been identified other-
wise (T4). Two participants were undecided, and only one participant agreed. Partici-
pants were divided on whether the order of IDAPO’s steps was sensible (T5). Also,
participants were equally divided on whether storing information per step in a spread-
sheet was useful (T6).

We also gathered results from a few open questions. Some suggestions were:

- A spreadsheet was not considered suitable to record intermediate information;
- The process should be made less sequential;
- After identifying type and domain, always read documentation to learn about

components and used technologies.

The main challenges encountered by the treatment group were:

 Design and Evaluation of a Process for Identifying Architecture Patterns 159

- To find the right documentation and information;
- Lack of time to read source code, and also to identify patterns;
- Unfamiliarity with JBoss.

Results of Control Group. Table 8 lists the questions and the scores for the control
group. The results for C1 show that most participants either disagreed or were unde-
cided on whether they knew what steps to take to identify architecture patterns. Only
one participant indicated he knew what approach to take. This confirms our assertion
that there is a need to provide some guidance in this task. The second question (C2)
was to find out whether participants found sufficient information to identify patterns.
Again, most participants indicated disagreement or neutrality. This suggests that, in
general, there is a need to identify useful sources of information.

Table 8. Post-study questionnaire results for the control group

ID Question TD D N A TA
C1 I knew what steps to take to perform the assignment. 0 2 4 1 0
C2 I found sufficient information to identify patterns. 1 2 2 2 0

We also asked the participants for suggestions for improvement as well as chal-
lenges encountered. Some suggestions included:

- Use of a debugger to trace the execution to find relations among components;
- Search for images of the architecture that may lead to useful sources.

The main challenges encountered by the control group were:

- Unfamiliarity with JBoss; getting to know the system;
- Studying the source code is like finding a needle in a haystack;
- Finding the right information; inconsistent documentation; pattern naming is

inconsistent (e.g. a ‘proxy’ component implementing the ‘dispatcher’ pattern)

5 Discussion

In this section we interpret the findings from the experiment, the post-study question-
naires and discuss implications for further research. The overall motivation for the
development of IDAPO was to provide guidance to practitioners in identifying archi-
tecture patterns in an OSS product. While we did not find evidence that the use of
IDAPO helped to identify more architecture patterns than the control group who did
not use IDAPO, the results showed some modest advantages. The results of the expe-
riment suggest that the use of IDAPO helped to identify more candidate patterns that
were considered correct (based on a set of “trusted patterns” derived in subsection
4.6.1). This means that many potentially present patterns identified based on informa-
tion about the product’s type, domain and used technologies (steps 1 and 2 in Fig. 2)
turned out to be correct. Questions T2 and T3 in Table 7 confirm that participants con-
sidered these to be useful steps. These results suggest that IDAPO is helpful to identify
candidate patterns. The use of IDAPO also helped to improve the recall of the candi-
date patterns, which indicates that compared to the control group, a larger number (on
average) of correct patterns were recovered.

160 K. Stol, P. Avgeriou, and M. Ali Babar

On the other hand, when considering only the final results of the treatment group,
we did not find any evidence that the use of IDAPO resulted in more identified patterns
than the control group (H01), nor in a higher precision (H02) or recall (H03). This sug-
gests that, while IDAPO helps to identify candidate patterns, the process does not pro-
vide sufficient guidance to assess that the patterns are in fact present. Questions T1, T4
and T5 in Table 7 seem to confirm this; participants did not follow the steps in the
suggested order (T1), participants did not think that IDAPO exclusively helped to
identify certain patterns (T4), and participants were divided on whether the order of
steps made sense (T5). Based on these observations as well as the results of the post-
study questionnaires of both the control and treatment groups, we point out the strong
points of IDAPO as well as points for improvement. IDAPO is useful for guidance, but
should not be prescriptive. Rather, a process framework seems to be more appropriate,
from which a user can select appropriate activities to derive a process that is tailored to
the context and needs of the user. This also allows prioritizing tasks in case that time is
limited. Furthermore, it is important to investigate ways that a user can get familiar
with a system more quickly as well as approaches to find appropriate documentation
and information. Better ways to record intermediate information that support the user
to manage this information and draw appropriate conclusions should be investigated.
The use of tools (e.g., debuggers) could provide additional ways to acquire more in-
formation of a system’s structure. Through our interviews we found that the use of
tools was often not very helpful; therefore, we emphasize that it is important to under-
stand how tools can provide support and what type of information can be acquired.

5.1 Threats to Validity

Conclusion Validity. The number of subjects is a threat to conclusion validity. Four-
teen subjects were willing to participate in our experiment, which were divided into
two groups (control, treatment) of seven. However, we did not intend to make conclu-
sive statements based on this single experiment only. Rather, our results should be
considered exploratory and help us to gain insights in the usefulness of IDAPO.
Construct validity. There are a few limitations to construct validity. Firstly, we li-
mited the total time for identifying patterns to two hours. This limitation has a direct
effect on the amount of work that can be done, and therefore on the number of patterns
that can be identified. Participants of the treatment group may have had to spend rela-
tively much time on understanding the steps of IDAPO. However, we chose to limit
the time duration in order to be able to recruit a sufficient number of subjects; as the
time duration of an experiment increases, fewer participants will be willing to partici-
pate. Internal validity. We discuss a number of threats to internal validity, which is
concerned with the degree to which a change of the dependent variable can be ascribed
to a change of the independent variable. The first is instrumentation: the process de-
scription and diagram of IDAPO may not have been easy to understand by the treat-
ment group. Though we explained the process to the treatment group, participants may
not have fully understood the steps to take. Another instrumentation threat is our mark-
ing scheme for assessing “correct” patterns. This instrument (discussed in subsection
4.6.1) was used to perform calculations of precision and recall. Our conclusions de-
pend on the extent to which we correctly confirmed the patterns. We derived this
trusted subset of patterns based on three independent sources. However, the three re-

 Design and Evaluation of a Process for Identifying Architecture Patterns 161

ports do not fully agree on the patterns. In order to decide which patterns to include in
the trusted subset, we have (a) studied the description of how the patterns were imple-
mented, thereby assessing the credibility of the description and the pattern’s usage, and
(b) attempted to find additional information through web searches in order to be able to
confirm them. It is noteworthy that the patterns listed by the three sources that we
could not confirm (and therefore were not included in the trusted subset) were not
identified by either group. Besides this, JBoss may contain patterns that have not been
listed by any of the three reports, which means that these are not included in our trusted
subset. The second threat is that of selection: the control and treatment groups may not
be as equivalent as we intended in terms of work experience and knowledge of related
topics (see Table 1). Furthermore, the average age in the control group was 2.5 years
higher (26½) than the average age in the treatment group (almost 24); this difference
suggests that the control group has a few more years of experience in the field of soft-
ware engineering. This could have negatively biased the results of the treatment group,
which strengthens the decision to reject hypothesis H06. External validity. Threats to
external validity are those that may limit the applicability of the results to industry
practices. The use of master’s students as subjects is an important factor that deserves
attention, and has been discussed in the literature [26, 33, 34]. We do not consider the
use of students to be a major threat, since it is not yet a common practice in industry to
identify patterns in an OSS product. Some researchers mention that students are suita-
ble to be used to evaluate new techniques [35]. Furthermore, since the participants
were master’s students (rather than undergraduates), they can be considered to be ‘no-
vice’ professionals. A potential threat to external validity is that a treatment is applied
on a ‘toy’ problem. However, we selected the JBoss application server for this experi-
ment, which is an industrial-strength software product.

6 Conclusion and Future Work

In this paper we present and evaluate IDAPO: a process that provides guidance to
practitioners who wish to identify architecture patterns in an OSS product. The process
design is based on empirically identified steps. We have conducted a quasi-experiment
to empirically evaluate IDAPO. We found evidence that the first few steps of IDAPO
are particularly helpful to identify candidate patterns (potentially present in the prod-
uct). We believe that IDAPO can be a valuable contribution to the toolkit of practition-
ers who need to evaluate OSS products. However, the results also suggested that the
other steps of IDAPO could be improved. We believe that the process steps should
become more flexible, and become part of a process framework, which can be tailored
to the user’s needs. Furthermore, it would be valuable to investigate how IDAPO can
support identification of architectural tactics, such as documented in [1]. Tactics sup-
port the achievement of quality attributes and can therefore provide valuable insights
similar to the information conveyed by patterns.

Acknowledgments. This work is partially funded by IRCSET under grant no.
RS/2008/134 and by Science Foundation Ireland grant 03/CE2/I303_1 to Lero.

162 K. Stol, P. Avgeriou, and M. Ali Babar

References

[1] Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

[2] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-oriented
Software Architecture - A System of Patterns. J. Wiley and Sons Ltd., Chichester (1996)

[3] Kazman, R., Klein, M., Barbacci, M., Longstaff, T.: The Architecture Tradeoff Analysis
Method. In: ICECCS, pp. 68–78 (1998)

[4] Harrison, N.B., Avgeriou, P.: Pattern-Based Architecture Reviews. IEEE Software (2011)
(in Press)

[5] Hauge, Ø., Ayala, C., Conradi, R.: Adoption of Open Source Software in Software-
Intensive Organizations - A Systematic Literature Review. Inf. Softw. Technol. 52(11),
1133–1154 (2010)

[6] Hauge, Ø., Sørensen, C.-F., Røsdal, A.: Surveying Industrial Roles in Open Source Soft-
ware Development. In: Int’l Conf. on Open Source Systems, pp. 259–264 (2007)

[7] Ruffin, C., Ebert, C.: Using open source software in product development: A primer.
IEEE Software 21(1), 82–86 (2004)

[8] Stol, K., Ali Babar, M.: Challenges in Using Open Source Software in Product Develop-
ment: A Review of the Literature. In: 3rd FLOSS Workshop, ICSE 2010, pp. 17–22
(2010)

[9] Dong, J., Zhao, Y., Peng, T.: Architecture and Design Pattern Discovery Techniques - A
Review. In: Int. Conf. Softw. Eng. Research and Practice, pp. 621–627 (2007)

[10] Tonella, P., Torchiano, M., du Bois, B., Tarja, S.: Empirical studies in reverse engineer-
ing: state of the art and future trends. Empir. Software Eng. 12(5) (2007)

[11] Stol, K., Avgeriou, P., Ali Babar, M.: Identifying Architectural Patterns Used in Open
Source Software: Approaches and Challenges. In: EASE, Keele, UK (2010)

[12] Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discpline.
Prentice-Hall Inc., Englewood Cliffs (1996)

[13] Harrison, N.B., Avgeriou, P.: Leveraging Architecture Patterns to Satisfy Quality
Attributes. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 263–270. Springer,
Heidelberg (2007)

[14] Stol, K., Ali Babar, M.: A Comparison Framework for Open Source Software Evaluation
Methods. In: Int’l Conf. on Open Source Systems, pp. 389–394 (2010)

[15] Fitzgerald, B.: The transformation of open source software. MISQ 30(3) (2006)
[16] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading (1995)
[17] Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software

architecture description languages. Trans. Softw. Eng. 26(1), 70–93 (2000)
[18] Seaman, C.B.: Qualitative methods in empirical studies of software engineering. Trans.

Softw. Eng. 25(4), 557–572 (1999)
[19] White, S.A.: Introduction to BPMN, BPTrends (July 2004)
[20] van Heesch, U.:

http://www.cs.rug.nl/search/ArchPatn/OpenPatternRepository
[21] Booch, G.: http://www.handbookofsoftwarearchitecture.com (accessed

December 5, 2010)
[22] Falessi, D., Ali Babar, M., Cantone, G., Kruchten, P.: Applying empirical software engi-

neering to software architecture: challenges and lessons learned. Empir. Software
Eng. 15(3), 250–276 (2010)

 Design and Evaluation of a Process for Identifying Architecture Patterns 163

[23] Wohlin, C., Höst, M., Henningsson, K.: Empirical Methods and Studies in Software En-
gineering. LNCS, pp. 145–165 (2008)

[24] Jedlitschka, A., Pfahl, D.: Reporting Guidelines for Controlled Experiments in Software
Engineering. In: ISESE, pp. 95–104 (2005)

[25] Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, Heidelberg (2008)
[26] Carver, J.C., Jaccheri, L., Morasca, S., Shull, F.: A checklist for integrating student em-

pirical studies with research and teaching goals. Empir. Software Eng. 15(1) (2010)
[27] Kampenes, V.B., Dybå, T., Hannay, J.E., Sjøberg, D.I.K.: A Systematic Review of Qua-

si-Experiments in Software Engineering. Inf. Softw. Technol. 51(1), 71–82 (2007)
[28] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., el Emam,

K., Rosenberg, J.: Preliminary guidelines for empirical research in software engineering.
Trans. Softw. Eng. 28(8), 721–734 (2002)

[29] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimen-
tation in Software Engineering: An Introduction. Kluwer Academic, Dordrecht (2000)

[30] Liu, J.: Research Project: An Analysis of JBoss Architecture,
http://www.huihoo.org/jboss/jboss.html (accessed March 2, 2011)

[31] Salehie, M., Li, S., Tahvildari, L.: ’Architectural Recovery of JBoss Application Server’,
Tech. Report no. UW-E&CE#2005-02, University of Waterloo (2005),
http://stargroup.uwaterloo.ca/~s7li/publications/ieee_papers
/uw-tr-1.pdf

[32] Hollander, M., Wolfe, D.A.: Nonparametric statistical methods, 2nd edn. John Wiley &
Sons, Inc., Chichester (1999)

[33] Höst, M., Regnell, B., Wohlin, C.: Using Students as Subjects—A Comparative Study of
Students and Professionals in Lead-Time Impact Assessment. Empir. Software Eng. 5(3),
201–214 (2000)

[34] Svahnberg, M., Aurum, A.K., Wohlin, C.: Using Students as Subjects – An Empirical
Evaluation. In: ESEM, Kaiserslautern, Germany, pp. 288–290 (2008)

[35] Berander, P.: Using students as subjects in requirements prioritization. In: ISESE (2004)

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 164–179, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Autonomic Computing Driven by Feature Models and
Architecture in FamiWare

Nadia Gamez, Lidia Fuentes, and Miguel A. Aragüez

Dpto de Lenguajes y Ciencias de la Comunicación, Universidad de Málaga
{nadia,lff,m_a_a_r}@lcc.uma.es

Abstract. A wireless sensor network is an example of a system that should be
able to adapt its sensor nodes to some context changes with minimum human
intervention. This means that the architecture of the middleware for sensors
must encapsulate a dynamic mechanism to allow reconfiguration. We present a
novel approach to achieve self-adaptation based on software product lines and
on the autonomic computing paradigm for the FamiWare middleware.
FamiWare uses feature models to represent the potential middleware
configurations at runtime. Each configuration is automatically mapped to the
corresponding architectural representation of a specific middleware product.
Following the autonomic computing principles, FamiWare defines a
reconfiguration mechanism that switches from one architectural configuration
to another by means of executing a plan. This is possible thanks to the loosely
coupled architecture of FamiWare based on an event-based publish and
subscribe mechanism. We evaluate our work by showing that the resource
consumption and the overhead are not so critical compared with the benefits of
providing this self-adaptation mechanism.

Keywords: Autonomic Computing, Middleware, Feature Models, Product
Lines Architectures, Event-based Architectures, Models at Runtime.

1 Introduction

Wireless Sensor Networks (WSNs) [1] are currently attracting huge interest due to
their potential of applicability in a variety of ubiquitous and ambient intelligence
systems. These networks employ from a few sensors to hundreds and thousands of
them, linked by a wireless medium, and are able to perform distributed sensing tasks
for the purpose of monitoring certain physical phenomena, indoors or in remote
environments. Currently, WSNs can support many novel and exciting applications in
a wide range of fields such as, smart spaces, traffic control, habitat monitoring or
ambient assisted living applications, being considered one of the top technologies that
are changing the world.

From the point of view of engineering such systems, the development and
deployment of WSNs applications can be considered a very complex task, since such
networks pose several distinct requirements, comparing with traditional information
systems. Some of these requirements are the critical resource limitations of nodes, the

 Autonomic Computing Driven by Feature Models and Architecture in FamiWare 165

heterogeneity of nodes, the managing of a high variety of routing protocols between
the nodes and the low-level programming abstractions normally used. One of the
alternatives being proposed recently to face such requirements is the development of a
middleware, specific for WSNs. Concretely in our previous work, considering the
high variety of hardware and software available, we have defined a family of
middleware for Ambient Intelligence (AmI) systems, including WSNs (FamiWare
[2]), instead of developing a single middleware, normally very specific of a
technology or property [3]. We have used the Software Product Line (SPL) [4]
approach, to characterize the inherent variability of the WSNs domain by SPL feature
models (FM) [5]. In order to facilitate the easy customization and configuration of the
middleware Product Line Architecture (PLA), the composition among middleware
services themselves and between the services and the final application is performed
with a Publish/Subscribe event-based mechanism [2]. We have also defined a
mapping between the features and the components and the PLA. These FM and PLA
are the base of a model driven process that derives a minimum configuration (i.e.
architecture with less numbers of components) adapted to the requirements of each
network node, especially those referring to sensor resources, so scarce in WSNs. The
input of this process is the list of specific features of a WSN (e.g. number and kind of
nodes or routing protocols) and the output is the minimum FamiWare configuration
including the service implementations adapted for each node.

However, once the middleware for a WSN is deployed, it normally requires some
self-adaptation to context changes. Specifically, a WSN suffers the symptoms of
degradation, such as energy loss or failure of some nodes, which requires explicit
management action. But considering WSNs are usually deployed in remote
unattended or inaccessible areas, the sensor nodes should be able to recover from
degradation with minimum human intervention. Therefore, the mechanisms proposed
for making some adaptation in response to system degradation or to any context
change must avoid the remote administration by technicians and especially must
consider the saving of energy to guarantee the system survival. Considering this, such
middleware should be as autonomic as possible. In this paper, we present a novel
mechanism to achieve self-managing in FamiWare, which applies the Autonomic
Computing (AC) paradigm [6] at middleware level. An autonomic middleware should
provide mechanisms for automatic reconfiguration of services (self-configuration),
automatic detection and correction of faults (self-healing) and automatic configuration
of optimal resource parameters according to context variations (self-optimization).

At design time, FamiWare uses feature models and the middleware architectural
model to derive middleware configurations. What we propose here, is to use these
models also at runtime to drive the reconfiguration of the middleware for failure
recovery and/or self-adaptation. So, we use a models@runtime approach, to interpret
a plan with the necessary actions that must be executed to move from a configuration
of the middleware to a new configuration in response to context changes. The main
advantage of implementing the AC by using models@runtime is that our process can
ensure that the architectural configurations running in every network node, and at any
moment, are correct according to the global network restrictions. By applying AC and
models@runtime at the middleware level, our approach promotes an efficient
utilization of network resources, which are shared by many applications. Other
approaches implement self-managing at code level [7], but the main drawback is that

166 N. Gamez, L. Fuentes, and M.A. Aragüez

everything is hardcoded, so a correspondence between the reconfigured code and the
models used at design time is lost; not being possible to assure that every middleware
instance will enter a valid state after a reconfiguration is executed in all nodes.

Finally, we evaluate our work by showing mainly that the overhead is not so
critical comparing with the benefits of providing an autonomic behaviour in WSNs.

The remainder of the paper is organized as follows. In Section 2, we discuss the
WSNs challenges and how we achieve them. In Section 3, the FamiWare autonomic
computing process is described. Furthermore, in this section, we detail the plans and
how the dynamic reconfiguration changes are performed in the middleware
architecture. The evaluation of our approach is presented in Section 4. In Section 5,
we compare our approach with related works. Finally, in Section 6 we outline some
conclusions and future works.

2 Motivation

Autonomic Computing was first proposed by IBM in 2001, and its main goal is to
endow distributed systems with self-management capacities. In this section we will
first discuss the special challenges of WSNs that made them good candidates to take
advantage of AC. Finally, we will present our process to derive valid middleware
architectural configurations using an SPL approach, and how we reuse the design
models also at runtime to implement AC for WSNs.

2.1 Autonomic Computing for Wireless Sensor Networks

We consider that the peculiarities of WSNs made them very appropriate to take
advantage of the AC paradigm. This is because, as we already explained in the
introduction, WSNs are usually deployed in dynamic and hostile environments with
no human presence. So, they must be tolerant to the malfunctioning and loss of
connectivity of the nodes and other context changes and furthermore, they must be
energy efficient. The goal of AC in WSNs is to achieve an autonomic reconfiguration
of nodes in order to have a more optimal network functioning. Now, we detail the
specific challenges that made the WSNs so suitable to applying the AC paradigm.
Our goal is to cover all these challenges using our event-based architecture
middleware family together with FMs and models@runtime to put into practice AC.

- C1 Self-management: These systems must be able to heal failures and dynamically
optimize the functioning of the system in a power efficient way, freeing human
administrators from low-level management tasks. WSNs require implement a self-
management mechanism to guarantee the survival of the application over time.

- C2 Middleware: Sometimes a given WSN gives support to many applications. For
example, the sensor network installed in the junctions of a city to control the urban
traffic can support different control applications (as collect traffic statistics or detect
accidents). Consequently, the self-management mechanism should be implemented
at the middleware level, so that all the applications will benefit from the self-ities.
Furthermore, the architecture of the middleware has to be the most flexible as
possible to allow customization and reconfiguration.

 Autonomic Computing Driven by Feature Models and Architecture in FamiWare 167

- C3 Models: Several WSNs works [7,8] already implement some autonomic
behaviour but normally each of them is more focused on providing a specific
reconfiguration (e.g. about routing protocol [8]). Also, most of them use
rudimentary frameworks where an expert in low level WSNs programming must
define the reconfiguration process at code level. However, it would be better that
this process can be specified and verified at design level by a domain expert
modeller. So, the correspondence between the model of the architectural design and
the code installed in every moment is guaranteed.

- C4 Compatibility: In these networks, the architectural configurations installed in every
node must be compatible. For example, the routing protocol used by a sensor node
must be the same as the one used by the sink node. So, the reconfiguration process
must ensure that new configurations of different kinds of nodes are compatible.

- C5 Context variability: In WSNs the variability of the context situations that
triggers a reconfiguration is very high. But after revising real use cases found in the
literature and after doing some experiments, we conclude that this variability is
bounded. This is because reconfiguration can only be caused by changes inside
nodes or in network connections. So, a challenge to make the autonomic mechanism
usable and effective is to characterise the context changes as a bounded set. This
help to define a mapping from context changes to a list of reconfiguration plans.

- C6 Reconfiguration changes: Often optimizing the network functioning entails the
execution of basic operations in the nodes, such as reducing the monitoring
frequency. Also, more complex operations are required such as changing the routing
protocol. So, particular attention to fine-grained modifications (e.g. modification of
components parameters) must be considered, although coarse-grained ones must
also be part of the autonomic mechanism (e.g. adding or removing components).

Fig. 1. FamiWare Configuration Process

2.2 Feature Models and Event-Based Architecture for Autonomic Computing

The goal of FamiWare is to cope with the inherent variability of AmI systems, and in
particular that of WSNs. We define an automatic process to derive different
middleware configurations depending on the hardware and software of the deployed
WSN. We apply model-driven and SPL engineering techniques to automate this
configuration process. Fig. 1 gives a general overview of it (a complete version can be
found in [9]). The first step when creating a SPL is to analyze the variability inherent
in the AmI middleware domain. For this task, a feature model [5] is constructed. A
FM specifies which elements, or features, of the family of products are common and
which are variable. In addition, it is possible to specify formal constraints or

168 N. Gamez, L. Fuentes, and M.A. Aragüez

dependencies between these elements. In the next step the PLA of the middleware,
which contains both the commonalities and the variabilities specified by the FM is
defined. A Feature Mapping between the FM and the PLA defines the
correspondence between features and middleware components. This correspondence
is largely far from being trivial, since each feature is often designed by using more
than one component, depending either on the implementation strategies of the service,
or on the devices development technology [9]. The customization of the middleware
architecture is determined by a set of high-level parameters (e.g. number of sensors or
the necessary services). The goal of our process is to reduce the number of high-level
parameters the user needs to specify in order to customise a product, and this is
achieved by exploiting the dependencies between features. This means that the user
modeller only has to provide a minimum set of high-level parameters as input features
and the rest are automatically inferred by the process using a constraint solver
provided by Hydra [10] (our feature modelling tool). A larger set of low-level
parameters (e.g. services implementation for TinyOS version) is automatically
obtained. Then, our process calculates the particular middleware architecture, by
means of model transformations using the feature mapping. This customised
architectural model is the input of a model-to-text transformation, which produces
100% of the code for deploying this middleware into the devices.

FamiWare follows a microkernel plus services architecture. The composition among
services themselves and between the services and the application is performed with a
Publish/Subscribe event-based mechanism, specifically a reduced implementation of the
Data Distribution Service (DDS) [12] interfaces. This composition mechanism decouples
the services, so it is easier to generate a configuration with variable services and to
reconfigure them [9]. In Fig. 2, we show a partial architecture of FamiWare containing
some services related with the AC process. The microkernel provides the DDS interface
to allow application and services subscribing or publishing events (called topics). The
microkernel also encapsulates the Data Delivery service, which sends data to local and
remote components. The microkernel interface is required by both: the application, which
subscribes to some topics according to its functionality, and the services that publish and
subscribe topics. For example, the service that monitors the battery (BatteryMon)
publishes the battery level and the Context-Awareness service is subscriber to it. For a
detailed description of FamiWare architecture we refer the interested reader to [2].

Fig. 2. FamiWare Partial Architecture

The features considered to derive an initial middleware configuration for each
network node, are known at design time (e.g. number and location of nodes). The aim
of our current work is to generate dynamically different configurations, according to
the variable conditions raised at runtime, to achieve autonomic behaviour of our

 Autonomic Computing Driven by Feature Models and Architecture in FamiWare 169

middleware. We address C1 and C2, since we tackle the WSNs self-management
developing an autonomic middleware family that follows a Publish/Subscribe
architecture. Likewise our design process, we propose to model the set of
environmental elements that may change during runtime also with an FM and the
correspondence between the features and the architectural elements (fulfil C3). The
rationale behind this is that the set of possible changes that may affect the functioning
of a WSN can be seen as a set of variable features that may trigger an autonomic
reconfiguration. Note that as we discussed in C5 the cardinality of this set is bounded.
For Hydra at design time, a valid configuration corresponds to a set of features of the
FM that satisfies the tree constraints (as mandatory, optional, alternative OR and
alternative XOR) and the cross-tree constraints expressed by the dependencies
between features. Therefore, we introduce the concept of valid configurations at
runtime, where they are generated if one or more features change during middleware
execution. The base of our models@runtime mechanism is that the set of actions that
must be executed to pass from one valid configuration to another is specified in a plan
model compliant with feature and architectural models. We would like to highlight
that since we use models@runtime formally verified with Hydra, we can assure, as
we mentioned in C3, that the middleware architectural configurations running at any
given moment in all the network nodes are correct and work properly. Furthermore,
we extended Hydra with clonable features [11] and we model each node sensor as a
clonable feature, where the cloning of these features leads to the cloning of the related
structure. Them, the dependencies between the clones guarantee that the
configurations of all the nodes of a certain network are compatible, as is required by
C4. Also, as part of the feature model we specify the elements of the middleware
architecture that can be changed after a context change achieving C6.

Fig. 3. FamiWare Autonomic Computing Process

3 FamiWare Autonomic Computing Process

AC relies on four functions that share knowledge: observes environment details
(monitor); analyzes them to determine if something needs to change (analyze); creates
a plan that specifies the necessary changes (plan); and performs these actions
(execute) [6]. But, how these functions are implemented is not a trivial task and is not
defined anywhere. We discuss how the realization of the AC functions can be mapped
very naturally and in a straightforward manner for the domain of WSN. We have

170 N. Gamez, L. Fuentes, and M.A. Aragüez

adapted the architecture presented in [6] to our models@runtime AC process, as is
shown in Fig. 3. The monitor, analyze and execute functions are implemented as
services provided by our middleware (see Section 3.2). Our plans are models that
contain the tasks to be performed to change from a configuration to another (see
Section 3.3). The knowledge needed by AC functions is determined by how the
reconfiguration is driven for WSNs. We use FM and their corresponding architectural
configurations (see Section 3.1).

3.1 Knowledge: Feature Models and Architectural Configurations

After network deployment, a valid configuration, compliant with the FM, is running
in each node. Since AC mechanism must define how to go from one configuration to
another one, the AC functions must share knowledge about the FM and the current
architectural middleware configuration. Fig. 4 shows some features of our FM that
represent the variability found in two services provided by FamiWare middleware:
monitoring and context-awareness. We use FMs to express variability of nodes
known at design time and also the variability of context elements, only used at
runtime for network reconfigurations. So, we distinguish two levels in our FM:

- FM at design time (Fig. 4, top): It mainly models all the possible device
characteristics (e.g. OS or radio technologies), network characteristics (e.g. routing
protocol) and middleware services (e.g. data fusion or context-awareness). As part
of the FM, we define a set of dependencies between features. We can distinguish
two types of dependencies: (1) local, which are defined between features modelling
characteristics of one node (e.g. if coordination service is selected the node must be
a cluster-head (CH) or a sink); (2) network, which defines dependencies between
cloned features (e.g. node sensors), to assure the compatibility between the
distributed configurations (e.g. all the nodes have to use the same routing protocol).

- FM of the context (Fig. 4, down): We extended the original FM with new features
that model all the possible context changes considered by our AC functions. In this
FM, we model: (1) for each service the elements of which may be changed at
runtime (e.g. frequency of reading the battery); (2) parameters of features already
defined at design time, but that can be changed at runtime (e.g. the aggregation
function used by the data fusion service); (3) the set of plans and their task and
parameters. Also, new context dependencies between these features are defined.

Fig. 4. Partial Feature Model of two FamiWare Services

 Autonomic Computing Driven by Feature Models and Architecture in FamiWare 171

In order to obtain the subsequent valid configurations generated at runtime, Hydra
considers the three types of dependencies (local, network and context).

3.2 Autonomic Computing Services in FamiWare

Monitor: Monitoring Services. FamiWare provides several monitoring services that
observe the possible element of the context that may change. We have reviewed the
literature on WSNs applications the conclusion was that all of them consider similar
context elements to perform dynamic adaptation:

- Battery: the level of a sensor node battery.
- Network Energy: the energy map of an entire network or of a group of sensors.
- Node Production: the amount of data sent by a node to other nodes of the network.
- Network Traffic: the amount of traffic in the network.
- Position: the position of a node in a network (GPS or relative positioning

algorithms).
- Topology: the position of all the nodes of the network or of a group of sensors.
- QoS: the QoS required by the application.
- Nodes State: the state of a node (alive, dead, idle, slept, etc.).

These monitoring services are represented as optional features in the FM (see Fig. 4)
corresponding to components in the PLA, so different configurations could include
different monitoring services. Concretely, those that collect data from some network
nodes are only instantiated in CH or sinks, as is specified in the dependencies of Fig.
4. Each monitoring service feature has several sub-features relevant for our AC
process. That is, the attributes that may trigger a change and the parameters that may
change at runtime. For example, the monitoring of the battery is defined by the
current level BatLevel (trigger) and by the frequency BatFrequency (parameter). This
is represented as component parameters in the PLA.

Analyze: Context-Awareness Service. This service is responsible for the awareness
of the context, using the data provided by the monitoring services, and initiates the
reconfiguration process as a consequence of a context change. It is also defined as
part of the FM, since the list of monitored data used to be aware of the context is also
variable. For example, in a sensor configuration, it could be useful to consider all the
monitoring services observing the context, but in other configurations only the data
about the battery is to perform a reconfiguration. Fig. 4 shows that this service is
defined by the list of context data appropriate for each node (optional) and the plan
that must be chosen by this service when the context changes, both represented as
component parameters in the architecture. We define a child feature for each context
data, which specifies simple logical expressions that may trigger a context change.
For example, the Context-Aware service installed in a sink node, is receiving values
of energy of the other nodes from the energy network monitoring service, but only
when it detects a battery level less than 30% (EnLT30) in more than 50% of the nodes
(NodeEnMT50), it chooses the corresponding plan. The available plans are modelled
by a XOR-alternative group in the FM. Also, dependencies between the state of a
node (formed by the list of current values of context attributes, e.g.
energy_level=28%; number_nodes=51%) and the plan to choose are defined (as is
shown in dependencies of Fig. 4, the correct plan for this example will be Plan05).

172 N. Gamez, L. Fuentes, and M.A. Aragüez

Reconfigure: Reconfiguring Service. This service interprets a plan and executes the
tasks to reconfigure the system. Each task implies performing hardware or software
modifications, for instance modify the attribute of a software component. Some of
these tasks can be more complex, requiring the execution of actions in several nodes.
For example, at hardware level, for putting to sleep a set of nodes, the sink or CH
sends an event with a request to turn on the sleep mode some nodes for a certain
period of time (given as input parameters of the plan). At code level, this is
implemented by means of turning off the radio of the node. Also, some software
changes can be considered complex, as changing the routing protocol, consists of
uploading a new image of code in every node.

3.3 Plan: Models@Runtime

In FamiWare a Plan, which consists of a list of tasks, represents the difference
between two FM configurations, defined in terms of the FM of the context. A Plan is
specified in OWL-S, an ontology of services for semantic description of Web
services. Fig. 5 shows a reconfiguration plan for a sink or a CH to recover from a loss
of energy detected in some nodes. Fig. 5.a depicts a graphical representation of the
plan generated using the OWL-S editor of Protégé and Fig. 5.b shows a simple extract
of the corresponding owl file (our process removes tags and generates a more efficient
reduced version for being loaded in sensors). A plan is modelled as a composite
process that defines an ordered list of tasks (or atomic process in OWL-S
terminology). In our example, three tasks are defined: (1) change the routing protocol;
(2) reduce the monitoring frequency; (3) and finally, put some nodes in a sleep mode.
As is shown in Fig. 5.b the tasks may have input parameters, as in the case of the
NodesSleep task, the list of the nodes to sleep and the period of time to be in sleep
mode. These parameters are also represented as part of the FM of the context, and are
provided by the Context-Awareness service as part of the elected plan to the
Reconfiguring service. Fig. 5.c, depicts the partial Famiware architecture for a sensor
node before and after reconfiguration, showing only the features that were modified
by the plan. This example illustrates the two kinds of changes: the coarse-grained
modifications, as the addition of the TYMO routing protocol component and the
removal of the DRIP component; and the fine-grained modifications as the change in
the values of the Sleep period and Frequency parameters in two components.

a) b)

<Sequence>
 <AtomicProcess ID="MonitoringFrecuency">
 <Input ID="MonitNodes"/>
 <Input ID="MonitValue"/>
 <AtomicProcess ID="NodesSleep">
 <Input ID="TimeSl"/>
 <Input rdf:ID="NodesSl"/>
 <AtomicProcess rdf:ID="RPChange">
 <Input ID="RP"/>
</Sequence>

c)

Fig. 5. Plan example in OWL-S and Reconfiguration of the architecture

 Autonomic Computing Driven by Feature Models and Architecture in FamiWare 173

We have defined a plan for every possible reconfiguration that we allow in our
middleware but new plans for other necessary reconfigurations can be defined. After
the definition, using our tool Hydra@Runtime we can check if a applying this plan to
the current valid configuration, the new configuration generated is also valid. So,
before loading a plan in the middleware the domain modeller can check the
correctness of this plan for the specific architectural current configuration as follows
(see Fig. 6). Firstly, the OWL-S plan is interpreted taking as input the valid previous
middleware configuration and the FM and it calculates the set of features that must be
selected and unselected in the new configuration. These features are used together
with the FM, to try to construct a valid new configuration. But if some dependencies
between features cannot be satisfied for this set of features, an error is reported with
the features that produced such error, and the plan must be modified to fix these
errors. If the plan works well a new FM configuration is automatically generated.
Using this new configuration, the FM and the mapping between the FM and the PLA
as inputs, the new architectural design is also automatically generated. In this way a
correspondence between the models and the code is always maintained.

Fig. 6. Plans Checking and Generation of the New Middleware Architecture

4 Evaluation

As is described before, FamiWare has microkernel plus services architecture, where
the microkernel provides the implementation of the DDS interfaces. The
implementation of the microkernel and the AC services has been realized in TinyOS
2.1.1. and the experiments have been performed in TOSSIM and PowerTOSSIM z
simulators, and also in real MICAz motes.

4.1 Overhead of the Reconfiguration

The goal of the experiments presented is threefold: (1) they quantify the memory
footprint used by FamiWare (including the AC services); (2) they calculate the
overhead produced for our middleware, measuring the latency since a context change
is detected and the reconfiguration is accomplished; (3) and they evaluate the
scalability of FamiWare, regarding the number of services and plans.

Resource Consumption. Since the architecture of FamiWare consists of a microkernel
and a variable set of services, the memory usage on a device depends on how many

174 N. Gamez, L. Fuentes, and M.A. Aragüez

services are in the current configuration and on the size of each one. The minimal core
architecture consists of the microkernel and the data delivery service, which includes a
routing protocol. Also, since any TinyOS application is compiled together with the OS in
one image, we also have to include the OS as part of our measures. Specifically, to
perform the autonomic behaviour, the minimal instantiation must have one monitoring
service, the context-awareness service and the reconfiguration service. So, for this case,
using Drip [13] routing protocol, the memory footprint is very reduced. Considering that
typically MICAz nodes with 4Kb of RAM, the FamiWare version for AC consumes the
54.4% (2229 bytes) of RAM. On the other hand, the maximum architectural
configuration for AC, considering all monitoring services (8), the microkernel, Drip
protocol and a simple application (123 bytes), uses 79.9% (3274 bytes) of the memory,
so there is still 20.1% free for other services provided by FamiWare. Note that this
maximum configuration is only instantiated in a sink or in a CH, special nodes that
normally have many monitoring services to monitor other nodes of the network. For
these nodes, device sensors with higher capacities are usually used, so the memory
constraints in these devices are not as strict as in ordinary nodes, since normally have
much more memory. Summarizing, the resource consumption of FamiWare is
satisfactory and very well suited to the memory constraint of real sensors.

Table 1. Latency for the Reconfiguration of the System

Operation TinyOS
Receive monitored data 1.86 ms
Detect a context change and choose the plan 0.95 ms
Total Context-Awareness time 2.81 ms
Receive plan chosen 0.519 ms
Get and read the plan file 9.926 ms
Interpret and execute the tasks of the plan 565.725 ms
Total Reconfiguration time 576.17 ms

Overhead and Latency. We measure the interval time from which the context-
awareness service detects a context change until the reconfiguration is completed.
This interval time encompasses: the context-awareness service receives the monitored
data, analyzes them for detecting a context change, chooses the suitable plan, and
finally the reconfiguration service receives and executes the plan. Table 1 reports
these results. The total time of the context-awareness service is 2.8ms, an insignificant
time compared with the time taken by the reconfiguration service until the system is
reconfigured: 576.10ms. As is observed in the table, the longest time in the
reconfiguration service corresponds to the execution of the tasks that comprise the
plan. These results are taken for the plan detailed in the previous section, installed in a
sink node of a 20 nodes network. Remember, this plan has three tasks and all of them
implies the reconfiguration of several remote nodes. So, this entails to send several
events to the nodes and the time this takes depends on the routing protocol used. For
instance, using Drip [13] protocol in one hop (without intermediate nodes) it takes
8ms but if we consider 3 intermediate nodes, this time increases up to 6.43s. It's worth
noting that if we increase the number of sensor nodes, but they are still at one hop of
the sink, the time for reconfiguring them does not increase significantly. Nevertheless,
if the sink has to use some intermediate nodes to reconfigure other nodes, the time

 Autonomic Computing Driven by Feature Models and Architecture in FamiWare 175

greatly increases, but it depends on the structure of the network and the routing
protocol used, as in other WSN platforms. Then, the overhead produced to
reconfigure the system is insignificant comparing with the necessary time to send a
packet. These times were calculated considering a few plans installed in the sink, but
for a higher number of plans, an overhead is produced to search and get the plan from
the FLASH memory, as we show in the scalability evaluation. From the user point of
view, total time to detect changes and to reconfigure the system is very satisfactory.

Scalability. We assess the scalability performance in terms of the number of plans
that an ordinary node can load in its FLASH memory. MICAz motes have 512KB of
FLASH. In Table 2 is shown the structure of the FLASH for a sink node with our
middleware installed. DYMODATA is the space to save data about the routing
protocol. GOLDENIMAGE and the DELUGEs are partitions used by the Deluge
TinyOS system. Deluge is a system for reprogramming sensor nodes, so it uses these
volumes to load the binary code of the new images. We have reserved 98Kb for
loading the plans and still there are 30Kb free, enough for applications or sensed data.
The size average for the plans (after Hydra removes the unnecessary tags) is about
500 bytes, so there is enough space to load 200 plans, this is the upper limit of the
number of plans. On the other hand, in an ordinary node (not sink or CH) we can
reduce the space reserved for plans, since these nodes do not need this high number of
plans loaded in memory. However, the time to search a plan in the FLASH memory
increases when there are numerous plans loaded. As depicts Fig. 7, the increasing of
time is lineal respect to the number of plans. Finally, the maximum time needed to
find a plan, if we consider 200 plans loaded is 1298ms, being an insignificant delay,
comparing with other sensor tasks. We can conclude that FamiWare works very well,
although the number of plans augments considerably.

0

200

400

600

800

1000

1200

1400

1 50 100 150 200

Ti
m

e
(m

s)

Number of Plans

Fig. 7. Evolution of the Time to Read a Plan

Table 2. FLASH memory of MICAz

Volume Size
DYMODATA 128Kb
GOLDENIMAGE 64Kb
DELUGE1 + DELUGE2 + DELUGE3 192Kb
Plans 98Kb
Free 30Kb

176 N. Gamez, L. Fuentes, and M.A. Aragüez

4.2 Benefits of the Reconfiguration

In this section we will show the benefits of the reconfiguration in terms of energy
saving, one of the goals of our work. The battery capacity of MICAz motes is
2000mAh and lasts about one year. We have simulated the reconfiguration of a 20
nodes network using the plan explained previously, where the energy falls to 30%
(600 mAh) in 50% of the nodes and we have to compare the energy expenditure of
the same system but without reconfiguration. Fig. 8 shows how the average of the
network residual energy starts to decrease when the reconfiguration is being
performed (from 0 to 1000 seconds simulation interval). This is due to the extra cost
of operations done for reconfiguring the nodes and the sink. For instance, they must
be in Active state with the radio chip ON and they must access their FLASH memory.
During the reconfiguration, the remaining energy average drops to 599,84mAh for the
first 1000 seconds simulated, while in the system without reconfiguration it only
drops to 599,911mAh. There is a difference of 0,071mAh, that is the price of
reconfiguration in terms of energy, but after it finishes, the energy expenditure is less
for the reconfigured system than for the static one. Particularly, the remaining energy
of the reconfigured system overcomes the energy of the static one before 3000
seconds after the reconfiguration begins. The difference between the two systems is
that the reconfigured one expends about 0.032mAh less than the other in each 1000
second interval. This is due to, after executing our plan, more nodes will be in sleep
mode (with their radio chip OFF), the monitoring task is performed with less
frequency than before (some nodes can be more time in Idle or Power-save states)
and the routing protocol used is more energy saving.

599,55

599,6

599,65

599,7

599,75

599,8

599,85

599,9

599,95

600

0 1000 2000 3000 4000 5000

A
ve

ra
ge

 N
et

w
or

k
En

er
gy

Re

m
ai

ni
ng

 (m
A

h)

Simulation Time (sec)

Without Reconfiguration

With Reconfiguration

Fig. 8. Energy Expenditure for a System with and without Reconfiguration

The figure only shows some simulation intervals, but if we consider the entire
lifetime of the system, the one without reconfiguration will live about 78 days after the
network energy drops to 30%, and the reconfigured one, will extend it lifetime in 121
days. So, our reconfiguration allows the network to increase its lifetime, 55 % more than
the static system (and about 16% of its total life). Obviously, after this particular
reconfiguration, the sensed data could be less accurate, since we increase the period of
time for the sensing tasks and several sensors will be periodically slept. But for many
systems, it will be much more important to increase their lifespan instead of receiving
extremely accurate data. So, we can conclude that the AC behaviour of FamiWare is
very useful for satisfying the particular necessities of WSNs such as energy saving. Of
course, we define distinct plans for satisfying other network goals.

 Autonomic Computing Driven by Feature Models and Architecture in FamiWare 177

5 Related Works

In this section we compare our work on autonomic middleware for WSNs with other
relevant approaches in Autonomic Computing.

Autonomic WSNs Middlewares. There are a number of existing sensor middleware
[3], but only few of them consider an autonomic behaviour. Impala [14] is a
middleware that enables application adaptability and reparability in WSNs. But it
only explores the reconfigurability of the routing protocol by replacing the entire
service. Instead, FamiWare supports also fine-grained modifications with great impact
in WSNs (C6). Also, in Impala the adaptation is only based on the local state of
individual nodes. Finally, they implement a prototype on iPAQ Pocket PC, but not in
real sensors as we do. GridKit [15] is a reflective middleware for co-ordinated
dynamic reconfiguration of middleware behaviour across nodes in WSNs. As well as
FamiWare, it allows dynamic reconfiguration on both, local node and network. But,
they do not define what changes they allow and the correspondence between design
models and the running code, as our plans and FM do (C3). Their implementation is
based on high capacity sensors (with Java and Linux), which are not used very often.
We tested our AC implementation in MICAz sensors, with more restrictive
constraints, so we demonstrated that our approach is feasible. In [16] the benefits of
autonomic and semantic WSNs are combined to build a semantic middleware for
autonomic WSNs that provides support for Structural Health Monitoring (SHM)
applications. They represent the knowledge of AC using ontologies adapted to SHM
and we use FMs applicable to any WSN application. Furthermore, they propose a
planning service that generates plans, instead our models@runtime approach.
WiSeKit [17] is a distributed component-based middleware approach that enables
adaptation and reconfiguration of WSN applications. As FamiWare, it adopts
dynamic parameter and component adaptation and follows a situation-action rules
approach as our context-awareness services. However, their reconfiguration process is
driven by code instead that our driven by model process (C3).

Autonomic and Adaptative Middlewares. Outside the domain of sensor networks
there are a set of approaches that propose autonomic middlewares. Amun [18] is an
autonomic middleware for ubiquitous environments. As FamiWare, it is focused on
self-configuration, self-healing and self-optimization. They focus, however, only on
one kind of system, the Smart Doorplate Project. Furthermore, they do not specify
which kind of reconfigurations they allow and how they are performed. ADAMANT
[19] is a middleware that uses supervised machine learning to autonomously
configure cloud environments with transport protocol. However, they provide only an
autonomic configuration of the middleware but they do not consider the autonomic
reconfiguration, as is proposed by AC and as we do. DySCAS [20] is a middleware
that facilitates context-aware dynamic reconfiguration of automotive control systems.
They define awareness of execution context and awareness of architecture context
concepts that are equivalent with the functions performed by our monitoring services
and with the FM and the architectural configurations that compound our AC
knowledge, respectively. Nevertheless, they use meta-data to embed the knowledge
instead of models as we do.

SPLs approaches for Autonomic Computing. There are other proposals that find it
useful to use SPLs technologies, as Feature Models to provide autonomic behaviour,

178 N. Gamez, L. Fuentes, and M.A. Aragüez

but they provide heavyweight solutions for general purpose middleware or
applications, not applicable to resource constrained WSNs. In [21] the application of
model-driven development and middleware to support the development and operation
of dynamically adaptive systems is presented. As does our work, they argue that
dynamic systems can be considered as a product family line in which variabilities are
bound at runtime instead of at pre-delivery time. Nevertheless, they do not provide a
complete implementation of an adaptive middleware as FamiWare. As we argue
throughout this paper, in [22] it is suggested that autonomic behaviour can be
achieved by leveraging variability models at runtime. Also, in [23] a feature-oriented
approach to dynamically develop reconfigurable core assets is proposed. Both of them
use FM to guide the reconfiguration process as we do. In contrast to our middleware
level approach, however, both of them focus on specific applications.

6 Conclusion and Future Works

We have shown that WSNs have several particular challenges since they are deployed
in dynamic environments without human presence. So, these systems should be as
autonomic as possible to recover from failures or to reconfigure themselves. To
address these challenges this paper has presented the AC behaviour of FamiWare
(C1). We propose to use FM, the architectural design and plan models at runtime to
drive the reconfiguration of the middleware. The main benefits are: The
reconfiguration is tackled at middleware level, avoiding that every application has
to implement the AC process (C2); Using models@runtime we can assure the
correspondence between the model and the code installed in every node and that it
works properly, because only valid configurations may be installed (C3); Our process
ensures that the new architectural configurations obtained after the reconfiguration
process are compatible in all network nodes (C4); The variability of context changes
is high but limited, so the number of valid configurations is finite. So, using our
feature models and valid configurations we consider all the possible changes (C5);
We consider both fine and coarse-grained adaptations, applying each depending on
the context change (C6). Finally, the experimental results show that our process is
both feasible and useful.

We are working on the extension of our Hydra@Runtime tool to allow that new
plans can be automatically generated, giving two valid configurations: the previous
configuration and the new configuration. This Plan Generator will take these
configurations and it will find the differences between them and generates a new plan
with the tasks that must be performed to go from the previous to the new configuration.

Acknowledgement. This work has been supported by the Spanish Ministry Project
RAP TIN2008-01942 and the Junta de Andalucía regional project FamWare
P09-TIC-5231.

References

1. Akyildiz, I., Kasimoglu, I.: Wireless Sensor and Actor Networks: Research Challenges.
Ad Hoc Networks Journal 2(4), 351–367 (2004)

2. Fuentes, L., Gámez, N.: FamiWare: A Family of Event-based Middleware for Ambient
Intelligence. Personal and Ubiquitous Computing 15(4), 329–339 (2011)

 Autonomic Computing Driven by Feature Models and Architecture in FamiWare 179

3. Wang, M.M., et al.: Middleware for Wireless Sensor Networks: A survey. Journal of
Computer Science and Technology 23(3), 305–326 (2008)

4. Pohl, K., Böckle, G., Linden, F.: Software Product Line Engineering – Foundations,
Principles, and Technique. Springer, Heidelberg (2005)

5. Lee, K., Kang, K., Lee, J.: Concepts and Guidelines of Feature Modeling for Product Line
Software Engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 62–77.
Springer, Heidelberg (2002)

6. IBM (2005), Autonomic computing white paper – An architectural blueprint for
autonomic computing, IBM Corp. (2005)

7. Dimitriou, T., Krontiris, I.: Autonomic Communication Security in Sensor Networks. In:
Stavrakakis, I., Smirnov, M. (eds.) WAC 2005. LNCS, vol. 3854, pp. 141–152. Springer,
Heidelberg (2006)

8. He, Y., et al.: An autonomic routing framework for sensor networks. In: Cluster
Computing, vol. 9, pp. 191–200 (2006)

9. Fuentes, L., Gámez, N.: Configuration Process of a Software Product Line for AmI
Middleware. Journal of Universal Computer 16(12), 1592–1611 (2010)

10. Hydra: (November 2010), http://caosd.lcc.uma.es/spl/hydra/
11. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged Configuration through Specialization

and Multilevel Configuration of Feature Models. Software Process: Improvement and
Practice 10, 143–169 (2005)

12. OMG Data Distribution Service for real-time systems, v1.2. (retrieved August 25, 2008)
13. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: A Self-Regulating Algorithm for

Code Propagation and Maintenance in Wireless Sensor Networks. In: Proc. of the 1st
Symp. on Networked Systems Design and Implementation (2004)

14. Liu, T., Martonosi, M.: Impala: A Middleware System for Managing Autonomic, Parallel
Sensor Systems. In: ACM PPoPP 2003, pp. 107–118 (2003)

15. Grace, P., Hughes, D., Porter, B., Coulson, G., Blair, G.S.: Middleware Support for
Dynamic Reconfiguration in Sensor Networks. In: Proc. IWSNE (2009)

16. Rocha, A., Delicato, F., Souza, N., Gomes, D., Pirmez, L.: A Semantic Middleware for
Autonomic Wireless Sensor Networks. In: Proc. Workshop on Middleware for Ubiquitous
and Pervasive Systems (2009)

17. Taherkordi, A., et al.: WiSeKit: A Distributed Middleware to Support Application-Level
Adaptation in Sensor Networks. In: Senivongse, T., Oliveira, R. (eds.) DAIS 2009. LNCS,
vol. 5523, pp. 44–58. Springer, Heidelberg (2009)

18. Trumler, W., Bagci, F., Petzold, J., Ungerer, T.: AMUN: an autonomic middleware for the
Smart Doorplate Project. Personal and Ubiquitous Computing 10, 7–11 (2006)

19. Hoffert, J., Schmidt, D., Gokhale, A.: Adapting Distributed Real-time and Embedded
Publish/Subscribe Middleware for Cloud-Computing Environments. In: Proc. of the 11th
International Middleware Conference (2010)

20. Anthony, R., et al.: Context-Aware Adaptation in DySCAS. In: Proc. of 2nd Int.
Workshop on Context-aware Adaptation Mechanisms for Pervasive and Ubiquitous
Services (2009)

21. Bencomo, N., Sawyer, P., Blair, G., Grace, P.: Dynamically Adaptive Systems are Product
Lines too: Using Model-Driven Techniques to Capture Dynamic Variability of Adaptive
Systems. In: 2nd Int. Workshop on Dynamic Software Product Lines (2008)

22. Cetina, C., et al.: Autonomic Computing through Reuse of Variability Models at Runtime:
The Case of Smart Homes. IEEE Computer 42(10), 37–43 (2009)

23. Lee, J., Kang, K.: A Feature-Oriented Approach to Developing Dynamically
Reconfigurable Products in Product Line Engineering. In: Proc. of the 10th Int. Software
Product Line Conference, pp. 131–140. IEEE Computer Society, Los Alamitos (2006)

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 180–189, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Architecture Analysis Approach for Supporting
Black-Box Software Development

Novia Admodisastro and Gerald Kotonya

School of Computing and Communications
InfoLab21, South Drive

Lancaster University
Lancaster LA1 4WA, UK

{admodisa,gerald}@comp.lancs.ac.uk

Abstract. A typical component-based system architecture comprises a set of
components that have been purposefully designed and structured to ensure that
they have “pluggable” interfaces and an acceptable match with a defined system
context. However, the black-box nature of many software components means
there is never a clean match between system specifications and concrete software
components. Systematic architecture analysis can provide an effective, rapid and
relatively low-cost mechanism for addressing risks resulting from architectural
adaptation and trade-offs. However, a review of current architecture analysis
approaches reveals they differ widely with respect to their ability to support
black-box software development. This paper describes an analysis approach that
integrates the strengths of current approaches to provide a practical architecture
analysis framework for black-box component-based development. The approach
is illustrated using a real case study.

Keywords: Architectural analysis, Components, Services, Black-box.

1 Introduction

Features supported by black-box third party software components often vary greatly in
quality and complexity. In addition, the contexts in which the components are used may
also vary. This complexity together with the variability in application contexts means that
the documentation supplied with software components is often incomplete or inadequate.
Additional analysis is often required to ensure that an acceptable solution is achieved,
and to address situations where unforeseen user needs coincide with a component’s
undocumented design assumptions [1]. A key challenge in developing black-box
software systems is how to provide developers with tools that allow them to derive viable
software architectures by balancing aspects of stakeholder concerns with the architectural
considerations and capabilities embodied in black-box software components.

Effective architecture analysis can provide the developer with a means to assess
design configurations with respect to specific structural and behavioural constraints
and to verify the adequacy of compositions with respect to stakeholder concerns.
Architectural analysis can also provide a basis for developing “what-if” scenarios to

 An Architecture Analysis Approach for Supporting Black-Box Software 181

explore the implications of evolving a system [2,3]. However, a study by [1] shows
that current architecture analysis approaches differ widely with respect to their
underlying models, analytical capabilities and ability to support black-box software
development [4,5]. They vary from process-embedded models that derive skeleton
architectures by matching non-functional requirements to architectural styles [6], to
stakeholder-driven schemes that analyze architectures using multiple quality attributes
to identify and improve areas of highest risk [7]. This makes it difficult for developers
to ascertain their effectiveness in different application contexts.

Our solution has been to develop, Component-based Software Architecture
analysis FramEwork (CSAFE), a scenario-driven architecture analysis approach that
combines the strengths of current approaches using a framework that allows different
analysis techniques to be integrated. CSAFE is process-pluggable and recognises that
negotiation is central to black-box software development. The rest of this paper is
organized as follows; section 2 describes the architectural analysis framework.
Section 3 describes the case study. Section 4 uses a case study to illustrate our
approach. Lastly, Section 5 provides some concluding thoughts.

2 The Analysis Framework

CSAFE is a scenario-driven architecture analysis approach intended to support black-
box development. The analysis process is supported by a repository of component
specifications that represent concrete components and design templates that embody
specific design goals and best practice. CSAFE comprises 4 iterative steps as shown
in Fig. 1:

Fig. 1. Architectural analysis process

2.1 Architectural Design

The architecture design stage is concerned with the construction of the system
architecture. The CSAFE analysis process accepts architectures expressed in the
standard UML component notation [8] or in iXML1 architecture description language.

1 iXML is xml-based architectural description language which intended to sustain independent

architectural analysis which is not tied to a particular language, toolset or methodology.

182 N. Admodisastro and G. Kotonya

iXML is an XML-based architectural description language designed to support
analysis in CSAFE. There is not enough space in this paper to provide a detailed
description of the ADL. The ADL serves three purposes; first, provides a mechanism
for analysing both pre-existing and new architectures. Secondly, it allows for a
portable, platform independent description of the system architecture. Lastly, it
provides the system designer with a mechanism for conducting “what if” analysis.

CSAFE uses a service-oriented requirements method that maps services and
constraints onto iXML to support the derivation architectures from scratch.
Discussion of the requirements method is out of the scope of this paper. A detailed
description of the requirements method can be found here [11].

2.2 Scenario Formulation

Analysis scenarios are formulated after architectural transformation has taken place.
Analysis scenarios allow system designers to tailor the analysis to explore specific
design questions by providing a means to augment architectural descriptions with
specific quality concerns and other architectural information. Designers can also
formulate scenarios to explore “what if” analysis such as assessing the impact of
change and competing designs. Table 1 shows the elements of an analysis scenario.

Table 1. Elements of analysis scenario

Aspect Description
Concern A desired quality attribute that acts as goal to be addressed and achieved during the process

of architectural design. Concerns may be categorized as follows:
• Requirement (e.g. performance, security, efficiency availability, maintainability),
• Component (e.g. certification, standards, resources etc.)
• Business (e.g. nature of support, trust, cost)

Sub-concern A lower level of concern that allows either qualitative or quantitative measurement.
Refinement Refinement expresses concern/sub-concern in more details.

Scope Identifies service or component affected by a concern/sub-concern. Scope also serves as
traceability mechanism.

Weighting Prioritises concerns. Values assigned to quality concerns are likely to vary with application
and organization. For the purpose of the example described in this paper, we have adopted
a 3-level weighting scheme that relates the value for required features to customer
satisfaction and system operation. The weighting scheme of High (H), Medium (M) and
Low (L) is associated with quantitative values of 3, 2 and 1:
• High denotes core quality concerns. Failure to provide these features means the system

will not meet customer needs.
• Medium denotes features that are important to the effectiveness and efficiency of the

system. Lack of inclusion of an important feature may affect customer satisfaction.
• Low denotes features that are useful but not central to the system operation. Lack of

inclusion of a useful feature will not have significant impact on customer satisfaction.

2.3 Analysis

The analysis process allows the developer to establish how well a proposed system
design satisfies its application and business contexts. CSAFE provides an extensible
analysis framework based on a service-oriented architecture and XML that allows the
system designer to integrate different analysis methods and techniques (see Fig. 4).
Currently the analysis process provides support for:

 An Architecture Analysis Approach for Supporting Black-Box Software 183

• Structure checking. Identifies mismatches between component interfaces and
other incompatibilities in component interconnections.

• Quality checking. Identifies inconsistencies and mismatches between desired
quality attributes (dependability, component, etc.) and the system context.

• Conformance checking. Checks architecture adherence to design heuristics

Fig. 2 shows the CSAFE analysis algorithm.

Fig. 2. Mapping analysis scenarios to analysis process

Fig. 3 shows the elements of a design template.

{Category} Type, i.e. style, design pattern, local scheme.
{Name} The design template name.
{Also-Known-As} Other well-known names for the design template if any.
{Related-Template} Reference to other closely related design templates.
{Intent} The justification for design template
{Context} The situation in which the template may apply.
{Motivation} Describes template solution.
{Configuration} Specification of the template
{Consequences (Contribution)} Specification of dependency and contribution that template may
possess shown in weighting factor.

Fig. 3. Design template structure

2.4 CSAFE Toolset

The CSAFE process is supported with an integrated toolset. The toolset has six main
components as shown in Fig. 4. The operation of some of the tools has already been
discussed so we will focus the XMI/XML parser, the trade-off analyser and the
component repository:

• XMI/XML parser. Supports the early stage of the CSAFE process by parsing software
architectures transformed from UML to XMI/XML or iXML for analysis.

• Trade-off analyser (Negotiation). Provides the designer with a tool for rating and
trading-off competing solutions.

184 N. Admodisastro and G. Kotonya

• Component repository. Is a searchable respository of black-box component
specifications. The components are specified in XML.

Fig. 4. CSAFE toolset

3 The Case Study

We will illustrate the efficacy of CSAFE with an example derived from a real software
project. The Electronic Document Delivery and Interchange System (EDDIS) project was
concerned with developing an online library system to support the searching, ordering
and supplying of electronic documents [10]. Users access the system via a web-based
interface using valid usernames and passwords. A user must obtain document and
location identifiers from a centralized document registry before placing a document
order. Document orders are placed with the document supplier. All document
interchange use the Z39.50 document retrieval standard. The EDDIS local administrator
is responsible for setting and managing user accounts. A detailed description of the
system can be found in [11]. The next sections will provide a summarised description of
how the EDDIS requirements are mapped into the initial system architecture and the
analysis of the architecture using CSAFE.

Fig. 5. Initial EDDIS architecture

 An Architecture Analysis Approach for Supporting Black-Box Software 185

3.1 Initial EDDIS Architecture

Fig. 5 shows the initial EDDIS component architecture. It was decided that functionality
for the AdminManager, ValidManager and DocManager would be provided using
off-the-shelf components while DocumentRegistry and DocumentSupplier would be
provided using Web services.

4 The Analysis

4.1 Converting Architecture to XMI Specification

The analysis stage begins with the transformation of the UML architectural design of
EDDIS into a processable XMI specification [12]. The XMI/XML parser supports the
transformation process by parsing and storing XMI/XML objects in an analysis
repository, which is accessible by other CSAFE tools. The parser provides a uniform
interface to the underlying XML object model that captures elements of the
architecture (i.e. architectural structure with its descriptions, services, constraints and
properties).

4.2 Formulating Analysis Scenarios

After architectural transformation has taken place, analysis scenarios can be
formulated as described in section 2.2. Analysis scenarios are a simple yet effective
way to represent quality concerns as goals to be addressed and achieved during the
analysis of the architecture. The scope of analysis scenarios can be selective (i.e.
associated with specific architectural properties) or global. Fig. 6 shows the example
of a selective scenario associated with the document_services service. Constraints
(shown in centre of the right pane) are expressed in structured natural language in the
form:

Concern(SubConcern) <condition><value>unit.

A parser processes the various constraints and their weightings, and generates
queries, which search the design template repository for matching design templates.
The search result also shows the contribution of the design templates to the quality
concerns. Three design templates have been generated for the scenario in Fig. 6:

• Service-Order Provision. This template represents a local (in-house) design
solution for an online digital library that may require document search, document
locate and document order services. The architectural style enforces the separation
of search and locate services, which reside in the same component, from the order
service. The design strongly supports the maintainability requirement by providing
a systematic allocation towards maintenance time for the document main services
and allowing the document server to maintain the order service more effectively.
The design also provides a better way to control availability by allowing a longer
duration of the order service to be served. However, separation of the services
may affect performance of response time and throughput.

186 N. Admodisastro and G. Kotonya

• Cluster-Server pattern. This design enables the system to maintain good
performance while improving availability by using active redundancy and
automatic restart during fail over. However, cluster-server complexity is likely to
compromise system maintainability.

• Three-tier proxy server architectural style [13]. This is a typical reference
architecture for a modern web-based system. A tier is a partitioning of
functionality that may be allocated to a separate hardware component. This
improves maintainability while hiding the complexity of distributed processing.
Requests from individual browsers may first arrive at a proxy server, which exists
to improve the performance of the Web-based system. They are typically located
close to the users, often on the same network, so that they save significant
communication and computation resources.

Fig. 6. Formulating analysis scenarios

4.3 Modify Architecture or Sub-system Architecture

The last step is to assess how well the three architectural styles contribute to the
quality concerns. CSAFE uses the Analytical Hierarchical Process (AHP) [9] to
perform the trade-off analysis. Fig. 7 shows the EDDIS architecture based on the
three-tier proxy server design template. Modifications to the original architecture are
shown in the boxed area.

Fig. 8 shows the weighted contributions of the design alternatives using the AHP. The
maximum mean weighting in indicates the highest probability of achieving a particular
quality concern. The minimum mean value indicates the least acceptable trade-off. Each
sub-concern in a design that has a weighting score below the minimum mean value
decreases the chance of the design being chosen as the best design. In addition, a design
can be rejected if its overall mean score is below the overall minimum mean value of the

 An Architecture Analysis Approach for Supporting Black-Box Software 187

quality concerns. As this implies that the design does not meet the stakeholders’ expected
qualities. S1 offers the poorest solution as its overall quality contribution score of 0.58 is
below the overall minimum mean of the quality concerns. Of the remaining two, S3 has
the better mean score. However, both the architectures exceed minimum mean value.
Although, S3 looks like the best design, it may not necessarily be chosen. For example,
the cost of implementing the system using S3 may be beyond the organisation’s budget.
To decide on the most acceptable architecture, stakeholders need to explore how each
design relates to the minimum mean values of critical sub-concerns.

Fig. 7. EDDIS architecture using three-tier proxy server template

Fig. 8. Architectural contribution by sub-concerns

188 N. Admodisastro and G. Kotonya

5 Conclusions

This paper has highlighted the importance of architectural analysis in black-box
component-based software development. Systematic architectural analysis can help
ensure that risks resulting from architectural adaptations and trade-offs do not
adversely affect critical system qualities. The analysis is likely to reveal not only how
well an architecture satisfies a particular application context, but also how change to
specific quality attributes might affect other quality concerns. Unfortunately, current
architectural analysis approaches for component-based vary widely with respect to
their analytical capabilities and support for black-box development making it difficult
for developers to assess their efficacy in different application contexts.

Our proposed solution aims to address the challenges outlined in Section 1 by
providing an analysis approach that:

• Is pluggable to minimise process disruption.
• Allows different analysis techniques and methods to be integrated to leverage their

strengths
• Is portable and supports the analysis of architectures expressed in standard

software design notations like UML.
• Provides mechanisms defining analysis scenarios that allow stakeholders to

explore aspects of the system that interests them and supports for “what-if”
analysis under conditions of uncertainty.

• Explicitly recognises that negotiation is central to successful black-box component
system development.

Due page limitation we could provide a detailed discussion of the case study.
However, we believe we have provided enough evidence demonstrate the efficacy of
CSAFE. It is important to mention that CSAFE has been evaluated on a real, but
limited case study. The results presented here represent the initial evaluation of
CSAFE. We are currently extending CSAFE to include other interesting architectural
analyses. We are also exploring better ways of supporting stakeholder analysis and
managing the large volume of information generated before evaluating the approach
on a larger system.

References

1. Admodisastro, N., Kotonya, G.: Architectural Analysis Approaches: A Component-Based
System Development Perspective. In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030, pp. 26–
38. Springer, Heidelberg (2008)

2. Kotonya, G., Hutchinson, J.: Managing Change in COTS-Based Systems. In: Proc. of the
IEEE ICSM, pp. 69–78, pp. 69–78. IEEE Computer Society, Washington, D.C (2005)

3. Dobrica, L., Eila, N.: A Survey on Software Architecture Analysis Methods. IEEE Trans.
on Soft. Eng. 28(7), 638–653 (2002)

4. Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L.: Recommended Best
Industrial Prac. for Soft. Arch. Evaluation. Tech. Report, CMU/SEI-96-TR-025 (1997)

5. Vieira, M.E.R., Dias, M.S., Richardson, D.J.: Analyzing Software Architectures with
Argus-I. In: Proceedings of the ICSE, pp. 758–761, Limerick, Ireland (2000)

 An Architecture Analysis Approach for Supporting Black-Box Software 189

6. Wallnau, K.C.: Volume III: A Technology for Predicable Assembly from Certifiable
Components. Technical Rep. CMY/SEI-2003-TR-009. SEI Carnegie Mellon Uni. (2003)

7. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The
Architectural Tradeoff Analysis Method. In: Proceeding of IEEE ICECCS, pp. 68–78
(1998)

8. Unified Modeling Language. UML® Resource Page (2010), http://www.uml.org/
(last updated on October 21, 2010)

9. Hutchinson, J., Kotonya, G.: A Review of Negotiation Techniques in Component-Based
Software Engineering. In: Proc. of the EuroMicro Conf. on SEAA, pp. 152–159 (2006)

10. Kotonya, G.: An Architecture-Centric Development Environment for Black-Box
Component-Based Systems. In: Morrison, R., Balasubramaniam, D., Falkner, K. (eds.)
ECSA 2008. LNCS, vol. 5292, pp. 98–113. Springer, Heidelberg (2008)

11. Kotonya, G., Hutchinson, J.: Analysing the Impact of Change in COTS-Based Systems.
In: Franch, X., Port, D. (eds.) ICCBSS 2005. LNCS, vol. 3412, pp. 212–222. Springer,
Heidelberg (2005)

12. XML and XMI. CORBA, XML and XMI (2010),
http://www.omg.org/technology/xml/index.htm
(last updated on June 25, 2009)

13. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. SEI Series
in Software Engineering. Addison-Wesley, Reading (2005)

Web-Scale Human Task Management

Daniel Schulte

FernUniversität in Hagen, Germany
Daniel.Schulte@FernUni-Hagen.de

Abstract. Today, many professionals work on several projects in dif-
ferent teams at the same time and manage their task in these projects
manually or with the help of a task management system. Business por-
tals in larger companies typically provide some kind of task management
support. But often they lack facilities to manage tasks beyond organi-
zational boundaries and need technical support by IT departments. To
overcome these limitations, especially loosely coupled teams make exten-
sive use of emails and forgo explicit task management features.

As the usage of web applications in all areas of life increases and thus
more and more tasks are performed online, new solutions for web-based
task management have become necessary. In this paper, we determine
requirements for managing tasks in distributed environments without
any central supervisory body, and identify related research challenges.

1 Introduction

Teams cooperate and coordinate their work over the internet using web appli-
cations increasingly. As professionals are typically involved in several teams and
projects at the same time, they have to work with a plethora of web applications.

Within these applications many tasks have to be performed by humans and
some of these applications include rudimentary task management facilities for
these tasks. However, no application-spanning web-scale human task manage-
ment has been established yet. Instead, vendors rely on proprietary portals
occasionally based on WS-HumanTask [1] to support task management within
enterprises and on email notifications for all communication with participants
outside enterprises. As emails were originally intended for communication, email
applications lack task management facilities and hamper team members —
especially those involved in multiple projects— to survey and manage their tasks
efficiently.

As the number of human tasks performed in a multitude of web applications
increases, new solutions for managing tasks in the web have become necessary.
After briefly explaining our human task concept in sec. 2, we will determine key
challenges for managing tasks in the web in sec. 3 and identify some resultant
research challenges in sec. 4 including our intended research method.

2 Human Tasks

To cover as much manifestations of human tasks as possible, we define human
tasks broadly as actions that will be carried out by humans. This spans simple

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 190–193, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Web-Scale Human Task Management 191

data entry tasks controlled by rigid input masks but also creative tasks of knowl-
edge workers. We are interested in those human tasks that are known to online
applications as these applications have the potential to provide task descriptions
to affected humans in a kind that allows automated task management support
(other human tasks can be added manually), and —if performed with help of
web applications— to update these metadata automatically.

Sample 1: Review Task. While preparing a workshop, the workshop chair will
ask experienced scientist for reviewing submissions. Each submission is —based
on expertise and preferences— assigned to a few scientists, who get a copy of
the submission. The scientists perform their reviews independently and submit
them to the program chair.

Sample 2: Writing Task. Web applications like Google Writer support small
teams to prepare workshop papers jointly as they allow concurrent editing of
documents and save intermediate results (with versioning). Writing tasks may
thus be assigned to several humans in parallel and as a consequence, the state of a
task (e. g., “in work” or “submitted to the workshop”) will change in the normal
course of the task execution potentially triggered by other team members.

These samples show different involved users and web applications:

– users that will/may perform tasks ((potential) task workers) like the review-
ers in sample 1,

– users that initiate tasks (task initiators) like the program chair in sample 1,
– applications that help task initiators to initiate and assign tasks (task steer-

ing applications) as tools like ConfTool for program chairs,
– applications that help task workers to perform tasks (task execution appli-

cation) as Google Writer in sample 2,
– applications that help task workers but also task initiators managing tasks

(task management applications).

Objective of the planed research is an infrastructure to enable web-scale task
management applications.

3 Key Challenges of Web-Scale Human Task Management

Task management comprises collection and maintenance of task metadata
provided and possibly updated by task steering & task execution applications
(hereinafter collectively referred to as task provision applications) as well as ma-
nipulation of metadata by users, scheduling of tasks, and so on. This section
identifies main challenges of web-scale human task management.

To survey and manage tasks efficiently, users should be able to access all their
tasks by a single worklist and have access to task management facilities that can
handle tasks regardless of the origin. Ultimately, users need only one task man-
agement application (not one task management application per organization,
(virtual) enterprise, team, task provision application, etc.).

As tasks emerge in task provision applications, these applications should add
tasks to users worklists incl. some metadata like deadlines directly. As tasks

192 D. Schulte

change over time (state, deadlines, etc.), task provision applications need to
update these metadata automatically.

The assignment of tasks within teams may depend on the roles of team mem-
bers, on group policies, on current workloads or on any other kinds of policies
or agreements. To support individual assignment patterns independently of task
provision and task management applications, a self-sufficient group management
should take on the assignment of tasks.

In web-scale scenarios, applications originate from different organizations and
application areas, are written in different programming languages, etc. To en-
able the development of a rich ecosystem of task provision and task manage-
ment applications, prevent dependence on central authorities (vendor lock-in,
quasi-monopolies like Facebook) as well as single points of failures, and allow
the integration of the variety of established web applications already containing
and supporting human tasks, a web-scale human task management has to en-
sure interoperability between applications but also to meet some architectural
constraints:

– To bring not only tasks from some selected applications (e. g. those that
are supported by some central infrastructure like an Enterprise Service Bus)
together but also tasks from any application incl. already used ones, a de-
centralized solution is required.

– Tasks originate in different contexts with different execution steps and states
as well as different security requirements. Their types may span routine
jobs, adaptive tasks and innovative ones [6], and may be executed by one
or several humans cooperatively or competitively, to name a few options.
Therefore, task provision applications should be self-contained: they control
task execution incl. individual lifecycles for tasks, and —in the case of task
execution application— access to security-critical applications and data by
appropriate self-selected mechanisms.

– The execution of tasks in many scenarios is free to users’ choice. There-
fore, some management functions like task delegation and in particular the
deletion of tasks from worklists should be supported by task management
applications independent of task provision applications, so that users remain
in control of their worklists. But as work on business-related tasks may be
enforced by employers, management functions are more restricted in some
cases. To allow different degrees of freedom in task management, task man-
agement applications must be autonomous.

Furthermore, the architecture of a web-scale human task management should
allow the independent evolvability of applications, a common authentication and
authorization mechanism, and substitution of applications at runtime.

4 Research Challenges and Research Method

E-mail has no task management facilities, WS-HumanTask based solutions build
on centralized and partial proprietary building blocks, and action-centric collab-
oration solutions like HERMES [7] provide deep integrations at the expense of

Web-Scale Human Task Management 193

autonomy of applications (e. g., shared internal data) but do not consider decen-
tralization. Therefore, an interoperable but decentralized web-scale human task
management with self-contained task provision applications and autonomous
task management applications leads to research questions like:

– Which architectural decisions are necessary to enable web-scale human task
management whereas heterogeneous concrete software architectures, pro-
gramming languages and deployment infrastructures are used and evolved
independently from each other?

– As reuse of software is often hard due to architectural mismatches as depicted
by [4,5], can we avoid similar problems with the reuse of already existing web
applications for human task execution? Or to put it another way: How can
we adapt web applications (some kind of legacy systems) to interoperate
with such a new infrastructure?

– How can we continue to use established web technologies like OpenID and
OAuth?

We will investigate these research questions with the help of architectural pro-
totypes [3], which allow us to compare different architecture styles (based on
different architectural decisions), and develop a proof of concept on top of this
prototypes. [8] identifies workflow resource patterns capturing the various ap-
pearance patterns of resources (e. g. a human) in workflows, and [9] evaluates
BPEL4People [2] and WS-HumanTask [1] using these resource patterns. Analo-
gously, we will use them to evaluate the power of different solutions.

References

1. Agrawal, A., et al.: Web Services Human Task (WS-HumanTask), Version 1.0 (2007)
2. Agrawal, A., et al.: WS-BPEL Extension for People (BPEL4People), Version 1.0

(2007)
3. Bardram, J.E., Christensen, H.B., Hansen, K.M.: Architectural Prototyping: An

Approach for Grounding Architectural Design and Learning. In: Fourth Working
IEEE/IFIP Conference on Software Architecture, WICSA 2004, pp. 15–24. IEEE
Computer Society, Washington, DC (2004)

4. Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch: Why Reuse Is So
Hard. IEEE Softw. 12(6), 17–26 (1995)

5. Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch: Why Reuse Is Still
So Hard. IEEE Softw. 26(4), 66–69 (2009)

6. Hoffmann, F.: Aufgabe (german). In: Grochla, E. (ed.) Handwörterbuch der Organ-
isation, pp. 200–207. Poeschel, Stuttgart (1980)

7. Kapos, G.-D., Tsalgatidou, A. & Nikolaidou, M.: A Web Service-Based Platform
for CSCW over Heterogeneous End-User Applications. In: ISCA 17th International
Conference on Parallel and Distributed Computing Systems, PDCS 2004, pp. 462–
469 (2004)

8. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
Resource Patterns. Eindhoven University of Technology (2004)

9. Russell, N., van der Aalst, W.M.P.: Evaluation of the BPEL4People and WS-
HumanTask extensions to WS-BPEL 2.0 using the workflow resource patterns. BPM
Center (2007)

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 194–198, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Enhancing Architecture Design Methods for Improved
Flexibility in Long-Living Information Systems

Matthias Naab

Fraunhofer Institute for Experimental Software Engineering (IESE),
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
matthias.naab@iese.fraunhofer.de

Abstract. Nearly all organizations in business are highly relying on information
systems. As business, business models, organizational structures, and business
processes are changing quickly, also information systems have to follow these
changes, otherwise they threaten the business success. A key quality attribute of
software systems, which is defined to capture the needs for change, is flexibility.
Although many of today’s IT paradigms like service-oriented architecture or
business rule management claim to bring flexibility into information systems, this
is often not achieved in practice, as experience shows. This paper explores in
more detail the nature of flexibility and proposes an extension to architecture
design processes, which allows constructing systems with flexibility directed at
the real needs. It makes flexibility more tangible and gives concrete guidance for
treating flexibility during architecture design.

Keywords: Software Architecture, Flexibility, Service-Oriented Architecture.

1 Introduction

Flexibility is a key quality attribute of today’s information systems. On the one hand,
such systems have to keep pace with quick changes in business, business models,
organizational structures, and business processes. On the other hand, they are so cost-
ly to develop that organizations stick to their information system even for decades.
Only if the information systems provide support for effective and efficient realization
of changes it can sustainably contribute to an organization’s business success. Flex-
ibility is the quality attribute that represents a system’s ability to quickly response to
particular changes to a system.

Several recent paradigms in IT, like service-oriented architecture (SOA) or busi-
ness rule management (BRM), are advertised for their strong support for flexibility in
information systems. Nevertheless, practice shows that many of the systems in use are
not as flexible as expected although all promising paradigms and technologies are in
place. There are several causes that contribute to this situation: First, such paradigms
and technologies are often expected to deliver systems with inherent flexibility.
Second, flexibility as a quality attribute is not as well understood so far as other quali-
ty attributes like performance are. Third, architecture design processes don’t provide
concrete support for the construction of flexible information systems. They neither

 Enhancing Architecture Design Methods for Improved Flexibility 195

address the particularities of flexibility nor give concrete guidance how to come from
flexibility requirements to an adequate solution.

This paper starts with an exploration of the nature of flexibility in Section 2. It ana-
lyzes reasons why systems are often not flexible in practice and proposes a conceptual
model for flexibility. Section 3 therefore focuses on introducing methodical guidance
for designing flexible architectures. Section 4 gives an overview on initial validation
efforts and concludes the paper with discussion and outlook.

2 Characterization of Flexibility

Flexibility Foundations

In general, flexibility is “the degree, to which a system supports possible or future
changes to its requirements” [11, adapted from 8]. The degree, to which changes are
supported, is reflected in time and effort, which are needed to conduct the changes.
With flexibility we mean the pure property of a system to allow changes, in contrast
to other terms like maintainability, which also covers aspects like analyzability or
testability.

Flexibility is not an absolute property of a system. Rather, flexibility can be only
quantified with respect to a certain set of requirements to be changed [5]. Mostly,
requirements emerging or changing during a system’s life time don’t change totally
surprisingly, but can be anticipated upfront. Of course, this is not always possible and
most of the time only with a certain degree of fuzziness. Such requirements can be
captured as flexibility requirements. Approaches exist that support their elicitation
[9].

Why Information Systems in Practice Are Often Not Flexible Enough

In many projects with our industrial customers we observed that systems are often not
as flexible as they were expected to be. Information systems based on Service-
Oriented Architecture (SOA) are a good foundation for an analysis of reasons. SOA is
often proclaimed to lead to flexible systems and customers have also adopted the
expectation of getting flexible systems [10]. Often, a typical procedure in designing
SOA-based systems can be found: Typical architectural mechanisms and technologies
of SOA are adopted (separation of process and service, loose coupling in general,
technology-independence, …). Then the functionality of the system under
development is decomposed and mapped onto the technological elements. The
resulting system is expected to be flexible due to the architectural mechanisms used;
however, often it is not flexible.

In Fig. 1 a), we analyze in a set notation, which situations can occur and why sys-
tems might lack flexibility. (1) be a set of flexibility requirements. A first reason of
missing flexibility is a lack of awareness of these flexibility requirements (they occur
later, but are not considered during construction). Then, no targeted flexibility can be
built in.

To construct for flexibility, architecture mechanisms are selected, which keep the
impact of anticipated changes as small and local as possible. (2) be the set of all po-
tential changes, which are well supported by the selected architecture mechanisms,

196 M. Naab

Flexibility Potential
Considering
Functionality

Flexibility Potential of
Architecture
Mechanisms

Flexibility
Requirements

1

2

3
4

5
6

“True Flexibility”Flexibility Requirements

Goal

Fig. 1. a) Mismatch of flexibility requirements and flexibility potential | b) “True Flexibility”

the so-called flexibility potential. Typically, not all flexibility requirements are cov-
ered in the flexibility potential (see (6)), as recent methods don’t provide enough
guidance for architects. However, the architecture mechanisms alone don’t decide
about the flexibility potential. The actual degree of flexibility is mainly determined by
the mapping of functionality to the architecture mechanisms. This reduces the flex-
ibility potential as depicted as (3). An example from SOA systems is a suboptimal
mapping of functionality to services, which leads to high effort every time a business
process is to be changed. Then, only a limited set of flexibility requirements (4) is
really covered by the flexibility potential. Further flexibility requirements are not
easily achieved any more (5). There is typically little awareness for this situation and
architecture design approaches don’t provide sufficient support.

To sum up, typically, there is a large flexibility potential in systems but it does not
match the required flexibility. This mismatch is the reason why systems are often
perceived to be not flexible enough. Thus, we need a new notion to express the de-
sired situation that the flexibility potential matches the required flexibility: We call
this “True Flexibility” (see Fig. 1 b)). Typically, people talking about flexibility im-
plicitly mean true flexibility.

3 Architecture Design for Flexibility

Derived from our characterization of flexibility, the goal of our method is to achieve
true flexibility. Several sub-goals can be derived: First, flexibility requirements have
to be known to a reasonable degree for architecture design (G1). Second, the
flexibility potential resulting from selected architectural mechanisms and mapping of
functionality should cover all flexibility requirements (G2). Third, as flexibility
always comes at a cost (more complicated development, performance impacts, …),
the flexibility potential should not be inadequately large but clearly bound to the
required flexibility (G3).

State of the Art and Improvement Potential

Flexibility is in the focus of architecture research and practice since a while. Two
different trends can be observed: First, there is research focusing on analytical
approaches [5, 7]. A commonality of these approaches is that they work with
anticipated change situations (described as scenarios) and derive to a more or less
formal degree the expected impact or rework necessary for a scenario. Second, there
is research focusing on architectural mechanisms enabling flexible systems [3, 4].

 Enhancing Architecture Design Methods for Improved Flexibility 197

What’s missing is constructive guidance with focus on flexibility. Existing
architecture design approaches can be roughly separated into two categories. The first
category mainly focuses on a functional decomposition of the system (e.g. [2]); the
second category mainly focuses on addressing the quality attributes of the system
(e.g.[4]). Several approaches in the area of service-oriented system design (e.g. [1])
also belong to the first category. Addressing flexibility inherently requires the
combination of both types of approaches due to the dual nature of flexibility. In [6],
an approach is described, which covers both, functional decomposition and explicit
addressing of quality attributes, but only very general and without any specific
guidance with respect to the nature of flexibility.

Method Outline

Our approach is intended to enhance existing methods addressing the challenges and
goals described above by adding conceptual and methodical parts explicitly addressing
flexibility. Concretely, that means that we provide more support for all architectural
activities with a focus on flexibility. That starts with support for elicitation of flexibility
requirements. We provide classifications, a quality model, and templates that ease
gathering and describing of flexibility requirements in form of scenarios. The main
enhancement of the design activities themselves is directed towards intertwining aspects
of functional decomposition and quality-driven design (application of architectural
mechanisms). We introduce finer-grained design steps, classifications of architectural
elements and their role in the process, and guidelines how to come up with a mapping of
functionality to architectural mechanisms that supports the goals of true flexibility.
These enhancements are supposed to make experiences about design for flexibility
explicit and to allow architects to benefit from it.

Of course, our approach does not mean that architecture design should be flexibili-
ty-centric. Rather, it adds explicit support for flexibility as one challenging quality
attribute. Further support for other quality attributes can be added in similar manner
resulting in better access to experience for architects. Architecture is still exactly the
means to carefully and deliberately balance all quality attributes, but with better me-
thodical support.

4 Initial Validation and Conclusion

We observed and analyzed the challenges in industrial projects with our customers.
We explicitly confirmed with customers that practitioners often assume that IT
paradigms and technologies lead to the required flexibility. After discussing this
point, we asked our customers for their perceived support of flexibility in architecture
design processes, which was rated pretty low.

We also started applying our approach in our industrial projects to validate its ef-
fectiveness. Here, we present only some first results and impressions:

− Eliciting flexibility requirements without further guidance often leads to results with
limited coverage of the real needs. Practitioners are often guided by their expectations
what a technology can offer. In contrast, eliciting flexibility requirements with our
guidelines and classifications leads on average to higher coverage

− Making the influence of architecture mechanisms and functionality mapping on
flexibility explicit is perceived as significant help by practitioners

198 M. Naab

− Giving guidance with respect to architectural elements to be designed and how
flexibility is achieved (in particular with more details on flexibility mechanisms,
which are not presented in this paper) is perceived as significant help by practitioners

Flexibility is a key quality attribute of long-living software systems. In this paper we
provide a well-founded characterization of flexibility and analyze, why flexibility is
often not achieved in practice. First, there is the perception that particular
technologies lead to inherent flexibility. Second, there is missing awareness of
importance of both, architectural mechanisms and adequate mapping of functionality.
Third, there is missing guidance for flexibility in architecture design processes.

We introduce the term true flexibility to denote a match between required flexibili-
ty and the realized flexibility potential. Based on that, we sketch how existing archi-
tecture design processes can be extended with more guidance tailored to the quality
attribute flexibility. In projects with customers from industry we already applied the
concepts and got positive feedback. In the future, we will make the guidance more
concrete and we will also make the flexibility-specific knowledge about certain para-
digms like SOA or BRM more tangible. Further, we plan to support architects with
direct, automated feedback on architectural design with respect to the achieved degree
of flexibility.

Acknowledgement. This paper was supported by the ADiWa project. The ADiWa
project was funded by the German Federal Ministry of Education and Research
(BMBF) under grant 01IA08006. The authors take the responsibility for the contents.

References

1. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Gariapathy, S., Holley, K.: SOMA: a
method for developing service-oriented solutions. IBM Syst. J. 47(3), 377–396 (2008)

2. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Paech, B., Wüst, J., Zettel, R.: Component-based product line engineering with UML. Ad-
dison-Wesley Longman Publishing Co., Inc., Amsterdam (2002)

3. Bachmann, F., Bass, L., Nord, R.: Modifiability Tactics. CMU/SEI-2007-TR-002 (2007)
4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley

Longman Publishing Co., Inc., Amsterdam (2003)
5. Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-level modifiability anal-

ysis (ALMA). J. Syst. Softw. 69(1-2), 129–147 (2004)
6. Bosch, J.: Design and use of software architectures: adopting and evolving a product-line

approach. ACM Press/Addison-Wesley Publishing Co. (2000)
7. Clements, P., Kazman, R., Klein, M.: Evaluating software architectures: methods and case

studies. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (2002)
8. IEEE: Std 610.12-1990: IEEE Standard Glossary of Software Engineering Terminology

(1990)
9. John, I., Villela, K.: Evolutionary Product Line Requirements Engineering. In: Proceed-

ings of the 2008 12th International Software Product Line Conference. IEEE Computer
Society, Los Alamitos (2008)

10. Martin, W.: SOA Check (2010), http://www.soa-check.eu/ (last access: June 22,
2011)

11. Naab, M.: Improving the Flexibility of SOA-Based Information Systems by Adopting
Practices from Product Line Engineering. In: Doctoral Symposium of SPLC (2009)

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 199–202, 2011.
© Springer-Verlag Berlin Heidelberg 2011

On How to Deal with Uncertainty When Architecting
Embedded Software and Systems

Jakob Axelsson

School of Innovation, Design and Engineering,
Mälardalen University,

SE-721 23 Västerås, Sweden
jakob.axelsson@mdh.se

Abstract. This paper discusses the topic of uncertainty in the context of
architecting embedded software and systems. It presents links between complexity
and uncertainty, and identifies different kinds of uncertainty. Based on this, it
elaborates why uncertainty arises in the architecting of software-intensive systems,
and presents ten different tactics that can be employed to deal with uncertainty and
mitigate the associated risks.

1 Introduction

In many companies developing technical products, embedded systems and software
play an increasingly important role. From being a small and isolated electronics-based
part of a product, the embedded system has developed into a large number of
computers with distribution networks and millions of lines of software. This
increasing complexity leads to soaring developing costs, and many companies strive
to curb this trend by reusing software and hardware between products. Often, a
product line approach is applied, where the same platform is used as a basis, with
modifications to fit the needs of the individual products and customers.

With a multiplicity of products and variants, the architecture is becoming very
important and is a source of increasing interest for companies developing embedded
systems. When developing a new platform for embedded systems, much of the
architecting occurs 2-4 years before the first product is delivered. At that time, a
number of key factors are unknown or known only with large uncertainty, such as the
details of the software code, including its structure or execution time; the details of
the hardware if new components are to be used (no prototypes available, only
specifications); and the exact requirements (only an early estimate is available).

The complexity of these already complex systems increases as a result of this
uncertainty, since it leaves open a larger space of possible design alternatives that the
architects must consider. Many architects rarely use the tools and methods proposed
by academic researchers even if they are aware of them. We have come to suspect
that one reason is that many methods and tools are difficult or expensive to use in a
situation where only imperfect information is available. In this paper, we therefore
investigate the nature of the uncertainty in the architecting situation, and provide
some ideas for how this uncertainty can be dealt with.

200 J. Axelsson

2 Types of Uncertainty

A development team's responsibility is to make decisions about the product.
Uncertainty can be defined as a lack of necessary knowledge to make a decision [1].
This should be compared to risk, which is the probability that an unfavorable event
occurs (i.e., in this context making the wrong decision). The concept of risk thus
assigns a utility or value to an event, whereas uncertainty is free from such valuation.
"Uncertainty causes risk which is handled by mitigation and results in outcomes" [2].

Two kinds of uncertainties are very common in engineering. One is imprecision,
i.e. the exact value of a parameter is unknown (but a range or approximation is
known). This typically occurs as a result of insufficient measurement equipment. The
other common type is variability (or aleatory uncertainty) which denotes variations in
parameter values between different instances due to a random factor [1].

Another dimension of uncertainty relates to what can be done about it. Sometimes
there is a reducible uncertainty (alternatively referred to as epistemic uncertainty).
This is an uncertainty that can be removed or at least reduced by spending an effort in
collecting more information. However, there is always a balance if the effort of
finding out merits the value of the added knowledge. The opposite is called
irreducible uncertainty that cannot possibly be discovered [1]. As an example, it is an
irreducible question if it will rain on a certain spot on Earth tomorrow (only
prognoses are possible), but it is a reducible question if it rained there yesterday.

Variability is often described by statistical distributions, capturing properties of a
large population of objects. This is sometimes referred to as the frequentist
interpretation of probabilities. However, sometimes distributions are also used to
describe one's beliefs in some event, such as our certainty that it will rain tomorrow.
This is called subjective probabilities, and is useful in situations where statistics is
meaningless (such as when talking about unique events rather than a large number of
similar events). Many tools for statistical analysis that are based on probability
distributions are also useful to reason about subjective beliefs.

So far, we have discussed uncertainties in the value of a known factor. Another
level of uncertainty is whether all the relevant factors have actually been found, or if
there are yet unknown factors that should also be considered. An example of this is
the uncertainty if all relevant requirements have actually been elicited. Such factors
are sometimes referred to as unknown unknowns.

3 Causes for Uncertainty

Architecting is characterized by many parallel activities and only few firm decisions.
There are a number of factors that contribute to a certain level of inherent uncertainty.
Some of them are caused by the nature of the development process and methods:

• Sequential decision making where the first decisions must be made under

uncertainty regarding the consequences on later decisions.
• Parallel decision making. Several teams are refining their systems in

parallel, and they must all make decisions based on uncertain knowledge
about what decisions the neighboring teams will make in the future.

 On How to Deal with Uncertainty When Architecting Embedded Software 201

• Expert judgment. Sometimes, decisions need to be made based on experts
giving imprecise statements such as "large", "fast", or "unlikely".

• Abstract models. It is a common engineering practice to build models of a
future system. However, such models are always simplifications of reality,
and factors that are believed to have minor influence are often removed.

Other uncertainties are due to the nature of the products. Three categories of noise,
i.e. variability that cause quality loss, have been identified:

• Environment, or outer noise, includes changes to the environment, operating

conditions, and effects of the system’s interactions with different people. For
architecting, only limited statistical data is available about the environment
due to finite sampling. The environment available for investigation at the
time of decision may vary from the one at the time of deployment.

• Aging, or inner noise. For physical products, aging leads to wear and
deterioration, and this is true for the physical parts of the embedded system.
For the software, architects may need to consider changes done over the
system’s installed life that can lead to variations.

• Manufacturing, or product, noise. Again, this is evident for the physical
parts, and often there is a need to also include mechanisms in software (such
as calibration or feedback) to control the effects of part-to-part variations in
material and dimensions that are hard, or too expensive, to fix.

All these causes of uncertainty are general for engineering of complex systems, and
are particularly strong during architecting. Two special cases of environment noise
are of particular interest for architects. When the system of interest is a subsystem in a
larger product, as is often the case for software, unintended interaction with
neighboring subsystems often take place and cause noise that falls in this category.
Also, uncertainties about the market for the products spill over on the architects, such
as what functionality and variants will be requested by different customers.

4 Mitigation

We will now discuss a number of “tactics” that can be employed to reduce the
unavoidable uncertainties and mitigate risks in architecting.

• Focus on evolution rather than revolution. When a new system is developed

from scratch, everything is uncertain and remains so for a long time. By
instead focusing on step-wise evolution of the architecture, only a few
unknowns at a time must be dealt with, and effects are quickly seen.

• Create feedback loops. In architecting, feedback from downstream
engineering is needed to quickly see when estimates prove to be wrong.

• Track quality attributes. Many architects focus on functionality, and have
little data on actual values on the architecture’s quality attributes. By
continuously measuring attributes, it becomes possible to base decisions on
trends and extrapolation from real data on things like cost and performance.

202 J. Axelsson

• Make uncertainty explicit. Often, engineers use point data in their estimates.
By instead describing estimates using probability distributions, analyses such
as Monte Carlo simulation can provide a richer picture of alternative
scenarios, complemented with sensitivity analyses.

• Divide and conquer using tolerances. To ensure that the desired state of the
system-wide quality attributes are reached during subsystem development,
tolerances for attributes should be made explicit for each subsystem. The
tolerances can give architects early warnings of problems later on.

• Perform cost-benefit analysis of added certainty. Usually, reducing
uncertainty comes at a cost for performing additional analysis, and it should
be considered whether buying more information in this way really changes
the decisions being made.

• Use options thinking. A difficult trade-off for architects is between product
cost now, and future flexibility, and real options can be used for this.

• Apply robust design principles. In situations where it is not practical to
reduce uncertainty, the solution should be protected through robustness.

• Use wide sampling and saturation. Dealing with unknown unknowns is a
particular challenge. One remedy is to gather information from a wide range
of sources. Saturation should be tracked over time to see when the rate of
new information slows down, and investigation can stop.

5 Conclusions

As we see it, uncertainty is a fact of life for architects of complex systems. However,
we also believe that a deeper understanding of the nature of this uncertainty can help
reducing the associated risks and improving the efficiency of the architecting process.

Apart from new evaluation methods and models that take uncertainty into account,
there is also a need to review the current practices when it comes to the architecting
process and the role of the architect. Too much effort is often spent on trying to get
better information about events that are by necessity occurring in the future, and this
search is usually fruitless. Instead, more focus should be placed on quality attributes
and their relations, and finding architectures that can handle various scenarios.

It is also important to always bear in mind when looking for a solution that all
additions to the architect’s work come at a cost, and future research must focus on
evaluating that the benefit is really motivating this additional spending.

References

1. Aughenbaugh, J.: Managing uncertainty in engineering design using imprecise probabilities
and principles of information economics. PhD thesis, Georgia Inst. of Tech. (August 2006)

2. McManus, H., Hastings, D.: A Framework for Understanding Uncertainty and Its
Mitigation and Exploitation in Complex Systems. In: Proc. 15th Symposium of the
International Council on Systems Engineering, INCOSE (July 2005)

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 203–206, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Runtime Performance Management of Information
Broker-Based Adaptive Applications

Anu Purhonen and Sakari Stenudd

VTT Technical Research Centre of Finland, Oulu, Finland
firstname.lastname@vtt.fi

Abstract. The increasing number of devices that surround us in everyday life
requires additional means to handle the information overload they cause. In
addition to the heterogeneity of devices, the smart environment is challenging
because of user mobility, fluctuating resources and changing user needs. In this
kind of dynamic environment, the applications need to be adaptive in order to
maintain the user-perceived quality at the required level. This work proposes a
solution for runtime performance management in a smart environment, where
devices exchange information using semantic information brokers.

Keywords: self-management, ontologies, smart environment.

1 Motivation and Background

In a smart environment, the technologies should disappear into the background [1].
Our environment may include devices from various domains such as home appliances,
building automation, and personal mobile devices. In addition to heterogeneity, the
smart environment is challenging because of dynamism of the environment, such as
user mobility, fluctuating resources and changing user needs. In this kind of dynamic
environment, it is not possible to guarantee the quality of the operation at design time.
Consequently, the applications need to be able to adapt to these changing conditions in
order to maintain the user-perceived quality at an acceptable level.

The interoperability platform (IOP) [2], [3], [4] is a solution for interoperability of
heterogeneous devices. It is realised by Semantic Information Brokers (SIB) that are
used for sharing information between agents at heterogeneous devices. A smart space
application (SSA) consists of at least one agent (consumer) that performs some useful
service to a user and requires co-operation with at least one agent (producer) in order
to realize that service. The specification of IOP does not address runtime quality
management that is needed to be able to fulfil the needs of dynamic environments.
This work addresses the performance management of applications utilising IOP.

The purpose of the runtime performance management (RPM) is to provide the
mechanisms for the self-management of adaptive applications facing timing
requirements and resource constraints. Self-management is realised using the MAPE-
K loop [5] that consists of monitoring, analysis, planning and execution phases, which
all use a common knowledge of the system and its environment. In general,
performance engineering ensures that the timing requirements of applications are met

204 A. Purhonen and S. Stenudd

within the resource constraints enforced by the underlying platform. Runtime
performance management may be needed when (1) applications are downloaded onto
devices where they are not necessarily tested before, (2) the overall performance is a
result of co-operation of devices that are emerging and disappearing, and (3) the user
preferences may change at runtime.

2 Research Questions

The purpose of the runtime performance management is to maintain performance of
adaptive applications in a smart environment. The research questions for the RPM
system are summarised as follows:

- Q1. How to take into account devices that are not known at the development
time? The composition of emerging and disappearing devices cannot be
predicted. Different manufacturers rely also on diverse technologies in their
devices. Furthermore, different application domains may have diverse standards
they have to follow.

- Q2. How to let the application user decide if she wants to have performance
management or not? In order to increase reusability of the application
components it should be up to the user of the smart application if she wants the
application to be adaptive or not.

- Q3. How to utilize devices that do not support performance management
themselves? It is up to the manufacturer to decide what features a device
possesses. However, they may provide anyway useful service.

- Q4. How to make RPM scalable from resource-poor to resource-rich
devices? The amount of resources on the devices varies so the RPM system
should be able to support applications in devices with varying capabilities.

- Q5. How to make RPM scalable to the size of the application. In addition to
restricted applications, performance management should be able to handle large
applications that need multiple measurements and complicated reasoning.

3 Runtime Performance Management of Information Broker-Based
Smart Environment

If a SSA is not useful unless it meets the performance requirements set to it then
runtime performance management is needed. The runtime performance management
consists of performance agents and the information that is transferred between the
agents (see Fig. 1).

The quality information includes advertised, required, and measured qualities.
Advertised quality is the advertised performance values of the produced information.
Required quality refers to the performance requirements to the consumed information.
Measured quality is the actually provided performance of the information. Additionally,
there could be predicted quality that would give an estimation of the performance level in
the future. Notification of quality violations, either measured or predicted, is used for
triggering adaptations. Like any other information stored in and retrieved from SIB the
exchanged quality information follows, the defined quality ontology.

 Runtime Performance Management of Information 205

SIB

Measurer

Violation
Analyser Reasoner

Executor

Producer agent Consumer agent

Required quality

Measured quality

Measured quality,
Required quality

Notification
Measured quality,
Required quality,

Notification

SSA composition

SSA composition

Advertised quality

Fig. 1. Quality information exchanged during runtime performance management

Runtime performance management consists of four types of agents that realize the
MAPE-K loop. Measurers produce values to the base or derived measures of
performance attributes. The basic aggregation activities for the raw measurements are
also included in this category. Measures are always related to a particular instance of
information. On the other hand, information may have one or more measurers
attached.

Analyser refers to all the activities that are required for generating the status of the
performance from the base or derived measures. The analysers perform, for example,
violation analysis and performance prediction. Violation analyser finds out if the
measured or predicted quality does not fulfil the required quality of a performance
measure and makes notifications of violations.

Reasoner decides the composition of agents that best fulfils the smart space
application requirements. The quality requirements of SSA are budgeted into quality
requirements for individual agents. Each consumer agent could have a reasoner
attached to it. Reasoner searches for suitable candidates that could produce the
information that the consumer needs and selects the one that best suits the
performance requirements. It also updates the SSA composition in case the situation
changes.

Executor is the mechanism that is capable of realizing the adaptation activities
required by the SSA composition including activating and deactivating agents. The
actual implementation depends on the platforms that the co-operating agents are
running on.

We experimented with the IOP and quality management in a demonstrator that
consisted of a greenhouse with sensors, actuators and interfaces for the gardener and
customers [6]. This work elaborates the interfaces and division of responsibilities of
the co-operating agents as well as defines the first set of supporting ontologies needed

206 A. Purhonen and S. Stenudd

in runtime performance management. The RPM ontology relates the quality
properties (e.g. provided, measured) to the IOP concepts (e.g. agent, information).
The prototypes made indicate that the selected approach is a viable solution for
runtime performance management in a semantic information broker-based smart
environment. A summary of the results related to research questions:

- The communication of information broker based applications happens via SIBs.
Consequently, also the quality information is exchanged via SIBs facilitating
performance management also in dynamic and heterogeneous environment. (Q1)

- Like other agents in a smart space, performance management agents are
separated from application-specific agents so that performance management is an
optional and adaptable feature. (Q2)

- The reasoner makes the decision which information producer best fits the
requirements of the consumer. Consequently, it can also select information
without any quality properties in case that fits the requirements. (Q3)

- The performance management agents have each their own role and they do not
need to be located at the same device. What kind of measurement and processing
is needed depends on the application. The composition of the performance
management can be distributed making it easier for resource-poor devices. (Q4)

- Each consumer may have its own reasoner. Consequently, when each consumer
has its own performance management then performance management is actually
distributed allowing handling of large applications. (Q5)

Acknowledgements. This work has been carried out in TIVIT-DIEM project – partially
funded by Tekes (the Finnish Funding Agency for Technology and Innovation).

References

1. Weiser, M.: The Computer for the 21st Century. Scientific American (International
Edition) 265, 66–75 (1991)

2. DIEM/TIVIT project, http://www.diem.fi/
3. Sofia/Artemis project, http://www.sofia-project.eu/
4. Smart-M3, http://sourceforge.net/projects/smart-m3/
5. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36, 41–50

(2003)
6. Evesti, A., Eteläperä, M., Kiljander, J., Kuusijärvi, J., Purhonen, A., Stenudd, S.: Semantic

Information Interoperability in Smart Spaces. In: 8th International Conference on Mobile
and Ubiquitous Multimedia, pp. 158–159 (2009)

Reference Architecture and Product Line

Architecture: A Subtle But Critical Difference

Elisa Yumi Nakagawa1, Pablo Oliveira Antonino2, and Martin Becker2

1 Dept. of Computer Systems, University of São Paulo - USP
PO Box 668, 13560-970, São Carlos, SP, Brazil

elisa@icmc.usp.br
2 Fraunhofer Institute for Experimental Software Engineering

Fraunhofer-Platz 1, 67663, Kaiserslautern, Germany
{pablo.antonino,martin.becker}@iese.fraunhofer.de

Abstract. Currently, the size and complexity of software systems, as
well as critical time to market, demand new approaches from Software
Engineering discipline for building such systems. In this context, the use
of reference architectures and product line architectures is becoming a
common practice. However, both of these concepts are sometimes mis-
takenly seen as the same thing; it is also not clearly established how
they can be explored in a complementary way in order to contribute to
software development. The main contribution of this paper is to make
a clear differentiation between these architectures, by investigating and
establishing definitions for each of them. Based on this, we also propose
the use of reference architectures as a basis for product line architec-
tures. As a result, a better understanding of both reference architectures
and product line architectures, as well as an understanding of how to
explore them jointly, can contribute to promoting more effective reuse in
the development of software systems.

1 Introduction

In the face of increasing complexity, diversity, scope, and size of software sys-
tems, as well as the necessity of dynamic integration and adaptation of systems
and the challenges encountered by managing families of systems, new ways to
facilitate the development and evolution of such systems are required. Software
Engineering has proposed a number of different ways for that. In particular,
software architectures are being increasingly investigated as the main artifact
that plays a pivotal role in determining system quality, since they form the
backbone of any successful software-intensive system. Motivated by that, the re-
search area of Software Architecture has grown up and has accumulated impor-
tant knowledge that has contributed to facilitating the achievement of software
quality aspects. In this context, two special types of software architecture can
be found: Reference Architecture and Product Line Architecture. Both aim at
improving software system development by standardizing the architectures of a
set of software systems. In general, a reference architecture has been considered

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 207–211, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

208 E.Y. Nakagawa, P. Oliveira Antonino, and M. Becker

as a structure that, besides aggregating behavior, is the basis from which the
software architectures of systems of a given domain are built. Considering the
relevance of reference architectures, various application domains, such as auto-
motive, avionics, and robotics, have proposed and used these architectures. In
parallel, product line architectures have been used in the Software Product Line
(SPL) approach to enable reuse in the large. This approach aims to efficiently
derive specific products for a given domain based on reusable core assets that
have common features and variable parts [1]. In this context, the product line
architecture refers to a structure that also encompasses the behavior from which
software products are developed. It is important to highlight that more and more
organizations are adopting SPL1 and, as a consequence, product line architec-
tures, as a solution to improve time to market, productivity, flexibility, and mass
customization needs. Despite the fact that reference architectures and product
line architectures have been widely discussed and used, there exists no consen-
sus within the software architecture community about the effective relationship
between them. Besides that, since they seem to be similar, they are sometimes
considered to be the same thing. It is also not clear how these architectures
can be explored together in order to make an effective contribution to software
development. Moreover, understanding them well seems to be relevant for the
establishment and evolution of such architectures.

The main objective of this paper is to make a clear distinction between ref-
erence architecture and product line architecture. For this, we have investigated
and established definitions for both architectures. We based our work on the
more influential and recent works in the software architecture literature, as well
as on our experience in proposing, using, and managing these architectures. The
main results of our work is that, despite common characteristics between them,
they present a subtle but critical difference. Considering the particular charac-
teristics of each, we also propose the use of reference architectures as a basis for
product line architectures.

2 Reference Architecture and Product Line Architecture

In spite of the diversity of available reference architectures and the general un-
derstanding regarding what a reference architecture is, there exists no consensus
about its definition, as also stated in [2]. Regarding product line architecture,
on the other hand, we have observed that its definition is more consolidated. In
the follow, we will discuss definitions of both.

Reference Architecture: A study of the main works in the software archi-
tecture literature allow us to identify some important definitions for reference
architecture. One of the first ones was stated by Kruchten [3], who said that “A
reference architecture is, in essence, a predefined architectural pattern, or set
of patterns, possibly partially or completely instantiated, designed and proven
for use in particular business and technical contexts, together with supporting

1 http://www.sei.cmu.edu/productlines/casestudies/index.cfm

Reference Architecture and Product Line Architecture 209

artifacts to enable their use. Often, these artifacts are harvested from previous
projects.” Another definition was proposed by Bass et al. [4] and states that “A
reference architecture is a reference model mapped onto software elements (that
cooperatively implement the functionality defined in the reference model) and
the data flows between them.” A reference model can be considered as an ab-
stract framework that presents a minimal set of unifying concepts, axioms, and
relationships within a particular problem domain, independent of specific stan-
dards, technologies, implementations, or other concrete details. From the per-
spective of a specific domain, Rosen et al. [5] said that “A reference architecture is
a working example of a critical aspect of your enterprise architecture, such as (...)
how to work with your organization’s message bus or (...) how to work with your
business rules engine.” In the same perspective, Angelov et al. [2] stated that “A
reference architecture is a generic architecture for a class of information systems
that is used as a foundation for the design of concrete architectures from this
class.” To complete these definitions, Reed2 thinks that “A reference architec-
ture consists of information accessible to all project team members that provides
a consistent set of architectural best practices.” Even though syntactically dif-
ferent, these definitions present the same essence: the reuse of knowledge about
software development in a given domain, in particular with regard to architec-
tural design. Other definitions are also found, but the ones presented above are
sufficient for our purpose. Based on these works, we believe that a reference archi-
tecture refers to an architecture that encompasses the knowledge about how to
design concrete architectures of systems of a given application domain; therefore,
it must address the business rules, architectural styles (sometimes also defined
as architectural patterns that address quality attributes in the reference archi-
tecture), best practices of software development (for instance, architectural deci-
sions, domain constraints, legislation, and standards), and the software elements
that support development of systems for that domain. All of this must be sup-
ported by a unified, unambiguous, and widely understood domain terminology.

Product Line Architecture: Various synonyms are used for the term “prod-
uct line architecture”, such as software product line architecture, domain-specific
software architecture, domain architecture, and even reference architecture in
[6,7]. However, it seems that “product line architecture” is a term that fits best
in the SPL context. In parallel, there are also different definitions of this term.
DeBaud et al. [7] say that it is an architecture with a required degree of flexibil-
ity and is shared by all the members of a product line, ensuring their conceptual
integrity. According to Pohl et al. [6], “product line architecture is a core archi-
tecture that captures the high level design for the products of the SPL, including
the variation points and variants documented in the variability model.” In the
same perspective, Gomaa [8] stated that “product line architecture is an architec-
ture for a family of products, which describes the kernel, optional, and variable
components in the SPL, and their interconnections.” In a more complete defini-
tion, SEI3 declares that “The product line architecture is an early and prominent
2 http://www.ibm.com/developerworks/rational/library/2774.html
3 http://www.sei.cmu.edu/productlines/frame report/arch def.htm

210 E.Y. Nakagawa, P. Oliveira Antonino, and M. Becker

member in the collection of core assets. (...) The architecture defines the set of
software components (...) that populates the core asset base. The product line
architecture – together with the production plan – provides the prescription (...)
for how products are built from core assets”. It is worth highlighting that, in gen-
eral, others definitions are derivations of those presented herein. Moreover, it is
important to observe that the common essence in these definitions is “variability
on a common core”. Thus, we can define product line architecture as a special
type of software architecture used to build a product line; it explicitly describes
commonality and variability and is the basis for the architectures of all product
line members.

3 Conclusion and Future Work

The contribution of this paper is a better understanding of what differentiates
reference architectures and product line architectures. While reference archi-
tectures deal with the range of knowledge of an application domain, providing
standardized solutions for a broader domain, product line architectures are more
specialized, focusing sometimes on a specific subset of the software systems of
a domain and providing standardized solutions for a smaller family of systems.
Another essential difference is that product line architectures are concerned with
the variabilities among products. Furthermore, reference architectures are gen-
erally on a higher level of abstraction compared to product line architectures.
We have therefore first investigated reference architectures as a basis for product
line architectures. In future work, we will also investigate how reference architec-
tures can be explored in the development of other product line artifacts, such as
the variability model. Thus, we intend to achieve reuse of the domain knowledge
contained in the reference architecture, as well as time and effort reduction and
productivity improvement, when establishing a SPL.

Acknowledgments. This work is supported by the Brazilian funding agencies
FAPESP, CNPq, and CAPES and partially supported by the OptimAAL-Project
(Competence Platform for the development and introduction of AAL-Solutions),
funded by the German Federal Ministry of Education and Research (BMBF),
and the CESAR-Project (Cost-efficient methods and processes for safety relevant
embedded systems), funded by the European ARTEMIS Joint Undertaking. We
would like to thank Sonnhild Namingha from Fraunhofer IESE for linguistic
support.

References

1. Clements, P., Northrop, L., Northrop, L.M.: Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston (2002)

2. Angelov, S., Grefen, P.W.P.J., Greefhorst, D.: A classification of software refer-
ence architectures: Analyzing their success and effectiveness. In: WICSA 2009,
Cambridge, UK, pp. 141–150 (September 2009)

Reference Architecture and Product Line Architecture 211

3. Kruchten, P.: The Rational Unified Process: An Introduction, 2nd edn. The Addison-
Wesley Object Technology Series. Addison-Wesley, Reading (2000)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley, Reading (2003)

5. Rosen, M., Ambler, S.W., Hazra, T.K., Ulrich, W., Watson, J.: Enterprise architec-
ture trends. Enterprise Architecture 10(1) (2007); Cutter Consortium

6. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles, and Techniques. Springer, Heidelberg (2005)

7. DeBaud, J.M., Flege, O., Knauber, P.: PuLSE-DSSA - a method for the development
of software reference architectures. In: ISA 1998, Orlando, USA, pp. 25–28 (1998)

8. Gomaa, H.: Designing Software Product Lines with UML. Object Technology Series.
Addison-Wesley, Reading (2004)

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 212–215, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Dynamically Reconfigurable Resource-Aware
Component Framework: Architecture and Concepts

Bojan Orlic, Ionut David, Rudolf H. Mak, and Johan J. Lukkien

Eindhoven University of Technology,
Eindhoven, The Netherlands

{b.orlic,i.david,r.mak,j.j.lukkien}@tue.nl

Abstract. Applications executed on a shared distributed platform compete for
resources provided by the platform. In case these applications have highly fluc-
tuating resource demands, a software architecture is required that provides sup-
port for runtime resource management. In position paper [1], we have proposed
such architecture and have introduced its key concepts and entities. In this pa-
per, we introduce a metamodel that captures the key concepts and we identify
lifecycle models for both applications and individual components. A set of dy-
namic reconfiguration strategies is introduced and their relationship to the stag-
es of the application lifecycle is given.

Keywords. Component framework, networked services, resource management,
dynamic reconfiguration, application lifecycle, component lifecycle.

1 Introduction

The key idea behind the component-based software engineering (CBSE) approach to
software development is to enable 3rd party composition in the process of system
engineering and in that way facilitate building complex systems from predefined
building blocks [2]. Composition of components is supported by component frame-
works which address the component model, as well static (design time) and dynamic
(run time) aspects of composition. We are interested in CBSE for distributed systems
with limited resources, where resources concern processing power, memory capacity
and network bandwidth. Resource management, however, is rarely addressed by a
software component framework, and if it is, it is limited to static resource reserva-
tions. We target applications with highly fluctuating resource demands (e.g. video
processing applications) in which static reservations are not suitable as they result in
inefficient resource usage. For the combination of efficient runtime resource man-
agement and dynamic component composition a special architecture is needed. In
this paper we further develop the architecture proposed in [1]. We choose to realize
applications using the SOA style by connecting networked services, which allows us
to include structural reconfiguration in our resource management strategies.

2 Architecture Description

Figure 1 gives a metamodel that specifies key abstractions of our architecture. The
system layer contains a single resource manager that is in charge of all resources

 Dynamically Reconfigurable Resource-Aware Component Framework 213

Fig. 1. Metamodel defining basic concepts, entities and interconnection mechanisms

provided by the nodes of the distributed platform. To perform its management tasks it
deploys the services of local device managers, as shown in the resource layer. These
services comprise installation and instantiation of components, monitoring their re-
source usage, and enforcement of resource reservations (budgets). In the application
layer, orchestrator entities are responsible for the composition, deployment and opera-
tion of an application. Each application in the system will have a dedicated orchestra-
tor. Since our applications are built from reusable and discoverable components
whose instantiation, composition, and deployment can be performed in the SOA style,
the system layer of our architecture also contains a repository of services and corres-
ponding components that are available in the system. Applications are composed from
services through binding provided and required interfaces. Docks are units of the
deployment of the system that can host one or more components.

The lifecycles of applications and components, depicted in Figure 2, involve two
main stakeholders – application designer and application operator. A designer can
create applications either ad-hoc at runtime or he can define and save an application
as a set of possible configurations. In the latter case, the operator chooses when to
start the application, and the actual configuration is selected at runtime through nego-
tiation between the resource manager, the orchestrator and the operator. The applica-
tion lifecycle consists of composition, deployment and operation phases. In general,
resource management decisions taken in the operation phase (marked 1 to 5) require
revision of activities in the other two phases (steps A to E). In step A, the application
designer composes an application from services available in the repository. In step B,
he selects components that implement those services. During the composition phase,
the application designer is also allowed to enter constraints for steps of the deploy-
ment phase, such as mapping of components to nodes (C), setting of QoS levels (D)

214 B. Orlic et al.

and allocation of budgets to components (E). Thus, prior to runtime, it is possible to
specify a number of different configurations as well as the reconfiguration strategy
(the logic that stipulates when to select which configuration).

Fig. 2. Application and component lifecycles

In the operation phase, resource supply and usage is monitored and analyzed. If
needed, dynamic reconfiguration is applied. In order of increasing severity we distin-
guish: 1) Realigning resource budgets. 2) QoS adaptation, in which service levels are
adjusted to resource availability. It includes realigning local resource reservations and
resolving dependencies between QoS levels of an application’s components, e.g., the
frame rate. 3) Reallocation, where components are migrated to nodes that better fit
their resource demands. 4) Replacement of components by others that offer the same
service but at a different resource demand. 5) Reconstruction of application structure,
in which services are added, replicated, replaced, or removed.

The component lifecycle is specific to our framework and in accordance with the
application lifecycle. The component development phase includes specification, im-
plementation and instrumentation. The outcome of the instrumentation is a component
deployable on a specific OS and compatible with our framework. Such a wrapped
component is stored in the repository. The component deployment phase starts when a
component is needed in some application and includes activities such as installation,
instantiation, termination and uninstalling. In the component operation phase, the
instantiated component can undergo binding, activation, deactivation and unbinding.

 Dynamically Reconfigurable Resource-Aware Component Framework 215

3 Conclusions and Future Work

In this paper, we have described a resource-aware component based architecture.
Similar to others we identify three layers [3], and distinguish between local and global
resource management [4], [5] and [6]. As in [7] and [8] resource management is com-
bined with plugin framework and SOA technologies. In contrast to all frameworks
cited, our framework allows structural changes as part of resource management strat-
egies, and defines application and component lifecycles.

Current work involves implementing the framework and definition of models for
resource usage prediction. Future work includes introducing resource management
policies and assigning those activities to framework entities.

References

1. David, I., Orlic, B., Mak, R., Lukkien, J.J.: Towards Resource-Aware Runtime Reconfigur-
able Component-Based Systems. In: Proceedings of the 6th World Congress on Services,
SERVICES 2010, Miami FL, USA, pp. 465–466 (2010)

2. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edn. Ad-
dison-Wesley, Reading (2002)

3. Koulamas, C., Prayati, A., Papadopoulos, G.: A Framework for the implementation of
Adaptive Streaming Systems. In: Proceedings of the 3rd ACM Workshop on Wireless Mul-
timedia Networking and Performance Modeling (WMuNeP 2007), pp. 23–26 (2007)

4. Sachs, D.G.: A New Framework for Hierarchical Cross-layer Adaptation, Ph.D. disserta-
tion, University of Illinois at Urbana-Champaign (2006)

5. Rizvanovic, L., Fohler, G.: The MATRIX: A Framework for Streaming in Heterogeneous
Systems. In: RTMM - International Workshop on Real-Time for Multimedia, Italy (2004)

6. Kersten, B., van Rens, K., Mak, R.: ViFramework: A framework for networked video
streaming components. In: Proceedings of the 2011 International Conference on Parallel
and Distributed Processing Techniques and Applications, PDPTA 2011 (2011)

7. Korostelev, A., Lukkien, J.J., Nesvadba J., Qian Y.: QoS Management in Distributed Ser-
vice Oriented Systems. In: Parallel and Distributed Computing and Networks (2007)

8. Chen, S., Lukkien, J.J., Verhoeven, R., Vullers, P., Petrovic, G.: Context- Aware Resource
Management for End-to-End QoS Provision in Service Oriented Applications. In: Proceed-
ings of the Workshop on Service Discovery and Composition in Ubiquitous and Pervasive
Environments (SUPE 2008), pp. 1–6 (2008)

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 216–219, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Reusable Business Tier Component
with a Single Wide Range Static Interface

Oscar M. Pereira1, Rui L. Aguiar1, and Maribel Yasmina Santos2

1 Instituto de Telecomunicações, University of Aveiro
3810-193 Aveiro, Portugal
{omp,ruilaa}@ua.pt

2 Algoritmi Research Center, University of Minho
4800 Guimarães, Portugal

{maribel}@dsi.uminho.pt

Abstract. This research proposes an architecture for reusable components
aimed at bridging the object-oriented and the relational paradigms. The
component, referred to here as Business Tier Component, provides a single
wide range static interface able to manage a set of Create, Read, Update and
Delete (CRUD) expressions, deployed at runtime and of any complexity, on
behalf of application tiers. The only constraint is that the required interface to
manage each CRUD expression must be a super-interface of the provided wide
range interface. The main research challenge of this paper is the definition of an
architecture for reusable components aimed at managing dynamically a set of
CRUD expressions, deployed at runtime, on behalf of application tiers.

Keywords: reusable component, business tier, databases, impedance mismatch.

1 Introduction

Object-oriented and relational paradigms are simply too different to bridge
seamlessly, leading to a set of difficulties informally known as impedance mismatch
[1], which is an open issue for more than 50 years [2]. To tackle the impedance
mismatch, several solutions have been proposed, including Call-Level Interfaces
(CLI) [3, 4], Embedded SQL [5], object-to-relational mapping techniques (O/RM) [6,
7], language extensions [7] and persistent frameworks [8, 9]. These solutions are
mostly tailored to cope with the principle of “new project implies new development
process” staying in opposite to approaches based on component-based software
engineering (CBSE) [10]. CBSE is a sub-discipline of software engineering aimed at
promoting the reuse of components to build software systems.

This paper presents the basis for a reusable-component-based approach aimed at
bridging the object-oriented and the relational paradigms hereafter known as Business
Tier Component (BTC). Each BTC is developed to provide a single wide range static
interface able to accommodate a set of CRUD expressions that are needed to
implement a business tier. Among their main features, each BTC has the capacity to
accept, at runtime, the information regarding the business logic to be implemented.

 A Reusable Business Tier Component with a Single Wide Range Static Interface 217

This paper is structured as follows: Section 2 presents the Business Tier
Component and Section 3 presents the conclusions.

2 Business Tier Component

At development time, each BTC is built to implement a service interface known as a
wide business tier interface (BTI) and have no knowledge about the CRUD
expressions they will have to manage. CRUD expressions are only deployed at
runtime. The only constraint is that each CRUD expression must only require any
sub-set of the implemented BTI services. In order to avoid any maintenance activity,
the development of BTC must be carefully planned to forecast all current and future
services to be implemented by the BTI. BTI comprises four distinct types of
interfaces (ISelect, IInsert, IUpate, IDelete), see Fig. 1, each one tailored to deal with
one specific type of CRUD expression, Select, Insert, Update and Delete,
respectively.

Fig. 1. Interfaces types

Fig. 2 provides additional detail to help the understanding of each interface type: IGet
interface implements services to read all the attributes from the returned relations;
IExecute interface provides a service to execute any CRUD expression with any
number of clause conditions parameters; ISet implements a service to set the values
for the attributes used on any Insert and Update CRUD expression; IScroll interface
implements services to scroll on returned relations; IResult implements services to
get results derived from the execution of CRUD expressions. Interfaces IExecute,
IResult, IScroll and ISet are shared by all BTC. IGet is the only interface that is
specifically built for each BTC. The generalization achieved by IExecute and ISet
interfaces relies on the strategy followed to define their arguments. Being an array of
objects there is no restriction on the data type and number of arguments to be
used. At runtime, if required, BTC checks their data type and use the correct methods

to interact with the host relational database management system. Fig. 3 presents a
simplified class diagram for BTC. Each interface type is implemented by a class
herein know as Business Tier Entity (BTE): BTE_S, BTE_I, BTE_U and BTE_D for
ISelect, IInsert, IUpdate and IDelete, respectively. BTC entry point is the public static
method createBTC, which creates a new instance of a BTC and returns IBTC
interface. From this interface actors may access BTC functionalities, namely for
playing the two implemented roles: administrator and developer. The administrator
role is played through the IAdm interface and is used to supervise and control the set
of CRUD expressions to be made available in each BTC running instance. The

218 O.M. Pereira, R.L. Aguiar, and M.Y. Santos

Fig. 2. Details of interfaces types

Fig. 3. Class diagram of BTC architecture

Fig. 4. IAdm and User interfaces

developer role is played through the IUser interface, which is used by developers to
instantiate BTE and to execute CRUD expressions. Fig. 4 presents IAdm and IUser
intefaces: 1) IAdm interface comprises 3 methods to manage the set of CRUD
expressions to be made available in each BTC running instance. Thus, different
running instances of the same BTC may manage a different set of CRUD expressions.
This assertion emphasizes that the presented architecture promotes the reuse of BTC
to build business tiers. 2) IUser interface comprises four methods: one for each sub-
interface type. From Fig. 3 and Fig. 4 it is easily perceived that users select from the
pool one of the CRUD expressions that are available, by their ids, and instantiates a
BTE. This way, each BTE have no knowledge about the CRUD expressions to be
managed until their instantiation. Moreover, each BTE may be reused to managed not
one but any number of CRUD expressions, promoting this way the reuse of
computation [11].

 A Reusable Business Tier Component with a Single Wide Range Static Interface 219

3 Conclusions

This paper presents the result of a research focused to define an architecture to
reusable components aimed at bridging the object-oriented and the relational
paradigms. The proposed architecture allows BTC to cope with the following
features: 1) The source code to execute CRUD expressions is internally implemented
by BTE, relieving, this way, programmers from writing the correspondent source
code, 2) The defined model seamlessly translates the object-oriented and the
relational paradigms tackling this way the impedance mismatch hindrance; 3) Pools of
CRUD expressions are maintained in runtime revealing BTC capability to
dynamically adapt to new CRUD expressions; 4) Each running instance of the same
BTC may manage a different set of CRUD expressions promoting this way BTC
reusability.

It is expected that the outcome of this research may contribute to open new
perspectives to develop reusable components to build business tiers based on CRUD
expressions.

Future work will be centered on extending the BTC architecture and then assess it,
if possible, in a real scenario.

References

1. David, M.: Representing database programs as objects. In: Bancilhon, F., Buneman, P.
(eds.) Advances in Database Programming Languages, pp. 377–386. ACM, N.Y (1990)

2. Cook, W., Ibrahim, A.: Integrating programming languages and databases: what is the
problem? (May 2011), http://www.odbms.org/experts.aspx#article10

3. Microsystems, S.: JDBC Overview (May 2011),
http://www.oracle.com/technetwork/java/overview-141217.html

4. Microsoft. Microsoft Open Database Connectivity (May 2011),
http://msdn.microsoft.com/en-us/library/ms710252VS.85.aspx

5. Eisenberg, A., Melton, J.: Part 1: SQL Routines using the Java (TM) Programming
Language. In: American National Standard for Information for Technology Database
Languages - SQLJ, International Committee for Information Technolgy: dff (1999)

6. Christian, B., Gavin, K.: Hibernate in Action. Manning Publications Co. (2004)
7. Kulkarni, D., et al.: LINQ to SQL: NET Language-Integrated Query for Relational Data,

Microsoft
8. Rusell, C.: JDO Specification, JSR-12 (June 2010),

http://jcp.org/aboutJava/communityprocess/final
/jsr012/index.html

9. Oracle. JPA - Java Persistent API (May 2011),
http://www.oracle.com/technetwork/articles
/javaee/jpa-137156.html

10. Heineman, G.T., Councill, W.T.: Component-Based Software Engineering: Putting the
Pieces Together, 1st edn. Addison-Wesley, Reading (2001)

11. Elizondo, P.V., Lau, K.-K.: A catalogue of component connectors to support development
with reuse. Journal of Systems and Software 83(7), 1165–1178 (2010)

Reverse Engineering Architectural Feature
Models

Mathieu Acher1, Anthony Cleve2, Philippe Collet1,
Philippe Merle3, Laurence Duchien3, and Philippe Lahire1

1 Université de Nice Sophia Antipolis - I3S (CNRS UMR 6070), France
{acher,collet,lahire}@i3s.unice.fr

2 PReCISE Research Centre, University of Namur, Belgium
acl@info.fundp.ac.be

3 INRIA Lille-Nord Europe, Univ. Lille 1 - CNRS UMR 8022, France
{philippe.merle,laurence.duchien}@inria.fr

Abstract. Reverse engineering the variability of an existing system is
a challenging activity. The architect knowledge is essential to identify
variation points and explicit constraints between features, for instance
in feature models (FMs), but the manual creation of FMs is both time-
consuming and error-prone. On a large scale, it is very difficult for an
architect to guarantee that the resulting FM is consistent with the archi-
tecture it is associated with. In this paper, we present a comprehensive,
tool supported process for reverse engineering architectural FMs. We
develop automated techniques to extract and combine different variabil-
ity descriptions of an architecture. Then, alignment and reasoning tech-
niques are applied to integrate the architect knowledge and reinforce the
extracted FM. We illustrate the process when applied to a representative
software system and we report on our experience in this context.

1 Introduction

As a majority of software applications are now large-scale, business-critical, op-
erated 24/7, distributed and ubiquitous, their complexity is increasing at a rate
that outpaces all major software engineering advances. To tame it, Software
Product Line (SPL) engineering is one of the major trends of the last decade.
An SPL can be defined as "a set of software-intensive systems that share a com-
mon, managed set of features and that are developed from a common set of core
assets in a prescribed way" [8]. SPL engineering aims at generating tailor-made
variants for the needs of particular customers or environments and promotes
the systematic reuse of software artifacts. An SPL development starts with an
analysis of the domain to identify commonalities and variabilities between the
members of the SPL. It is common to express SPL variability in terms of features,
which are domain abstractions relevant to stakeholders. A Feature Model is used
to compactly define all features in an SPL and their valid combinations [18,10].

When SPL engineering principles are followed from the start, it is feasible to
manage variability through one or more architectural feature models and then

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 220–235, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Reverse Engineering Architectural Feature Models 221

associate them to the architecture [17]. The major architectural variations are
then mapped to given features, allowing for automated composition of the archi-
tecture when features are selected to configure a software product from the line.
A resulting property of crucial importance is to guarantee that the variability is
not only preserved but also kept consistent across all artefacts [9,4,15].

In many cases, however, one has to deal with (legacy) software systems, that
were not initially designed as SPLs. When the system becomes more complex,
with many configuration and extension points, its variability must be handled
according to SPL techniques. In this context, the task of building an architec-
tural feature model, is very arduous for software architects. It is then necessary
to recover a consistent feature model from the actual architecture. On a large
scale both automatic extraction from existing parts and the architect knowledge
should be ideally combined to achieve this goal.

1.1 FraSCAti: The Need for Handling Variability

In this paper, we illustrate our proposal and report on a case study on the FraS-
CAti platform [12], an open-source implementation of the Service Component
Architecture (SCA) standard [21], which allows for building hierarchical compo-
nent architectures with the support of many component and service technologies.

Started in 2008, the development of FraSCAti begun with a framework based
on a basic implementation of the standard, and then incrementally enhanced.
After four major releases, it now supports several SCA specifications (Assembly
Model, Transaction Policy, Java Common Annotations & APIs, Java Component
Implementation, Spring Component Implementation, BPEL Client & Implemen-
tation, Web Services Binding, JMS Binding), and provides a set of extensions to
the standard, including binding implementation types (Java RMI, SOAP, REST,
JSON-RPC, JNA, UPnP, etc.), component implementation types (Java, OSGi,
Java supported scripting languages, Scala, Fractal), interface description types
(Java, C headers, WSDL, UPnP), runtime API for assembly and component
introspection/reconfiguration [19]. As its capabilities grew, FraSCAti has itself
been refactored and completely architected with SCA components.

With all these capabilities, the platform has become highly (re-)configurable in
many parts of its own architecture. It exposes a larger number of extensions that
can be activated throughout the platform, creating numerous variants of a FraS-
CAti deployment. For example, some variations consist in specific components
bound to many other mandatory or optional parts of the platform architecture.
It then became obvious to FraSCAti technical leads that the variability [22] of
the platform should be managed to pilot and control its evolution as an SPL.

1.2 Feature Modeling

Variability modelling is a central activity in SPL engineering. We chose to rely
on a particular kind of variability model, Feature Models (FMs), based on their
wide adoption, the existence of formal semantics, reasoning techniques and tool
support [18,10,6]. FMs compactly represent product commonalities and vari-
abilities in terms of features. FMs can be used to describe features at different

222 M. Acher et al.

FraSCAti

SCAParser

Java Compiler

JDK6 JDT

Optional

Mandatory

Alternative-
Group

Or-Group

Assembly Factory

resthttp

Binding

MMFrascati

Component Factory

Metamodel

MMTuscany

constraints

rest requires MMFrascati
http requires MMTuscany

FM1

(a) an excerpt of a possible architectural FM

φ1 = FraSCAti
∧ FraSCAti ⇔ AssemblyFactory
∧ FraSCAti ⇔ ComponentFactory
∧ FraSCAti ⇔ SCAParser
∧ SCAParser ⇔ Metamodel
∧ AssemblyFactory ⇔ Binding
∧ ComponentFactory ⇔ JavaCompiler
∧ JavaCompiler ⇒ JDK6 ∨ JDT
∧ ¬ JDK6 ∨ ¬JDT
∧ MMFrascati ⇒ Metamodel
∧ MMTuscany ⇒ Metamodel
∧ http ⇒ Binding
∧ rest ⇒ Binding
∧ Binding ⇒ rest ∨ http
∧ rest ⇒ MMFrascati
∧ http ⇒ MMTuscany

(b) propositional logic encoding

Fig. 1. Feature Model and Propositional Logic Encoding

abstraction levels, at different phases of the software lifecycle, and related to var-
ious software artefacts [9,14,4]. The FMs that we consider all along this paper
express architectural variability.

An FM hierarchically structures features into multiple levels of detail. As an
example, Fig. 1(a) shows a excerpt of the architectural FM of FraSCAti. As
in typical SPLs, not all combinations of features or configurations (see Defi-
nition 1) are valid. When decomposing a feature into subfeatures, the subfea-
tures may be optional, mandatory or may form Or or Alternative-groups (e.g.,
JDK6 and JDT form an Alternative-group, http and rest form an Or-group).
An additional mechanism to specify variability is to add constraints (expressed
in propositional logic), which may cut across the feature hierarchy (e.g., rest
requires MMFrascati). The validity of a configuration is determined by the
semantics of FMs, e.g. JDK6 and JDT are mutually exclusive and cannot be
selected at the same time. A valid configuration is obtained by selecting some
features from parents to children while following the rules imposed by the oper-
ators (e.g., exactly one subfeature must be selected in an Alternative) and the
constraints.

Definition 1 (SPL, Feature Model). A software product line SPLi is a set of
products described by a feature model FMi. The set of features of FMi is denoted
FFMi . Each product of SPLi is a combination of features and corresponds to
a valid configuration of FMi. A configuration c of FMi is defined as a set of
selected features c = {f1, f2, . . . , fm} ⊆ FFMi . �FMi� denotes the set of valid
configurations of FMi. We note φi the propositional formula of FMi.

The set of configurations represented by an FM can be described by a propo-
sitional formula defined over a set of Boolean variables, where each variable
corresponds to a feature [10]. Figure 1(b) also shows the mapping of the FM to
a propositional formula. The propositional formula can be used to automatically

Reverse Engineering Architectural Feature Models 223

reason about properties of an FM (e.g., see [6]). In particular, if an assignment
to its Boolean variables is satisfiable, then the selection/deselection of the cor-
responding features respects the rules evoked above.

1.3 Reverse Engineering FraSCAti as an SPL

In order to manage FraSCAti as an SPL, we needed to capture its variability
from the actual architecture. Several software artefacts (SCA composite files,
Maven descriptors, unformal documents) describe the FraSCAti architecture,
but its variability is not explicitly represented. As the FraSCAti main software
architect (SA) had an extensive expertise of the architecture and of its evolution,
he was asked to model the architecture he has in mind with variation points (see
left part of Fig. 2). As a domain expert, he had the ability to elicitate those
variation points and explain the rationale behind them. We decided to separate
the variability description from the architectural model itself. The idea is to
represent the variation points of the architecture as features in an architectural
FM, and then to related those features to the architectural elements.

The task of manually creating the architectural FM is daunting, time-consu-
ming and error-prone, requiring substantial effort from the SA. In this case, as
in all large scale architectures, it is very difficult for an architect to guarantee
that the resulting FM is consistent with the architecture.

Another complementary approach consists of the automated extraction of the
architectural FM from existing software artefacts (see right part of Fig. 2). This
operation clearly saves time and reduces accidental complexity, but the accuracy
of the results directly depends on the quality of the available documents and of
the extraction procedure. This approach is notably followed in a recent work
involving large scale variability extraction from the Linux kernel [20].

The main challenge is then to reconcile these two architectural FMs into a
final FM being compatible with both the SA view and the actual architecture.
It must also be noted that we could have tried to somehow integrate the SA
knowledge in the extraction process or to let him edit an extracted FM, but we

Software
Artefacts

Variability
Modeling

Automatic
Extraction

Software
Architect View

?
Fig. 2. Variability Modeling from Software Artefacts

224 M. Acher et al.

argue that keeping the first two activities separated is better. This lets an highly
experienced SA focus on her own variability scoping, and then compare it to the
extracted version. Moreover, this allows for explicitly separating the required
variability of the SA from the supported variability of the actual software system,
as advocated in [16].

In this paper, we present a comprehensive, tool supported process for reverse
engineering architectural FMs. We develop automated techniques to extract and
combine different variability descriptions of an architecture. Then, alignment
and reasoning techniques are applied to integrate the architect knowledge and
reinforce the extracted FM. In the remainder of this paper we describe the
automated extraction process that we have applied to FraSCAti FM(Section 2).
We then show how the process is completed by refinement steps that enable
the architect to compare and integrate her knowledge, with the aim to obtain a
consistent architectural FM (Section 3). This process is validated by application
to the FraSCAti architecture and some lessons learned are presented. A related
work discussion is provided in Section 4 while Section 5 concludes the paper.

2 Automatic Extraction of Architectural Feature Model

Overview. Fig. 3 summarizes the steps needed to realize the process. First,
a raw architectural feature model, noted FMArch150 , is extracted from a 150%
architecture of the system (see ➀). The latter consists of the composition of the
architecture fragments of all the system plugins. We call it a 150% architecture
because it is not likely that the system may contain them all. Consequently,
FMArch150 does include all the features provided by the system, but it still con-
stitutes an over approximation of the set of valid combinations of features of
the system family. Indeed, some features may actually require or exclude other
features, which is not always detectable in the architecture. Hence the need for
considering an additional source of information. We therefore also analyze the
specification of the system plugins and the dependencies declared between them,
with the ultimate goal of deriving inter-feature constraints from inter-plugin con-
straints. To this end, we extract a plugin feature model FMPlug, that represents
the system plugins and their dependencies (see ➁). Then, we automatically re-
construct the bidirectional mapping that holds between the features of FMPlug

and those of FMArch150 (see ➂). Finally, we exploit this mapping as a basis to
derive a richer architectural FM, noted FMArch, where additional feature con-
straints have been added. As compared to FMArch150 , FMArch more accurately
represents the architectural variability provided by the system.

2.1 Extracting FMArch150

The architectural FM extraction process starts from a set of n system plugins
(or modules), each defining an architecture fragment. In order to extract an ar-
chitectural FM representing the entire product family, we need to consider all
the system plugins at the same time. We therefore produce a 150% architecture

Reverse Engineering Architectural Feature Models 225

1 2

Mapping

Aggregation

Software
Artefacts

3

Plugin Dependencies

<<requires>>

FMPlug

150% Architectural FM

FMArch150

<<requires>>

Enforced
Architectural FM

FMFull

Projection (Π)
FMArch

Fig. 3. Process for Extracting FMArch

of the system, noted Arch150. It consists of a hierarchy of components. In the
SCA vocabulary, each component may be a composite, itself further decomposed
into other components. Each component may provide a set of services, and may
specify a set of references to other services. Services and references having com-
patible interfaces may be bound together via wires. Each wire has a reference as
source and a service as target. Each reference r has a multiplicity, specifying the
minimal and maximal number of services that can be bound to r. A reference
having a 0..1 or 0..N multiplicity is optional.

Note that Arch150 may not correspond to the architecture of a legal product
in the system family. For instance, several components may exclude each other
because they all define a service matching the same 0..1 reference r. In this case,
the composition algorithm binds only one service to r, while the other ones are
left unbound in the architecture.

Since the extracted architectural FM should represent the variability of the
system of interest, we focus on its extension points, typically materialized by
optional references. Algorithm 1 summarizes the behavior of the FM extractor.
The root feature of the extracted FM (froot) corresponds to the main composite
(root) of Arch150. The child features of froot are the first-level components of
root, the latter being considered as the main system features. The lower-level
child features are produced by the AddChildFeatures function (Algorithm 2).
This recursive function looks for all the optional references r of component c and,
for each of them, creates an optional child feature fr, itself further decomposed
through a XOR or an OR group (depending on the multiplicity of r). The child
features fcs of the group correspond to all components cs providing a service
compatible with r.

226 M. Acher et al.

Algorithm 1. ExtractArchitecturalFM150(Arch150)
Require: A 150% architecture of the plugin-based system (Arch150).
Ensure: A feature model approximating the system family (FMArch150).
1: root ← MainComposite(Arch150)
2: froot ← CreateFeature(root)
3: FMArch150 ← SetRootFeature(FMArch150 , froot)

4: for all c ∈ FirstLevelComponents(root) do
5: fc ← CreateFeature(c)
6: FMArch150 ← AddMandatoryChildFeature(FMArch150 , froot, fc)

7: FMArch150 ← AddChildFeatures(FMArch150 , c, fc, Arch150)

8: end for

Algorithm 2. AddChildFeatures(FM, c, fp, Arch150)
Require: A feature model (FM), a component (c), a parent feature (fp), a 150% architecture

(Arch150).
Ensure: FM enriched with the child features of fp, if any.
1: for all r ∈ OptionalReferences(c) do
2: MC ← FindMatchingComponents(Arch150, r)
3: if MC �= ∅ then
4: fr ← CreateFeature(r)
5: FM ← AddOptionalChildFeature(FM, fp, fr)
6: if Multiplicy(r) = 0..1 then
7: g ← CreateXORGroup()
8: else if Multiplicy(r) = 0..N then
9: g ← CreateORGroup()
10: end if
11: FM ← AddGroup(FM,fr , g)
12: for all cs ∈ MC do
13: fcs ← CreateFeature(cs)
14: FM ← AddChildFeatureOfGroup(FM, g, fcs)
15: FM ← AddChildFeatures(FM, cs, fcs , Arch150)
16: end for
17: end if
18: end for

2.2 Extracting FMP lug

The extraction of the plugin feature model FMPlug starts from the set of plugins
P = {p1, p2, . . . , pn} composing the system. This extraction is straightforward:
each plugin pi becomes a feature fpi of FMPlug. If a plugin pi is part of the
system core, fpi is a mandatory feature, otherwise it is an optional feature.
Each dependency of the form pi depends on pj is translated as an inter-feature
dependency fpirequiresfpj . Similarly, each pi excludes pj constraint is rewritten
as an excludes dependency between fpi and fpj .

2.3 Mapping FMArch150 and FMP lug

When producing Arch150, we keep track of the relationship between the input
plugins and the architectural elements they define, and vice versa. On this ba-
sis, we specify a bidirectional mapping between the features of FMArch150 and
those of FMPlug by means of requires constraints. This mapping allows us to
determine (1) which plugin provides a given architectural feature, and (2) which
architectural features are provided by a given plugin.

Reverse Engineering Architectural Feature Models 227

2.4 Deriving FMArch

We now illustrate how we derive FMArch using FMArch150 , FMPlug, the map-
ping between FMPlug and FMArch150, and an operation called projection using
the example of Fig. 4.

First FMPlug and FMArch150 are aggregated under a synthetic root FtAggre-
gation so that root features of input FMs are mandatory child features of
FtAggregation. The aggregation operation produces a new FM, called FMFull

(see Fig. 4). The propositional constraints relating features of FMPlug to features
of FMArch150 are also added to FMFull.

Definition 1 (Projection) The projection is a unary operation on FM written
as Πft1,ft2,...,ftn (FMi) where ft1, f t2, ..., f tn is a set of features. The result of a
projection applied to an FM, FMi, is a new FM, FMproj, such that: �FMproj� =
{ x ∈ �FMi� | x ∩ {ft1, f t2, ..., f tn} }
Second, we compute the projection (see Definition 1) of FMFull onto the set of
features of FMArch150 (i.e., FFMArch150

= {Arch, Ar1, . . . , Ar6}). The projec-
tion produces a new FM, called FMArch (see Fig. 4). Formally:

ΠFF MArch150
(FMFull) = FMArch

In the example of Fig. 4, the relationship between �FMFull� and �FMArch�
truly holds. We can notice that one configuration of the original FMArch150 has
been removed, i.e., �FMArch150� \ �FMArch� = {Ar1, Ar2, Ar3, Ar6, Arch}.
Indeed the projected FMArch contains an additional constraint Ar3 ⇒ Ar5, that
was not present in FMArch150 . Similarly, the constraint Ar4 ⇒ Ar6 (grey tint in
Fig. 4) can been derived but is redundant with Ar3 ⇒ Ar5. As we will see below,
such constraint derivation can dramatically reduce the set of configurations of
FMArch150.

Implementation of the projection. Our previous experience in the compo-
sition of FMs has shown that syntactical strategies have severe limitations to
accurately represent the set of configurations expected, especially in the pres-
ence of cross-tree constraints [1]. The same observation applies for the projection
operation so that reasoning directly at the semantic level is required. The key
ideas of our implementation are to i) compute the propositional formula rep-
resenting the projected set of configurations and then ii) reuse the reasoning
techniques proposed in [10] to construct an FM from the propositional formula.
Formula Computation. For a projection FMproj = Πft1,ft2,...,ftn (FMi), the
propositional formula corresponding to FMproj is defined as follows :

φproj ≡ ∃ ftx1, f tx2, . . . f txm′ φi

where ftx1, f tx2, . . . f txm′ ∈ (FFMi \ {ft1, f t2, . . . f tm}) = Fremoved.
The propositional formula φproj is obtained from φi by existentially quanti-

fying out variables in Fremoved. Intuitively, all occurrences of features that are
not present in any configuration of FMproj are removed by existential quantifi-
cation in φi. The projection can be seen as a safe removal of a set of features

228 M. Acher et al.

Ar3 => Pl1
Pl2 => Ar5

FtAggregation

Ar2

Ar5 Ar6

Ar1

Ar3 Ar4

Arch
FMArch

FMFull

Projection (Π) onto Arch, Ar1, …, Ar6

Ar2

Ar5 Ar6

Ar1

Ar3 Ar4

Arch
FMArch

Ar3 => Ar5
Ar4 => Ar6

Pl3Pl2Pl1

Plugin

Pl1 => Pl2

FMPlug150

Optional

Mandatory

Alternative
-Group

Or-Group

Fig. 4. Enforcing architectural FM using aggregation and projection

(i.e., existential quantification removes a variable from a propositional formula
without affecting its satisfiability).

We rely on Binary Decision Diagrams (BDDs) to compute φproj [7]. A BDD
can be seen as a compact representation of a propositional formula. BDDs have
interesting properties, for example, computing the existential quantification of
BDDs can be performed in at most polynomial time with respect to the sizes of
the BDDs involved [7]. The techniques described in [10] (see below) also relies
on a BDD-based implementation.
From Formula to FM. We use the algorithm presented in [10] to transform φproj

into an FM. More precisely, the algorithm builds a tree with additional nodes for
feature groups that can be translated into a basic feature diagram. Importantly,
the algorithm indicates parent-child relationships (i.e., mandatory or optional
features) and Alternative- or Or-groups. We use information of the original FM
to favor features that were initially grouped.

The feature diagram, however, may be an over approximation of the origi-
nal formula in the sense that if we translate the synthesized feature diagram
to a propositional formula, noted φprojdiagram

, then some valid assignments of
φprojdiagram

may be invalid in φproj . We thus need to further constrain the fea-
ture diagram (as we did for the example of Fig. 4) in case φproj is not logically
equal to φprojdiagram

. We propose to decompose the FM FMproj as a feature di-
agram, a set of required constraints and a set of other propositional constraints
(that cut across the hierarchy of the diagram). We compute the set of required
constraints by first computing the implication graph, noted Iproj , of the formula
φproj over ft1, f t2, ..., f tn. Iproj is a directed graph G = (V, E) formally defined
as:

V = {ft1, f t2, ..., f tn} E = {(fi, fj) | φproj ∧ fi ⇒ fj}
Then, the set of require constraints Irequires can be deduced by removing edges
from Iproj being already expressed in the feature diagram (e.g., parent-child

Reverse Engineering Architectural Feature Models 229

relations). The feature diagram plus the require constraints may still be an over
approximation of φproj (it is not the case in Fig. 4). It is detected by checking
the logical equality between φproj and φprojdiagram

∧ φprojrequires (φprojrequires

being the logical conjunction of all require constraints of Irequires). If needs be,
an additional formula φprojother

is computed so that φproj is logically equal to
φprojdiagram

∧ φprojrequires ∧ φprojother
. We implement all the logical operations

using BDDs.

3 Refining the Architectural Feature Model: Application

We conduct a study to i) determine if the architectural FM designed by the SA1,
noted FMSA, is consistent with the extracted FM FMArch (and vice-versa) ;
ii) step-wise refine FMSA based on the previous observations. We describe the
techniques developed for the case study and analyze the results2.

3.1 Tool Support

We rely on FAMILIAR (FeAture Model scrIpt Language for manIpulation and
Automatic Reasoning) [11,2], a domain-specific language dedicated to the man-
agement of FMs. FAMILIAR is an executable, textual language that supports
manipulating and reasoning about FMs and is integrated in a comprehensive
Eclipse-based environment (including graphical editors). We use FAMILIAR for
two main purposes. Firstly, the extraction procedure generates FAMILIAR code
to compute FMArch. Secondly, FAMILIAR provides the SA with a dedicated ap-
proach for easily manipulating FMs during the refinement process.

3.2 Results

Automatic Extraction. The FMArch150 produced by the extraction procedure
contains 50 features while the FMPlug contains 41 features. The aggregated
FM, FMFull, resulting from FMArch150 , FMPlug and the bidirectional mapping
contains 92 features and 158 cross-tree constraints.

We first verify some properties of FMFull. By construction, we know that
the projection of FMFull onto FFMArch150

is either a refactoring or a specializa-
tion [23] of FMArch150 (see Definition 2).

Definition 2 (Specialization, Refactoring, Generalization, Arbitrary
Edit). Let f and g be two feature models. f is a specialization of g if �f� ⊂ �g� f
is a generalization of g if �g� ⊂ �f� f is a refactoring of g if �g� = �f� f is an ar-
bitrary edit of g if f is neither a specialization, a generalization nor a refactoring
of g.

1 P. Merle, principal FraSCAti developer, plays the role of the SA in this study.
2 See [24] for further details about the case study.

230 M. Acher et al.

We observe that FMArch is a specialization of FMArch150. More precisely,
FMArch150 admits 13958643712 possible configurations (≈ 1011), while FMArch

represents 936576 distinct products (≈ 106). As expected, the projection tech-
nique significantly reduces the over approximation of FMArch150.

To improve the understanding of the difference between two FMs, we use a diff
operator, denoted as FM1⊕\FM2 = FMr. The following defines the semantics
of this operator.

�FM1� \ �FM2� = {x ∈ �FM1� |x /∈ �FM2�} = �FMr�

The formula φr of FMr is used to reason about properties of FMr (e.g.,
satisfiability) and is computed as follows:

φr = (φFM1 ∧ not(FFM2 \ FFM1)) ∧ ¬(φFM2 ∧ not(FFM1 \ FFM2))

For example, determining the kind of relationship between two FMs (see Defi-
nition 2) can be done by reusing the algorithm presented in [23] or by using the
diff operator (see Definition 3).

Definition 3 (Diff and Specialization/Refactoring) Let f and g be FMs. f
is a specialization or a refactoring of g if (f ⊕\ g) has no valid configuration
since �f� ⊆ �g� is equivalent to �f� \ �g� = ∅.

Moreover, the diff operator can compute the difference (if any) between two
FMs in terms of set of configurations. In particular, we can compute the car-
dinality of this set. For example, we correctly check the following relationship3

using the tool support: |FMArch150| -
∣
∣FMArch150 ⊕\ FMArch

∣
∣ = |FMArch|.

Refining Architectural FMs. The goal of the reverse engineering process
is to elaborate an FM which accurately represents the valid combinations of
features of the SPL architecture. The absence of a ground truth FM (i.e., an
FM for which we are certain that each combination of features is supported by
the SPL architecture) makes uncertain the accuracy of variability specification
expressed in FMArch as well as in FMSA. It is the role of the SA to determine if
the variability choices in FMSA (resp. FMArch) are coherent regarding FMArch

(resp. FMSA). In case variability choices are conflicting, the SA can refine the
architectural FM.

We now report the problems encountered when reasoning about the relation-
ship between FMArch and FMSA. We also describe the advanced techniques we
developed to assist the SA.

Reconciling FMArch and FMSA. A first obstacle concerned the need to recon-
cile FMArch and FMSA (see Fig. 5). Both FMs come from difference sources and
a preliminary work is needed before reasoning about their relationship. Firstly,
the vocabulary (i.e., names of features) used differs in both FMs and should
be aligned consequently. To resolve this issue, we rely on string matching tech-
niques (i.e., Levenshtein distance) to automatically identify features of FMArch

3 where |FMi| denotes the number of configurations of FMi, i.e., |FMi| = |�FMi�|.

Reverse Engineering Architectural Feature Models 231

Software
Architect View

Reconciling
Feature Models

(e.g., vocabulary and
granularity alignment)

Comparison

renaming,
projection,

removal

Aligned
Software Architect View

Enforced
Architectural FM

Aligned
Architectural FM

renaming,
projection,

removal

More
refinement

Refined
Archiectural FM

FMSA

FMSA’
FMArch’

FMArch

Fig. 5. Process for Refining FMArch

that correspond to features of FMSA. Then a renaming is applied on all cor-
responding features in FMArch. As an example, "MMFraSCAti” of FMSA has
been identified to correspond to "sca_metamodel_frascati” of FMArch and after
the renaming FMArch contains the feature "MMFraSCAti”. We automatically
detect 32 features. The SA manually specifies the correspondence for 5 features
in which the automated detection does not succeed (e.g., "MembraneFactory"
corresponding to "fractal_bootstrap_class_providers"). Secondly, granularity
details differ, (i.e., some features in one FM are not present in the other FM):
FMSA only contains 39 features whereas FMArch contains 50 features.
In FMSA but not in FMArch. Two exclusive features Felix and Equinox are
present in FMSA but not in FMArch. We also observed that the two features
are present in FMPlug but not in FMArch150 (and hence not in FMArch). A
discussion with the SA reveals that these two plugins do not explicitly define ar-
chitecture fragments in SCA. As a consequence, this variability point can simply
not be identified in the architecture by the automatic extraction procedure.
In FMArch but not in FMSA. We identified 13 features that are present in
FMArch but not in FMSA. Among others, two metamodels used by the SCA
parser, three Bindings, two SCA properties, two Implementations and one In-
terface were missing. Given the complexity of the FraSCAti project, this is
not surprising that the SA forgets some features. Hence, for most of the fea-
tures, the SA considers the missing features as relevant and thus adds them in
FMSA. For one of the missing feature, "sca_interface_java", the SA reveals
that he intentionally ignored it in FMSA, arguing that it is a mandatory fea-
ture (i.e., every FraSCAti configuration has a Java interface) and that his focus
was on variability rather than commonality. We indeed verify the mandatory

232 M. Acher et al.

nature of "sca_interface_java" in FMArch. Nevertheless, the SA decides to add
"sca_interface_java" in FMSA. Similarly, two first-level mandatory features,
"binding_factory” and "services", were missing in FMSA. The SA intentionally
did not include the two features since they do not convey any further variation
points, but he decides to edit FMSA by adding those features. Another example
concerns a feature of FMArch, "juliac", that adds unnecessary details (so that
the way features are organized in FMSA and FMArch slightly differ). Here the
SA decides to remove "juliac" by projection.

Reasoning about FMArch and FMSA. At this step, we can compare FMArch

and FMSA. A first comparison is to determine the kind of relationship between
FMArch and FMSA (see Definition 2). We obtain an arbitrary edit, that is, some
configurations of FMArch are not valid in FMSA (and vice-versa). To go further,
we use the diff operator (see Definition 3) and the merge in intersection mode
(see [1]). We enumerate and count the unique configurations of FMArch and FMSA

as well as the common configurations of FMArch and FMSA. Nevertheless, the
techniques appear to be insufficient to really understand the difference between the
two FMs. Intuitively, we need to identify more local differences. A first technique
is to compare the variability associated to features of FMArch and FMSA that
have the same name. In particular, we detect that i) four features are optional in
FMArch but mandatory in FMSA and ii) three sets of features belong to Or-groups
in FMArch whereas in FMSA, the features are all optional. A second technique is
to compute the intersection and the difference of the sets of require constraints in
FMArch and FMSA (based on their implication graphs, see page 228).

Step-wise Refinement of FMSA. The comparison techniques have been re-
iterated until having a satisfying architectural FM. Based on the comparison
results, the SA had several attitudes. Firstly, he used FMArch to verify the
coherence of his original variability specification in FMSA. Secondly, he consid-
ered that some variability decisions in FMSA are correct despite their differences
with FMArch. The SA imposed five variability decisions not identified by the
extraction procedure. Thirdly, he edits FMSA, for example, by adding some
constraints only present in FMArch or by setting optional a feature originally
mandatory. The extracted FM notably identifies nine "obvious" constraints not
expressed in FMSA and allows the SA to incrementally correct FMArch.

3.3 Lessons Learned

The FraSCAti case study provides us with interesting insights into the reverse
engineering of architectural FMs. First, the gap between FMSA and FMArch ap-
pears to be manageable, due to an important similarity between the two FMs.
However, it remains helpful to assist the SA with automated support, in partic-
ular, to establish correspondences between features of the two FMs. The most
time-consuming task was to reconcile the granularity levels of both FMs. For this
specific activity, tool supported, advanced techniques, such as the safe removal
of a feature by projection, are not desirable but mandatory (i.e., basic manual
edits of FMs are not sufficient).

Reverse Engineering Architectural Feature Models 233

Second, our extraction procedure (Section 2) yields very promising results.
It recovers most of the variability expressed in FMSA and encourages the SA
to correct his initial model. A manual checking of the five variability decisions
imposed by the SA shows that the extraction is not faulty. It correctly reproduces
the information as described in the software artefacts of the project.

Third, the SA knowledge is required i) to scope the SPL architecture (e.g.,
by restricting the set of configurations of the extracted FM), especially when
software artefacts do not correctly document the variability of the system and
ii) to control the accuracy of the automated procedure. An open issue is then to
provide a mechanism and a systematic process to reuse the SA knowledge, for
example, for another version of the architectural FM of FraSCAti.

4 Related Work

Despite the importance of variability management in software engineering in
general, and in software architectures in particular [5], the problem of reverse en-
gineering the variability of existing systems has definitely not received sufficient
attention from the research community. While our work takes an architectural
perspective, the other existing approaches in the field consider different input ar-
tifacts including legacy system documentation [13] or textual requirements [3]. In
their recent work, She et al. [20] propose a reverse engineering approach combin-
ing two distinct sources of information: textual feature descriptions and feature
dependencies. Our approach also benefits from the combination of two (other)
sources of information, namely plugin dependencies and architecture fragments.
They mostly focus on the retrieval of the feature diagram (heuristics for identi-
fying the most likely parent feature candidates of each feature, group detection,
etc.) and assume that the set of valid configurations is correctly restituted, which
is clearly not the case in our work. We also support the identification of feature
groups (based on architectural extension points), of the right parent feature of
each feature (based on architectural hierarchy) and of inter-feature dependencies
(through projection of plugin dependencies).

The FM analysis and reasoning techniques used in this paper reuse and extend
previous work in SPL and requirement engineering [6]. Metzger et al. [16] propose
an approach to cross-checking product-line variability and software variability
models, thus assuming that such models (or views) are available. Our approach is
complementary since it allows the recovering of the actually supported variability
of a software system, and since it involves the cross-analysis of architectural and
plugin FM. One of the key component and original contribution of our work
is the projection operator we have defined and realized (see Section 2). Lopez
and Eyged [14] address a related problem in the context of safe composition
by checking the consistency of multi-view variability models. In particular, they
check whether an FM developed by a domain expert is a specialization or a
refactoring of an FM representing the variability of multiple models. Thüm et
al. [23] reason on the nature of FM edits, and provide a classification that we
rely on when comparing the extracted FM with the software architect view. As

234 M. Acher et al.

we have shown, reasoning about the relationship of two FMs is inappropriate
until FMs are not reconciled, i.e., pre-directives (e.g., safe removal of unnecessary
details) have to be applied before. Benavides et al. compared the performance
of CSP, SAT solvers and BDD solvers for some reasoning operations on FMs [6].
As future work, we will investigate the use of SAT or CSP solvers to realize
the diff/projection operators. A comparison with BDD-based implementations
is planned to determine the most scalable solution. Another research direction
is to consider feature attributes [6], for example, to model quality attributes of
the FraSCAti architecture.

5 Conclusion

Variability management is of crucial importance in the management of large
families of software systems. While feature models have long been recognized as
expressive means to compactly represent software variability from different per-
spectives, building one of them for a large system is a complex, time-consuming
and error-prone activity. In this paper, we presented a tool-supported approach
to reverse engineer software variability from an architectural perspective. The
reverse engineering process involves the automatically supported extraction, ag-
gregation, alignment and projection of architectural feature models. It has the
merit of combining several sources of information, namely software architecture,
plugin dependencies and software architect knowledge. We successfully evaluated
the proposed approach when applied to FraSCAti, a large and highly configurable
plugin-based system. We showed that our automated procedures allow for pro-
ducing both correct and useful results, thereby significantly reducing manual
effort. We learned, however, that fully automating the process is not realistic
nor desirable, since the intervention of the software architect remains highly
beneficial. The ongoing evolution of the FraSCAti project will bring us an op-
portunity to study how to reuse the accumulated knowledge of the software
architect. As the validation was only conducted on a single case study, we need,
on the long term, to adapt the proposed process to show its applicability to
other forms of architecture (e.g., OSGi) and other architectural concepts. This
should make significant steps to the provision of a validated, systematic process
for extracting architectural variability models.

References

1. Acher, M., Collet, P., Lahire, P., France, R.: Comparing Approaches to Implement
Feature Model Composition. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F.
(eds.) ECMFA 2010. LNCS, vol. 6138, pp. 3–19. Springer, Heidelberg (2010)

2. Acher, M., Collet, P., Lahire, P., France, R.: A Domain-Specific Language for Man-
aging Feature Models. In: SAC 2011, pp. 1333–1340. ACM, PL Track (2011)

3. Alves, V., Schwanninger, C., Barbosa, L., Rashid, A., Sawyer, P., Rayson, P., Pohl,
C., Rummler, A.: An exploratory study of information retrieval techniques in do-
main analysis. In: SPLC 2008, pp. 67–76. IEEE, Los Alamitos (2008)

Reverse Engineering Architectural Feature Models 235

4. Apel, S., Kästner, C.: An overview of feature-oriented software development. Jour-
nal of Object Technology (JOT) 8(5), 49–84 (2009)

5. Bachmann, F., Bass, L.: Managing variability in software architectures. SIGSOFT
Softw. Eng. Notes 26, 126–132 (2001)

6. Benavides, D., Segura, S., Ruiz-Cortes, A.: Automated Analysis of Feature Models
20 years Later: a Literature Review. Information Systems (2010)

7. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a bdd package.
In: DAC 1990, pp. 40–45. ACM, New York (1990)

8. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, Reading (2001)

9. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against
well-formedness ocl constraints. In: GPCE 2006, pp. 211–220. ACM, New York
(2006)

10. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again.
In: SPLC 2007, pp. 23–34 (2007)

11. FAMILIAR, http://nyx.unice.fr/projects/familiar/
12. FraSCAti, http://frascati.ow2.org
13. John, I.: Capturing product line information from legacy user documentation. In:

Software Product Lines, pp. 127–159. Springer, Heidelberg (2006)
14. Lopez-Herrejon, R.E., Egyed, A.: Detecting inconsistencies in multi-view models

with variability. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA
2010. LNCS, vol. 6138, pp. 217–232. Springer, Heidelberg (2010)

15. Lopez-Herrejon, R.E., Egyed, A.: On the need of safe software product line ar-
chitectures. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp.
493–496. Springer, Heidelberg (2010)

16. Metzger, A., Pohl, K., Heymans, P., Schobbens, P.-Y., Saval, G.: Disambiguating
the documentation of variability in software product lines: A separation of concerns,
formalization and automated analysis. In: RE 2007, pp. 243–253 (2007)

17. Parra, C.A., Cleve, A., Blanc, X., Duchien, L.: Feature-based composition of soft-
ware architectures. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285,
pp. 230–245. Springer, Heidelberg (2010)

18. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic semantics
of feature diagrams. Comput. Netw. 51(2), 456–479 (2007)

19. Seinturier, L., Merle, P., Fournier, D., Dolet, N., Schiavoni, V., Stefani, J.-B.: Re-
configurable SCA Applications with the FraSCAti Platform. In: SCC 2009, pp.
268–275. IEEE, Los Alamitos (2009)

20. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: ICSE 2011, pp. 461–470. ACM, New York (2011)

21. SCA standard, http://www.osoa.org/
22. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization tech-

niques: Research articles. Softw. Pract. Exper. 35(8), 705–754 (2005)
23. Thüm, T., Batory, D., Kästner, C.: Reasoning about edits to feature models. In:

ICSE 2009, pp. 254–264. IEEE, Los Alamitos (2009)
24. Companion webpage, https://nyx.unice.fr/projects/familiar/wiki/ArchFm

http://nyx.unice.fr/projects/familiar/
http://frascati.ow2.org
http://www.osoa.org/
https://nyx.unice.fr/projects/familiar/wiki/ArchFm

Supporting Communication and Cooperation in
Global Software Development with Agile Service

Networks

Damian Andrew Tamburri and Patricia Lago

VU University Amsterdam
The Netherlands

{d.a.tamburri,p.lago}@vu.nl

Abstract. Current IT markets exhibit many constraints (e.g. budget,
staff shortage, etc.). These constraints force IT companies to increase
productivity using globally distributed manpower. Literature shows that
global software development (GSD) indeed raises productivity but re-
duces communication and collaboration between teams. Consequently,
the risk of failure increases. To ease communication and collaboration
among teams, novel engineering methods must be provided. To address
this problem, we propose using Agile Service Networks (ASNs). ASNs
are an emergent paradigm in which service oriented applications (net-
work nodes) collaborate through agile and dynamic service interactions
(network edges). Agile interaction among ASN nodes, allow mitigating
distance (typical of GSD) by dynamically adapting communication and
collaboration as needed. Through ASNs, GSD can be seen as a global net-
work of resources (teams, documentation, knowledge, etc.) among which
agile interactions allow flexible knowledge exchange and team collabora-
tion. To establish feasibility of our proposal, we investigated how ASNs
can support GSD. Based on existing works in the fields of both ASNs and
GSD, we mapped GSD challenges on ASNs key features and devised a
meta-model showing how ASNs are used to support GSD requirements.

1 Introduction

Our global economy is constantly challenged by time-to-market and budget is-
sues. Moreover, the availability and cost of manpower rapidly change. To max-
imize productivity in these conditions, IT companies carry out software devel-
opment globally. Ideally, by using teams in different sites and timezones, all 24
hours in a working day can be rendered productive. Unfortunately, when doing
so, the issues in knowledge exchange and synchronization among teams are of-
ten underestimated. These problems regard people rather than technology, and
hence they are very difficult to study. In addition, costs inevitably raise because
of increased travel needs (e.g. for management and architects’ meetings etc.).
Consequently, workforce becomes ineffective, costs prohibitive and ultimately,
projects fail [6,13]. The problem we want to address is the lack of practices and
tools to support these issues in GSD.

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 236–243, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Supporting Communication and Cooperation 237

Fig. 1. Research Approach

ASNs are networks of service-oriented applications (network nodes) created
by collaborative service interactions (network edges) among many cooperating
industrial parties. Through ASNs, complex yet agile and adaptable business
transactions take place on a global scale.

Similarly to GSD processes, ASNs stem from collaborative business processes
[4,2], distributed on a global scale. Since GSD is indeed a business process (com-
plying with the definition in [10]) ASNs can be used to model the business process
of developing software globally. Their networked and agile nature can be enriched
to support both social and technical requirements of GSD. In this paper we in-
vestigate how can ASNs support GSD processes. ASNs were only recently intro-
duced, and using them to support GSD was never researched so far. Therefore our
investigation faces challenges such as limited literature on ASNs and no related
work. Another interesting challenge regards the social aspects of GSD: these must
be represented and supported through ASNs, which are defined as a technical sys-
tem. Two main contributions are offered: (i) a mapping of GSD challenges on ASN
key features, showing that ASNs can support GSD; (ii) a meta-model that shows
ASNs supporting GSD requirements. Figure 1 shows our research steps (rectan-
gles) as well as inputs and outputs (rounded rectangles). First we carried out a
literature study obtaining GSD challenges, GSD requirements and ASNs’ key fea-
tures. Then we showed feasibility of our proposal by mapping GSD challenges on
ASNs’ key features. Finally, we devised a meta-model to show how GSD can be
supported by ASNs. This meta-model was obtained extending an existing ASN
notation [15,1] to support GSD requirements.

2 Literature Study

This section surveys Agile Service Networks and Global Software Development.
To gather clear-cut literature for ASNs, we applied the topic search string (i.e.
“Agile Service Networks”) to major scholarly search engines (Google Scholar,
IEEExplore, ACM Digital Library, Wiley Interscience, Microsoft Academic Re-
search). For GSD, we consulted experts in the field. The resulting publications
were [4,12,14,2] for ASNs and [7,3,6,8,13,5] for GSD. To these publications we
added [15], a publication from the S-Cube consortium (available at www.s-cube-
network.eu) discussing Service Networks.

238 D.A. Tamburri and P. Lago

2.1 Agile Service Networks

Analyzing the selected papers we have identified the following key features ex-
posed by ASNs.

ASNs are dynamic: All the papers describe ASNs as being highly dynamic
entities. In [4,14,15] dynamism is seen as essential part of service interactions in
collaborative industrial networks (i.e. industrial value networks [11]). Dynamic
agility in this context is regarded as the immediate ability to adapt to dynamic
changes in demand and offer.

ASNs are business-oriented : All papers promote the concept of ASNs from a
business perspective. ASNs emerge from business corporative collaborations [4]
and represent complex service applications interacting in a networked business
scenario involving multiple corporations or partners in different sites (i.e. differ-
ent geolocations) [2]. Within ASNs, business value can be computed, analyzed
and maximized [4,12].

ASNs are collaborative: In all papers, ASNs are defined as interoperating
business alliances. Each member cooperates with others to achieve a common
goal (e.g. service level, value increase). Therefore, ASNs are collaborative.

ASNs are emergent : There are no engineering and design methods specific to
ASNs. They form spontaneously as a consequence of business alliances teaming-
up to collaboratively increase business value through corporative partnership
[4,14,15,2].

In addition to these key features, we used the ASN notation in Figure 2,
taken from [15]. The main architectural elements for ASNs in the notation are
Participants (ASN nodes) and Relations (ASN edges). For the sake of space,
we do not further discuss this notation and urge the reader to refer to [15] and
[1] for further details.

2.2 Global Software Development

Analyzing the suggested papers we have identified the following challenges in
GSD.

Social Aspects are important to enable teams to integrate and exchange knowl-
edge correctly [5,7]. In [5] GSDs are comprised of globally distributed teams

Fig. 2. Service Networks Notation from [15] and [1]

Supporting Communication and Cooperation 239

carrying out an objective collaboratively. Collaboration is increased by social-
ization in teams and social networking [7].

Collaboration increases productivity by raising team interaction, awareness
and responsibility on the project [7]. In [6] the key issue for GSD is coordination
in dynamic contexts. Collaborative effort, is required for GSD to succeed.

Flexibility in management, to coordinate multisite development [8,6]. Ideally
GSD should be able to use all available resources regardless of geographical loca-
tion and coordinate these collaboratively. Management should be flexible enough
to provide fine grained control over all types of resources (e.g. documentation,
people down to individual skills). Knowledge localization is challenging since
granularity of management and control over resources and people is limited [8].

Reduced dependency among teams, so that productivity of one team is not
impacted by productivity of others. Distance can be compensated with tactics
to increase communication, loosen teams dependency and limit participants’
cultural difference [3].

Coordination of all resources available, i.e. manpower, tools, document arti-
facts, knowledge, to timely allocate resources and maximize productivity [3,6].
GSD often fails because many of the mechanisms that coordinate work in co-
located projects (e.g. stand up or colloquial meetings, informal “water-cooler”
talk etc.) are absent or disrupted.

Geolocalization to allow project awareness among teams. Since teams are ge-
ographically dispersed and often unknown to each other, they need intercom-
munication and awareness infrastructures to actively participate on the project
[13,9,7].

Finally, from these papers we elicited requirements for GSD processes (for
the sake of space the list is not present here and is availableonline1). We ob-
tained these requirements by: (a) scanning through the literature, coding text
describing requirements or needs for GSD processes; (b) analyzing industrial case
studies from [13]. In total, we obtained 17 Requirements from literature coding,
and 12 requirements from the real-life industrial GSD scenarios in [13].

The entities and relationships occurring in GSD processes (according to re-
quirements) can be summarized in the following scenario:

“Company X develops software globally by using N globally distributed teams.
Each team is made of engineers with individual skills, social background,
roles, etc. A global team map is used to track location, timezone and
knowledge of every team (e.g. skills, documentation available, progress made
on artifacts, etc). One or more teams are core teams since their task is man-
aging the whole process, checking shared documentation, deciding a project-
wide technical space and planning travel budget. Travel budget is needed for
the frequent “awareness” meetings among teams. Shared documentation is
needed to document the project and also to increase awareness of every member.
A common technical space is needed to ease communicability (e.g. common for-
mats) and knowledge exchange (e.g. common platforms). As soon as require-
ments are agreed with the stakeholders they are used to generate a global

1 http://www.picfront.org/d/87GP

http://www.picfront.org/d/87GP

240 D.A. Tamburri and P. Lago

architecture. Once the global architecture is defined, it is split into project
units. Project units are allocated to engineering teams, responsible for their
development. Service teams update shared documentation to allow consistency
and further increase project awareness”.

Words in bold in the scenario represent the entities taking part in GSD pro-
cesses. This scenario and the GSD requirements it represents, are used in the
definition of our meta-model in section 4.

3 Mapping GSD to ASNs

This section shows that ASNs can be used to support GSD processes. To this
aim, GSD challenges were matched with ASNs key features (both presented
in Section 2). Table 1 summarizes results. Column 1 represents GSD challenges,

Table 1. Mapping of ASN characteristics on Global Software Development

GSD needs... ... ASNs are... Rationale
social aspects business-

oriented
ASNs stem from the business strategies for collaborative value

increase. These strategies are modeled around social demands and
user profiles (social context, background, social extraction, etc.).
This means that ASN nodes are modeled to satisfy customers’

(social) characteristics[4,15].
collaboration

and awareness
Agile Service Networks are generated through collaboration of

networked service applications[4]. Formally, collaboration terms are
stated in service level agreements [2,14]. This means that every ASN

node must collaborate with other to achieve the network’s goal
(similarly to GSD Collaboration needs). In so doing, formal service
level agreements must be in place so that collaborating nodes know
what are the terms of the collaboration (similarly to GSD awareness

needs).
collaborative
coordination

collaborative ASNs are collaborative and adaptable to context change. Service
applications coordinate spontaneously to achieve results in

accordance to fixed service level needs[2,14]. Dynamic adaptation of
both nodes and interactions allows dynamic coordination.

reduced
dependency

among teams

ASNs provide clear-cut definitions of network nodes (i.e. service
applications)[14]. Agile interactions between nodes enable loose

dependency: if one (service) node is not available, another node can
be called up [2].

management
flexibility

dynamic Agile Service Networks provide a dynamic infrastructure, adaptable
to context change. Agile interactions among nodes allow for flexible

management of the network.[2].
geo-localization
of resources

emergent agile service networks are emergent through service discovery,
localization and management of serving nodes [4,15,14]

while column 2 shows ASNs’ matching key feature. Column 3 provides rationale.
The table shows that all GSD challenges found can be supported by ASNs key
features.

4 Engineering GSD with ASNs

To show how ASNs can support GSD, requirements for GSD processes must be
satisfied through ASNs. In this section we show a meta-model in which entities

Supporting Communication and Cooperation 241

Fig. 3. ASN notation for GSD

and relations from GSD requirements (as summarized in the scenario closing
section 2.2) are modeled through an ASNs notation (see Figure 2). To build this
meta-model, we first reproduced entities and relationships stemming from GSD
requirements. Then we reproduced the ASN notation in the meta-model. Finally,
we extended the ASN notation by specialization (i.e. by drawing a generaliza-
tion from GSD specific concepts to ASN generic concepts). More formally, the
following “merging” rule was applied:

“specialize the Participant class from Figure 2 with all entities that take ac-
tive part in GSD according to requirements (i.e. that are participants in an ASN).
Specialize the Relation class with all relations among resulting Participants”.

This rule is both necessary, and sufficient. It is necessary since all the active
contributors in GSD must be Participants in an ASN; it is sufficient, since
all remaining elements to be merged (i.e. relations between Participants) are
Relations in the ASN.

Therefore, the concept model in Figure 3 was obtained by drawing the entities
and relationships required for GSD (i.e. stemming from the requirements we
elicited) and then applying the rule defined above.

On the left hand side, The model shows the entities and relationships stem-
ming from the requirements (filled), while the ASN notation (originally in Figure
2) is on the right hand side (non filled). The two are merged by specializing the

Participant class on the right, with Teams, Global Team Map and Shared
Documentation classes on the left. Since these three entities carry out (ei-
ther directly or indirectly) the software development, indeed they are the active
participants in GSD, according to requirements. Relations taking place among
these elements are ASN transactions (i.e. Relations). For the sake of clarity in
Figure 3 we do not show the relations on the GSD side (left, filled) specializing
the Relation class on the ASN side (right, non-filled).

Indeed this meta-model shows that an ASN to support GSD processes can be
created by modeling Teams, Global Team Maps and Shared Documenta-
tion as active Participants within the ASN. Consequently, the relations be-
tween these are ASN collaborative transactions (i.e. Relations).

5 Conclusions and Future Work

In this paper we wanted to establish if and how ASNs supported GSD. To
this aim we systematically searched for literature in ASNs and GSD. From the
gathered literature we obtained ASN key features, GSD challenges and GSD re-
quirements. Mapping GSD challenges on ASNs’ key features led us to conclude
that ASNs indeed support GSD. Moreover, extending an ASN notation to meet
GSD requirements, we have shown how this support can be concretized.
This notwithstanding, it can be noticed that ASNs are still missing some im-
portant architectural elements, e.g. social aspects of GSD. These aspects are
key to provide added-value support tools. Since GSD actors are teams part of
organizational structures (i.e. corporations, software companies etc.), a system-
atic literature review into Organizational Social Structures is being carried out.
From this study we hope to develop a socio-organizational context model to en-
rich ASNs. Moreover, since Figure 3 is a meta-model, i.e. a model for a model,
further exploration of model-driven engineering methods for GSD through our
ASNGSD meta-model is in order. Moreover, validation of this meta-model should
be put in place to make its support to GSD meaningful. For this, industrial case
studies should be developed and results should be analyzed against industrial
expectations (e.g. a focus group). Further on, more experimentation should be
invested in simplifying / improving the model in Figure 3 (e.g. action research)2.

References

1. Bitsaki, M., Danylevych, O., Heuvel, W.-J., Koutras, G., Leymann, F., Mancioppi,
M., Nikolaou, C., Papazoglou, M.: An architecture for managing the lifecycle of
business goals for partners in a service network. In: Mähönen, P., Pohl, K., Priol,
T. (eds.) ServiceWave 2008. LNCS, vol. 5377, pp. 196–207. Springer, Heidelberg
(2008)

2 The authors acknowledge the support of the European Community’s Seventh Pro-
gramme FP7/2007- 2013, grant agreement 215483 (S-Cube), for partially funding
this project.

Supporting Communication and Cooperation 243

2. Bucchiarone, A., Cappiello, C., Di Nitto, E., Kazhamiakin, R., Mazza, V., Pistore,
M.: Design for adaptation of service-based applications: main issues and require-
ments. In: Proceedings of the 2009 International Conference on Service-Oriented
Computing, ICSOC/ServiceWave 2009, pp. 467–476. Springer, Heidelberg (2009)

3. Carmel, E., Agarwal, R.: Tactical approaches for alleviating distance in global
software development. IEEE Software 2(18), 22–29 (2001)

4. Carroll, N., Whelan, E., Richardson, I.: Applying social network analysis to discover
service innovation within agile service networks. Service Science 2, 225–244 (2010)

5. Ebert, C., De Neve, P.: Surviving global software development. IEEE Soft-
ware 18(2), 62–69 (2001)

6. Herbsleb, J.D.: Global software engineering: The future of socio-technical coordi-
nation. In: Briand, L.C., Wolf, A.L. (eds.) FOSE, pp. 188–198 (2007)

7. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: An empirical study of
global software development: distance and speed. In: ICSE 2001: Proceedings of the
23rd International Conference on Software Engineering, pp. 81–90. IEEE Computer
Society, Washington, DC, USA (2001)

8. Herbsleb, J.D., Moitra, D.: Guest editors’ introduction: Global software develop-
ment. IEEE Software 18, 16–20 (2001)

9. Herbsleb, J.D., Moitra, D.: Global software development. IEEE Software 18(2),
16–20 (2001)

10. http://www.opengroup.org/projects/soabook/ Soa source book
11. Jetter, M., Satzger, G., Neus, A.: Technological innovation and its impact on busi-

ness model, organization and corporate culture - ibm’s transformation into a glob-
ally integrated, service-oriented enterprise. Business & Information Systems Engi-
neering 1(1), 37–45 (2009)

12. Metzger, A., Pohl, K.: Towards the next generation of service-based systems: The
S-cube research framework. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE
2009. LNCS, vol. 5565, pp. 11–16. Springer, Heidelberg (2009)

13. Sangwan, R., Bass, M., Mullick, N., Paulish, D.J., Kazmeier, J.: Global Software
Development Handbook. Auerbach Series on Applied Software Engineering Series.
Auerbach Publications, Boston (2006)

14. van den Heuvel, W.-J., Zimmermann, O., Leymann, F., Lago, P., Schieferdecker,
I., Zdun, U., Avgeriou, P.: Software service engineering: Tenets and challenges.
In: Proceedings of the 2009 ICSE Workshop on Principles of Engineering Service
Oriented Systems, PESOS 2009, pp. 26–33. IEEE Computer Society, Washington,
DC, USA (2009)

15. Andrikopoulos, V., Benbernou, S., Bitsaki, M., Danylevych, O., Hacid, M.S., van
den Heuvel, W.J., Karastoyanova, D., Kratz, B., Leymann, F., Mancioppi, M.,
Mokhtari, K., Nikolaou, C.N., Papazoglou, M.P., Wetzstein, B.: Survey on business
process management. Deliverable 1. S-Cube Consortium (July 14, 2008)

http://www.opengroup.org/projects/soabook/

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 244–251, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Reducing Architectural Knowledge Vaporization by
Applying the Repertory Grid Technique

Dan Tofan, Matthias Galster, and Paris Avgeriou

Department of Mathematics and Computing Science, University of Groningen
The Netherlands

{d.c.tofan,m.r.galster}@rug.nl, paris@cs.rug.nl

Abstract. The architecture of a software-intensive system is the composition of
architectural design decisions. These decisions are an important part of
Architectural Knowledge (AK). Failure to document architectural design
decisions can lead to AK vaporization and higher maintenance costs. To reduce
AK vaporization, we propose to apply the Repertory Grid Technique (RGT) to
make tacit knowledge about architecture decisions explicit. An architect can use
the RGT to elicit decision alternatives and concerns, and to rank each
alternative against concerns. To validate our approach, we conducted a survey
with graduate students. In the survey, participants documented decisions using
the RGT. We compared these decisions with decisions documented using a
basic decision template. Our results suggest that RGT leads to less AK
vaporization, compared to conventional ways of documenting decisions.

Keywords: architectural knowledge, repertory grid, AK vaporization, survey.

1 Introduction

Bosch [2] considers the software architecture of a system as the composition of a set
of architectural decisions. Kruchten et al. [9] define Architectural Knowledge (AK)
about a system as design decisions and design. De Boer and Farenhorst [1]
investigated various definitions of AK in literature. They obtained evidence for the
importance of decisions in AK and argued that decisions represent a link from the
problem domain to the solution domain.

Bosch [2] considers AK vaporization as a key problem in software architecture.
AK vaporization contributes to expensive system evolution, lack of stakeholders’
communication and reduced reusability [7]. Given the importance of AK
vaporization, the architecting community has proposed various approaches for
reducing it. For example, Bosch [2] argued for the representation of design decisions
as first class entities in software architecture. Kruchten et al. [9] discussed an AK
repository, and its underlying ontology. Jansen [7] studied decisions recovery and
their dependencies. Kruchten et al. [8] described a decision view that incorporates
design decisions in the ‘4+1’ view model. Furthermore, the ISO/IEC 42010 standard
provides recommendations for incorporating design decisions in architecture
descriptions.

 Reducing Architectural Knowledge Vaporization 245

In this paper we propose to use the Repertory Grid Technique (RGT) for capturing
architectural decisions. In general, the RGT follows four steps: choose a decision
topic, obtain alternatives, get concerns, and rate alternatives against each concern. The
resulting grids can be used for hierarchical cluster analysis of alternatives and
concerns. For details on the RGT please refer to [4]. In a previous study [10], we
already identified some advantages and disadvantages of RGT. In this paper, we
investigate how RGT may reduce AK vaporization.

2 Applying the RG Technique

We conducted a descriptive survey with the goal of investigating the reduction of AK
vaporization by applying RGT. As sample, we invited graduate students enrolled in a
Software Architecture course at the University of Groningen in 2010. Participation
was voluntary and had no influence on grades. The study was scheduled to take place
as part of an optional 2-hour seminar.

In the session, we first trained the students to use the RGT and then asked them to
apply it to some architectural decisions. Participants used the RGT to describe
decisions that occurred in the context of the course project. The course project
required students to act as architects, and design a complex home automation system
that interacts with the Smart Grid in order to sell and buy electric power. Throughout
the semester, students worked in groups of five persons to architect the system. As
our study took place halfway through the project, students had already made the
important architectural decisions and thus possessed AK about the home automation
system. Therefore, we captured the AK of students about some of the decision topics
that occurred in their course project. Even though students worked as teams, we
decided to apply the RGT at an individual level, for simplicity reasons.

To structure our study, we used Basili’s Goal-Question-Metric (GQM) method.
Our goal is to reduce AK vaporization from architects’ viewpoint. This is important
to both practitioners and researchers, because knowledge vaporization leads to
increased maintenance costs. Our question is: Does the RG technique reduce AK
vaporization, compared to a basic approach to document architectural decisions?

Selecting metrics for AK vaporization was more difficult. In our context, the
decisions documented in architectural documents in the course project were based on
a predefined template. Given their lack of experience, students were asked to describe
the decision topic, alternatives, their pros and cons, decision outcome, and rationale.
Moreover, they did not use any established approach for documenting decisions. We
speculate that architectural documentations created by students are similar to
documentations produced by practitioners who do not use systematic approaches for
decision documentation. From our experience, we consider that decision
documentation in industry is rarely systematic, even compared to the templates filled
by students. On the other hand, the RG output is the result of a systematic, but
unproven approach.

Existing work on AK vaporization has yet to offer techniques for measuring
vaporization and to facilitate the evaluation of new approaches that claim to reduce
AK vaporization. Thus, we defined the following three metrics to compare how RG-
based decisions differ from decisions based on a basic decision template. First, we

246 D. Tofan, M. Galster, and P. Avgeriou

considered the number of explicit decision alternatives, followed by the number of
concerns. The third metric was the ratio of the number of expressed rankings
compared to the maximum of possible rankings. These metrics could be obtained
from the RGT output as well as from the basic architectural documentations created
by students. A higher number of explicit alternatives, concerns or rankings may
suggest a reduction in AK vaporization. To increase reliability, two researchers
conducted this analysis. For the ratio of rankings, we divided the number of explicit
rankings by the maximum number of possible rankings. For example, if a decision has
4 explicit rankings, 2 alternatives and 3 concerns, then the ratio is 0.66.

Next, we describe the preparations for our data collection efforts. Due to time
constraints for the study, we needed a RG tool that participants could use for the AK
acquisition task. After piloting a few tools, we selected Idiogrid [6], because it
supports self-administering the RGT. Next, we describe the four steps of RGT as
performed in the study.

Choose Decision Topic. We prepared some decision topics for students to use in the
survey. To apply RGT, participants needed to be experts on the decision topic, or be
at least knowledgeable about the topic. To satisfy this condition, we analyzed the
course project reports, delivered by students. For each of the six groups, we compiled
a list of decision topics and alternatives. Next, we analyzed which decision topics
appeared across all groups, to see which topics are more common. We identified four
such topics: choice of user interface, programming language, communication
technology, and operating system. To satisfy the expertise prerequisite, we asked each
student to choose two out of the four decision topics, based on his/her familiarity.

Get Alternatives. According to Edwards et al. [3], the alternatives (or elements) used
in the RGT can either be supplied to the participant or elicited from him/her. The
former is suitable for investigations on a specific set of elements [3]. As we aimed to
elicit AK from participants, we decided to ask participants to specify the alternatives
for each selected topic.

Get Concerns. Similar to the previous step, we decided to elicit characteristics (or
constructs) from participants, rather than to supply them. However, in our previous
study [10], we used the triadic elicitation approach in individual interviews: we asked
the expert in what way two of three alternatives (elements) are alike, but different
from the third. For this study, we doubted that most students could successfully use
the triadic approach in a self-administered session, through a dialog with a tool,
instead of an interviewer. According to Grice et al. [5], grids based on sentence
completion are suitable for any domain of experience, and are easy to complete.
Following our pilot sessions, we concluded that it may be more intuitive for students
to generate constructs through sentence completions, compared to the triadic
elicitations. Therefore, we decided to use the sentence completion approach.

Rate Alternatives. For this step, we configured Idiogrid to use a 5-point rating scale,
ranging from -2 to 2. When rating an alternative against a concern, lower values
indicated agreement with the concern (i.e., affordable), while higher values indicated
agreement with its opposite (i.e., expensive). The middle value indicated neutrality,
uncertainty or lack of applicability.

 Reducing Architectural Knowledge Vaporization 247

When executing the survey, we first introduced the participants to the RG
technique. Afterwards, we asked the participants to do an example grid session, for
training purposes, with the topic of choosing between bars in town. Next, participants
applied RGT, on decision topics of their choice. We asked the participants not to use
the internet, or talk with each other during the study. We did not impose a time limit
for the RG sessions. Due to the limited duration of the session, we skipped grids
analysis and refinement. Instead, we decided to send each student an email with an
analysis of his/her grids. Furthermore, two researchers were available to answer
questions from participants during the study.

At the end, each participant filled in a questionnaire. We were interested in the
profile of the participants. Moreover, we added questions on the study itself, e.g., to
check whether the participants understood the instructions and questions, and the
perceived difficulty of performing the RGT for the decision topics.

4 Analysis of Survey Results

Each of the 20 participants delivered two grids, except for two persons who had to
leave earlier and produced only one grid. One participant delivered no grid at all.
Overall, we obtained 36 grids, as well as paper-based post questionnaires from
attendants. Additionally, students delivered 6 architectural documents, at the end of
the course. As described in the survey design, we collected measurements for both,
the grids and architectural documents.

To measure the number of explicit concerns, two authors of this paper conducted a
content analysis on each decision description. Each researcher individually assigned a
concern to every sentence of a decision’s description. Next, we reviewed every
sentence, and compared the assigned concerns. We considered an agreement if both
researchers meant the same thing, but used different words. For example, if one
assigned to a fragment the concern cost and the other one assigned affordability, then
it is an agreement. Upon disagreements, we either agreed to use an existing concern
from one of us, or we negotiated the assignment of a new concern. For a few
sentences, we asked a third researcher to mediate. Initial inter-rater agreement was
51.8%. After negotiations, we achieved full agreement.

For the third metric, we needed to determine the ratio of explicit rankings, against
the maximum number of possible rankings. We multiplied the number of explicit
alternatives and the number of distinct concerns to obtain the maximum number of
possible rankings.

4.2 Analyzing Metrics for All Decisions

Some students from the same course project group used the RGT on identical decision
topics. We obtained 12 grids for which only one student from a course project group
addressed that decision topic (single grids). Additionally, we obtained 7 double grids:
two participants from the same group produced individually two grids on the same
decision. Also, we got 2 triple grids, from three members of the same group capturing
the same decision. Similarly, we obtained 1 quadruple grid, from four members of the
same group.

248 D. Tofan, M. Galster, and P. Avgeriou

To ensure a suitable comparison of the metrics obtained from the grids and the
project reports, the grid must have been produced by a student who also co-authored
the architectural document. Our raw data consisted of 12 data points of single grids, 7
data points of double grids, 2 data points of triple grids, and 1 data point of quadruple
grids.

To analyze the data, we needed to filter outliers. We noticed that one data point of
double grids and the one with quadruple grids had poor decisions descriptions in the
architectural document, i.e., no alternatives considered. Therefore, we eliminated the
two data points. In one of the triple grids, we eliminated a grid due to poorly phrased
concerns and obtained a new data point with double grids. Similarly, we converted the
other data point with triple grids into a new one with a single grid, by removing two
poor quality grids. After filtering, we obtained 13 single-grid data points, and 7
double-grid data points. The numbers of alternatives and concerns in a double-grid
data point were calculated by counting the distinct alternatives and concerns from the
two grids.

The boxplots in figure 1 summarize the collected metrics. The median of the
numbers of alternatives obtained with RGT is 4 for single-grid data points, and 6 for
double-grid data points. Half of the data points for numbers of concerns in student
reports (architectural documents), for single-grid data points, were equal to 5, 6, or 7.
All ratios of rankings for grids are equal to 1.

Fig. 1. Boxplots for each metric, for the two types of data points

To answer our research question, we define the following null hypotheses.
H0a: The RGT does not influence the number of explicit alternatives.
H0b: The RGT does not influence the number of explicit concerns.
H0c: The RGT does not influence the ratio of explicit rankings.

The alternative hypotheses are the following.
H1a: The RGT influences the number of explicit alternatives.
H1b: The RGT influences the number of explicit concerns.
H1c: The RGT influences the ratio of explicit rankings.

Next, we compare the means of each metric, for the decisions in grids and
architectural documents, by using the Wilcoxon signed ranks test. We test each
hypothesis on the single-grid data points and the double-grid ones. Table 1
summarizes the results, for the numbers (#) of alternatives, concerns, and ration, of
grids (G) and reports (R).

 Reducing Architectural Knowledge Vaporization 249

Table 1. Hypotheses, metrics, means, standard deviations, and p-values for the two samples

 13 Single-grid Data Points 7 Double–grid Data Points

H Metric Mean Std.
Dev.

p-
value

Mean Std.
Dev.

p-
value

Ha
Alternatives G 4.00 0.41

0.002
6.14 0.90

0.016
Alternatives R 2.62 0.77 2.71 0.49

Hb
Concerns G 6.00 1.41

0.720
9.57 0.79

0.017
Concerns R 6.23 1.88 6.14 1.86

Hc
Ratio G 1.00 0.00

0.003
1.00 0.00

0.018
Ratio R 0.66 0.19 0.70 0.13

Given the p-values less than 0.05 and the means values, we can reject H0a, and

accept that applying the RGT increased the number of explicit alternatives, for both
single- and double-grid data points. Regarding H0b, we cannot find any influence of
RGT, for single grids, due to the high p-value. However, we can reject H0b for the
sample with double grids. Additionally, we reject the third null hypothesis (H0c), as
the p-values are low.

The results strongly suggest that one grid contains more explicit alternatives and
higher ratio of explicit rankings than the equivalent description from a basic
architectural document. Two grids seem to contain not only more explicit alternatives
and rankings, but also more concerns.

4.2 Post Questionnaires

From post questionnaires, we learned that participants had a bachelor degree in
Computer Science or a related field (e.g., Information Technology). Half of the
participants had an average of around 2 years of work experience in software
industry. Students needed an average of 24 minutes for each grid session, with a
standard deviation of 11 minutes.

We asked students to rate some statements on a Likert scale from 0 to 4 (strongly
disagree, disagree, neutral, agree, strongly agree) that referred to their understanding
of the study. We learned that participants understood the presentation on the RG
technique. They also understood the directions for creating the grids, and perceived
the Idiogrid tool [6] as easy to use. Students perceived the first grid as easier to do,
than the second one. A possible explanation for the difference may be that students
applied RGT on the most familiar topic first, followed by the less familiar one.
Participants indicated that they clearly understood the tasks. Also, they partly enjoyed
the assignment.

Overall, post questionnaire results suggest that participants did not face significant
issues in using RGT in a self-administrated manner, after a short introduction to it.
We believe that the smooth learning curve and low time cost may facilitate RGT
adoption by practitioners.

5 Discussion

RGT tends to elicit a higher number of alternatives, compared to basic architectural
documents, which usually mention 2-3 alternatives. Additionally, RGT delivers 100%

250 D. Tofan, M. Galster, and P. Avgeriou

of possible rankings for a decision, due to the systematic steps for capturing decisions.
In contrast, architectural documents seem to make explicit only around 70% of
rankings, as participants used no systematic technique for capturing decisions.

On average, one grid contained around 6 concerns, similar to decisions from the
architectural documents. However, double grids contained around 9 concerns.
Combining RGT-elicited concerns by 2 out of the 5 members of a team increased
significantly the number of explicit concerns. Therefore, we believe RGT may be
useful for architectural reviews, to help uncover more concerns from stakeholders.

We found out that participants spent an average of 24 minutes to capture a decision
with RGT. In our previous study [10], participants captured a decision in 57 minutes,
on average. We believe the difference is mainly due to the approach for eliciting
concerns. As reported by Grice et al. [5], we also noticed that sentence completion
seems to be more user friendly than triadic elicitation. However, we speculate that the
triadic elicitation approach asks the expert to reflect more, with the potential to
unearth more in-depth tacit AK than the sentence completion approach. We consider
both approaches are valid and useful, as they have complementing qualities.

Regarding validity threats, Edwards et al. [3] offer criteria for evaluating a study
that uses RGT, such as supplied vs. elicited elements or concerns. Our study used full
individual repertory grids, as both elements (alternatives) and constructs (concerns)
were elicited from each participant. This is especially well-suited for exploratory
situations, like capturing tacit knowledge [3]. However, we decided to use a less
known approach for construct elicitation, although more user-friendly: sentence
completion [5]. To address the risks of using a less-established approach, we piloted it
before the study, to make sure that sentence completion provides useful outputs.

Regarding the external validity of our study, we consider the study participants as
representative for inexperienced software architects. Half of the graduated students
had around 2 years of working experience. However, we cannot generalize our results
to experienced architects. Moreover, we do not know if the decision descriptions in
the architectural documents from students are representative for the industry.
Concerning internal validity, the main issue is the history of the decision descriptions
from the architectural documents. Students thought about the decisions, and created
their descriptions as team work, while grids as individual work. We partly addressed
this risk, by dividing the grids based on the number of students in the same group,
who worked on the same decision topic. Additionally, the structure of the basic
decision template influences the resulting decision descriptions. Different templates
may result in different metrics and different information. Therefore we cannot claim
that RGT provides better results when compared to any type of decision
documentation. However, students repeatedly refined their decisions’ descriptions in
the architectural documents, as part of the course. In contrast, the students did not
have time to refine their grids.

6 Conclusions and Future Work

The goal of our study was reducing AK vaporization. To achieve it, we used RGT on
some architectural decisions. We also investigated how RGT compares to a basic
approach to documenting architectural decisions. Specifically, we analyzed metrics on

 Reducing Architectural Knowledge Vaporization 251

important parts of a decision: alternatives, concerns, and rankings. Also, content
analysis of architectural documentation provided measurements for descriptions of
decisions. We learned that grids seem to capture more alternatives and more rankings,
compared to architectural documents.

We consider that although tool support for RGT exists, it is not geared towards
capturing AK, leaving room for future improvements. Moreover, we need to refine
metrics for AK vaporization, to help evaluating approaches for reducing it.
Additionally, we plan to investigate the reuse of captured AK through RGT in order
to obtain a good return on investment for the spent effort.

Acknowledgments. This research has been partially sponsored by NWO SaS-LeG,
contract no. 638.000.000.07N07. We thank study participants, David Ameller, Uwe
van Heesch and Pavel Bulanov for their help.

References

1. de Boer, R.C., Farenhorst, R.: In Search of ‘Architectural Knowledge. In: Proc. Third
Workshop on SHAring and Reusing architectural Knowledge Architecture, Rationale, and
Design Intent, pp. 71–78 (2008)

2. Bosch, J.: Software architecture: The next step. In: Brauer, W. (ed.) ICALP 1985. LNCS,
vol. 194, pp. 194–199. Springer, Heidelberg (1985)

3. Edwards, H.M., McDonald, S., Young, S.M.: The repertory grid technique: Its place in
empirical software engineering research. Information and Software Technology 51, 785–
798 (2009)

4. Fransella, F., Bell, R., Bannister, D.: A Manual for Repertory Grid Technique, 2nd edn.
Wiley, London (2004)

5. Grice, J., Burkley, E., Burkley, M., Wright, S.: J: A sentence completion task for eliciting
personal constructs in specific domains. Personal Construct Theory & Practice 1, 60–75
(2004)

6. Grice, J.W.: Idiogrid: software for the management and analysis of repertory grids.
Behavior Research Methods 34, 338–341 (2002)

7. Jansen, A.: Architectural design decisions, PhD thesis, University of Groningen,
Netherlands (2008)

8. Kruchten, P., Capilla, R., Dueñas, J.C.: The decision view’s role in software architecture
practice. IEEE Software 26, 36–42 (2009)

9. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural
knowledge. Quality of Software Architectures, 43–58 (2006)

10. Tofan, D., Galster, M., Avgeriou, P.: Capturing Tacit Architectural Knowledge Using the
Repertory Grid Technique (NIER Track). In: Proceedings of the 33rd International
Conference on Software Engineering, Honolulu, USA, pp. 916–919 (2011)

Guiding Architects in Selecting Architectural

Evolution Alternatives

Selim Ciraci1, Hasan Sözer2, and Mehmet Aksit3

1 Pacific Northwest National Lab. Richland, WA, USA
selim.ciraci@pnl.gov

2 Özyeğin University, İstanbul, Turkey
hasan.sozer@ozyegin.edu.tr

3 University of Twente, Enschede, The Netherlands
m.aksit@ewi.utwente.nl

Abstract. Although there exist methods and tools to support archi-
tecture evolution, the derivation and evaluation of alternative evolution
paths are realized manually. In this paper, we introduce an approach,
where architecture specification is converted to a graph representation.
Based on this representation, we automatically generate possible evolu-
tion paths, evaluate quality attributes for different architectural config-
urations, and optimize the selection of a particular path accordingly. We
illustrate our approach by modeling the software architecture evolution
of a crisis management system.

1 Introduction

To add new features, to adopt new technologies, or to improve quality factors,
software systems evolve [1]. Usually there exist multiple evolution alternatives,
which should be evaluated rigorously at a high abstraction level [2]. In architec-
ture evaluation methods like ATAM [3], trade-off analysis is a manual process.
Tools and techniques are developed to guide the architects in planning and car-
rying out architecture evolution [2, 4, 5]. These, however, either do not support
trade-off analysis or require the manual generation of evolution alternatives.

In this paper, we propose a method and the accompanying tool set to aid
the user in selecting the “best” evolution alternative. Hereby, the architectural
changes (anticipated/common evolutions) are modeled in xADL [6] in ArchStu-
dio [7], with proposed extensions that specify how the architectural elements
are changed (e.g., added, removed) and their impact on quality attributes. Our
tools convert these specifications to graph transformation rules and store them
in a repository. The user specifies the desired types of evolutions and inputs
the initial architecture (also specified in xADL). Our tools, first, convert the
initial architecture to a graph and, then, fetch architectural changes (from the
repository) whose categories match the desired evolutions. Next, the evolution
alternatives are generated with a graph transformation tool. Quality attributes
are evaluated for each evolution alternative based on the impact of different

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 252–260, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Guiding Architects in Selecting Architectural Evolution Alternatives 253

architectural changes. Finally, the user can query and score the evolution alter-
natives according to the desired structural and path properties. An optimizer
uses these scores and quality attributes to select the best evolution alternative.
We illustrate our approach by modeling the software architecture evolution of a
crisis management system.

This paper is organized as follows: next section introduces a motivating exam-
ple, which will be used throughout the paper for illustration purposes. Section 3
explains the modeling of architectural changes. Section 4 explains the genera-
tion of the architectural alternatives and the selection of the optimal evolution
alternative. Section 5 discusses the case study. Finally, conclusions are provided
in Section 6.

2 Motivating Example

A crisis management system (CMS) [8] is used for managing the resources (e.g.,
ambulances) to aid in crisis situations. To support coordination of crisis resolu-
tion processes and efficient allocation of resources, the CMS architecture design
incorporates programmable crisis managers called scenarios and resource alloca-
tion strategies. Figure 1 shows the architecture design of the CMS with only one
scenario, the car crash scenario, and one allocation strategy, i.e., first come first
serve (FCFS). In principle, there can be many scenarios and allocation strate-
gies implemented as separate components at the corresponding layers. The users
or the mobile devices communicate with the CMS through the Crisis Manager
component. The ScenarioCtrl interface is used for relaying requests and events to
the connector Scenario Control Interface. This connector decodes and forwards
the received events to corresponding scenario(s) through interface dedicated for
different types of outside events. Scenarios allocate resources through the con-
nector ResourceManager. This connector sends resourse allocation messages to
components representing the resource allocation strategy. The resource alloca-
tion strategy finds the best candidate resource from the list of resources and
grants the allocation.

Anticipated Type of Evolutions: Anticipated evolutions for CMS include the
addition of new scenarios and resource allocation strategies. These evolutions can
be incorporated to the architecture in different ways. For example, assume that
we want to add a new scenario called presidential emergency. This scenario has

Fig. 1. A (partial) CMS architecture design.

254 S. Ciraci, H. Sözer, M. Aksit

a higher priority; so when a report about a presidential emergency comes and
there are no resources available, an ongoing car crash scenario needs deallocate
resources. We can add this scenario in two ways: i) We can extend connector
ResourceManager to receive an outside event that causes other scenarios to
release resources, ii) we can add a new resource allocation strategy. In the former
case some of the resource allocation tasks are handled by the scenarios which
might not be desirable. The later might be more costly as a new allocation
strategy needs to be implemented. Such alternatives together with their pros
and cons must be studied not to implement a suboptimal or undesired change.

3 Preparation Steps

As preparations steps, architectural changes are modeled. These are antici-
pated/repeating changes that are specific to the architecture of the software
system at hand. We use the Arch-Studio tool [7] to describe such changes in
xADL [6]. Hereby, changes are specified as partial structures annotated with op-
erations, i.e., add/remove elements. Our tool set converts these specifications to
the corresponding graph transformation rules. In this way, the graph system and
the underlying theory are hidden from the users.

An architectural change that is represented as a graph transformation rule
has a left-hand side (LHS), a right-hand side (RHS), a name, and a type. There-
fore, each architectural change is specified in 4 steps. First, a name for the
change is specified. Second, the architectural elements required by the change
is modeled; this is analogous to the LHS of a transformation rule, e.g., if we
want to add a new interface to the connector Scenario Control Interface, this
connector is required and as such should be modeled in the architecture change
model with the same name to be able to apply the change. Third, the trans-
formation executed by the architectural change is modeled using operators that
add/remove elements. An architectural element whose name starts with new: is
added, delete: is removed, not: should not be in the architecture for the change
to be applied. The elements with operators, and the elements from the second
step forms the RHS of the transformation rule. For example, the architectural
change AddEventFirePreEmpt adds a new interface called FirePreEmpt, which is
modeled by the interface new:FirePreEmpt in Figure 2. We do not need to apply
this change, if the connector Scenario Control Interface has already an interface
named FirePreEmpt. We model this with the interface not:FirePreEmpt.

Fig. 2. An architectural change

In the forth (last) step of specifying an ar-
chitectural change, type of the architectural
change is defined. This type is specified as a
set of keywords describing what the architec-
tural change does. It is possible to have more
than one change for a type. Once the archi-
tectural change is modeled, it is stored in the
repository managed by the CDE tool [9]. CDE
tool first converts the change modeled in xADL to graph-transformation rules

Guiding Architects in Selecting Architectural Evolution Alternatives 255

and, then, indexes it according to the specified type (the tools described in this
paper can be located at http://sourceforge.net/projects/caae/).

Quality Attributes: In order to capture these quality attributes in architec-
tural changes and models, we have extended the existing xADL schema with
new types; namely reliability interface and cost component. The concept of an
interface with analytical parameters has been borrowed from [10]. The reliabil-
ity interface is added to components/connectors and it consists of a reliability
value R, where 0 < R < 1. The cost component is a special component to which
interfaces can not be added and which is named Cost.

Reuse of Architectural Changes: To promote reuse of architectural changes,
our approach supports parameterization of names/descriptions. The idea behind
parameterization is to keep the structure of the change fixed, but make the names
variable. Therefore, the need of modeling new architectural changes for repeated
evolutions, evolutions using the same change structure with different names, is
eliminated. For example, adding an interface to the connector Scenario Control
Interface is a common evolution. However, we need to model a new architectural
change for each new interface, similar to the one illustrated in Figure 2, as the
names of the new interfaces would differ. With parameterization, we can make
the description of the added interface a parameter and store the architectural
change in the repository as a template.

A parameterized name/description starts with “@” symbol. Thus, we can
make the architectural change of Figure 2 a template by changing the name of
the added interface from FirePreEmpt to @outsideControlEvent.

4 Automated Steps

In the automated steps the evolution alternatives are generated, which starts
with the designer specifying the type of the desired evolutions. These are input
to the CDE which, then, fetches all architectural changes whose type matches
to the specified type and prepares the graph system.

Binding Changes to Architecture: After locating the architectural changes
matching the desired evolutions, CDE makes a list of parameters these take. Each
parameter is presented to the designer in the following format: @<parameter
Name> <archtecturalChangeName> = . At the RHS of the assignment, the
designer fills the actual descriptions/names of the architectural elements. In case
an architectural change is used multiple times, a unique instance name for each
usage should also be specified at the right-hand side of the assignment.

Once the list is filled, CDE uses it to bind the architectural changes to the
current architecture by substituting the parameters with the values specified
at the RHS of the assignment. For example, with the specified value @out-
sideControlEvent addNewOutsideEvent = FirePreEmpt, CDE replaces the pa-
rameter @outsideControlEvent with the value FirePreEmpt in the architectural
change addNewOutsideEvent.

256 S. Ciraci, H. Sözer, M. Aksit

Generation of the Alternatives: After the binding, CDE forms the graph
system containing the architectural changes as graph transformation rules and
the architectural model as a graph. These are loaded to GROOVE which auto-
matically generates the state-space, which has an initial state and final states.
The initial state in our case is the input architectural model. The final states are
states where none of the transformation rules match and, as such, they do not
have any outgoing edges. These states contain the evolved architectural models;
each final state is an evolution alternative. The path from the initial state to
a final state, shows the applied architectural changes to reach that final state.
Hence, we term such paths evolution paths.

Figure 3 shows the state-space generated from the architectural changes
AddFirePreEmpt (Figure 2) and addInterfacePreEmptHandler. The later

Fig. 3. The evolution paths for
adding an interface

architectural change adds the interface
AddFireEmpt and a new component FireEven-
tHandler that only receives messages from this
interface. This state-space contains two evo-
lution alternatives, states s2 and s3. We can
see that state s2 results from the application
of the architectural change addInterfacePre-
EmptHandler. To reach the state s3, on the
hand, two architectural changes are applied:
the change AddEventFirePreEmpt and the en-
der change AddReceiverFirePreEmpt.

Querying/Scoring Alternatives: When the alternatives are generated, it is
important to find the ones that have the desired structure and/or generated
through a desired evolution path. For this, we have developed a querying mech-
anism, where the designers can query and give scores to the desired structure
and/or architectural changes. Hence, the alternatives with the higher scores have
a higher chance of being selected by the optimizer.

Two types of queries are possible with our system. The first type allows the
designers to express a structure that is searched in the generated evolution al-
ternatives. These are expressed as Prolog queries; we have extended GROOVE
with a Prolog interpreter (using GNU-Prolog Java [11]) and implemented 8 rules
that allows the user express queries based of the architectural models. When ex-
pressing the queries only the name parameter should be filled and a query should
start with the rule evolutionAlternative. For example, we want the evolution al-
ternatives that has a single component handling the events FirePreEmpt to have
a high score. With, the following query we can locate such alternatives:

evolutionAlternative(S),connector(“Scenario Control Interface”,S,T)
component(“PreEmpt Handler”,S,C),outInterface(“FirePreEmpt”,T,I),
inInterface(“FirePreEmpt”,C,I2),link(I,I2,S),score(S,1)

The query above finds and gives the score 1 to all the evolution alternatives,
which have a connector named Scenario Control Interface and a component
named PreEmpt Handler linked to each other through the FirePreEmpt interface.

Guiding Architects in Selecting Architectural Evolution Alternatives 257

The second type of queries allows the designer to express desired/contraints
over the evolution paths. These are expressed using Computational Tree Logic
(CTL) [12]. Informally, a CTL formula consists of atomic propositions that are
ordered with logical and temporal operators. In GROOVE, these automatic
propositions consists of the labels of the transitions in the state-space; that is,
the names of the applied architectural changes. We extended GROOVE’s CTL
evaluator to score the evolution alternative that occur after finding states that
follow the formula. For example, the evolution alternatives generated from the
evolution path where first the architectural change addInterfacePreEmptHandler
followed by the architectural change AddEventFirePreEmpt, should get a low
score because these contain the same interface added twice. We can query the
evolution alternatives generated from such a path with the following formula:

(addInterfacePreEmpt ∧ (EF(AddEventFirePreEmpt)))
Score(-1)

Here, E means there exists at least one path and F means finally. The propo-
sition Score is only used for expressing the given score and has no effect on the
CTL formula. The path score is treated differently than the structural scores
and by default both scores for all evolution alternatives are set to 0.

Calculation of Quality Attributes and Optimization: The cost of evolu-
tion for an alternative is calculated by summing up the estimated cost values
of the architectural changes in its evolution path. Initially the cost is set to 0
as an attribute of a special node in the graph representation. Each architectural
change is associated with a cost value. During the generation of the evolution
path, the corresponding cost value is added by transformation rules for each
applied change.

To estimate the reliability of a particular design alternative, each component
is annotated with a reliability value R, where 0 < R < 1. Based on these
annotations and the connections among the components, reliability values are
propagated through the interfaces. The reliability of a component is derived by
multiplying its reliability value with the reliability values of other components on
which it depends. The reliability measure for the overall system can be considered
as a combined reliability of the components that interact with the user.

The selection of an evolution path considering multiple quality attributes and
criteria (in this case, reliability, cost, structural query score and path query
score) requires us to solve a multi-criteria optimization problem. The optimizer
tool currently employs single-objective optimization techniques. As such, the ob-
jective function is specified as: maximize reliability such that the cost, structural
query score and path query score are below/above certain thresholds.

5 Application of the Approach

In this section, we will consider two common evolutions to CMS and show how
our approach helps the designers in selecting an evolution alternative. The first
evolution is the addition of the scenario Presidential Emergency Scenario which
requires an extra pre-emption event with a new crisis manager component. We

258 S. Ciraci, H. Sözer, M. Aksit

designed 5 architectural changes that can be used to add a new crisis manager
with an event. These changes are not specific to the evolution of the presidential
emergency scenario but are rather alternative ways of adding a new crisis man-
ager and an event. The second evolution is the addition a resource allocation
strategy based on the location of the resources which requires a new resource
allocation component and a new resource location update event. We designed 6
architectural changes that can be used to add a new event and a new resource
allocation strategy. We have checked in all these to the repository, then followed
the automated steps to generate the evolution alternatives.

Generating the evolution alternatives: We checked out 11 architectural
changes from the repository. We used the “full” CMS architectural model, which
includes 20 scenarios and 5 resource allocation strategies; the graph model gener-
ated from this model contains 647 elements. With the 11 architectural changes,
23 evolution alternatives that can be reached by 41 evolution paths are gener-
ated by GROOVE (in 21 seconds with a dual core 2.3Ghz laptop). The number
of evolution paths are greater than the number of evolution alternatives be-
cause some paths lead to the same alternative; GROOVE can detect and merge
isomorphic states.

Pruning the alternatives: We want both the pre-emption and the resource
location update events to be sent from the outside to the CMS. In addition to
this, we prefer alternatives that use new components to propagate/handle these
events as these alternatives are more modifiable (pre-emption is separated from
scenarios). As the alternatives that have new components to handle these events
are more modifiable, we give such alternatives the score 2 with the following
query:

evolutionAlternative(S), connector(“ScenarioControl Interface”, S, T), outInterface(“FirePreEmpt”,
T, I1), outInterface(“ResLocUpdate”, T, I2), component(“Resource Event Handler”, S, C), inIn-
terface(“FirePreEmpt”, C, IIn1), inInterface(“ResLocUpdate”, C, IIn2), link(I, IIn1, S), link(I2,
IIn2, S), score(S, 2)

The architectural change that adds a new component to propagate the re-
source location update should be followed by the change that links this new
component with the the connector Resource Manager. We can ensure that paths
do not follow this constraint to get a low score with the following CTL formula:

(AddAllocationStrategyHandlerComponent ∧ !(EF(AddAllocationStrategyHandlerConnection)))

Score(-1)

Optimization and the selected alternative: Figure 4 presents an excerpt
from the alternative selected by the optimizer, whose goal was to find the alter-
native with the lowest cost and the highest reliability, structure and path scores.
Here, the resource location update and pre-emption events are send from the
interfaces ResLocUpdate and FirePreEmpt.

This alternative has the highest reliability because crisis handling and re-
source updates are separated.It has the second highest cost; however, it has the
highest structural (because, score 2 is given to the alternatives that use a differ-

Guiding Architects in Selecting Architectural Evolution Alternatives 259

Fig. 4. The evolution alternative that uses the component Resource Manager to prop-
agate the events about resources

ent component to propagate the events) and path (because, it does not violate
the specified constraint) scores.

Discussion: In this application, 2 criteria were considered to evaluate 23 al-
ternatives and 41 paths. The number of criteria and alternatives can be much
higher for other systems. As such, manual generation and evaluation of these al-
ternatives can be overwhelming. Moreover, it can be hard to differentiate among
the isomorphic alternatives and reduce the design space manually as the number
of alternatives increase.

6 Conclusion

We have introduced an approach for fostering reuse and automation in software
architecture evolution. We have formalized architectural changes as graph trans-
formation rules, which can be automatically applied on a graph representation of
a software architecture. Thereby, our tools can generate possible evolution paths.
Our toolset converts architecture descriptions and architectural changes speci-
fied in xADL to the corresponding graph representations and graph transforma-
tion rules, respectively. As such, the underlying theory is completely transparent
to the designer. In addition to this, the evolution alternatives and paths can be
queried and the alternatives that follow these queries can be scored. These scores
and the quality attributes, such as cost and reliability are used by an optimizer
to select the best evolution alternative.

References

1. Lehman, M., et al.: Metrics and laws of software evolution. In: METRICS, pp.
20–32 (1997)

2. Garlan, D., et al.: Evolution styles: Foundations and tool support for software
architecture evolution. In: WICSA, pp. 131–140 (2009)

3. Kazman, R., et al.: The architecture tradeoff analysis method. In: ICECCS (1998)
4. Grunske, L.: Formalizing architectural refactorings as graph transformation sys-

tems. In: SNPD, pp. 324–329 (2005)
5. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach to software

architecture reconfiguration. Sci. Comput. Program. 44, 133–155 (2002)
6. Dashofy, E., van der Hoek, A., Taylor, R.: A highly-extensible, xml-based archi-

tecture description language. In: WICSA, p. 103 (2001)

260 S. Ciraci, H. Sözer, M. Aksit

7. Dashofy, E., et al.: Archstudio 4: An architecture-based meta-modeling environ-
ment. In: ICSE, pp. 67–68 (2007)

8. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis management systems: A case study
for aspect-oriented modeling. In: Katz, S., Mezini, M., Kienzle, J. (eds.) Transac-
tions on Aspect-Oriented Software Development VII. LNCS, vol. 6210, pp. 1–22.
Springer, Heidelberg (2010)

9. Ciraci, S., van den Broek, P., Aksit, M.: Framework for computer-aided evolution
of object-oriented designs. In: COMPSAC, pp. 757–764 (2008)

10. Grassi, V., Mirandola, R., Sabetta, A.: An XML-based language to support perfor-
mance and reliability modeling and analysis in software architectures. In: Reussner,
R., Mayer, J., Stafford, J.A., Overhage, S., Becker, S., Schroeder, P.J. (eds.) QoSA
2005 and SOQUA 2005. LNCS, vol. 3712, pp. 71–87. Springer, Heidelberg (2005)

11. Gnu prolog java, http://www.gnu.org/software/gnuprologjava/
12. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-

current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986)

http://www.gnu.org/software/gnuprologjava/

Architecture-Based Run-Time Fault Diagnosis

Paulo Casanova1, Bradley Schmerl1, David Garlan1, and Rui Abreu2

1 School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{paulo.casanova,schmerl,garlan}@cs.cmu.edu

2 Department of Informatics Engineering
Faculty of Engineering of University of Porto

Porto, Portugal
rui@computer.org

Abstract. An important step in achieving robustness to run-time faults is the
ability to detect and repair problems when they arise in a running system. Ef-
fective fault detection and repair could be greatly enhanced by run-time fault
diagnosis and localization, since it would allow the repair mechanisms to focus
adaptation effort on the parts most in need of attention. In this paper we describe
an approach to run-time fault diagnosis that combines architectural models with
spectrum-based reasoning for multiple fault localization. Spectrum-based reason-
ing is a lightweight technique that takes a form of trace abstraction and produces
a list (ordered by probability) of likely fault candidates. We show how this tech-
nique can be combined with architectural models to support run-time diagnosis
that can (a) scale to modern distributed software systems; (b) accommodate the
use of black-box components and proprietary infrastructure for which one has
neither a specification nor source code; and (c) handle inherent uncertainty about
the probable cause of a problem even in the face of transient faults and faults that
arise only when certain combinations of system components interact.

Keywords: Autonomic computing, diagnosis, software architecture, run-time.

1 Introduction

With increasing reliance on software-based systems to support virtually all aspects of
our daily lives, an important new requirement for these systems is the ability to de-
tect and resolve problems at run time. This requirement has spawned an active area of
research in autonomic computing [19,6,12].

Autonomic computing is based on the idea of turning ordinary software systems into
closed-loop control systems. That is, systems are monitored to provide observations of
their run-time behavior. Those observations are then analyzed at run-time in reference
to models of desired or expected behavior. If significant deviations are observed, repair
actions are executed to correct the problems.

When designing an autonomic system, a key issue is the kinds of models that are
used in the control layer at run time to capture observed system behavior and detect
problems. Research carried out over the past decade has demonstrated that software

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 261–277, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

262 P. Casanova et al.

architectures can be particularly effective in this capacity [14,16,27].Architectures pro-
vide a high-level view of the system, reducing the complexity of understanding what
the system is doing, and supporting scalability to complex distributed systems. Suit-
ably annotated architectures also permit the autonomic decision-making apparatus to
detect the presence of systemic problems and trends, such as degraded performance.
Finally, architectures allow one to capture common patterns of repair that are tuned to
the specific style of system and its implementation.

While such “architecture-based self-adaptation” shows great potential, one outstand-
ing problem is diagnosis: determining the likely causes of a detected problem. By nar-
rowing the scope of concern for repair to candidates that are the probable cause of an
observed problem, the ability to effectively adapt to a problem can be greatly increased.

Run-time diagnosis for architecture-based self-repair, however, is particularly chal-
lenging. First, the presence of concurrency makes it difficult to identify which of many
possible computations might have caused a problem. Second, reliance on middleware
for distributed communication, and more generally the use of components and infras-
tructure produced by many organizations, means that in many cases neither specifica-
tions nor code is available for all parts of the system. Third, in many systems, problems
may be intermittent, caused by transient faults or variability in loads. Moreover, while
some faults may be directly traceable to a single component (such as a crashed server),
in general the source of a problem may be a result of certain combinations of elements
(e.g., a specific server interacting with a specific database).

In this paper we describe a systematic approach that adapts a reasoning technique
called spectrum-based multiple fault localization (SMFL) to architecture-based self-
repair. SMFL is a lightweight technique that takes as its input a form of trace abstrac-
tion and produces a list of likely fault candidates, ordered by probability of being the
true fault explanation [1,4]. Impressive diagnostic results for design-time testing and
debugging of both hardware and software systems have been achieved using SMFL [1].
However, there has been little work in applying these results in the context of run-time
detection and repair, especially in the context of architecture-based adaptation. As we
describe in the remainder of this paper, key features of our approach include: (a) the
ability to define at a high level what kinds of behavior to use as the basis for fault
localization; (b) the ability to associate such behaviors with families of systems (or ar-
chitectural styles), allowing reuse of the specifications for all instances of the family;
and (c) the ability to take into consideration quality attributes, such as performance and
availability, in determining both the presence and cause of a problem.

2 Related Work

One of three approaches to fault diagnosis has been typically adopted by autonomic
systems. One is to use simple heuristics. For example, software rejuvenation [21,30] is
a technique where components are selectively restarted, using the heuristic of choos-
ing the longest running (i.e., oldest) components to reboot next. This technique can
generally improve the robustness of a system, since in many cases faults occur because
parts of a system may degrade over time (due, for example, to memory leaks). However,
clearly not all faults in a system are a result of aging. Thus heuristics have the advantage

Architecture-Based Run-Time Fault Diagnosis 263

of being easy to calculate and often widely applicable, but they lack precision, resulting
in inefficiencies and poor coverage.

A second approach is to develop special-purpose diagnostic mechanisms for a par-
ticular class of system and particular classes of faults. For example, recovery-oriented
computing [5] uses a form of local rebooting that takes advantage of the particular char-
acteristics of JEE-based systems, where built-in persistence mechanisms allow compu-
tations to be terminated and restarted without loss of data. Diagnosis in these systems
uses statistical machine learning techniques to identify a specific component to restart
– again taking advantage of the specific features of JEE systems. Similarly, the Google
File System [15] and Hadoop [8] use fast, local recovery and replication to achieve high
availability for scalable distributed file systems for data-intensive applications. These
systems use custom-built monitoring and diagnosis to determine failures of individual
servers. While such hand-crafted techniques are typically very effective for the specific
kind of system they address, (1) they do not generalize to other systems, where the same
architectural assumptions do not hold, and (2) they assume single-fault scenarios.

A third approach allocates the task of diagnosis to individual repair handlers. For
example, the Rainbow system incorporates a set of repair strategies that are triggered
when certain architectural invariants are violated in a running system [7,14]. Each strat-
egy is responsible for determining whether to correct the problem at hand, and if so,
how. In order to do this a strategy has to carry out its own fault diagnosis and localiza-
tion. For example, a strategy triggered by high latencies might attempt to reboot faulty
servers. But before it can do that it needs to figure out which servers (if any) might
be failing. Associating diagnostics with the repair mechanism has the advantage that
diagnosis can be specialized to the needs of the particular kind of repair. But it has the
disadvantage that each repair handler must do its own diagnosis, possibly adding to run-
time overhead (if multiple strategies are used), greatly increasing the effort required to
produce repair handlers, and relying on the strategy writer to get the diagnosis right.
Similarly, in the three-layer architecture model proposed in [23] higher level planning
mechanisms are responsible for diagnosis once a problem has been detected.

None of these techniques provides a general, systematic basis for run-time fault di-
agnosis. In contrast, there has been considerable research on automatic fault diagnosis
used at development time. Traditionally, automatic approaches to software fault local-
ization are based on using a set of observations collected during the testing phase of
system development to yield a list of likely fault locations, which are subsequently used
by the developer to focus the debugging process [28]. Existing approaches can be gener-
ally classified as either statistics-based or model-based. The former uses an abstraction
of program traces, collected for each execution of the system, to produce a list of fault
candidates [24,18,25]. The latter combines a model of the expected behavior with a set
of observations to compute a diagnostic report [11,26].

Model-based approaches are more accurate than statistical ones, but are much more
computationally demanding (in both time and space), and they require detailed mod-
els of the correct behavior of the system under test. Recently a novel reasoning tech-
nique over abstractions of program traces, combining the best characteristics of both
worlds, has been proposed [4]. It has low time/space complexity (like statistics-based
techniques), yet with high diagnostic accuracy (like reasoning techniques). As we will

264 P. Casanova et al.

see, such properties make the technique especially amenable to (continuous) run-time
analysis. In this paper, we refer to this kind of reasoning technique as spectrum-based
multiple fault localization (SMFL). Previous research efforts into SMFL have focused
primarily on helping developers fix bugs at development time, where one can easily
identify the start and end of a given test case, as well as which elements were involved
in the execution of the test case. To our knowledge, none of these have been combined
with architecture models to support run-time diagnosis, where, as opposed to develop-
ment time, detecting a given execution is difficult (e.g., due to concurrency).

3 Approach

Applying SMFL at run time to diagnose problems relative to architectural models raises
a number of challenges. First, we need to be able to identify the beginning and end of
computations in the system that we are interested in. This is challenging because inter-
actions may be interleaved and concurrent. Second, we need to be able to relate these
run-time interactions, which are in terms of system level events, with their correspond-
ing elements in an architecture model. In this section, we give a brief overview of our
approach; in later sections we elaborate on the details.

To illustrate the ideas, consider a family of systems, whose architecture is illustrated
in Figure 1, in which a variable number of clients can interact with a pool of servers
that have access to a common data store. Client HTTP requests are mediated by one or
more dispatchers, selected randomly by a client, which forward requests to a specific
server in the pool. Although relatively simple in structure, such systems are representa-
tive of a large class of applications, and illustrate some of the challenges for run-time
diagnosis. First, such a system could have hundreds of clients and servers (for example,
running on a cloud computing platform), handling thousands of simultaneous requests.
This makes it challenging to determine which elements are involved with a particular
request. Second, when problems occur, it is important to pinpoint the causes quickly,
since a problem with a dispatcher (for example), could drastically impact the overall
ability of the system to deliver its services in a timely manner. Third, there are many
sources of uncertainty inherent in this system. For example, high latency in handling
customer requests could be caused by faults, or combinations of faults, in any num-
ber of components. Fourth, although certain kinds of problems may be easily detected
and fixed (such as a server crash), softer intermittent failures causing high latencies are
equally as important to detect and repair.

Our approach to adapting SMFL to support architecture-based fault detection and
localization uses the following three steps:

Client 1

Client 2

Client 3

Dispatcher 1

Dispatcher 2

Server 1

Server 2

Server 3

Database

Fig. 1. Simplified Web Server Example

Architecture-Based Run-Time Fault Diagnosis 265

1. First, we define a collection of transaction types for the style of system under analy-
sis using parametric architecture behavior descriptions. Each transaction type spec-
ifies (a) a set of finite computational paths through the architecture, and (b) the
criteria for determining whether a given computation of that type has succeeded
or failed. For the class of system shown in Figure 1, one possible transaction type
would represent the normal client-server response sequence: a client initiates a re-
quest, which is handled by a dispatcher, dispatched to a particular server, and then
returned back to the client. A success criterion might be that the client should re-
ceive a reply within a certain number of seconds.

2. Next we provide a way to monitor the running system from an architectural per-
spective, adapting prior work on architecture-based monitoring and fault detec-
tion [29]. This involves using probes and event monitoring mechanisms in the run-
ning system to determine (a) when a complete transaction has occurred, (b) the
architectural elements involved, and (c) whether the transaction succeeded. For the
example we would record the specific client, dispatcher, and server involved in the
transaction, and whether the latency threshold was exceeded.

3. The results of spectrum monitoring are then accumulated in a fault localization
phase. Adapting SMFL algorithms for the run-time setting, probabilistic rankings
of likely fault causes (if any) are calculated. These can then be used to trigger repair
mechanisms. In the example, the fault localization algorithms might determine, for
example, that with probability 0.8 the cause of an intermittent latency problem is
the combination of dispatcher 2 interacting with server 5.

To elaborate on this approach, in the following sections we first summarize the key
ideas behind SMFL. (For a detailed description see [4].) Then we explain in more detail
how we carry out these three parts of our approach.

4 Spectrum-Based Reasoning for Fault Localization

Fault localization based on reasoning over program spectra is characterized by the use
of (a) program spectra, abstracting from actual observation variables, structure, and
component behavior; (b) a low-cost, heuristic reasoning algorithm, STACCATO [4] to
extract the significant set of multiple-fault candidates; and (c) abstract, intermittent
models, that take into account that a faulty component may behave correctly with a
specific probability, to compute the candidate probability of being the true fault.

4.1 Program Spectra

Assume that a software system is comprised of a set of M components c j where j ∈
{1, . . . ,M}, and can have multiple faults, the number being denoted C (fault cardinal-
ity). A diagnostic report D =< .. . ,dk, . . . > is an ordered set of diagnostic (possibly
multiple-fault) candidates, dk, ordered in terms of likelihood to be the true diagnosis.

A program spectrum is a collection of flags indicating which components have been
involved in a particular dynamic behavior of a system. Our behavioral model is repre-
sented simply by a set of components involved in a computation, and does not have to

266 P. Casanova et al.

indicate at a detailed behavioral level exactly what that involvement was. Thus, record-
ing program spectra is light-weight, compared to other run-time methods for analyzing
dynamic behavior (e.g., dynamic slicing [22]). Although we work with these so-called
component-hit spectra, the approach outlined in this section easily generalizes to other
types of program spectra [17].

Program spectra are collected for N (pass/fail) executions of the system. Both spectra
and program pass/fail information are input to spectrum-based fault localization. The
program spectra are expressed in terms of a N ×M activity matrix A, for example in
Table 1. An element ai j has the value 1 if component j was observed to be involved in
the execution of run i, and 0 otherwise. The pass/fail information is stored in a vector e,
the error vector, where ei signifies whether run i has passed (ei = 0) or failed (ei = 1).
Note that the pair (A,e) is the only input to the spectrum-based diagnosis approach.

4.2 Candidate Generation

As in any model-based diagnosis (MBD) approach, the basis for fault diagnosis is a
model of the program. Unlike many MBD approaches, however, no detailed modeling
is used, but rather a generic component model. Each component (c j) is modeled in
terms of the logical proposition

h j ⇒ (okinp j ⇒ okout j) (1)

where the booleans h j, okinp j , and okout j model component health, and the (value)
correctness of the component’s input and output variables, respectively. The above
weak model1 specifies nominal (required) behavior: when the component is correct
(h j = true) and its inputs are correct (okinp j = true), then the outputs must be correct
(okout j = true). As Eq. (1) only specifies nominal behavior, even when the component is
faulty and/or the input values are incorrect it is still possible that the component delivers
a correct output. Hence, a program pass does not imply correctness of the components
involved.

Table 1. Program Spectra Example

c1 c2 c3 e
1 1 0 1 obs1
0 1 1 1 obs2
1 0 0 1 obs3
1 0 1 0 obs4

By instantiating the above equation for each component involved in a particular run
(row in A) a set of logical propositions is formed. Since the input variables of each test
can be assumed to be correct, and since the output correctness of the final component in

1 Within the model-based diagnosis community, two broad categories of model types have been
specified: (1) weak-fault models, which describe a system only in terms of its normal, non-
faulty behavior, and (2) strong-fault models, which also include a definition of some aspects
of abnormal behavior.

Architecture-Based Run-Time Fault Diagnosis 267

the invocation chain is given by e (pass implies correct, fail implies incorrect), we can
logically infer component health information from each row in (A,e). To illustrate how
candidate generation works, for the program spectra in Table 1 we obtain the following
health propositions for h j:

¬h1 ∨¬h2 (c1 and/or c2 faulty)

¬h2 ∨¬h3 (c2 and/or c3 faulty)

¬h1 (c1 faulty)

These health propositions have a direct correspondence with the original matrix struc-
ture. Note that only failing runs lead to corresponding health propositions, since (be-
cause of the conservative, weak component model) from a passing run no additional
health information can be inferred.

As in most MBD approaches, the health propositions are subsequently combined to
yield a diagnosis by computing the so-called minimal hitting sets (MHS, aka minimal
set cover), i.e., the minimal health propositions that cover the above propositions. In
our example, candidate generation yields two double-fault candidates d1 = {1,2}, and
d2 = {1,3}. The step of transforming health propositions into diagnosis is generally
responsible for the prohibitive cost of reasoning approaches. However, we use an ultra-
low-cost heuristic MHS algorithm called STACCATO [1] to extract only the significant
set of multiple-fault candidates dk, avoiding needless generation of a possibly exponen-
tial number of diagnostic candidates. This allows a spectrum-based reasoning approach
to scale to real-world programs [4].

4.3 Candidate Ranking

The previous phase returns diagnosis candidates dk that are logically consistent with
the observations. However, despite the reduction of the candidate space, the number
of remaining candidates dk is typically large, not all of them equally probable. Hence,
the computation of diagnosis candidate probabilities Pr(dk) to establish a ranking is
critical to the diagnostic performance of reasoning approaches. The probability that a
diagnosis candidate is the actual diagnosis is computed using Bayes’ rule, that updates
the probability of a particular candidate dk given new observational evidence (from a
new observed spectrum).

The Bayesian probability update, in fact, can be seen as the foundation for the deriva-
tion of diagnostic candidates in any reasoning approach: i.e., (1) deducing whether a
candidate diagnosis dk is consistent with the observations, and (2) computing the pos-
terior probability Pr(dk) of that candidate being the actual diagnosis. Rather than com-
puting Pr(dk) for all possible candidates, just to find that most of them have Pr(dk) = 0,
candidate generation algorithms are used as shown before, but the Bayesian framework
remains the formal basis.

For each diagnosis candidate dk the probability that it describes the actual system
fault state depends on the extent to which dk explains all observations. To compute the
posterior probability that dk is the true diagnosis given observation obsi (obsi refers to
the coverage and error information for computation i) Bayes’ rule is used:

268 P. Casanova et al.

Pr(dk|obsi) =
Pr(obsi|dk)

Pr(obsi)
·Pr(dk|obsi−1) (2)

The denominator Pr(obsi) is a normalizing term that is identical for all dk and thus need
not be computed directly. Pr(dk|obsi−1) is the prior probability of dk. In the absence of
any observation, Pr(dk|obsi−1) defaults to Pr(dk) = p|dk| ·(1− p)M−|dk|, where p denotes
the a priori probability that component c j is at fault, which in practice we set to p j = p.
Pr(obsi|dk) is defined as

Pr(obsi|dk) =

⎧
⎨

⎩

0 if obsi ∧dk are inconsistent;
1 if obsi is unique to dk;
ε otherwise.

(3)

As mentioned earlier, only candidates derived from the candidate generation algorithm
are updated, meaning that the 0-clause need not be considered in practice.

In model-based reasoning, many policies exist for defining ε [9]. Amongst the best
ε policies is one that uses an intermittent component failure model, extending h j’s per-
manent, binary definition to h j ∈ [0,1], where h j expresses the probability that faulty
component j produces correct output. (h j = 0 means persistently failing, and h j = 1
means healthy, i.e., never inducing failures).

Given the intermittency model, for an observation obsi = (Ai∗,ei), the ε policy in
Eq. (3) becomes

ε =

⎧
⎪⎨

⎪⎩

∏
j∈dk∧ai j=1

h j if ei = 0

1− ∏
j∈dk∧ai j=1

h j if ei = 1
(4)

Eq. (4) follows from the fact that the probability that a run passes is the product of the
probability that each involved, faulty component exhibits correct behavior. (Here we
adopt an or-model; we assume components fail independently, a standard assumption
in fault diagnosis for tractability reasons.)

Before computing Pr(dk) the h j must be estimated from (A,e). There are several
approaches that approximate h j by computing the probability that the combination of
components involved in a particular dk produce a failure, instead of computing the indi-
vidual component intermittency rate values [3,10]. Although such approaches already
give significant improvement over the classical model-based reasoning (see [4] for re-
sults), more accurate results can be achieved if the individual h j can be determined by an
exact estimator. To compute such an estimator, h j is determined per component based
on their effect on the ε policy (Eq. (4)) to compute Pr(dk). The key idea is to compute the
h js for the candidate’s dk faulty components that maximizes the probability Pr(obs|dk)
of a set of observations obs occurring, conditioned on that candidate dk (maximum
likelihood estimation for naı̈ve Bayes classifier dk). Hence, h j is solved by maximizing
Pr(obs|dk) under the above epsilon policy, according to argmax

{h j | j∈dk}
Pr(obs|dk).

To illustrate how candidates are ranked, consider the computation of Pr(d1). As the
four observations are independent, from Eq. (3) and Eq. (4) it follows

Pr(obs|d1) = (1−h1 ·h2) · (1−h2) · (1−h1) ·h1 (5)

Architecture-Based Run-Time Fault Diagnosis 269

Assuming candidate d1 is the actual diagnosis, the corresponding h j are determined
by maximum likelihood estimation, i.e., maximizing Eq. (5). For d1 it follows that
h1 = 0.47 and h2 = 0.19 yielding Pr(obs|d1) = 0.185 (note, that c2 has much lower
health than c1 as c2 is not exonerated in the last matrix row, in contrast to c1). Ap-
plying the same procedure for d2 yields Pr(obs|d2) = 0.036 (with corresponding h1 =
0.41, h3 = 0.50). Assuming both candidates have equal prior probability p2 (both are
double-fault candidates) and applying Eq. (2) it follows Pr(d1|obs) = 0.185 · p2/Pr(obs)
and Pr(d2|obs) = 0.036 · p2/Pr(obs). After normalization it follows that Pr(d1|obs) =
0.84 and Pr(d2|obs) = 0.16. Consequently, the ranked diagnosis is given by D =<
{1,2},{1,3}>.

5 Adapting SMFL to Architecture-Based Run-Time Diagnosis

On the surface of it, combining SMFL with architecture-based adaptation would appear
to be a natural synthesis. Architecture models, on the one hand, provide an abstract
component-oriented view that can form the basis for a scalable representation of the el-
ements that might contribute to faulty behavior. Further, architecture-based monitoring
and fault detection (but not diagnosis) are reasonably well established [29]. SMFL, on
the other hand, provides a light-weight, efficient, statistical approach that supports diag-
nosis in the face of uncertainty, coordinated faults, and transient errors. Further, SMFL
is agnostic about the nature of a fault, allowing systemic properties based on quality
attributes (such as performance) to guide the ranking procedure.

However, there are a number of obstacles that must be overcome to synthesize these
two disciplines. First, there needs to be some way to define the traces of interest: one
must be able to describe what kinds of computations should be monitored, as well as
the criteria for determining whether a computation has succeeded or failed. Moreover,
while SMFL expects finite traces, in general the behavior of a running system is not
finite (or so one hopes). Second, there must be a way to detect the occurrence of traces
in the running system. As noted earlier, concurrency makes this difficult, since many
simultaneously executing traces may be present in a system. (Recall that in the devel-
opment time context for which SMFL was originally created, each trace can be observed
as a separate run of the system under test.) Third, the algorithm for performing SMFL
must be adapted to handle concurrently executing traces, and provide an appropriate
window of observation (as described later).

5.1 Defining Transactions

Recall that SMFL expects as input a series of spectra, where each spectrum is a finite set
of components that participated in a given computation (a finite program trace), together
with an indication of its status (pass/fail). How can we define such computations –
which will in turn serve as the basis for monitoring, diagnosis, and fault localization?

The problem is non-trivial for two reasons. First, a trace defines a finite execution.
However, we are interested in systems that operate continuously, so that at a system
level the behavior of the system is infinite. Second, different kinds of systems embody
very different kinds of computational models. For example, complex computations in a

270 P. Casanova et al.

service-oriented architecture (SOA) are often defined by an orchestration script, which
indicates how the various components are coordinated, and how data passes from one to
another. In contrast, a system based on sensor networks may involve processing streams
of sensor readings.

Our approach is based on two key ideas. The first is the idea of a transaction family. A
transaction family defines a parameterized pattern of behaviors as finite computations,
expressed in terms of the architectural elements (components and connectors) that are
involved in that computation, and the flow of information/control between them (in a
way similar to [20]). An instantiation of that pattern (in terms of specific architectural
elements) is an individual transaction. Additionally we associate a set of properties
with the components and flows. These properties indicate things like the time that a
flow event happened or the load on a server. Finally, a transaction family includes a
boolean function that determines whether a given transaction has succeeded.

The second idea is to associate these transaction families with architectural styles.
An architectural style describes the types of elements and their possible legal associ-
ations in a system, which allows architectural patterns referring to those types to be
defined. Several transaction families can be defined for each architectural style, each
representing a different pattern of computation. Note that the transaction families need
not cover all of the behaviors of systems in the family – only the ones that are of in-
terest to diagnosis. However, by defining transaction families at the architectural style
level, we can immediately reuse diagnosis systems for different systems. And although
a different technology may be required to place probes (techniques for probing C pro-
grams are different from those for Java programs), both the diagnosis system and its
configuration are fully reusable.

There are many possible ways that one might define transaction families, including
state machines, process algebras, and so on. In our work we adopt a form of message
sequence charts [13]. For example one transaction family for a web-server family that
might be used to model the system in Figure 1 would be represented by the sequence di-
agram in Figure 2. The pattern of communication shown there defines the client-server
round-trip execution flow discussed earlier. It involves an arbitrary client, dispatcher,
and server, as well as the database. The first three represent parameters of the family
which (as we describe below) will be instantiated with specific components during sys-
tem execution. Properties associated with the family include the time taken to serve a
client’s request (i.e., the request latency). An associated boolean function returns true if
the latency (difference in request and reply times) is under the appropriate threshold.

Transaction families have several important benefits. First, they involve relatively
minimal specification: rather than requiring a full formal account of the architectural
behavior, we focus only on finite abstract “slices” of it, reducing the overhead of defin-
ing relevant behavior and making the approach generally accessible. Second, definition
of transaction families for a given system or architectural style can be incremental: it
is possible to add new templates or to add detail to an existing template (for example,
by including a finer-grained account of the set of elements involved in the transaction).
This allows users of the technique to get increased benefits for increased effort. Third,
by associating transaction families with architectural families, we amortize the effort of

Architecture-Based Run-Time Fault Diagnosis 271

:Client :Dispatcher :Server :Database

HTTP Get

HTTP Get

SQL Query

Query Response

HTTP Response

HTTP Response

Fig. 2. Example Message Sequence Chart for a HTTP Request Transaction

defining behaviors, and allow reuse of prepackaged collections of transaction families
for commonly-used architectural styles.

5.2 Detecting Traces

Given a way to specify transactions, we now need a way to observe them in a running
system and then use those observations to carry out fault diagnosis. Figure 3 shows the
process that we use do to this.

Detection Diagnosis

System Transaction
Detector

Oracle
Window

Determinator
Fault

Detector
Report

Generator

System Events

Transactions

Transaction evaluation (pass/fail)

Spectra matrix

Failure probabilities

Fig. 3. The Architecture of our Experimental Framework

To detect transactions, we adapt earlier work in architecture-based monitoring [29].
First, a system is instrumented so that it can be monitored at runtime. Monitored events
are placed on an “event bus” where they can be consumed by the detection phase of our
diagnostic infrastructure. In the client-server example above, monitored events include
activities like initiation of HTTP requests over the client-dispatcher connectors.

To monitor a system, there are numerous mechanisms that can be used that vary in
terms of the kind of behavior they detect and the kind of system they are appropriate
for. For distributed systems, standard middleware and network communication infras-
tructure provide mechanisms to monitor communication events and their properties. For
systems working on a single host, code-oriented monitoring can be used. For example,
aspect-oriented techniques can weave monitoring code into an existing code base (see,
for example, [29]). In this research the choice of monitoring mechanism and the place-
ment of relevant probes has not yet been a major focus of our efforts. However, as we
discuss later, we view this as an area for future research.

During the detection phase, events are first filtered to extract those relevant to the
transaction families that are being observed. Next, events are passed to a detection ma-
chine generated from the transaction families. Specifically, adapting earlier work on

272 P. Casanova et al.

DiscoTect, we monitor events as a set of concurrent state machines, modeled as Petri
Nets [29]. The key idea is that behavior is tracked by moving tokens through a state
machine in response to low-level events. When tokens reach certain terminal states the
machine emits the set of architectural elements that were involved in the trace and an in-
dication of the transaction type. This information is then fed to an oracle that evaluates
the boolean function associated with that spectrum type on the detected spectrum.

5.3 Diagnosis

The second phase of processing is diagnosis. This is broken down into three parts. The
first part is window determination. This step is responsible for aggregating a sequence
of transactions to define the matrices – the (A,e) of Section 4 – that can be analyzed
by the SFML algorithms. In determining these matrices it is important to define an
appropriate window. If the window is too small, there may be too few transactions for
the results to be statistically significant. If the window is too large, it may contain out-
of-date transactions that may skew the diagnosis towards past behavior.

There are a number of criteria that might be used to determine this window. In our
current experiments we have found that a time-based window works well. That is, we
aggregate all spectra within a temporal window. The value for that time bound needs to
be determined by experimentation as it is dependent on the rate of system usage: with
high transaction rates, a smaller time window can aggregate enough traces, but if the
transaction rate is low then we need a larger time window.

Once a window of spectra has been determined, the associated matrices are given
to the SMFL algorithm, which calculates a list of candidate fault explanations (if any)
ordered by probability of being the likely cause. This is simply a straightforward appli-
cation of the SFML algorithms described earlier.

Finally the results are passed to a Report Generator, which outputs the results of the
SFML analysis: a list with sets of failed components and their associated probabilities.
Automated repair mechanisms (or human operators) can then interpret the results in
architectural terms.

6 Evaluation

To evaluate the approach we conducted experiments on a system similar to the exam-
ple in this paper. In particular, we investigated the hypothesis that the technique could
accurately pinpoint problems in a system exhibiting (a) variability in the number of
components; (b) distributed system structures that involve realistic, off-the-shelf com-
munication infrastructure and componentry; (c) the presence of transient faults, where
failure is based on systemic attributes like end-to-end performance; and (e) faults that
might involve more than one component. The combination of these properties yields a
system that would be challenging to diagnose given current technology.

One class of problems that fits this criteria are intermittent multi-component faults
with additional noise. These problems arise with faulty network connections or appli-
cation errors that occur only with specific combinations of input data. With these kinds
of problems, a fault occurs only sometimes and is generally associated with a specific
path on the system. However, other intermittent faults may occur less often due to other

Architecture-Based Run-Time Fault Diagnosis 273

Apache JMeter

Probe

Distributor

Probe

Apache
HTTP
Server

Probe

Distributor

Probe

Apache
HTTP
Server

Database

V
ir

tu
al

M
ac

hi
ne

1

V
ir

tu
al

M
ac

hi
ne

2

Transaction
Detector

Oracle

Window Deter-
mination

Fault Detector

Report Genera-
tor

A
rc

hi
te

ct
ur

e
Fa

ul
tD

et
ec

to
r

HTTP

HTTP

HTTP

HTTP

SQL

HTTP

HTTP

HTTP

HTTP

SQL

Events

Events

Fig. 4. Evaluation Experiment Setup

reasons, generating additional noise in the spectra. We want to be able to separate out
the real errors from the noise.

To create this experiment, we recreated an environment similar to the one Figure 1.
In this system, two virtual machines (simulating two servers) run two web servers and
dispatchers. The dispatchers choose which web server to send requests to using a round-
robin algorithm. An external multi-threaded load test program, Apache JMeter, gener-
ates requests on both virtual machines simulating clients accessing the system.

A trace family is defined for this system: a standard request in which the client
performs a request to a dispatcher which forwards it to a web server.

Two interception points, or probes, were placed in each machine, one before the
request arrives at each dispatcher and one between the dispatchers and the web servers.
These interception points (custom-developed based on the pygmy HTTP server) add a
specific header to the HTTP request to allow tracking the transaction and report to an
event bus all events with the component name.

The fault detector receives events from the event bus and uses a Petri Net (PN) to
determine to what family the transaction belongs, as previously discussed. The PN used
to identify the transaction family is the one in Figure 5. Transitions on the PN are
enabled when the corresponding events arrive. A transaction in the PN is initialized with
a token in the START place and ends when a token arrives at the DONE:Standard
place. The oracle considers a transaction to be a success if the time elapsed between the
request and response is less than 2.5 seconds. This is representative of systems in which
response time is a measure of success – systems that do not exhibit easier-to-detect
fail-stop failures.

274 P. Casanova et al.

START

DONE:Standard

Request in
dispatcher

Response in
dispatcher

Timeout

Request in
web server

Response in
web server

Fig. 5. Petri Net used to identify the transaction family

To simulate network delay (or server processing delay), we added a random delay
in both IP1 and IP2 of the first virtual machine. This means that 25% of all requests
receive an added time delay that ensures some of the time they will fail. This generates
a hard-to-find problem, namely an intermittent failure on one of the paths: the one con-
taining the dispatcher 1 (D1) and web server 1 (WS1). Simultaneously it adds a small
(but non-zero) failure probability on both the D1-WS2 and D2-WS1 paths. The exper-
imental results show that the fault detection algorithm is able to statistically separate
these results and produce the correct output.

The total number of traces obtained during a run and their distribution between the
various components is shown in Table 2(a). As the results show, the D1-WS1 path fails
26% of the time. The other two paths which include D1 and WS1 fail slightly less than
5% of time time and the D2-WS2 path has no failures.

Because SMFL’s only input are the spectra, enough data need to be collected before
the problem can be detected. In fact, as shown in Table 2(b), the failure probabilities
change over time. For example, a 20s window would have determined that WS1 was the
only component responsible for the observed failures. Only after 30s is the algorithm
able to indict WS1 and D1 as the components responsible for the observed failures.
This means that window size needs to be carefully chosen so that the SMFL algorithm
has enough information to yield accurate diagnosis [2].

Table 2. Results

(a) Number of success/fail
spectra for each combination
of dispatcher and web server.

WS1 WS2 Total
D1 85/31 129/5 214/36
D2 117/5 122/0 239/5
Total 202/36 251/5 451/41

(b) Time evolution of results of failure diagnosis.

Time Window Succ./Fail. Diagnosis
0-10s 30/2 D1 : 84%,W S1 : 16%
0-20s 119/8 W S1 : 100%
0-30s 201/16 D1,W S1 : 99%,D1,D2 : 1%

Architecture-Based Run-Time Fault Diagnosis 275

7 Conclusions and Future Work

In this paper we described an approach that combines architecture models for moni-
toring system behavior and spectrum-based fault localization for diagnosing problems.
Such a combination provides a systematic, efficient and scalable technique to deal with
run-time failures independent of the system domain. Important features of the approach
are that it is lightweight, generally applicable to any kind of system, tolerant of uncer-
tainty, and capable of detecting soft anomalies and problems that involve combinations
of components.

This line of research raises a number of research questions requiring further inves-
tigation. In our current system, probes are manually placed to monitor the activity of
the running system. We plan to investigate methods for efficient automatic probe place-
ment, including analysis to identify the minimum set of probes required to accurately
monitor the spectrum types defined for the system, as well as techniques for dynamic
probe placement (e.g., to enable/disable probes at run-time). Our current oracle is de-
termined at design-time, but machine learning-based approaches could provide designs
that perform better in adaptive systems. Moreover, as we observed in the experiment,
SMFL window size is an important parameter that can affect the accuracy of the diag-
nosis. We plan to study a systematic, generic method to automatically determine this
parameter. We believe that this can be done in a parametric way, based on the family of
system and the kind of implementation base on which it is deployed. Furthermore, our
architecture-based fault localization approach allows the definition of multiple spec-
trum types. It is not yet clear whether each type should have its own SMFL diagnosis
instance, or whether they should be combined into a single detection component. A key
issue will be to determine whether there is a need for multiple SMFL windows depend-
ing on spectrum type, as this will require the use of multiple SMFL instances. While
the approach scales well in terms of its algorithmic complexity, we plan to conduct ex-
periments on large-scale systems to evaluate the scalability of the method in practice.
Finally, we plan to integrate the diagnosis mechanism into detection-diagnosis-repair
cycle, to determine how it impacts round-trip self-repair efficiency.

Acknowledgements. This research was supported by CyLab at Carnegie Mellon under
grants DAAD19-02-1-0389 and W911NF-09-1-0273 from the Army Research Office,
and by a grant from the Foundation for Science and Technology via project CMU-
PT/ELE/0030/2009 and by FEDER via the “Programa Operacional Factores de Com-
petitividade” of QREN (FCOMP-01-0124-FEDER-012983).

References

1. Abreu, R., van Gemund, A.J.C.: Diagnosing multiple intermittent failures using maximum
likelihood estimation. Artif. Intell. 174(18), 1481–1497 (2010)

2. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: On the accuracy of spectrum-based fault lo-
calization. In: Proc. of TAIC PART 2007. IEEE Computer Society, Los Alamitos (2007)

3. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: An observation-based model for fault local-
ization. In: Proc. of WODA 2008. ACM Press, New York (2008)

276 P. Casanova et al.

4. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: Spectrum-based multiple fault localization. In:
Taentzer, G., Heimdahl, M. (eds.) Proc. of ASE 2009. IEEE Computer Society, Los Alamitos
(2009)

5. Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., Fox, A.: Microreboot: A technique for
cheap recovery. In: Proc. OSDI 2004, San Francisco, CA (2004)

6. Cheng, B.H.C., de Lemos, R., Garlan, D., Giese, H., Litoiu, M., Magee, J., Müller, H.A.,
Pezzè, M., Taylor, R. (eds.): Proc. of SEAMS 2010. ACM Press, New York (2010)

7. Cheng, S.-W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the presence of
multiple objectives. In: Proc. of SEAMS 2006, May 21-22 (2006)

8. Cutting, D.: The hadoop framework (2010)
9. de Kleer, J.: Diagnosing intermittent faults. In: Biswas, G., Koutsoukos, X., Abdelwahed, S.

(eds.) Proceedings of the 18th International Workshop on Principles of Diagnosis (DX 2007),
Nashville, Tennessee, USA, May 29-31, pp. 45–51 (2007)

10. de Kleer, J.: Diagnosing multiple persistent and intermittent faults. In: Proc. of IJCAI 2009.
AAAI Press, Menlo Park (2009)

11. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelligence 32(1), 97–130
(1987)

12. Dobson, S.A., Strassner, J., Parashar, M., Shehory, O. (eds.): Proc. of ICAC 2009. ACM
Press, New York (2009)

13. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd
edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

14. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-
based self adaptation with reusable infrastructure. IEEE Computer 37(10) (October 2004)

15. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: Proceedings of the
Symposium on Operating Systems Principles. ACM, New York (2003)

16. Ghosh, D., Sharman, R., Raghav Rao, H., Upadhyaya, S.: Self-healing systems - survey and
synthesis. Decis. Support Syst. 42, 2164–2185 (2007)

17. Harrold, M.J., Rothermel, G., Sayre, K., Wu, R., Yi, L.: An empirical investigation of the
relationship between spectra differences and regression faults. Software Testing, Verification
and Reliability 10(3), 171–194 (2000)

18. Jones, J.A., Harrold, M.J., Stasko, J.T.: Visualization of test information to assist fault local-
ization. In: Proc. of ICSE 2002. ACM Press, New York (2002)

19. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1) (2003)
20. Kiviluoma, K., Koskinen, J., Mikkonen, T.: Run-time monitoring of architecturally signifi-

cant behaviors using behavioral profiles and aspects. In: Proc. of ISSTA 2006. ACM Press,
New York (2006)

21. Kolettis, N., Fulton, N.D.: Software rejuvenation: Analysis, module and applications. In:
Proc. of FTCS 1995. IEEE Computer Society, Washington, DC, USA (1995)

22. Korel, B., Laski, J.: Dynamic program slicing. Information Processing Letters 29, 155–163
(1988)

23. Kramer, J., Magee, J.: A rigorous architectural approach to adaptive software engineering. J.
Comput. Sci. Technol. 24, 183–188 (2009)

24. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug isolation.
In: Proc. of PLDI 2005, Chicago, Illinois, USA (2005)

25. Liu, C., Fei, L., Yan, X., Han, J., Midkiff, S.P.: Statistical debugging: A hypothesis testing-
based approach. IEEE Transactions on Software Engineering (TSE) 32(10), 831–848 (2006)

26. Mayer, W., Stumptner, M.: Evaluating models for model-based debugging. In: Proc. of ASE
2008 (2008)

Architecture-Based Run-Time Fault Diagnosis 277

27. Mikic-Rakic, M., Mehta, N., Medvidovic, N.: Architectural style requirements for self-
healing systems. In: Proceedings of the First Workshop on Self-Healing Systems, WOSS
2002, pp. 49–54. ACM, New York (2002)

28. Palviainen, M., Evesti, A., Ovaska, E.: The reliability estimation, prediction and measuring
of component-based software. Journal of Systems and Software 84(6), 1054–1070 (2011)

29. Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., Yan, H.: Discovering Architectures from
Running Systems. IEEE Transactions on Software Engineering 32(7), 454–466 (2006)

30. Trivedi, K.S., Vaidyanathan, K.: Software aging and rejuvenation. In: Wiley Encyclopedia of
Computer Science and Engineering. John Wiley & Sons, Inc., Chichester (2008)

A Self-adaptive Monitoring Framework
for Component-Based Software Systems

Jens Ehlers and Wilhelm Hasselbring

Software Engineering Group
Christian-Albrechts-University Kiel

24098 Kiel, Germany
{jeh,wha}@informatik.uni-kiel.de

Abstract. To allow architectural self-adaptation at runtime, software systems
require continuous monitoring capabilities to observe and to reflect on their
innate runtime behavior. For software systems in productive operation, the
monitoring overhead has to be kept deliberately small. By consequence, a
trade-off between the monitoring coverage and the resulting effort for data
collection and analysis is necessary. In this paper, we present a framework
that allows for autonomic on-demand adaptation of the monitoring coverage
at runtime. We employ our self-adaptive monitoring approach to investigate
performance anomalies in component-based software systems. The approach is
based on goal-oriented monitoring rules specified with the OCL. The continuous
evaluation of the monitoring rules enables to zoom into the internal realization of
a component, if it behaves anomalous. Our tool support is based on the Eclipse
Modeling Project and the Kieker monitoring framework. We provide evaluations
of the monitoring overhead and the anomaly rating procedure using the JPetStore
reference application as a Java EE-based test system.

Keywords: Adaptive monitoring, failure diagnosis, anomaly detection.

1 Introduction

Performance is a critical characteristic for software systems. Even though monitoring
the operation of systems is often neglected in practice. A recent survey among Java
practitioners and experts [10] indicates this antagonism: Adequate application-level
monitoring tools that allow to analyze the causes of performance problems are seldom
known and employed in software engineering projects.

It is difficult to decide in advance where to place the monitoring probes and which
data should be collected. Thus, probes are typically instrumented only in reaction to
prior performance degradations or system failures. In contrast to construction-time
profiling, continuous monitoring at operation time has to regard a deliberately small
monitoring overhead. Consequently, a main issue is the limited amount of information
that can be collected and processed. More detailed monitoring data allows for more
detailed analyses of the underlying software system’s behavior. We evaluated and
quantified the impact of how monitoring data is collected, processed, and persisted for
subsequent analyses. A finding is that it is feasible to instrument probes at a variety of

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 278–286, 2011.
© Springer-Verlag Berlin Heidelberg 2011

{jeh, wha}@informatik.uni-kiel.de

A Self-adaptive Monitoring Framework for Software Systems 279

possibly relevant measuring points, as long as not all of them are active at the same time
during operation.

In this paper, we present a self-adaptive, rule-based monitoring approach that allows
on-demand changes of the monitoring coverage at runtime. The monitoring rules
follow the goals for which monitoring data is required, e.g. the evidence of SLA
compliance, dynamic adaptation of resource capacities, or usage pattern recognition for
interface design. We will concentrate on the monitoring goal to localize performance
anomalies that change the valid behavior of software system as perceived by its
users. For the specification of the monitoring rules, we employ the Object Constraint
Language (OCL) [8]. The rules refer to performance attributes of a previously extracted
system runtime model. As the model values (particularly anomaly scores rating the
timing behavior of system-inherent operations) change during operation, a continuous
evaluation of the monitoring rules is required. Our implementation is based on EMF
(Eclipse Modeling Framework)1 meta-models which allow for evaluation of OCL query
expressions on object-oriented instance models at runtime.

The remainder of this paper is structured as follows: In Section 2, we describe our
approach for self-adaptive performance monitoring and the underlying anomaly rating
procedure. Its evaluation in lab experiments and industrial systems is summarized in
Section 3. Related work is discussed in Section 4. Finally, a conclusion and an outlook
to future work are given in Section 5.

2 Self-adaptivity for Continuous Software System Monitoring

In this section, we present our approach for self-adaptive software system monitoring,
which is embedded into our Kieker monitoring framework2 [5]. Kieker facilitates to
monitor and to analyze the runtime behavior of component-based software systems. The
underlying monitoring and analysis process is structured into the following activities:
probe injection, probe activation, data collection, data provision, data processing,
visualization, and (self-)adaptation. Different plugins can be integrated into this analysis
process via the pipes-and-filters pattern. In the following, we present a Monitoring
Adaptation Plugin addressing rule-based adaptation of the current monitoring coverage.

To enable fine-grained monitoring of component-internal behavior, probes have to be
instrumented at various measuring points in the components’ control flow. At operation
time with extensive system workload, it is not possible to process each probe actuation.
Only a selection of the measuring points can be activated. An adequate initial coverage
is to activate the measuring points that intercept the execution of system interface
operations. Our proposed Monitoring Adaptation Plugin allows the specification of
monitoring rules which are evaluated continuously and may effect changes of the
current monitoring coverage. We will specify a rule that the coverage of a component’s
interior control flow should be increased if it does not behave as expected. In this way,
our approach affords automatic on-demand adaptation of the effective software system
monitoring.

1 http://www.eclipse.org/modeling/emf/
2 http://kieker.sourceforge.net/

http://www.eclipse.org/modeling/emf/
http://kieker.sourceforge.net/

280 J. Ehlers and W. Hasselbring

If the monitoring adaptation is conducted manually, the human decision to change
the set of active measuring points is usually caused by (critical) incidents that imply
anomalous runtime behavior. A performance engineer who observes such an incident is
interested in the root cause and tries to activate more measuring points in the affected
components. Subsequently, it takes a while until enough relevant records have been
collected via the newly activated measuring points. It is well-known that a major part of
the failure recovery time is required to locate the root cause of a failure. An estimation
of 75% of the recovery time being spent just for fault localization is referred to in [6].
Our self-adaptive monitoring approach will reduce this potentially business-critical wait
time that delays a failure or anomaly diagnosis.

2.1 Runtime Evaluation of OCL-Based Monitoring Rules

We employ the OCL to specify the monitoring rule premises. OCL is well known for
its purposes to specify invariants on classes, pre- and postconditions on operations,
or guards in UML diagrams. Nevertheless, the first objective listed in the OCL
specification suggests OCL to be a query language [8]. In our case, the monitoring
rule premises can actually be regarded as queries that select a set of measuring points
to be activated or deactivated. The Monitoring Adaptation Plugin provides an editor
with syntax highlighting and code completion for performance analysts to specify the
required OCL expressions. The context in which an OCL expression will be evaluated
is determined by a selectable context element. In the expression, the context element
can be referenced by the OCL identifier self. Appropriate context elements are the
analysis models of other Kieker plugins which provide the input of the Monitoring
Adaptation Plugin. As all plugins are based on EMF meta-models, we are able to utilize
the EMF Model Query sub-project, which allows constructing and running queries on
EMF models by means of OCL. Goal-oriented self-adaptation is based on the possibility
to refer to attributes in the OCL expressions that change their values during runtime, e.g.
responsiveness metrics and derived anomaly scores.

P1: context CallingContextTree:

self.callingContexts select(level = 1 or

(parent.op.monitored and parent.anomalyScore > t))

collect(op)

Fig. 1. Monitoring premise and corresponding simplified CCT meta-model

The Monitoring Adaptation Plugin runs a thread that evaluates the specified
monitoring rules. The time interval between succeeding evaluations of the monitoring
rules has to be configured manually. Enough time is required to collect reliable new
monitoring data in each iteration. On the other side, the delay time must be short enough
to react promptly to observed anomalies. An interval value in the scale of a couple of
minutes is appropriate. Probe (de)activation instructions are delegated to the monitoring
agent instances via their remote adaptation interface.

A Self-adaptive Monitoring Framework for Software Systems 281

In the following, we discuss an example monitoring rule: “If an operation is selected
by the rule premise P1 as described in Figure 1, then activate the probe measuring
point required to intercept and monitor calls to this operation.” The context element
of P1 is a calling context tree (CCT) model. The simplified meta-model of a CCT is
depicted in Figure 1. P1 selects all operations that are called from a caller operation
that is already monitored (parent.op.monitored) and behaves anomalous in a particular
calling context (with an unique call stack), i.e. the context’s anomaly score exceeds a
specified threshold t (parent.anomalyScore > t). Additionally, all operations are added
to the result set that are at the topmost level of the CCT (level = 1), i.e. system-level
interface operations for incoming client requests.

2.2 Software Performance Anomaly Rating

The above monitoring rule references an operation-level anomaly score metric.
As it strongly depends on the context if an observation has to be considered as
anomalous or not [2], we capture and separate different contexts as far as possible
(e.g. separation by calling context), but we assume that it is not possible to separate all
context-determinant impact factors (e.g. operation input parametrization, component
state, system workload). Even from a fine-grained contextual viewpoint, response
times can be arbitrarily distributed and do not necessarily converge to a parametric
distribution model. Thus, we suggest an anomaly rating procedure based on time series
analysis that disregards any technical or economical influences. The characteristic
features of the underlying stochastic process are recovered from the present time series
of response times. Our anomaly rating procedure consists of four steps, which are
summarized in the following and explicated in detail in [3]:

(1) Forecast expected response times for each software service in dependence of
the stack context based on historical observations. We provide different forecast
models such as single exponential smoothing (SES), Holt-Winters smoothing, and
ARIMA models.

(2) Test if a sample of newly measured service response times is to be rated as
normal or anomalous related to the expected forecast value from (1). A Student’s t-test
is conducted based on the measured sample variance.

(3) Based on the sequent rating of response times samples from (2), calculate an
anomaly score expressing the recent degree of a software service to exhibit anomalous
timing behavior. Here, we construct an anomaly scoring function that reflects the
frequency and the trend of anomalous samples over time.

(4) Aggregate and correlate anomaly scores from (3) to higher levels of abstraction,
e.g. component-level anomaly scores.

3 Evaluation

We employed the Kieker Monitoring component in the productive systems of a
telecommunication company and a digital photo service provider [5]. These previous
case studies confirmed the practicability and the robustness of our approach. Regarding

282 J. Ehlers and W. Hasselbring

the monitoring cost, our industrial partners were not able to perceive any monitoring
overhead due to the instrumentation of our probes. Thus, we set up lab experiments to
quantify the monitoring overhead and to evaluate the self-adaptive anomaly detection.
The results of these evaluations are recapped in the following.

Monitoring Overhead: The goal of our monitoring cost evaluation is to quantify and
to decompose the monitoring overhead. In Figure 2, we apportion monitoring costs for
instrumentation (ΔI), data collection (ΔC), and data logging (ΔL). In the experiment,
we monitored an operation that takes 500 μs to be processed on a specific test system
(Sun Blade X6270 with 2x Intel Xeon E5540, total 8 cores at 2.53 GHz, 24 GB
RAM, ZFS RAID, SunOS 5.1, Java HotSpot x86 Server VM 1.6). The response time
deviation is minimal as we carried out an extensive warm-up phase to saturate the JVM
behavior, particularly the just-in-time compilation. In the experiment, the monitored
operation was continuously executed by 15 concurrent threads. The boxplots show
that (1) instrumentation, i.e. processing previously woven, but inactive dummy probes,
causes negligible overhead (ΔI is less than 1 μs) compared to (2) data collection and
(3) logging, i.e. creating and persisting the monitoring records to a Monitoring Log (ΔC

and ΔL are each about 4 μs). In case (3) of the experiment where logging is enabled,
the records were written asynchronously into the local file system by a dedicated writer
thread. This avoids a direct delay of the response time perceived by the system users.
The remaining logging overhead is effected by the thread concurrency. Our evaluation
results suggest the conclusion that injecting probes at a multitude of measuring points
is not critical as long as data collection and logging can be (de)activated systemically.
This finding underpins the adaptive activation of measuring points proposed in
Section 2.1.

Fig. 2. Evaluation of the monitoring cost

Anomaly Detection: In [3], we presented our evaluation results for different forecast
models. Here, we show that consecutive divergences of measurements and forecasts
indicate anomalous timing behavior. For our evaluation, we use the JPetStore3 reference
application as a test system. Initially, we monitor only the system’s interface operations.

3 http://sourceforge.net/projects/ibatisjpetstore/

http://sourceforge.net/projects/ibatisjpetstore/

A Self-adaptive Monitoring Framework for Software Systems 283

Fig. 3. Kieker screenshots with calling context tree (left) and responsiveness time series (right)

In our experiment, we stress the system under test with workload that causes a desirable
level of resource utilization, i.e. the CPUs are continuously utilized in a range between
30% and 50%. Given this load, the system was run and observed for 2 days, using
SES for forecasting with a fixed smoothing factor of 0.15. The anomaly scores of the
monitored services did not exceed a threshold value of 0.5. That is, there have never
been 7 of 10 subsequent samples that were rated anomalous. For example, the mean
response time of the viewProduct service was 48.7 ms with a standard deviation of
10.3 ms. A response time curve of this operation is depicted in the top right view
part of Figure 3. The green line indicates the observed mean response time surrounded
by a light green confidence interval whose range depends on the observed variance
and the specified significance level. The blue line indicates the expected response time
determined by the used forecast model. During failure-free operation, the forecast value
is mostly within the confidence interval. By consequence, the anomaly score indicated
by the red line does not rise considerably. In the very right part of the depicted time
series, a fault is injected that disrupts the failure-free operation. Suddenly, response
times nearly double. Without this pattern being expected in advance, the forecast model

284 J. Ehlers and W. Hasselbring

adapts itself only moderately to the new timing behavior. In this period, measurement
and forecast diverge so that the anomaly score increases rapidly and exceeds the defined
alarm threshold.
This situation is captured in the top left view part of Figure 3, where an extract of
the system’s calling context tree is shown. The color of the operation nodes from
green to red indicate their current anomaly score. Operations that are hitherto not
monitored are colored in light gray. As a consequence of the anomalous behavior of the
viewProduct and viewItem operations, the evaluation and appliance of the monitoring
rule P1 explicated above leads to the monitoring activation for their callees. As
shown in the bottom left view part of Figure 3, the monitoring coverage is adapted
to localize the root cause of the anomalous behavior. In the scenario depicted in the
screenshots, both anomalous interface operations depend on a common operation called
getExchangeRate effecting the anomaly. The time series in the bottom right view part
of Figure 3 demonstrates that the getExchangeRate operation has not been monitored
continuously until the anomaly occurred. Only sparsely distributed sample observations
have been made to check over the learned expected behavior. In the discussed evaluation
scenario, we systematically changed the responsiveness of the external web service
which is invoked from inside of the getExchangeRate operation. Though we injected
this fault on purpose, a similar incident can easily occur in a productive system that
depends on third-party services.

Furthermore, we studied two more fault injection scenarios, which are not described
in detail due to space restrictions: In the first scenario, we dropped and recreated a
database index causing significant changes in the response time of several operations
called from lower levels of the system’s CCT. We kept track of how our self-adaptive
monitoring approach successively adapts the monitoring coverage to zoom in and out
the CCT. In a second scenario, we increased the overall system load abruptly to simulate
a situation where a load-balanced system replica drops out and the remaining replicas
have to absorb the capacity reduction. As in our experiment setup particularly the CPU
resources have not been heavily underutilized, almost all expensive operations react
anomalous. It is obvious that a manual exploration of such cause-and-effect chains as
constructed in our experiments is much more time-consuming and error-prone than an
automated processing. A major contribution of the self-adaptive monitoring approach
is to save this time and effort.

4 Related Work

An integrated software system monitoring framework such as Kieker is concerned
with two aspects: (1) monitoring, i.e. instrumentation and data acquisition, and
(2) subsequent analysis. Related work comprises the COMPAS JEEM project [9]
which facilitates the injection of probes as a component-level proxy layer in Java EE
systems. In the context of COMPAS, adaptation of the monitoring coverage at runtime
is studied in [7]. However, monitoring is restrained to the interface level of Java EE
components such as EJBs or Servlets. By the observation of component-internal
operation responsiveness, Kieker allows a finer-grained insight.

A Self-adaptive Monitoring Framework for Software Systems 285

Concerning application-level fault determination without addressing self-adaptation,
related work is provided by the Pinpoint approach [6]. In contrast to Kieker, Pinpoint
does not focus on performance time series, but applies pattern-oriented data mining
techniques to detect anomalies in the request traces. A further related approach
addressing monitoring of resource utilization and component interactions in distributed
systems is Magpie [1]. While the implementation of Kieker concentrates on Java-based
systems, Magpie is realized to monitor systems based on Microsoft technology.
The Rainbow project [4] employs monitoring for architecture-based adaptation of
software systems. To our knowledge, Magpie, Pinpoint, and Rainbow so far do not
contribute means for rule-based self-adaptation to control the monitoring coverage.
The same applies to related commercial products like CA Wily Introscope, DynaTrace,
or JXInsight. The popular open-source tool Nagios is intended for infrastructure
monitoring, not for application-level monitoring.

5 Conclusions and Future Work

Responsiveness and scalability of a software system components have to be monitored
and analyzed continuously. In case a system component responds anomalous, our
self-adaptive monitoring approach enables zooming into the component-internal
behavior on demand. Zooming means to activate more (or less) measuring points
in the application-level control flow aiming at increasing (or decreasing) insight,
e.g. into the operation call stack, effective loop iterations, or conditional branches
taken. A set of OCL-based monitoring rules is proposed to control the monitoring
coverage automatically. In Section 2, we presented an extension to our Kieker
monitoring framework supporting self-adaptive software system monitoring based on
the continuous evaluation of OCL-based monitoring rules at runtime. Further, we briefly
described our underlying anomaly rating procedure for the timing behavior of software
systems. In Section 3, we quantified the monitoring overhead and evaluated the anomaly
detection procedure in lab experiments.

In our future work, we plan to study the adaptive monitoring approach in case studies
with industrial partners. Further, we intend to implement unsettled practical issues
concerning our Kieker monitoring framework such as model-driven instrumentation,
IDE integration, and support for other programming languages in addition to Java.

References

1. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using Magpie for request extraction and
workload modelling. In: Proc. of the 6th Conf. on Symposium on Operating Systems Design
& Implementation, pp. 259–272. USENIX (2004)

2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Computing
Surveys 41(3), 1–58 (2009)

3. Ehlers, J., van Hoorn, A., Waller, J., Hasselbring, W.: Self-adaptive software system
monitoring for performance anomaly localization. In: Proc. of the 8th IEEE/ACM Intl. Conf.
on Autonomic Computing (ICAC 2011), pp. 197–200. ACM, New York (2011)

286 J. Ehlers and W. Hasselbring

4. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10), 46–54
(2004)

5. van Hoorn, A., Rohr, M., Hasselbring, W., Waller, J., Ehlers, J., Frey, S., Kieselhorst,
D.: Continuous monitoring of software services: Design and application of the Kieker
framework. Tech. Rep. TR-0921, Dept. of Computer Science, University of Kiel (2009)

6. Kiciman, E., Fox, A.: Detecting application-level failures in component-based internet
services. IEEE Trans. on Neural Networks 16(5), 1027–1041 (2005)

7. Mos, A., Murphy, J.: COMPAS: Adaptive performance monitoring of component-based
systems. In: 2nd ICSE Workshop on Remote Analysis and Measurement of Software
Systems, 26th Intl. Conf. on Software Engineering (ICSE 2004), pp. 35–40 (2004)

8. OMG: Object Constraint Language, Version 2.2.
http://www.omg.org/spec/OCL/2.2/ (2010)

9. Parsons, T., Mos, A., Murphy, J.: Non-intrusive end-to-end runtime path tracing for J2EE
systems. IEE Proc. – Software 153(4), 149–161 (2006)

10. Snatzke, R.G.: Performance survey 2008 – survey by codecentric GmbH (2009),
http://www.codecentric.de/de/m/kompetenzen/
publikationen/studien/

http://www.omg.org/spec/OCL/2.2/
http://www.codecentric.de/de/m/kompetenzen/publikationen/studien/
http://www.codecentric.de/de/m/kompetenzen/publikationen/studien/

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 287–294, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Towards Real-Time Monitoring and Controlling of
Enterprise Architectures Using

Business Software Control Centers

Tobias Brückmann, Volker Gruhn, and Max Pfeiffer

paluno – The Ruhr Institute for Software Technology
University of Duisburg-Essen, 45127 Essen, Germany

{tobias.brueckmann,volker.gruhn,
max.pfeiffer}@paluno.uni-due.de

Abstract. Enterprise Architecture Management (EAM) plays an important
supporting role in IT management of organizations to align their IT
infrastructure to actual business needs. This emerging research paper presents
an approach to enable real-time monitoring and controlling of enterprise
architectures. Therefore, we adapted the “control center” concept as applied in
power plants or railway control plants. The contribution of this paper presents
an architecture for real-time monitoring and controlling facilities for complex
business application landscapes. The business software control center is
designed to give a real-time view of instances of IT-supported business
processes together with the currently involved software systems and services.
Moreover, IT operators are supported by controlling centers to actively control
the load of software services at the business function level and to control the
flow of business process instances through the organization’s IT infrastructure.

Keywords: Enterprise Architecture Management, Real Time, Software Control
Center.

1 Introduction

Evolving technologies and continuously changing business processes are an enormous
challenge for IT managers. By supporting the IT management to align the IT
infrastructure to actual business needs, several models and processes were developed in
so-called Enterprise Architecture Management (EAM) [3, 8, and 10] frameworks. In this
context, EAM is a “management function” [10] and Enterprise Architectures (EA) are
architectural models that contain information about the organization’s business processes
as well as information about the organization’s IT infrastructure. Enterprise Architecture
models target connections and dependencies of the business and IT architecture. They
should reflect the degree of the actual alignment of the IT to business needs. However,
creating and maintaining complex EAs of large organizations is a longsome and
extensive task, whose results are often outdated due to the continuous changing nature of
business processes and IT application landscapes.

288 T. Brückmann, V. Gruhn, and M. Pfeiffer

For this reason, our paper introduces an approach for real-time monitoring and
controlling of Enterprise Architectures. Inspired by control rooms in power plants or
railway control plants, which provide an integrated and always up-to-date view of the
involved infrastructure and the processed material, we propose the use of so-called
business software control centers to provide an integrated and always up-to-date view of
software services and applications together with the state of instances of executed
business processes. Although metering of CPU load, network bandwidth and memory
usage is commonly used to monitor and report operating figures at the hardware and
operating system level, a link between business functions and software services or
application calls has not been considered yet. Furthermore, the IT operators are not
supported yet to actively control the load of software services at business function level
or to actively manage the flow of process instances through the organization’s IT
infrastructure. Our approach is based on connecting real-time models of different views.

The remainder of this paper is structured as follows: Section 2 gives a brief
overview of related work. Likewise, we discuss foundations of our approach before
we state the research challenges derived from our vision of business software control
centers under consideration of the existing and related work in Section 3. In Section 4,
we introduce our approach at the architecture level together with an illustrating
scenario. Finally, in Section 5, we conclude the paper and sketch our future work.

2 Related Work

As related work, we considered EAM frameworks, which integrate business and IT
views into organizations, existing software systems monitoring approaches, and
business process monitoring approaches.

EAM frameworks such as Zachman-framework [10], DoDAF [3], and TOGAF [8]
describe the IT infrastructure of an organization and relate it to the implemented business
processes. Zachman [10] first came up with the idea to structure complex information
systems in logical architectures. His framework helps to classify and model information
systems and their relation to the business model and business processes in different views
and level of abstraction. The main goal of the Zachman framework is to provide an
inventory model of all components of the IT infrastructure (incl. hardware, networks,
storage and applications). The DoD Architecture Framework (DoDAF) [3] was designed
to support architecture decisions for stable and interoperable systems as part of IT
landscapes. It also defines different views (operational view, systems and service view,
and technical standards view) to inspect the internal architecture of an organization on
different perspectives and scopes.

The main goal of TOGAF [8] is an optimal alignment of business and information
technology. The methods and techniques of the framework support Enterprise
Architecture Management with a defined process comprising eight main phases.
TOGAF surveys the current architecture of the organization and transfers it to new
developed target architecture for applying sophisticated IT governance.

The EAM frameworks described above aim to provide processes and models to
support the alignment of the business architecture and the IT architecture of
organizations. Hence, we developed our work on top of these frameworks and
developed an approach for real-time monitoring and controlling of EAs.

 Towards Real-Time Monitoring and Controlling of Enterprise Architectures 289

Real-time system monitoring is a commonly used technique in industry. There are
commercial solutions for monitoring hardware loads such as networks, memory, and
CPU, as well as for monitoring software components such as versions and
configurations. IBM Tivoli [5] is optimizing performance and availability of IT
infrastructures. It can be applied to managing operating systems, databases and servers.
With Nagios [6] infrastructures like systems, applications and services can be
monitored, and infrastructure problems can be identified. Zenoss [11] is a monitoring
and event management tool for servers, networks, and virtualized infrastructures.
These tools and tool sets support the planning and organization of large IT landscapes.
They give a real-time overview of the current state and help to respond quickly to
changes and failures. However, the focus of system monitoring solutions is a pure IT
view of an organization. They do not include the business models and processes.
Hence, they do not support an integrated real-time view of business functions and
software functions.

In the context of Business Intelligence [4], different architectures are already
developed for business process monitoring. These architectures provide reports,
dashboards and alerts reflecting only information form the IT infrastructure level to
the business function level.

In addition to system monitoring tools, business process monitoring tools are used
for real-time monitoring of the internal business activities of organizations. As a
difference to system monitoring approaches, business process modeling only focuses
on executed instances of defined business processes. As commercial solutions, Oracle
BAM [7] and NetWeaver SAP [8] support real-time process control and workforce
management. Oracle BAM [7] monitors business services and processes from an
enterprise down to the actual business process level. It uses a so-called dashboard to
display the real-time data, which can be used by process managers to identify needs
for modifications of the implemented business processes. SAP NetWeaver [8] is a
tool for creating large business process models on different abstraction levels.
Comparable to the system monitoring approaches, business process monitoring
solutions focus only on the monitoring of current business activities and do not take
the underlying IT infrastructure into account.

Summing up the existing approaches in the field of Enterprise Architecture
Management and real-time monitoring and controlling, there are established processes
and models to create EA models. Moreover, there are tools supporting system
monitoring from only a technical viewpoint, and there are tools supporting business
process monitoring from only a business viewpoint. However, an integrated real-time
view for monitoring and controlling of both is not supported yet.

3 Problem Statement

As shown above in Section 2, a lot of modeling concepts and views to relate business
functions and IT functions are available. However, they are only used at design-time and
for hand-made models. To enable real-time monitoring and controlling of Enterprise

290 T. Brückmann, V. Gruhn, and M. Pfeiffer

Architectures, we have to establish an automated link between implemented business
processes and implemented software applications and services. Therefore, we need

- A conceptual model that provides relations between implemented business
functions and software system functions as a foundation of the visualization
of the real-time EA.

- A real-time visualization of instances of actual processed business functions
and involved software systems and services.

- A bi-directional communication infrastructure between software systems and
the control center.

- An automated update mechanism, which recognizes changes of
business functions and changes in application landscape and displays these
changes.

- An infrastructure that is able to provide a real-time visualization of executed
business processes, operated software systems and their relations.

- A process model for development of applications and services that can be
monitored and controlled using a business software control center.

4 Business Software Control Center

The underlying vision of a business software control center is to provide a real-time
view of the current business process instances together with the actual involved
software systems and services. Therefore, the real-time states of all connected
applications and services need to be captured and communicated to the business
software control center. To present an integrated view of both – business functions
and IT systems – the control center contains a conceptual and visual model of the EA.
This model provides a foundation for the control center to map the incoming
information from the IT systems to the graphical user interface. The GUI of the
control center contains a set of different views in different levels of detail. The user
can for example select whether only IT systems are displayed, or an integrated view
of business functions and IT functions should be presented. Moreover, if the business
software control center supports active controlling functions, additional services can
be added or the whole IT support of business processes can be rearranged. The
reminder of this section introduces an architectural description of such a business
software control center as an emerging result of our work.

Figure 1 shows a schematic GUI sketch of the business software control center
based on the ideas of traditional control centers. The business process and IT
infrastructure are visualized in real-time. The connection between both views shows
which process step is supported by which software functionality. Depending on the
use of the business software control center, necessary information can be added and
irrelevant information can be hidden. The business process shows a view of a
simplified billing process in BPMN [9] which is extended by process tokens. These
process tokens represent the actual instance (i.e. user) during this process in real-time.
The connection shows which process step is executed on which software component
of the IT infrastructure (here, for example, the billing step A is related to a specific
component of the banking server).

 Towards Real-Time Monitoring and Controlling of Enterprise Architectures 291

Fig. 1. Conceptual Sketch of the control center GUI

The technical infrastructure that is required to operate a business software control
center comprises the control center unit, the actual Enterprise Architecture (EA)
model, the monitored and controlled IT infrastructure, and a control center bus. An
overview is given in Figure 2. The control center unit is a set of connected
components as described in detail in Section 4.1. The visualization and the internal
model of the control center unit depend on the underlying EA model, which specifies
the enterprise as seen by the control center (see Section 4.2). The monitored
applications and services (IT infrastructure) are connected to the business software
control center via a control center bus (see Section 4.3).

Fig. 2. Architecture Overview of the Business Software Control Center

4.1 Control Center Unit

The control center unit is the central unit and contains several components to display,
update and store the relevant information as described in this subsection.

292 T. Brückmann, V. Gruhn, and M. Pfeiffer

Monitoring Component. The monitoring module is an interactive monitoring panel
for observing the real-time states of the business processes and the IT infrastructure. It
provides a customizable GUI and supports different views in different levels of detail.
Compared to Figure 1, the business process view and the IT landscape view are
shown together. For example, if the banking service A fails in the IT landscape, it will
change both views and a notification will occur in the GUI in real-time.

Controlling Component. The controlling component is an interactive control panel
based upon the monitoring component. The controlling component extends the
control center with monitoring capabilities for control functions. Related to Figure 1,
if the business contract of the banking service A is canceled in the business process
view, it will be disabled in the software component as well.

Model Consistency Guard Component. This component evaluates continuously if
the modeled EA fits to the actual registered and monitored software systems and
services. Moreover, this component is responsible for detecting inconsistencies of the
models with the real world. If the inconsistency, for example an unregistered banking
service D, was not triggered by the control center, a GUI notification will occur.

Data Collection Component. The data collector component is responsible for a
continuously updated real-time model, which provides the basis for the visualization
in the monitoring component. Therefore, it processes the incoming information from
the control center bus and updates the run-time model. For example, the billing
process (Figure 1) passes into the next step after ordering when the banking server is
entered by a user and sends a request.

Registration Component. The registration component is a register that connects the
information of the EA model with the existing IT infrastructure. This component is
responsible for establishing and maintaining the logical connection of the business
software control center and the monitored software systems. If a new banking service
D is added to the banking server, it must be registered with the main control unit.
Afterwards, the process model will be updated in real-time.

Archive Component. The archive component stores the complete history of all
incoming and processed information together with the EA model. The stored
information is needed for statistic evaluations and report generation (see Report
Component) as well as for simulation purposes (see Simulation Component).

Reporting Component. The reporting component generates reports based on the data
stored in the archive component. Moreover, the reporting component is also used to
run statistical analysis. Results of such an analysis can be used to create load forecasts
and to support IT management decisions – for example, which banking service is used
more often than others, or in which step most users leave the process.

Simulation Component. The simulation component of the control center uses the EA
model together with collected data of the archive component to enable simulation
runs of the business processes and software systems. With the help of simulation, the
IT department can do runtime experiments without affecting real business process
instances. For example, a failure of the banking service A (Figure 1) during a peak
load can be simulated.

 Towards Real-Time Monitoring and Controlling of Enterprise Architectures 293

4.2 Enterprise Architecture Models

In the context of our proposed business software control center, two types of models
play an important role: The EA model, which is a design-time model and which
contains a structural view onto defined business processes, existing software systems,
and their relations. The EA model has defined visual representations, which are used
by the monitoring component of the control center. In contrast to business process
models (such as BPMN [8]) and system models (such as UML [1]), the EA model
needs to integrate both points of view into one consistent EA model.

In addition to the design-time EA model, the control center uses an internal run-
time model. The run-time model is based on the design-time EA model. It carries
information about concrete instances of business function calls and software system
function calls.

4.3 Control Center Bus

Besides the control center unit, a proper communication infrastructure between the
control center and controlled software systems is needed. The communication bus has
to support a heterogeneous infrastructure, because each deployed system or service
should be able to communicate with the control center. Moreover, we expect a lot of
sensitive messages have to be handled by the communication infrastructure. Hence, it
has to be assured that no messages gets lost, that security requirements can be met,
and real-time critical message are delivered as fast as they are needed. Additionally,
in case of a communication failure, the failure has to be detected and treated
automatically without affecting the stability of the control center.

5 Conclusion

In this emerging research article, we presented an approach to enable real-time
monitoring and controlling of Enterprise Architectures. On the foundation of existing
EA models, we adopted the “control room” concept (as applied e.g. in power plants),
and provided an architectural description of business software control centers. With
such control centers, we aim to support real-time monitoring and control of facilities
for complex business application landscapes. We proposed a technical infrastructure
that comprises the control center unit, the actual EA model, the monitored and
controlled software applications and services, and a control center bus. The heart of
this architecture is the so-called control center unit, which contains a set of connected
components to display, update and store the relevant information as delivered from
software systems. Reporting and simulation functions are also considered.

In the next steps towards real-time monitoring and controlling of enterprise
architectures, we plan to develop a detailed and usable visualization concept that
integrates business functions and software system functions and implements a
research prototype of the proposed business software control center. We plan to run
the first experiments with the prototype in a simulated industrial environment together
with an industrial partner.

294 T. Brückmann, V. Gruhn, and M. Pfeiffer

References

[1] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley, Reading (1998)

[2] Business Process Monitoring with SAP,
http://www.sdn.sap.com/irj/sdn/nw-process-monitoring (last access
April 02, 2011)

[3] Department of Defense (DoD). DoD Architecture Framework Version 1.0: Volume I:
Definitions and Guidelines (2004)

[4] Golfarelli, M., Rizzi, S., Cella, I.: Beyond data warehousing: what’s next in business
intelligence? In: Proceedings of the 7th ACM International Workshop on Data
Warehousing and OLAP. ACM, New York (2004)

[5] IBM Tivoli Monitoring,
http://www.ibm.com/software/tivoli/products/monitor/ (last access
March 23, 2011)

[6] Nagios, http://www.nagios.org/ (last access March 23, 2011)
[7] Oracle Business Activity Monitoring (Oracle BAM),

http://www.oracle.com/technetwork/middleware/bam/overview/in
dex.html (last access April 02, 2011)

[8] The Open Group. TOGAF ”Enterprise Edition” Version 8.1 (2005)
[9] White, S., Miers, D.: BPMN Modeling and Reference Guide. Future Strategies,

Lighthouse Point (2008)
[10] Zachman, J.: A framework for information systems architecture. IBM Systems

Journal 26, 276–292 (1987)
[11] Zenoss - Making the Cloud Work with Monitoring, Analytics & Insight,

http://www.zenoss.com/ (last access March 23, 2011)

Towards a Model-Based Approach for

Reconfigurable DRE Systems

Fatma Krichen1,2, Brahim Hamid1, Bechir Zalila2, and Mohamed Jmaiel2

1 IRIT, University of Toulouse, France
{krichen,hamid}@irit.fr

2 ReDCAD, ENIS, University of Sfax, Tunisia
{bechir.zalila,mohamed.jmaiel}@enis.rnu.tn

Abstract. This paper defines a model-based approach, which treats the
reconfiguration issues for Distributed Real time Embedded (DRE) sys-
tems at a high level of abstraction. We aim at specifying reconfigurable
DRE systems using a characterization approach. To treat the reconfigu-
ration requirements, we propose a meta-model and a UML profile as im-
plementation of this meta-model. This leads to a simple way to model re-
configurable systems thanks to UML tools, our RCA4RTES meta-model
and profile, and the MARTE profile and library.

1 Introduction

Embedded systems should respect the variation of execution environment and
response to the evolution of user requirements during their execution. Most DRE
systems are not fully autonomous and require human intervention to respond to
events and to be reconfigured. However, human intervention are error prone and
require more time and much efforts. It is sometimes impossible to stop a real-life
time critical system for reconfiguration. In another side, the hardware resources
of an embedded system are generally limited and their use has to be optimized.
To develop a rich embedded system with several functionalities and low cost
hardware resources, this system should execute, at a given instant, only the
required software components. The hardware resources should be allocated only
when required. It is very tedious and complex to develop such a system without
providing a high-level of abstraction. Due to their complexity, DRE systems are
usually more difficult to design than other types of applications, and in particular
for reconfigurable ones. New modeling concepts are required to specify dynamic
reconfigurations of these systems.

Our research work aims at proposing a model-based approach that allows to
describe reconfigurable DRE systems at a high level of abstraction. The high level
description can be used after some refinements to build the real system. It should
allow the description of reconfigurable DRE systems with an undefined number
of configurations. The dynamic reconfiguration allows modifying a system during
its execution using architectural or behavioral reconfigurations.

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 295–302, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

296 F. Krichen et al.

The remainder of this paper is organized as follows. In Section 2, we briefly
review some related technologies that address reconfigurability in embedded sys-
tems. In Section 3, we present in details our proposition to specify the dynamic
reconfiguration in the context of DRE systems. As a proof of concept we present,
in Section 4, a case study that has dynamic reconfiguration requirements: a GPS.
Finally, Section 5 concludes this paper and presents future work.

2 Related Work

Several work have been carried out to specify embedded systems and particularly
reconfigurable ones. A detailed state of the art has been presented in [1]. In the
following, we only detail the two standards AADL and MARTE.

AADL (Architecture Analysis & Design Language) [2] is an architecture de-
scription language, which allows the specification of DRE systems as a compo-
nent assembly. It allows to describe both the software and the hardware parts
of a system. AADL allows also to specify reconfigurable systems using state
machines describing modes and mode transitions. A mode presents a particular
state (configuration) while a transition presents an event, which allows system
reconfiguration. Compared to our approach, the modes in AADL are statically
predefined. Thus, all possible system reconfigurations must be integrated in the
model. This reduces considerably the modeling possibilities. AADL specifies em-
bedded systems at a low level (thread, processor, etc), so that the modeling of
reconfigurations is related to a specific application and platform.

MARTE (Modeling and Analysis of Real-Time Embedded systems) [3] is a
UML profile for modeling and analysis of real time embedded systems inspired
from the SPT profile [4]. It allows the separation in the specification of both
the hardware and the software parts of platform resources, and the modeling of
non-functional properties. It presents a set of packages which allows to specify
a system at several levels of abstraction. Moreover, MARTE allows to specify
the behavioral reconfigurations of real time embedded systems using state ma-
chines composed by a set of modes and transitions between them. Contrary to
our approach, MARTE does not support distributed systems. It allows to spec-
ify only the behavioral reconfigurations of system with a predefined number of
configurations.

3 The RCA4RTES Model Based Approach

We propose a model-based approach, called RCA4RTES, to specify reconfig-
urable DRE systems. We introduce the concept of MetaMode, which captures
and characterizes a set of modes instead of defining each of them. A reconfig-
urable DRE system is specified with a non-predefined number of configurations.
The MetaMode is described by structured component types, connectors as well
as non-functional and structural constraints. The modes belonging to a Meta-
Mode, are specified by the set of instances of structured component types and
connectors defined by this MetaMode, which satisfy its constraints.

Towards a Model-Based Approach for Dynamic Reconfiguration 297

Fig. 1. MetaMode modeling

Our approach defines policy based reconfigurations. We specify dynamic re-
configurations using state machines, which define a set of MetaModes (states)
and transitions between them. A MetaMode transition presents a set of reconfig-
urations between modes belonging to these MetaModes (as shown in Figure 1).
When an event (presented as a MetaMode transition) is triggered, reconfigu-
rations (i.e. presented as mode transition) are applied on the current mode to
one of the modes belonging to the target MetaMode. Reconfiguration policies
allow to automatically select the target mode. As examples of policies, we cite
the selection of modes with low resource consumption, the selection of modes
requiring limited reconfiguration actions, etc.

The switch from the source mode to the target mode is generated based on
the corresponding MetaMode transition and the selected reconfiguration poli-
cies. It is made by a set of concrete reconfigurations such as adding and removing
components and connectors and modifying the components properties. Figure 1
explains the previous concepts with a toy example. The designer specifies the
dynamic reconfigurations of his DRE system using a state machine, which con-
tains two MetaModes : MetaMode1 and MetaMode2. A transition t1 presents a
reconfiguration between these two MetaModes. The mode transition t2 is one of
the possible transitions deduced from t1 thanks to reconfiguration policies. The
current mode Mode12 is automatically replaced by Mode25.

Each MetaMode must be allocated on the hardware instance. As the hardware
architecture is unchanged, the allocation is defined from software architecture
models (MetaModes) to execution supports. The designer uses our approach to
perform the following three-step process:

Step 1: Software part specification: the designer starts specifying the dy-
namic reconfiguration of his DRE system using a state machine, which is
composed of a set of MetaModes and transitions between them. He specifies,
for each defined MetaMode, its structural component types and connectors
as well as its non-functional and structural constraints,

Step 2: Hardware part specification: the designer specifies the hardware
architecture in terms of hardware components such as processor,

Step 3: Software part allocation on the hardware part: the designer al-
locates the specified MetaModes (defined in step 1) on the hardware archi-
tecture (defined in step 2). Some allocation constraints should be defined in
order to specify the allocation policies defined the mapping from software
models to hardware instances.

298 F. Krichen et al.

To describe software specifications of reconfigurable DRE systems, we define
the RCA4RTES meta-model (section 3.1) and the RCA4RTES UML profile as
an implementation of this meta-model (section 3.2).

3.1 The RCA4RTES Meta Model

To treat reconfiguration issues of DRE systems, we define the RCA4RTES meta-
model. This meta-model is composed of four packages:

– SWConstraintRTES: specifies the allocation constraints as well as the
structural and non-functional constraints assigned to MetaModes,

– SWConfRTES: describes configurations by specifying the system Meta-
Modes. It imports the SWConstraintRTES to add constraints,

– SWEventRTES: specifies the events, which launch reconfigurations,
– SWReconfRTES: specifies the dynamic reconfigurations between Meta-

Modes. It imports both SWConfRTES and SWEventRTES to define
respectively MetaModes and events.

SWConfRTES package shown in Figure 2 introduces the meta-class Meta-
Mode, which allows to present multi-state applications. A MetaMode is described
by a set of structured components, connectors, as well as structural and non-
functional constraints. We define the meta-class StructuredComponent composed
of a set of interaction ports. The structured components can be periodic, sporadic
or aperiodic threads. It can be also a composition of structured components. A
connector which is presented by the meta-class Connector links two or more
structured components or interaction ports. The constraints are defined in the
SWConstraintRTES package. Each MetaMode has several instances (modes).
For each mode, a configuration relates the mode to the deployment plan. A de-
ployment plan describes a configuration by a set of structured components, the
connections between them, their configuration, and their allocation to physical
nodes. We introduce the meta-class Allocation to specify the allocation of Meta-
Modes to execution supports, which will be specified using MARTE profile. This
allocation implies non-functional and allocation constraints.

Our meta-model presents three kinds of constraints (figure 2), which are
described in the SWConstraintRTES package:

– Structural constraints are related to the structure of architectures,
– Non-functional constraints specify conditions on the non-functional proper-

ties associated with MetaMode elements (i.e., components, connectors),
– Allocation constraints specify the policies used for the allocation of each

MetaMode to a fixed hardware architecture (i.e., execution supports).

The MetaModeChangeEventKind enumeration in the SWEventRTES package
presents two kinds of events that can be launched a MetaMode transition: an
application event and an infrastructure event. An application event presents a
configuration change in accordance with user requirements while an infrastruc-
ture event presents a variation of situation in the infrastructure.

Towards a Model-Based Approach for Dynamic Reconfiguration 299

Fig. 2. SWConfRTES package Fig. 3. SWReconfRTES package

The SWReconfRTES package presented in Figure 3 allows to describe the
dynamic reconfigurations of DRE systems. The meta-class SoftwareSystem is
composed of a set of MetaModes and MetaMode transitions. A transition allows
switching the system from a MetaMode to another when an event is triggered.
For each transition, an activity of reconfiguration is associated. It represents an
algorithm for switching from the current configuration (Mode) to the target one.
A MetaMode transition presents an abstraction of a set of mode transitions.

3.2 The RCA4RTES Profile

To handle reconfiguration requirements of DRE systems, we derive a profile from
the RCA4RTES meta-model. This profile imports the NFP and the VSL profiles
of MARTE profile [3] and the Basic NFP types of MARTE library [3]. The full
profile description is given in Figure 4.

As we are interested in real time embedded systems, the structured compo-
nents are considered as threads or a set of threads. In our profile, we define the
following properties for defining and characterizing these threads:

– Nature defines the nature: periodic, sporadic or aperiodic thread,
– Period defines the period of a periodic thread or the minimal time between

two activations of a sporadic thread,
– Deadline defines the deadline for periodic and sporadic threads,
– StartTime defines the startup time of an aperiodic thread,
– EndTime defines the end time of an aperiodic thread,
– MemorySize defines the storage size required by component for execution,
– WCET1 defines the worst case execution time on a processor with 1 GHz

of frequency. It presents the execution time of instructions on processor. It
is defined by the ratio of the instruction number on the processor frequency.
WCET1 value varies according to the processor frequency,

300 F. Krichen et al.

Fig. 4. RCA4RTES profile description

– WCET2 presents a constant time such as a waiting time. WCET2 value is
fixed and the same for any processor frequency.

The stereotype Connector, which extends the meta-class Connector of UML
is characterized by the property bandwidth. Figure 4 presents the properties
assigned to both StructuredComponent and Connector stereotypes as tagged
values and their types, which are imported from MARTE library. These proper-
ties are given in our profile in order to enable the verification of non-functional
properties such as CPU usage, memory usage, etc.

The StructuralConstraint stereotype extends the meta-class Constraint of
UML in order to specify architectural constraint using OCL (Object Constraint
Language). Both NonFunctionalConstraint and AllocationConstraint stereotypes
inherit from the stereotype NfpConstraint of NFP package of MARTE profile.
This inheritance allows the designer to use VSL (Value Specification Language),
which is an extension of OCL and allows to specify non functional properties
and constraints as well as the complex expressions of time. To ensure the allo-
cation of MetaModes to execution supports, we define the stereotype Allocate
which extends the meta-class Abstraction. This stereotype is associated with
non-functional and allocation constraints.

A reconfigurable DRE system is described by a state machine. For this rea-
son, we introduce the stereotype SoftwareSystem which extends the meta-class
StateMachine of UML. This state machine is described by a set of MetaModes
and transitions between them. These transitions are activated by events. For
that, we define both MetaMode and MetaModeTransition stereotypes, which
extend respectively the meta-classes State and Transition of UML. The Meta-
ModeChangeEvent stereotype extends both the meta-class SignalEvent and the
meta-class ChangeEvent. An enumeration (MetaModeChangeEventKind)
presents the two kinds of events is defined.

Towards a Model-Based Approach for Dynamic Reconfiguration 301

Fig. 5. The state machine of GPS case study

4 Case Study

In this section, we illustrate our proposed approach by a use case that has
dynamic reconfiguration requirements: a GPS (Global Positioning System) [5].
GPS helps the user to determine the road to be followed from his current
place to some specified destinations using information provided by an encrypted
signal of satellite. This signal contains various information useful for local-
ization and synchronization. The control base receives and sends information
to satellites in order to synchronize their clocks. For simplicity sake, many
functions of this case study have been omitted. We only detail the architec-
ture of the terminal. Both satellite and control base are represented by basic
components.

Following our approach, in the first step, we begin by defining a state machine
specifying the dynamic reconfigurations. We use UML state machine diagram
(Figure 5). We define three MetaModes of GPS: (1) initialize MetaMode, (2)
insecure MetaMode, which consists of a traditional (or public) use of a GPS
and (3) secure MetaMode, which represents a restricted use of a GPS with some
safety requirements. The transition from one MetaMode to another is ensured
by event triggering. For example, the switch from insecure to secure occurs
when the monitor commands to drive in secure state. Then, we use the UML
component diagram to describe each MetaMode, including structured compo-
nents types, connectors, as well as non-functional and structural constraints.
The top part of Figure 6 shows the insecure MetaMode of GPS. This Meta-
Mode has seven structured component types (such as, GPS satellite, Receiver,
etc) connected by a set of connectors. This MetaMode has a set of structural
constraints defined by OCL language. We also specify the properties of each
structured component and connector.

In the second step, we specify the hardware architecture of GPS (i.e. GPS
terminal, GPS satellite and GPS control base nodes) in terms of hardware
components (such as processor, memory, etc) using MARTE profile.

In the third step, we specify the allocation of metaModes to execution sup-
ports using UML component diagram. The allocation of insecure MetaMode to
GPS terminal hardware and GPS satellite hardware is presented in Figure 6. The
allocation constraints describe the policies of allocation of models to hardware in-
stances. For example, the allocation of structured component Encoder instances
is devised between the two processors cpu1 and cpu2 of GPS terminal.

302 F. Krichen et al.

Fig. 6. Allocation of Insecure MetaMode to GPS terminal hardware and GPS satellite
hardware

5 Conclusion and Future Work

In this paper, we presented a new model-based approach RCA4RTES to spec-
ify the dynamic reconfigurations of DRE systems at high level of abstraction.
The dynamic reconfigurations are described by state machines composed of a set
of MetaModes and transitions between them. We introduced the new concept
MetaMode, which captures and characterizes configurations instead of defining
each of them. Each MetaMode specifies a non-predefined number of configura-
tions. To treat the reconfiguration issues, we introduced a new meta-model and
an implementation as UML profile. As future work, we plan to investigate the
verification of non-functional properties like CPU and memory usage.

References

1. Krichen, F.: Position paper: Advances in reconfigurable distributed real time em-
bedded systems. In: International Workshop on Distributed Architecture Modeling
for Novel Component Based Embedded Systems. IEEE, Los Alamitos (2010)

2. SAE: AADL (2009), http://www.sae.org/technical/standards/AS5506A
3. OMG: MARTE Profile (2009), http://www.omg.org/spec/MARTE/1.0/
4. OMG: SPT Profile (2005), http://www.omg.org/spec/SPTP/
5. Hamid, B., Krichen, F.: Model-based engineering for dynamic reconfiguration in

DRTES. In: Workshop on Model-Driven Software Engineering. ACM, New York
(2010)

http://www.sae.org/technical/standards/AS5506A
http://www.omg.org/spec/MARTE/1.0/
http://www.omg.org/spec/SPTP/

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 303–318, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Enhanced Architectural Knowledge Metamodel
Linking Architectural Design Decisions to other
Artifacts in the Software Engineering Lifecycle

Rafael Capilla1, Olaf Zimmermann2, Uwe Zdun3,
Paris Avgeriou4, and Jochen M. Küster2

1 Universidad Rey Juan Carlos, Madrid, Spain
rafael.capilla@urjc.es

 2 IBM Research, Zurich, Switzerland
olz,jku@zurich.ibm.com

3 Vienna University of technology, Vienna, Austria
uwe.zdun@univie.ac.at

4 University of Groningen, Groningen, The Netherlands
paris@cs.rug.nl

Abstract. Software architects create and consume many interrelated artifacts
during the architecting process. These artifacts may represent functional and
nonfunctional requirements, architectural patterns, infrastructure topology units,
code, and deployment descriptors as well as architecturally significant design
decisions. Design decisions have to be linked to chunks of architecture
description in order to achieve a fine-grained control when a design is modified.
Moreover, it is imperative to identify quickly the key decisions affected by a
runtime change that are critical for a system’s mission. This paper extends
previous work on architectural knowledge with a metamodel for architectural
decision capturing and sharing to: (i) create and maintain fine-grained
dependency links between the entities during decision identification, making,
and enforcement, (ii) keep track of the evolution of the decisions, and (iii)
support runtime decisions.

Keywords: architectural design decisions, architectural knowledge, metamodel,
runtime decisions, traceability, evolution.

1 Introduction

Existing software architecture design processes [1] lack adequate mechanisms to
explain the line of reasoning that architects follow in order to make design decisions.
Reasoning about the architectural design is considered a tacit process that exists only
in the architect’s mind; the decisions that lead to a software architecture are often
overlooked during architecture design and thus not systematically documented. In
recent years, the software architecture community has established design decisions as
first-class entities that should be captured alongside with other design elements.
Therefore, the creation of software architectures is now also seen as the result of a set

304 R. Capilla et al.

of design decisions rather than just as an assembly of components and connectors [2].
Making decisions explicit preserves architectural knowledge when staff is exchanged,
e.g., when subject matter experts join the development team only temporarily or when
transitioning from development to maintenance. As mentioned in [3], long-term
benefits such as reduced maintenance effort should motivate users to capture the
design rationale explicitly in the form of architectural decisions. This particularly
holds true in successive iterations of the system as it evolves.
This paper extends previous work on architectural knowledge with a metamodel for
architectural decisions to: (i) create and maintain fine-grained dependency links
between the entities during decision identification, making, and enforcement, (ii) keep
track of the evolution of the decisions, and (iii) support runtime decisions. Section 2
describes the background and the motivation of this research. In Section 3 we present
a metamodel supporting traceability to keep track of the decisions made and their
relations to design elements and artifacts. Section 4 then outlines the implementation
of the metamodel in several prototype tools. Section 5 discusses a case study in the
Service-Oriented Architecture (SOA) domain to demonstrate how the extensions of
the metamodel are of practical use for SOA design. Section 6 describes the related
work and section 7 summarizes the conclusions and future work.

2 Motivation and Problem Identification

A variety of research prototype tools have been developed to support design decisions
in software architecture. From our experience developing and using various tools for
architectural decision modeling, e.g., the Architectural Decision Knowledge Wiki [4],
Architecture Design Decision Support System [5], and The Knowledge Architect [6],
we observed three major shortcomings related to the creation and maintenance of the
traceability links between the architectural knowledge and other artifacts:

1. The coarse link granularity in existing metamodels makes models easy to
populate, but does not support a fine-grained tracing and tracking of
decisions in relation to atomic design elements such as attributes in a class
model or tasks in a business process model. Support for fine-grained trace
links in current architectural decision modeling tools is weak or inexistent as
some of the tools import UML design models externally and decisions can be
only linked to coarse-grained artifacts.

2. Existing metamodels do not put special attention on history and evolution of
decisions. Only a few of them treat evolution of decisions and architecture
partially. One reason for this limitation is that most commercial and open
source UML modeling tools do not offer explicit support for architecture
evolution (e.g., Jude Community, Magicdraw).

3. The decision making process suggested by existing metamodels assumes that
all decisions can be made at design time; deferring decisions to runtime is
not supported. At present, the existing architecture decision modeling
prototype tools do not offer support for runtime decisions that can be traced
back to the architecture or to requirements when a piece of code or a system
module change.

 An Enhanced Architectural Knowledge Metamodel Linking Architectural Design 305

The first problem area addressed in this paper is link granularity. Links connecting
key design decisions to architectural artifacts should include relationships to smaller
parts of the design. Such an approach helps to achieve the precision required to
estimate the impact of changes accurately. Small but important decisions should also
be captured and linked properly. For instance, a decision to introduce a new UML
package or class seemingly constitutes a more coarse-grained decision than the
decision to add a new attribute to an existing class; however, the attribute may express
a key architectural concern, e.g., it might flag an architecture component to be subject
to financial and general IT controls audits or it might demarcate a system transaction
boundary in a service composition. In many cases, fine-grained decisions are derived
from coarse-grained ones made before; however, the lack of accuracy of existing
traceability models do not offer a way to track the impact on the design or code. Thus,
it is required to introduce trace links with narrower and more precise scope to achieve
more precision in the traceability of architectural decisions during decision
identification, making, and enforcement.

The second problem pertains to the maintenance of a system, as the design
decisions made in the past might become obsolete, and the history and evolution of
decisions should be recorded in the same way versioning repositories store the history
and evolution of source code. This is useful for a number of reasons. In certain cases
during system evolution, the architects have to revisit past decisions and revert to
them if a new decision appears to be wrong. In other cases, architects may need to roll
back the design, and start a new decision path from that point. Finally new
stakeholders that become involved in a project can be educated much more efficiently
by studying the evolution of decisions over time and the rationale that lead to the
existing set of decisions and the present design.

As a third problem, we observed that today the dynamicity of certain systems may
imply that certain decisions affect architectures that have already been deployed but
have to be modified during runtime. For instance, a composite service which replaces
an atomic service with another one due to new quality-of-service conditions during
execution requires deferring decisions to runtime. Such deferred decisions have to be
tracked back to the architecture and requirements so that conformance to them can be
ensured. Supporting runtime decisions becomes increasingly relevant in modern
operating environments and deployment infrastructures such as virtualized data
centers: each instantiation of a virtual software image may decide for a slightly
different set of quality properties. Examples include the heap and disk size of virtual
UNIX machines (infrastructure-as-a-service scenario), Java and relational data
source settings of Web application servers (platform-as-a-service), and login and
encryption policies of hosted Web conferences (software-as-a-service). These
decisions are based on user preferences and current resource consumption (system
load); these two types of decision drivers only become known at runtime.
Consequently, it makes sense to defer the detailed architectural decisions about these
infrastructure settings to runtime (while at design time certain architectural templates
that constrain the runtime configuration options can be predefined).

In our previous work [4, 7] we introduced a conceptual framework for decision
modeling with reuse to extend recent research on design decisions. Our work focused
on the following main contributions:

306 R. Capilla et al.

1. A decision-making process which comprises decision identification to
delimit the scope, decision making to choose a feasible design alternative for
each design issue, and decision enforcement to share the results of the decision
making step with relevant stakeholders.

2. A decision-capturing and sharing metamodel supporting the decision
making process. This metamodel is specified as a Unified Modeling Language
(UML) class diagram and a formal definition based on elementary set and
graph theory [4]. The metamodel, illustrated in Figure 1, relies on three main
core domain entities: ADIssue, ADAlternative, and ADOutcome (AD stands for
Architectural Decision). An ADIssue captures an architectural problem that
requires a design solution whereas ADAlternative instances capture the pros
and the cons of the design choices an architect has (i.e., the possible solutions
available and the criteria for choosing or not choosing such option). Finally,
ADOutcome instances capture project-specific knowledge including the
justification and the consequences of decisions actually made. This metamodel
is implemented in the Architectural Decision Knowledge Wiki/Architectural
Decision Knowledge Web Tool, which is a collaboration system and decision
modeling tool [4]. Other existing tools are based on similar metamodels [5],
[6].

Fig. 1. Metamodel for architectural design decisions implemented in the Architectural Decision
Knowledge Wiki tool

With regards to the problems of link granularity, history and evolution of decisions
and deferring decisions, the existing metamodel does not offer support. We will later
explain how it can be extended to support these concepts. We worked with more than
one hundred practicing architects, who applied and appreciated the metamodel as well

 An Enhanced Architectural Knowledge Metamodel Linking Architectural Design 307

as the SOA guidance model instantiated from it [4], [7]. As part of our validation
activities, we conducted a user survey. Among other things, users pointed out:

1. Decisions have to be visited multiple times and sometimes revised as the
design evolves; any waterfall process or big design upfront is not adequate for
most real-world projects. Decisions are hardly made in isolation.

2. The lifetime of decisions transcends their identification, making, and
enforcement; they have to be evaluated once a system is implemented, at least
in prototypical form. Only then it becomes evident whether made decisions
have led to a design and implementation that allows the system to meet the
quality attributes that have been stated for it.

3. There is a desire to model links from decisions to other model elements and
artifacts represented more explicitly (e.g., types of requirements appear as
decision driver text in the metamodel in Figure 1, but are not first class
metamodel entities that can be linked to). The scope attribute of an issue (in
the metamodel in Figure 1) can identify the type of design model element an
issue pertains to, but at present this textual information does not link to any
artifacts used in the design process.

The metamodel extensions specified in this paper are motivated in this user feedback.
We base our proposed metamodel extensions on the metamodel that underlies in
Architectural Decision Knowledge Wiki/Architectural Decision Knowledge Web
Tool because this tool is populated with a SOA guidance model comprising more than
500 issues and 2000 alternatives recurring in SOA design; architectural patterns
described in the literature are among these alternatives (only a subset of these issues
and alternative descriptions have been published so far). Hence, we count on a
significant amount of knowledge to describe different types of design issues from a
realistic point of view. However, our metamodel extensions are designed in such a
way that they can be implemented in other tools as well (assuming that these tools
support extensibility of their respective metamodels). To support this claim, we
outline how we implemented the new concepts in an extensible commercial
requirements engineering product later in this paper

3 Enhanced Trace Links and other Metamodel Extensions

To overcome the three problems mentioned before, we extended the conceptual
metamodel of Figure 1. Our main rationale for adding new elements is to support
explicit trace links to small architectural artifacts that help to check the integrity of the
decision network, to evaluate the impact of changes, to keep track of the history and
evolution of changes, and to record the root causes of changes. This new metamodel
is shown in Figure 2. In the remainder of this section we describe the new classes and
new elements highlighting them in italicized text.

Links to Design Artifacts: Two new classes, ADDesignElement and ADDesignArtifact,
specify the parts of the architecture that result from one or more design decisions
represented by outcome instances. ADDesignElement instances represent elements of
modeling languages. For example, if we map to Unified Modeling Language (UML), it
refers to a UMLNamedElement (i.e., any UML element that can be named). This

308 R. Capilla et al.

includes coarse grained elements such as components and connectors, but also more fine
grained elements such as class attributes. ADDesignArtifact aggregates and assembles
such elements into project deliverables such as a platform-independent, technology-
neutral functional component model. ADDesignElement instances are defined to have an
ADDesignElementType, which also becomes the type of the scope attribute of the
ADIssue class. In the architectural decisions viewpoint, the relationships between two
newly introduced subclasses of ADOutcome, ADDecidedOutcome and
ADDeferredOutcome (the existing metamodel introduced the ADOutcome class to record
actual decisions made to solve a problem including its rationale), and ADDesignElement
(with subclass ADRuntimeElement, introduced below) allows us to define trace links to
individual parts of an architecture. ADDecidedOutcome and ADDeferredOutcome
indicate that enforcing a decision at design time differs from enforcing a decision at
runtime (with respect to the artifacts in which the decision materializes; e.g., UML class
or conceptual application server node at design time vs. Java class or XML deployment
descriptor at runtime). Such fine-grained linkage down to the level of individual
architectural elements (e.g., UML components and connectors, physical topology units
and hosting links, attributes of UML components or Java classes or XML elements)
increases the precision and expressivity of the decision models. In summary, we have
now introduced external links from decisions to structural and behavioral models, which
were not supported previously.

Fig. 2. UML metamodel for capturing design decisions with focus on maintenance, evolution,
and runtime concerns

In the decision making process, several alternatives (ADAlternative) can be
captured, considered, and evaluated before a decision is made. An external link, from
requirements to decisions, can be established via the new class ADDriverType, which
gathers the origins and influencers of decisions, such as types of functional and non-
functional requirements. Because an issue is a reusable knowledge entity, the

 An Enhanced Architectural Knowledge Metamodel Linking Architectural Design 309

ADDriverType class supports only types of requirements (e.g., quality attributes such
as performance and modifiability), but not real instances of such requirements: the
additional class ADRequirement serves this purpose. ADRequirement instances may
represent analysis artifacts such as business process models, use cases, or user stories
as well as non-functional requirements such as software quality attributes (e.g., sub-
second response time performance, modifiability via multi-platform support, etc.).
ADRequirementsArtifact instances compile a number of individual requirements.
Each ADRequirement instance is classified by its kind, which is expressed by the
ADRequirementType class. As a result of the improvement, we removed the
decisionDrivers attribute initially defined in the ADIssue class (e.g., a problem that
has to be solved). Thus, the new metamodel supports now full traceability from
requirements to decisions and other design artifacts.

Decision History and Evolution: The evolution of decisions is described by means
of the ADOutcomeEdition class, which establishes a chain of decisions that change
over time. For instance, a corporate system may have to replace its middleware after
several years of successful production use because new enterprise-level requirements
demand a technological change in the organization. Hence, this decision made in the
past for selecting the right middleware may have became obsolete and may have to be
replaced by a new one. The ADOutcomeHistory class keeps track of the history of
changes to a decision made years or months ago (i.e., collections of related
ADOutcomeEdition instances, each of which referring to a single ADOutcome
instance).

Support for Runtime Decisions: Some systems may change their status, operation
mode (e.g., a system that updates its software version changes its operation mode
from normal operation to maintenance mode until the reconfiguration process finishes
and the system returns to the normal mode), or configuration during runtime due to
external or internal conditions. Hence, the decisions that led to, for instance, a given
product architecture might have to be modified, and in some cases lead to a different
architecture. In such cases, certain decisions have to be replaced temporarily by new
ones or they can also become obsolete for a given time period. Therefore, we
introduce the ADRuntimeElement class (atomic) and the ADRuntimeArtifact class
(composite) to reflect such situations and represent the code pieces that enforce the
decisions represented by instances of the ADDeferredOutcome class. As decisions
that change during runtime cause the architecture to be modified according to the
depth of the change, adding support for runtime decisions improves traceability
between artifacts; runtime artifacts can serve as link targets. These finer grained
traceability links can determine the parts of architectures that have to be modified
when changes happen. To our knowledge, this feature has not been implemented
before in other tools and models capturing design rationale. Hence, we extend and
enhance previous works for systems that require more surveillance or adaptability due
to, for instance, new context conditions. Examples of issues that cannot always fully
be resolved at design time are:

• Specifically to Service-Oriented Architecture (SOA), capturing runtime decisions
and linking these to code assets is required. For example, our metamodel can
describe the decision in a composite Web Service (a type of design element) to

310 R. Capilla et al.

dynamically modify the Business Process Execution Language (BPEL) workflow

that realizes the composite Web service, e.g., to engage a new subprocess to
reflect a certain business rule or other runtime condition. Such late decision is
often based on new quality-of-service conditions that modify the Service Level
Agreement (SLA) for a given period (e.g., regarding guaranteed response times).
Our metamodel uses the classes ADRuntimeArtifact and ADDeferredOutcome to
express such situations.

• The decision how to route a service invocation request that represents an atomic
activity in an executable business process model (i.e., dynamic service
composition). Note that this decision can only be deferred to runtime if such
flexibility does not violate regulatory constraints such data privacy and system
and process assurance compliance (such concerns can be modeled as
ADDriverType and linked to issues according to the metamodel presented in
Figure 2).

• The decisions enable to customize certain software features when reusing a
particular application package, middleware component, or product family (e.g.,
using variation points in software product lines [8], [9]). For instance, a database
management system might support distributed two-phase commit (2PC) protocol
at an extra performance and license cost; when the decision to use the system is
made, it might not be known yet whether the 2PC support is required. This
decision might even change over time, which can be expressed as a series of
chained ADOutcomeEdition instances.

• The decision to delegate some of the responsibilities to end users that are
performed by architects/developers in traditional software engineering
(situational application development via Web-centric container architectures
such as mashups). For instance, such design issues might deal with user interface
patterns, data formats (e.g., MIME types), and information provider selections.

4 Implementation in Existing and Emerging Tools

This section outlines how the enhancements in the extended metamodel can be
supported by three existing architectural knowledge management and modeling tools:
ADDSS [5], The Knowledge Architect [6], and Architectural Decision Knowledge
Wiki/Web Tool [4]. These tools share several goals and usage scenarios, but differ in
their origins, use cases, and tool architecture. We discuss all three independently
developed tools to illustrate the generality of our approach by explaining how the
extended metamodel can be supported by them. In addition, we present an actual
implementation of the extended metamodel on top of a commercial requirements
engineering and management platform which supports metamodel extensions and
Web-based artifact linking.

4.1 Architecture Design Decision Support System (ADDSS)

In this tool [5], the model underlying the tool supports explicit traces to requirements
(ADDriverType) and architectures (ADDesignElement, ADDesignArtifact) as well as
between design decisions, but links between decisions and smaller parts of the

 An Enhanced Architectural Knowledge Metamodel Linking Architectural Design 311

architecture can not be specified in a fine grained fashion. To overcome this, Figure 2
specifies a class ADDesignElement and establishes links from the ADOutcome to
provide fine grained links to small design artifacts. Evolution in ADDSS is only
supported by several attributes; there is no way to define a chain of decisions history
as in the proposed metamodel of Figure 2 (using the ADOutcomeEdition and
ADOutcomeHistory classes). Finally, ADDSS does not support runtime decisions like
in our proposed solution. Hence, the ADRuntimeElement, ADRuntimeArtifact and
ADDeferrredOutcome classes should be incorporated into ADDSS’ metamodel to
enable tracking runtime decisions.

4.2 The Knowledge Architect (KA)

This tool suite [6], [10] is comprised of a number of specialized tools for capturing,
(re)using, translating, sharing, and managing software architectural knowledge. The
Knowledge Architect entails specialized support for integrating the various
architecting activities [11] and supporting collaboration between the stakeholders of
these activities. The different tools support different activities (e.g. analysis, design,
sharing) and therefore each tool has a specialized Architectural Knowledge (AK)
metamodel to deal with the different types of knowledge produced and consumed
during the architecting process. The different metamodels are integrated into the
central knowledge repository of the tool suite. Traceability can be achieved in two
ways: a) within each metamodel, traceability links are established between the AK
concepts (e.g., between “decisions”, “concerns”, “decisions topics” and “alternatives”
in the document knowledge client of the KA) b) across different metamodels
traceability links can be established within the knowledge repository (e.g. “decisions”
and “concerns” are common concepts of both the document knowledge client and the
analysis model knowledge client of the KA). The KA can be extended in two ways to
support the metamodel of Figure 2: a) all the tools have extensible metamodels (not
hard-coded but completely customizable), thus the new concepts and relations can be
added in a straightforward way; b) the central knowledge repository itself stores
knowledge in Resource Description Framework (RDF) format and can directly
accommodate the metamodel extensions of Figure 2. As an example the classes
ADDecideOutcome and ADDeferredOutcome can simply inherit from the class
Decision, while ADDriverType can inherit from the class Concern (both Decision and
Concern belong to the document knowledge client metamodel). The extensions for
history and evolution are not necessary to be implemented as the KA, as the tool suite
uses the versioning system of Sesame to track the evolution of each knowledge entity.

4.3 Architectural Decision Knowledge Wiki/Architectural Decision Knowledge
Web Tool

Architectural Decision Knowledge Wiki is a Web 2.0 collaboration tool supporting
the decision modeling capabilities and original UML metamodel first published in [7].
A version 1.0 was originally implemented in PHP and released in March 2009; in
October 2009, a Java reimplementation of the tool was released under the name
Architectural Decision Knowledge Web Tool [4]. The tool supports about 50 decision
modeling and making use cases. It assembles ADIssue and their ADAlternative on a

312 R. Capilla et al.

decision identification tab (these metamodel entity types are jointly referred to as
decisions required). ADOutcome instances are created and updated on a second
decision outcome tab (capturing decisions made), which exposes a simple decision
state management workflow to the user (with open/decided/approved/rejected states).
To support the extended metamodel introduced in the previous sections, the following
additional features and components are required:

1. The ADDriverType class is a result of refactoring the decision driver
attribute in ADIssue; hence, the new capability can be implemented by
refactoring the user interface components displaying the decision
identification tab as well as the underlying server-side business logic and
database schema. Having performed these refactorings, the fine-grained
traceability links can be added to the decision identification tab; advanced
user interface features such as pop-ups can be added.

2. The ADOutcomeHistory and ADOutcomeEdition classes can be realized by
implementing the edition pattern. The business logic and the database
schema of the existing implementation already do so; on top of that, an
additional decision evolution tab can be added to the user interface to display
the decision making history.

3. Deferring decisions to runtime can be supported by introducing a new state
“deferred” for outcome instances; this requires to update the user interface
components supporting the decision making tab, as well as the state machine
implemented in the business logic realizing ADOutcome instance creation
and lifecycle management.

4.4 Implementation in IBM Rational Requirements Composer

To investigate and demonstrate the technical feasibility, practicality, and usability of
these enhancements, we created a demonstrator in a requirements modeling and
management platform prior to implementing them in the actual tools (following the
well-established design principles such as user interface storyboarding and
prototyping).

For our proof-of-concept we used a recently released requirements engineering and
storyboarding tool, IBM Rational Requirements Composer (RRC). Version 2.0 of this
Jazz repository-based product became generally available on jazz.net in November
2009. The RRC metamodel by default supports artifacts such as business process
models, use case diagrams, storyboards, but also supplemental rich text documents
representing features and non-functional requirements. All artifacts as well as external
resources can be linked to each other via Web URLs. Via attribute groups, the default
metamodel can be extended.

We first created custom attribute groups to represent the original metamodel and then
added new attribute groups representing ADDriverType and ADDeferredOutcome.
ADOutcomeHistory does not require product configuration; it is supported by the server
component of the RRC product (via the snapshotting capabilities which stores model
versions in the Jazz repository). Next, we instantiated SOA model elements (instances)
via templates we created from sample rich text artifacts which use the newly defined
attribute groups. The sample model elements were populated from the existing SOA

 An Enhanced Architectural Knowledge Metamodel Linking Architectural Design 313

guidance model available in Architectural Decision Knowledge Web Tool (via copy-
paste). Finally, fine grained traceability links were added to demonstrate requirements to
decisions linkage.

The sample links from requirements to issues and back (introduced in the previous
section and shown in the extended UML diagram in Figure 2) demonstrate the
technical feasibility of our concepts; the links reside on the individual
requirement/issue/outcome instance level, not on document-to-document level. This
paves the way for requirements to decisions integration as suggested by our
metamodel extensions. Concerns expressed as ADDriverType become first class
citizens in the user interface (tagged as architecturally significant requirements) and
the architecture of the tool (unlike in the original implementations). In conclusion, this
implementation demonstrated that the extended metamodel is generic and expressive
enough to be supported in multiple tools.

5 Instantiation for SOA Enterprise Applications

We applied our extended metamodel to an industrial case study from the telecom-
munications industry. This industrial case study concerns the modernization of an
existing, business-to-business order management system (OM) in a major
telecommunications company employing a wholesaler-retailer business model [12]. In
this business process-centric scenario, a key business requirement (concern) was to
ensure enterprise resource integrity over multiple channel interactions and time. User
channels included the Internet (providing end user self services) and call centers. Two
of the order management processes consisted of up to 19 steps and could run for up to
24 hours. Market deregulation and increasing competition caused the concrete
problem of having to coordinate competing requests for the same physical resources
in the shared telephony network. This coordination was seen to improve customer
satisfaction (measured as number of successful order requests).

This business environment led to many architectural design challenges. Key
technical requirements in this order management context were multi-channel request
coordination and process instance and timeout management. A business transaction
started via the Internet-based self-service channel had to be able to continue via call
center (back office) interaction. Different VSP retailers reserved resources in a single
network owned by the wholesaler, so incomplete requests had to be undone after a
certain amount of time. The system context and resource integrity management
requirement suggested introducing a process layer as a governing architecture
element. This process layers serves one user channel per user type. These channels
reside in the presentation layer of the order management system. The required long-
running process instance tracking and timeout management could be implemented in
a macroflow engine [13] dedicated for this task (called). Short-running, transactional
flows could be handled by dedicated microflow engines [13].

All these concerns are addressed in the logical architecture of the production
solution which is outlined in Figure 3 and explained in detail in [12]. While such
UML class diagram can give an architectural overview, many detailed concerns
cannot be covered on this level of refinement. For instance, many technology- and
product-specific design issues and the rationale of the decision outcomes should be

314 R. Capilla et al.

explained in detail elsewhere. More specifically (in the context of this paper and the
proposed metamodel extensions), the architecture elements should be traced back to
the outlined requirements, the evolution of the system from a plain Java Web
application to a process-based SOA should be captured, and the necessity to defer
certain decisions to runtime should be captured.

Fig. 3. Functional components of the order management system

Let us map the model elements in Figure 3 back to the metamodel from Figure 2.
All UML classes representing functional components are instances of
ADDesignElement (irrespective of their stereotypes); the class diagram itself is an
instance of ADDesignArtifact. The ADDesignArtifactType of this class diagram
artifact is “functional component model”; the ADDesignElementType of the
ADDesignElement instances is “(functional) UML component” (we can view
component stereotypes such as “subsystem”, “control component”, and “process
component” as subtypes; however, this subtyping is not expressed by our metamodel).
Example of traceability links will be given in the next subsection and Figure 5. We
uses the extended metamodel of Figure 2 to illustrate how these design/modeling
problems in the Order Management (OM) case study can be modeled.

Early in the project, a decision was required to decide for the main architectural
concepts. In particular, a process-based SOA and the related architectural patterns
were chosen because the solution was supposed to be flexible and adaptable. One of
the important conceptual decisions in this context was to decide whether a service
composition layer should be introduced into the architecture (the outcome of this
decision led to the inclusion of the Process Layer component in Figure 5).

Figure 4 shows a (heavily simplified) instance of the metamodel for this decision,
working with a subset of the design elements from Figure 3. Both instances of the
core classes of the existing metamodel (ADIssue, ADAlternative, ADOutcome) and

 An Enhanced Architectural Knowledge Metamodel Linking Architectural Design 315

our metamodel extensions are illustrated (ADRequirement, ADDesignElement,
ADOutcomeHistory, etc.). A sample decision <<ADReqType>> Portability and a
concrete <<ADRequirement>> Runs on 2 Platforms (i.e., solution can on at least two
platforms) were identified for one required and made decision (<<ADIssue>>
Workflow Language with selected <<ADAlternative>> BPEL).

Fig. 4. Architectural decisions made in case study with links to design model context a.k.a.
exemplary application (instantiation) of the AD metamodel for the case study

At this stage, we couldn’t test the evolution of the decisions as we only produced
the first version of the architecture of the OM system using, but we captured the
evolution of the system from a plain Java Web application to a process-based SOA.

Furthermore, decisions that might change at runtime can be tracked using the
proposed metamodel extension (i.e.: ADRuntimeArtifacts, ADRuntimeElements) and
the class that enforces the decisions (ADDeferredOutcome). In the order management
SOA, the system transaction boundary and the logging settings might differ for
certain components in the process layer and for components in the service layer
shown in Figure 3. This metamodel extension is not illustrated in Figure 4.

6 Related Work

Several research prototype tools [11], [14] for capturing, using, and documenting
architectural design decisions have recently appeared; many of these use templates
and metamodels for capturing knowledge attributes and managing decision
dependencies [15], [16]. Tools such as PAKME, ADDSS, Archium, The Knowledge
Architect, and AREL offer traceability mechanisms between decisions and other
software artifacts at different levels. Some of these tools support the evolution of trace
links between decisions and forward and backward traces. The traceability supported

<<ADIssue>>
Architectural Style

AD Viewpoint

scope
(of ADIssue)

<<ADAlternative>>
SOA

<<ADOutcome>>
SOA for OM Sol.

<<ADIssue>>
Service Composition Layer

<<ADAlternative>>
Process-Based Integr.

<<ADOutcome>>
P-E SOA for OM Sol.

<<ADRequirement>>
Runs on 2 Platforms

<<ADReqType>>
Portability

<<ADIssue>>
Workflow Language

<<ADAlternative>>
BPEL

<<ADOutcome>>
BPEL for OM Sol.

Design/Development/
Operations Viewpoints

Requirements Viewpoint

<<ADDesElement>>
Process Layer

<<ADDesElemType>>
Functional Comp.

<<ADOutcHistory>>
SOA for OM Sol.

<<ADDesArtifact>>
Component Model

<<ADOutcEdition>>
SOA for OM Sol.

<<ADDeferredOutcome>>
LoggingPolicy

<<ADDecidedOutcome>>
ProcessLifetimePattern

Not shown in this figure:
<<ADReqArtifact>>
Quality Attributes

<<ADReqArtifact>>
Use Case Model

<<ADRuntimeElem>>
BPEL Process

SOA – Service Oriented
Architecture

OM – Order Management
BPEL – Business Process

Execution Language

<<ADRuntimeArtifact>>
BPEL File (XML)

316 R. Capilla et al.

by the tools can be used to estimate those artifacts that are impacted by the change in
a decision, as the majority of the mentioned tools lack fine grained links between
decisions and small architectural artifacts (e.g., a UML class or component instead of
an entire subsystem). In addition, the approach presented in [17] highlights the role of
traceability in software architecture evolution and describe a method to manage such
traceability for design decisions using a model-driven development approach.

Software product lines (SPL) need to model also the dependencies of feature
models (i.e.: in practice they constitute a decision model) for different phases of the
software life-cycle. Modeling dependencies and dealing with traceability problems in
SPL is discussed in [18], where a wide list of dependency types between features are
defined as constraints a software product must satisfy, while in [19] the authors
explain how metamodels from PAKME and ADDSS tools can be merged to support
product lines concepts and model dependency links between architectural design
decisions and the variability rules associated to a feature model. Other works refer to
Dynamic Software Product Lines (DSPLs) [20] to provide the necessary binding for
runtime variation points to adapt the software to changes in the environment. The
authors state that it is impossible to foresee al the variability a SPL requires, and use
dynamic architectures and support for runtime decisions to be able to support system
configuration and binding at runtime (for automatic decision-making). Designing and
managing runtime variation points in architecture is also described in [21], where
patterns are used to provide such facility in SPL and add the necessary flexibility for
domain-specific applications (e.g.. custom Web servers that cannot be stopped when
deploying or configuring components).

Lago et al. [22] discuss three different traceability issues during SPL derivation,
and they focus on those traceability links between feature models and structural
models (i.e.: architecture-level decisions). In [23], a Dependency Structure Matrix
(DSM) is used to represent and manage dependencies in complex software
architecture and to reveal underlying architectural patterns. Acceptable and
unacceptable dependencies are expressed using design rules to describe the
semantics of such dependencies.

All the aforementioned approaches lack explicit support for runtime decisions that
can be deferred and tracked back from code to the architecture and to the design
decision. Furthermore, in most cases they support coarse grained links between
decisions and other software artifacts. Evolution is only partially supported in two
existing tool prototypes. Hence, our approach improves these features and enriches
previous metamodels and tools with runtime decisions. Other approaches that
consider fine grained traceability paths between different artifacts do not consider the
inclusion of design decisions as we do.

Traceability between decisions and from decisions to artifacts is related to
traceability between requirements and model elements in general. This general
problem of establishing and maintaining traceability has been studied in the literature
and different approaches exist. Maeder et al. [24] present an approach for automating
traceability maintenance under changes by classifying changes and automating
updates of the traceability graph. Such an approach could in principle also be applied
to traceability management for architectural decisions. Cleland-Huang and Chang
[25] propose a traceability method that is based on the publish-subscribe architecture

 An Enhanced Architectural Knowledge Metamodel Linking Architectural Design 317

in order to keep traceability links up to date. It remains for future work to investigate
the best approach to maintain traceability links between architectural decisions and
requirements.

7 Conclusion and Future Work

Our approach revisits and enhances previous models and tools as we provide full
traceability between individual decisions and other software artifacts using fine
grained links, even if the decision networks becomes more complex to manage and to
maintain. We are aware that capturing fine grain trace links introduces additional
costs to maintain the links over time and this cost should not be higher than the
expected benefits, but the architect must decide when to define such links to smaller
parts of the architecture that must be traced (e.g., a critical software component in a
system composed by a few number of classes is replaced at runtime by a new
component with extended functionality and defined by a new UML for which a new
trace link must be create for its corresponding design decision). With such links we
achieve a better control of individual decisions and we are able to find out in detail
which parts of the architecture are affected by a change in the requirements or code.
Because certain software systems may vary their context conditions during runtime,
they require adequate models to support runtime decisions that can be deferred.
Hence, we extend previous works to track runtime decisions and make software
architects aware of changes that may affect the design. Other extensions would
include supporting the full context of decisions that evolve and store not only the
decisions but also the issues, drivers, and requirements that accomplish a particular
solution. Finally, other non-SOA domains like self-adaptive systems can benefit from
tracking runtime decisions as a way to monitor better those changes that happen
during system execution.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

2. Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B.C.,
Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidelberg
(2004)

3. Kruchten, P., Capilla, R., Dueñas, J.C.: The Decision’s View Role in Software
Architecture Practice. IEEE Software 26(2), 36–42 (2009)

4. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
Architectural Decision Models with Dependency Relations, Integrity Constraints, and
Production Rules. Journal of Systems and Software 82(8), 1249–1267 (2009)

5. Capilla, R., Nava, F., Pérez, S., Dueñas, J.C.: Web-based Tool for Managing Architectural
Design Decisions (SHARK’066). ACM SIGDOFT Software Engineering Notes 31(5)
(2006)

6. Jansen, A., de Vries, T., Avgeriou, P., van Veelen, M.: Sharing the Architectural
Knowledge of Quantitative Analysis. In: Proceedings of the Quality of Software-
Architectures (QoSA), pp. 220–234 (2008)

318 R. Capilla et al.

7. Zimmermann, O., Gschwind, T., Küster, J.M., Leymann, F., Schuster, N.: Reusable
Architectural Decision Models for Enterprise Application Development. In: Overhage, S.,
Ren, X.-M., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880, pp. 15–32.
Springer, Heidelberg (2008)

8. Bosch, J.: Design and use of Software Architecture: Adopting and Evolving a Product-
Line Approach. Addison-Wesley, Reading (2000)

9. Pohl, K., Böckle, G., Linden, F.v.d.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

10. Liang, P., Jansen, A., Avgeriou, P.: Collaborative Software Architecting through
Architectural Knowledge Sharing. In: Finkelstein, A., Grundy, J., van der Hoek, A.,
Mistrík, I., Whitehead, J. (eds.) Collaborative Software Engineering (CoSE), pp. 343–368.
Springer, Heidelberg (2010)

11. Liang, P., Avgeriou, P.: Tools and Technologies for Architecture Knowledge
Management. In: Software Architecture Knowledge Management: Theory and Practice,
pp. 91–111. Springer, Heidelberg (2009)

12. Zimmermann, O., Doubrovski, V., Grundler, J., Hogg, K.: Service-Oriented Architecture
and Business Process Choreography in an Order Management Scenario. In: ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2005). ACM Press, New York (2005)

13. Hentrich, C., Zdun, U.: Patterns for Process-Oriented Integration in Service-Oriented
Architectures. In: Proceedings of 11th European Conference on Pattern Languages of
Programs (EuroPLoP 2006), Irsee, Germany, pp. 1–45 (July 2006)

14. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Babar, M.A.: A Comparative Study of
Architecture Knowledge Management Tools. Journal of Systems and Software 83(3),
352–370 (2010)

15. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE
Software 22 (2005)

16. Kruchten, P., Lago, P., van Vliet, H.: Building Up and Reasoning About Architectural
Knowledge. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 43–58. Springer, Heidelberg (2006)

17. Navarro, E., Cuesta, C.E.: Automating the trace of architectural design decisions and
rationales using a MDD approach. In: Morrison, R., Balasubramaniam, D., Falkner, K.
(eds.) ECSA 2008. LNCS, vol. 5292, pp. 114–130. Springer, Heidelberg (2008)

18. Lee, K., Kang, K.C.: Feature dependency analysis for product line component design. In:
Dannenberg, R.B., Krueger, C. (eds.) ICOIN 2004 and ICSR 2004. LNCS, vol. 3107, pp.
69–85. Springer, Heidelberg (2004)

19. Capilla, R., Ali Babar, M.: On the role of architectural design decisions in software
product line engineering. In: Morrison, R., Balasubramaniam, D., Falkner, K. (eds.) ECSA
2008. LNCS, vol. 5292, pp. 241–255. Springer, Heidelberg (2008)

20. Hallsteeinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic Software Product Lines.
IEEE Computer 41(4), 93–95 (2008)

21. Goedicke, M., Köllmann, C., Zdun, U.: Designing Runtime Variation Points in Product
Line Architectures: three cases. Science of Computer Programming 53(3), 353–380 (2004)

22. Lago, P., Muccini, H., van Vliet, H.: A scoped approach to traceability management.
Journal of Systems and Software 82(1), 168–182 (2009)

23. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using Dependency Models to Manage
Complex Software Architecture. In: OOPSLA 2005, pp. 167–176 (2005)

24. Mäder, P., Gotel, O., Philippow, I.: Enabling Automated Traceability Maintenance
through the Upkeep of Traceability Relations. In: Paige, R.F., Hartman, A., Rensink, A.
(eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 174–189. Springer, Heidelberg (2009)

25. Cleland-Huang, J., Chang, C.: Event-Based Traceability for Managing Evolutionary
Change. IEEE Transactions on Software Engineering 29(9) (September 2003)

A Model for Specifying Rationale Using an
Architecture Description Language

Lakshitha de Silva1 and Dharini Balasubramaniam2

School of Computer Science, University of St Andrews, St Andrews, KY16 9SX, UK
1lakshitha.desilva@acm.org

2dharini@cs.st-andrews.ac.uk

Abstract. Besides structural and behavioural properties, rationale plays
a crucial role in defining the architecture of a software system. However,
unlike other architectural features, rationale often remains unspecified
and inaccessible to tools. Existing approaches for recording rationale are
not widely adopted. This paper proposes a simple model for capturing
rationales as part of an architecture specification and attaching them to
elements in the architecture. The bi-directional links between rationales
and elements enable forward and backward traceability. We describe a
textual architecture description language named Grasp that implements
this model, and illustrate its capabilities using an example.

1 Introduction

Software architecture [9,11] establishes a crucial foundation for the systematic
development and evolution of software. It provides a high level abstraction of
the structure and behaviour of a system in terms of its constituent elements and
their interactions. An architecture also reflects rationale, the reasoning behind
design decisions that guided its creation. Rationale is an intrinsic component
of software architecture [9], representing alternatives, trade-offs, assumptions,
constraints and others factors considered during its design.

A number of architecture description languages (ADLs) have been developed
over the years to formally specify architectures. Most ADLs are conceptually
based on the primitives of components, connectors, interfaces and configurations,
though wide variations exist in the treatment of these primitives [7]. However,
most current ADLs are unable to effectively describe rationale. While a num-
ber of techniques have been proposed to capture and represent rationale (e.g.
[13,15,10,6]), these have not been extended to ADLs.

The importance of explicitly recording architecture rationale has been widely
discussed [9,2,12]. The general consensus is that the tendency to modify soft-
ware without due consideration to rationale often causes architecture erosion.
Furthermore, the complex nature of rationale, which is usually a blend of design
trade-offs, technical limitations and other constraints, is not completely reflected
in the implementation. Therefore, the availability of an effective mechanism to
capture rationale from the outset of the design process is imperative to retaining
the engineering quality, performance and maintainability of a system.

This paper proposes an approach for specifying rationale as part of an ar-
chitecture model using the Grasp ADL. Grasp allows associating rationale de-
scriptors to elements in the architecture. Both formal expressions and natural

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 319–327, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

320 L. de Silva and D. Balasubramaniam

language can be used for specifying rationale. An expression in a rationale de-
scriptor may refer to external requirements, quality attributes or elements in the
architecture. We describe these concepts with the aid of an example. The paper
concludes by outlining the current status and planned future work.

Our work on rationale is part of a larger research agenda for controlling archi-
tecture erosion in software systems. We hypothesise that, by maintaining consis-
tency between an architectural specification and its implementation, it is possible
to minimise erosion. In order to verify this hypothesis, a simple but expressive
model of rationale together with an ADL that can support the specification and
evaluation of this model are required.

2 Related Work

Tyree and Akerman [15] use document templates to formally record design deci-
sions. However such techniques face the difficulty of linking documents to other
forms of architectural models, which in turn hampers the ability to trace ratio-
nale to elements in the architecture using tools. Practitioners may also find it
hard to keep documentation up to date with large evolving architectures.

The Archium model [6] describes software architectures as compositions of
design decisions, giving due prominence to rationale. However, the effort required
to model a conceptual design-decision-oriented architecture and then transform
this into a basis for implementation may inhibit industrial adoption.

The Architecture Rationale Element Linkage (AREL) model attempts to cap-
ture architecture rationale with traceability [13]. AREL promotes architecture
rationale to a first-class entity and establishes relationships between rationale
and elements in the architecture. These relationships form a causality chain,
providing the basis for backward and forward traceability. The rationale model
presented in this paper was largely influenced by AREL. Our work both simpli-
fies and extends the AREL model. It is simpler because alternative rationales are
excluded and no distinction is made between qualitative and quantitative ratio-
nale. We extend AREL by treating rationale as a statement of “reasons”, where
a reason can optionally be bound to a system requirement, a quality attribute
or an element within the architecture itself.

Zhu and Gorton [16] use UML profiles to model design decisions in an ar-
chitecture specification. This approach also models non-functional requirements
and associates them with architectural elements. Capturing rationale as well as
design decisions could extend its usefulness. The relationships between quality
attributes and rationales in our model were influenced by this work.

Another UML-based approach proposed by Carignano et al. [4] focuses on the
architectural design process and its environment rather than the design outcome.
While process and environmental factors may significantly influence architectural
design, we believe that rationale should be an inherent part of the design outcome
in order to be useful for architecture analysis.

Rationale management systems (e.g. SAURAT [3]) provide tool support for
recording, managing and associating rationale with various software artefacts.
Although these tools are useful for externally retaining rationale of evolving sys-
tems, our work makes rationale an intrinsic part of an architecture specification.

A Model for Specifying Rationale Using an ADL 321

3 Conceptual Model

The proposed rationale model consists of three primary entities. They are archi-
tecture element (AE), rationale and reason. An AE has zero or more associated
rationales justifying its purpose. A rationale is a conjunction of one or more
reasons. A reason is a logical expression that evaluates to a Boolean outcome.
If a reason in a rationale evaluates to false, then every dependent AE is con-
sidered to have failed its rationale. Any reason expressed in natural language
alone is treated as a logically true statement. Figure 1 formalises this model in
UML.

Reason Rationale

Architecture Element

{ unique }

0..n

1..n

1

0..n

0..n

1..n

Quality Attribute

Requirement 0..n

0..1

0..1

0..n

0..1+supports +hinders

0..1

0..n 0..n

+motivates

+because0..n

Fig. 1. Model for associating rationale with elements of an architecture

A rationale and an AE have a bi-directional association with each other. A
rationale motivates the existence or behaviour of one or more AEs. Conversely, an
AE can be attached to zero or more rationale entities. Since an AE is justified by
a rationale associated with it, the term because is used to brand this association.
It is noted that a rationale can cross-cut many AEs. Our model supports this
possibility as a single rationale can be associated with many AEs.

An AE X can also act as a reason for the rationale of another AE Y since
X can cause or require the existence of Y in the same architecture. However,
direct or indirect cyclic references are not permitted. Thus, relationships between
rationales and AEs form an acyclic graph similar to that of AREL. The {unique}
constraint applied to the AE entity ensures that each AE instance is unique and
therefore does not become a reason for its own rationale.

A rationale may extend another, effectively inheriting its reasons. However,
multiple-inheritance is not permitted in the interest of simplicity and clarity.

This model also enables associating quality attributes (QAs) as motivating
reasons for rationales. A QA is a constraint that should hold when a system im-
plements and delivers its services [14]. Typical drivers for QAs are non-functional
requirements. QAs that can be described quantitatively are specified as a col-
lection of properties in this model. Since design choices that support certain
QAs may negatively impact others, the association between reasons and QAs
are twofold. A reason may support one or more QAs. A reason may also hinder
one or more QAs while in the process of justifying some design decision.

322 L. de Silva and D. Balasubramaniam

Lastly, reasons and QAs may be attributed to requirements, which in this con-
text are references to an external requirement specification. We consider detailed
specification of requirements to be outwith the scope of our rationale model.

We note that, in contrast to the rationale model in ISO 402010 [5], our ap-
proach does not model architecture decisions. It instead treats an AE as a realised
design decision (i.e. a design outcome) justified by some rationale(s).

4 Modelling Rationale with Grasp

Grasp is a textual ADL capable of specifying rationales and associating them
with elements of an architecture. It implements the conceptual model presented
in Sect. 3. In order to demonstrate architecture specification in Grasp, we reuse
the case study of an electronic fund transfer system (EFT) used to illustrate the
AREL approach [13]. The result of applying Grasp to a portion of this example,
namely the asynchronous messaging subsystem, is shown in Listing 1.

The EFT system is designed to execute high-value online fund transfers be-
tween local banks and the central bank in China. A key requirement for the
messaging subsystem is performance and hence, the designers chose to use an
asynchronous messaging strategy to achieve this critical quality attribute. Sub-
sequent design decisions and outcomes were directly or indirectly influenced by
the decision to build an architecture that supports asynchronous messaging.

The AREL approach uses UML profiles to model rationale, AEs and their
associations. These UML elements in the AREL example were manually trans-
lated into their equivalent Grasp constructs. The next few subsections discuss
different aspects of a Grasp model with the help of this example.

4.1 Modelling Rationale

The Grasp specification of the messaging subsystem begins with explicit decla-
rations of QAs and references to external requirements. In the EFT example,
Rq AckProcessing points to an existing requirement which states that all mes-
sages should be acknowledged. The two QAs, CommPerformance and CommRe-
liability, define performance and reliability qualities that should be exhibited by
the messaging subsystem in terms of properties. Once declared, the two QAs
and the requirement become motivating reasons for describing rationale.

The Grasp example declares four rationales named AR10, AR13, AR14 and
AR15, each with its own set of reasons. Each rationale is also tagged with a
descriptive name using the annotation feature in Grasp. Annotations are name-
value pairs useful for providing additional information without altering the se-
mantics of a Grasp construct. Rationale AR10 has two reasons behind it: to
achieve CommPerformance and to satisfy Rq AckProcessing. Grasp uses the key-
word supports to relate reasons to QAs and requirements. The reason for ratio-
nale AR13, on the other hand, is an expression that relates to an AE referenced by
parameter M. This expression checks whether the set of properties of M includes
property AsyncComm using the subsetof operator. Note that the AE passed as
parameter M should exist in the namespace of the context in which AR13 is
evaluated. The remaining two rationales are declared in a similar manner.

A Model for Specifying Rationale Using an ADL 323

4.2 Modelling System Structure

For specifying the static runtime structure of an architecture, Grasp follows
the popular components and connectors paradigm [11,14]. Along with these two
primitives, Grasp supports layer, interface, link and check elements as its primary
building blocks. An abstract reusable construct called template helps to define
composite structures from which components and connectors are instantiated.

Listing 1. Grasp specification of a partial EFT system architecture [13]

architecture Example
{

requirement Rq_AckProcessing;

quality_attribute CommPerformance {
property HandleMultipleBankConnections = true;
property MaxVolumePercentageFromOneBank = 50;
property MinTransactionsPerDay = 8000;

}

quality_attribute CommReliability {
property NoLossPaymentProcessing = true;
property NoDuplicateProcessing = true;

}

@(Desc="OptimalMsgProcPerformance")
rationale AR10() {

reason supports CommPerformance;
reason supports Rq_AckProcessing;

}

@(Desc="ProcessingSequence")
rationale AR13(M) {

reason [AsyncComm] subsetof M.properties();
}

@(Desc="NoLossTransaction")
rationale AR14(M) {

reason supports CommReliability;
reason [AsyncComm] subsetof M.properties();

}

@(Desc="TimeOutMechanism")
rationale AR15(M) {

reason [AsyncComm] subsetof M.properties();
}

template AsyncComponent() {
property AsyncComm;

}
template AsyncMsgProc() extends AsyncComponent {}
template AsyncMCPDrv() extends AsyncComponent {}
template AsyncErrDet() extends AsyncComponent {}
template AsyncErrRec() extends AsyncComponent {}
template AlarmSvcs() {}

system PaymentGateway {
component MsgProc = AsyncMsgProc() because AR10;
component MCPDrv = AsyncMCPDrv() because AR13(MsgProc);
component ErrDet = AsyncErrDet() because AR14(MsgProc);
component ErrRec = AsyncErrRec() because AR14(MsgProc);
component Alarm = AlarmSvcs() because AR15(ErrDet);

}
}

324 L. de Silva and D. Balasubramaniam

The chosen example consists of only components. A component roughly maps
to the �AE� stereotyped class in AREL’s UML-based model. A base template
AsyncComponent is extended by every other template except AlarmServices. The
AsyncComm property, defined in AsyncComponent and inherited by all extending
templates, identifies those components that implement the asynchronous design.

The system block in the Grasp specification contains a number of components
that are instantiated from templates. However, the interconnections (i.e. wirings)
between these components are not included as this information is missing in the
original case study. Grasp provides a link primitive to specify the wiring among
components and connectors through their interfaces.

4.3 Binding Rationale to Architecture Elements

The next step in building a Grasp specification is to associate rationale to various
elements in the architecture. As shown in Listing. 1, each component instance has
a because clause that attaches a previously declared rationale to that component.
Some rationales in this example accept arguments that refer to other components
within the same namespace. A rationale can be attached in a similar manner to
any type of AE including templates. A rationale associated with a template is
inherited by a component or connector instantiating that template.

This example also illustrates the dependency graph that forms with AEs and
rationales in a Grasp model. For instance, the Alarm component is bound to
rationale AR15, which in turn is tied to ErrDetect through its reason. ErrDetect
is associated with AR14, which depends on MsgPro, which depends on AR10.

4.4 Evaluating Rationale

A rationale is evaluated in the context of the AE to which it is attached. The ap-
plication context of a rationale is an important aspect in this model. A rationale
cannot be evaluated as a free-standing entity and therefore must be associated
with at least one AE for this purpose. At the same time, not all AEs associated
with a given rationale may satisfy that rationale. Hence, a rationale is evaluated
within the context of each AE it motivates, independent of other associated AEs.

In our example, rationale AR10 is tested within the context of MsgProc, AR13
within the context of MCPDriver, AR14 within both ErrDetect and ErrRecovery,
and AR15 within Alarm. In the case of rationale AR14, which attaches to two
components, it may possibly pass with one component and fail with the other.

4.5 Traceability

The usefulness of a rationale model largely depends on its ability to trace de-
pendencies between rationale and AEs. Such a model should be able to provide
forward tracing and backward tracing [13]. Forward tracing allows a change to
a given rationale or an AE to be traced downwards through the graph to every
other rationale and AE affected by that change. Thus it facilitates impact anal-
ysis during design modification, offering the means to understand the effects of
a change prior to its implementation. Backward tracing assists the discovery of

A Model for Specifying Rationale Using an ADL 325

AR10

CommPerformance

MsgProc

AR13 AR14

MCPDriver ErrDetect ErrRecovery

AR15

Alarm (a) Forward tracing Alarm

AR15

ErrDetect

AR14

CommReliability MsgProc

AR10

CommPerformance Rq_AckProcessing

(b) Backward tracing

Fig. 2. Traceability in the Grasp model

factors that affect a given AE by tracking upwards through the graph. It helps
developers understand the justifications for design outcomes along with sensi-
tive points in the architecture. An AE that traces back to a large number of
rationales can be treated as highly sensitive to changes in the architecture.

Figure 2(a) illustrates a forward trace that starts from CommPerformance.
This trace will essentially expose the impact on the architecture if any of the
performance criteria given in CommPerformance were to change. As shown, ra-
tionale AR10 is directly affected, which in turn affects MsgProc. The impact
continues to propagate down the dependency graph affecting AR13, AR14 and
beyond. As it stands, all five components in the example architecture are affected
by a change to the performance quality attribute.

In the complementary backward tracing example in Fig. 2(b), the trace starts
from Alarm and moves up towards the root of the graph looking for nodes that
have the potential to affect Alarm. This diagram shows that component Alarm is
affected by a change to components ErrDetect or MsgProc, QAs CommReliability
or CommPerformance, or requirement Rq AckProcessing. Backward tracing also
provides a clear view of the justification behind a design outcome.

5 Implementation Status

The rationale model described in this paper has been defined and incorporated
into the Grasp language. A Grasp compiler, developed using the ANTLR parser
generator framework [8], is currently available. Work on tools to evaluate ratio-
nale, check consistency properties and visualise the architecture is in progress.

6 Conclusions and Future Work

The importance of capturing rationale as part of an architecture has been widely
discussed. However, the adoption of rationale techniques has been weak. The
Grasp ADL attempts to address this problem with a simple rationale specifica-
tion mechanism coupled with strong tool support for architectural design.

An extension to the Grasp model to capture alternative architectural deci-
sions and their rationales is also being investigated. An important consideration

326 L. de Silva and D. Balasubramaniam

here is the tradeoff between the usefulness of recording design alternatives and
the simplicity of the rationale model essential for encouraging adoption. Fur-
thermore, we are currently extending Grasp to support dynamic architectural
properties, enabling the evaluation of architecture rationale during system execu-
tion. This work is the first step of a larger agenda to control architecture erosion
by maintaining the correspondence between architecture and implementation in
all relevant aspects including structure, behaviour and rationale.

Another vital concern is the evaluation of the effectiveness of the rationale
model in addressing the above-mentioned issues. Building architecture models
of existing software and comparing system evolution with and without the Grasp
framework will enable us to carry out this evaluation. Grasp is currently being
used to capture the software architectures of constraint solvers as part of an
EPSRC-funded project [1]. The architecture specifications from this project will
provide some of the required case studies.

It is possible to consider alternative mechanisms, such as separate views of
structure, behaviour and rationale of an architecture that are somehow linked
to enable traceability among them. Given the need to link architecture and
implementation in order to minimise erosion, our approach aims to simplify the
process and combine these aspects in a single representation with visualisation
tools providing suitable abstractions for users.

Acknowledgment. This work is supported through a PhD studentship awarded
by Scottish Informatics and Computer Science Alliance (SICSA) and University
of St Andrews.

References

1. Balasubramaniam, D., Silva, L.d., Jefferson, C., Kotthoff, L., Miguel, I., Nightin-
gale, P.: Dominion: An architecture-driven approach to generating efficient con-
straint solvers. In: Proc. of the 9th Working IEEE/IFIP Conference on Software
Architecture, p. 4 (2011)

2. Bosch, J.: Software architecture: The next step. In: Proc. of the 1st European
Workshop on Software Architecture, pp. 194–199 (2003)

3. Burge, J.E., Brown, D.C.: SEURAT: integrated rationale management. In: Proc.
of the 30th International Conference on Software Engineering, pp. 835–838 (2008)

4. Carignano, M.C., Gonnet, S., Leone, H.P.: A model to represent architectural de-
sign rationale. In: Proc. of WICSA/ECSA 2009, pp. 301–304 (2009)

5. ISO/IEC/IEEE: ISO/IEC 42010: Systems and Software Engineering – Architecture
Description. ISO/IEEE (2009), (Draft: ISO/IEC WD4 42010)

6. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-
sions. In: Proc. of the 5th Working IEEE/IFIP Conference on Software Architec-
ture, pp. 109–120 (2005)

7. Medvidovic, N., Taylor, R.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1), 70–93 (2000)

8. Parr, T.: ANTLR Parser Generator (2011), http://www.antlr.org/
9. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM

SIGSOFT Software Engineering Notes 17(4), 40–52 (1992)

http://www.antlr.org/

A Model for Specifying Rationale Using an ADL 327

10. Savolainen, J., Kuusela, J.: Framework for goal driven system design. In: Proc.
of the 26th International Computer Software and Applications Conference, pp.
749–756 (2002)

11. Shaw, M., Garlan, D.: Software Architecture: Perspective of an Emerging Disci-
pline. Prentice-Hall, Englewood Cliffs (1996)

12. Tang, A., Babar, M.A., Gorton, I., Han, J.: A survey of architecture design ratio-
nale. Journal of Systems and Software 79(12), 1792–1804 (2006)

13. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design trace-
ability and reasoning. Journal of Systems and Software 80(6), 918–934 (2007)

14. Taylor, R., Medvidovic, N., Dashofy, E.: Software Architecture: Foundations, The-
ory, and Practice. Wiley, Chichester (2009)

15. Tyree, J., Akerman, A.: Architecture decisions: Demystifying architecture. IEEE
Software 22(2), 19–27 (2005)

16. Zhu, L., Gorton, I.: UML profiles for design decisions and non-functional require-
ments. In: Proc. of the 2nd Workshop on SHAring and Reusing architectural
Knowledge Architecture, Rationale, and Design Intent., p. 8 (2007)

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 328–335, 2011.
© Springer-Verlag Berlin Heidelberg 2011

From EAST-ADL to AUTOSAR Software
Architecture: A Mapping Scheme

Tahir Naseer Qureshi1, DeJiu Chen1, Henrik Lönn2, and Martin Törngren1

1 Department of Machine Design. The Royal Institute of Technology,
Stockholm, Sweden

{tnqu,chen,martin@md.kth.se}
2 Volvo Technology Corporation, Electronics and Software,

SE-405 08 Gothenburg, Sweden
henrik.lonn@volvo.com

Abstract. This paper addresses the gap between models describing system
requirements, functions and architecture at a higher level of abstraction (such as
SysML models), with respect to software/hardware architecture description
(such as the AADL models) as the means to improve the development process
or embedded systems. The EAST-ADL and AUTOSAR are the two focused
architecture description formalisms in the presented work. While EAST-ADL is
an architecture description language providing an extension and profiling of
SysML dedicated to automotive embedded systems, AUTOSAR provides
means to describe software architecture architectures. The contribution of the
paper is a relationship investigation between different concepts of the two
languages. Three case studies, of a position control , fuel control and a brake-
by-wire system, have been used to support and validate the work. The resulting
mapping scheme provides a basis for automated architecture refinements and
synthesis.

Keywords: AUTOSAR, Model-based Development, EAST-ADL, Embedded
Systems, Methodology, Architecture Description Language, Brake-by-wire
System, Model Transformation, Matlab, Simulink, SystemDesk, TargetLink.

1 Introduction

Embedded systems development complexity has increased considerably during the
last few decades. This complexity spans over three dimensions i.e. product (features
and interactions of components), organization (companies and development teams)
and technology (tools and process) [19]. Some of the common requirements to
manage the complexities include separation of views like hardware and software and
consideration of both functional and non-functional properties. Formalisms such as
SysML1 (Systems Modeling Language) and AADL2 (Architecture Analysis & Design

1 http://www.omgsysml.org/#Specification
2 http://www.aadl.info/, http://standards.sae.org/as5506a

 From EAST-ADL to AUTOSAR Software Architecture: A Mapping Scheme 329

Language) address these requirements and challenges by providing means for
specifying embedded system architecture. These formalisms often target different
abstraction levels and for most of the cases have a weak or no integration with each
other. This is one of the challenges in industrial adaptation of such formalisms for
improving the overall development efficiency for embedded systems. The solutions
for this challenging problem can include but is not limited to an automated tool
support for architecture refinement and synthesis and methodological guidelines.

We have addressed the above mentioned need by considering two different
formalisms for architectural specifications i.e. EAST-ADL [1, 8] and AUTOSAR [2] for
automotive embedded system from control systems development viewpoint. EAST-ADL
shares the same core meta-constructs and complements AUTOSAR with additional
levels of abstractions and concepts such as requirements engineering and safety [1].
AUTOSAR models thus represent an implementation of an architecture specified by
EAST-ADL. Further, EAST-ADL constructs can be used to annotate AUTOSAR
elements with requirements, error models, etc. To efficiently and correctly define an
AUTOSAR implementation based on EAST-ADL model, it is useful to have guidelines,
mapping patterns and tool support. We consider the following needs:

• A detailed investigation of the mapping between the artefacts for enabling
transformation of architectural specification between these formalisms.

• An investigation of relation between the EAST-ADL and AUTOSAR
methodologies from behavioural specification and implementation view.

• An investigation of tool support for formal guidelines and possible integration
scenarios to utilize the two formalisms and their methodologies.

This paper presents a part of work towards a well-defined path from an EAST-ADL
functional architecture to a concrete AUTOSAR software architecture. The main
contribution presented in this paper is a mapping scheme between the artefacts of the
two formalisms related to the software architecture part of an embedded system. This
mapping can be considered as a step towards the automatic generation of an
AUTOSAR compliant architecture specification from EAST-ADL. Due to large span
of the two languages, we have limited our work to behavioural aspects and associated
timing constraints from control systems development view. Three case studies of a
brake-by-wire, position control and a fuel control system are used as case studies to
support the work.

It is assumed that the readers have some knowledge of AUTOSAR, its layered
software architecture [6] and methodology [7] in addition to EAST-ADL, its
methodology [9] and behaviour extension [10]. The readers are also referred to [11] for
an overview of architecture description languages, associated problems and challenges
related to the development of control systems for automotive systems. It is also
recommended to refer to [18] for a detailed description including additional
investigations and results of the presented work if desired.

The paper is organized as follows: In the following section, an overview of the
related work is presented. This is followed by a discussion on the relationship work,
observations and a brief account of the case studies in section 3. The paper is
concluded with a discussion in section 4.

330 T.N. Qureshi et al.

2 Related Work

A few efforts have been made to develop AUTOSAR system specification from different
ADLs. In [13] a mapping between different EAST-ADL artefacts and AUTOSAR is
presented for both structure and behaviour. However, the mapping focuses on only a few
structural entities and a few events. Furthermore, due to the changes in the language
regarding the inclusion of concepts such as mode, restructuring for modularity and
renaming of a few artefacts, some parts of the mapping are no longer valid. Our work
aims to provide a more detailed and refined mapping scheme with the current version of
EAST-ADL.

In the EDONA project [14] an Eclipse based platform is developed for the integration
of different tools used in the automotive industry. The approach is based on an
AUTOSAR meta-model developed using EMF (Eclipse Modeling Framework). The
ARGateway (AUTOSAR Gateway) is used as a means for model transformation from
EAST-ADL design architecture model to an AUTOSAR model. The gateway is mainly
based on the mapping provided in [13]. Therefore, it needs to be updated. The required
updates can utilize the results of the work presented in this paper.

In [15] bidirectional transformations between SysML and AUTOSAR using graph
transformations are presented. The transformation uses a SysML profile covering
basic embedded system entities such as hardware, software, port etc. and an
AUTOSAR meta-model. SystemDesk (an AUTOSAR modelling tool by dSpace [5])
API is used to transfer information to and from SystemDesk. The SysML profile in
[15] is too generic and cover only a few automotive systems aspect as compared to
EAST-ADL. SystemDesk is the common tool in [15] and our work. Therefore, a tool
specific transformation can be performed by utilizing the results of the presented
work and the SystemDesk API part from [15].

In the TIMMO [16] project, a language for timing design called TADL (Timing
Augmented Description Language) is developed. The language and its methodology
[17] is aligned with EAST-ADL [9] and AUTOSAR [7]. Especially the timing aspects
of AUTOSAR are actually fully harmonized with the TIMMO concepts. As the name
indicates, the TIMMO methodology is focused on timing analysis aspects. In contrast
to the TIMMO effort focused on timing aspects, our effort focuses the behavioural
aspects.

3 EAST-ADL and AUTOSAR Relationship Investigation

A two-step approach is adopted to meet our objectives. First, a position control
systems is modelled in EAST-ADL using PapyrusUML modeller [4] for basic
structural and behavioural artefacts. This is followed by repeating the same procedure
for a fuel control system for additional behavioural aspects especially mode related
behaviour. As a second step, a brake-by-wire (BBW) system provided by Volvo
Technology is modelled in SystemDesk to validate the results (i.e. refined mapping
scheme between EAST-ADL and AUTOSAR) from the first step. The fuel control

 From EAST-ADL to AUTOSAR Software Architecture: A Mapping Scheme 331

and position control systems are example cases from dSpace [12] providing coverage
of AUTOSAR artefacts sufficient to meet our objectives. Interested readers can also
refer to [18] for more information about the case studies.

3.1 Functional and Behavioural Mapping

Tables 1 and 2 summarize the mapping between the functional and behavioural
entities of EAST-ADL and AUTOSAR i.e. which AUTOSAR elements typically
realize an EAST-ADL element. The tables only describe the mapping scheme. For
information about the semantics, the readers are referred to EAST-ADL and
AUTOSAR specifications.

Table 1. A functional (structural) mapping between EAST-ADL and AUTOSAR

EAST-ADL AUTOSAR Remarks

FunctionalDesignArchite
cture

Software
architecture

It is assumed that a design function type with name
“FunctionalDesignArchitecture” is the top most function
in the hierarchy of design function types and prototypes.

FunctionModeling::Desi
gnFunctionType

Runnable and
Atomic
Software
Component

The property isElementary determines if a design
function prototype (or several) is conveniently realized
by a runnable. An atomic software component contains
at least one runnable through its internal behaviour
definition.
isElementary = true implies a single runnable can be
used.
isElemantary = false implies an atomic software
component with one or more Runnables in its
InternalBehavior or a composite component.

FunctionModeling::Basic
SoftwareFunctionType

Basic Software
Component

A basic software function type is a specialization of
DesignFunctionType and a middleware abstraction. This
corresponds to basic software component in AUTOSAR

FunctionModeling::Loca
lDeviceManager

Sensor Actuator
Software
Component

The LocalDeviceManager encapsulates the device-
specific or functional parts of a Sensor or Actuator,
device, interface etc.

FunctionModeling::Func
tionFlowPort
Direction={IN, OUT}

A port with a
Sender/Receiver
interface or an
interrunable
variable.

The direction of the EAST-ADL flow port determines if
the corresponding AUTOSAR port has a provided or
required interface.
direction = OUT corresponds to provided port
direction =IN corresponds to a required port.
If the associated EAST-ADL DesignFunctionType is
realized as an AUTOSAR runnable then the port is
realized as an inter-runnable variable.

FunctionModeling::Func
tionClientServerPort
ClientServerType
={client, server}

A port with
Client or Server
Interface

The role as a client or server is defined by the property
ClientServerType. This corresponds to a client and server
interface respectively in AUTOSAR

FunctionModeling::Clien
tServerInterface

Client-Server
Interface

Same Concept

FunctionModeling::Oper
ation

Operation Same concept and related to a client-server interface.

332 T.N. Qureshi et al.

Table 2. Mapping of EAST-ADL artefacts corresponding to AUTOSAR behaviour

EAST-ADL AUTOSAR Description

Behavior::Mode Mode
The concept is similar in both formalisms. A mode
control can lead to the switches between different
configurations or execution schemes

Behavior::ModeGroup Mode Group
Same concept in both formalisms to organize a set of
modes in a mutually exclusive group.

Behavior::FunctionTrigg
er
TriggerPolicy={TIME,
EVENT}

RTE Event

The execution behaviour of an EAST-ADL function is
declared by function triggers. The type of
corresponding AUTOSAR RTE Event is determined by
the TriggerPolicy and the associated Event Function and
constraint for the function trigger.
TriggerPolicy=Time implies a periodic event. (Timing
event in AUTOSAR)
TriggerPolicy=Event implies other events.

Timing::EventFunctionC
lientServerPort
EventKind={sentRequest
, receivedResponse,
receivedRequest,
sentResponse}

Operation
Invoked
Event and
Asynchronous
Server Call
Returns Event

An event function is associated with a function type in
EAST-ADL. The type of event function determines the
type of RTE Event in AUTOSAR.
eventKind = receiveRequest implies Operation Invoked
Event
eventKind = receivedResponse implies Asynchronous
Call Returns Event

Timing::EventFunctionFl
owPort

Data Received
Event

The port considered in this kind of event should have the
value 'IN' for its 'Direction' property.

An illustration of the mapping is shown in Figure 1.

Fig. 1. An illustration of EAST-ADL and AUTOSAR mapping

3.2 Additional Observations

The following text will throw light on the factors which may affect the decisions
required for refinement of software architecture from EAST-ADL to AUTOSAR.

 From EAST-ADL to AUTOSAR Software Architecture: A Mapping Scheme 333

Mode Switch Port and Event

Modes are declarative in EAST-ADL. Mode change and related communications e.g.
mode switch event are not part of the EAST-ADL specifications. To handle this we
can assume an EAST-ADL FunctionFlowPort to be equivalent to a mode switch port
provided that it is referred in the function trigger properties in addition to the event
condition for activation.

Fig. 2. A function trigger illustration in EAST-ADL

An illustration is shown in the left part of Figure 2 for a runnable which is
activated on the entry of the mode called ‘Disabled’3. The policy selected for this
trigger is 'EVENT'. The right side of Figure 2 refers to a periodic trigger with the
value 'TIME' selected for the property 'TriggerPolicy'. Here the mode property
specifies the modes during which this trigger is active.

Data Types and Prototypes

EAST-ADL only supports basic data types including Boolean, float, integer, string as
well as composite data types. As a part of defining an AUTOSAR software
architecture, these abstract data types are required to be mapped to concrete
implementation data types with signedness, number of bits, coding, etc. Furthermore,
in contrast with AUTOSAR, only one data type can be assigned to a single port in
EAST-ADL. This is handled by the use of port groups. Depending on the type of
realization i.e. an atomic software component or a runnable, a port specifies an inter
(RTE) or intra (Variables) software interaction. This is described in Table 1 and
illustrated in Figure 1. It should also be noted that there is a DataElementPrototype for
every EAST-ADL port. The data types should have matching specifications. Several
EAST-ADL ports may be aggregated in a single AUTOSAR interface. EAST-ADL
port groups are candidates for aggregation depending on connection patterns.

Design Function Type Realization

For simplicity we proposed a one-to-one mapping between a design function type of
EAST-ADL and an AUTOSAR runnable or software component. However, it is a n-
to-m mapping as shown in Figure 1. This implies that several design function types
can be realized by one runnable or vice versa. The same applies for the realization of
design function type by AUTOSAR atomic software components.

3 The string `ModeSwitchEvent' for the trigger condition in the figure is for illustration purpose

only. This means that other constructs e.g. OCL (Object Constraint Language) can also be
used depending on the user choice.

334 T.N. Qureshi et al.

4 Discussion and Conclusion

We have investigated the support of EAST-ADL for AUTOSAR based system
definition as a means to capture the early phase information and provide abstract
representation of system. The main result of the work is verification and refinement of
the existing relationship between the two formalisms. The work mainly considered
the structural, behavioural aspects and related timing constraints. Although the work
is performed using specific tool chain i.e. PapyrusUML modeller and SystemDesk,
the mapping scheme is generic addressing both the updated and new concepts of
EAST-ADL, therefore, it can be utilized for any AUTOSAR and EAST-ADL tool.
For example, the results can be used directly in updating the ARGateway effort
carried out in the EDONA project [14].

Some of the issues identified during the work which require consideration are the
semantic gaps between these two formalisms. One such gap is the semantics related to
events. While EAST-ADL events are introduced to specify timing constraints,
AUTOSAR events are used only for triggering of a runnable. Further investigations
for mode switching and related communication are also required for improving
EAST-ADL support for behavioural aspects. An extension of EAST-ADL with few
additional artefacts e.g. explicit initial mode can also be considered.

In addition to the mapping scheme presented in this paper, we have also performed
an initial investigation on the relationship between EAST-ADL and AUTOSAR for
tool support and methodological issues [18]. From methodological perspective,
EAST-ADL is an add-on to the current development process providing early
verification and validation resulting in reduction of the integration problems. An
automated tool is found to be a necessity to improve the overall development process.
This automated support can be for providing traceability support, integration of tools
for analysis such as the one described in [3].

The presented work can be extended by providing the required tool support for
automated model transformations between EAST-ADL and AUTOSAR tools. The
possibility of the mapping of runnables to OS (Operating System) tasks and relation
with other analysis tool for the type of analyses not currently available for architecture
specified in EAST-ADL needs to be addressed in future. In addition to the presented
work which focuses on the behavioural aspects or the TIMMO effort [17] for timing
related properties, a detailed methodology taking into account all the available aspects
e.g. behaviour, timing, safety and variability is also required.

References

1. EAST-ADL Consortium Website, http://www.atesst.org (accessed January
2011)

2. AUTOSAR Website, http://www.autosar.org/ (accessed January 2011)
3. Biehl, M., Sjöstedt, C.-J., Törngren, M.: A Modular Tool Integration Approach -

Experiences from two Case Studies. In: 3rd Workshop on Model-Driven Tool & Process
Integration at the European Conference on Modelling Foundations and Applications
(June 2010)

4. PapyrusUML Website, http://www.papyrusuml.org (accessed January 2011)

 From EAST-ADL to AUTOSAR Software Architecture: A Mapping Scheme 335

5. dSpace GmbH Website, http://www.dspaceinc.com (accessed January 2011)
6. The AUTOSAR Consortium, Layered Software Architecture, Tech. Rep. V2.2.1, R3.0,

Rev 001 (2008)
7. The AUTOSAR Consortium, AUTOSAR Methodology, Tech. Rep. V1.2.1, R3.0,

Rev 001,
http://www.autosar.org/download/AUTOSAR_Methodology.pdf (2008)

8. The ATESST2 Consortium, EAST-ADL Domain Model Specification, Project
Deliverable 4.1.1,
http://www.atesst.org/home/liblocal/docs/ATESST2_D4.1.1_EAST
-ADL2-Specification_2010-06-02.pdf (June 2010)

9. The ATESST2 Consortium, “Methodology Guidelines When Using EASTADL2," Project
Deliverable 5.1.1,
http://www.atesst.org/home/liblocal/docs/ATESST2_Deliverable
_D5.1.1_V1.1.pdf (June 2010)

10. The ATESST2 Consortium, Update Suggestions for Behavior Support, Project
Deliverable 3.1, Appendix A3.4,
http://www.atesst.org/home/liblocal/docs/ATESST2_Deliverable
_D3.1_A3.4_V1.1.pdf (June 2010)

11. Lönn, H., Freund, U.: Automotive Architecture Description Languages. In: Automotive
Embedded Systems Handbook (2009)

12. dSpace GmbH, dSpace HelpDesk (2009) (Available online for the dSpace Software Users)
13. Cuenot, P., Frey, P., Johansson, R., Lönn, H., Reicser, M.O., Servat, D., Kolagari, R.T.,

Chen, D.: Developing Automotive Products Using the EAST-ADL2, an AUTOSAR
Compliant Architecture Description Language. In: Ingniurs de lAutomobile, vol. 793, p.
58 (2008)

14. Environnements de Dveloppement Ouverts aux Normes de l’Automobile (EDONA)
Website, http://www.edona.fr (accessed January 2011)

15. Giese, H., Hildebrandt, S., Neumann, S.: Towards “Integrating SysML and AUTOSAR
Modeling via Bidirectional Model Synchronization. In: 5th Workshop on Model-Based of
Embedded Systems (MBEES)

16. TIMMO Consortium Website, http://www.timmo.org (accessed January 2011)
17. The TIMMO Consortium, Methodology Version 2, Project Deliverable 7 (2009),

http://www.timmo.org/pdf/D7_TIMMO_Methodology_Version_2_v10.
pdf

18. Qureshi, T.N., Chen, D., Lönn, H., Törngren, M.: From EAST-ADL to AUTOSAR,
Technical Report KTH-TRITA-MMK 2011:12, ISSN 1400-1179, ISRN KTH/MMK/R-
11/12-SE

19. Törngren, M., Chen, D., Malvious, D., Axelsson, J.: Model-Based Development of
Automotive Embedded Systems. In: Automotive Embedded Systems Handbook (2009)

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 336–343, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Software Language Engineering of
Architectural Viewpoints

Elif Demirli and Bedir Tekinerdogan

Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey
{demirli,bedir}@cs.bilkent.edu.tr

Abstract. A common practice in software architecture design is to apply
architectural views to design software architecture for the various stakeholder
concerns. Architectural views are usually developed based on architectural
viewpoints which define the conventions for constructing, interpreting and
analyzing views. So far most architectural viewpoints seem to have been primarily
used either to support the communication among stakeholders, or at the best to
provide a blueprint for the detailed design. In this paper we provide a software
language engineering approach to define viewpoints as domain specific languages.
This enhances the formal precision of architectural viewpoints and leads to
executable views that can be interpreted and analyzed by tools. We illustrate our
approach for defining domain specific languages for the viewpoints of the Views
and Beyond approach.

Keywords: Architectural Viewpoints, Software Language Engineering, Domain
Specific Modeling, Tool Support.

1 Introduction

An architectural view is a representation of a set of system elements and relations
associated with them to support a particular concern. Having multiple views helps to
separate the concerns and as such support the modeling, understanding,
communication and analysis of the software architecture for different stakeholders.
Architectural views conform to viewpoints that represent the conventions for
constructing and using a view. An architectural framework organizes and structures the
proposed architectural viewpoints. Different architectural frameworks have been
proposed in the literature [2]. Organizing the system as a set of viewpoints has also been
addressed in enterprise application system using so-called enterprise architecture
frameworks [12][13]. The notion of viewpoint now plays an important role in modeling
and documenting architectures. So far most architectural viewpoints seem to have been
primarily used either to support the communication among stakeholders, or at the best to
provide a blueprint for the detailed design. From a historical perspective it can be
observed that viewpoints defined later are more precise and consistent than the earlier
approaches but a close analysis shows that even existing viewpoints lack some precision.
Moreover, since existing frameworks provide mechanisms to add new viewpoints the
risk of introducing imprecise viewpoints is high. The development of a proper and
effective architecture is highly dependent on the corresponding documentation. An

 Software Language Engineering of Architectural Viewpoints 337

incomplete or imprecise viewpoint will impede the understanding and application of the
viewpoints to derive the corresponding architectural views, and likewise lower the
quality of the architectural document.

The key premise in this paper is that a viewpoint can be considered as a domain
specific language, and views are models or programs of that language. As such, to
enhance the definition of the viewpoints we think that these should be also formally
defined as domain specific languages. In this paper we provide a software language
engineering approach to define viewpoints as domain specific languages. This will
enhance the formal precision of architectural viewpoints and likewise helps to share
the additional benefits of domain specific languages, i.e. defining executable views. In
the paper, we illustrate our approach using an example viewpoint: decomposition
viewpoint of Views and Beyond (V&B) [2] approach.

The remainder of the paper is organized as follows. In section 2 we define the
background of architecture framework and software language engineering. In section
3, we show the definition of domain specific language for decomposition viewpoint of
the V&B approach. Section 4 presents the related work. Section 5 provides the
conclusions.

2 Model-Driven Development

Architecture design is basically about modeling the system from different perspectives.
Historically, models have had a long tradition in software engineering and have been
widely used in software projects. The primary reason for modeling is usually defined
as a means for communication, analysis or guiding the production process. Models are
different in nature and quality. Mellor et al. [9] make a distinction between three kinds
of models, depending on their level of precision. A model can be considered as a
Sketch, as a Blueprint, or as an Executable. According to [9] an executable model is a
model that has everything required to produce the desired functionality of a single
domain. Executable models are more precise than sketches or blueprints, and can be
interpreted by model compilers.

In model-driven software development the concept of models can be considered as
executable models as defined by the above characterization of Mellor et al. [9]. This is
in contrast to model-based software development in which models are used as
blueprints at the most.

The language in which models are expressed is defined by meta-models. As such, a
model is said to be an instance of a meta-model, or a model conforms to a meta-model.
A meta-model itself is a model that conforms to a meta-meta-model, the language for
defining meta-models. In model-driven development, models are usually organized in
a four-layered architecture. The top (M3) level in this model is the so called meta-
metamodel, and defines the basic concepts from which specific meta-models are
created at the meta (M2) level. Normal user models are regarded as residing at the M1
level, whereas real world concepts reside at level M0.

2.1 Architectural Description from a Model-Driven Development Perspective

In fact we can state that the current architectural modeling practices can be categorized
as model-based development, rather than model-driven development. In the last two to

338 E. Demirli and B. Tekinerdogan

three decades architectural modeling and the corresponding notations have evolved
from simple sketches to more precise models as defined by architectural view concept.
Yet, the view models can usually not be considered as executable models. Moreover,
the link between architectural models, and the link from architectural models are
merely implicit and not formal.

In architecture modeling literature the notion of meta-model is not explicitly used.
The concepts related to architectural description are formalized and standardized in
ISO/IEC 42010:2011 [7]. The standard holds that an architecture description consists
of a set of views, each of which conforms to a viewpoint. Here the concept of view
appears to be at the same level of to the concept of model in the model-driven
development approach. The concept of viewpoint, representing the language for
expressing views, appears to be on the level of meta-model.

Although the ISO/IEC 42010 standard does not explicitly use the terminology of
model-driven development the concepts as described in the standard seem to align with
the concepts in the meta-modeling framework. In Fig. 1, we provide a partial view of
the standard that has been organized around the meta-modeling framework. An
Architecture Description is a concrete artifact that documents the Architecture of a
System of Interest. The concepts System-of-Interest and Architecture reside at layer
M0. System-of-Interest defines a system for which an Architecture is defined.
Architecture is described using Architectural Description that resides at level M1.
Architectural Description includes one or more Architectural Views that represent the
system from particular stakeholder concern’s perspective. Architectural views are
described based on Architectural Viewpoint, the language for the corresponding view.
Architectural Viewpoints are organized in Architectural Framework. The latter two
reside at level M2. The standard does not provide a concept that we could consider at
level M3, and as such we have omitted this in Fig. 1.

Fig. 1. Architectural Description Concepts from a meta-modeling perspective

2.2 Elements of Domain Specific Languages

Meta-models define the language for the models. The application of a systematic,
disciplined, quantifiable approach to the development, use, and maintenance of these
languages is usually called software language engineering [8]. A proper definition of
meta-models is important to enable valid and sound models. In both the software

 Software Language Engineering of Architectural Viewpoints 339

language engineering [8] and model-driven development domains [9], a meta-model
should include the following elements:

• Abstract Syntax: the vocabulary of concepts provided by the language and how
they may be combined to create models.

• Concrete Syntax: the notation that facilitates the presentation and construction of
models or programs in the language. It can be visual or textual.

• Well-formedness rules (Static Semantics): definitions of additional constraint
rules on abstract syntax that are hard or impossible to express in standard
syntactic formalisms of the abstract syntax.

• Semantics: the definition of the meaning of the concepts in the abstract syntax.

Given these elements of a language we can also evaluate viewpoints, the languages
for defining views. A coarse-grained evaluation would be to check whether these
elements are defined for the viewpoints. This does not really provide much
information since all the viewpoints seem to somehow describe the above elements
albeit in a different degree. To be able to define the degree to which each element is
addressed we propose the evaluation framework as defined in Table 1. The table
distinguishes among four levels L1 to L4 indicating the quality and completeness of
the element. As it can be seen in the table, a lower quality indicates that the
corresponding element has not been described (missing, not defined) whereas a higher
value indicates that the given element is completely defined and validated.

Table 1. Assessment framework for evaluating Architectural Viewpoints

 L1 L2 L3 L4

Abstract
Syntax

Missing or vague
Clear textual
description

Meta-model
defined. Non-
validated models

Validated models

Concrete
Syntax

Not defined Informal Semi-Formal Formal

Static
Semantics

Not defined

Incomplete
constraints
in natural
language

Complete
constraints in
natural language

Formal,
Executable
constraints

3 Defining Viewpoints as Domain Specific Languages

In this section we will illustrate the modeling of viewpoints as domain specific
languages to show how existing viewpoints can be even further formally specified to
lift these to the level of executable models. We have chosen the decomposition style
of the V&B framework [2], as example viewpoint. We will follow the process as
defined in the previous section. For the DSL, we first present the abstract syntax that
defines the language abstractions and their relationship. The abstract syntax is defined
after an analysis of the viewpoint description in the corresponding textbook [2].

Based on these descriptions and the defined meta-model we provide the grammar
which defines syntactic rules of the language together with textual concrete syntax.

340 E. Demirli and B. Tekinerdogan

The grammar is defined using Xtext a language development framework provided as
an Eclipse plug-in [4]. The grammar of the language is defined in Xtext's EBNF
grammar language and the corresponding generator creates a parser, an AST-meta
model as well as a full-featured Eclipse Text Editor from that. The visual concrete
syntax is defined using Graphical Modeling Framework (GMF) plug-in of Eclipse [4].
Constraints on viewpoint elements and relations are implemented as static semantics
which is implemented writing validation codes in Java. We consider only the elements
as defined in Table 1 and do not consider the discussion on semantics. After presenting
the language for decomposition viewpoint, a short discussion of the viewpoint
specification with respect to our evaluation framework is provided.

3.1 Decomposition Style

Based on these descriptions and the defined meta-model we provide the grammar
which defines syntactic rules of the language together with textual concrete syntax.
The Decomposition style is used to show how system responsibilities are partitioned
across modules and how these modules are decomposed into submodules. The
decomposition view of the architecture depicts the overall structure of the architecture
which is reasonably decomposed into modular implementation units. It is regarded as
a fundamental view of the architecture since it serves as an input for other views (e.g.
work allocation view) and helps to communicate and learn the structure of the
software. We have defined a DSL for decomposition style based on the textual
specification given in [2]. The meta-model elements of this style are provided below.

3.1.1 Abstract Syntax
A model of the abstract syntax for the decomposition style is given in the left part of
Fig. 2. The root element is DecompositionModel. A valid decomposition model
consists of Elements. An element can either be a Module or Subsystem. Module
denotes principal unit of implementation. Subsystem differs semantically from the
module in the way that it can be developed, executed and deployed independent of
other system parts. The decomposition relation between elements is established via
the aggregation relation indicating that an element consists of other subelements.
Element can have two types of properties: Interface and Simple property. The
element’s interface is documented with interface property. An element’s interface can
be declared as a reference to one of its children’s interface. Simple property is a
generic property which allows specifying new properties in view document.

3.1.2 Grammar and Concrete Syntax
The grammar for decomposition style is given in the right part of Fig. 2. An example
decomposition view implemented using our DSL is shown in Fig. 3. The textual
concrete syntax is defined for both elements and properties of the elements. The
visual concrete syntax is defined only for elements. No explicit relation is modeled in
order to express decomposition. Subelements are directly placed into the parent
element.

 Software Language Engineering of Architectural Viewpoints 341

Abstract Syntax Grammar

Fig. 2. Abstract Syntax and Grammar for Decomposition Style

Textual Decomposition View Visual Decomposition View

Fig. 3. Example decomposition view with textual and visual concrete syntax

3.1.3 Static Semantics
In addition to extracting the abstract syntax and the grammar we can also derive the
well-formedness rules of views, the static semantics, from the viewpoint descriptions.
In the decomposition style, two constraints have been defined: no loops are allowed in
decomposition graph and a module can have only one parent. From the language
perspective, those constraints are too high level to implement. We merged these
constraints and shortly defined that no element can have the same name. Doing so we
prevented both <A contains B, B contains A> case and <A contains B, C contains B>
case. We have implemented this constraint in Java as a validation rule that applies on
the language model.

342 E. Demirli and B. Tekinerdogan

3.1.4 Evaluation
The above results show that we could map a viewpoint to a domain specific language
that can be used to define executable models or views. However, the overall effort
also provides us insight in the degree of formal precision of the current viewpoint
description. When we apply our evaluation framework on decomposition style
specification of V&B framework, we get the following results. The abstract syntax
definition falls into L2 of our evaluation framework. The concepts to be used in the
language are defined textually. The textual description is clear; it can be easily
translated to a formal model. However, no meta-model or grammar is provided to
describe the concepts. Since both informal and semiformal notations are provided the
concrete syntax definition can be considered at level L3. Finally, the well-formedness
rules on the concepts of the language are properly specified in natural language.
However, they are too high level to directly implement as executable well-formedness
rules. Therefore, we consider these at level L3. It should be noted that with the
domain specific language engineering approach we have lifted the precision degree to
level L4.

4 Related Work

In the enterprise architecture (EA) design community several authors have focused on
the formalization of architectural viewpoints. Different attempts have been made
before to model viewpoints as domain specific languages. ArchiMate [1] is an EA
modeling language that is specified by concepts that focus on business, applications
and technology domains. Those concepts form the base metamodel of ArchiMate
language. A set of viewpoint languages are defined by composing the concepts
available in the metamodel. Contrary to their approach, our viewpoint languages do
not depend on a predefined set of concepts. Each viewpoint has an independent
language that defines its own concepts. This design choice makes it easy to introduce
new viewpoints to the framework. However, it is difficult to define new viewpoints in
ArchiMate if the required concepts are not available at the base metamodel. An
additional extension mechanism is needed for this purpose [10].

Another example to attempts on formalizing EA viewpoints is about RM-ODP
viewpoints. Vallecillo et al. initially focused on formally specifying the abstract
languages provided by viewpoint specifications using a rewriting logic based
framework Maude [3]. Later on, they also tackle the viewpoint formalization problem
from model-driven development perspective and defined UML profile for viewpoints
of RM-ODP [11]. Lastly, they define textual notation for ODP specifications together
with tool support [5]. The main difference of their approach and our study is the level
of formality of the targeted viewpoint specifications. RM-ODP is specified by a
standard [6] that precisely defines the syntax and semantics of the language. So, the
task of formalizing RM-ODP viewpoint specifications is transforming the present
languages to executable languages and defining notations for using the language.
However, in our work, we also address viewpoint specifications those are not
specified precisely as languages. We offer software language engineering as a method
for lifting existing viewpoint specifications to formal language level and provide a
complete description of the method.

 Software Language Engineering of Architectural Viewpoints 343

5 Conclusions

In this paper, we have illustrated the adoption of software language engineering
approach for modeling architectural viewpoints. The key premise behind this
assumption is that viewpoints are in fact domain specific languages, and as such
should be considered and developed like that. To validate our statement we have
analyzed the viewpoints in the Views and Beyond approach [2], and defined all these
viewpoints as domain specific languages. In the paper, as an example, we have
presented the definition of decomposition viewpoint DSL.

We believe that by adopting a software language engineering approach for
architectural viewpoints we have also shown the connection with software architecture
design modeling and the fields of software language engineering and model-driven
software development in general. We hope that this work has paved the way for further
research in this direction.

In our future work we will apply the same approach to other architecture viewpoint
frameworks. The V&B approach was a case study for us but we do not foresee serious
obstacles in applying the same approach for other software architecture viewpoints
and enterprise architecture viewpoints. We will elaborate on the tool and consider the
integration of viewpoints for nonfunctional concerns. Further, we plan to enhance the
tool for supporting architectural analysis.

References

[1] Archimate 1.0 Specification, The Open Group, Tech. Rep. C091 (February 2009)
[2] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord,

R., Stafford, J.: Documenting Software Architectures: Views and Beyond, 2nd edn.
Addison-Wesley, Reading (2010)

[3] Durán, F., Vallecillo, A.: Formalizing ODP Enterprise specifications in Maude. Computer
Standards & Interfaces 25(2), 83–102 (2003)

[4] Eclipse Modeling Framework Web Site,
http://www.eclipse.org/emf/ (accessed on June 2011)

[5] González, D.R., Vallecillo, A., Romero, J.R.: On the Synchronization of ODP Textual
and Graphical Specifications. In: Proc. of WODPEC 2010, Vitoria, Brazil, October 25,
pp. 376–381 (2010)

[6] [ISO/IEC 10746-2:1996] International Organization for Standardization & International
Electrotechnical Commission. Information Technology - Open Distributed Processing -
Reference Model: Foundations (ISO/IEC 10746-2) (1996)

[7] [ISO/IEC 42010:2011] Systems and Software Engineering – Architecture Description
(ISO/IEC 42010) (2011)

[8] Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Longman Publishing Co., Inc., Boston (2009)

[9] Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principle of Model Driven
Architecture. Addison Wesley, Reading (2004)

[10] Peña, C., Villalobos, J.: An MDE Approach to Design Enterprise Architecture
Viewpoints. In: IEEE 12th Conference on Commerce and Enterprise Computing (CEC),
November 10-12, pp. 80–87 (2010)

[11] Romero, J.R., Troya, J.M., Vallecillo, A.: Modeling ODP Computational Specifications
Using UML. The Computer Journal 51, 435–450 (2008)

[12] TOGAF 1995 -The Open Group Architecture Framework, Version 8.1.1 (1995),
http://www.opengroup.org/architecture/togaf8-doc/arch/

[13] Zachman, J.A.: A Framework for Information Systems Architecture. IBM Systems
Journal 26(3), 276–292 (1987)

ReflexML: UML-Based Architecture-to-Code

Traceability and Consistency Checking

Josef Adersberger1 and Michael Philippsen2

1 QAware GmbH, Aschauer Str. 32, 81549 Munich, Germany
josef.adersberger@qaware.de

2 University of Erlangen-Nuremberg, Computer Science Department,
Programming Systems Group, Martensstr. 3, 91058 Erlangen, Germany

philippsen@cs.fau.de

Abstract. The decay of software architecture - the divergent evolution
of architecture models and the derived code - is one of the reasons for
a decreasing maintainability of software systems. Several approaches for
architecture-to-code consistency checking exist that stop the decay by
detecting a divergence after evolution steps of either the architecture or
the corresponding code. Known approaches have two main insufficiencies.
First, the effort to derive and maintain the consistency checks is higher
than necessary or they cannot be applied a posteriori. Second, they are
not well integrated into UML-based model driven engineering. In the
paper we present ReflexML: A UML-embedded mapping of architecture
models to code plus a rich set of predefined consistency checks based
on that mapping. The mapping is described with a UML profile that
allows to attach AOP type patterns to an UML component model to
define its reflexion on code elements. This abolishes the two insufficiencies
of current approaches. We apply ReflexML to an industry project to
demonstrate its effectiveness and its capability of a seamless integration
into a pre-existing UML architecture model.

Keywords: traceability, reflexion model, architecture consistency, UML,
AOP.

1 Introduction

Maintainability of software is mainly driven by its architecture. Software archi-
tecture has a classic divide-and-conquer core: All concerns of a software are split
into coherent parts (components) which are then loosely coupled via clearly de-
fined interfaces. Most modern development methodologies require to develop a
software architecture and derive the implementation structure from there. But
then in many real-world projects the architecture and the implementation struc-
ture diverge while the software evolves. This leads to a decreasing maintainability
called architecture erosion [15] that is a typical effect of software aging [13]. Ar-
chitecture erosion can be prevented by enforcing so-called architecture-to-code
consistency, i.e., if code-level dependencies comply with the dependencies and
component semantics defined on the architecture level.

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 344–359, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ReflexML: UML-Based Architecture-to-Code Traceability 345

There are two types of such inconsistencies [9] or architecture violations [15],
namely divergence (a dependency between two code elements is not allowed
according to the architecture model) and absence (a dependency in the ar-
chitecture model is not represented in the code). To stop architecture erosion,
methods are needed that perform architecture-to-code consistency checks after
each evolution step of either the architecture model or the code.

In general, any approach to check architecture-to-code consistency has to
address the following two topics: First, architecture-to-code traceability is
required to map architecture elements to code elements. This mapping is also
known as reflexion model [9]. Without being able to identify the associated code
elements of an architecture element, no architecture compliance check can be
applied. Second, architecture compliance checks are required to reveal the
consistency between architecture and code. Such checks detect dependencies on
code-level that are disallowed according to the architecture model.

We think that any approach should implement the following five requirements
to be applicable in all scales of real-world projects. These requirements also solve
the two main insufficiencies of current approaches: The high effort to define and
maintain both the required mapping and the compliance checks as well as the
lacking integration into model-driven engineering.

1. Single source: The native architecture models should be used as input for
the approach to avoid duplication of architecture information. Otherwise
maintaining both the basic architecture models and the consistency checking
models would be costly and error-prone.

2. Expressive mapping: Defining every relationship by enumerating all mapped
code elements is infeasible in large projects. Instead we need an expressive
query-like way to describe the mapping of architecture elements to code
elements to reduce the effort to create and maintain the mapping.

3. Stable mapping: The mapping should be stable with the evolution of the
architecture model or the code. If the architecture is refactored or code
elements are created, moved, or deleted the mapping should either stay valid
or needed modification should be simple to identify.

4. Semantically rich architecture model: With semantically rich constructs like
components, interfaces, and hierarchical compositions a rich set of pre-defined
architecture compliance checks can be expressed. Semantically poorer mod-
els require to define a large set of explicit rules to ensure architecture com-
pliance. E.g., the semantically poorer boxes-and-lines model only allows to
define valid dependencies (the lines) between sets of classes (the boxes).

5. A priori and a posteriori application: It should be possible to perform com-
pliance checking both from the start of the implementation of an architecture
or during/after the implementation.

We present ReflexML that addresses both topics and fulfills all of the above
requirements. We limit the scope of ReflexML according to the following two
assumptions. First, the architecture model is described with UML component
models. Alternative to UML a couple of other architecture description languages

346 J. Adersberger and M. Philippsen

(ADLs) are available. Most of them like AADL [5] focus on the behavioral aspect
of a software architecture, are very formal and thus not commonly used in prac-
tice. In a first step we focus on architecture erosion of the static structures not
of the behavior. But we will extend ReflexML to prevent behavioral architecture
erosion in a future version by integrating dynamic UML models. Compared to
the widespread use of UML by practitioners, even ADLs that focus on the static
structures of a software architecture like xADL [4] are only used in niches. This
is our reason to focus only on UML. Second, the considered granularity level of
code elements are types. Type members like methods or attributes map to the
same architecture-level element as the type itself. Dependencies introduced by
type members are considered as dependencies of the type.

The basic idea of ReflexML is to define the traceability of UML component
models to code by means of AOP type pattern expressions. To do so, UML com-
ponent model elements are decorated with these expressions as tagged values.
Beside this, the main contribution of the paper is the set of architecture consis-
tency checks. These checks are based on UML component model semantics and
software architecture principles.

With this basic idea we fulfill all the above requirements. The single source
in our approach is a UML component model. All consistency checks can be per-
formed with the component model and the current code as input. We do not need
an external mapping model. Even an a posteriori adoption is possible by deco-
rating pre-existing component models. If adopted a priori, the ReflexML-based
architecture-to-code traceability information could also be used as an additional
input for code generation. Expressive mapping: With type pattern expressions
we use a powerful concept to describe a set of types. Type patterns were devel-
oped in the area of aspect-oriented programming to apply crosscutting code to
a potentially large sets of types. Type patterns are more powerful in our context
than regular expressions as they are aware of object-oriented concepts like in-
heritance. Stable mapping: At code-level the mappings are as stable as possible
because each mapping is not enumerated but expressed by a type pattern. The
type pattern is based on package structures, names, and inheritance that tend to
be more stable than just enumerating elements. At architecture level we benefit
from the fact that the mapping is directly integrated into architecture models.
In case of architecture evolution the mapping information stays attached to the
architecture element. Furthermore, constraints are defined that enforce the sta-
bility of the mapping itself. Semantically rich architecture model : We use the
UML component model to represent an architecture model because it supports
semantically rich elements like interfaces, components, and composite structures.
A priori and a posteriori application: The UML reflexion profile can be applied
whenever it is required on a given component model. So both a priori and a
posteriori application is possible.

Below we introduce a sample application that we use to illustrate our concepts
throughout the paper. We then present the two parts of ReflexML: The UML
reflexion profile to define the traceability of UML component models to code

ReflexML: UML-Based Architecture-to-Code Traceability 347

(Sect. 3) and a rich set of architecture compliance checks based on that trace-
ability (Sect. 4). Section 5 shows the results of a case study applying ReflexML
to an industry project. Section 6 covers the related work.

2 Sample Application

To illustrate ReflexML we use a sample Java application. Figure 1 shows its
component model and code structure. It consists of two top-level components: A
component Mail to send e-mails and a component Monitor that triggers e-mails
on certain events. The component Mail has an embedded component MailSender
whose concern it is to actually send e-mails via the javax.mail interface. Both
the interfaces IMail and IMailSender depend on the javax.mail interface as in
their signatures they use the type MessagingException.

Fig. 1. Sample UML component diagram (left) and code structure (right)

The code structure is arranged according to the common best practice. Each
top-level component is represented as project top-level package. The interface
parts of the component Mail reside directly inside the top-level package. They
consist of the interface type itself, a data type used to encapsulate mail data, and
a factory to obtain access to the interface. The component implementation parts
reside inside an impl sub-package as well as the interface and the implementation
of the sub-component MailSender.

3 Architecture-to-Code Traceability

The architecture model is described with UML component models. A UML com-
ponent model consists of three main element types: Components, interfaces, and
their relationships. A component can require or provide an interface. Interfaces
can have dependencies to each other. Ports are not considered in ReflexML as

348 J. Adersberger and M. Philippsen

they have no relevant semantics for architecture compliance checking: A rela-
tionship is just traversed at a port. The UML reflexion profile is an efficient and
robust way to describe the mapping between architecture and code for trace-
ability. It leverages the UML profile facility to decorate UML component model
elements with expressions that match sets of types. These expressions are called
reflexion expressions adapting the idea of reflexion models [9].

3.1 UML Reflexion Profile

Figure 2 shows the reflexion profile. It consists of three stereotypes: reflectedEle-
ment to annotate either components or interfaces with reflexion expressions that
map them to code elements. For packages there is the stereotype architecture-
Model that indicates that the package and its potential sub-packages are con-
taining a complete architecture model. There is also the stereotype reflectedEx-
clusion (defined for packages) that is used to identify a set of types that should
not be considered for architecture compliance checks (e.g., library types or utility
classes). Each stereotype uses a tagged value (reflexion or exclusionReflexion)
to hold the reflexion expression.

Fig. 2. UML reflexion profile

The reflexion profile also introduces constraints to UML component models.
These constraints are based on the principles of component-oriented software de-
velopment as described in [16] but not yet included in the semantics of the UML
component model although they are required for more rigorous and thorough
architecture compliance checks.

Constraint A: Dependencies are only allowed towards interfaces. A component
can require or provide an interface. An interface can depend on another inter-
face. This constraint ensures the principle of information hiding. Sample: The
component Monitor may not directly depend on the component Mail. It has to
use the interface IMail.

Constraint B: Only dependencies to interfaces in the same namespace1 are
allowed. This constraint ensures the principle of information hiding. Sample:
The component MailSender may not have a direct dependency to javax.mail
1 Note that in UML a component also represents a namespace.

ReflexML: UML-Based Architecture-to-Code Traceability 349

which is part of the top-level package. It has to explicitly import the interface
to its namespace via a port element first.

Constraint C: Each component and interface element of a component model
has to be reflected to code (has to be of stereotype reflectedElement).

3.2 Reflexion Expression Syntax

An expressive reflexion syntax should have the following features to be amenable
for software practitioners:

– Wildcard predicates for package and type names (e.g. “all classes with suffix
Entity”).

– Recursive and non-recursive predicates (e.g. “all types in package P and in
all of its sub-packages” as well as “only all types directly inside package P”).

– Class- and package-level predicates (e.g. “only class A, B and C (but not
D) in package P” and “all classes in package F”).

– Awareness of inheritance structure (e.g. “all subtypes of interface IEntity”).
– At least the following Boolean operators must be available to build-up higher-

level expressions: AND, OR, NOT (e.g. “all classes in package P AND NOT
class D” or “class A OR class B OR class C in package P”).

The reflexion expression syntax of ReflexML fulfills these requirements. To de-
scribe a set of types the AspectJ type pattern syntax2 is used. See [1] for the
detailed semantics of these type patterns. Basically a ReflexML type pattern is
a logical expression on a set of types identified by their fully qualified name. The
following three wildcards are available to match a set of types:

– “*” matches zero or more characters other than ”.”, e.g., java.util.*Map
– “..” matches any sequence of characters that start and end with a ”.”, e.g.,

de.fau.i2..*. Thus it also matches a single point.
– “+” matches all subtypes of a type (given by preceding type name pattern),

e.g., java.util.AbstractMap+

Atomic type patterns can also be combined with the boolean operators &&
(AND), ||(OR), and ! (NOT). For example:
java.util.AbstractMap+ && !java.util.*HashMap

Figure 3 shows the UML reflexion profile in use. The component model el-
ements of the running example are decorated with mapping information. Ad-
ditionally, an exclusion pattern excludes utility classes from further analysis.
Please note that we do not use the circle notation of interfaces in the reflected
version. This enhances the visibility of the tagged values but leads to a more
complex diagram.

According the concept of reflexion models [8,9] the reflexion expressions of a
component model must comply to the following constraints:

2 www.eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html

350 J. Adersberger and M. Philippsen

Fig. 3. Sample reflected component model

Constraint D: Relations between component model elements (components and
interfaces) and code elements (types) must be 1-to-N relationships: Each type
must be mapped to exactly one component model element (or excluded from
analysis). And each component model element must be mapped to one or more
types. This is an indication whether the component model is a valid and com-
plete abstraction of the code structure. Sample: The implementation class of
component MailSender (JavaMailSender) is only mapped to that component
(and there is no mapping to its parent component Mail).

Constraint E: Any existing architecture-level dependency must be represented
by at least one code-level dependency (no absence). Sample: The class Java-
MailSender does not use artifacts of the interface javax.mail but it uses a pro-
prietary solution instead. In this case the architecture and code would be incon-
sistent because the implementation would violate the architecture-level policy
to use javax.mail.

4 Architecture Compliance Checks

Architecture compliance checks detect divergences between the implementation
structure and the architecture model. The checks are based on the basic prin-
ciples of component-oriented software development, namely information hiding
[12] and the semantics of a component [16,11]. Architecture compliance can only
be tested if all the constraints from Sect. 3 are met. To reason about the archi-
tecture compliance each code-level dependency is projected to architecture-level
by following the mapping of each code element related by the dependency to

ReflexML: UML-Based Architecture-to-Code Traceability 351

an architecture element. All types of code-level dependencies are considered.3

For each dependency 9 checks (see below) are applied. Each check can have four
different results:

– OK: The dependency complies with the architecture. The result OK repre-
sents a convergence between architecture and code.

– ERROR: The dependency does not comply with the architecture. The result
ERROR represents a divergence between architecture and code.

– WARNING: Although the dependency complies with the architecture it can
be considered as an architectural flaw. A WARNING represents a conver-
gence between architecture and code but has an additional informative char-
acter on potential architectural flaws.

– NONE: The check is not applicable to a dependency.

A code-level dependency represents a divergence if at least one of the following 9
checks applied to it has the result ERROR. Otherwise a dependency is convergent
to the given architecture.

Fig. 4. Architecture compliance checks in the sample application

We use the term “artifact” to refer to all code-level elements that are mapped
to a specific component model element (e.g. “provided interface artifact” for all
code-level elements that are mapped to the provided interface of a component).
NONE is the default result of each check.

Check 1: A dependency between artifacts of the same component is OK due
to the high coherence principle. Sample: The class MonitorApp of component
Monitor is allowed to have a dependency on class MetricsCollector (see arrow
#1 in Fig. 4).

Check 2: A dependency between artifacts of different components is an ER-
ROR. This check ensures the principle of information hiding. Sample: The class

3 For Java code: Method access, field access, inheritance, and declaration as field-
type/parameter-type/return-type/exception-type/generic type binding.

352 J. Adersberger and M. Philippsen

MonitorApp may not depend on MailImpl as this class is part of another com-
ponent (see arrow #2).

Check 3: A dependency between artifacts of the same interface is OK due to
the high coherence principle. Sample: The interface IMail may depend on class
MailData and the class MailFactory may also depend on IMail (see arrow #3).

Check 4: If a component-level dependency between two interfaces exists, code-
level dependencies between both corresponding interface artifacts are OK. A
dependency between two interface artifacts of unrelated interfaces is an ER-
ROR. This check ensures the compliance of an interface-to-interface relation
on component-level with the corresponding dependencies on code-level. Sample:
The interface IMail may depend on the class MessagingException assigned to
the interface javax.mail at component-level (see arrow #4).

Check 5: A dependency between component artifacts and interface artifacts of
a required interface is OK. This check ensures the compliance of a component-
to-interface relation on component-level with the corresponding dependencies on
code-level. Sample: The class MonitorApp may depend on the interface IMail,
on the class MailFactory, and on the class MailData (see arrow #5).

Check 6: A dependency between component artifacts and all artifacts of the
provided interfaces is OK. This check allows dependencies according to the se-
mantics of the relation between a component and its provided interfaces. The
component has to know the interface in order to implement the associated con-
tract. Sample: The class MailImpl may depend on the interface IMail, on the
class MailFactory, and on the class MailData (see arrow #6).

Check 7: A dependency between component artifacts and interface artifacts
of an interface which is not required or provided at component-level and is not
embedded in the component is an ERROR. This check ensures the compliance
of a component-to-interface relation on component-level with the corresponding
dependencies on code-level. This is the inverse check to checks 5 and 6. Sample:
The class MonitorApp may not depend on any artifact of the interface javax.mail
(see arrow #7).

Check 8: A dependency between interface artifacts and all artifacts of the
components that provide this interface causes a WARNING because in that
case the implementation of the interface cannot easily be exchanged. In our
sample the interface artifact MailFactory needs a dependency to the component
artifact MailImpl. Even though this is not perfect, it is common practice (factory
pattern). Hence we just warn. But it is an ERROR if such a dependency is visible
to potential users of the interface (e.g. if the according types are used in public
method signatures). In this case the dependency turns transitive and even if the
interface is not used, check 2 will certainly fail upon the first use. Sample: It
would be an ERROR if the class MailFactory would return MailImpl instead of
IMail (see arrow #8). A dependency between interface artifacts and artifacts of
components which do not provide this interface is also an ERROR.

ReflexML: UML-Based Architecture-to-Code Traceability 353

Table 1. Overview of checks

Component

Component OK (1): Same component
ERROR (2): Between components

Interface WARNING (8): Interface to providing component but non-transitive
ERROR (8): Interface to non-providing component
or transitive to providing component

Interface

Component OK (5): Component to required interface
OK (6): Component to provided interface
OK (9): Component to provided interface of an embedded component
ERROR (7): Component to not provided, required or embedded interface

Interface OK (3): Same interface
OK (4): Interface to dependent interface
ERROR (4): Interface to unrelated interface

Check 9: A dependency between component artifacts and interface artifacts of
the provided interfaces of directly embedded components is OK. This depen-
dency is implicit on the architecture-level and has to be treated here as a special
case of check 4. Sample: MailImpl may depend on IMailSender (see arrow #9).

Table 1 gives an overview of all checks and groups them according to the four
different kinds of dependencies between architecture elements and their assigned
code elements. With this table we can reason about the two basic properties
of our set of checks: This set of checks is complete, because first all possi-
ble constellations of the projection of code-level dependencies to architecture-
level are considered and evaluated. A code-level element can either be mapped
to a component or an interface. Because a code-level dependency is directed
and has a code-level element at both ends, there are four possible constella-
tions: component-to-component, component-to-interface, interface-to-interface,
and interface-to-component (check Table 1). Second, as also can be seen in the
table, completeness means that for each constellation there are both rules that
reason a convergence (OK, WARNING) and a divergence (ERROR). The set
of checks is also free of contradictions, as there are no two checks that have
contradicting results for the same dependency. Checks of different constellations
are free of contradiction because each considered set of dependencies is disjoint.
This also holds for the shown checks of one constellation. In all cells of the table,
the checks are disjoint to each other.

5 Case Study

To evaluate ReflexML we applied it a posteriori in several real-world industry
projects in context of code reviews. The running sample presented throughout
this paper is part of one of these reviewed projects. Below we describe the eval-
uation of ReflexML in one of the other projects in detail. The conclusions of

354 J. Adersberger and M. Philippsen

Fig. 5. Mashup server architecture

the evaluation in all other projects were equivalent to the conclusions below.
The evaluation criteria were effectiveness (How much effort is it to introduce
ReflexML?), single source model (How good can pre-existing models be used for
ReflexML application?) and the quality of results (How good is the quality of
detected violations?).

The analyzed system is a high traffic telecommunication industry web applica-
tion called Mashup Server that is currently up and running. It is being developed
since 2004 and has a code volume of 45,651 lines of code in 804 classes. The soft-
ware architecture is defined and communicated with a UML component model
holding 7 components, 9 interfaces, and 15 dependencies.

The architecture reflexion shown in Fig. 5 is the result of a 2 hour workshop
with the software architect. During this workshop we incrementally enriched a
pre-existing UML component model with reflexion expressions. Each increment
was added in a define-analyze-correct cycle. We first defined a certain mapping
and then analyzed the reported violations. We then used our ReflexML tooling
to analyze the architecture-to-code consistency. If we did not consider a de-
tected violation as an architectural flaw, we either corrected the mappings or
adapted the architecture model. Hereby we detected two required but not yet
defined architecture-level dependencies. Finally, the architecture model has been
enriched with 17 reflexion expressions.

In the years of development, the team has used the following rules to derive
code-level artifacts from architecture-level artifacts:

ReflexML: UML-Based Architecture-to-Code Traceability 355

– For each component there is a top-level package <P>.
– The artifacts of all provided interfaces of a component belong into <P>.
– All component artifacts either belong into <P> but named with suffix Impl

or into a sub-package of <P>.

Due to these rules, nearly all defined reflexion expressions follow common pat-
terns. The pattern to describe the mapping of components if the corresponding
code artifacts are created within sub-packages is:
mashupserver.<P>..* && !mashupserver.<P>.*

If the implementation artifacts are created within the top-level package but
distinguishable by the suffix Impl the following pattern was used:
mashupserver.<P>.*Impl

Architecture-level interfaces are mapped to code with the following pattern
(independent of the variant a component is mapped to code):
mashupserver.<P>.* && !mashupserver.<P>.*Impl

There was one exception to the rules. The code-level artifacts of the com-
ponent Actions were scattered over multiple top-level packages. But they also
have one common characteristic: They are all subtypes of a certain class called
MashupAction. This could also be expressed with the following reflexion expres-
sion (also excluding these classes from other component mappings):
mashupserver.dispatcher.MashupAction+

The tooling we used is based on Eclipse MWE4 and Macker.5 We wrote a
model-to-text transformation that generates Macker rules based on the ReflexML
checks defined in Sect. 4 and a given UML component model where the UML
reflexion profile is applied. The transformation has generated 210 lines of Macker
rule definition from the reflected mashup server architecture model containing
17 reflexion expressions.

Figure 6 depicts the detected violations on architecture elements. A node in
Fig. 6 groups a component and its provided interfaces. Each edge represents
a violation against a ReflexML check. The number of code-level dependencies
causing a violation are noted next to the edge. We discuss the bold edges below.
Table 2 shows the statistics for performing all ReflexML checks on the mashup
server code. Every check from Sect. 4 that has ERROR as one of its potential
results, has in fact signalled ERROR.

The analysis result was discussed with the software architect. ReflexML did
not detect any false positives. But it discovered two major architectural flaws
previously unknown to the developers:

– There are three code-level dependencies that did not have any match in
the architecture. From ModuleConfiguration to Processors, from Services to
ModuleRepository, and from ModuleRepository to Processors. Each of these
dependencies does not make any sense from the architectural perspective.
The architect has decided to have the programmers eliminate them.

4 Modeling Workflow Engine (www.eclipse.org/modeling/emft): A toolset for model
processing including model transformation and text generation.

5 innig.net/macker: An open source tool to perform code-level dependency analysis.

356 J. Adersberger and M. Philippsen

Table 2. Analysis statistics

Number of:

code-level dependencies 7300
errors (total) 207
errors (Check 2) 74
errors (Check 4) 113
errors (Check 7) 7
errors (Check 8) 13

Fig. 6. Architecture violations overview

– Missing separation of interface types and implementation types in the com-
ponent Processors. This is indicated by the high number of incoming
(55+2+2), recursive (48), and outgoing (38+14) violations of component
Processors. The architect decided to have his team refactor the component
accordingly.

ReflexML was a success in this industry project. The effort to introduce Re-
flexML a posteriori was low (2 working hours). The integration of pre-existing
architecture models was possible. They could seamlessly be enriched and used
as input to perform ReflexML checks. No separate model had to be derived. The
quality of the analysis results can be considered as high because ReflexML did
not announce any false positives but signalled major architectural flaws that are
being fixed.

6 Related Work

Several architecture compliance checking methods exist to check an implementa-
tion against an architecture model. [14] and [7] evaluate, compare, and categorize
the different approaches for architecture compliance checking into four groups:
(a) Reflexion Models [9] with high-level models and a declarative mapping to
code. Convergences, divergences and absences are found automatically. Reflex-
ion models are extended in [8] with the ability to define composite (hierarchical)
high-level models. (b) Relation conformance rules are used to declare allowed or
forbidden relations between code elements. [14] refers to the Dependency Struc-
ture Matrix technique as a special case to formulate relation conformance rules.
(c) Component access rules are used to describe public and private types of
code-level components (e.g. a package or namespace). (d) Source Code Query
Languages allow to express code-level constraints based on an abstract code
model. Relation conformance and component access rules can also be formu-
lated by means of a source code query.

ReflexML adopts concepts from all four categories: The reflexion profile is
based on reflexion models. The reflexion expression syntax is a source code query

ReflexML: UML-Based Architecture-to-Code Traceability 357

language. The architecture compliance checks are based on component access
rules and relation conformance rules derived from the reflexion model.

We consider those architecture compliance checking approaches as closely
related that enhance the reflexion model approach with a way to derive the
architecture-to-code traceability. Hence, we compare ReflexML to them and fo-
cus on the requirements defined in Sect. 1. As ReflexML is designed for software
practitioners we also discuss how available tools meet these requirements.

Terra’s domain-specific textual language DCL [17] for architecture compliance
checking combines the reflexion model and the relation conformance rule method.
Relation conformance rules have to be manually derived from a pre-existing
architecture model. DCL does not support a single source architecture model.
Its reflexion expression syntax is powerful and meets all requirements of Sect.
3.2. The supported architecture model is not as semantically rich as a UML
component model because it does not support an interface construct. DCL can
either be used a priori and a posteriori in a project.

Biehl’s approach [2] is based on reflexion models and defines a method focused
on model-driven software development. The mapping is derived while architec-
ture models are transformed into implementation models. A dependency clus-
tering technique maps code elements that are created after the transformation
process to architecture elements. The method uses UML class models and the
according transformation procedures as the single source for compliance check-
ing. Similar to ReflexML no separate model has to be maintained. The mapping
is expressive as it is formulated along the transformation functions. In case of a
code evolution the mapping is stable as long as the (fuzzy) clustering algorithm
is reliable. The architecture is described with a UML class model. However in
our opinion the abstraction level of UML class models is too low for describing
large-scale architectures. Also Biehl et al. do not support an a posteriori ap-
plication because a certain model-driven approach has to be adopted from the
beginning of a project.

Beside these two approaches that did not yet find their ways into publicly
available tools, many commercial and open source tools are available for archi-
tecture compliance checking.6 Table 3 compares them with ReflexML according
their architecture model, their support of single source architecture models, and
shows whether they are open source software.

Other than ReflexML, none of them support a single source architecture model
like a UML component model. For each tool a separate architecture compliance

6 Structure101, headwaysoftware.com/products/structure101,
SonarJ, hello2morrow.com/products/sonarj,
Bauhaus Suite, axivion.com,
Sotograph, hello2morrow.com/products/sotograph,
ConQAT, conqat.in.tum.de/index.php/ConQAT,
Lattix LDM, lattix.com,
Dependometer, sourceforge.net/projects/dependometer,
Macker, innig.net/macker,
XRadar, xradar.sourceforge.net,
Classycle, classycle.sourceforge.net

358 J. Adersberger and M. Philippsen

Table 3. Tool comparison

Product Architecture model Single source models License

structure101 boxes and lines, layers no commercial
SonarJ layers, slices no commercial
Bauhaus Suite boxes and lines, components no commercial
Sotograph layers, components no commercial
ConQAT boxes and lines no open source
Lattix LDM boxes and lines no commercial
Dependometer layers, slices no open source
Macker boxes and lines no open source
XRadar boxes and lines no open source
Classycle boxes and lines, layers no open source
ReflexML components yes open source

checking model has to be derived from an existing architecture model. Most
tools work with semantically poor architecture models like boxes-and-lines or
layers. Only some tools like Sotograph [3] or the Bauhaus Suite support even
semantically rich models comparable to UML component models with constructs
like components, interfaces and connectors.

We do not discuss approaches to architecture-to-code traceability as to our
knowledge there is none that supports architecture compliance checks. But Re-
flexML is inspired by some ideas of that area, e.g., the extension of a common-
purpose architecture model to support the traceability to code [10] or high-level
mapping expressions like OCL used in model weaving [6].

7 Conclusion

Architecture-to-code compliance checking is an important tool to stop a decreas-
ing maintainability because of architecture erosion. In this paper we have pre-
sented ReflexML for architecture compliance checking. It enforces that an archi-
tecture model has to be a valid and complete abstraction of the implementation
structure throughout the whole software development process. A main contribu-
tion of our work is the UML reflexion profile, i.e., an efficient mapping of archi-
tecture elements to code that is more expressive than classic wildcard-based ap-
proaches since it uses AOP type patterns. The main artifacts of UML-based ar-
chitecture development (a UML component model and the corresponding code)
stay the main artifacts during a ReflexML enriched development. The real-world
case study and the running sample application demonstrate that the UML reflex-
ion profile is lightweight, easy-to-use, and applicable. The insufficiencies of other
approaches, i.e., the high effort to introduce and conduct them, are abolished with
ReflexML, even if it is introduced a posteriori. Our second contribution is the set
of constraints and checks that prevent a divergent evolution of architecture and
code. They allow to detect a variety of architecture violations just by decorating

ReflexML: UML-Based Architecture-to-Code Traceability 359

existing component models with reflexion expressions. We are currently working
on integrating ReflexML to various software development tools.

Acknowledgments. This research work is funded by the AIF ZIM program of
the German Federal Ministry of Economics and Technology.

References

1. Avgustinov, P., Hajiyev, E., Ongkingco, N., de Moor, O., Sereni, D., Tibble, J.,
Verbaere, M.: Semantics of static pointcuts in AspectJ. SIGPLAN Not. 42(1), 11–
23 (2007)

2. Biehl, M., Löwe, W.: Automated architecture consistency checking for model driven
software development. In: Mirandola, R., Gorton, I., Hofmeister, C. (eds.) QoSA
2009. LNCS, vol. 5581, pp. 36–51. Springer, Heidelberg (2009)

3. Bischofberger, W., Kühl, J., Löffler, S.: Sotograph - A pragmatic approach to
source code architecture conformance checking. In: Oquendo, F., Warboys, B.C.,
Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 1–9. Springer, Heidelberg
(2004)

4. Dashofy, E.M., Van der Hoek, A., Taylor, R.N.: A highly-extensible, XML-based
architecture description language. In: WICSA 2001: Proc. of the Conf. on Softw.
Architecture (Amsterdam), pp. 103–112 (2001)

5. Feiler, P., Lewis, B., Vestal, S., Colbert, E.: An overview of the SAE architec-
ture analysis and design language (AADL) standard. In: Architecture Description
Languages. IFIP Int. Fed. for Inf. Proc., vol. 176, pp. 3–15 (2005)

6. Groher, I., Voelter, M.: XWeave: models and aspects in concert. In: AOM 2007:
Proc. Intl. Work. Aspect-Oriented Modeling, Vancouver, pp. 35–40 (2007)

7. Knodel, J., Popescu, D.: A comparison of static architecture compliance checking
approaches. In: WICSA 2007: Proc. Conf. Softw. Architecture, Mumbai, pp. 12–21
(2007)

8. Koschke, R., Simon, D.: Hierarchical reflexion models. In: WCRE 2003: Proc. Conf.
Reverse Eng., Victoria, pp. 36–45 (2003)

9. Murphy, G.C., Notkin, D., Sullivan, K.: Software reflexion models: bridging the
gap between source and high-level models. In: SIGSOFT 1995: Proc. Symp. Foun-
dations of Software Eng., Washington, D.C, pp. 18–28 (1995)

10. Murta, L.G., Hoek, A., Werner, C.M.: Continuous and automated evolution of
architecture-to-implementation traceability links. Automated Softw. Eng. 15(1),
75–107 (2008)

11. OMG. UML 2.3 Superstructure Specification. OMG (May 2010)
12. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Commun. ACM 15(12), 1053–1058 (1972)
13. Parnas, D.L.: Software aging. In: ICSE 1994: Proc. Intl. Conf. Softw. Eng., Sor-

rento, pp. 279–287 (1994)
14. Passos, L., Terra, R., Valente, M.T., Diniz, R., Mendonca, N.d.C.: Static

architecture-conformance checking: An illustrative overview. IEEE Softw. 27(5),
82–89 (2010)

15. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17(4), 40–52 (1992)

16. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Reading (2002)

17. Terra, R., Valente, M.T.: A dependency constraint language to manage object-
oriented software architectures. Softw. Pract. Exper. 39(12), 1073–1094 (2009)

Software Is a Directed Multigraph

Robert Dąbrowski, Krzysztof Stencel, and Grzegorz Timoszuk

Institute of Informatics
Warsaw University

Banacha 2, 02-097 Warsaw, Poland
{r.dabrowski,k.stencel,g.timoszuk}@mimuw.edu.pl

Abstract. The architecture of a software system is typically defined as
the organization of the system, the relationships among its components
and the principles governing their design. By including artifacts core-
sponding to software engineering processes, the definition gets naturally
extended into the architecture of a software system and process. In this
paper we propose a holistic model to organize knowledge of such archi-
tectures. This model is graph-based. It collects architectural artifacts as
vertices and their relationships as edges. It allows operations like metric
calculation, refactoring, bad smell detection and pattern discovery as al-
gorithmic transformations on graphs. It is independent of development
languages. It can be applied for both formal and adaptive projects. We
have implemented prototype tools supporting this model. The artifacts
are stored in a graph database. The operations are defined in a graph
query language. They have short formulation and are efficiently executed
by the graph database engine.

Keywords: architecture, graph, metric, model, software.

1 Introduction

As long as there were no software systems, managing their architecture was no
problem at all; when there were only simple systems, managing their architecture
became a mild problem; and now we have gigantic software systems, and man-
aging their architecture has become an equally gigantic problem (to paraphrase
Edsger Dijkstra).

Nowadays software systems are being developed by teams that are: changing
over time; working under time pressure; working over incomplete documentation
and changing requirements; integrating unfamiliar source-code in multiple de-
velopment technologies, programming languages, coding standards; productively
delivering only partially completed releases in iterative development cycles.

When at some point development issues arise (bugs, changes, extensions),
they frequently lead to refactoring of the software system and the software pro-
cess. Even if the issues get addressed promptly, they often return in consecutive
releases due to volatile team structure, insufficient flow of information, inability
to properly manage architectural knowledge about the software system and the
software process.

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 360–369, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Software Is a Directed Multigraph 361

Unsurprisingly such challenges have already been identified and software
engineering is focused on their resolution.

In particular there emerged a number of software development methodologies
(e.g. structured, iterative, adaptive), design models (e.g. Entity Relationship Di-
agram, Data Flow Diagram, State Transition Diagram), development languages
(e.g. functional, object-oriented, aspect-oriented) and production management
tools (e.g. issue trackers, build and configuration managers, source-code analyz-
ers). Although they address important areas, it is still a challenge to integrate
those methodologies, standards, languages, metrics, tools into a consistent envi-
ronment. Such an environment should (1) include all software system and soft-
ware process artifacts; (2) identify their dependencies; (3) facilitate systematic
build of deliverables. Furthermore, it should be resilient to changes of the devel-
opment team. This property can be achieved provided all architectural knowledge
is preserved in this environment’s repository.

For software practitioners this current lack of integration of architectural
knowledge is a historical condition: while software was limited to a small number
of files delivered in one programming language and built into a single executable,
it was possible to browse the artifacts in a list mode (file by file; or procedure
by procedure). Next, as software projects evolved to become more complex and
sophisticated, the idea of a software project organized according to a tree (fold-
ers, subfolders and files; or classes, subclasses and methods) emerged to allow
browsing artifacts in a hierarchical approach.

This is no longer enough. We believe that although software engineering is go-
ing in the right direction, the research will lack proper momentum without a new
sound model to support integration of current trends, technologies, languages. A
new vision for architectural repository of software system and software process
is required and this paper aims to introduce one in order to trigger a discussion.

Our concept can be summarized as follows. All software system and soft-
ware process artifacts being created during a software project are explicitely
organized as vertices of a graph (being the next step after the list and tree) con-
nected by multiple edges that represent multiple kinds of dependencies among
those artifacts. The key aspects of software production like quality, predictabil-
ity, automation and metrics are easily expressible in graph-based terms. The
integration of source code artifacts and process artifacts in a single model opens
new possibilities. They include e.g. defining new metrics and qualities that take
into account all architectural knowledge and not only the source code.

This concept of a graph-based model for software and software process has
been briefly anounced in [4]. In this paper we present a detailed definition of
the model and demonstrate by example that its implementation if feasible using
graph databases.

The rest of the paper is organized as follows. In Section 2 we analyze the
background that motivated our approach. In Section 3 we provide a definition
of the graph-based model for architectural knowledge management. In Section 4
we describe our prototype implementation using a graph database. Section 5
concludes and enumerates challenges for further research.

362 R. Dąbrowski, K. Stencel, and G. Timoszuk

2 Related Work

The idea of software development described in this paper is not an entirely novel
one. It has been contributed to by several existing approaches and practices.

Software engineering strives for quantitative assessment of software quality
and software process predictability. Typically this is achieved by different met-
rics. Frequently there are many contradicting definitions of a given metric (i.e.
they depend on the implementation language). It has been suggested by Mens
and Lanza [11] that metrics should be expressed and defined using a language-
independent metamodel based on graphs. Such graph-based approach allows for
an unambiguous definition of generic object-oriented or higher-order metrics.

Also Gossens, Belli, Beydeda and Dal Cin [7] considered view graphs for rep-
resentation of source code. Such graphs are convenient for program analysis and
testing at different levels of abstraction (e.g. white-box analysis and testing at
the low level of abstraction; black-box analysis and testing at the high level
of abstraction). A graph-based approach integrates the different techniques of
analysis and testing.

Modern software models often describe systems by a number of (partially)
orthogonal views (e.g. state machine, class diagram). Abstract models are often
transformed into platform-specific models, and finally into the code. During such
transformations it is usually not possible to keep a neat separation into different
views (e.g. the specification language of the target models might not support all
such views). The target model, however, still needs to preserve the behavior of the
abstract model. Therefore, model transformations have to be capable of moving
behavioral aspects across views. Derrick and Wehrheim [5] studied aspects of
model transformations from state-based views (e.g. class specifications with data
and methods) into protocol-based views (e.g. process specifications on orderings
of methods) and vice versa. They suggested that specification languages for
these two views should be equipped with a joint, formal semantics which enables
a proof of behavior preservation and consequently derives conditions for the
transformations to be behavior-preserving. Also Fleurey, Baudry, France and
Ghosh [6] have observed that it is necessary to automatically compose models to
build a global view of the system. The graph-based approach allows for a generic
framework of model composition that is independent from a modeling language.

The use of components is beneficiary for the development of complex software
systems. However, component testing is still one of the top issues in software en-
gineering. In particular, both the developer of a component and the developer
of a system, while using components, often face the problem that information
vital for certain development tasks is not available. One of its important conse-
quences is that it might not only obligate the developer of a system to test the
components used, it might also complicate these tests. Beydeda and Gruhn [2]
have focused on component testing approaches that explicitly respect this lack
of information during development.

As Kühne, Selic, Gervais and Terrier [9] have noticed, an automated tran-
sition from use cases to activity diagrams would provide significant, practical

Software Is a Directed Multigraph 363

help. Additionally, traceability could be established through automated trans-
formation, which could then be used to relate requirements to design decisions
and test cases. They proposed an approach to automatically generate activity
diagrams from use cases while establishing traceability links. Such approach has
already been implemented (e.g. RAVEN, ravenflow.com).

Osterweil [12] perceived software systems as large, complex and intangible
objects developed without a suitably visible, detailed and formal descriptions of
how to proceed. He suggested that not only the software, but also software pro-
cess should be included in software project as programs with explicitly stated de-
scriptions. According to Osterweil, software architect should communicate with
developers, customers and other managers through a software process program,
indicating steps that are to be taken in order to achieve product development or
evolution goals. Osterweil postulates that developers would benefit from com-
municating by software process programs, as reading them should indicate the
way in which work is to be coordinated and the way in which each individual’s
contribution is to fit with others’ contributions. In that sense software process
program would be yet another artifact in the graph we propose in this paper.

An RDF (Resource Description Framework) model [10] is also worth mention-
ing. The model presented in this paper is somehow similar to RDF idea. RDF
defines triples subject-predicate-object which are similar to graph relationships
(triples: vertex-egde-vertex). It is usually stored in textual formats (XML or N3
format). Several languages have already been proposed to query this model, like:
Sesame [3] and SPARQL [13].

3 Model

In this section we introduce a graph-based model for software engineering me-
thodologies. The model is based on directed multigraphs.

Definition 1. Let S be a software-intensive system. Let A denote the set of
all types of artifacts that are created during construction of S, let D denote the
set of all types of dependencies among those artifacts. In the remaining part we
assume A,D to be given and denote S = S(A,D).

The set A is a dictionary of attributes that annotate artifacts created during
development of S. For the simplicity of reasoning we assume A to be predefined
in the rest of the paper. There remains a challenge to derive a representative and
consistent classification (a superset) of such attributes, though during a given
software project only a subset of A would be typically used.

Example 1. Typically, A may contain some of the following values: class; coding
standard; field; grammar; interface; library; method; module; requirement; test
suite; use case; unit test.

Analogically, the set D is the dictionary of labels describing dependencies traced
among the artifacts. Again, in the remainder of this paper we assume it to be
predefined, although the set of actual dependencies may be software-specific and
derivation of a common superset remains a challenge.

364 R. Dąbrowski, K. Stencel, and G. Timoszuk

Example 2. Typically, D may contain some of the following values: apply to, call,
contain, define, depend on, generate, implement, limit, require, return, override,
use, verify.

Definition 2. The software graph G is an ordered triple G(S) = (V ,L, E), where
V is the set of vertices that represent the artifacts of software system or software
process, L ⊆ V×A is the labeling of vertices with their attributes, E ⊆ V×D×V
is the set of directed edges that trace dependencies between artifacts.

Example 3. Typically, E may contain some of the following values: a class calls
a class; a class contains a field; a class contains a method; a class implements
an interface; a coding standard limits a module; a grammar generates a class; a
method calls a method; a module depends on a module; a requirement defines
a module; a unit test verifies a method.

G is a multigraph, that is there can be more than one edge in E from one vertex
in V to another vertex in V . G is a directed graph, that is forward and backward
relations traced among artifacts are distinguished.

Example 4. Figure 1 shows an example software graph G where A = { Abstract
class, Class, Field, Method }, D = { CALL, CONTain, EXTend, OVERride }.
The model integrates all artifacts created during a software project. It provides
a graph-based abstraction of software engineering methodology. Being graph-
based, the abstraction is well recognized in software community; in particular
for many problems there already exist efficient graph algorithms.

Fig. 1. An example software graph

Software Is a Directed Multigraph 365

We provide now several examples to demonstrate how the model can be ap-
plied to collect software architectural knowledge and to analyze its properties.
For this purpose, we introduce some model transformations. The list of transfor-
mations presented in this paper is not exclusive and there remains a challenge
to provide a canonical classification of such operations (including basic opera-
tions like adding or deleting graph nodes, or graph edges). However they can
be summarized by the following intuitive set of main transformation types: an
evaluation that maps a graph into a real number; a selection that maps a graph
into one of its subgraphs; and a transition that maps a graph into a new graph
(and in particular may introduce new vertices or edges).

First we define the diagram transformation that limits the graph to a given
scope of artifacts and dependencies. The transformation is particularly useful
for providing human-convenient representation of the graph, as in a non-trivial
software project the model itself may grow large.

Definition 3. For a given software graph G = (V ,L, E) and subsets of its ar-
tifact types A′ ⊆ A and dependency types D′ ⊆ D, its diagram is a selection
G|A′,D′ = (V ′,L′, E ′), where V ′ = {v ∈ V|∃a∈A′(v, a) ∈ L}, L′ = V ′ × A′ and
E ′ = E ∩ (V ′ × L′ × V ′).

In particular, this transformation allows generating the class and entity rela-
tionship diagrams directly from the model.

Example 5. Figure 2 shows the graph G1 that is a selection G|A′,D′ where A′ = {
Abstract class, Class }, D′ = { Contain, Extend }.

Fig. 2. The result of an example diagram transformation

Software architects may choose to stop distinguishing certain differences in ar-
tifact or dependency types (adapt a higher level of abstraction, e.g. hide fields
and methods while preserving class dependencies). For this purpose we define
the map transformation. The transformations can be combined, e.g. the map
transformation combined with the diagram transformation is useful for gener-
ating visual representation (e.g. two or three-dimensional) of a given software
graph.

366 R. Dąbrowski, K. Stencel, and G. Timoszuk

Definition 4. For a given software graph G = (V ,L, E) and t : D×D
→ D, its
map is a transition G|t = {V ,L, E ′}, where E ′ is the set of new edges resulting
from a transitive closure of t calculated on the neighboring edges of vertices in G.

Example 6. Figure 3 shows the graph G2 that is the result of a combination of a
map and a selection Gf |A′,D′ where A′ = { Abstract class, Class }, D′ = { Call,
Contain, Extend } and f : { Call, Contain, Extend }
→ { Depend }.

Fig. 3. The result of the example transformations composed of a map and a selection

Software architects need to assess the model quantitatively. For this purpose,
we introduce metric transformations. The graph-based approach not only allows
using existing metric that can be efficiently calculated using graph algorithms,
but also allows designing new metrics. The metrics that integrate both system
and process artifacts are particularly interesting.

Definition 5. For a given software graph G = (V ,L, E), its metric is an eval-
uation m : V, L, E
→ R (R being real numbers) which can be calculated by a
graph algorithm on V ,L, E.

Sometimes vertices that meet certain conditions need to be discovered. For this
purpose we introduce detection transformations.

Definition 6. For a given software graph G = (V ,L, E) and f : V
→ bool,
its detection is a selection Gf = (V ′,L, E ′), where V ′ = {v ∈ V|f(v) = true},
E ′ = (V ′ × L× V ′).

This way discovery of bad smells can be conducted using detection transforma-
tion. In particular, we can easily find classes that define own fields but do not
redefine the comparison method.

Example 7. Figure 4 shows the graph G3 that is a detection G|f where f(v)
evaluates to true iff: v is of type Class and does have a neighbor of type Field
and does not have a neighbor equals() of type Method.

Software Is a Directed Multigraph 367

Fig. 4. A bad smell detected

4 Model Implementation

We have decided to implement the repository with a graph database. Graph
databases are a member of the family of NoSQL databases that directly store
unconstrained graph structures. Therefore they are well-suited for the needs of
our approach. Graph databases provide efficient traversal between the vertices,
called index-free adjacency. The graph structure in such a database is explicit,
thus joins and index probes are not necessary to walk the graph from one vertex
to another. This facility is important for model browsing tools and IDEs.

Graph databases provide also implementations of query languages and trans-
actional operations. A query language is needed to easily define and efficiently
execute graph transformations sketched in Section 3. Transactional operations
are necessary for large teams who work concurrently on the same repository.

For our implementation we have selected an open-source graph database neo4j
(neo4j.org). Neo4j offers high-availability facilities that make it feasible to build
repositories for large projects. To express model operations we have selected a
specific graph query language Gremlin (github.com/tinkerpop/gremlin). Gremlin
is a path language similar to XPath, however a number of additional facilities
like backtrack and loops make Gremlin Turing-complete. Thus, we can code in
Gremlin any calculation, selection and transition as described in Section 3.

We have implemented in Gremlin a number of graph transformations. As an
example we show a selection of classes with a specific bad smell: namely classes
that add own fields but do not redefine the comparison method equals. The result
of this transformation applied to the graph from Figure 1 is shown on Figure 4.

The respective query in Gremlin follows.
As this code shows, a relatively complex search condition has a concise for-

mulation in Gremlin.

g = new Neo4jGraph(’Repository’)\
g.V{ it.TYPES_KEY == ’[JAVA_CLASS]’\
&& !it.outE(’CONTAINS’).inV{it.NAME_KEY==’equals’}\
&& it.outE(’CONTAINS’).inV{it.TYPES_KEY==’[JAVA_FIELD]’} \
&& it.outE(’EXTENDS’).inV.loop(2){\

!it.object.outE(’CONTAINS’).inV{it.NAME_KEY==’equals’} } \
}.NAME_KEY

368 R. Dąbrowski, K. Stencel, and G. Timoszuk

V is the collection of all vertices of graph g. The query performs a filter to this
collection. The first part of the condition selects nodes that are Java classes. The
second drops all nodes that stretch an edge contains towards a node describing a
method equals. The third keeps only those classes that have own Java field. The
forth is the most complex since it utilities Gremlin’s loop step. This conditions
traverses upwards the inheritance lattice and stops when it finds a class having
a method equals. Only when such an ancestor is found, the tested class is added
to the result of the selection. When this step is finished, the query projects its
result to the value of the NAME_KEY property. Eventually, we get the following
answer conformant with the contents of Figure 4.

==>Motor
==>Truck

5 Conclusions

Following the research on architecture of software [8] and software process, we
propose an approach that avoids separation between software and software pro-
cess artifacts as the one worth taking [12]. Implementation of such approach has
already became feasible - starting with a graph-based model and using graph
databases [1] as the foundation for artifact representation.

The concept is not an entirely novel one, rather it should be perceived as an
attempt to support existing trends with a sound and common foundation. A
holistic approach is required for current research to gain proper momentum, as
despite many advanced tools, current software projects still suffer from a lack of
visible, detailed and complete setting to govern their architecture and evolution.

We are also aware that the scope of research required to turn this idea into
an actual contribution to software engineering requires further work. In partic-
ular, the following research areas seem to be especially inspiring: assessing a
representative number of existing projects in an effort to provide a systematic
classifications of artifact types A and dependency types D; perhaps the arti-
fact types and dependency types should evolve rather to be trees then mere
lists; designing metric (in graph-based terms, so they can be calculated by graph
algorithms) to assess software quality and software process maturity; implement-
ing graph algorithms to calculate those metrics; classifying existing software and
its process according to the model, in particular calculating metric in order to
assess software quality and software process maturity, which would eventually
allow comparing software projects with one another; defining UML diagrams
as reports obtained from the integrated software graph as a combination of its
transformations; precise definitions for the model and its components (views,
maps), new components enriching the model; productive implementation of the
graph based on graph databases; a project query language that would operate
on the graph model and allow architects and developers to conveniently filter,
zoom and drill-down the project’s architectural information.

Software Is a Directed Multigraph 369

References

1. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Computing
Surveys 40(1) (2008)

2. Beydeda, S., Gruhn, V.: State of the art in testing components. In: Proceedings of
Third International Conference on Quality Software, pp. 146–153. IEEE Computer
Society, Los Alamitos (2004)

3. Broekstra, J., Kampman, A., Harmelen, F.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In: Proceedings of the First International
Semantic Web Conference, pp. 54–68 (2002)

4. Dąbrowski, R., Stencel, K., Timoszuk, G.: Software is a directed multigraph (and
so is software process). arXiv:1103.4056 (2011)

5. Derrick, J., Wehrheim, H.: Model transformations across views. Science of Com-
puter Programming 75(3), 192–210 (2010)

6. Fleurey, F., Baudry, B., France, R., Ghosh, S.: A generic approach for automatic
model composition. In: Proceeding of MoDELS Workshops, pp. 7–15 (2007)

7. Gossens, S., Belli, F., Beydeda, S., Dal Cin, M.: View graphs for analysis and
testing of programs at different abstraction levels. In: Proceedings of the Ninth
IEEE International Symposium on High-Assurance Systems Engineering, pp. 121–
130. IEEE Computer Society, Los Alamitos (2005)

8. Kruchten, P., Lago, P., van Vliet, H., Wolf, T.: Building up and exploiting archi-
tectural knowledge. In: Proceedings of the 5th Working IEEE/IFIP Conference on
Software Architecture, pp. 291–292. IEEE Computer Society, Los Alamitos (2005)

9. Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.): ECMFA 2010. LNCS,
vol. 6138. Springer, Heidelberg (2010)

10. Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax
specification. W3C Recommendation (1999)

11. Mens, T., Lanza, M.: A graph-based metamodel for object-oriented software met-
rics. Electronic Notes in Theoretical Computer Science 72(2), 57–68 (2002)

12. Osterweil, L.: Software processes are software too. In: Proceedings of the 9th Inter-
national Conference on Software Engineering, pp. 2–13. IEEE Computer Society,
Los Alamitos (1987)

13. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Rec-
ommendation (2008)

14. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipula-
tion. Communications of the ACM 16, 372–378 (1973)

15. Hasse, P., Broekstra, J., Eberhart, A., Volz, R.: A comparison of RDF query lan-
guages. The Semantic Web (2004)

An Architectural Approach to End User Orchestrations

Vishal Dwivedi1, Perla Velasco-Elizondo2, Jose Maria Fernandes3,
David Garlan1, and Bradley Schmerl1

1 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
2 Centre for Mathematical Research (CIMAT), Zacatecas, ZAC, 98060, Mexico

3 IEETA/DETI, Uni. of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal

Abstract. Computations are pervasive across many domains, where end users
have to compose various heterogeneous computational entities to perform pro-
fessional activities. Service-Oriented Architecture (SOA) is a widely used mech-
anism that can support such forms of compositions as it allows heterogeneous
systems to be wrapped as services that can then be combined with each other.
However, current SOA orchestration languages require writing scripts that are
typically too low-level for end users to write, being targeted at professional pro-
grammers and business analysts. To address this problem, this paper proposes
a composition approach based on an end user specification style called SCORE.
SCORE is an architectural style that uses high-level constructs that can be
tailored for different domains and automatically translated into executable con-
structs by tool support. We demonstrate the use of SCORE in two domains - dy-
namic network analysis and neuroscience, where users are intelligence analysts
and neuroscientists respectively, who use the architectural style based vocabulary
in SCORE as a basis of their domain-specific compositions that can be formally
analyzed.

1 Introduction

Professionals in domains such as scientific computing, social-sciences, astronomy,
neurosciences, and health-care are increasingly expected to compose heterogeneous
computational entities to perform and automate their professional activities. Unlike pro-
fessional programmers, these end users write programs to support the goals of their do-
mains, where programming is a means to an end, not the primary goal [7]. However,
studies have shown that such users spend about 40% of their time on programming ac-
tivities [5], meaning that a large community of people are spending a lot of their time
on programming tasks rather than on tasks directly related to their domain.

While in some cases end users may find it sufficient to use a single tool to accomplish
their goals, very often one single tool may not provide all functionalities. Hence, the end
users must compose functions from a number of tools, libraries, and APIs. To define
such compositions, they need to either write glue code in the form of executable scripts,
or use special-purpose tools that provide GUIs that generate such code, both of which
require significant technical knowledge that they often lack.

Today, there is a large variety of approaches to support the composition of com-
putational elements; however, they can be classified into two main categories: i) code
scripts, and ii) orchestrations. However, neither of these fit naturally to the end users’

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 370–378, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

An Architectural Approach to End User Orchestrations 371

(b)usr/local/fsl/bin/flirt/ −ref
standard
−in example_func
−out example_func2standard
−omat example_func2standard.mat
−cost corratio −dof 12
−searchrx −90 90
−searchry −90 90
−searchrz −90 90
−interp trilineal

(a)

...

Assign

While

Sequence

Wait

Invoke

Catch

Throw

Sequence

Assign

Assign

Invoke

Reply

Sequence

Invoke

Invoke

Fig. 1. Common modes of composition: (a) code scripts and (b) orchestrations

needs. For instance, a typical code script for neuroscience workflows (as shown in
Fig. 1a) requires writing program calls to describe analyses. This not only requires
knowledge of the scripting language, but also other technical details, e.g. the param-
eters used by each program call. Orchestration languages such as BPEL (as shown in
Fig. 1b) offer an improvement over scripts by providing higher level constructs (e.g.,
services as opposed to command-line parameters). However, they too have a low level
of abstraction, and are still close to program code. For instance, such BPEL scripts re-
quire specification of control logic (e.g. Sequence, While), data assignment (i.e. Assign)
and error handling constructs (i.e. Throw). As can be seen, both approaches are too low
level for technically naı̈ve end users and therefore tedious and error-prone. For both
these cases, detection of syntactic and semantic issues has to be performed manually.
Although, at times GUIs and type-checkers aid syntactic verification, finding semantic
issues that are more domain-specific is difficult because specifications written in terms
of low-level code constructs are not convenient for describing semantic information.
Additionally, the analysis of other relevant properties such as performance or deadlock
is even harder to support on script code. This often leads to technically-nave end users
resorting to opportunistic programming and copy-paste, wherein they make frequent
mistakes [2]. In either case, creating compositions is difficult for end users because of:

- Complexity due to low-level details: Existing languages and tools require end users
to have knowledge of a myriad of low-level technical detail such as parameters, file
systems, paths, operating systems, etc.

- Lack of support for error resolution: Few mechanisms exist today for helping users
detect syntactic and semantic problems with their compositions. Further, identifying
and fixing quality attribute problems (such as security and privacy issues) in their spec-
ifications is difficult for end users.

- Conceptual mismatch: End users often think in terms of tasks they want to accom-
plish, while current composition mechanisms force them to think in terms of technology
with which the task is implemented. For example, “Remove Image Noise” as opposed
to calling the specific program(s) to perform this function.

372 V. Dwivedi et al.

We believe an architectural specification can alleviate the above problems by providing
domain-specific abstractions that are close to the way that end users think about their
problems, but that can still be mapped to code that can be executed on traditional plat-
forms such as SOAs. In this paper, we propose how this can be achieved using architec-
tural styles [14] that provide an abstract vocabulary of components (and the constraints
that direct their usage) that can be used by end users to design compositions.

2 Design Approach

We propose a dataflow-based architectural style called SCORE (Simple Compositional
ORchestration for End users) that can be used for assembling computations in various
domains. SCORE provides a vocabulary that can be tailored for different domains and
does not require writing low-level code. Instead of using directly executable scripts,
we propose using multi-layered styles for representing workflows, where each layer
handles different concerns. The use of such styles gives us leverage to use existing
architectural analysis techniques to provide advice and guarantees to users about their
compositions via various formal analyses. The end users can specify their compositions
in terms of an assembly of high-level functions. These functions can be translated into
lower-level orchestrations using tool support.

2.1 Using Architectural Styles as a Basis for Abstraction and Refinement

Software architecture provides the high-level structure of a system, consisting of com-
ponents, connectors, and properties [14]. While it is possible to model the architecture
of a system using such generic high-level structures, it is crucial to use a more spe-
cialized architectural modeling vocabulary that targets a family of architectures for a
particular domain. This specialized modeling vocabulary is known as an architectural
style [14] and it defines the following elements:

- Component types: represent the primary computational elements and data stores.

- Connectors types: represent interactions among components.

- Properties: represent semantic information about the components and connectors.

- Constraints: represent restrictions on the usage of components or connectors, e.g.
allowable values of properties, topological restrictions.

Acme [1] is an architectural definition language (ADL) that provides support to define
such styles. Acme’s predicate-based type system allows styles to inherit characteristics
from other styles. When a style element (or the style itself) inherits other elements,
not only does it inherit the properties, but also the constraints defined on its usage.
We find this characteristic of Acme useful for many of the problems that we discussed
in Section 1. Specifically, for mapping a functional concept to its technical solution,
styles that determine functional vocabulary can be inherited and refined to the styles
that consist of components and implement them.

An Architectural Approach to End User Orchestrations 373

Function

Input Port
Output Port

A composition using a high−level
workflow style

Data Translate Service 1

Service 3

Service 2

Data Fetch

Function 1 Function 2 Function 3

Data flow

Data Store

orchestration style

Remote ServiceRelational Store CSV Data

A Workflow

Data Fetch

An Orchestration

Data Translate Service

Data flow

Service Invocation

Data Fetch Service

Data Store Input Port
Output Port

A composition using a low−level

Fig. 2. An illustration of a mapping between a workflow to an orchestration style

For example, a high-level workflow, as in Fig. 2, can be mapped to a low-level or-
chestration if both of these are specified using architectural styles that follow inheritance
relationships. The workflow in Fig. 2 composes three functions with different input and
output data requirements and location constraints; its corresponding low-level orches-
tration includes services for individual functions and additional components for data
translation and data fetching to compose a sound service orchestration. Note that this
is not a 1-to-1 mapping between components, but it is derived from rules. For instance,
the port properties of components DataStore and Function 1 in the workflow can point
to a difference in data-type and location, leading to insertion of two components that
can address the mismatch.

Although simple, this example gives a glimpse of how abstract models can be helpful
to end users by providing just the necessary details allowing for a simpler end user
specification. These abstract models can be translated into an executable specification
using additional properties and constraints. SCORE is based on this approach, where
end users can use a high-level style to compose functions that can be compiled into low-
level orchestration. We call this functional composition an ‘end user orchestration’.

3 SCORE

SCORE is an architectural style that provides a restricted vocabulary for the specifi-
cation of workflows in a dataflow like specification. It abstracts the specification of
workflows to the essential types and the properties of concern that match the computa-
tion model required by (end user) scientific communities. The SCORE style specifies
rules that are evaluated at design time, enforcing restrictions on the kinds of components
users can compose. Writing these rules involves some degree of technical expertise, but
these are associated with the architectural style, which is written once by a designer,
and then used by end users for modeling workflows based on the style.

374 V. Dwivedi et al.

3.1 SCORE Vocabulary

Table 1 shows SCORE architectural types, functions and constraints that are used to
specify workflows using SCORE. These constrants are based on Acme’s first order
predicate logic, where they are expressed as predicates over properties of the workflow
elements. The basic elements of the constraint language include constructs such as con-
junction, disjunction, implication and quantification. An important role of the SCORE
style description is to define the meaning of semantic constructs in terms of the syn-
tactic properties of the style elements. We achieve this, at least to a certain extent, by
enforcing domain-specific constraints. These not only prohibit end users from creating
inappropriate service compositions, but also promote soundness by ensuring feedback
mechanism via marking errors when a component fails to satisfy any such constraints.

Table 1. SCORE composition elements

Components Description

DataStore Components for Data-access (such as file/SQL data-access)

LogicComponent Components for conditional logic (such as join/split etc)
Service Components that are executed as a service call
Tool Components who’s functionality is implemented by tools
UIElement Special-purpose UI activity for human interaction
Connectors Description
DataFlowConnector Supports dataflow communication between the components.
DataReadConnector Read data from a DataStore Component
DataWriteConnector Write data to a DataStore Component
UIDataFlowConnector Provides capabilities to interact with UIElements
Ports Description
configPort Provides an interface to add configuration details to components
consumePort Represents data-input interface for a component.
providePort Represents data-output interface for a component.
readPort Provides data-read interface for DataStore component
writePort Provides data-write interface for DataStore component
Roles Description
consumerRole Defines input interface to DataFlow/UIDataflow connectors
providerRole Defines output interface to DataFlow/UIDataflow connectors
dataReaderRole Defines input interfaces for the DataRead/DataWrite connectors
dataWriterRole Defines output interfaces for the DataRead/DataWrite connectors
Acme Functions Description
Workflow.Connectors The set of connectors in a workflow
ConnectorName.Roles The set of the roles in a connector
self.PROPERTIES All the properties of a particular element
size() Size of a set of workflow elements
Invariant A constraint that can never be violated
Heuristic A constraint that should be observed but can be selectively violated
Constraint types Example
Structural Checking that connectors have only two roles attached

rule onlyTwoRoles = heuristic size(self.ROLES) = 2;
Structural Checking if a specific method of the service called exists

rule MatchingCalls = invariant forall request:
!ServiceCallT in self.PORTS |exists response:
!ServiceResponseTin self.PORTS|
request.methodName == response.methodName;

Property Checking if all property values are filled in
rule allValues = invariant forall p in self.PROPERTIES
| hasValue(p);

Membership Ensuring that a workflow contains only 2 types of components
rule membership-rule = invariant forall e: Component
in self.MEMBERS |declaresType(e,ComponentTypeA) OR
declaresType(e,ComponentTypeB);

An Architectural Approach to End User Orchestrations 375

Table 2. Types of analyses

STRUCTURAL ANALYSIS TYPE
Data Integrity Data-format of the output port of the previous Predicate based

connector matches the format of the input port
Semantic correctness Membership constraints for having only limited Predicate based

component types are met
Structural soundness All Structural constraints are met, and there are:

- no dangling ports Predicate based
- no disconnected data elements
DOMAIN-SPECIFIC ANALYSES TYPE

Security/Privacy Identify potential security/privacy issues Program based
Analysis based on rules
Order Analysis Evaluate if ordering of two services makes sense Program based

Properties and constraints on architectural elements can be used to analyze systems
defined using SCORE. Table 2 displays some examples of analyses that are built using
SCORE properties, such as analyzing a workflow for structural soundness, and various
domain-specific analyses based on workflow properties. Some of the examples of such
analyses written in Acme ADL are presented in [4]. The rules for these analyses are
written as predicates that are analyzed for correctness while end users design workflows.

4 SCORE in Practice

As shown in Fig. 3, SCORE can be specialized to various domains through refinement
and inheritance. This requires construction of sub-styles that extend the basic SCORE
dataflow style by adding additional properties, domain-specific constraints, and rules
that allow the correct construction of workflows within that domain. For our initial pro-
totype we have defined sub-styles for a couple of domains - neuroscience and network
analysis, that we use for modeling workflows in these two domains.

For the neuroscience domain, we experimented with using SCORE for defining
workflows that can automate FMRI 1 data pre-processing steps for which neurosci-
entists currently write detailed code-scripts (as shown in Fig. 1a), replacing them with a
tool-assisted workflow (shown in Fig. 4) that is based on SCORE type system. SCORE
provides the basic functional vocabulary for constructing workflows, while the low-
level styles extend this dataflow-based vocabulary to include additional details about
how tools like FSL 2 execute these high-level functions. Thus, not only does SCORE
help to define neuroscience workflows at a functional level, it supports analysis such as
checking for ordering, and security based on various domain-specific constraints. Fig. 4
for instance, gives an example where one such analysis has gone wrong because of the
inappropriate ordering of services in the defined workflow.

Similarly, SCORE was also used to model workflows for dynamic network analysis
- a domain that involves creating network models from unstructured data, and then use
those models to gain insight about social phenomena through analysis and simulation.
This was primarily used for our large SOA based platform named SORASCS [13] that

1 FMRI (functional magnetic resonance imaging) is a neuroimaging technique in the neuro-
science domain to understand the behavior of the human brain.

2 The FSL brain imaging tool-suite: www.fmrib.ox.ac.uk/fsl

376 V. Dwivedi et al.

UIElement

NeuroScience
Family

SCORE Family

Third−party

Family

Tools

Service

SORASCS

Family

Services
& Tools

Workflow
fslmathfslstats

fslroi

FSL
Family

mcflirtbet2 flirt susan

slice

Tool
Logic

ComponentService

fsl_tsplot

Normalize

Registration Filtering
SpatialAlign

...

...

...
AutoMap

SORASCS

Temporal
Filtering

Segmentation Task

Extractor
Text

Analysis
Network

Visualizer Procedures

FunctionTool

Service
Reporting

Service
Data

ORA Construct

DataStore

VoluneData

Fig. 3. Style derivation by inheritance

FSL

flirt −ref standard −in ${2} −out $
{input_in_standard} −omat ${input2standard}.mat$
−cost corratio −dof 12 −searchrx −90 90 −
searchry −90 90 −searchrz −90 90 −interp
trilinear

hp=‘echo "scale=10;100/${3}" | bc‘
lp=‘echo "scale=10;3/${3}" | bc‘
fslmath ${2} −bptf ${lp} −1 −mas mask ${6}

fslmath ${2} −kernel gauss ${sigma} −fmean ${5}

bet2 ${2} ${4} −f ${3} −n −m

flirt

Service Implementation Components

fslroi

mcflirt

bet2

fslmath

Fig. 4. A pre-processing workflow with an ordering problem

provides an end user friendly SOA based platform to analysts to combine services from
various tools in the intelligence analysis domain.

5 Related Work

SCORE can be characterized as providing an abstract vocabulary for composing com-
putations, which can be analyzed for both syntactic and semantic errors, and reduces
the conceptual mismatch between end user’s functional vocabulary and low-level code
constructs (required by current composition mechanisms). We use this characterization
to compare SCORE with the related work.

Abstraction: UML-based languages like BPMN have been widely used for document-
ing abstract compositions. However, their primary use-case has been documentation and
not execution. They do not support analysis, and when used to capture details tend to

An Architectural Approach to End User Orchestrations 377

be extremely complicated [10]. There have been other efforts such as SAS language [3]
for modeling functional and QoS requirements by Esfahani et al at, and MDA based ap-
proaches [9] for composition using SOA profiles. However, such ontologies and profiles
don’t scale and lack the capability to be extended across different domains. SCORE in
comparison, supports functional composition that can be refined, and compiled to low
level specifications enabling an easier composition.

Error resolution: Most of the current composition languages provide type-checkers
for syntactic verification, but they lack capabilities to resolve domain-specific errors.
Almost all such composition languages have a relatively fixed schema that don’t al-
low adding additional attributes that can be useful for expressing domain-specific con-
straints. In particular, the focus of most of these approaches has been to analyze sound-
ness [11], concurrency [8] or control flow errors [15]. In comparison, SCORE pro-
vides support for adding properties and constraints, allowing designers to write domain-
specific analyses that other languages cannot support.

Conceptual mismatch: Domain-specific compositions have been used for various sci-
entific dataflow languages such as SCUFL in Taverna [6], and LONI Pipeline [12] for
neurosciences. However, most of these approaches have a fixed type system that cannot
be extended or refined as we do in SCORE. One of the benefits of such refinement is
that the same set of high-level styles can be extended to other domains - for instance,
in our case dynamic network analysis, and neurosciences share a common model of
computation, but have no similarity in terms of design concepts.

6 Conclusions and Future Work

In this paper we proposed an architectural-style based approach for service composition
using an end user specification style called SCORE. The goal of SCORE is to address
the requirements of end users who are primarily concerned with composition of com-
putational elements and the analysis of the resulting compositions, but have limited
technical expertise to write detailed code.

The tool support constructed using SCORE component types, allows the visual com-
position of tools, services and data that can be executed by a run-time platform. Al-
though, style-based composition helps to constrain the usage of the component types,
it is still a challenge to design an optimal type system for a domain; however, such an
upfront investment by style designers could be helpful for end users who can use such
a family of component types in their tools. As a future work, we would like to extend
SCORE to other domains, and support new types of analyses. We are also working
on the problem of mismatch repair given the domain-specific constraints. These would
require generating alternative compositions based on the constraints of the styles.

Acknowledgments. This work was supported in part by the Office of Naval Research
(ONR-N000140811223), and the FCT Portuguese Science and Technology Agency
(under the CMU-Portugal faculty exchange program). Additional support was pro-
vided by the Center for Computational Analysis of Social and Organizational Systems

378 V. Dwivedi et al.

(CASOS). The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either expressed
or implied, of the Office of Naval Research, or the U.S. government.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transactions on
Software Engineering and Methodology 6, 213–249 (1997)

2. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., Klemmer, S.R.: Two studies of oppor-
tunistic programming: Interleaving web foraging, learning, and writing code. In: Proc. of the
27th Int. Conf. on Human Factors in Computing Systems (CHI), pp. 1589–1598 (2009)

3. Esfahani, N., Malek, S., Sousa, J.P., Gomaa, H., Menascé, D.A.: A modeling language for
activity-oriented composition of service-oriented software systems. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 591–605. Springer, Heidelberg (2009)

4. Garlan, D., Schmerl, B.: Architecture-driven modelling and analysis. In: Proc. of the 11th
Australian Workshop on Safety Critical Systems and Software (SCS), pp. 3–17. Australian
Computer Society, Inc., Darlinghurst (2006)

5. Howison, J., Herbsleb, J.D.: Scientific software production: Incentives and collaboration. In:
Proc. of ACM CSCW, pp. 513–522 (March 2011)

6. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn, T.: Taverna: A
tool for building and running workflows of services. Nucleic Acids Research 34 (Web Server
Issue), W729–W732 (2006)

7. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C.,
Lawrance, J., Lieberman, H., Myers, B., Rosson, M.B., Rothemel, G., Shaw, M., Wieden-
beck, S.: The state of the art in end-user software engineering. ACM Comput. Surv. 43,
21:1–21:44 (2011)

8. Koshkina, M., van Breugel, F.: Modelling and verifying web service orchestration by means
of the concurrency workbench. SIGSOFT Software. Engineering Notes 29, 1–10 (2004)

9. Mayer, P., Schroeder, A., Koch, N.: MDD4SOA: Model-driven service orchestration. In:
Proc. of the 2th Int. IEEE Enterprise Distributed Object Computing Conference, pp. 203–
212. IEEE Computer Society, Los Alamitos (2008)

10. Ossher, H., Bellamy, R.K.E., Simmonds, I., Amid, D., Anaby-Tavor, A., Callery, M.,
Desmond, M., de Vries, J., Fisher, A., Krasikov, S.: Flexible modeling tools for pre-
requirements analysis: conceptual architecture and research challenges. In: OOPSLA, pp.
848–864 (2010)

11. Puhlmann, F., Weske, M.: Interaction soundness for service orchestrations. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 302–313. Springer, Heidelberg
(2006)

12. Rex, D.E., Ma, J.Q., Toga, A.W.: The loni pipeline processing environment. Neuroimage 19,
1033–1048 (2003)

13. Schmerl, B., Garlan, D., Dwivedi, V., Bigrigg, M., Carley, K.M.: SORASCS: A case study
in SOA-based platform design for socio-cultural analysis. In: Proc. of the 33rd Int. Conf. on
Software Engineering (ICSE), pp. 643–652 (2011)

14. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Englewood Cliffs (1996)

15. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using petri-net-
based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process
Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 379–387, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Using Model Transformation Techniques for the
Superimposition of Architectural Styles

Elena Navarro1, Carlos E. Cuesta2, Dewayne E. Perry3, and Cristina Roda1

1 Computing Systems Department, University of Castilla-La Mancha
enavarro@dsi.uclm.es, cristinarodasanchez@gmail.com

2 Dept. LSI2 (Computing Languages and Systems II), Rey Juan Carlos University
carlos.cuesta@urjc.es

3 Electrical and Computer Engineering Department, The University of Texas at Austin
DewaynePerry@engr.utexas.edu

Abstract. Software Architecture is a key artifact in the software development
process, as it provides a bridge between the requirements of the system-to-be
and its final design. Architectural description is therefore a critical step, which
can be assisted by the use of Architectural Styles. Styles make it possible to
reuse architectural knowledge by providing guidelines for its description, and
by constraining the configuration and behavior of the target system. The
architect must superimpose these constraints, but this could be an error-prone
task unless some kind of automatic support is provided. Therefore, this paper
presents a proposal that generates proto-architectures by superimposing
architectural styles on the initial requirements’ operationalization, using model-
to-model (M2M) transformation techniques. Our proposal includes a tool called
MORPHEUS, which applies QVT as the transformation language; a real-world
example is provided to explain how the superimposition process works, and
how the QVT language is used to express these style-based transformations.

Keywords: architectural style, model-driven development, architectural
description, model transformations.

1 Introduction

The specification of the Software Architecture (SA) is always a challenging activity.
It is a decision making process that establishes strict compromises at the architectural
level. These compromises must be reached in order to elaborate a specification that is
able to meet both functional and non-functional requirements. In this context, the
proper use of Architectural Styles can be a great asset for the process.

According to Perry & Wolf [15], an architectural style is something that “abstracts
elements and formal aspects from various specific architectures”. This definition is
deliberately open; it can be used to describe full systems, or just a specific aspect of
the architecture at hand [16], which can be composed to others. In addition, a style
may also specify constraints on those elements and/or formal aspects, [18] as well as
on the system behavior. Thus, they can affect the configuration of the architecture.

However, to the best of our knowledge, there are very few proposals that clearly
establish how the architectural styles can be automatically or semi-automatically used

380 E. Navarro et al.

to describe the SA. Many papers have focused their efforts on the classification of
Architectural Styles, or their evaluation; but hardly any of them have focused on their
automatic application. Our proposal is, then, a system to automatically superimpose
the mandatory constraints of an architectural style on top of the system-to-be.

This work is structured as follows. After this introduction, section 2 presents a brief
introduction to the methodological context in which this proposal has been elaborated,
along with a case study developed for validation purposes. Section 3 describes the way
in which our proposal introduces architectural styles into the generation of the proto-
architecture [1], using model transformation techniques. Finally, section 4 discusses
related work and section 5 presents the conclusions.

2 Context of the Work

During the description of the SA, the architect should weigh the impact of its decisions at
the architectural level and the relationships they have with other decisions and
requirements before realizing them in the system-to-be. The ATRIUM methodology [10]
provides support in this context. It has been designed using the Model-Driven
Development (MDD) approach and encompasses these activities:

• Modelling Requirements. This activity allows the analyst to identify and specify
the requirements of the system-to-be by defining the ATRIUM goal model guiding
the architect from goals that the systems should achieve, till requirements that the
system should meet, and operationalizations that describe solutions to the
established requirements.

• Modelling Scenarios. This activity focuses on the identification of the set of
scenarios that defines the system’s behaviour under certain architectural decisions,
described in the ATRIUM goal model as operationalizations.

• Synthesize and transform. This activity has been defined to generate the proto-
architecture [1] of the specific system. It synthesizes the architectural elements that
make up the system, as well as the structure of the future system, from the ATRIUM
scenario model.

They must be iterated over in order to define and refine the different models and
allow the architect to reason about both the requirements and the architecture. One of
the inputs for the Synthesize and transform activity is the selected Architectural Style.
It must be taken into account that this Architectural Style imposes constraints in terms
of the structure and the behaviour of the final description. For this reason, this activity
must apply these constraints automatically, conforming to them during the generation
of the architecture, hence avoiding a task that could be cumbersome and error-prone
for the architect, if it was performed by hand.

ATRIUM has been validated in a case study that is associated with the European
project Environmental Friendly and cost-effective Technology for Coating Removal
(EFTCoR) [7]. The goal of this project is to design a family of robotic systems
capable of performing maintenance operations for ship hulls. The Robotic Devices
Control Unit (RDCU) integrates all the required functionality to manage the EFTCoR.
We have focused our efforts in its SA because of the strict constraints that have to be
satisfied in terms of safety, performance, and reliability.

 Using Model Transformation Techniques for the Superimposition 381

3 Using M2M Transformations for Architectural Styles

As presented in section 2, the architectural elements, their behavior, and the structure
of the proto-architecture (the output of the activity Synthesize and Transform) are
synthesized from the scenario model considering the constraints imposed by the
selected architectural style.

Several languages have been proposed to define M2M transformations. Several
surveys, such as that presented by Czarnecki and Helsen [4] identify the features that
a M2M transformation language should satisfy in order to fulfill the MDD approach.
Considering these, QVT Relations [12] was selected as our M2M transformation
language because it provides facilities to manage source and target model; it defines
an incrementality feature, i.e. it is able to update the generated model according to the
changes in the source model; and it offers directionality and tracing.

The Rules Organization feature of QVT has been used to classify the different
transformations. Specifically, they have been catalogued as follows:

• Architectural Generation patterns. They describe those transformations that are
applicable to most of the existing architectural metamodels because they are
focused on the generation of components, connectors and systems.

• Idioms. They describe low-level transformations that are specific to an architectural
metamodel. We have made this distinction in order to facilitate the generation of the
proto-architecture according to the architectural metamodel selected by the architect.

• Architectural Styles. These transformations are oriented to the application of the
constraints imposed by the Architectural Style selected during the activity
Modelling Requirements.

Therefore, using the same scenario model, different proto-architectures can be
generated, depending on the selected architectural metamodel, by applying its specific
idioms, and the selected Architectural Style.

Table 1. Head of the transformation ScenariosToArchmodelPRISMA, which generates
PRISMA proto-architectures from ATRIUM scenario models

import archpatt;
import archAcrosetStyle;
transformation ScenariosToArchmodelPRISMA (scenarios: ATRIUMScenarios,
archmodel: Archmodel)
 key archmodel::System {name};
 key archmodel::Component {name};
 key archmodel::Connector {name};
 key archmodel::Port {name, ArchitecturalElement};
 key archmodel::Attachment {name, System};
 key archmodel::Attachment {name, Architecturalmodel};

Table 1 shows the head of the transformation in charge of generating proto-

architectures from ATRIUM scenario models. It can be seen that the Architectural
Generation patterns and the Architectural Style patterns are imported. Table 1 also
illustrates the declaration of the transformation, by means of a name (i.e.
ScenarioToArchmodelPRISMA) and the identification of the candidate models. There
are two candidate models: scenarios, which represents a candidate model that

382 E. Navarro et al.

conforms to the ATRIUM Scenario metamodel; and archmodel, which represents a
candidate model that conforms to the selected architectural metamodel to be
instantiated. Specifically, we have used the ATRIUM Scenarios and PRISMA [14]
metamodels to execute the transformations. In addition, the transformation can define
keys to uniquely identify the elements and avoid duplicate instances.

In the following, we describe in greater detail the process to perform the automatic
superimposition of Architectural Styles, by dealing with the constraints imposed by
them in a generative way.

During the Modelling Requirements activity, the Architectural Style is selected;
and this means that several constraints must be satisfied. The main idea of this
proposal is to transform these constraints into QVT generation rules so that the
generated proto-architecture is compliant with the selected Architectural Style.

The EFTCoR system uses a Layered Style; specifically, we used ACROSET [13],
which is a Domain Specific Software Architecture (DSSA) that specializes the
Layered Style identifying three kinds of subsystems (SUC, MUC, and RUC). These
styles specify some constraints in terms of compositionality, by establishing that one
layer only requires the services provided by the lower layer.

In order to generate the proto-architecture of the EFTCoR taking into account the
constraints imposed by the ACROSET Style, a transformation was defined (see in
Table 1 as archAcrosetStyle). A transformation in QVT is defined by means of a set
of relations that must hold in order to apply successfully the transformation.
ApplyingACROSET2Systems is one of these relations (see Fig. 1).

Fig. 1. QVT relation to superimpose the ACROSET Style

 Using Model Transformation Techniques for the Superimposition 383

The graphical syntax of QVT has been used to enhance the legibility. The hexagon
in the middle helps us to represent the transformation by identifying the candidate
models (in this case, scenarios and archmodel) along with their respective
metamodels (ATRIUMScenarios and Archmodel). Each arrow represents a domain
that is labeled as either C or E to determine if the transformation is executed in
checkonly mode (it will only be checked if a valid matching exists that satisfy the
relation) or in enforce mode (provided the matching fails, the target model will be
modified to satisfy the relationship), respectively, in that direction. This allows the
architect to either generate the proto-architecture or check whether inconsistencies
between the proto-architecture and the scenario model arise.

In addition, whenever a relation is defined, clauses where and when can be defined.
The where clause (see Fig. 1) specifies a condition that must be held by all the
elements involved in the relation so that it can be successfully applied.

It is necessary to establish the roles played by the elements of the scenario model
with regard to the Architectural Style. For this reason, the role attribute is defined to
be used by the OCL expression in the scenarios domain (see again Fig. 1) to ensure
that the relation is only applied when an interaction happens between elements that
belong to the appropriate layers. This means that any interaction between other layers
will not cause any sort of generation on the proto-architecture.

Fig. 2 shows an example of the result of this relation when it is applied on an
ATRIUM Scenario. At the top of the figure, there is a scenario which establishes how
should be the collaboration between the architectural and environmental elements, to
meet the requirement “REQ.6” according to the operationalization “OPE.13”.

ATRIUM Scenarios

PRISMA

Fig. 2. ATRIUM Scenario (atop) and the generated proto-architecture

384 E. Navarro et al.

As shown in Fig. 1, a matching is established between the SystemFrame and the
System because both of them bind their attribute “name” to the same variable. This
means that when the Relation is applied to the Scenario in Fig. 2, a PRISMA System
named ArmMUC is created in the PRISMA model, because the systemFrame
ArmMUC contains the Lifeline ArmCnct. Both a Port and an Attachment are resolved
in the where clause, and also created in the architectural model. These two elements
are related, in order to define the connection between the System s1, and the System
s2 that will be created using the relation MessageToAttachment (see Fig. 3).

The Relation MessageToAttachment (Fig. 3) acts in a similar way to
ApplyingACROSET2Systems (Fig. 1), generating the System s2 from systemFrame sf2
by matching their names, and attaching this to the other generated System, s1.

Fig. 3. QVT Relation: Establishing connections between Systems

In the where clause of both the relations ApplyingACROSET2Systems and
MessageToAttachment, another relation, LifelineToConnectorBinding, is specified.
This relation helps to apply the constraints of the ACROSET Style, that is, the
compositionality of the Architectural Elements belonging to the different layers. Due
to space constraints, no more details are provided about this relation.

In summary, we have been able to generate the proto-architecture with only one
ATRIUM scenario. The incrementality feature of QVT Relations makes possible to
automatically update the proto-architecture as new scenarios are defined or exiting
ones are modified. Finally, it should be noted that the ATRIUM development process
is fully supported by a toolset, called MORPHEUS [11].

 Using Model Transformation Techniques for the Superimposition 385

4 Related Work

Architectural Styles have received significant attention from both academia and
industry. Preliminary work in the field designed software structures specialized for
specific domains, such as avionics or missile control and command [5]. This initial
work on the definitions of Architectural Styles is one of the cornerstones of SA.

However, most proposals on Architectural Style have focused their attention on
recurrent issues. Most of the work has been oriented towards the description of new
architectural styles. Some work has focused on the classification of architectural
styles, and other proposals have tried to define primitives to describe and/or compose
architectural styles [9] [19]. But, as far as we know, no proposals have paid attention
to their automatic superimposition. This is the reason why, in the following, we focus
our analysis on proposals for model transformations in the area of SA.

There are some proposals which actually intend to generate software architectures.
The proposal by Bruin and van Vliet [2] describes a process for the generation of SA
taking as inputs both a rich Feature-Solution graph and Use Case Maps (UCM). This
proposal introduces architectural styles as a decision in the solution space, along with
decision fragments. However, they do not deal with the automatic superimposition of
the architectural style, nor they provide details about how this generation proceeds.

Castro et al. [3] have defined a methodology called TROPOS to guide the process
of system specification from early requirements. Requirements are elicited with the i*
framework. The methodology proposes a refinement process from requirements to the
SA. However, the (agent-oriented) architectural style is applied by hand.

To the best of our knowledge, the work presented by Sanchez et al. in [17] is the
only using a similar generative perspective to ours. They present a process that
combines MDD and AOSD to derive Aspect-Oriented Architectures from Aspect-
Oriented Requirements models. Once the set of scenarios have been defined, they are
transformed into an Aspect-Oriented Architecture by means of a set of transformation
rules specified using QVT [12]. However, this proposal pays no attention to the
superimposition of architectural styles.

ATRIUM faces many of the issues exhibited by these proposals. Architectural
Styles are selected according to the specific needs of the system-to-be, and are
automatically applied by means of M2M transformations. Also, it has been designed
to make possible the use of that different architectural metamodels.

5 Conclusions and Future Work

ATRIUM aims at generating the proto-architecture of the system-to-be by means of a
M2M transformation problem. QVT emerged as the best solution for this purpose, as
it satisfies most of the requirements.

By using QVT Relations, a set of transformations has been defined to generate the
proto-architecture from ATRIUM scenario models. It provides several advantages.
The first is related to its applicability to the whole set of scenarios. QVT supports the
definition of keys, which guarantee that the synthesis process prevents the creation of
duplicated objects. In addition, it is not necessary to provide the entire set of scenarios
to generate the proto-architecture. In fact, the generation can proceed with only one

386 E. Navarro et al.

scenario. Thanks to QVT’s incrementality feature, the generated proto-architecture
can be automatically updated as new scenarios are defined to be used.

One of the main concerns in the definition of ATRIUM is traceability. Top-down
traceability is provided because the proto-architecture is generated automatically by
establishing the appropriate transformations. Bottom-up traceability can be achieved
because QVT Relations derives a Trace Class from each relation in order to generate
traceability mappings. This ability is highly meaningful because a mapping is
established between every element in the proto-architecture and its related element/s
in the ATRIUM Scenarios model.

Another challenge to be faced by our proposal is how to establish mechanisms to
evaluate the proto-architecture being obtained. We are currently focusing on how to
detect faults while the proto-architecture is being generated. Early detection of such
faults will make a meaningful improvement in the development in terms of both
quality and cost. The definition of an evaluation model that describes potential faults
at the specification level would be a first step in this direction.

Acknowledgements. This work has been partially supported by grants (PEII09-0054-
9581) from the JCCM, and also by grants (TIN2008-06596-C02-01, TIN2009-13838,
and CONSOLIDER CSD2007-022) from the Spanish Ministry of Science. Professor
Perry is supported in part by NSF CISE Grants IIS-0438967 and CCF-0820251.

References

[1] Brandozzi, M., Perry, D.E.: Transforming Goal-Oriented Requirement Specifications into
Architecture Prescriptions. In: Workshop from Soft. Req. to Arch., pp. 54–61 (2001)

[2] de Bruin, H., van Vliet, H.: Quality-Driven Software Architecture Composition. Journal
of Systems and Software 66(3), 269–284 (2003)

[3] Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Software
Development Methodology: The Tropos Project. Information Systems 27(6), 365–389
(2002)

[4] Czarnecki, K., Helsen, S.: Classification of model Transformation Approaches. IBM
Systems Journal 45(3), 621–645 (2006)

[5] Delisle, N., Garlan, D.: Formally specifying electronic instruments. In: 5th Int. Workshop
on Software Specification and Design, pp. 242–248. ACM, New York (1989)

[6] Garlan, D., Shaw, M.: An introduction to software architecture. In: Advances in Software
Engineering and Knowledge Engineering, vol. 2, pp. 1–39 (1993)

[7] GROWTH G3RD-CT-00794, EFTCOR: Environmental Friendly and cost-effective
Technology for Coating Removal. European Project, 5th Framework Program, Spain
(2003)

[8] Medini QVT Relations (2008),
http://www.ikv.de/index.php?option=com_content&task=view&id=
75&Itemid=77&lang=en

[9] Mehta, N.R., Medvidovic, N.: Composing architectural styles from architectural
primitives. ACM SIGSOFT Software Engineering Note 28(5), 347–350 (2003)

[10] Montero, F., Navarro, E.: ATRIUM: Software Architecture Driven by Requirements. In:
14th IEEE Int. Conf. on Eng. of Complex Computer Systems (ICECCS 2009), Potsdam,
Germany, June 2-4 (2009)

 Using Model Transformation Techniques for the Superimposition 387

[11] Navarro, E., Gómez, A., Letelier, P., Ramos, I.: MORPHEUS: a supporting tool for
MDD. In: 18th Int. Conf. on Information Systems Development (ISD 2009), Nanchang,
China, September 16-19 (2009)

[12] OMG doc. ptc/05-11-01, QVT, MOF Query/Views/Transformations final adopted
specification (2005)

[13] Ortiz, F.J., Alonso, D., Álvarez, B., Pastor, J.A.: A Reference Control Architecture for
Service Robots Implemented on a Climbing Vehicle. In: 10th Ada-Europe Int. Conf. on
Reliable Software Technologies, pp. 13–24. Springer, Heidelberg (2005)

[14] Pérez, J., Ali, N., Carsí, J.Á., Ramos, I.: Designing Software Architectures with an
Aspect-Oriented Architecture Description Language. In: 9th Int. Symp. on Component-
Based SE, pp. 123–138 (2006)

[15] Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17(4), 40–52 (1992)

[16] Perry, D.E.: Generic Architecture Descriptions for Product Lines. In: van der Linden, F.J.
(ed.) Development and Evolution of Software Architectures for Product Families. LNCS,
vol. 1429, pp. 51–56. Springer, Heidelberg (1998)

[17] Sánchez, P., Moreira, A., Fuentes, L., Araújo, J., Magno, J.: Model-driven development
for early aspects. Information & Software Technology 52(3), 249–273 (2010)

[18] Shaw, M., Garlan, D.: Characteristics of higher-level languages for software architecture.
Technical Report CMU-CS-94-210, School of Comp. Science, CMU (December 1994)

[19] Zdun, U., Avgeriou, P.: A catalogue of architectural primitives for modeling architectural
patterns. Information & Software Technology 50(9-10), 1003–1034 (2008)

DAMASCo: A Framework for the Automatic

Composition of Component-Based and
Service-Oriented Architectures�

Javier Cubo and Ernesto Pimentel

Dept. Computer Science, University of Málaga, Málaga, Spain
{cubo,ernesto}@lcc.uma.es

Abstract. Although the reuse of software entities has matured in recent
years, it has not become standard practice yet, since reusing component-
based or service-oriented architectures requires the selection, composi-
tion, adaptation and evolution of prefabricated software parts. Recent
research approaches have tackled independently the discovery, compo-
sition, adaptation or monitoring processes. We present the DAMASCo
architecture, a framework for composing pre-existing services and compo-
nents. Using model transformation, context-awareness, semantic match-
making, behavioural compatibility, dependency analysis, and fault tol-
erance, DAMASCo focuses on discovering, adapting and monitoring the
composition of context-aware services and components in mobile and per-
vasive systems. DAMASCo is made up of a set of tools that implement
the different processes, which have been evaluated on several examples.

Keywords: Service-Oriented Architectures, Component-Based Frame-
work, Composition, Adaptation, Ontology-Based Discovery, Monitoring.

1 Introduction

The increased usage of mobile and portable devices has given rise over the last
few years to a new market of mobile and pervasive applications. These appli-
cations may be executed on either mobile computers, or wireless hand-held de-
vices, or embedded systems, or even on sensors or RFID tags. Their main goal is
to provide connectivity and services at all time, adapting and monitoring when
required and improving the user experience. These systems are different to tradi-
tional distributed computing systems, as they are sensitive to their context (loca-
tion, identity, time and activity) [20], by being needed to adapt their behaviour at
run-time according to environment changing conditions, as well as those of user
preferences or privileges. To reduce efforts and costs, context-aware systems may
be developed using existing Commercial-Off-The-Shelf (COTS) components or
(Web) services. In contrast to the traditional approach in which software systems

� Work partially supported by projects TIN2008-05932 ReSCUE funded by Spanish
Ministry of Science and Innovation (MICINN) and FEDER, P07-TIC-3131 funded
by Andalusian Government, and FP7-256980 NESSoS funded by European Union.

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 388–404, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

DAMASCo: A Framework for the Composition of CBAs and SOAs 389

are implemented from scratch, COTS and services can be developed by differ-
ent vendors using different languages and platforms. Component-Based Software
Engineering (CBSE) [41] and Service-Oriented Architecture (SOA) [21] promote
software reuse by selecting and assembling pre-existing software entities (COTS
and services, respectively)1. Thus, these software development paradigms al-
low building fully working systems as efficient as possible from an architectural
point of view to improve the software reusability. Although the reuse of software
has matured, it has not become standard practice yet, since reusing compo-
nents or services requires the selection, composition, adaptation and evolution of
prefabricated software parts, then it is a non-intuitive process.

Recent research approaches have tackled independently the discovery, compo-
sition, adaptation or monitoring, as it will be discussed in Section 5. This paper
presents the DAMASCo (Discovery, Adaptation and Monitoring of Context-
Aware Services and Components) architecture and its dynamics. DAMASCo
is a framework for automatically composing pre-existing services and compo-
nents. Using model transformation, context-awareness, semantic matchmaking,
behavioural compatibility, dependency analysis, and fault tolerance, the frame-
work focuses on discovering, adapting and monitoring the composition of context-
aware services and components in mobile and pervasive systems. DAMASCo is
made up of a set of tools that implement the different steps in the composi-
tion process, evaluated on several examples. The contributions of DAMASCo are
the following: (i) an interface model based on extended transition systems by
considering context information and semantic representation, and conditions to
control executions according to changes, (ii) a model transformation process that
extracts transition systems from component-based or service-oriented architec-
tures (interfaces) implemented in different existing languages and platforms, and
vice versa, (iii) a service discovery process performing semantic matchmaking
based on ontologies to compare contexts and operations, protocol compatibility,
and service ranking, (iv) a verification model based on symbolic model checking
to verify our interface model, (v) a service composition and adaptation process to
automatically obtain an adaptation contract and an adaptor solving mismatch
at different interoperability levels, and (vi) a service monitoring process to es-
tablish priorities between data dependencies in concurrent executions, and to
offer services as faults or changes occur.

The paper is organised as follows. Section 2 introduces motivations and foun-
dations of our proposal. Section 3 presents the DAMASCo architecture and de-
tails the dynamics of the framework tool support. In Section 4 some experimental
results are shown. Section 5 compares DAMASCo to related works. Finally, in
Section 6 some conclusions are drawn and plans for future work are outlined.

2 Motivations and Foundations

In this section, we motivate our approach and explain its foundations.

1 In the sequel, we use the terms component and service indistinctly.

390 J. Cubo and E. Pimentel

2.1 Problem Statement

In current mobile and pervasive systems, services are everywhere. As aforemen-
tioned, component-based and service-oriented systems are developed from the
selection, composition and adaptation of pre-existing software entities.

Service discovery can be defined as the ability to find out the most suitable
services for a client’s request. In industrial platforms, the current service tech-
nology, XML-based SOA via SOAP, WSDL, and UDDI, only supports queries
based on keywords and category. This may bring about low-precision results, as
it is neither able to discover semantic capabilities of services nor be adapted to
a changing environment without human intervention. However, different context
and semantic information is used in real-world services to improve their fea-
tures. Therefore, it is essential to consider context information in the discovery
of services deployed as part of mobile and pervasive applications. But current
programming technology offers only very weak support for developing context-
aware applications. Furthermore, one of the main challenges in CBSE and SOA
is to provide semantic representation instead of only a syntactic one. W3C rec-
ommends the use of OWL-S2 to capture the semantic description of services by
means of ontologies, a formal representation of a set of concepts within a domain
by capturing the relationships between those concepts. Then, service discovery
based on semantic matching is required in mobile and pervasive systems.

Services are checked to verify that are free of inconsistencies due to the con-
textual nature of the system. Once services are checked, they can be composed.
However, while composing pre-existing components or services in mobile and
pervasive systems, different issues related to faults or changes arise dynamically,
and they have to be detected and handled. These issues can be classified into four
main categories [24]: (i) mismatch problems, (ii) requirement and configuration
changes, (iii) network and remote system failures, and (iv) internal service errors.
The first refers to the problems that may appear at different interoperability lev-
els (i.e., signature, behavioural or protocol, quality of service, and semantic or
conceptual levels), and the Software Adaptation paradigm tackles these prob-
lems in a non-intrusive way [7]. The second is prompted by continuous changes
over time (new requirements or services created at run-time), and Software Evo-
lution (or Software Maintenance) focuses, among other issues, on solving them
in an intrusive way [34]. The third and fourth are related to networks (network
connection break-off or remote host unavailable) and services (suspension of ser-
vices during the execution or system run-time error) failures, respectively. Both
are addressed by Fault Tolerance (or Error Recovery) mechanisms [42].

Unfortunately, in most cases it is impossible to modify services in order to
adapt them. Thus, due to the black-box nature of the components or services,
they must be equipped with external interfaces giving information about their
functionality. Interfaces do not always fit one another and some features of ser-
vices may change at run-time. Therefore, services require a certain degree of
adaptation and monitoring in order to avoid mismatch and faults during the
composition. Mismatch situations may be caused, for instance, when message
2 http://www.w3.org/Submission/OWL-S. Accessed on 30 March 2011.

http://www.w3.org/Submission/OWL-S

DAMASCo: A Framework for the Composition of CBAs and SOAs 391

names do not correspond, the changes of contexts are not controlled, the seman-
tic description of exchanged information is not considered, the order of messages
is not respected, or a message matches with several other messages.

Current industrial platforms only provide some means to describe components
or services at their signature level (e.g., CORBA’s IDL3). However, mismatch
may occur at the four interoperability levels, and most of the time at the be-
havioural one, due to an incompatibility in the order of the exchanged mes-
sages between components or services, which can lead to deadlock situations.
Therefore, it would be desirable to address adaptation at all four levels together.

Finally, the ability to automatically monitor the service composition is an
essential step to substantially decrease time and costs in the development, in-
tegration, and maintenance of complex systems. Service monitoring is able to
detect violations of expected behaviours or to collect information about service
executions at run-time, and to trigger an appropriate handling of such a failure.
Run-time monitoring of functional and non-functional behaviour is becoming an
important and researched topic in the field of service-based systems, by express-
ing and verifying properties by means of rules, specification languages, temporal
logic or event calculus. However, only a few works have tackled monitoring of the
handling of service concurrent interactions through data dependency analysis by
considering context changes. In addition, there exist error recovery techniques
for run-time monitoring of handling faults. The choice of fault tolerance mech-
anisms to be exploited for the development of dependable systems depends on
the fault assumptions and on the system’s characteristics and requirements.

2.2 Foundations of the Architectural Model

DAMASCo focuses on discovery, adaptation and monitoring related to context-
aware mobile and pervasive systems, where devices and applications dynamically
find and use components and services from their environment. These systems
constitute enterprise applications increasingly developed using COTS or services.

On one hand, COTS component middleware can be checked out from a com-
ponent repository, and assembled into a target software system. Component
middleware encapsulates sets of services in order to provide reusable building
blocks that can be used to develop enterprise applications more rapidly and ro-
bustly than those built entirely from scratch. There are many examples of COTS
component middleware, such as the CORBA or COM/DCOM4.

On the other hand, a service-oriented architecture is a set of components which
can be invoked and whose interface descriptions can be published and discovered.
The goal of SOA is to achieve loose coupling among interacting services. In com-
puting, an Enterprise Service Bus (ESB) [14] provides foundational services for
more complex architectures via an event-driven and standards-based messaging
engine. Although ESB is commonly believed to not be necessarily web-services
based, most ESB providers now build ESBs to incorporate SOA principles and

3 http://www.omg.org/spec/CORBA/ . Accessed on 30 March 2011.
4 http://www.microsoft.com/com. Accessed on 30 March 2011.

http://www.omg.org/spec/CORBA/
http://www.microsoft.com/com

392 J. Cubo and E. Pimentel

increase their sales, e.g., Business Process Execution Language (BPEL) [1] or
Windows Workflow Foundation (WF) [38]. WF belongs to the .NET Framework
3.5, which is widely used in many companies and increasingly prevalent in the
software engineering community [46].

Considering that services are a kind of software component, and even they
may be generated from components [43], we assume our framework deals with
components as services. Therefore, we focus on SOA to detail the set of prin-
ciples of governing concepts used during phases of systems development and
integration, and provided by this approach. It is obvious that SOA foundations
are necessary and beneficial to the industry. However, SOA needs to be more
agile and easy to model service applications. Modelling techniques, designing
architectures, and implementing tools to support adaptation and evolution of
the dynamic architectural aspects in these systems represent new challenges in
this research field, by overcoming the limitations of existing Architectural De-
scription Languages (ADLs) [31] with respect to capture the business aspects
of service-oriented systems [22]. So far, it is difficult for business experts to
model and verify their business processes. To address this, we use a model-based
service-oriented architecture approach that makes the design, development, and
deployment of processes more agile. Figure 1 shows the SOA layered architecture
using model-based techniques (based on IBM’s SOA Solution Stack, S3 [3]).

Consumers Layer
(Business goals , User requirements)

In
te

gr
at

io
n

La
ye

r
(E

nt
er

pr
is

e
S

er
vi

ce
 B

us
)

G
ov

er
na

nc
e

La
ye

r

Technology Layer
(Apps, Code, Databases, OS)

Business Process Layer – composition
(BPEL processes , WF workflows, UML activities, State machines)

Services Layer – atomic and composite
(Business services, WSDL, UML)

Q
oS

 L
ay

er
 (

M
an

ag
em

en
t,

M
on

ito
rin

g
an

d
S

ec
ur

ity
)

Application Layer
(Service repository , Legacy systems, adapters , UML)

S
er

vi
ce

 C
on

su
m

er
S

er
vi

ce
 P

ro
vi

d
er

Java .NET

Fig. 1. A SOA layered architecture using model-based techniques

We use a model-based methodology because it is the unification of initiatives
that aim to improve software development by employing high-level, domain spe-
cific, models in the implementation, integration, maintenance, and testing of
software systems. This technique refers to architecture and application develop-
ment driven by models that capture designs at various levels of abstraction,
being our model transformation process independent of the implementation.
Model transformation provides a systematic and uniform view of incremental
software development, making it easier to express and reason about adapta-
tion and evolution. Since models tend to be represented using a graphical no-
tation, the Model-Driven Architecture (MDA)5 involves using visual-modeling
languages. We adopt an expressive and user-friendly graphical notation based
on transition systems, which reduces the complexity of modelling services and

5 http://www.omg.org/mda/. Accessed on 30 March 2011.

http://www.omg.org/mda/

DAMASCo: A Framework for the Composition of CBAs and SOAs 393

components, and may be represented by using the metamodel and UML pro-
file for SOA, SoaML6. In addition, in order to discover services, in DAMASCo,
operation profiles of a signature refer to OWL-S concepts with their arguments
and associated semantics. Once services have been discovered, in case there ex-
ists mismatch, an adaptor to solve problems is automatically generated using
software adaptation. An adaptor is a third-party service in charge of coordi-
nating services involved in the system according to a set of interactions defined
in an adaptation contract. Finally, DAMASCo uses an ad-hoc composition lan-
guage and error recovery mechanisms to handle service concurrent interactions
and design a model to satisfy properties for composite service failure recovery.
Therefore, our framework follows the existing need of proposing a model and
architecture to get common efforts in the development of CBAs and SOAs [37].

3 DAMASCo Framework

This section presents the DAMASCo architecture and the framework’s dynamics.

3.1 DAMASCo Architecture

We focus on avoiding the first type of faults presented in Section 2.1 related to
the four interoperability levels. Based on CBSE, SOA and software adaptation,
we combine efforts to tackle these levels together. We model services with inter-
faces constituted by context and semantic information, signatures, and protocol
descriptions. We advocate the extension of traditional signature level interfaces
with context information (signature and service levels), protocol descriptions
with conditions (behavioural level), and semantic representation instead of only
a syntactic one (semantic level). We also address the third and fourth type of
errors related to dynamic faults by applying fault tolerance. Our whole process
consists of a set of processes constituting the DAMASCo architecture, as shown
in Figure 2 (detailed in Section 3.2). We focus on systems composed of a service
repository, users (clients requesting services)7, and a shared domain ontology.

3.2 Detailing the DAMASCo Framework

The different elements of DAMASCo architecture have been implemented in
Python as a set of tools which constitute a framework integrated in the tool-
box ITACA [12]. ITACA8 (Integrated Toolbox for the Automatic Composition and
Adaptation of Web Services) is a toolbox under implementation at the Software
Engineering Group of the University of Málaga (GISUM) for the automatic
composition and adaptation of services accessed through their interfaces.

We use throughout this section an on-line booking system as running exam-
ple, consisting of clients and a service repository. Clients can perform different
6 http://www.omg.org/spec/SoaML/ . Accessed on 30 March 2011.
7 We distinguish clients and services, although both refer to components or services.
8 Accessible at http://itaca.gisum.uma.es

http://www.omg.org/spec/SoaML/
http://itaca.gisum.uma.es

394 J. Cubo and E. Pimentel

Adaptation Model
Architecture

Composition and
Adaptation (SAP)

Adaptation
Contract

Adaptor
Generation

Service Repository

<<service>>

Service 2

<<service>>

Service1

Ontology

Service Interfaces
(WF/BPEL)

Context
Information

Users or
Clients

Service
Repository

Interface
Model

(CA-STS)

Adaptor
Interface

(WF/BPEL)

No Adaptation
required

M
is

m
at

ch
?

No

Yes

cl
ie

nt
 r

eq
ue

st

Verification

Validation
Patterns

Monitoring (SMP)

Dependency
analysis

Fault
Tolerance

Interface Model
(CA-STS)

Clients

<<service>>

ClientRequest3

Discovery (SDP)

Semantic
Matchmaking

Protocol
Compatibility

Ranking
Services

Model
Transformation

Transformation
Patterns

Model
Transformation

Transformation
Patterns

Adaptor Services

<<service>>

Adaptor3

<<service>>

ClientRequest2

<<service>>

ClientRequest1

<<service>>

Adaptor2

<<service>>

Adaptor1

<<service>>

Service1

<<service>>

Service1

<<service>>

Service1

1

2 3

4

5

6

Legends

A uses BA B

B generated from AA B

Services represented in SoaML

Fig. 2. DAMASCo Architecture

(c) transforms interfaces

Model Transformation Discovery

[no mismatch]

[mismatch]

Verification Composition and Adaptation Monitoring

(e) discovers services
(f) verifies interfaces

(h) generates adaptor

handles (l) concurrent interactions and (m) faults

Services

(i) transforms the adaptor

DAMASCo KernelClient

(b) client request

(d) uses interfaces

(a) registers services

(g) no adaptation

(n) uses client and services

(k) adapts the
interaction

(j) uses client and service interface model

Fig. 3. Dynamics of the DAMASCo framework

requests: book a restaurant, a taxi, a flight, and so on. This case study corre-
sponds to a context-aware pervasive system in which certain context information
related to the client (location, privileges, device or language) can change at run-
time. Depending on such variations, the system must adapt to work correctly
in any situation. Since our approach focuses on solving this kind of mismatch
and/or fault situations, it is very appropriate to use our framework in order to
work correctly this system. Let us consider a client performs a taxi request.

Figure 3 depicts how after (a) services have been registered, the framework’s
elements interact when (b) the client performs the request from either a mobile

DAMASCo: A Framework for the Composition of CBAs and SOAs 395

device (PDA or smartphone) or a laptop, being executed the full process. The
purpose of this section is to detail this process at an architectural point of view.

Service Interfaces. Each interface in DAMASCo is made up of a context profile,
a signature, and a protocol specified as a transition system. At the user level,
client and service interfaces can be specified by using (see Figure 4):
– Context information in XML files for context profiles. We assume context

information is inferred by means of the client’s requests (HTTP header of
SOAP messages), in such a way that as a change occurs the new value of
the context attribute is automatically sent to the corresponding service.

– IDL and WSDL descriptions are respectively used in component-based frame-
works (e.g., J2EE/.NET) and in service-oriented platforms (e.g., BPEL/WF)
for signatures. In WSDL, e.g., services are defined as a collection of ports.

– Business processes defined in industrial platforms, such as BPEL processes or
WF workflows, for protocols. We consider clients and services implemented
as business processes which provide the WSDL and protocol descriptions.

Signature

CA-STS

Interface
Model

Context Profile
Signature

Abstract Protocol

Abstract
Service

Context Profile

WSDL description

BPEL process

WF workfow
...

Service
Interface

SOAP HTTP-header

Fig. 4. Interface model obtention from ser-
vice platforms

Receive(Id,Op[,O,I1,…,In) s0 s1

Op?[I1,…,In] Op!O
s0 s1 s2

Send(Id,Op[,O1,…,On,I)
s0 s1

Op?I
s0 s1 s2

Op?[I1,…,In]

Op![O1,…,On] Op![O1,…,On]

or Terminate

s0

sn

Sequence (A1,A2)

or

or

IfElse((C1,Send(Id1,Op1[,Oi,I1])),
…,(Cn,An),

Send(Idn+1,Opn+1[,Ok,In+1]))

A1.A2

s0

…

While(C,A) s0
…

[C] A

Listen(EventDriven(
Receive(Id1,Op1[,O1,Ii]),A1),

…,EventDriven(
Receive(Idn,Opn[,On,Ij]),An))

s0
…

Op1?[Ii]

Opn?[Ij]

s1

s1

s1

s1

s1

[C1]Op1![Oi]

[Cn] An

Opn+1![Ok]

Code
Internal actions such as

assignments or write to console

or FINAL
sn

s2

s2

[

[

Op1?I1

Opn+1?In+1

]

]

s2

s2

[

[

Op1!O1

Opn!On

]

]

WF workflow activities
abstraction

CA-STS protocol elements
abstraction

τ
s1

Fig. 5. Patterns of our model transforma-
tion process WF - CA-STS

Model Transformation. First, (c) interface specifications are abstracted.
Context-Aware Symbolic Transition Systems (CA-STSs) [18] are extracted from
(d) the BPEL services or WF workflows (e.g., Figure 5 depicts patterns from
WF to CA-STS and vice versa, where ! and ? represent emission and reception,
respectively), which implement the client and the services, by means of our model
transformation process [16]. Different automata-based or Petri net-based mod-
els could be used to describe behavioural interfaces. We have defined CA-STS,
which are based on transition systems (specifically based on STG [27]), because
this kind of models are simple, graphical, and provide a good level of abstraction
to tackle discovery, verification, composition and adaptation issues, in addition

396 J. Cubo and E. Pimentel

to capture the context information and their changes at run-time [13,23]. Fur-
thermore, any formalism to describe dynamic behaviour may be expressed in
terms of a transition system [23]. Thus, our approach becomes general enough
to be applied in other fields or applications.

Semantic-Based Service Discovery. Then, (e) a service discovery process
(SDP) [15] finds out services satisfying the client’s request, i.e., with compatible
capabilities to the client requirements based on (i) similar context information,
semantic matching of signature, and (ii) protocol compatibility, and (iii) a ser-
vice ranking is performed. Using context information, the topics related to the
building of systems which are sensitive to their context is covered. In addition,
the advantage of using protocol compatibility is that the services selected not
only match at signature, service and semantic levels, but also at behavioural
level (solving variable correspondences or incompatible orders). Specifically, our
process will identify mismatch situations by using ontologies9 and synchronous
product [2] to determine if adaptation is required or not. It generates corre-
spondence sets among service interfaces involved in the interaction, used in the
composition and adaptation process as an adaptation contract.

Verification of Interfaces. Next, before performing composition, (f) model
checking techniques are used for validating a set of properties, such as determin-
ism, state liveness, inter-communication liveness (request/response), and non-
blocking states [19], for the CA-STS client and services selected in the discovery
process. In particular, we use Ordered Binary Decision Diagrams (OBDD) [11]
because of the use of context information and conditions over transitions, since a
standard model checker validating on states only considers (sequences of) states
through temporal formulae, but not sets of states satisfying boolean formulae.

Composition and Adaptation. If adaptation is required, then (h) a service
composition and adaptation process (SAP) [16] is executed (otherwise (g) no
adaptation). Thus, an adaptation contract solving mismatch problems is au-
tomatically obtained. Being given the CA-STSs corresponding to client and
services, as well as the adaptation contract, a monolithic CA-STS adaptor speci-
fication can be generated [33], whose resulting composition preserves the proper-
ties previously validated in the verification process. Next, (i) the corresponding
BPEL or WF adaptor service is obtained from the CA-STS adaptor specification
using our model transformation process. This process prunes parts of the CA-
STS specification corresponding to additional behaviours (interleavings) that
cannot be implemented into executable languages (BPEL or WF) and keeps
only executable paths. Finally, the whole system is deployed, allowing (j) the
BPEL/WF client and services to interact via (k) the BPEL/WF adaptor.

This process is illustrated in Figure 6, which shows how a part of the composi-
tion corresponding to Client-Taxi request and Taxi service interfaces is synchro-
nised through the adaptor by connecting parameters by means of placeholders.
9 Ontology generated for our example using Protégé 4.0.2 can be found in
http://www.lcc.uma.es/~cubo/contextive/owls/ontologies/ebooking.owl.xml

http://www.lcc.uma.es/~cubo/contextive/owls/ontologies/ebooking.owl.xml

DAMASCo: A Framework for the Composition of CBAs and SOAs 397

Specifically, the adaptation process synchronises the adaptor with the service
interfaces through the same name of messages but using reversed directions. It
can also be observed how the synchronisation solves behaviour mismatch such
as 1-N correspondence (user! and password! with login?), variable correspon-
dence ([priv==“VIP”]priceTaxiVIP! or [priv==“Guest”]priceTaxiGuest! with
priceTaxi?) and incompatible order (sequence reqTaxi!, user! and login! with re-
spect to login? and getTaxi?). Furthermore, our process can control dynamic
context changes. We assume the dynamic context attribute ˜priv corresponding
to the client privileges is “Guest” when the taxi request is issued. Then, that at-
tribute changes to “VIP” at run-time before the request is received. Our process
captures and handles that dynamic context change, and simulates the dynamic
update of the environment according to the context changes at run-time [18].
The process carries on the execution by the branch corresponding to “VIP”.

0

CT:REQTAXI?ADR,LOC,PRV

1

CT:USER?USR

2

7 8

CT:PASSWORD?PWD

9

T:LOGIN!USR,PWD

T:[PRV==”GUEST”]PRICETAXIGUEST?PRI

3

T:LOGIN!USR,PWD

4 5 6

T:GETTAXI!ADR,LOC,PRV

T:[PRV==”VIP”]PRICETAXIVIP?PRI

CT:PRICETAXI!PRI CT:PRICETAXI!PRI

Client-Taxi Request Protocol (CT)

ct2

ct3

lct4=priceTaxi ?price:float

ct4

lct1=reqTaxi!
address :string,

lõc:Tloc,
prĩv:Tpriv

ct1

lct3=password !
pwd:string

lct2=user!
usr:string

ct0

Taxi Protocol (T)

t1

t2

t3

lt4=[priv==”Guest”]
priceTaxiGuest!
Guestprice:float

lt3=[priv==”VIP”]
priceTaxiVIP!
VIPprice:float

lt2=getTaxi?
address :string,

loc:Tloc,priv :Tpriv

lt1=login?
usr:string,
pwd:string

t0

lct2=user!usr:string

lct3=password!pwd:string

lct4=priceTaxi?
price:float

CT:REQTAXI?
ADR,LOC,PRV

lct1=reqTaxi!address:string,
lõc:Tloc,prĩv:Tpriv

CT:USER?
USR

T:LOGIN!
USR,PWD

CT:PASSWORD?
PWD

T:GETTAXI!
ADR,LOC,PRV

lt1=login?usr:string,
pwd:string

lt2=getTaxi?address :string,
loc:Tloc,priv :Tpriv

lt3=[priv==”VIP”]
priceTaxiVIP!VIPprice:float

lt4=[priv==”Guest”]
priceTaxiGuest !Guestprice:float

T:[PRV==”GUEST”]
PRICETAXIGUEST?PRI

T:[PRV==”VIP”]
PRICETAXIVIP?PRI

CT:PRICETAXI!
PRI

placeholders

E Ø <ADR,address>

E Ø <LOC,lõc>

E Ø <PRV,prĩv>

E Ø <USR,usr>

E Ø <PWD,pwd>

E’ Ø <PRV,prĩv>E E'

E’ Ø <PRI,VIPprice>

value of prĩv is “Guest”

value change of prĩv to “VIP”

(a)

:Client-Taxi :Adaptor-Taxi :Service-Taxi

[pric==”VIP”]

[pric==”Guest”]

…..

1:reqTaxi(address:string,
loc:Tloc,priv:Tpriv)

2:user(usr:string)

3:password(pwd:string)
4:login(USR,PWD)

6:priceTaxiGuest
(Guestprice:float)

5:priceTaxiVip
(VIPprice:float)

7:priceTaxi(PRI)

8:bookTaxi()

(b)

Fig. 6. (a) Synchronised composition and (b) sequence diagram between Client-Taxi
request and the Taxi service interface by means of the corresponding Adaptor

Run-Time Monitoring. Then, a service monitoring process (SMP) [18,17]
focuses on (l) handling the concurrent execution of (n) the client with the com-
position of several services on the same user device, using an own composition

398 J. Cubo and E. Pimentel

language and mechanisms based on data semantic matching. Our approach aims
at assisting the user in establishing priorities between dependencies detected,
avoiding the occurrence of deadlock situations. In addition, (m) in case a prob-
lem occurs during composition, such as a connection loss, our fault-tolerance
monitoring process will search on-the-fly for new service interfaces that respond
to a specific client’s request (see [17] for further details),

4 Evaluation and Discussion

In order to evaluate the benefits of our framework, DAMASCo has been validated
on several examples. These examples include an on-line computer material store,
a travel agency, an on-line booking system (our running example), and a road
information system. These scenarios have been implemented in the WF platform
by us and executed on an Intel Pentium(R)D CPU 3GHz, 3GB RAM computer,
with Microsoft Windows XP Professional SP2. This represents an initial stage,
checking our whole framework, but the main goal of our approach is to sup-
port industrial systems by directly validating pre-existing applications in the
real-world. We have evaluated the experimental results in two separate parts:
discovery and adaptation processes, and monitoring process.

Service Discovery (SDP) and Adaptation (SAP) Processes. We have
validated the full discovery process and the adaptation contract generation in
two case studies: an on-line booking system, and a road information system. For
each case study, we have executed a client’s request, and we have also studied
three different versions for each, which are organised according to increasing size
and complexity with respect to the number of interfaces involved, as well as the
overall size of protocols as a total number of states and transitions.

Table 1 shows the experimental results (CPU load and execution time) cor-
responding to different versions of both case studies.

Table 1. Experimental results of the discovery and adaptation processes

Scenario Size Parameter
(Version) Interfaces States Transitions CPU(%) Time(s)

obs-v04 4 22 26 11,1 0,110
obs-v005 25 128 160 16,2 0,688
obs-v07 67 352 440 34,1 1,719

ris-v05 5 27 33 13,8 0,249
ris-v06 44 264 302 20,7 0,954
ris-v07 103 650 780 47,6 2,437

Figure 7 shows the scalability of our discovery and adaptation processes for
different versions of both case studies with respect to the number of transitions.
We could also study the scalability w.r.t. the number of interfaces or states, with

DAMASCo: A Framework for the Composition of CBAs and SOAs 399

0

0,5

1

1,5

2

2,5

3

0 200 400 600 800 1000

T
im

e
 (

s
)

Transitions

OBS

RIS

Fig. 7. Scalability of the discovery and adaptation processes for both case studies

similar results. One can observe when we increase the number of transitions the
growth is linear, so complexity of service composition does not affect severely.

We have also evaluated the accuracy of our discovery process with precision,
recall and F1 measures [29] for different requests on the scenarios presented
in Table 1. Precision is a measure of exactness, whereas recall is a measure of
completeness, and F1 is the harmonic mean of precision and recall that combines
both, and the values range for these three measures is between 0 and 1. For all
requests that we performed, the results of precision and recall were equal 1, which
shows our discovery process has 100% precision and recall, and the score F1 is
always 1. These results prove the importance of the context-awareness, semantic
matching and protocol compatibility mechanisms used in our process in order to
discover services and generate a whole adaptation contract. In addition, we have
validated the CA-STS interfaces corresponding to both case studies against a
set of properties, by using our OBDD representation. The verification of those
properties required less than 2 seconds for all the CA-STSs of each case study.

Service Monitoring Process (SMP). We have evaluated the composition
language that allows the execution and management of concurrent interactions
at the same time, by managing data dependencies to avoid inconsistent or dead-
lock situations. In order to evaluate this process, we have conducted a small
experimental study with the assistance of twelve volunteers. This study helped
us to determine how our approach behaves in terms of evaluating the benefits to
find out data dependencies in concurrent executions and to handle those depen-
dencies in terms of effort required, efficiency and accuracy of the dependencies
detected. Users performed tests either in a manual or in an interactive (using
the tool) way. In order to perform the tests, we provided them with a graphical
representation of the interfaces and a specific domain ontology to be used in
the concurrent interaction, for a specific scenario of each problem. Each user
solved different problems using different specifications (manual or interactive)
to prevent previous user knowledge of a particular case study.

Table 2 shows the scenarios of each case study used for our study. The sce-
narios are organised according to increasing size and complexity with respect to
the number of interfaces (Client and Serv.) involved and the ontology, as well
as the overall size of client protocols (Client Prot.) as a total number of states

400 J. Cubo and E. Pimentel

Table 2. Experimental results for the Manual (M) and Interactive (I) specifications

Size Parameter
Example Interfaces Client Prot. Time(s) Depend. Errors

Client Serv. Sta. Tran. M I M I M I

pc-v02 2 2 10 8 61,80 19,14 1 3 2 0

obs-v04 2 3 16 15 51,60 3,17 1 1 0 0

ris-v05 3 3 16 18 113,62 16,51 5 4 3 0

tra-v02 3 5 36 36 271,84 62,38 12 12 4 0

(Sta.) and transitions (Tran.). Tests considered all the client protocols interact-
ing concurrently. The table also includes the comparison of experimental results
using both manual and interactive specification of data dependencies and their
corresponding execution priorities. We consider as parameters the time required
to solve the problem (in seconds), the number of label dependencies detected
(Depend.), and the number of errors in the specified data dependency set.

There is a remarkable difference in the amount of time required to solve the
different scenarios between manual and interactive specification. We measure as
errors the number of wrong, unnecessary or non-detected label dependencies.
Our tool always detects all the data dependencies and it uses semantic matching
to determine those dependencies, so this is a clear advantage, which increases
with the complexity of the problem, compared to the manual specification. Thus,
the time elapsed for detecting dependencies by using our tool experiences a
linear growth with the size of the scenario. Therefore, scalability, efficiency and
accuracy of our tool are satisfactory, and for instance, in the worst case (tra-v02)
the time required is roughly 1 minute, which is a reasonable amount of time.

In Figures 8 can be observed graphically the experimental results of effi-
ciency and accuracy of the handling data-based composition for several exam-
ples. In order to measure the efficiency and accuracy, we consider the required
time and number of errors (for both manual and interactive specifications),
respectively.

0

50

100

150

200

250

300

pc-v02 obs-v04 ris-v05 tra-v02

Ti
m

e
(s

)

Example

Manual

Interactive

0

1

2

3

4

5

pc-v02 obs-v04 ris-v05 tra-v02

Er
ro

rs

Example

Manual

Interactive

Fig. 8. Efficiency and accuracy of the monitoring process for several examples

DAMASCo: A Framework for the Composition of CBAs and SOAs 401

5 Related Work

This section compares DAMASCo to related works to show the need of our frame-
work, which ovecomes certain gaps in discovery, adaptation and monitoring.

Discovery. Service discovery is one of the major challenges in services com-
puting, thus many attempts are currently being studied. Several works address
service discovery focused on context-awareness and/or semantic-based composi-
tion [8,9,29]. Other approaches tackle protocol compatibility [25,26,30,44]. In [40],
service discovery bases on structural and behavioural service models, as well as
contextual information, but nothing about semantic description. Therefore, there
do not exist methods to automatically and directly detect all the mismatch sit-
uations related to the four interoperability levels as is addressed in DAMASCo.

Adaptation Based on Model Transformation. Deriving adaptors is a com-
plicated task. Many approaches tackle model-based adaptation at signature and
behavioural levels, although only some of them are related with existing program-
ming languages and platforms, using CORBA [5], COM/DCOM [28], BPEL [10],
and SCA components [36]. In [32], the authors present an approach that sup-
ports behaviour analysis of component composition according to a software ar-
chitecture. In comparison to the aforementioned works, DAMASCo focuses on
modelling the behavioural composition, not only preventing mismatch problems,
but also taking into account context changes and semantic matching in order
to control states of inconsistence and to relate automatically message names
even when their signatures do not match. In addition, our model transforma-
tion becomes general enough to be applied in different languages or platforms
in addition to BPEL or WF.

Monitoring. Recent approaches have been dedicated to the run-time service
interaction to compose and adapt their execution. There exists monitoring ap-
proaches [4,39], which define rules, specification languages, temporal logic or
event calculus for expressing and verifying functional and non-functional prop-
erties. However, to the best of our knowledge, only recent approaches [6,35,45]
have tackled monitoring by handling run-time concurrent interactions of service
protocols through data dependency analysis. Compared to these works, DAM-
ASCo does not only detect data dependencies, addressing both direction and
order (priorities), but also allows context-aware protocol concurrent executions
at run-time by using a composition language and semantic matching techniques.

6 Concluding Remarks

We have illustrated the need to support the modelling, discovery and variabil-
ity of the adaptation process according to the dynamic aspects of component-
based and service-oriented architectures in context-aware mobile and pervasive
systems. Recent research approaches have tackled independently the discovery,
composition, adaptation or monitoring processes. DAMASCo framework has been
presented as a novel solution which combines efforts to address all those issues

402 J. Cubo and E. Pimentel

through model transformations of real-world applications. This paper presents
the DAMASCo architecture. We have validated our framework on several exam-
ples, and we have shown it is scalable, efficient and accurate.

We are currently extending our framework to open systems by tackling dy-
namic reconfiguration of services (second type of faults presented in Section 2.1),
by handling the addition and elimination of both services and requirements. As
regards future work, we plan to address other non-functional requirements at
the service level, such as temporal requirements or security, in addition to con-
text information, as well as more semantic capabilities of the service interfaces
considering the full power of the Web Semantic technologies, which includes
automated Web Service discovery, execution, composition and interoperation.

References

1. Andrews, T., et al.: Business Process Execution Language for Web Services (WS-
BPEL). BEA Systems, IBM, Microsoft, SAP AG, and Siebel Systems (2005)

2. Arnold, A.: Finite Transition Systems. International Series in Computer Science.
Prentice-Hall, Englewood Cliffs (1994)

3. Arsanjani, A., Zhang, L.-J., Ellis, M., Allam, A., Channabasavaiah, K.: S3: A
Service-Oriented Reference Architecture. IEEE IT Professional 9, 10–17 (2007)

4. Baresi, L., Guinea, S., Pistore, M., Trainotti, M.: Dynamo + Astro: An Integrated
Approach for BPEL Monitoring. In: Proc. of ICWS 2009, pp. 230–237. IEEE Com-
puter Society, Los Alamitos (2009)

5. Bastide, R., Sy, O., Navarre, D., Palanque, P.A.: A Formal Specification of the
CORBA Event Service. In: Proc. of FMOODS 2000, pp. 371–396. Kluwer Academic
Publishers, Dordrecht (2000)

6. Basu, S., Casati, F., Daniel, F.: Web Service Dependency Discovery Tool for SOA
Management. In: Proc. of SCC 2007, pp. 684–685. IEEE Computer Society, Los
Alamitos (2007)

7. Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., Tivoli, M.: To-
wards an Engineering Approach to Component Adaptation. In: Reussner, R.,
Stafford, J.A., Ren, X.-M. (eds.) Architecting Systems with Trustworthy Com-
ponents. LNCS, vol. 3938, pp. 193–215. Springer, Heidelberg (2006)

8. Benatallah, B., Hacid, M.S., Rey, C., Toumani, F.: Request Rewriting-Based Web
Service Discovery. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 242–257. Springer, Heidelberg (2003)

9. Brogi, A., Corfini, S., Popescu, R.: Semantics-Based Composition-Oriented Discov-
ery of Web Services. ACM Transactions on Internet Technology 8(4), 19:1–19:39
(2008)

10. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidel-
berg (2006)

11. Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

12. Cámara, J., Mart́ın, J.A., Salaün, G., Cubo, J., Ouederni, M., Canal, C., Pimentel,
E.: ITACA: An Integrated Toolbox for the Automatic Composition and Adaptation
of Web Services. In: Proc. of ICSE 2009, pp. 627–630. IEEE Computer Society, Los
Alamitos (2009)

DAMASCo: A Framework for the Composition of CBAs and SOAs 403

13. Canal, C., Poizat, P., Salaün, G.: Model-Based Adaptation of Behavioural Mis-
matching Components. IEEE Transactions on Software Engineering 34(4), 546–563
(2008)

14. Chappel, D.A.: Enterprise Service Bus. O’Reilly, Sebastopol (2004)
15. Cubo, J., Canal, C., Pimentel, E.: Context-Aware Service Discovery and Adapta-

tion Based on Semantic Matchmaking. In: Proc. of ICIW 2010, pp. 554–561. IEEE
Computer Society, Los Alamitos (2010)

16. Cubo, J., Canal, C., Pimentel, E.: Context-Aware Composition and Adaptation
Based on Model Transformation. Journal of Universal Computer Science 17(15),
777–806 (2011)

17. Cubo, J., Canal, C., Pimentel, E.: Model-Based Dependable Composition of Self-
Adaptive Systems. Informatica 35, 51–62 (2011)

18. Cubo, J., Pimentel, E., Salaün, G., Canal, C.: Handling Data-Based Concurrency
in Context-Aware Service Protocols. In: Proc. of FOCLASA 2010. Electronic Pro-
ceeding in Theoretical Computer Science, vol. 30, pp. 62–77 (2010)

19. Cubo, J., Sama, M., Raimondi, F., Rosenblum, D.: A Model to Design and Verify
Context-Aware Adaptive Service Composition. In: Proc. of SCC 2009, pp. 184–191.
IEEE Computer Society, Los Alamitos (2009)

20. Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context-
Awareness. In: Proc. of Workshop on the What, Who, Where, When and How of
Context-Awareness, pp. 304–307 (2000)

21. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design.
Prentice-Hall, Englewood Cliffs (2005)

22. Fiadeiro, J.L., Lopes, A.: A Model for Dynamic Reconfiguration in Service-Oriented
Architectures. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp.
70–85. Springer, Heidelberg (2010)

23. Foster, H., Uchitel, S., Kramer, J.: LTSA-WS: A Tool for Model-based Verification
of Web Service Compositions and Choreography. In: Proc. of ICSE 2006, pp. 771–
774. ACM Press, New York (2006)

24. Gorbenko, A., Romanovsky, A., Kharchenko, V.S., Mikhaylichenko, A.: Experi-
menting with Exception Propagation Mechanisms in Service-Oriented Architec-
ture. In: Proc. of WEH 2008, pp. 1–7. ACM Press, New York (2008)

25. Hameurlain, N.: Flexible Behavioural Compatibility and Substitutability for Com-
ponent Protocols: A Formal Specification. In: Proc. of SEFM 2007, pp. 391–400.
IEEE Computer Society, Los Alamitos (2007)

26. Han, W., Shi, X., Chen, R.: Process-Context Aware Matchmaking for Web Service
Composition. Journal of Network and Computer App. 31(4), 559–576 (2008)

27. Hennessy, M., Lin, H.: Symbolic Bisimulations. Theor. Comput. Sci. 138(2), 353–
389 (1995)

28. Inverardi, P., Tivoli, M.: Deadlock-free Software Architectures for COM / DCOM
Applications. The Journal of Systems and Software 65(3), 173–183 (2003)

29. Klusch, M., Fries, B., Sycara, K.: Automated Semantic Web Service Discovery with
OWLS-MX. In: Proc. of AAMAS 2006, pp. 915–922. ACM Press, New York (2006)

30. La, H.J., Kim, S.D.: Adapter Patterns for Resolving Mismatches in Service Discov-
ery. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS,
vol. 6275, pp. 498–508. Springer, Heidelberg (2010)

31. López-Sanz, M., Qayyum, Z., Cuesta, C.E., Marcos, E., Oquendo, F.: Representing
Service-Oriented Architectural Models Using π-ADL. In: Morrison, R., Balasubra-
maniam, D., Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 273–280. Springer,
Heidelberg (2008)

404 J. Cubo and E. Pimentel

32. Magee, J., Kramer, J., Giannakopoulou, D.: Behaviour Analysis of Software Ar-
chitectures. In: Proc. of WICSA 1999, pp. 35–49. Kluwer Academic Publishers,
Dordrecht (1999)

33. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of Service Protocols using Process
Algebra and On-the-Fly Reduction Techniques. In: Bouguettaya, A., Krueger, I.,
Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 84–99. Springer, Heidelberg
(2008)

34. Mens, T., Demeyer, S.: Software Evolution. Springer, Heidelberg (2008)
35. Mrissa, M., Ghedira, C., Benslimane, D., Maamar, Z., Rosenberg, F., Dustdar, S.:

A Context-Based Mediation Approach to Compose Semantic Web Services. ACM
Transactions on Internet Technology 8(1), 4:1–4:23 (2007)

36. Motahari Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
Automated Adaptation of Service Interactions. In: Proc. of WWW 2007, ACM
Press, New York (2007)

37. de Oliveira, L.B.R., Romero Felizardo, K., Feitosa, D., Nakagawa, E.Y.: Reference
Models and Reference Architectures Based on Service-Oriented Architecture: A
Systematic Review. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285,
pp. 360–367. Springer, Heidelberg (2010)

38. Scribner, K.: Microsoft Windows Workflow Foundation: Step by Step. Microsoft
Press (2007)

39. Sheng, Q.Z., Benatallah, B., Maamar, Z., Dumas, M., Ngu, A.H.H.: Configurable
Composition and Adaptive Provisioning of Web Services. IEEE Transactions on
Services Computing 2(1), 34–49 (2009)

40. Spanoudakis, G., Mahbub, K., Zisman, A.: A Platform for Context Aware Runtime
Web Service Discovery. In: Proc. of ICWS 2007, pp. 233–240. IEEE Computer
Society, Los Alamitos (2007)

41. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd
edn. Addison Wesley, Reading (2003)

42. Tartanoglu, F., Issarny, V., Romanovsky, A., Levy, N.: Dependability in the Web
Services Architecture. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) ADS
2003. LNCS, vol. 2677, pp. 90–109. Springer, Heidelberg (2003)

43. Tibermacine, C., Kerdoudi, M.L.: From Web Components to Web Services: Open-
ing Development for Third Parties. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010.
LNCS, vol. 6285, pp. 480–484. Springer, Heidelberg (2010)

44. Wang, L., Krishnan, P.: A Framework for Checking Behavioral Compatibility for
Component Selection. In: Proc. of ASWEC 2006, pp. 49–60. IEEE Computer So-
ciety, Los Alamitos (2006)

45. Yan, S., Wang, J., Liu, C., Liu, L.: An Approach to Discover Dependencies between
Service Operations. Journal of Software 3(9), 36–43 (2008)

46. Zapletal, M., van der Aalst, W.M.P., Russell, N., Liegl, P., Werthner, H.: An Anal-
ysis of Windows Workflow’s Control-Flow Expressiveness. In: Proc. of ECOWS
2009, pp. 200–209. IEEE Computer Society, Los Alamitos (2009)

A Service-Oriented Reference Architecture for

Software Testing Tools

Lucas Bueno Ruas Oliveira and Elisa Yumi Nakagawa

Department of Computer Systems
University of São Paulo - USP

PO Box 668, 13560-970, São Carlos, SP, Brazil
{buenolro,elisa}@icmc.usp.br

Abstract. Software testing is recognized as a fundamental activity for
assuring software quality. Aiming at supporting this activity, a diver-
sity of testing tools has been developed, including tools based on SOA
(Service-Oriented Architecture). In another perspective, reference archi-
tectures have played a significant role in aggregating knowledge of a
given domain, contributing to the success in the development of sys-
tems for that domain. However, there exists no reference architecture for
the testing domain that contribute to the development of testing tools
based on SOA. Thus, the main contribution of this paper is to present a
service-oriented reference architecture, named RefTEST-SOA (Reference
Architecture for Software Testing Tools based on SOA), that comprises
knowledge and experience about how to structure testing tools organized
as services and pursues a better integration, scalability, and reuse pro-
vided by SOA to such tools. Results of our case studies have showed that
RefTEST-SOA is a viable and reusable element to the development of
service-oriented testing tools.

1 Introduction

Software testing is one of the most important activities to guarantee quality and
reliability of software under development [1,2]. In order to systematize the test-
ing activity, a diversity of testing tools has been developed, aiming at minimizing
cost, time consumed, as well as errors caused by human intervention. Testing
automation is therefore an important issue related to the quality and produc-
tivity of the testing processes and, as a consequence, of the software processes
[1]. However, these tools have almost always been implemented individually and
independently, presenting its own architectures and data structures. As a conse-
quence, difficulty of integration, evolution, maintenance, and reuse of these tools
is very common.

In another perspective, software architectures have played a major role in
determining system quality, since they form the backbone to any successful
software-intensive system [3]. Decisions made at the architectural level directly
enable, facilitate, hamper or interfere with achieving business goals as well as
meeting functional and quality requirements. Thus, software architecture is a

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 405–421, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

406 L.B.R. Oliveira and E.Y. Nakagawa

structure (or a set of structures) of the system which comprises software ele-
ments, the externally visible properties of those elements, and the relationships
among them [3]. In this context, reference architectures have emerged as an
element that aggregates knowledge of a specific domain by means of modules
and their relations. They promote reuse of design expertise by achieving solid,
well-recognized understanding of a specific domain. Considering their relevance,
reference architectures for different domains have been proposed and in fact
contributed to the development of software systems [4]. Besides that, reference
architecture for software testing domain can be also found [5,6].

In the context of software architecture, an architectural style has taken at-
tention in the last years: the SOA (Service-Oriented Architecture) [7]. This style
makes possible the improvement of integration, scalability, and reuse, since sys-
tems based on this style present independence regarding programming language
and execution platform [7]. Considering the advantages of SOA, use of this archi-
tectural style to develop testing tools can be also found [8,9]. Besides advantages
provided by SOA, specifically to the testing domain, SOA could make possible
a complementary use of testing techniques and criteria, that is highly recom-
mended by the testing literature [2]. Thus, different testing tools available as
services could be used in an integrated way, composing a major testing envi-
ronment. Therefore, considering the relevance of service-oriented testing tools, a
reference architecture could support development of such tools.

The main objective of this paper is to present a service-oriented reference
architecture, named RefTEST-SOA (Reference Architecture for Software Test-
ing Tools based on SOA), for the software testing domain. Our research group
has been working with software testing for many years and several tools for the
testing activity have been developed in this period. This architecture encom-
passes therefore knowledge and experience of the testing domain and intends to
facilitate development of testing tools organized as services, i.e., service-oriented
testing tools. In order to have evidence about the viability of RefTEST-SOA,
we present a case study using it to the development of a service-oriented testing
tool. As main result, we observed possibility of testing tools actually composed
by different services, promoting mainly reusability in the development of such
tools.

The remainder of this paper is organized as follows. In Section 2, background
about reference architecture, SOA, and related work are presented. In Section
3, RefTEST-SOA is presented. In Section 4, we present a case study involving
development of a service-oriented testing tool from RefTEST-SOA. In Section 5,
we discuss results and limitations of our work, as well as conclusions and future
directions.

2 Background and Related Work

Reference architecture is a special type of architecture that provides major guide-
lines for the specification of concrete architectures of a class of systems [4]. In or-
der to systematize the design of reference architectures, guidelines and processes

A Service-Oriented Reference Architecture for Software Testing Tools 407

have been also established [10,11]. Moreover, the effective reuse of knowledge
of reference architectures depends not only on raising the domain knowledge,
but also documenting and communicating efficiently this knowledge through an
adequate architectural description. Commonly, architectural views have been
used, together with UML (Unified Modeling Language) techniques, to describe
reference architectures. Considering the relevance of reference architectures as
basis of software development, a diversity of architectures has been proposed
and used, including for Software Testing [5,6]. However, reference architectures
for Software Testing domain proposed until now do not support development of
service-oriented testing tools.

Regarding SOA, it has introduced the concept of business service (or simply
service) as a fundamental unit to design, build, and composite service-oriented
software systems [7]. A service provides usually business functionalities; further-
more, it is independent of the context and of the state of other services. For
services to properly work, SOA requires establishment of mechanisms for com-
munication among services, either using a direct communication or a broker
(i.e., a mediator among the services). Besides that, to build service-oriented sys-
tems, it is important to have a highly distributed communication and integration
backbone. This functionality can be provided by Enterprise Service Bus (ESB)
[12] that refers to an integration platform to support a wide variety of com-
munication patterns over multiple transport protocols and deliver value-added
capabilities for SOA applications [7]. Through composition of simple services,
more complex service-oriented systems can be built and, according to Papa-
zoglou and Heuvel [7], in the more productive and agile way. In other words,
SOA intends cooperation of low coupling services in order to create dynamic
and flexible business processes. Service composition is therefore considered one
of the most promising characteristic of SOA. In this context, concepts, such as
service orchestration and service choreography [13], are important. To ensure
quality and inter-operability among services, contracts can be used as a formal
agreement to specify relationship between a service and its clients, expressing
each part’s rights and obligations [14].

With respect to related work, we can find general reference architectures
and reference models. Well-known examples are S3 (Service-Oriented Solution
Stack) reference architecture [15], OASIS reference model [16] and OASIS ref-
erence architecture [17]. They are domain-independent and intend to guide de-
sign of concrete architectures of systems based on SOA. In particular, S3 pro-
vides an architectural description of SOA through a structure organized in lay-
ers and presents concepts related to services mapped in technological aspects
[15]. Otherwise, the reference model and reference architecture proposed by OA-
SIS aim at defining a common vocabulary and understanding about elements
and interactions in SOA, independently from implementation technologies [17].
Besides these domain-independent architectures and models, a diversity of service-
oriented reference architectures for specific domains can be found [18], such
as for e-learning [19] and e-working [20]. This diversity shows the relevance of

408 L.B.R. Oliveira and E.Y. Nakagawa

reference architectures based on SOA, as well as the interest in the development
of service-oriented systems for different domains.

In the testing domain, we have also observed interest in developing testing
tools organized as services [8,9,21]. In particular, JaBUTiService [9] is a testing
service that automates structural testing of programs in Java and AspectJ1. Eler
et al. [21] propose an approach to improve web service testability by developing
web services with built-in structural testing capabilities. Moreover, Bartolini et
al. [8] propose a mechanism in order to conduct structural testing for composi-
tion of services. Since initiatives of service-oriented testing tools can be already
found, establishment of a reference architecture that supports and facilitates
development of such tools can be considered of great importance.

3 Establishing RefTEST-SOA

RefTEST-SOA is a reference architecture that intends to support development
of testing tools organized as a set of services, i.e., service-oriented testing tools.
In order to establish this architecture, we have used ProSA-RA [11], a process
to build reference architectures, illustrated in Figure 1. In short, to establish ref-
erence architectures by using ProSA-RA, information sources are firstly selected
and investigated (in Step RA-1) and architectural requirements are identified (in
Step RA-2). After that, an architectural description of the reference architecture
is established (in Step RA-3) and evaluation of this architecture is conducted
(in Step RA-4). Following, each step in presented in more details in order to
establish our reference architecture:

Fig. 1. Outline Structure of ProSA-RA (Adapted from [11])

3.1 Step RA-1: Information Source Investigation

In this step, we identified information sources, aiming to elicit requirements
to our reference architecture. Different sources were considered, mainly related
to SOA and software testing domain. Thus, the four sets of sources were: (i)
1 http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/

A Service-Oriented Reference Architecture for Software Testing Tools 409

service-oriented tools of the testing domain; (ii) guidelines to development of
service-oriented systems; (iii) service-oriented reference architectures related to
other domains; and (iv) other reference architectures for the testing domain.
It is worth highlighting that to identify information sources for the sets in (ii)
and (iii), we conducted a Systematic Review2, presented in more details in [18].
The use of systematic reviews to support gathering of information sources and
requirements elicitation is already investigated elsewhere [23,24]. Following, each
set is described in more details:

– Set 1: Service-oriented testing tools: An important information source
is the set of testing tools organized as services; thus, we identified in the
literature three testing tools [9,21,8]. Furthermore, we considered also one
verification tool [25] and one software analysis tool [26], that present initia-
tives to be available as services. These tools were therefore studied and their
internal structures were analyzed. Besides that, issues related to integration
and communication mechanisms and service discovery were also analyzed.
Therefore, it is important to observe that, in spite of increasing interest
in developing systems based on SOA, there are few initiatives of software
testing tools organized as services.

– Set 2: Guidelines to the development of service-oriented systems:
Since domain-independent reference models and reference architectures for
SOA have been proposed and used as successful basis to establish refer-
ence architectures for different domains, as pointed out in [18], we have
also investigated them. In particular, we considered OASIS [17] and S3 [15].
They present the structure, functionalities, and characteristics that could
be present in service-oriented systems. Based on them, we summarized the
main concepts related to SOA that could be considered during establish-
ment of our reference architecture. The concepts are: Service Description
(SD), Service Publication (SP), Service Interaction (SI), Service Compo-
sition (SC), Polices (P), Governance (G), and Quality of Service (QoS).
Table 1 summarizes these concepts and sources that contributed to identify
them.

Table 1. Concepts Related to SOA

ID Source Concept

ST1 Arsanjani et al. (2007) [15] SD, SP, SI, SC, P, G, QoS
ST2 Dillon et al. (2007) [27] SP, SI, SC, QS
ST3 Lan et al. (2008) [28] SP, SI, SC, P, G
ST4 OASIS (2006) [16] SD, SP, SI, SC, P
ST5 OASIS (2008) [17] SD, SP, SI, SC, P, G, QoS
ST6 Zimmermann (2009) [29] P, G, QoS

2 Systematic Review is a technique proposed by Evidence-Based Software Engineering
and enables to have a complete and fair evaluation about a topic of interest [22].

410 L.B.R. Oliveira and E.Y. Nakagawa

– Set 3: Service-oriented reference architectures: We investigated also
service-oriented reference architectures of different domains. As stated be-
fore, we conducted a Systematic Review in order to possibly identify all
architectures [18]. A total of 11 architectures were studied and we observed
that the concepts Service Description (SD) and Service Interaction (SI) are
present in all architectures, even because these concepts are inherent char-
acteristics of SOA. Furthermore, Service Publication (SP) is present in the
most of architectures. Quality of Service (QoS) and Service Composition
(SC) are present in a half of the reference architectures. Otherwise, Polices
(P) and Governance (G) are considered in one-third of these architectures.
Thus, in spite of relevance of all these concepts in service-oriented systems,
considering an analysis of reference architectures, not all architectures have
considered all concepts. Furthermore, these architectures were important in
our work, since they provided knowledge and experience about how to struc-
ture and represent service-oriented reference architectures.

– Set 4: Reference architectures for the testing domain: Since reference
architectures aggregate knowledge of a specific domain, we have investigated
reference architecture previously proposed to the testing domain. As far as
we know, two architectures were proposed to this domain [5,6]. Eickelmann
and Richardson [5] presented an architecture divided in six functionalities
— planning, management, measurement, fault analysis, development, and
execution — inspired on software processes. Nakagawa et al. [6] proposed an
architecture based on SoC (Separation of Concerns) and international stan-
dard ISO/IEC 12207 [30], aiming at being basis to tools that support pri-
mary, organizational, and supporting activities of the testing domain. Since
this architecture presents a more complete documentation and it has been
successfully used to develop testing tools, such as presented in [31], we have
considered the knowledge about testing domain contained in this architec-
ture to contribute to our architecture. In spite of that, it is worth highlighting
that this architecture is not indicated to be basis to develop service-oriented
testing tools.

3.2 Step RA-2: Architectural Requirement Establishment

Based on information and concepts identified in last step, we established the
architectural requirements of our architecture. We identified a total of 39 re-
quirements and we classified them in two sets: (i) architectural requirements of
the testing domain that were obtained from Sets 1 and 4; and (ii) architectural
requirements related to concepts of the SOA that were obtained from Sets 1,
2 and 3. Table 2 illustrates part of these requirements. First column refers to
the requirement identification (R-T, i.e., Requirement related to Testing domain
and R-S, i.e., Requirement related to SOA); second column refers to requirement
description; and third column refers to concepts related to requirements. For in-
stance, requirement R-T2 (The reference architecture must allow development of
testing tools that support test criteria management.) is related to Testing Crite-
rion concept. This same analysis was conducted to each requirement. As result,

A Service-Oriented Reference Architecture for Software Testing Tools 411

Table 2. Part of the RefTEST-SOA requirements

ID Requirement CPT

R-T1 The reference architecture must enable development of testing tools that provide mech-
anisms to add test requirements, generating or importing them.

TR

R-T2 The reference architecture must allow development of testing tools that support test
criteria management.

TCr

R-T3 The reference architecture must enable development of testing tools that provide mech-
anisms to automatically generate test cases.

TCa

R-T4 The reference architecture must allow development of testing tools that execute test
artifacts using test cases.

TA

...
R-S1 The reference architecture must enable development of testing tools that are capable

of storing and providing normative descriptions related to their correct use.
SD

R-S2 The reference architecture must allow development of testing tools that support pub-
lication of service description directly to consumers as well as through mediators.

SP

R-S3 The reference architecture must enable development of testing tools that can be used
directly as well as through service bus.

SI

R-S4 The reference architecture must allow development of testing tools that can be built
by means of service composition, as business processes, using service orchestration.

SC

R-S5 The reference architecture must allow development of testing tools that can be built
by means of service composition, coordinating the collaboration among services using
choreography.

SC

R-S6 The reference architecture must enable development of testing tools that have or are
able to use mechanisms to capture, monitor, log, and signal non-compliance with non-
functional requirements described in service agreements.

QoS

...

we found that concepts of the testing domain are: Test Requirement (TR), Test
Case (TCa), Test Artifact (TA) and Testing Criterion (TCr). It is worth high-
lighting that these same concepts are established by a testing domain ontology,
[32]. Besides that, we also found that concepts related to SOA are according to
those previously presented in Table 1.

3.3 Step RA-3: Architectural Design

From the 39 architectural requirements and the concepts identified in the previ-
ous step, the architectural design of RefTEST-SOA was conducted. For this, we
have firstly adopted the overall idea based on layers proposed by S3, since it is
observed that S3 has become a “de facto” standard to organize service-oriented
systems. Following, we have specialized the idea of S3 layers for the software
testing domain using both the knowledge obtained from that domain and the
structures found in service-oriented testing tools. Moreover, the four concepts of
the testing domain previously found were inserted as core of the RefTEST-SOA.
Figure 2 presents the general representation of RefTEST-SOA. Basically, it is
composed by six logical elements that we have considered as layers:

– Application Layer: It contains concepts directly related to the testing do-
main. It is composed by four sets of services that we name testing services:
(i) Primary Testing Services that refer to core services of a testing tool
(i.e., they support management of test case, test criterion, test artifact,
and test requirement); (ii) Orthogonal Supporting Services that support
software engineering activities considered supporting activities by ISO/IEC

412 L.B.R. Oliveira and E.Y. Nakagawa

Fig. 2. General Representation of RefTEST-SOA

12207, such as documentation, and could be applied in the testing domain;
(iii) Orthogonal Organizational Services that support software engineering
activities considered organizational activities by ISO/IEC 12207, such as
planning and management, and could also be applied in the testing domain;
and (iv) Orthogonal General Services that refer to general services, such as
Persistence and Security. It is important to highlight that these three last
sets of services are considered orthogonal, since each service can be used by
diverse services during a testing suite. For instance, Documentation service,
responsible by documentation of a testing suite, can be required by other
services, such as Test Case and Test Criterion services.

– Persistence Layer: It is responsible to store data produced by services that
compose a testing tool. In particular, service Persistence acts directly in
this layer;

– Service Presentation Layer: In stand-alone and web application, this layer
processes usually user events and deals with visual presentation. However,
in our reference architecture, which will underlie service-oriented systems,
this layer is part of each service and contains two main elements: (i) Service

Description that defines data format and deals with processed data that are
received from clients; and (ii) Controller that deals with requests that are
received from service clients. In order to convert data from service requests
to adequate formats to be processed by Application Layer, Controller uses
a service engine;

– Mediation Layer: In this layer, testing services are published, discovered, as-
sociated, and available. This layer is composed by three elements: (i) Service
Registry that receives description of the testing services and enables search
for them. This registry can be implemented as a broker or a matchmaker [27];
(ii) Service Agent that is a mediator, routing, mediating, and transporting
requests from service requester to correct service provider, allowing indirect

A Service-Oriented Reference Architecture for Software Testing Tools 413

communication among them. ESB could be used to implement this medi-
ator; and (iii) Service Schedule is responsible to process service requests
according to dependency among services;

– Business Process Layer: In this layer, business processes are defined. Thus,
composed services are build based on the testing services contained in the
Application Layer. For this, orchestration and choreography could be used.
In order to orchestrate processes, standard languages, such as WS-BPEL
(Web Services Business Process Execution Language), are available. Regard-
ing use of choreography, WS-CDL (Web Services Choreography Description
Language) could be used. Since that RefTEST-SOA is a reference architec-
ture, the way that services are organized by orchestration and choreography
must not be described in this abstraction level. Such details should be defined
during the design of each architectural instance; and

– Quality of Service Layer: It supervises compliance of the quality require-
ments contained in other layers (Business Process Layer, Mediation Layer

and part of Service Presentation Layer, in particular the Service Descrip-

tion). In other words, it observes other layers and signals when a
non-functional requirement is not fulfilled. Thus, reliability, management,
availability, scalability, and security in services could be guaranteed. This
layer is very important, since different institutions could develop testing
services using different infrastructures and an adequate interaction among
services must be therefore guaranteed.

Besides the general representation of RefTEST-SOA, in order to adequately doc-
ument this architecture, three architectural views were built: module view, run-
time view, and deployment view. For the sake of space, only the module and de-
ployment views are presented herein. The module view shows the structure of the
software systems in terms of code units; packages and dependency relationship
can be used to represent this view. In Figure 3, it is presented the module view
of RefTEST-SOA represented in Package Diagram of UML. Four sets of testing
services are proposed by RefTEST-SOA: primaryTestingServices, orthogonal-

SupportingServices, orthogonalOrganizationalServices and orthogonalGeneral-

Services. Each testing service must be independently implemented, enabling
composition of a more complex testing service. Other services — service-

Schedule, serviceAgent, serviceRegistry and qualityOfService — make pos-
sible that testing services work adequately. Package presentation manages the
interface of services, enabling communication among them. This support infras-
tructure is similar to those used in reference architectures for other application
domains, such as those presented in [18]. Besides that, client is illustrated in
this figure in order to show how client service can use the testing services. It is
important to notice that, since RefTEST-SOA is based on SOA, packages in this
view, for instance, service testCase and qualityOfService, could be physically
distributed in different servers and even in different institutions.

In more details, if the client service does not know the location where
the required testing service is, it must firstly search for this service in
the ServiceRegistry, using a standard protocol, such as UDDI (Universal

414 L.B.R. Oliveira and E.Y. Nakagawa

Fig. 3. Module View of RefTEST-SOA

Description, Discovery, and Integration). If the testing service is found, the
ServiceRegistry informs the address (i.e., endpoint) to the client. Thus, a con-
nection between the client and the required service is established. Following the
client requests information related to the service description to the required ser-
vice, aiming at an adequate communication. A description language, such as
WSDL (Web Services Description Language), could be used to describe the ser-
vices. From that, the communication between client and required service could
be direct or through intermediate services (using the ServiceAgent). In both
cases, the communication must be performed using a protocol and a standard
language, for instance, SOAP (Simple Object Access Protocol). It is observed
that a required service is any testing service proposed by RefTEST-SOA. In
order to ensure quality in the interaction between the client and the required
service, the QualityOfService monitors the communication.

Deployment view, describes the machines, software that is installed on those
machines and network connections that are made available. This view is
particularly useful, since different testing services, client services, and other
services could be available in separated machines. Figure 4 illustrates a pos-
sible deployment view of RefTEST-SOA, represented in Deployment Diagram of
UML. It is observed that this view is similar to deployment view of traditional
service-oriented systems. According to this view, Application Server contains
testing services; furthermore, a service engine, such as AXIS23, is available in the
server. Service Registry Server is responsible to manage and store information
about testing services and processes requests coming from client services. It uses

3 http://ws.apache.org/axis2

http://ws.apache.org/axis2

A Service-Oriented Reference Architecture for Software Testing Tools 415

Fig. 4. Deployment View of RefTEST-SOA

a Registry Repository Server to store information about published services. Be-
sides these servers, other servers contain an service agent (Service Agent Server)
and a service of QoS (QoS Server).

3.4 Step RA-4: Reference Architecture Evaluation

Aiming at improving the quality of RefTEST-SOA, an inspection based on check-
list was conducted. This checklist makes possible to look for defects related to
omission, ambiguity, inconsistence and incorrect information that can be present
in the architecture. Besides that, aiming at observing the viability of RefTEST-
SOA, as well as its reuse and service integration capabilities, we have conducted
case studies, as that presented in the next section.

4 Case Study

We developed a testing tool organized as services that supports application of
the Mutation Testing [33]. In short, Mutation Testing is a fault-based testing
criterion which relies on typical mistakes programmers make during the software
development [33]. This criterion relies on the Competent Programmer and the
Coupling Effect hypotheses [33]. These hypotheses state that a program under
test contains only small syntactic faults and that complex faults result from the
combination of them. Fixing the small faults will probably solve the complex
ones. Given an original program P , the criterion requires creation of a set M
of mutants, consisting of slightly modified versions of P . Mutation operators
encapsulate modification rules applied to P . Then, for each mutant m, (m ∈ M),
tester runs the test suite T originally designed for P . If there is a test case t,
(t ∈ T), and m(t) �= P (t), this mutant is considered dead. If not, tester should
improve T with a test case that reveals the difference between m and P . If m
and P are equivalent, then P (t) = m(t) for all test cases. This criterion has been
empirically shown to be one of the strongest testing criteria [34].

To develop our testing tool, we reused the knowledge contained in RefTEST-
SOA. In particular, we adopted the overall structure of RefTEST-SOA, that is
based on layers, to organize the structure and distribution of the services to

416 L.B.R. Oliveira and E.Y. Nakagawa

be implemented. Moreover, we reused all functional requirements related to the
testing domain to establish the functionalities to be available in these services;
furthermore, these requirements were specialized to the Mutation Testing cri-
terion, in order to support this technique. To organize these services, we used
orchestration, where interaction is coordinated by a specific service.

4.1 Description of the Testing Services

Aiming to build the core services for the testing domain (represented as primary-
TestingServices in Figure 3), four services was implemented:

– Test Case: it refers to service named TestCaseManagement (TCM) that
has as main objective to manage test case sets. This service is responsible
to: (i) add test cases in the set; (ii) remove test cases of the set; (iii) update
test cases; (iv) provide description about test cases; and (v) list test cases
that have not been used yet;

– Test Artifact: this service, named MuTestPascalArtifact (MTPA), is re-
sponsible to: (i) read the program to be tested; (ii) generate the syntactic
tree related to the program; (iii) compile the source code; and (iv) execute
the program using test cases;

– Test Requirement: this service — the MuTestPascalRequirement (MTPR)
— is responsible to execute functionalities related to treatment of test re-
quirements. Thus, it: (i) generates mutants using mutation operators; (ii)
compiles source code of mutants; (iii) provides mutation descriptions to the
client service; (iv) executes mutants using test cases; and (v) mark/unmark
mutants as equivalent; and

– Test Criteria: this service, named MuTestCriteria (MTC), implements
functionalities related to Mutation Testing criterion: (i) verification of the
number of alive, dead, and equivalent mutants; (ii) mutation score calcula-
tion, what can indicate adequacy of the test case set; and (iii) generation of
reports about testing execution.

The integration of these four services was also conducted, resulting in a service-
oriented testing tool. Thus far, this tool enables to test programs written in
Pascal. However, it is worth noting that it can be easily extended to support
other programming languages, since services can be additionally developed and
integrated.

4.2 Integrating Testing Services

To build the service-oriented testing tool, we have developed an orchestrator
service, named RExMuTesT(Reusable and Extensible Mutation Testing Tool)
that coordinates and solicits functionalities of the four testing services. Figure 5
presents an example of a business process used by the tool. Dashed arrows rep-
resent messages; continuous arrows are related to the sequence of activities; and
each column represents a testing service previously described (MTPR, MTPA,

A Service-Oriented Reference Architecture for Software Testing Tools 417

Fig. 5. Business Process of RExMuTesT

TCM, and MTC). In the central column, RExMuTesT is presented, coordinating
other services.

When a client service (an user, an application or another business process)
creates a test project and loads the source code of a program to be tested, REx-
MuTesT sends a message to test artifact service (MTPA), requiring treatment of
the source code. MTPA is again solicited to generate the syntactic tree related to
the source code and compiles the source code. Following, mutants are generated
and posteriorly compiled by test requirement service (MTPR). Furthermore, test
cases can be inserted anytime into test project using test case service (TCM). In
order to test the program, a message is sent to test case service (TCM), request-
ing the list of test cases not executed yet. In test artifact service (MTPA), each
test case is used to execute the original program to get the expected output.
Following, test requirement service (MTRP) executes alive mutants using test
cases. If output of a mutant is different from the expected output, this mutant is
considered dead. Meanwhile, mutation score can be calculated by test criterion
service (MTC); moreover, general information about test requirement coverage
can be obtained. Thus, while the test case set is not considered adequate, new
test cases can be added and the original program and alive mutants are executed.

418 L.B.R. Oliveira and E.Y. Nakagawa

In short, regarding technologies used to implement our services, we have
adopted Apache Tomcat as the application server and AXIS2 as the service
engine. Java was adopted as a general purpose language and JavaCC4 as the
parser generator. Design patterns were also considered in our implementation:
Mediator for implementation of Controller and Facade to simplify use of func-
tionalities provided by services.

4.3 Preliminary Analysis about Testing Service Reuse

Since business processes could also be services, we intend that RExMuTesT
is easily integrated in other applications. Thus, this characteristic could make
possible the development of an integrated testing environment, where different
testing techniques and criteria are applied in a complementary way. Table 3
presents a preliminary analysis about reuse capability of the four testing services
(MTPA, MTPR, MTC, and TCM).

Table 3. Service reuse level analysis

Reuse level TCM MTC MTPA MTPR

Similar Tool � � � �
Technique/Criterion � – – –
Programming Language � � – –

Since test case service (TCM) was implemented to be independent of testing
techniques/criterion (i.e., techniques/criterion-independent), as well as of lan-
guage that is written the program to be tested (i.e., language-independent), it
presents great reuse capability in other testing tools that support different test-
ing techniques/criteria and languages. Test criterion service (MTC) requires and
deals with information about test requirements (i.e., the mutants). Thus, this
service could be reused in tools that support Mutation Testing; however, this
service is language-independent; therefore, it could be reused in tools that test
program in different languages, such as Java. Otherwise, test requirement ser-
vice (MTPR) and test artifact service (MTPA) are directly related to the testing
criterion that they support (Testing Mutation). Thus, they can be reused in sim-
ilar tools, supporting Mutation Testing in program written in Pascal, however,
in tools based on other service compositions or architectures. It is important
to observe that this preliminary analysis refers specifically to the four services
presented in this case study. Other services developed based on RefTEST-SOA
will certainly present other reuse levels.

5 Conclusion and Future Work

Service-oriented reference architectures can bring a significant contribution to
areas in which software systems based on SOA need to be built. For the testing
4 https://javacc.dev.java.net/

A Service-Oriented Reference Architecture for Software Testing Tools 419

domain, development of service-oriented testing tools is also a real need; thus,
the main contribution of this paper is RefTEST-SOA, a service-oriented refer-
ence architecture for that domain. We believe that since it is possible to reuse the
knowledge (structure and requirements) contained in RefTEST-SOA to develop
new testing tools, reduction of efforts and time and, as a consequence, improve-
ment in productivity could be achieved using RefTEST-SOA if compared with
development from scratch. However, establishment of a service-oriented refer-
ence architecture is not a trivial task. Considerable sources of information are
required to achieve a consolidated and relevant reference architecture. In this
perspective, we intend that RefTEST-SOA reaches this objective, considering
the systematic way that we adopted to establish this architecture. We intend
also this same experience could be reproduced in other domains, aiming at es-
tablishing service-oriented reference architecture for such domains.

Our case studies have pointed out that testing tools traditionally developed as
stand-alone systems can be built as a set of independent services. This observa-
tion could be considered for other domains that do not have yet service-oriented
systems. Furthermore, a preliminary and qualitative observation indicates that
services developed according to RefTEST-SOA present capacities of reuse, inte-
gration, and scalability provide by SOA. However, other services must be built
yet, for instance, services that support orthogonal activities, such as testing doc-
umentation and testing planning. Therefore, more studies must be conducted to
reach a complete and quantitative evaluation of RefTEST-SOA. For the future
work, we intend to develop a set of testing services based on RefTEST-SOA,
aiming an integrated testing environment and, as a consequence, contributing
to the software testing activity.

Acknowledgments. This work is supported by Brazilian funding agencies (CNPq and
CAPES) and Project “Process to the Establishment and Evaluation of Service-Oriented
Reference Architectures” (Process N.: 2009/11135-9) supported by FAPESP.

References

1. Harrold, M.J.: Testing: A roadmap. In: ICSE 2000, pp. 61–72. ACM Press, New
York (2000)

2. Myers, G.J., Sandler, C., Badgett, T., Thomas, T.M.: The Art of Software Testing.
John Wiley & Sons, Inc., New Jersey (2004)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley, Reading (2003)

4. Angelov, S., Grefen, P.W.P.J., Greefhorst, D.: A classification of software reference
architectures: Analyzing their success and effectiveness. In: WICSA 2009, Cam-
bridge, UK, pp. 141–150 (September 2009)

5. Eickelmann, N.S., Richardson, D.J.: An evaluation of software test environment
architectures. In: ICSE 1996, Berlin, Germany (March 1996)

6. Nakagawa, E.Y., Simão, A.S., Ferrari, F., Maldonado, J.C.: Towards a reference
architecture for software testing tools. In: SEKE 2007, Boston, USA, pp. 1–6 (July
2007)

420 L.B.R. Oliveira and E.Y. Nakagawa

7. Papazoglou, M.P., Heuvel, W.-J.: Service oriented architectures: approaches, tech-
nologies and research issues. The VLDB Journal 16(3), 389–415 (2007)

8. Bartolini, C., Bertolino, A., Marchetti, E.: Introducing service-oriented coverage
testing. In: ASE 2008, L’Aquila, Italy, pp. 57–64. IEEE, Los Alamitos (2008)

9. Eler, M.M., Endo, A.T., Masiero, P.C., Delamaro, M.E., Maldonado, J.C., Vin-
cenzi, A.M.R., Chaim, M.L., Beder, D.M.: JaBUTiService: A Web Service for
Structural Testing of Java Programs. In: SEW 2009, Sweden, pp. 1–9 (2009)

10. Bayer, J., Forster, T., Ganesan, D., Girard, J.F., John, I., Knodel, J., Kolb, R.,
Muthig, D.: Definition of reference architectures based on existing systems. Tech-
nical Report 034.04/E, Fraunhofer IESE (2004)

11. Nakagawa, E.Y., Martins, R.M., Felizardo, K., Maldonado, J.C.: Towards a process
to design aspect-oriented reference architectures. In: CLEI 2009, Brazil, pp. 1–10
(2009)

12. Schmidt, M.-T., Hutchison, B., Lambros, P., Phippen, R.: The enterprise service
bus: making service-oriented architecture real. IBM Systems Journal 44(4), 781–
797 (2005)

13. Peltz, C.: Web Services Orchestration and Choreography. IEEE Computer 36(10),
46–52 (2003)

14. Dai, G., Bai, X., Wang, Y., Dai, F.: Contract-based testing for web services. In:
COMPSAC 2007, Washington, USA, vol. 1, pp. 517–526 (July 2007)

15. Arsanjani, A., Zhang, L.J., Ellis, M., Allam, A., Channabasavaiah, K.: S3: A
service-oriented reference architecture. IT Professional 9(3), 10–17 (2007)

16. OASIS: Reference model for service oriented architecture 1.0. Technical report,
OASIS Standard (October 2006)

17. OASIS: Reference architecture for service oriented architecture version 1.0. Tech-
nical report, OASIS Standard (April 2008)

18. Oliveira, L.B.R., Felizardo, K.R., Feitosa, D., Nakagawa, E.Y.: Reference mod-
els and reference architectures based on service-oriented architecture: A system-
atic review. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285,
pp. 360–367. Springer, Heidelberg (2010)

19. Costagliola, G., Ferrucci, F., Fuccella, V.: SCORM run-time environment as a
service. In: ICWE 2006, New York, NY, USA, pp. 103–110 (2006)

20. Peristeras, V., Fradinho, M., Lee, D., Prinz, W., Ruland, R., Iqbal, K., Decker, S.:
CERA: A collaborative environment reference architecture for interoperable CWE
systems. Service Oriented Computing and Applications 3(1), 3–23 (2009)

21. Eler, M.M., Delamaro, M.E., Maldonado, J.C., Masiero, P.C.: Built-in structural
testing of web services. In: CBSoft 2010, Los Alamitos, CA, USA, pp. 70–79 (2010)

22. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature re-
views in software engineering. Technical Report EBSE 2007-001, Keele University
and Durham University Joint Report (2007)

23. Nakagawa, E.Y., Oliveira, L.B.R.: Using systematic review to elicit requirements
of reference architectures. In: WER 2011, Rio de Janeiro, Brazil, pp. 1–12 (April
2011)

24. Dieste, O., López, M., Ramos, F.: Formalizing a systematic review process in re-
quirements engineering. In: WER 2007, Brazil, pp. 96–103 (2007)

25. Baldamusa, M., Bengtsona, J., Ferrari, G., Raggi, R.: Web services as a new ap-
proach to distributing and coordinating semantics-based verification toolkits. In:
WSFM 2004, Pisa, Italy (February 2004)

26. Ghezzi, G., Gall, H.: Towards software analysis as a service. In: ASE 2008, L’Aquila,
Italy, pp. 1–10 (2008)

A Service-Oriented Reference Architecture for Software Testing Tools 421

27. Dillon, T.S., Wu, C., Chang, E.: Reference architectural styles for service-oriented
computing. In: ICNPC/IFIP 2007, Dalian, China, pp. 543–555. Springer, Heidel-
berg (2007)

28. Lan, J., Liu, Y., Chai, Y.: A solution model for service-oriented architecture. In:
WCICA 2008, Chongqing, China, pp. 4184–4189 (June 2008)

29. Zimmermann, O., Kopp, P., Pappe, S.: Architectural knowledge in an SOA infras-
tructure reference architecture. In: Software Architecture Knowledge Management,
pp. 217–241. Springer, Heidenberg (2009)

30. International Organization for Standardization: Information technology – software
life–cycle processes. Technical report, ISO/IEC 12207 (1995)

31. Ferrari, F.C., Nakagawa, E.Y., Rashid, A., Maldonado, J.C.: Automating the mu-
tation testing of aspect-oriented Java programs. In: AST 2010 at ICSE 2010, Cape
Town, South Africa, pp. 51–58 (2010)

32. Barbosa, E.F., Nakagawa, E.Y., Maldonado, J.C.: Towards the establishment of an
ontology of software testing. In: SEKE 2006, San Francisco Bay, USA (July 2006)

33. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for
the practicing programmer. IEEE Computer 11(4), 34–43 (1978)

34. Li, N., Praphamontripong, U., Offutt, A.J.: An experimental comparison of four
unit test criteria: Mutation, edge-pair, all-uses and prime path coverage. In: Mu-
tation 2009 at ICST 2009, Denver, USA, pp. 220–229 (2009)

Decouplink: Dynamic Links for Java

Martin Rytter and Bo Nørregaard Jørgensen

The Maersk Mc-Kinney Moller Institute, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark

{mlrj,bnj}@mmmi.sdu.dk

http://www.sdu.dk/mmmi

Abstract. Software entities should be open for extension, but closed to
modification. Unfortunately, unanticipated requirements emerging dur-
ing software evolution makes it difficult to always enforce this princi-
ple. This situation poses a dilemma that is particularly important when
considering component-based systems: On the one hand, violating the
open/closed principle by allowing for modification compromises indepen-
dent extensibility. On the other hand, trying to enforce the open/closed
principle by prohibiting modification precludes unanticipated dimensions
of extension. Dynamic links increase the number of dimensions of exten-
sion that can be exploited without performing modification of existing
types. Thus, dynamic links make it possible to enforce the open/closed
principle in situations where it would otherwise not be possible. We
present Decouplink – a library-based implementation of dynamic links
for Java. We also present experience with the use of dynamic links during
the evolution of a component-based control system.

Keywords: Dynamic links, extensibility, object-oriented programming.

1 Introduction

The inability to close software components to modification poses a threat to the
extensibility of software systems [27]. Ideally, individual software components
are open for extension, but closed to modification [17,15].

The need for modification arises when a software component does not comply
with its specification – i.e. due to a bug – or when there is a need to incorporate
new requirements. Whereas bugs rarely pose an enduring problem, the need to
incorporate new requirements does. This is so, because all non-trivial software
systems are subject to uncertainty, which requires them to evolve in ways that
cannot be anticipated [12,13,3]. Thus, the need for modification to accommodate
extension is usually an enduring problem.

Modifications that introduce new functionality are not only enduring, they
also tend to be more difficult to confine. Whereas correcting a bug can often be
confined so that dependent components remain unaffected, incorporating new
functionality is more likely to affect existing components.

Software evolution implies that a software system must change in order to
support new requirements. However, components inside the system do not per se

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 422–437, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.sdu.dk/mmmi

Decouplink: Dynamic Links for Java 423

Home
Monitoring

Temperature
Monitoring

Humidity
Monitoring

1.0

2.0

Should be closed
to modification during
software evolution.

Fig. 1. Evolution of a component-based home monitoring system

need to change. In the best case, new functionality can be introduced by adding
new components, while existing components remain closed to modification.

We will use the simple home monitoring system in figure 1 to discuss the
open/closed principle – in figure 6 we will share experience from the evolution
of a real system. To start with, the home monitoring system consists of a single
component, i.e. home monitoring. In its next version, two new components are
added to the system, i.e. temperature monitoring and humidity monitoring.

To satisfy the open/closed principle, it must be possible to add the two new
components in the system without modifying the home monitoring component.
Unfortunately, it is not always possible to anticipate those dimensions of exten-
sion – i.e. “kinds of” extension – that will be needed in the future. When this is
the case, extension developers are faced with an inconvenient dilemma:

One the one hand, an extension developer – e.g. the developer of temperatu-
re monitoring – may choose to violate the open/closed principle by performing
modification of an existing component – e.g. home monitoring – to facilitate
introduction of the extension. Even if the required modification seems to be
backwards compatible, the fact that it is made by an extension developer makes
it problematic. The problem is that other extensions may require similar mod-
ifications that could potentially produce a conflict. Therefore, the composition
of invasive extensions must entail a global integrity check, and thus extensions
cannot be completely independent – i.e. the system fails to be independently
extensible [26].

On the other hand, an extension developer may refrain from any modifica-
tion of existing components – i.e. home monitoring remains closed to modi-
fication. This decision implies that the required extension – e.g. temperature
monitoring – cannot be introduced. Thus, the open/closed principle is violated
as the system fails to be open for extension.

In summary, enforcement of the open/closed principle relies on anticipating
required dimensions of extension. The ability to do so is one of the most impor-
tant skills for a software architect to master. Nevertheless, even the most skilled
software architect can never anticipate everything – thus, in the ultimate case
the open/closed principle cannot be enforced.

424 M. Rytter and B.N. Jørgensen

An important feature of component platforms is the ability to handle situa-
tions, where modification of existing components is unavoidable. This is tradi-
tionally done by implementing a component lifecycle management system that
maintains dependencies among component versions [16]. While versioning is cer-
tainly always an option, it should be the last option. In general, it is best if
modification of existing components can be avoided.

In this paper, we argue that the need for modification of existing components
can be reduced. It is often the case that existing components must be modified,
not to change existing functionality in any fundamental way, but to allow new
components to associate new functionality with concepts managed by existing
components. We will demonstrate that this form of modification can be avoided
– and thus our ability to satisfy the open/closed principle can be increased.

The core of our approach is dynamic links – a new kind of link that can
connect objects of unrelated types. Dynamic links promote both elements of the
open/closed principle: First, dynamic links promote openness by allowing new
objects to be attached to old objects in ways that were not anticipated. Second,
dynamic links can connect objects without modifying their types – existing types
remain closed to modification.

The paper is a continuation of preliminary work described in [23]. It provides
two main contributions: We present Decouplink 1 – a library-based implemen-
tation of dynamic links for Java [2] – and we present experience with the use
of dynamic links to evolve a component-based control system for greenhouse
climate control.

The paper is organized as follows. We introduce dynamic links in section 2.
Section 3 presents support for dynamic links in Java. In section 4, we present
experience with the use of dynamic links during the evolution of a greenhouse
control system. Section 5 presents related work. Section 6 concludes the paper.

2 Dynamic Links

In this section we introduce dynamic links, we discuss how they are different
from traditional links, and we demonstrate that dynamic links promote the
open/closed principle.

In object-oriented software, a link is a connection between two objects. A link
usually has a direction and connects exactly two objects – a source object and
a destination object. Links enable us to represent complex domain concepts as
compositions of primitive objects connected by links. The use of a link between
objects commonly relies on an association between types. The relationship be-
tween object-based links and type-based associations is emphasized in the UML
specification [19]:

“An association declares that there can be links between instances of
the associated types. A link is a tuple with one value for each end of the
association, where each value is an instance of the type of the end.”

1 Get Decouplink from http://decouplink.com.

http://decouplink.com

Decouplink: Dynamic Links for Java 425

Given the definition above, a traditional link may be thought of as “an in-
stance of” an association. It is only possible to create a link when a corresponding
association exists. In Java, an association usually manifests itself as a field. E.g.
it is only possible to connect a Room object and a Thermometer object when a
suitable field has been declared, e.g. Room.thermometer.

A dynamic link can connect objects of unrelated types. Unlike a traditional
link, a dynamic link does not rely on the declaration of an association. It is
therefore possible to create a dynamic link between any two objects.

rRoom

tThermometer A traditional link requires an
association between types:

class Room {
 Thermometer t;
 Thermometer getT();
 void setT(Thermometer t);
}

hHygrometer
A dynamic link can connect
objects of unrelated types.

Fig. 2. Comparison of traditional links and dynamic links

The difference between traditional links and dynamic links is illustrated in
figure 2. The example shows three objects. The r object is an instance of the
Room type – similarly, t is an instance of Thermometer, and h is an instance of
Hygrometer. The figure shows two links:

First, r and t are connected by a traditional link. The link can exist only
because a corresponding association exists between Room and Thermometer. In
the code, the association is implemented using a field and two accessor methods.

Second, r and h is connected by a dynamic link. The dynamic link is drawn
using a dashed line. The link is possible even though Room and Hygrometer do
not participate in a type-based association. Thus, no methods or fields in the
Room type depend on the Hygrometer type.

The primary advantage of dynamic links is that they promote closing existing
code to modification. This is the case because they, unlike traditional links, can
connect new objects of unanticipated types without modifying existing types.

Figure 3 illustrates how dynamic links promote closing components to mod-
ification in situations where traditional links do not. The three components are
similar to those in figure 1, and the types and objects provided by each compo-
nent are similar to those in figure 2.

First, the temperature monitoring component uses a traditional link to ex-
tend the system. The link connects t, an instance of the new type Thermometer,
to r, an instance of Room. As we have previously seen, this link can only be
created when there exists an association between Room and Thermometer. Thus,
modification of the original home monitoring component is required.

426 M. Rytter and B.N. Jørgensen

r

t h

1.0

2.0

Due to the
introduction of this object
link, the Room class is
subject to modification.

Regardless of the
introduction of this
dynamic link, the Room
class remains closed to
modification.

Room

Thermometer Hygrometer

Fig. 3. Dynamic links promote closing components to modification

Second, the humidity monitoring component uses a dynamic link to extend
the system. It connects h, a Hygrometer, to r, a Room. Since the new link requires
no corresponding association, no modification of Room is required to perform the
extension – the home monitoring component remains closed to modification.

The benefits and limitations of dynamic links can be emphasized by distin-
guishing two kinds of extension:

– Unanticipated structural extension is the ability to create links from original
objects to new objects of unanticipated types – e.g. “add a hygrometer to a
room”. Unanticipated structural extension is supported by dynamic links.

– Unanticipated behavioral extension is the ability to wrap unanticipated be-
havior around original behavior – e.g. “when the light is turned on, also
turn on the heat”. Unanticipated behavioral extension is not supported by
dynamic links.

Unanticipated behavioral extension can only be achieved by modifying original
types. This modification may be explicitly performed by the programmer – e.g.
direct modification of source code. It may also be automated – e.g. load-time
weaving of aspects [10]. Even automated modifications should be avoided to
preserve independent extensibility [20].

The use of dynamic links is to some extent analogous to the way we “connect
objects” in the physical world. The architect of a room is likely to create a
room layout (a room type) without thinking about hygrometers (an associated
type) – however, this does not prohibit a future owner of a room (an instance)
from installing one. Similarly, type developers can never anticipate everything –
should this prohibit object owners from creating links? As indicated above, we do
not think so. However, we must stress not to use a comparison with the physical
world to be an argument for or against dynamic links. We use the comparison
merely to offer a familiar way of thinking about the role of dynamic links.

Decouplink: Dynamic Links for Java 427

3 Design and Implementation

In this section we will present Decouplink – our implementation of dynamic links
for Java. We show simple usage examples, we discuss the most notable design
decisions, and we give an overview of how it works.

We have implemented Decoupling as a library. This choice makes the imple-
mentation accessible, as no language extension is needed.

Creating a dynamic link from r to h:

Link<Hygrometer> link =
 context(r).add(Hygrometer.class, h);

Disposing a dynamic link using its Link object:

link.dispose();

Obtaining all dynamic links to Hygrometer
objects originating from r:

Collection<? extends Hygrometer> q =
 context(r).all(Hygrometer.class);
for(Hygrometer h : q) { .. }

r : Room

h : Hygrometer

Fig. 4. Simple usage of dynamic links

Figure 4 shows how to use our library to create, dispose, and obtain dynamic
links. The context() method plays an important role. It is used to select an
object on which to perform an operation, e.g. create a link or obtain existing
links. The context() method is static and provided by a class in our library.
By statically importing the method, it can be made available anywhere.

Since dynamic links do not rely on type-level associations, it is not possible to
qualify links using accessor methods. Instead, we rely on type-based link qualifi-
cation, i.e. we qualify links by the type of their destination object – not the name
of a method or field. Consequently, instead of writing r.addHygrometer(h), we
write context(r).add(Hygrometer.class, h). Type-based links qualification
has two important consequences:

– It is always possible to add links to objects of new types without modifying
existing types.

– The type of a destination object must be sufficiently specific to reveal the
purpose of the data it represents. E.g. a person’s first name should probably
be of type FirstName and not merely String.

When programming an extension that adds new objects using dynamic links, it
is often useful to be able to “protect” object links, so that other extensions can-
not remove them. E.g. the humidity monitoring component should be able to
ensure that no other extension intentionally or unintentionally disposes the link
from r to h. We achieve this form of protection using objectified link ownership:

428 M. Rytter and B.N. Jørgensen

– Creating a dynamic link produces a Link object (see figure 4).
– A dynamic link can only be disposed through its corresponding Link object.

Note that a Link object represents ownership of a link – not the ownership of
any particular object. Anyone with access to an object can navigate dynamic
links originating from that object, but only the links’ owners can dispose them.

When using traditional links, it is possible to enforce constraints on the car-
dinality between types. E.g. “a Room has exactly one Hygrometer”. When using
dynamic links, it cannot always be guaranteed that a future extension will not
break such cardinality constraints. E.g. a future extension may add a second
Hygrometer. In section 4 we will discuss a pattern that can enforce cardinality
constraints in certain situations. However, as a general rule:

– Dynamic links are not constrained by type-level association. Therefore, de-
sign for “one-to-many” whenever it is practical.

We have already seen that the context() method is an essential part of our API.
This method provides access to a simple runtime system that manages dynamic
links. An overview of the runtime-system implementation is given in figure 5.
The example is based on a situation where a Room has a single Thermometer and
two Hygrometers. To improve readability, we have abbreviated the classnames
used in previous examples – e.g. Room is abbreviated R.

The runtime system uses a systemwide map to associate each source object,
e.g. r, with a corresponding context object, e.g. cr. The context object holds in-
formation about dynamic links originating from its corresponding source object.
The context objects are lazily created – i.e. cr is created when context(r) is
first called. The map is a weak hash map – i.e. a context object is made eligible
for garbage collection even if the global map keeps a reference to it. Conse-
quently, developers do not have to rely on explicit link disposal – dynamic links
automatically disappear when their source objects disappear.

r : R

h1 : H

Map

r cr

.. ..

t : T

h2 : H

T { t }

H { h1, h2 }

LookupGet dynamic links to all
H objects originating from r:

context(r).all(H.class);

Fig. 5. Dynamic links runtime system

Decouplink: Dynamic Links for Java 429

Each context object organizes dynamic links using a lookup. The lookup as-
sociates each destination object type, e.g. H, with a list of destination objects,
e.g. {h1, h2}. Adding and disposing dynamic links correspond to changing the
contents of the lookup. Obtaining links corresponds to accessing the lookup.

To summarize, let us consider evaluation of the context(r).all(H.class)
statement by following the dotted lines in figure 5. First, context(r) corre-
sponds to accessing the map and returning the corresponding context object, cr

– if no context object exists, it is lazily created. Second, all(H.class) returns
a collection of all H objects in the context object’s lookup.

Whereas obtaining and creating links is supported by methods invoked on the
context object, link disposal is different. As discussed previously, link disposal
happens exclusively through the Link object (not shown in figure 5). Thus, if
the creator of a dynamic link does not keep a reference to the corresponding
Link object, then the link – and the corresponding context information – can
only disappear when the source object becomes eligible for garbage collection.

Before moving on, we would like to briefly mention a few features that space
does not permit us to present in great detail:

First, it is often practical to manage ownership of groups of links that belong
together – e.g. when a group of links must be disposed at the same time. Our
library provides a small number of classes that support such management.

Second, fault tolerance is a crosscutting concern that may be difficult to main-
tain as component-based systems evolve. Our library allows for the creation of
fault-tolerant dynamic links. A fault-tolerant dynamic link is a dynamic link that
automatically tries to recover from a destination object’s inability to satisfy its
contract. This feature is motivated and inspired by [22].

4 Experience with Dynamic Links

The best evaluation of dynamic links available at the moment is experience gath-
ered during the design, implementation, and evolution of a component-based
control system for greenhouse climate control. An early version of the system
was briefly mentioned in [23]. The system is currently composed of 19 compo-
nents, 12 of which use dynamic links. The number of dynamic links in a running
system depends on usage patterns. Normal usage easily generates more than
1,000 dynamic links, and those links may be obtained more that 500,000 times
within a few minutes. The total size of the system is 12,919 lines of code.

The difficulty of anticipating required dimensions of extension, and thus en-
forcing the open/closed principle, is highly domain specific. In our experience,
greenhouse climate control is a particularly challenging domain. First, the phys-
ical properties of individual greenhouses can be very different. Second, the set
of sensors and actuators available vary greatly. Third, control requirements vary
depending on the cultivar being produced and the grower’s preferences.

Most research in the area of climate control has been focused on evaluating
specific control strategies against various plant physiological criteria [31,30,28].
Attempts to integrate different control strategies into an extensible control sys-
tem have turned out to be surprisingly difficult to perform [1].

430 M. Rytter and B.N. Jørgensen

Our system is the result of a collaboration with growers, plant physiologists,
and a control system vendor. We have been working on the system for two years.
The concept of dynamic links has emerged during the project and plays a central
role in recent versions of the system.

Figure 6 depicts selected components in the system, and some of their provided
objects. For the purpose of our discussion we have organized the components in
three versions – this is a simplification of the actual system’s history. In the
first version, a component provides Greenhouse objects (to improve readability
only a single object is shown in the figure). In version two, two components
provide CO2, temperature, and ambient light sensors. Finally, version three adds
a component that deals with photosynthesis – a measure of plant growth that can
be calculated when light intensity, temperature, and the CO2 level are known.

The figure contains two kinds of arrows: First, arrows for dependencies be-
tween components. Second, arrows for links between objects – note the difference
between traditional links (normal lines) and dynamic links (dashed lines).

Based on figure 6 we will now discuss a number of concrete experiences:

– Dynamic links promote closing existing components to modification despite
the presence of domain contexts, whose scopes cannot be fully anticipated.

g : Greenhouse

l : LightSensorc : CO2Sensor

1.0

2.0

t : TempSensor

2.0

3.0

p : Photosynthesis

From Photosynthesis implementation:

double getPhotosynthesis() {
 double tv = context(g).one(TempSensor.class);
 double cv = context(g).one(CO2Sensor.class);
 double lv = context(g).one(LightSensor.class);
 return calcPhotosynthesis(tv, cv, lv);
}

Fig. 6. Selected components in a greenhouse climate control system

Decouplink: Dynamic Links for Java 431

In our system “a greenhouse” constitutes a domain context whose scope cannot
be fully anticipated. In the broadest sense, a context is a setting in which state-
ments may be interpreted [18]. E.g. in the context of a greenhouse we interpret
statements such as “what is the temperature?” or “what is the current rate of
photosynthesis?”. We consider it impossible to come up with a complete list of
statements that may be interpreted in the context of a greenhouse – i.e. the
scope of a greenhouse context cannot be fully anticipated.

Without dynamic links, types representing domain contexts are difficult to
close to modification. Addition of new context objects – e.g. CO2Sensor objects
or LightSensor objects – would require modification of the Greenhouse type.

Note that new types of context information are not only difficult to anticipate,
but can also be very different. Thus, it is difficult to extract common super
types. In theory, we could use a pure tagging interface – e.g. GreenhouseItem
– for all our unanticipated types to implement. This would actually promote
closing Greenhouse to modification. However, since the types have very little in
common, this solution would be difficult to manage for extension components,
as it would often be necessary to use instanceof tests and typecasts to access
objects using sufficiently specific interfaces.

With dynamic links, new objects can be non-invasively attached to objects
of original types as the domain context they represent evolves. In figure 6, new
components add links to instances of CO2Sensor, TempSensor, LightSensor,
and Photosynthesis. In our system, links originating from Greenhouse objects
refer to objects of 61 different types. Hence the Greenhouse type – and thus the
component in which it resides – remains closed to modification.

In summary, the development style that dynamic links make possible requires
developers merely to anticipate “the existence of a domain context”, and “not
specific dimensions of extension that must be supported by the context”. Conse-
quently, software becomes more extensible and remains closed to modification.

– Dynamic links support repeated extension, where each extension object can
look up objects provided by other extensions.

It often happens that an object provided by one extension depends on objects
provided by another extension. This leads to a form of repeated extension where
dynamic links are used to incrementally construct a network of related objects
around a common context object.

In figure 6, p provides the ability to calculate photosynthesis. The calculation
depends on other extensions providing inputs such as temperature, t of type
TempSensor, CO2 level, c of type CO2Sensor, and light intensity, i of type
LightSensor. Two things are important to note:

First, g represents a context in which the calculation takes place. There are
many TempSensor objects, CO2Sensor objects, and LightSensor objects in a
system. However, we need exactly those that can be found in the context of g.

Second, an extension can only find objects of types that are known. E.g. in
order to obtain a dynamic link to l, it is necessary to depend on the component
providing the LightSensor type.

432 M. Rytter and B.N. Jørgensen

The example shown in figure 6 is rather small, and thus the photosynthesis
component depends on all other components being shown. A complete diagram
of our system would reveal that most extensions depend only on a subset of com-
ponents operating on the Greenhouse context – e.g. a user-interface component
providing a thermometer widget needs only to know about TempSensor objects
provided in the context of g. Each component may have its own incomplete view
of a context, and multiple components’ views may be overlapping.

In our experience, extension by attaching new objects facilitates interface
segregation [14]. Dynamic links make it easy to add extension objects with “slim”
interfaces, and thus clients depending on those interfaces often use all of it.

– Strive towards modeling your software so that invariants imposed by the
domain do not depend on the existence of dynamic links.

The lack of class-based encapsulation makes it difficult to enforce an invariant
that depends on the existence of a dynamic link. Fortunately, such invariants
can almost always be avoided by taking appropriate design decisions.

In our system, we measure various values at regular intervals. The measured
information is shared among components by using dynamic links originating
from a Greenhouse object. Let us consider two different ways to implement this:

One approach is to update a measured value by replacing an object – e.g.
we may dispose a dynamic link referring to an old MeasuredCO2 object, and
then create a dynamic link to a new MeasuredCO2 object. In our experience,
this implementation is often problematic, because it tends to violate invariants
imposed by domain requirements. A simple invariant that may be violated is
“a Greenhouse object must always have a MeasuredCO2 object”. Since dynamic
links do not provide transaction-based creation and disposal, it is impossible
to replace an object without violating the invariant. Similar problems may also
emerge with more complex invariants involving more than one link.

Instead of continuously replacing a destination object, we prefer to change
the state of the object. Instead of having a MeasuredCO2 object that needs to
be replaced when a new value has been measured, we use a CO2Sensor object
that changes its internal state (see figure 6). The same CO2Sensor object is used
throughout the lifetime of g. Since the state change takes place inside an object,
we can enforce invariants using type-based encapsulation.

– The creation and disposal of dynamic links often coincide with creation and
disposal of the object being extended. Therefore, the need for subscribing to
creation and disposal events must often be anticipated.

Connecting two objects with a dynamic link – i.e. a structural extension – needs
not to be anticipated by type developers. However, the need for adding new
behavior to a control flow to create a link at a specific time – i.e. a behavioral
extension – must be anticipated.

In our experience, the time at which a dynamic link must be created or dis-
posed often – but not always – coincides with the time of creation and disposal
of the object being extended. This is particularly the case when following our

Decouplink: Dynamic Links for Java 433

previous advice: When state changes take place inside referred objects – and
not as creation/disposal/replacement of dynamic links – there is a tendency for
referred objects to be created and disposed together with the object they extend.

In our system, the component responsible for managing Greenhouse objects
makes it possible for extension components to be notified, when a Greenhouse
object is created or disposed. We implement this using the observer pattern [8].

In our experience, the code needed to facilitate the required event notification
is rarely subject to modification, even though it must once be anticipated. Thus,
in practice our ability to close components to modification is rarely compromised.

Though it often happens, it is not always the case that dynamic links are
created and disposed together with the object being extended. In some architec-
tural styles an object may take the role of a message that is being passed around
– e.g. pipes and filters [24]. In such cases each component handling a message
may add new information using a dynamic link. In such designs a message may
have a significantly longer lifetime than dynamic links used to extend it.

Our system reveals another exception from the general trend. The dynamic
class-loading capability of Java allows our control system to have a software
updating mechanism that can add components, while the system is running.
When adding a new component, it is often necessary to add “new things” to
greenhouses – i.e. new dynamic links are created, and they get to originate from
Greenhouse objects that already exist. In our system, the component managing
Greenhouse objects is responsible for organizing this.

– The lack of associations between types makes it important to document
sharing and co-existence semantics when declaring types intended to be used
with dynamic links.

The public part of a traditional type-based association manifests itself as type
members – e.g. accessor and modifier methods. The names and documentation of
these type members informally document the contract of that association. When
there is no explicit association – as it is the case when using dynamic links – this
form of documentation is not available. Consequently, the type of a destination
object must provide documentation that is usually not needed or less important.
In our experience, two aspects are particularly important to document:

First, a normal accessor method indicates whether ownership of returned ob-
jects is transferred to the caller – e.g. Stack.pop() – or if the returned objects
are shared with the callee – e.g. Stack.peak(). With dynamic links, referred ob-
jects will almost always be shared. It is therefore important to document what
happens when multiple independent units of code navigate the same dynamic
link, and thus share access to a common destination object. E.g. consider the
potential destination type interface GreenhouseWindow { setOpen(boolean
v); }. GreenhouseWindow is probably not very useful to a ventilation compo-
nent that wants to open the window for 30 minutes, since shared access enables
another component to override the decision. Thus, developers should keep shar-
ing in mind when designing and documenting types such as GreenhouseWindow.

Second, an association may document the roles of participating objects. With
dynamic links, all objects of the same type have the same role. When multiple

434 M. Rytter and B.N. Jørgensen

objects are referred to by dynamic links originating from a common source ob-
ject, then we may say that they co-exist. It is important that the semantics of
such co-existence is documented when declaring types of destination objects. E.g.
when “a Greenhouse has multiple TempSensors”, then an association may assign
roles to each Thermometer object, e.g. “near plants” or “near the ridge”. With
dynamic links, co-existing TempSensor objects all have the same role. Thus, the
TempSensor type must be declared, so that it makes sense to have co-existing
instances. When this cannot be done, it is sometimes necessary to promote roles
to types, e.g. to distinguish PlantTempSensor from RidgeTempSensor.

– Cardinality constraints can indirectly be achieved by limiting access to con-
structers of destination types. Cardinality constraints cannot be combined
with abstraction.

So far, we have assumed that it is impossible to impose cardinality constraints
between two types when using dynamic links. While this is to some extent true,
an observation deserves to be mentioned: It is possible to indirectly impose
cardinality constraints by declaring a type that cannot be instantiated directly
by third-party classes or components.

Looking at figure 6, let us assume that we want to enforce that “a Greenhouse
has exactly one LightSensor”. We can do this by preventing subclassing – i.e.
declaring LightSensor to be final – and prohibiting other components from
instantiating LightSensor objects – i.e. making all LightSensor constructors
private. New LightSensor objects can now only be instantiated by the compo-
nent providing the LightSensor type. Thus cardinality constraints maintained
by the providing component cannot be violated by other components.

Note that this technique has an important limitation: It cannot be combined
with abstraction across component boundaries. In other words, the component
that enforces a cardinality constraint must also be the component that provides
an implementation of the destination type.

Also note this pattern’s similarity with the singleton pattern [8] – both pat-
terns prevent direct third-party instantiation.

In summary, it is our experience that dynamic links have the potential to
promote the open/closed principle. To realize this potential it is important that
programmers understand the benefits and limitations that dynamic links have
to offer. We consider the experience presented here as a valuable starting point.

5 Related Work

The mechanisms by which dynamic links are created, obtained, and disposed
are similar to the mechanisms by which objects are registered, discovered, and
unregistered when using the lookup pattern [11]. The original motivation for the
lookup pattern was the ability to discover distributed objects. Similarly, dynamic
links can be used to discover objects provided by other components.

Some systems use lookups not merely to facilitate discovery, but to represent
domain contexts with scopes that often change due to software evolution or

Decouplink: Dynamic Links for Java 435

software configuration. When used in this way, a system typically has many
lookup instances, each representing something from the domain – e.g. a user,
a company, or a greenhouse. The NetBeans Rich Client Platform was one of
the first projects to use lookups successfully for this purpose [5]. It uses lookup
instances to represent concepts such as folders (in file systems), projects, and
nodes (in tree views). In such a system, lookups are only used to model selected
domain contexts. With dynamic links, similar capabilities are available for any
object in the system without any explicit introduction of the lookup pattern.

An approach to closing types to modification is to model an unanticipated as-
sociation as a type in its own right – i.e. to use an association class [7]. Using this
approach, “a Room has a Thermometer” can be modeled as “a RoomThermometer-
Association has a Room and a Thermometer”. While this approach is capable
of avoiding modifications, it does involve quite a bit of unintuitive boilerplate
code for declaring association classes and for managing association objects.

Another way to externalize associations is object-oriented support for relations
[21] – a first-class concept inspired by the entity-relationship model used in
database theory. Relations were not designed with the open/closed principle and
independent components in mind. Therefore, no link-ownership mechanisms are
discussed. This is, however, a prerequisite for independent extensibility. While
relations as first-class concepts have attractive properties, we prefer a library-
based approach, as it is easier to integrate with mainstream languages.

AspectJ [10], MultiJava [6], and many dynamic languages [9,29] support the
addition of new fields and methods to existing types. We have previously noted
that this form of modification compromises independent extensibility. A similar
criticism can be found in [20] and [25].

Classboxes [4] also support the addition of new fields and methods, but their
visibility is limited to a well-defined scope – i.e. a classbox. This makes it possible
to introduce extensions to existing types without affecting existing code. Thus
– like dynamic links – classboxes allow for the introduction of links to objects
of unanticipated types without breaking clients of existing types. Classboxes is
a language extension, while support for dynamic links is provided by a library.

6 Conclusion

Dynamic links can connect objects of unrelated types. This makes it possible to
introduce links from objects of existing types to objects of unanticipated types
without imposing any modifications.

Dynamic links promote extension that is compliant with the open/closed prin-
ciple: First, software components become open towards new dimensions of ex-
tension – objects of new types can be freely attached to objects of existing types.
Second, software components remain closed to modification – no introduction of
fields and methods on existing types is required.

It is possible to implement dynamic links as a library for any mainstream
object-oriented programming language. We have presented Decouplink for Java
– no extension of the language or runtime is required to use it.

436 M. Rytter and B.N. Jørgensen

Dynamic links increase the design space for extensible software. We have used
dynamic links to design and maintain a component-based system in a domain
where dimensions of extension are difficult to predict – a climate control system
for greenhouses. We have presented experience gained from this effort.

We believe that dynamic links have the potential to improve extensibility of
a wide variety of software systems. We are, therefore, very much interested in
experience from other domains. In particular, we would like to learn more about
the long-term effects of evolving software using dynamic links. Finally, we would
like to explore IDE-support that makes programming with dynamic links easier.

References

1. Aaslyng, J., Lund, J., Ehler, N., Rosenqvist, E.: IntelliGrow: A Greenhouse
Component-Based Climate Control System. In: Environmental Modelling & Soft-
ware, vol. 18(7), pp. 657–666. Elsevier, Amsterdam (2003)

2. Arnold, K., Gosling, J., Holmes, D.: Java Programming Language. Addison-Wesley
Professional, Reading (2005)

3. Bennett, K.H., Rajlich, V.T.: Software Maintenance and Evolution: A Roadmap.
In: Proceedings of the Conference of the Future of Software Engineering, pp. 73–87
(2000)

4. Bergel, A., Ducasse, S., Nierstrasz, O.: Classbox/J: Controlling the Scope of
Change in Java. In: OOPSLA 2005 – ACM Sigplan Notices, vol. 40(10), pp. 177–
189 (2005)

5. Boudreau, T., Tulach, J., Wielenga, G.: Rich Client Programming: Plugging into
the NetBeansTM Platform. Prentice Hall PTR, Englewood Cliffs (2007)

6. Clifton, C., Leavens, G., Chambers, C., Millstein, T.: MultiJava: Modular Open
Classes and Symmetric Multiple Dispatch for Java. In: OOPSLA 2000 – Proceed-
ings of the 15th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 130–145 (2000)

7. Fowler, M.: UML Distilled. Addison-Wesley Professional, Reading (2004)
8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional, Reading (1994)
9. Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implementation.

Addison-Wesley Longman Publishing, Amsterdam (1983)
10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An

Overview of AspectJ. In: Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–
354. Springer, Heidelberg (2001)

11. Kircher, M., Jain, P.: Pattern-Oriented Software Architecture Volume 3: Patterns
for Resource Management. Wiley, Chichester (2004)

12. Lehman, M.: Programs, Life Cycles, and Laws of Software Evolution. Proceedings
of the IEEE 68, 1060–1076 (1980)

13. Lehman, M., Ramil, J.: Software Uncertainty. In: Software 2002: Computing in an
Imperfect World, pp. 477–514 (2002)

14. Martin, R.C.: The Interface Segregation Principle. C++ Report (1996)
15. Martin, R.C.: The Open-Closed Principle. C++ Report (1996)
16. Meijer, E., Szyperski, C.: Overcoming Independent Extensibility Challenges. Com-

munications of the ACM 45(10), 41–44 (2002)
17. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall, Englewood Cliffs

(1988)

Decouplink: Dynamic Links for Java 437

18. McGregor, J.: Context. Journal of Object Technology 4(7), 35–44 (2005)
19. Object Management Group: OMG Unified Modeling LanguageTM (OMG UML),

Infrastructure, http://www.omg.org/spec/UML/2.2/
20. Ostermann, K., Kniesel, G.: Independent Extensibility – An Open Challenge for

AspectJ and Hyper/J. In: ECOOP 2000 – Workshop on Aspects and Dimension
of Concerns (2000)

21. Rumbaugh, J.: Relations as Semantic Constructs in an Object-Oriented Language.
In: Conference Proceedings on Object-Oriented Programming Systems, Languages
and Applications, pp. 466–481 (1987)

22. Rytter, M., Jørgensen, B.N.: Enhancing NetBeans with Transparent Fault Toler-
ance. Journal of Object Technology 9(5) (2010)

23. Rytter, M., Jørgensen, B.N.: Composing Objects in Open Contexts using Dynamic
Links. In: Informatics – Software Engineering and Applications (2010)

24. Shaw, M., Garlan, D.: Software Architecture – Perspectives on an Emerging Dici-
pline. Prentice-Hall, Englewood Cliffs (1996)

25. Steimann, F.: The Paradoxical Success of Aspect-Oriented Programming. In: OOP-
SLA 2006 – Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, pp. 481–497 (2006)

26. Szyperski, C.: Independently Extensible Systems – Software Engineering Poten-
tial and Challenges. In: Proceedings of the 19th Australasian Computer Science
Conference (1996)

27. Szyperski, C.: Component Software – Beyond Object-Oriented Programming, 2nd
edn. Addison-Wesley Professional, Reading (2002)

28. Tantau, H., Lange, D.: Greenhouse Climate Control: An Approach for Integrated
Pest Management. Computers and Electronics in Agriculture 40, 141–152 (2003)

29. Thomas, D., Hunt, A.: Programming Ruby: A Pragmatic Programmer’s Guide.
Addison-Wesley Professional, Reading (2000)

30. Van Pee, M., Berckmans, D.: Quality of Modelling Plant Responses for Environ-
ment Control Purposes. Computers and Electronics in Agriculture 22, 209–210
(1999)

31. van Straten, G., Challa, H., Buwalda, F.: Towards User Accepted Optimal Control
of Greenhouse Climate. Computers and Electronics in Agriculture 26, 221–238
(2000)

http://www.omg.org/spec/UML/2.2/

I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 438–446, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Software Packaging Approaches —A Comparison
Framework

Shouki A. Ebad* and Moataz Ahmed

Information and Computer Science Department,
King Fahd University of Petroleum and Minerals,

Dhaharan 31261, Saudi Arabia
{shouki,moataz}@kfupm.edu.sa

Abstract. Effective software modularity brings many benefits such as long-term
cost reduction, architecture stability, design flexibility, high maintainability, and
high reusability. A module could be a class, a package, a component, or a
subsystem. In this paper, we are concerned with the package type of modules.
There has been a number of attempts to propose approaches for automatic
packaging of classes in OO development. However, there is no framework that
could be used to aid practitioners in selecting appropriate approaches suitable for
their particular development efforts. In this paper we present an attribute-based
framework to classify and compare these approaches and provide such aid to
practitioners. The framework is also meant to guide researchers interested in
proposing new packaging approaches. The paper discusses a number of
representative packaging approaches against the framework. Analysis of the
discussion suggests open points for future research.

Keywords: automatic software packaging, software architecture, software
modularization, optimization.

1 Introduction

From the object-oriented (OO) software engineering perspective, it is well recognized
that good organization of classes into identifiable and collaborating modules improves
the understandability, architecture stability, maintainability, testability, and
reusability, all leads to more long-term cost-effective development [1]. The software
architecture design effort addresses the problem of structuring the software system
under development into modules; this is to include issues such as interconnections
between modules, assignment of behaviors to modules, and scalability of modules to
larger solutions [2]. A module could be a class, a package, a component, or a
subsystem. When considering OO development, the design is a collection of related
classes. If there are only few classes in the entire application, we may regard the class
decomposition as the architecture. However, as the number of classes grows, such a

* Corresponding author. Present addresses: Information and Computer Sciences Department,

King Fahd University of Petroleum and Minerals, Dhahran 31261, P.O. Box 1594, Saudi
Arabia. Tel.: +966 3 860 2464.(Off), + 966 3 860 5940 (Res). fax: +966 3 860 2174.

 Software Packaging Approaches —A Comparison Framework 439

set of classes can no longer suffice as the architecture because it would be too
complex to comprehend at once according to the divide and conquer principle. In this
case, the architecture is looked at as packages along with their interconnections; such
packages are recursively divided into sub-packages and so on until a level of packages
that is easily comprehendible for detailed design is achieved. At the lowest level, a
package would be a collection of related classes. Terminology-wise, packages, at the
highest level, which can be offered as standalone applications, are referred to as sub-
systems. Packages, at lower levels, which are functionally cohesive enough, are
referred to as components. Lowest levels packages are referred to as simply packages.

Considering OO development, it is typical for the requirements analysis and system
modeling activity to produce a conceptual class model as input to the architecture
design activity. In this case, the architect conducts bottom-up packaging of conceptual
classes into higher level packages for later detailed design effort. The packaging
process are typically guided by some objectives; for instance, it is very common for
architects to design for architecture stability where the system is structured in a way
that permits changes to a system to be made without the architecture having to change
 [7]. In this case, the effectiveness of the packaging process could be measured by
measuring how highly cohesive (i.e., strong intra-package dependencies) and loosely
coupled (i.e., weak inter-package dependencies) the resultant packages. Our literature
survey, however, revealed that effective bottom-up packaging could be challenging
due to two major problems: 1) the lack of effective metrics to be used in guiding the
packaging process; and 2) the exponential number of possible packages to be examined
for best structure. The first problem is beyond the scope of this paper. In this paper we
survey the approaches proposed to address the second problem. The problem has been
addressed by many researchers as a problem of NP-hard combinatorial optimization
problem to determine the optimal grouping of possibly large, but finite number of
classes [1] [4] [5] [8]. There has been a number of attempts to propose packaging
approaches. However, to the best of our knowledge, there is no framework that could
be used to classify and compare such packaging approaches. In this paper we present a
framework to facilitate such classifications and comparisons based on a set of attributes
identified as a result of an intensive survey of existing approaches. The framework is
meant to aid practitioners in selecting appropriate approaches suitable for their
particular development efforts. Moreover, the framework can also guide researchers
interested in proposing new packaging approaches. The paper discusses six
representative packaging approaches against the framework.

The rest of this paper is organized as follows. Section 2 presents a set of attributes
that makes up our comparison framework. A set of representative packaging
approaches is discussed in Section 3. Section 4 summarizes our observations on the
analysis of the approaches against the framework. Section 5 concludes the paper and
offers some directions for future work.

2 Comparison Framework

Judging a packaging approach should not only be based on its effectiveness and
efficiency, but also on the underlying characteristics that affect its effectiveness and
efficiency. Throughout surveying existing related work on packaging approaches, we

440 S.A. Ebad and M. Ahmed

identified some attributes that can be used for classifying and comparing different
packaging approaches. We expect this set of attributes to help in enhancing existing
packaging approaches as well as guiding researchers trying to develop new packaging
approaches. Our proposed attributes are discussed in the sequel.

Packaging Goal: In all related work, the goals of packaging come before
anything else described. This is important to be able to evaluate packaging
achievement. The packaging goal affects the way the packaging process is conducted
and the kind of measures to be used to assess the process. Getting on more
understandable system and reducing the maintainability effort are examples of the
packaging goal.

Underlying Principle: To better understand a concept, it is important to
understand the underlying principle upon which the work is built.

Input Artifact: This attribute determines the different inputs required by the
packaging approach. Source code and class diagram are examples of the input artifact.

Internal Quality Attribute: This attribute reflects the internal design attribute
that guides the packaging process. Cohesion, complexity, length, coupling, and size
are examples of such internal attributes.

Search Algorithm: Because packaging could be treated as a search problem,
most packaging approaches use heuristic search methods. This attribute indicates the
used search algorithm (heuristic or exact) and lists, in case of heuristic, the main
features of the used algorithm such as representation and parameter selection.

Fitness Function: In most of the heuristic search techniques, the packaging
objective is converted into an objective function which is furthermore converted into a
fitness function that is to be optimized to find a solution for the problem. Fitness
functions on software packaging are nothing more than software design metrics.

Scalability: According to [4], the software system is small if the number of
classes is less than 15 classes. In case of small-sized software systems, the packaging
process becomes a simple problem because we can find a polynomial- time algorithm
to solve it. The scalability attribute measures the capability of a packaging approach
to scale up or scale out in terms of the software size. In general, rough categorization
can be used: small (between 15 and 25 classes) or large (more than 25 classes).

Soundness: This attribute reflects whether the packaging approach was shown to
group the classes in the way the approach claims it would.

Practicality: This attribute reflects aspects of practicality of the packaging
approach. This includes amount of resources (e.g. time, memory) that the packaging
approach consumes in generating the right packaging.

Supportability: To know whether the packaging approach is supported by some
kind of automation and integrated with CASE tools.

3 Packaging Approaches

We present a summary discussion of six representative packaging approaches based on
our set of attributes. The list of considered approaches in our study is not exhaustive, but
we gave attention to those works we considered significant and more recent as regards
the subject under discussion. We also discuss the shortcomings associated with the
considered approaches.

 Software Packaging Approaches —A Comparison Framework 441

3.1 Doval et al 1999 [5]

They defined the Modularization Quality (MQ) of a system as an objective function to
quantify the quality of a given module dependency graph MDG They used MQ as the
objective function of their Genetic Algorithm to express the trade-off between intra- and
inter-connectivity attributes. MQ achieved this trade-off by subtracting the average inter-
connectivity from the average intra-connectivity. Table 1 discusses this approach based
on our attributes.

Table 1. Approach of Doval et. al. 1999

Attribute Comments
Goal To simplifying the system structure
Principle Module Dependency Graph (MDG)
Input Source code
Internal Att. Intra connectivity and inter connectivity
Search Alg. GA: numeric encoding, crossover rate = 0.8, mutation rate = 0.004, roulette wheel

selection, population size = 10n where n is the number of nodes in the MDG
Fitness Tradeoff between inter- and intra-connectivity. This trade-off is achieved by

subtracting the average inter-connectivity from the average intra-connectivity. It is
bound between -1 and 1

Scalable Scale out; small-sized software system (Mini-Tunis) with 20 modules
Sound It suffers from the module misplacement problem That makes the solution sub-

optimal
Practical No mention
Support. The Bunch tool [9] that automatically creates a system decomposition

3.2 Liu et al 2001 [8]

A challenging problem in Email environments is optimally allocating users to servers.
This paper presented a method for decomposing a large number of objects (users) into
mutually exclusive groups (servers) where within-group dependencies are high and
between-group dependencies are low. Their ultimate goal was to minimize network
traffic. Based on our attributes, Table 2 shows our discussion of the approach.

Table 2. Approach of Liu et. al. 2001

Attribute Comments
Goal To find arrangement of objects on some groups to minimize network traffic
Principle Graph represented by frequency matrix
Input Simulated data that represents the messages being sent amongst objects
Internal Att. Within-group dependencies and between-group dependencies
Search Alg. Group GA: numeric encoding, random selection, fixed and variable the

crossover rate based on the number of function calls
Fitness The fitness function reflects the work objective by rewarding groups where

there is a lot of communication between members
Scalable Scale up; large-sized system; 250 objects (users) and 5 groups (servers).
Sound Evolutionary Algorithm is the best compared to clustering (PAM and PAM-M),

and Hill Climbing. When a small modification is made to the crossover rate, HC
catches EA up.

Practical. For n objects, n(n+1)/2 elements need to be stored
Support. Not supported

442 S.A. Ebad and M. Ahmed

3.3 Chiricota et al 2003 [3]

They presented a method for finding relatively good clustering of software systems.
Their method exploits a metric based clustering of graphs. To evaluate the resultant
structure, they used the MQ metric (Approach of Doval et. al. 1999). Table 3 presents
a summary discussion of this approach according to our attributes.

Table 3. Approach of Chiricota et. al. 2003

Attribute Comments
Goal To achieve this principle “cohesive subsystems with loosely interconnected“
Principle Small-world graph (undirected)
Input Source code
Internal Att. Coupling
Search Alg. They used the min-cut algorithm consisting in finding a clustering made of

several distinct subsets or blocks c1, . . . , cp such that the number of edges
connecting nodes of distinct blocks is kept to a minimum

Fitness Edges between subsystems are weak edges if their value falls below a given
threshold. Once those edges have been deleted, the connected components
of the induced graph correspond exactly to the required cluster structure

Scalable Scale up; three large-sized systems: ResynAssistant, MacOS9, and MFC
Sound A large number of nodes at the three applications is left isolated
Practical Short computing time
Support. Not supported

3.4 Bauer and Trifu 2004 [2]

Because the recovered software architecture is not always meaningful to a human
software engineer, this paper proposed an approach that combines clustering with
pattern-matching techniques to recover meaningful decompositions. Table 4 discusses
this approach based on our attributes.

Table 4. Approach of Bauer and Trifu 2004

Attribute Comments
Goal To bring recovered subsystem decompositions closer to what an expert

would produce manually
Principle Un-clustered graph
Input Source code
Internal Att. Accuracy (meaningful) and optimality (cohesion and coupling)
Search Alg. A two-pass MMST (modified minimum spanning tree)
Fitness It is based on two criteria: accuracy (primary) and optimality (secondary).

Decomposition is accurate if it is “meaningful” to a software engineer. This
includes: 1) the subsystems contain only semantically related components
2) all semantically related components should be in a single subsystem.
Decomposition is optimal if the subsystem: high cohesion and low
coupling..

Scalable Scale up; a large-sized system (Java AWT) with 482 classes
Sound In terms of optimality, it does not significantly improve the decomposition
Practical Some phases in this approach are time and memory consuming
Support. It is not supported

 Software Packaging Approaches —A Comparison Framework 443

3.5 Seng et al 2005 [10]

They expressed the task of improving a subsystem decomposition as a search
problem. Software metrics and design heuristics are combined into a fitness function
which is used to measure the quality of subsystem decompositions. Table 5
summarizes this approach based on our attributes.

Table 5. Approach of Seng et. al. 2005

Attribute Comments
Goal To determine a decomposition with fewer violations of design principles
Principle Directed graph
Input Source code
Internal Att. cohesion, coupling, complexity, cycles, and bottleneck
Search Alg. Group GA: an adapted crossover, mutation are split & join, elimination, and

adoption, tournament selection, the initial decomposition is the existing one
Fitness A multi modal function (cohesion, coupling, complexity, cycles, bottleneck).
Scalable Scale up; a large-sized system (JHotDraw) with 207 classes
Sound It does not improve the cohesion and coupling
Practical The execution is fast because of using the efficient tournament selection
Support. Not supported

3.6 Abdeen et al 2009 [1]

They addressed the problem of optimizing existing modularizations by reducing the
inter-package connectivity; this reduction is inspired from well-known package
cohesion and coupling principles. Compared to the other approaches, this approach
allows maintainers to define some constraints such as package size and the limit of
modifications on the original modularization Discussion of the approach based on our
attributes is described in Table 6.

Table 6. Approach of Abdeen et. al. al. 2009

Attribute Comments
Goal To optimize the decomposition of system into packages so that the

resulting organization reduces connectivity between packages
Principle Directed graph
Input Existing modularization
Internal Att. Inter-package connections/cyclic dependencies
Search Alg. Simulated Annealing, CoolingSchd.(T)=0.9975×T, p>e^(-Tcurrent/Tstart)
Fitness The average of dependency quality (which relies on CCP and ADP

package principles) and connection quality (which relies on CRP
and ACP package principles)

Scalable Scale up; four large-sized systems JEdit , ArgoUML, Jboss, and Azureus
with 802, 1671, 3094, and 4212 classes respectively

Sound It results packages having no classes i.e., empty packages. The percentage
of empty packages exceeds 25% of some application classes. In addition,
this approach does not allow to remove empty packages from the system

Practical No mention
Support. Not supported

444 S.A. Ebad and M. Ahmed

4 Observations

Based on the above analysis of each packaging approach, the primary observations of
this study can be summarized as follows:

• Most packaging approaches deal with packaging as an optimization problem.
• Most packaging approaches consider maximizing intra-package cohesion and

minimizing inter-package coupling as the optimization objective function.
• Most packaging approaches use Genetic Algorithms as a heuristic search method.
• All packaging approaches are graph based.
• Most packaging approaches use the source code as their input artifact. This

reveals that there is a lack of approaches that would help in packaging early
during the architectural design phase; this is the time when packaging might be
needed the most for better architectural and component design. This remains a
research area in need of more efforts where only conceptual models are available.

• Selection of parameters of the heuristic search method such as GA or SA is very
crucial. Different parameters settings may result in completely different structures;
due to being trapped in local optima as in the approach of Liu et. al.

• Most packaging approaches are scalable.
• The soundness of discussed packaging approaches seems to be questionable. For

examples, Doval et al may result in module misplacement, Chiricota et al 2003
may result in isolated nodes, Bauer and Trifu may result in no significant
improvement, and Abdeen et al. may result in empty packages.

• Except Doval et al, all packaging approaches are not supported by CASE tools.

Table 7 summarizes the packaging approaches surveyed based on our attributes.

Table 7. Summary of the existing packaging approaches based on our attributes

Study Goal Input Principle Internal Att.
Doval et.
al. 1999

To simplify the system
structure

source code Graph Intra connectivity and inter
connectivity

Liu et. al.
2001

To minimize network
traffic

simulated data Graph Within-group dependencies
and between-group
dependencies

Chiricota
et. al. 2003

To achieve a design
principle (Cohesion &
Coupling)

source code Graph Coupling

Bauer &
Trifu 2004

To produce meaningful
decomposition

source code Graph Accuracy (meaningful) &
optimality (cohesion &
coupling

Seng et. al.
2005

To decompose the
system with fewer
violations of design
principles

source code Graph Cohesion, coupling,
complexity, cycles, and
bottleneck

Abdeen et.
al. al. 2009

To achieve a design
principle (Cohesion &
Coupling)

existing
modularization

Graph Inter-package
connections/cyclic
dependencies

 Software Packaging Approaches —A Comparison Framework 445

Table 7. (continued)

Search Alg. Fitness Scalable Sound Practical Support

GA Tradeoff between inter- and intra-
connectivity

No No N/A Yes

GA Penalizing groups where there is no
communication

Yes No No No

Min-cut Deleting the weak edges Yes No Yes No
MMST High internal cohesion & low

external coupling
Yes No No No

GA A multi modal fitness function Yes No Yes No

SA Averaging of some quality metrics Yes No N/A No

5 Conclusion and Future Work

In this paper we presented an attribute-based framework to allow classifying and
comparing approaches for packaging classes during software development. The paper
also provides an analysis of a representative set of packaging approaches in light of the
framework. The results of the study provides practitioners with an overview of prominent
work in the literature and offer help with regard to making decisions as which approach
would be appropriate for their particular development efforts. Moreover, this analysis is
meant to serve as guide for researchers interested in developing new packaging
approaches. The analysis indentifies some open issues for future work.

Clearly, package-level metrics play crucial role in guiding the packaging process.
Unfortunately, package level metrics did not get that much attention of researches as
class level metrics did [6]. As a follow-up to the work presented in this paper, the
authors are currently working on analyzing the metrics used in the packaging
approaches. The authors are working on developing package-level metrics that can
guide packaging process towards the development of highly stable architectures.

References

1. Abdeen, H., Ducasse, S., Sahraouiy, H., Alloui, I.: Automatic Package Coupling and
Cycle Minimization. In: WCRE 2009, pp. 103–122. IEEE CNF, Los Alamitos (2009)

2. Bauer, M., Trifu, M.: Architecture-aware adaptive clustering of OO systems. In: CSMR
2004, pp. 3–14. IEEE Computer Society, Los Alamitos (2004)

3. Chiricota, Y., Jourdan, F., Melancon, G.: Software components capture using graph
clustering. In: The 11th IEEE Int’l Workshop on Program Comprehension, IWPC 2003
(2003)

4. Clarke, J., Dolado, J., Harman, M., Jones, B., Lumkin, M., Mitchell, B., Mancoridis, S.,
Rees, K., Roper, M., Shepperd, M.: Reformulating software engineering as a search
problem. IEEE Proceedings on Software 150(3), 161–175 (2003)

5. Doval, D., Mancoridis, S., Mitchell, B.: Automatic clustering of software systems using a
genetic algorithm. In: STEP 1999, IEEE Computer Society, Los Alamitos (1999)

6. Genero, M., Piattini, M., Calero, C.: A Survey of Metrics for UML Class Diagrams.
Journal of Object Technology JOT 4(9) (November/December 2005)

446 S.A. Ebad and M. Ahmed

7. Lethbridge, T., Laganière, R.: Object-Oriented Software Engineering: Practical Software
Development using UML and Java. McGraw-Hill, New York (2005)

8. Liu, X., Swift, S., Tucker, A.: Using evolutionary algorithms to tackle large scale
grouping problems. In: GECCO 2001 (2001)

9. Mancoridis, S., Mitchell, B., Chen, Y., Gansner, E.: Bunch: A clustering tool for the
recovery and maintenance of software system structures. In: ICSM 1999, IEEE Computer
Society Press, Los Alamitos (1999)

10. Seng, O., Bauer, M., Biehl, M., Pache, G.: Search-based Improvement of Subsystem
Decompositions. In: Proc. of the GECCO 2005 (2005)

Author Index

Abreu, Rui 261
Acher, Mathieu 220
Adachi Barbosa, Eiji 139
Adersberger, Josef 344
Admodisastro, Novia 180
Aguiar, Rui L. 216
Ahmed, Moataz 438
Aksit, Mehmet 252
Alebrahim, Azadeh 17
Ali Babar, Muhammad 147
Aragüez, Miguel A. 164
Avgeriou, Paris 147, 244, 303
Axelsson, Jakob 199

Balasubramaniam, Dharini 319
Batista, Thais 139
Becker, Martin 207
Bhiri, Mohamed Tahar 67
Brückmann, Tobias 287

Capilla, Rafael 303
Casanova, Paulo 261
Chen, DeJiu 328
Ciraci, Selim 252
Cleve, Anthony 220
Colanzi, Thelma E. 130
Collet, Philippe 220
Contieri Junior, Antonio C. 130
Correia, Guilherme G. 130
Cubo, Javier 388
Cuesta, Carlos E. 379

Da̧browski, Robert 360
David, Ionut 212
Deiters, Constanze 75
Demirli, Elif 336
de Silva, Lakshitha 319
Dı́az, Jessica 114
Duchien, Laurence 220
Dwivedi, Vishal 370

Ebad, Shouki A. 438
Ehlers, Jens 278

Ferrari, Sandra 130
Fuentes, Lidia 164

Gaaloul, Walid 67
Galster, Matthias 244
Gamez, Nadia 164
Garbajosa, Juan 114
Garcia, Alessandro F. 130, 139
Garlan, David 261, 370
Gimenes, Itana M.S. 130
Goedicke, Michael 35
Graiet, Mohamed 67
Gruhn, Volker 287

Hamel, Lazhar 67
Hamid, Brahim 295
Hasselbring, Wilhelm 43, 278
Hatebur, Denis 17
Heisel, Maritta 17

Jmaiel, Mohamed 295
Jørgensen, Bo Nørregaard 422
Johnsen, Andreas 105

Kersten, Benjamin 35
Kijas, Szymon 83
Kmimech, Mourad 67
Kotonya, Gerald 180
Krichen, Fatma 295
Küster, Jochen M. 303

Lago, Patricia 236
Lahire, Philippe 220
Lönn, Henrik 328
Lukkien, Johan J. 212
Lulli, Guglielmo 97
Lundqvist, Kristina 105

Mak, Rudolf H. 212
Maria Fernandes, Jose 370
Masiero, Paulo C. 130
Merle, Philippe 220
Mirandola, Raffaela 97
Müller, Marco 35

Naab, Matthias 194
Nakagawa, Elisa Yumi 207, 405
Navarro, Elena 379

448 Author Index

Oliveira, Lucas Bueno Ruas 405
Oliveira Antonino, Pablo 207
Oliveira Junior, Edson A. 130
Orlic, Bojan 212

Pereira, Oscar M. 216
Pérez, Jennifer 114
Perry, Dewayne E. 379
Pettersson, Paul 105
Pfeiffer, Max 287
Philippsen, Michael 344
Pimentel, Ernesto 388
Potena, Pasqualina 97
Purhonen, Anu 203

Qureshi, Tahir Naseer 328

Raibulet, Claudia 97
Rausch, Andreas 75
Roda, Cristina 379
Rubira, Cećılia M.F. 59
Rytter, Martin 422

Santos, Maribel Yasmina 216
Schmerl, Bradley 261, 370
Schulte, Daniel 190

Silva, Eduardo 139
Soko�lowska, Dorota 83
Sözer, Hasan 26, 252
Stencel, Krzysztof 360
Stenudd, Sakari 203
Stol, Klaas-Jan 147

Tamburri, Damian Andrew 236
Tekinerdogan, Bedir 26, 336
Tibermacine, Chouki 1
Timoszuk, Grzegorz 360
Tizzei, Leonardo P. 59
Tofan, Dan 244
Törngren, Martin 328

van Hoorn, André 43
Velasco-Elizondo, Perla 370
von Massow, Robert 43

Wolf, Alexander L. 114

Zalewski, Andrzej 83
Zalila, Bechir 295
Zdun, Uwe 303
Zernadji, Tarek 1
Zimmermann, Olaf 303

	Title
	Preface
	Organization
	Table of Contents
	Requirements and Software Architectures
	Supervising the Evolution of Web Service Orchestrations Using Quality Requirements
	Introduction: Context and Motivation
	Illustrative Example
	Proposed Approach
	Architecture Decision Documentation
	Change Assistance Algorithm
	The Proposed Approach in Practice
	Related Work
	Conclusion and Future Work
	References

	Towards Systematic Integration of Quality Requirements into Software Architecture
	Introduction
	Basic Concepts
	Requirements Description Using Problem Frames
	Mechanisms and Patterns for Performance and Security

	Requirements Engineering
	UML Profile for Problem Frames
	Annotating Problem Descriptions with Quality Requirements

	Deriving Quality-Based Architectures
	Problem Diagrams
	Annotate Problem Diagrams with Quality Requirements
	Choose Design Alternative and Create Architecture

	Related Work
	Conclusion
	References

	Defining Architectural Viewpoints for Quality Concerns
	Introduction
	Problem Statement
	Case Study: MPlayer
	Architectural Decomposition for Quality Concerns

	Quality Viewpoints
	Example – Recoverability
	Example – Adaptability

	Related Work
	Conclusion
	References

	A Question-Based Method for Deriving Software Architectures
	Motivation
	Annotating Architecture Patterns with Questions
	A Process for Identifying Architectural Candidates from Requirements and Context
	Tool Support
	Example
	Related Work
	Conclusion and Future Work
	References

	Software Architecture, Components, and Compositions
	Performance Simulation of Runtime Reconfigurable Component-Based Software Architectures
	Introduction
	Palladio Component Model
	SLAstic Approach
	Architectural Reconfiguration Operations
	Framework Architecture

	SLAstic.SIM
	SLAstic.SIM Architecture and Framework Integration
	PCM-Specific Runtime Reconfiguration Operations
	Simulation

	Evaluation
	Methodology
	Scenario 1: Constant Workload Intensity
	Scenario 2: Varying Workload without Reconfiguration
	Scenario 3: Varying Workload with Reconfiguration

	Related Work
	Conclusions
	References

	Aspect-Connectors to Support the Evolution of Component-Based Product Line Architectures: A Comparative Study
	Introduction
	Background
	Empirical Settings
	MobileMedia Study
	Related Work
	Conclusions and Future Work
	References

	Verifying Composite Service Transactional Behavior with EVENT-B
	Introduction
	Motivating Example
	Formalizing Transactional Composite Service Using Event-B
	Event-B
	Transactional Web Service Model
	Transactional Composite Service Model

	Transactional Service Patterns
	Validation
	Conclusion
	References

	A Constructive Approach to Compositional Architecture Design
	Introduction
	The Overall Approach
	Describing ABBs and Architectures
	Description Metamodel
	Applying the Description Metamodel - Example

	Related Work
	Conclusion and Further Work
	References

	Quality Attributes and Software Architectures
	Capturing Architecture Evolution with Maps of Architectural Decisions 2.0
	Introduction
	Inspiration
	MAD 2.0 Notation and Modelling Approach
	Architecture Decisions Relationship Diagram (ADRD)
	Architecture Decision Problem Map (ADPM)
	Model Syntax and Validity Rules

	A Modelling Tool for MAD 2.0
	A Case Study
	Discussion: Related Work
	Summary: Future Work
	References

	Resource Management in the Air Traffic Domain
	Introduction
	The Application Domain
	Our Solution
	The Air Traffic Resource Allocation Module
	The Air Traffic Resource Trading Module
	The Air Traffic Adaptivity Module

	Conclusions and Further Work
	References

	An Architecture-Based Verification Technique for AADL Specifications
	Introduction
	Preliminaries
	The Architecture-Based Verification Technique
	AADL Verification Criteria
	Verification Objectives
	Verification Criteria

	Conclusion
	References

	Software Product Line Architectures
	Change Impact Analysis in Product-Line Architectures
	Introduction
	Background
	Flexible-PLA Metamodel
	PLAK Metamodel

	CIA in PLAs
	Change Typology
	Traceability-Based Algorithm
	Rule-Based Inference Engine

	Example
	Related Work
	Conclusions and Further Work
	References

	Extending UML Components to Develop Software Product-Line Architectures: Lessons Learned
	Introduction
	Stereotype-Based Management of Variability (SMarty)
	Applying SMarty Components
	Analysis of the AGM Archictectures
	Quantitative Analysis
	Qualitative Analysis

	Concluding Remarks
	References

	PL-AspectualACME: An Aspect-Oriented Architectural Description Language for Software Product Lines
	Introduction
	Background
	Running Example: Ginga
	ACME and AspectualACME

	PL-AspectualACME
	Specifying the SPL Architectural Vocabulary
	Specifying the SPL Core Architecture
	Specifying SPL Products

	Final Remarks
	References

	Architectural Models, Patterns and Styles
	Design and Evaluation of a Process for Identifying Architecture Patterns in Open Source Software
	Introduction
	Background and Motivation
	Design of the Process
	Design History of IDAPO
	Process Steps Validation and Process Enhancement
	IDAPO: A Process for Identifying Architecture Patterns in OSS

	Evaluation of the Process: A Quasi-Experiment
	Experiment Goals and Hypotheses
	Participants and Training
	Task and Materials
	Experiment Design
	Experiment Procedure
	Analysis and Results

	Discussion
	Threats to Validity

	Conclusion and Future Work
	References

	Autonomic Computing Driven by Feature Models and Architecture in FamiWare
	Introduction
	Motivation
	Autonomic Computing for Wireless Sensor Networks
	Feature Models and Event-Based Architecture for Autonomic Computing

	FamiWare Autonomic Computing Process
	Knowledge: Feature Models and Architectural Configurations
	Autonomic Computing Services in FamiWare
	Plan: Models@Runtime

	Evaluation
	Overhead of the Reconfiguration
	Benefits of the Reconfiguration

	Related Works
	Conclusion and Future Works
	References

	An Architecture Analysis Approach for Supporting Black-Box Software Development
	Introduction
	The Analysis Framework
	Architectural Design
	Scenario Formulation
	Analysis
	CSAFE Toolset

	The Case Study
	Initial EDDIS Architecture

	The Analysis
	Converting Architecture to XMI Specification
	Formulating Analysis Scenarios
	Modify Architecture or Sub-system Architecture

	Conclusions
	References

	Short Papers
	Web-Scale Human Task Management
	Introduction
	Human Tasks
	Key Challenges of Web-Scale Human Task Management
	Research Challenges and Research Method
	References

	Enhancing Architecture Design Methods for Improved Flexibility in Long-Living Information Systems
	Introduction
	Characterization of Flexibility
	Architecture Design for Flexibility
	Initial Validation and Conclusion
	References

	On How to Deal with Uncertainty When Architecting Embedded Software and Systems
	Introduction
	Types of Uncertainty
	Causes for Uncertainty
	Mitigation
	Conclusions
	References

	Runtime Performance Management of Information Broker-Based Adaptive Applications
	Motivation and Background
	Research Questions
	Runtime Performance Management of Information Broker-Based Smart Environment
	References

	Reference Architecture and Product Line Architecture: A Subtle But Critical Difference
	Introduction
	Reference Architecture and Product Line Architecture
	Conclusion and Future Work
	References

	Dynamically Reconfigurable Resource-Aware Component Framework: Architecture and Concepts
	Introduction
	Architecture Description
	Conclusions and Future Work
	References

	A Reusable Business Tier Component with a Single Wide Range Static Interface
	Introduction
	Business Tier Component
	Conclusions
	References

	Process and Management of Architectural Decisions
	Reverse Engineering Architectural Feature Models
	Introduction
	FraSCAti: The Need for Handling Variability
	Feature Modeling
	Reverse Engineering FraSCAti as an SPL

	Automatic Extraction of Architectural Feature Model
	Extracting FM$_Arch150$
	Extracting FM$_Plug$
	Mapping FM$_Arch150$ and FM$_Plug$
	Deriving FM$_Arch$

	Refining the Architectural Feature Model: Application
	Tool Support
	Results
	Lessons Learned

	Related Work
	Conclusion
	References

	Supporting Communication and Cooperation in Global Software Development with Agile Service Networks
	Introduction
	Literature Study
	Agile Service Networks
	Global Software Development

	Mapping GSD to ASNs
	Engineering GSD with ASNs
	Conclusions and Future Work
	References

	Reducing Architectural Knowledge Vaporization by Applying the Repertory Grid Technique
	Introduction
	Applying the RG Technique
	Analysis of Survey Results
	Analyzing Metrics for All Decisions
	Post Questionnaires

	Discussion
	Conclusions and Future Work
	References

	Guiding Architects in Selecting Architectural Evolution Alternatives
	Introduction
	Motivating Example
	Preparation Steps
	Automated Steps
	Application of the Approach
	Conclusion
	References

	Software Architecture Run-Time Aspects
	Architecture-Based Run-Time Fault Diagnosis
	Introduction
	Related Work
	Approach
	Spectrum-Based Reasoning for Fault Localization
	Program Spectra
	Candidate Generation
	Candidate Ranking

	Adapting SMFL to Architecture-Based Run-Time Diagnosis
	Defining Transactions
	Detecting Traces
	Diagnosis

	Evaluation
	Conclusions and Future Work
	References

	A Self-adaptive Monitoring Framework for Component-Based Software Systems
	Introduction
	Self-adaptivity for Continuous Software System Monitoring
	Runtime Evaluation of OCL-Based Monitoring Rules
	Software Performance Anomaly Rating

	Evaluation
	Related Work
	Conclusions and Future Work
	References

	Towards Real-Time Monitoring and Controlling of Enterprise Architectures Using Business Software Control Centers
	Introduction
	Related Work
	Problem Statement
	Business Software Control Center
	Control Center Unit
	Enterprise Architecture Models
	Control Center Bus

	Conclusion
	References

	Towards a Model-Based Approach for Reconfigurable DRE Systems
	Introduction
	Related Work
	The RCA4RTES Model Based Approach
	The RCA4RTES Meta Model
	The RCA4RTES Profile

	Case Study
	Conclusion and Future Work
	References

	ADLs and Metamodels
	An Enhanced Architectural Knowledge Metamodel Linking Architectural Design Decisions to other Artifacts in the Software Engineering Lifecycle
	Introduction
	Motivation and Problem Identification
	Enhanced Trace Links and other Metamodel Extensions
	Implementation in Existing and Emerging Tools
	Architecture Design Decision Support System (ADDSS)
	The Knowledge Architect (KA)
	Architectural Decision Knowledge Wiki/Architectural Decision Knowledge Web Tool
	Implementation in IBM Rational Requirements Composer

	Instantiation for SOA Enterprise Applications
	Related Work
	Conclusion and Future Work
	References

	A Model for Specifying Rationale Using an Architecture Description Language
	Introduction
	Related Work
	Conceptual Model
	Modelling Rationale with Grasp
	Modelling Rationale
	Modelling System Structure
	Binding Rationale to Architecture Elements
	Evaluating Rationale
	Traceability

	Implementation Status
	Conclusions and Future Work
	References

	From EAST-ADL to AUTOSAR Software Architecture: A Mapping Scheme
	Introduction
	Related Work
	EAST-ADL and AUTOSAR Relationship Investigation
	Functional and Behavioural Mapping
	Additional Observations

	Discussion and Conclusion
	References

	Software Language Engineering of Architectural Viewpoints
	Introduction
	Model-Driven Development
	Architectural Description from a Model-Driven Development Perspective
	Elements of Domain Specific Languages

	Defining Viewpoints as Domain Specific Languages
	Decomposition Style

	Related Work
	Conclusions
	References

	Services and Software Architectures
	ReflexML: UML-Based Architecture-to-Code Traceability and Consistency Checking
	Introduction
	Sample Application
	Architecture-to-Code Traceability
	UML Reflexion Profile
	Reflexion Expression Syntax

	Architecture Compliance Checks
	Case Study
	Related Work
	Conclusion
	References

	Software Is a Directed Multigraph
	Introduction
	Related Work
	Model
	Model Implementation
	Conclusions
	References

	An Architectural Approach to End User Orchestrations
	Introduction
	Design Approach
	Using Architectural Styles as a Basis for Abstraction and Refinement

	SCORE
	SCORE Vocabulary

	SCORE in Practice
	Related Work
	Conclusions and Future Work
	References

	Using Model Transformation Techniques for the Superimposition of Architectural Styles
	Introduction
	Context of the Work
	Using M2M Transformations for Architectural Styles
	Related Work
	Conclusions and Future Work
	References

	DAMASCo: A Framework for the Automatic Composition of Component-Based and Service-Oriented Architectures
	Introduction
	Motivations and Foundations
	Problem Statement
	Foundations of the Architectural Model

	DAMASCo Framework
	DAMASCo Architecture
	Detailing the DAMASCo Framework

	Evaluation and Discussion
	Related Work
	Concluding Remarks
	References

	A Service-Oriented Reference Architecture for Software Testing Tools
	Introduction
	Background and Related Work
	Establishing RefTEST-SOA
	Step RA-1: Information Source Investigation
	Step RA-2: Architectural Requirement Establishment
	Step RA-3: Architectural Design
	Step RA-4: Reference Architecture Evaluation

	Case Study
	Description of the Testing Services
	Integrating Testing Services
	Preliminary Analysis about Testing Service Reuse

	Conclusion and Future Work
	References

	Decouplink: Dynamic Links for Java
	Introduction
	Dynamic Links
	Design and Implementation
	Experience with Dynamic Links
	Related Work
	Conclusion
	References

	Software Packaging Approaches —A Comparison Framework
	Introduction
	Comparison Framework
	Packaging Approaches
	Doval et al 1999 [5]
	Liu et al 2001 [8]
	Chiricota et al 2003 [3]
	Bauer and Trifu 2004 [2]
	Seng et al 2005 [10]
	Abdeen et al 2009 [1]

	Observations
	Conclusion and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

